
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Detection of Misuse and Malicious
Behaviours through a Dialogue Analysis

System

Beatriz Gonçalves Neto Carneiro de Brito

Mestrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Rui Camacho

Second Supervisor: Jorge Oliveira

October 29, 2022

© Beatriz Brito, 2022

Resumo

O reconhecimento de emoções humanas tornou-se um tópico de investigação popular, com sis-
temas de análise de sentimentos a surgir cada vez mais. Sistemas como estes podem ter diversas
aplicações em diferentes campos, tais como segurança, saúde, educação, marketing e outros.

As emoções humanas são muito complexas e podem ser extremamente difíceis de decifrar,
dado que cada pessoa se expressa de forma única. Embora muitos estudos detetem emoções a
partir de expressões faciais ou da fala, fazê-lo através da análise de discurso é ainda um desafio.

Uma compreensão bem-sucedida dessas emoções pode levar ao desenvolvimento de ferramen-
tas com propósitos essenciais, como a criação de sistemas de segurança inovadores e eficientes,
capazes de detetar e prever comportamentos maliciosos. Esta deteção pode ser conseguida através
da análise do discurso de uma pessoa, ao interpretar expressões ou palavras-chave que possam
indicar más intenções.

Com isto em mente, foi desenvolvido um sistema de aprendizagem profunda capaz de analisar
diálogos e descodificar os sentimentos e emoções transmitidos pelos participantes durante uma
conversa. Foram aplicadas duas redes neurais artificiais, uma rede multilayer perceptron e uma
long short-term memory, a uma base de dados já existente, constituída por diálogos com múltiplos
intervenientes. Ambas foram criadas para atribuirem a cada frase um sentimento ou uma emoção,
sem ter em consideração o contexto das conversas, tendo sido alcançado o valor de F1-score
máximo de aproximadamente 30%.

i

ii

Abstract

Recognising human emotions has become a trendy research topic, with sentiment analysis sys-
tems emerging more and more. Systems like this have many applications in different areas such
as security, healthcare, education, marketing, and others.

Human emotions are very complex and can be extremely hard to decipher since each person
expresses himself in a unique form. While many studies detect emotions from facial expressions
or speech, doing so from only spoken words is still very challenging.

Successfully comprehending these emotions can lead to developing tools that serve essential
purposes, such as creating innovative and efficient security systems capable of detecting and pre-
dicting malicious behaviours. This detection can be done by analysing a person’s dialogue and
interpreting expressions or keywords that can reveal bad-natured intentions.

With this in mind, a deep learning system was designed to analyse dialogues and retrieve the
sentiments and emotions transmitted by the speakers during a conversation. Two artificial neural
networks, a multilayer perceptron network and a long short-term memory network, were applied to
an existing dataset consisting of multi-party dialogues. Both networks were designed to attribute
a sentiment or emotion to each sentence without considering the conversational context, having
achieved a maximum F1-score of approximately 30%.

iii

iv

Acknowledgements

I would like to thank my supervisors, Professor Rui Camacho and Professor Jorge Oliveira, for
helping me and accompanying me from the beginning.

I am thankful for my parents and sister Vicky, and their motivation and belief in me during this
dissertation’s elaboration period, and also for my uncles and my cousin Tita, for always putting a
smile on my face. I am very fortunate to have such a supportive family. I would also like to thank
my dog Pazuzu for always keeping me company, no matter how long the night was.

Lastly, I would like to extend my sincere thanks to a person without whose help I would not
have been able to write this, Francisco. I am grateful for his patience and aid at all times, and I
thank him for always keeping my spirits high.

To all my family and friends, thank you.

Beatriz Brito

v

vi

“The original question, ’Can machines think?’ I believe to be too meaningless to deserve
discussion. Nevertheless I believe that at the end of the century the use of words and general

educated opinion will have altered so much that one will be able to speak of machines thinking
without expecting to be contradicted”

Alan Turing

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 2
1.3 Dissertation Structure . 3

2 Literature Review 5
2.1 Background . 5

2.1.1 Text-mining and Natural Language Processing 5
2.1.2 Deep Learning . 6

2.2 State of the Art . 9
2.3 Summary . 13

3 Project Development 15
3.1 Dataset . 15

3.1.1 EmotionLines Dataset . 15
3.1.2 Multimodal EmotionLines Dataset . 15

3.2 Methodology . 16
3.2.1 Pre-processing input text . 17
3.2.2 Delineating vocabulary . 18
3.2.3 Normalising labels . 19
3.2.4 Generating class weights . 19
3.2.5 Multilayer perceptron network model 20
3.2.6 Long short-term memory network model 23

4 Experiments and Results 29
4.1 Metrics for performance evaluation . 29

4.1.1 Confusion Matrix . 29
4.1.2 Precision . 30
4.1.3 Recall . 30
4.1.4 Accuracy . 30
4.1.5 Balanced Accuracy . 31
4.1.6 F1-Score . 31
4.1.7 Weighted metrics . 31

4.2 Existing models . 31
4.3 Results . 32

4.3.1 First experiment . 32
4.3.2 Second experiment . 35

ix

x CONTENTS

5 Conclusions and Future Work 37
5.1 Satisfaction of the objectives . 37
5.2 Future work . 38

References 41

List of Figures

2.1 Artificial neural network architecture [1]. 7
2.2 Convolutional neural network architecture. 8
2.3 Recurrent Neural Network architecture. 8

3.1 Multilayer perceptron network model summary (for vocabulary A). 22
3.2 LSTM network model summary, with generator (for vocabulary A). 26
3.3 LSTM network model summary, with masking layer (for vocabulary A). 26

4.1 Representative diagram of the experiments performed. 32
4.2 Three class confusion matrix for vocabulary A. 33
4.3 Three class confusion matrix for vocabulary B. 33
4.4 Seven class confusion matrix for vocabulary A. 34
4.5 Seven class confusion matrix for vocabulary B. 34
4.6 Average accuracy of the model on both vocabularies. 35
4.7 Three class confusion matrix for vocabulary A. 36

xi

xii LIST OF FIGURES

List of Tables

2.1 State-of-the-art summary. 14

3.1 Number of utterances for each sentiment label. 16
3.2 Number of utterances for each emotion label. 16
3.3 Final number of utterances for each sentiment label. 18
3.4 Final number of utterances for each emotion label. 18

4.1 Confusion matrix for binary classification. 29
4.2 Existing models’ F-Score results on MELD. 32
4.3 Comparison of the performance of the 3-class model on both vocabularies. 33
4.4 Weighted metrics of the 3-class model on both vocabularies. 33
4.5 Comparison of the performance of the 7-class model on both vocabularies. 34
4.6 Weighted metrics of the 7-class model on both vocabularies. 34
4.7 Performance of the 3-class model on vocabulary A. 36
4.8 Weighted metrics of the 3-class model on vocabulary A. 36

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

AI Artificial Intelligence
ANN Artificial Neural Network
BRNN Bidirectional Recurrent Neural Network
CMN Conversational Memory Network
CNN Convolutional Neural Network
COMET COMmonsEnse Transformers
CSV Comma-separated values
EAR Emotion Association Rules
EGR Emotion Generation Rules
GRU Gated Recurrent Units
LSTM Long Short-Term Memory
MELD Multimodal EmotionLines Dataset
MLP Multilayer Perceptron
NLP Natural Language Processing
NLTK Natural Language ToolKit
POS Parts of Speech
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RNTN Recursive Neural Tensor Network
SAOOP Sentiment Analysis Of Online Papers Sent
SCNN Sequence-based Convolutional Neural Network
SMM Separable Mixture Models
SS-BED Sentiment and Semantic-Based Emotion Detector

xv

Chapter 1

Introduction

This introductory chapter summarises the work done in this dissertation, its motivation, possible

contributions, and lastly, the dissertation’s structure.

1.1 Motivation

In the last few years, there has been a sudden growth in the research of sentiment analysis and

emotion recognition systems. These systems can identify sentiments and emotions through facial

expressions, spoken words, speech, posture, etc., and can be applied in different contexts.

Sentiment analysis in texts or dialogues analyses trends and opinions, allowing for monitoring

social media and managing brand reputation. Thus augmenting marketing strategies, with compa-

nies keeping track of customers’ feedback by analysing social media comments or surveys. The

same goes for customer service, where negative emails or messages can be prioritised, avoiding

frustrated clients. Another possible application is in market research since it can help to better

understand the demands of the buyers [2].

Emotion recognition via facial expressions is another field of research, for example, for the

automotive industry. Car safety can be improved by detecting what the driver awareness: if the

driver is noticeably tired or drowsy, the car could warn him, preventing him from going out of

a lane. This technique can also be used in health care for better triage, in online education by

analysing the student’s emotional feedback, or even in video game testing [3].

Another application that can emerge from this, using spoken words, is developing a dialogue

analysis system capable of identifying malicious behaviours. A security system installed in work-

places could be used to monitor, predict and avoid misuse conduct.

During a conversation, an upset employee may express his discontent through specific key-

words or expressions that the system would pick up on. After that, it would classify the worker as

being, for example, angry. This simple recognition could help prevent situations of dissatisfaction

from escalating to something worse, making the work environment safer.

1

2 Introduction

Compared to speech or video, the advantage of analysing textual data is that it contains less

additional information besides the written words, making it easier to process. Regardless, the

automatic analysis of dialogue is still very challenging.

A natural conversation contains many variables that must be considered in order to create an

efficient emotion recognition system. The topic of the conversation, the speaker’s point of view,

personality, intent, mental and emotional state, and the argumentation logic [4] are good examples

of said variables.

On top of that, individuals can express themselves ironically during a dialogue. They can

quickly shift their emotions or even fake them, making it extremely hard for an algorithm to

accurately classify the sentiment being exhibited [5].

Also, comprehending the conversational context is a complex yet crucial step in emotion

recognition, as it strongly influences the course of the discussion [5].

Despite all these challenges, the advantages of the applications of this type of system are

undeniable. Therefore, the continuation of research in this area and the constant improvement of

these systems are crucial to enhancing human-to-machine interaction systems.

1.2 Goals and Contributions

This work aimed to create a dialogue analysis system capable of sentiment and emotion recog-

nition. The final work was restricted to the identification of a smaller number of sentiments/emo-

tions, which was imposed by the available dataset. Nevertheless, the first steps towards creating a

system capable of detecting misuse and malicious behaviours were given.

The system ended up predicting a total of three sentiments and seven emotions. A deep learn-

ing model was developed and applied to an existing dataset composed of dialogues transcribed

from a TV show. This aspect came as an advantage given that this work’s goal was to analyse

spoken text; this way, the model could be trained in genuine conversations.

Taking a closer look into the project development, the first step of the process was pre-

processing the textual data extracted from the dataset. This included removing non-alphabetical

characters, numbers and spaces, normalizing letter case, and other tasks such as tokenization,

stemming, lemmatisation, and others that will be mentioned in the next chapters. Afterwards,

two vocabularies were created, by selecting key words for classification from the utterances in the

dataset. The next step was defining the two models (a multilayer perceptron network and a long

short-term memory network) and vectorizing and normalizing the data according to the model.

The last steps were training the models and evaluating their performance, by analysing the values

of the metrics obtained.

1.3 Dissertation Structure 3

1.3 Dissertation Structure

This dissertation is divided into the following five chapters:

Chapter 1, Introduction.

Chapter 2, Literature Review – includes all the fundamental theory on text classification

tasks and deep learning algorithms and describes the selected state-of-the-art models.

Chapter 3, Project Development – contains a description of the dataset and a thorough ex-

planation of all the procedures that led to the elaboration of this project.

Chapter 4, Experiments and Results – covers the experiments carried out and a performance

evaluation.

Chapter 5, Conclusions and Future Work – presents the main conclusions drawn from the

proposed work and suggestions for improving it.

4 Introduction

Chapter 2

Literature Review

This chapter contains the essential background topics required for comprehending the primary

aspects of the developed work and the existing models that constitute the state-of-the-art.

2.1 Background

Existing conversational emotion recognition or sentiment analysis systems use attribute-based

and deep-learning-based algorithms. It requires an input text, withdrawn from an available dataset,

a feature vector containing information about said input and labels that the model will predict:

using a set of texts as the data source the individual sentences are extracted and pre-processed;

for the use of most algorithms, each sentence is transformed into a set of attribute values; each

sentence is then assigned a label corresponding to an emotion.

To comprehend how these approaches are executed, it is essential to understand the principles

of primary text classification.

2.1.1 Text-mining and Natural Language Processing

Text-mining is a common technique used for simple sentiment analysis that allows extracting

information from textual data. It is usually used in collections of documents to identify relevant

info and sort it, this way structuring the data. This allows, for example, for the creation of smaller

and well-organised datasets.

Natural language processing (NLP) is perhaps one of the most important text-mining methods.

It instils in computers the human ability to understand language [6], allowing them to comprehend

complex concepts and recognise relationships and keywords in text.

Because there is usually a lot of irrelevant text items in the data, pre-processing it is a crucial

step. Some fundamental tasks can be applied, such as:

5

6 Literature Review

• Tokenisation – separating the continuous text into sentences and then single words.

• Stemming – removing the endings of the words, leaving only the stem.

• Lemmatisation – like stemming, but it returns the base dictionary form of the word, known

as the lemma.

• Part-of-speech tagging – attributing the part-of-speech (noun, verb, pronoun, etc.) to each

word in a sentence.

• Named Entity Recognition – recognising named entities (person’s name, organisation name,

location, etc.).

• Chunking – transforming a group of tokens into chunks.

• Removing stop words – removing words that add no value to a sentence.

• Removing non-alphabetic characters, numbers and redundant spaces.

• Normalizing letter case.

2.1.2 Deep Learning

Artificial Neural Networks

Artificial neural networks are used in many fields of AI and deep learning because they grant

computers the ability to recognise patterns by mimicking the behaviour of the human brain, mak-

ing the process of classifying data much faster [7].

They are composed of node layers: an input layer, one or more hidden layers, and an output

layer. The nodes are all connected, each with a certain weight and threshold. The node is activated

when the output of a node exceeds its point, and only then does it send the data to the next layer,

turning the result of one node into the input of the next. A common ANN architecture can be seen

in Figure 2.1.

Neural networks require training to provide reliable results, which is achieved with backprop-

agation. This consists of fine-tuning the weights of each node by computing the gradient of the

loss function obtained in each iteration, thus reducing the error rate and increasing generalization.

2.1 Background 7

Figure 2.1: Artificial neural network architecture [1].

Convolutional Neural Networks

A convolutional neural network is a feedforward and multilayer network usually used for image

processing but has been applied in text classification [8]. However, due to its basic architecture, it

does not consider the data from previous nodes.

What distinguishes CNN from other neural networks is that it contains hidden layers called

convolutional layers. These receive input, transform it through a convolutional operation, and send

the output to the next layer. They can detect patterns due to filters, known as kernel functions.

These filters can be seen as a matrix and can extract features from the data by sliding on it [8].

Besides the convolutional layer, CNNs can also have a pooling layer responsible for dimen-

sionality reduction, the process of decreasing the number of parameters in the input. It can be

either max or average pooling: max pooling selects the maximum value as the output and is usu-

ally preferred because it discards noisy activations; average pooling calculates the average value

and establishes it as the output.

The process of classification is achieved in the fully connected layer. In this layer, as the name

implies, each node is directly connected to a node from the previous layer [7].

Recurrent Neural Networks

A recurrent neural network is a network structure that contains a loop, which allows it to pre-

serve information from layer to layer [8]. It is usually used in NLP tasks like text classification.

They are beneficial when handling sequential data and can manage variable-length sequence inputs

[9].

8 Literature Review

Figure 2.2: Convolutional neural network architecture.

RNN’s architecture is like CNN but contains a looping mechanism that allows data to flow

between states, as seen in Figure 2.3. The data from the previous inputs is stored in memory,

called a recurrent hidden state, and it influences the output of the current node. This memory

provides RNN with the ability to predict the following input. Unlike CNN, all nodes’ weights

are the same and are initialised with random values close to zero, only to be changed throughout

training to perfect the network.

Figure 2.3: Recurrent Neural Network architecture.

A gradient is calculated in RNN that measures the changes between the output of a function

and its corresponding input. When data goes through a vast number of layers, this gradient can ei-

ther become too small and lose its value (vanishing gradients) or become way too large (exploding

2.2 State of the Art 9

gradients) [9]. Combined with memory limitations, these two factors represent the main problems

when analysing long-term sequences with RNNs.

These networks can be described according to the number of inputs and outputs. They can

have one information to many outputs, many inputs to only one output, or many inputs to many

outputs. There are also different network architectures [10]:

• Bidirectional recurrent neural networks - future data is used to predict the current state.

Improves the network’s accuracy.

• Long Short-Term Memory - use three gates (input, output, and forget gate) to control the

information, deciding whether to preserve or neglect it based on its weight. Stores memory

over a more significant period, solving the long-term dependency problem.

• Gated recurrent units - use two gates (reset and update gate) to control the information flow.

Solves the memory limitation problem.

2.2 State of the Art

The articles for analysis were selected using Google Scholar by researching keywords such as

dialogue analysis systems, sentiment analysis, text classification, emotion detection, and emotion

recognition. After carefully selecting and studying a primary batch of documents, more were

added to the list by gathering papers from their bibliographic references.

The selection of an article obeyed the following criteria: the title and abstract indicated that it

was related to the theme in question; considering the increased research on this topic in the past

few years, it was essential to analyse updated works. Therefore, the article’s date was a relevant

factor; lastly, the paper was available online.

The selected articles that make up the state-of-the-art fall into two categories: feature-based

and deep-learning models. Special attention was given to the last one. Feature-based models

analyse keywords with exact emotional value [11]. Many models use this method because it is

a very straightforward approach. Still, it faces many problems, such as ambiguous keywords,

the presence of utterances that lack keywords, and statements without the semantic and syntactic

information required for emotion recognition [12].

On the other hand, deep-learning-based methods use neural networks that provide highly reli-

able results in all domains: text, speech and image. Recurrent and convolutional neural networks

have been used for emotion detection in different fields and have consistently proven their value.

Different models were studied to better understand how to create an emotion recognition system,

unimodal (text) and multimodal (text, audio and video), but focusing on how they performed using

only textual data. The conversational context is another variable that a few of the presented works

consider.

Now follows a brief description of the selected documents.

10 Literature Review

Bag of Words

Bag-of-words is a well-known feature-based model for positive and negative sentiment classifi-

cation tasks. El-Din et al. (2016) [13] suggests an Enhancement Bag-of-words model, Sentiment

Analysis Of Online Papers Sent (SAOOP), that classifies data as very negative, negative, neutral,

positive, and very positive. It was applied to a dataset of online reviews, which resulted in an

accuracy of 82%.

This is a straightforward approach to sentiment analysis, so it is essential to acknowledge its

existence. It can be used to set the baseline performance for emotion detection, like Colneric et al.

(2020) [14] suggests.

Automatic Emotion Recognition Approach From Text

Wu et al. (2006) [12] uses two approaches for recognising emotions (happy, unhappy, or neu-

tral): emotional keywords and semantic network. Both methods require a training phase - during

which emotion association rules (EAR) are created, based on emotion generation rules (EGR) and

an emotional corpus - and a test phase - where separable mixture models (SMM) are applied to

the input text to classify the emotion. The EGR is manually annotated, and each sentence in the

corpus is given a corresponding emotion label and a specific EGR.

The first corpus consists of students’ dialogues, and the second one is a broadcast drama.

Compared to state-of-the-art models from the time it was proposed, this method provided excellent

results (75.14% accuracy for corpus A and 61.18% on corpus B). Still, nowadays, deep learning-

based methods are usually preferred.

Convolutional Neural Network

Kim et al. (2016) [15] uses a baseline model that applies convolutional neural networks for

text classification tasks, which can be applied to sentiment analysis. As mentioned, convolutional

neural networks apply layers of convolving filters to local features. They are usually used for

image classification but can be applied to text using a one-dimensional convolutional network.

They have been proven very effective with NLP but represent a simple approach regarding emotion

recognition in conversations.

Poria et al. (2018) [5] tested this text-CNN on the dataset MELD, where utterances had two

different sets of labels: sentiment label (positive, negative and neutral); emotion label (anger, dis-

gust, fear, joy, neutral, sadness and surprise). For sentiment analysis, the model achieved 64.25%

F-score, and for emotion, 55.02%.

Recursive Neural Tensor Network

Socher et al. (2013) [16] proposes RNTN, a model for sentiment analysis that takes any length

utterances as inputs, representing them through word vectors and a parse tree. It computes com-

positional vector representations used as features to classify each sentence.

2.2 State of the Art 11

The dataset consists of positive and negative movie reviews that fall into five categories: neu-

tral, somewhat positive, somewhat negative, positive, and negative. Compared to standard RNN

and baseline models, it proved to be more effective overall in shorter sentences, with an accuracy

of 80.7%. Feature-based baseline models perform well with longer sentences.

Spoken Language Embedding Sub-Network

Zadeh et al. (2017) [17] created a Tensor Fusion Network for multimodal sentiment analysis

that uses spoken language, gestures and voice. Focusing only on the sub-networks responsible for

analysing unimodal features, in this case, spoken text, they propose the spoken language embed-

ding sub-network.

Spoken text is filled with unreliable information. Therefore, the goal was to design a system

capable of filtering the relevant parts of the speech. To achieve this, the model is fed information

between words from an utterance to use as input in a deep neural network. Said information

consists of data stored in memory (LSTM) since the beginning of the statement.

The results obtained were satisfactory when compared to other models. For binary classifi-

cation (positive or negative), it acquired 74.8% accuracy and 38.5% for a five-class classification

(from very negative to very positive) on the CMU-MOSEI dataset [18].

Knowledge Powered CNN

Wang et al. (2017) [19] suggests a joint model that uses two sub-networks, both CNNs, one

for extracting the word concept and another for removing the features. Although the approach is

not specific to emotion detection, the model was tested on tweets with sentiment labels (negative,

neutral and positive) and provided good results (59.84% accuracy).

A similar approach comes from Poria et al. (2015) [20]. It uses the values from the CNN’s

hidden layer as features to be fed to a more advanced classifier. The CNN acts not as a classifier

but as a trainable feature extractor. The dataset is labelled as negative, neutral and positive and

consists of real online data from Morency et al. (2011) [21]. With this dataset, the model achieved

79.77% accuracy.

Sequence-Based CNN

Zahiri and Choi et al. (2018) [22] proposes the use of a sequence-based CNN. A simple CNN, as

mentioned before, does not work with sequential data like RNNs do. Yet, these are usually slower

and need more training data. Therefore, they suggest SCNN because it uses the emotion sequence

from the previous utterances to detect the emotion of the current one. This is only possible because

the corpus maintains the original line of the utterances.

The model generally works as follows: convolution and max pooling is applied to the current

input; then, the resulting vector is concatenated with the previous utterances and suffers another

12 Literature Review

convolution; consequently, features extracted from the recent statement get fused with the ones

from the earlier utterances.

It was applied to a dataset of transcripts from the tv-show Friends, with three-class and seven-

class labels. In terms of performance evaluation, SCNN did not outperform a base CNN model

from Kim et al. (2014) [15], but it did an RNN-CNN model inspired from Donahue et al. (2015)

[23] because the corpus was too small to grant good results to the RNN. The results were 53.20%

accuracy for three-class classification and 37.35% for seven-class.

Conversational Memory Network

CMN, proposed by Hazarika et al. (2018) [24], is a multimodal approach for emotion recog-

nition, being the possible emotional states of anger, happiness, sadness and neutral. It extracts

audio, visual, and textual features from video. The textual features extraction is done through a

simple CNN with one convolutional layer and max pooling.

The emotion classification depends on the conversational history, which implies using memory

cells like GRUs, that store information from previous states. These two gates (reset and update)

control the combination criteria with the current utterance and the last hidden states.

It was tested on IEMOCAP dataset [25], but they only shared the results using the multimodal

system.

LSTM based model

This method, proposed by Poria et al. (2019) [26], uses an LSTM network to obtain contextual

information and allow for better sentiment analysis. It extracts audio, visual, and textual features

from video without considering context and then feeds them to an LSTM to get contextual features.

For the textual features extraction, a simple CNN was used.

Applied to IEMOCAP dataset, with the labels anger, happiness, sadness and neutral, it achieved

73.6% accuracy. On MELD, with labels anger, disgust, fear, joy, neutral, sadness and surprise, it

only got 56.44%.

Dialogue RNN

Poria et al. (2019) [27] suggests DialogueRNN, a model capable of handling multi-party conver-

sations, taking into account the conversational context. It states that there are three key elements

to obtain an emotion accurately - the speaker and the context and emotion from the previous utter-

ances.

DialogueRNN has three stages of gated recurrent units: global, updates context; party, updates

speaker state through analysing the current utterance, speaker’s previous state, and conversational

context; and emotion, which models the information for classification. The utterances from the

dataset are sent to the global, and party GRU, and the outcome is fed to emotion GRU.

2.3 Summary 13

The model is prepared to receive both textual data and audio, making it a highly effective

model that outperformed all the baseline methods. On the IEMOCAP dataset, this model achieved

59.33% accuracy, and on MELD, 66.10% F-score for sentiment analysis and 57.03% for emotion.

Sentiment and Semantic-Based Emotion Detector Model

Chatterjee et al. (2019) [11] proposes SS-BED for detecting four emotions: happy, sad, angry

and other. The model harnesses sentiment and semantic-based features for a more precise emotion

prediction.

Each utterance goes through two LSTM layers using two-word embedding matrices (semantic

and sentiment). The resulting representations are concatenated and sent to a hidden layer that

outputs the probabilities corresponding to each emotion class.

Compared with CNN-based approaches and other models, SS-BED outperformed all due to

its combination of sentiment and semantic features. Tested on a set of tweets, it achieved 71.34%

F1-score.

2.3 Summary

The previous works can be summarised in Table 2.1. It exposes the name and publication year,

the dataset used, the input format, the labels for sentiment/emotion classification (if applied), the

approach, and the available results for textual data.

14 Literature Review

Table 2.1: State-of-the-art summary.

Name Year Dataset Input Labels Approach Results (for text only)

Enhanced
bag-of-words model

2016 Online reviews Textual

Very negative
Negative
Neutral
Positive
Very positive

Features
and keywords extraction

82% accuracy

Automatic Emotion
Recognition Approach
From Text

2006

Students dialogues
(corpus A)
Broadcast drama
(corpus B)

Textual
Happy
Unhappy
Neutral

Emotional
keywords and semantic
networks extraction

75.14% accuracy
(on corpus A)
61.18% accuracy
(on corpus B)

Convolutional
Neural Networks
for Sentence Classification

2014

Movie reviews
Stanford Sentiment
Treebank
Subjectivity dataset
TREC question dataset
Customer reviews

- -

Text-CNN
on MELD

2019 MELD Textual

Sentiment
(positive, negative
and neutral)
Emotion
(anger, disgust,
fear, joy, neutral,
sadness and
surprise)

Sentence-level
classification tasks
using CNN

64.25% F-score
(sentiment)
55.02% F-score
(emotion)

Recursive Neural
Tensor Network

2013
Positive and negative
movie reviews

Textual

Negative
Somewhat negative
Neutral
Somewhat positive
Positive

RNN with a tensor-based
composition function for
all nodes

80.7% accuracy

Spoken Language
Embedding Sub-Network

2017 CMU-MOSEI
Textual
Visual
Audio

Binary
(positive and negative)
5-class
(from very negative
to very positive)

Tensor Fusion Network
with a spoken language
embedding sub-network
using LSTM

74.8% accuracy
(binary)
38.5% accuracy
(5-class)

Knowledge Powered CNN 2017 Set of tweets Textual
Negative
Neutral
Positive

Word concept
and features extraction
using two CNNs

59.84% accuracy

CNN for feature
extraction from text

2015 Online data
Textual
Visual
Audio

Negative
Neutral
Positive

Feature extraction using
CNN

79.77% accuracy

Sequence-Based CNN 2018
Transcripts from
tv-show Friends

Textual

3-class
(positive, negative
and neutral)
7-class
(sad, mad, scared,
powerful, peaceful,
joyful and neutral)

CNN that uses sequenced
information to improve
classification

Considers the
conversational context

53.20% accuracy
(3-class)
37.35% accuracy
(7-class)

Conversational
Memory Network

2018 IEMOCAP
Textual
Visual
Audio

Anger
Happiness
Sadness
Neutral

Features extraction
using simple CNN
Emotion classification
using GRUs

-

IEMOCAP

Anger
Happiness
Sadness
Neutral

73.6% accuracy

LSTM based model 2019 MELD
Textual
Visual
Audio

Anger
Disgust
Fear
Joy
Neutral
Sadness
Surprise

Feature extraction using
CNN and context
extraction using
LSTM

Considers the
conversational context

56.44% F-score

IEMOCAP

Happy
Sad
Neutral
Angry
Excited
Frustrated

59.33% accuracy

DialogueRNN 2019 MELD
Textual
Audio

Sentiment
(positive, negative
and neutral)
Emotion
(anger, disgust,
fear, joy, neutral,
sadness and
surprise)

RNN with three GRUs

Considers the
conversational context

66.10% F-score
(sentiment)
57.03% F-score
(emotion)

Sentiment and
Semantic-Based
Emotion Detector Model

2019 Set of tweets Textual

Happy
Sad
Angry
Other

Two LSTM layers
using two-word
embedding matrices
(sentiment and semantics)

71.34% F1-score

Chapter 3

Project Development

This chapter covers a brief explanation of the dataset and a thorough description of the proce-

dures carried out during the development of the work.

3.1 Dataset

As seen, there is a great variety of methods for developing a text recognition system. The level

of complexity depends on the purpose for which the model is intended and the dataset in which it

will be tested.

The most common datasets for emotion recognition in conversations have a small number of

utterances and contain individual narratives. This makes the development of algorithms capable

of extracting relevant information from dialogue extremely challenging.

3.1.1 EmotionLines Dataset

EmotionLines [28] is a dataset created for textual analysis that has more than 13,000 utterances

and multi-party dialogues in English, withdrawn from the television series Friends.

The scripts from seasons one to nine were separated firstly per episode and afterwards per

scene, each constituting a dialogue. A random sample of 1,000 dialogues was placed on Amazon

Mechanical Turk to be analysed by five workers. They attributed an emotion category to each

utterance, labelling them with Ekmans’ six universal emotions: joy, sadness, fear, anger, surprise,

and disgust; plus, neutral. The most voted emotion was chosen as the final label of the utterance.

3.1.2 Multimodal EmotionLines Dataset

An improvement of EmotionLines is MELD - Multimodal EmotionLines Dataset [5] since it

includes the dialogues’ corresponding visuals. Yet, for the development of the algorithm, only the

textual conversations were analysed.

Another feature of this dataset is that it quantifies emotions. This can be done by analysing

Russell’s circumplex model [29], which portrays all emotions in the Valence-Arousal two-dimensional

15

16 Project Development

space. However, only the seven previously mentioned emotions were characterised according to

their valance, which can be negative, positive, or neutral.

A sentiment label is attached to every emotion in the following way: sadness, fear, anger,

and disgust are considered negative, joy is positive, neutral is neutral, and surprise is a complex

emotion that can be both positive and negative. MELD is divided into three sets: the train set,

which contains 9989 utterances; the test set, including 2610; and the validation set with 1109.

Tables 3.1 and 3.2 contain the number of sentences for each sentiment and emotion, respectively.

The advantage of using an already divided dataset is that you can accurately compare the

performance of different models on the same dataset because the train, test and validation sets are

the same.

Each CSV file contains relevant information regarding each utterance: ID, sentence, speaker,

emotion label, sentiment label, dialogue ID, sentence ID, season, episode, start-time, end-time

(hh:mm: ss, ms).

Table 3.1: Number of utterances for each sentiment label.

Number of utterances
Sentiment label Train Test Validation
Positive 2334 521 233
Neutral 4710 1256 470
Negative 2945 833 406
Total 9989 2610 1109

Table 3.2: Number of utterances for each emotion label.

Number of utterances
Emotion label Train Test Validation
Neutral 4710 1256 470
Angry 1109 345 153
Fear 268 50 40
Disgust 271 68 22
Surprise 1205 281 150
Sadness 683 208 111
Joy 1743 402 163
Total 9989 2610 1109

3.2 Methodology

The work proposal was to develop a deep learning model capable of examining the utterances

from MELD and accurately predicting the correspondent sentiment and emotion.

Any text classification model requires three things: an input text; a feature vector; and labels

that the model will predict. This model’s inputs are the sentences from the dataset, and they first

need to be pre-processed to eliminate noise. After that, it is necessary to vectorize the text input

3.2 Methodology 17

and set the vocabulary, and the last step is retrieving the labels from the dataset and normalising

them.

Having done this, it is time to define the model. Two models were developed, first a multilayer

perceptron network, a feedforward artificial neural network, and then a long short-term memory,

a type of recurrent neural network. A detailed description of all the processes is presented below.

All code was written in Python in the web application Jupyter Notebook [30] and later using

the virtual servers of Paperspace [31]. The deep learning models were developed using the Python

library Keras [32] that runs on top of TensorFlow, a platform for machine learning [33]. The

remaining libraries used for the elaboration of this project are mentioned in the following sub-

sections.

3.2.1 Pre-processing input text

As mentioned, the information contained in the dataset is divided into columns: identifier;

utterance; speaker; emotion label, sentiment label; dialogue ID; sentence ID; season; episode;

start-time; end-time. It is only necessary to look at the utterances for the pre-processing stage,

so they were loaded from the second column of the CSV file into a list using the Python library

pandas [34].

Text needs to be polished before being processed to eliminate irrelevant data. The first step

was removing non-alphabetic characters, numbers and redundant spaces from each sentence, using

the library Python RegEx [35], and normalising all the words to lower case.

Afterwards, each utterance was tokenised, meaning it was divided into words. For instance,

given the sentence ["why do all your coffee mugs have numbers on the bottom"] the output, after

the word tokenization would be [’why’, ’do’, ’all’, ’your’, ’coffee’, ’mugs’, ’have’, ’numbers’,

’on’, ’the’, ’bottom’].

The next step was removing stop words, which add no real value to a sentence. This was

accomplished using NLTK, Natural Language Toolkit, a Python library for NLP [36]. NLTK has

a list with 179 English stop words, consisting of a selection of the most common words in data

[37], such as ’the’, ’to’, ’and’, ’a’, ’in’, ’it’, ’is’, etc. Every sentence had these words removed.

The output of the previous example would be [’why’, ’coffee’, ’mugs’, ’numbers’, ’bottom’].

The last step was the lemmatisation process, also using the NLTK library [38], which reduces

noise in the text by swapping a word for its lemma. It was preferred over stemming because it

converts the word to a meaningful base form and groups similar words, whereas stemming only

removes the endings. Applied to the same example, the output would be [’why’, ’coffee’, ’mug’,

’number’, ’bottom’].

After applying these methods to each sentence, there were 9574 cleaned utterances left for

training, 2512 utterances for testing, and 1054 for validation. With the text corpus ready to process,

the next stage was setting up the vocabulary, the set of words used in the text. A word-based

vocabulary allows for the representation of each sentence as a vector composed of its vocabulary

words.

18 Project Development

Table 3.3: Final number of utterances for each sentiment label.

Number of utterances
Sentiment label Train Test Validation
Positive 2231 508 221
Neutral 4525 1202 449
Negative 2818 802 384
Total 9574 2512 1054

Table 3.4: Final number of utterances for each emotion label.

Number of utterances
Emotion label Train Test Validation
Neutral 4525 1202 449
Angry 1055 335 139
Fear 253 46 40
Disgust 259 66 22
Surprise 1150 271 137
Sadness 665 199 110
Joy 1667 393 157
Total 9574 2512 1054

3.2.2 Delineating vocabulary

When withdrawing information from spoken text, in this case for sentiment analysis or emotion

recognition, it is necessary to comprehend that many words in the text corpus may not contribute

to that classification. And having large vocabularies with irrelevant words implies occupying

resources unnecessarily [39]. With this in mind, the goal was to create a vocabulary containing

only the right words for classification without generating many sparse vectors.

Two experiments were conducted using two distinct vocabulary sets: vocabulary A with 3659

words; and vocabulary B with only 490. Both were defined using train, test and validation data.

The first step for creating both lists was saving all the 57106 words from the pre-processed

utterances in an array. After removing the duplicated words, a function was designed to analyse

and compare each of the remaining 4800 words and their synonyms: if two words were synonyms,

the second would be converted into the first one, decreasing the vocabulary size even further. The

synonyms were obtained using wordnet [40]. The last step was attributing the part-of-speech tag

to each word, meaning labelling them as nouns, verbs, adverbs, etc., using once again NLTK’s

library [41]. All the proper nouns, pronouns, prepositions, determiners and verbs were removed

from the list since they are not considered relevant for sentiment analysis.

Vocabulary B is a portion of A that was obtained through selecting words that coincide with a

list created by Liu et al. (2012) [42], containing approximately 7400 positive and negative words.

For example, pure, pleasant and better are three words from the list that appear in the dataset

3.2 Methodology 19

and suggest a positive feeling; awkward, rude and poison, on the other hand, are three negative

indicators, also present in both the list and the dataset.

Total number of words:

after pre-processing utterances - 57 106

after removing duplicates - 4 800

after synonym switch and removing irrelevant data - 3 659

after selecting positive and negative words - 490

3.2.3 Normalising labels

Each sentence is associated with a sentiment and an emotion label in the form of strings: neutral,

positive and negative; neutral, angry, fear, disgust, surprise, sadness and joy. The first step was

retrieving the labels from the dataset (columns five and four, respectively) and converting them to

integers since machine learning algorithms do not work with categorical data.

Sentiment analysis requires a 3-class model with labels [0, 1, 2] where 0 is neutral, positive is

1, and negative is 2. Emotion requires a 7-class model with labels [0, 1, 2, 3, 4, 5, 6] where 0 is

neutral, 1 is angry, 2 is fear, 3 is disgust, 4 is surprise, 5 is sadness, and joy is 6.

The next step was applying one hot encoding to each label [43] to convert the integer values

into a binary vector. This way, the sentiment label 0 is represented by [1. 0. 0.], label 1 by [0. 1.

0.] and label 2 [0. 0. 1.], the same for the emotion’s labels.

All training, testing and validation labels were encoded, and the resulting shape was (total

number of utterances, number of classes).

hotencoder = OneHotEncoder()

encoder= LabelEncoder()

labels = np.array(labels)

y_enc = encoder.fit_transform(labels)

y_train = hotencoder.fit_transform(y_enc.reshape(-1,1)).toarray()

#shape = (number of utterances, number of classes)

3.2.4 Generating class weights

In Tables 3.1 and 3.2, it is possible to observe that the number of utterances for each label is

quite distinct, especially in the second table. The fact that some classes have a minimal number of

samples leads to the problem of imbalanced classes. This can result in false predictions because

the model will generalise in favour of the class with more samples.

There are various approaches to handle this problem [44]. One is undersampling, removing

random data from the majority class to decrease the ratio between classes, but this can lead to the

exclusion of relevant data for classification. On the contrary, with oversampling, the number of

instances of the lowest classes increases by randomly copying its data, but it can cause overfitting.

20 Project Development

Another technique is using the class weight argument in model.fit() from TensorFlow [45],

which allows us to define the weights of each class. A function was used to generate the class

weights for this multi-class problem that supported one hot encoded labels [46]. Each weight is

calculated by dividing the number of samples by the number of classes, and multiplying it by the

class frequency.

The function returns a dictionary with the labels and corresponding weights that serve as input

to the parameter class weight used in the MLP network model fit() function.

The chosen approach for the LSTM was oversampling, which will be addressed later in the

document.

#sentiment labels

class_weights = {0: 0.7052670349907919,

1: 1.4304497235918123,

2: 1.1324816654837946}

#emotion labels

class_weights = {0: 0.3029723991507431,

1: 1.2867448151487826,

2: 5.324626865671642,

3: 5.265682656826568,

4: 1.1842323651452282,

5: 2.089311859443631,

6: 0.8187033849684452}

3.2.5 Multilayer perceptron network model

Obtaining the feature vector

Every sentence is represented as a 1 by X vector, where X is the vocabulary size. If any word

of the sentence is equal to, shares a lemma, or is a synonym of a term present in the vocabulary,

then the vector appends the value 1 in that exact position. If the word does not appear in the

vocabulary, then it appends 0. The final vector has shape (number of utterances, vocabulary size).

An illustrative example can be seen below.

This process is done to training, testing and validation sets, and because the vectors are already

binary, there is no need for normalising the data.

vocabulary = [’this’, ’example’, ’and’, ’another’, ’one’]

utterances = [’this is an example’, ’and this is another’]

vector = [[1 1 0 0 0]

[1 0 1 1 0]]

#shape = (number of utterances, vocabulary size) = (2,5)

3.2 Methodology 21

Defining the model

The created model is a sequential model with five dense layers [47]. These are the most com-

monly used layers. Each neuron in this layer receives the input from the previous ones and outputs

a vector with a particular dimension. This change in the dimensions of the vectors is the result of

matrix-vector multiplication.

The first layer has an input shape equal to the size of the vocabulary and activation ReLu. It is

followed by three more dense layers with activation ReLu, interspersed with batch normalisation

layers [48]. They are used to normalise small sets of data between layers, speed up training, and

facilitate learning.

The fifth and last dense layer has the number of cells equal to the number of classes and a

Softmax function that normalises the model’s output. This way, each output value is represented

as a probability of belonging to a particular class [49].

The compile method uses categorical cross entropy, a loss function for multi-class classifica-

tion [50], and an Adam optimiser with a learning rate of 0,001. The loss function evaluates how

the algorithm models the dataset, and the optimiser function modifies attributes to increase accu-

racy. The model’s performance is assessed according to its accuracy and depends on how often

the predictions equal the labels [51]. The model summary can be seen in Figure 3.1.

The training required: training data (both features and targets); validation data (data on which

the model will be evaluated); batch size equal to 32 (number of samples); number of epochs

(iterations over data); and class weights.

Model predictions

The method predict generates the predictions for the input samples [52]. It outputs an array of

shape (2512,), where each position represents the classification given to each sentence.

To gather relevant metrics, it was first necessary to obtain the confusion matrix, and the mul-

tilabel confusion matrix, using the scikit-learn library. After that, four functions were created to

calculate each class’s accuracy, precision, recall and F1 score. Further description of this process

will be provided in the next chapter.

22 Project Development

Figure 3.1: Multilayer perceptron network model summary (for vocabulary A).

3.2 Methodology 23

3.2.6 Long short-term memory network model

Obtaining the feature vector

The textual input is vectorised so that each word is treated as a 1 by X vector within every

utterance, where X is the vocabulary size. Every sentence is therefore represented by a vector of

length equal to the number of words in the sentence.

A function was created to obtain these features. It receives as input the list of utterances and

the list of words, and it compares all the words of a sentence with the ones that make up the

vocabulary. If the word is equal to, shares a lemma, or is a synonym of a word in the vocabulary,

then the vector appends the value 1. If not, it appends 0. The function returns an array of shape

(number of utterances,) and each position of the array has shape (number of words in sentence,

vocabulary size).

This function is applied to the training, testing and validation sets. After that, all inputs are

ready to be fed to the model.

vocabulary = [’this’, ’example’, ’and’, ’another’, ’one’]

utterances = [’this is an example’, ’and this is another one’]

vector = [[[1 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 1 0 0 0]]

[[0 0 1 0 0]

[1 0 0 0 0]

[0 0 0 0 0]

[0 0 0 1 0]

[0 0 0 0 1]]]

vector[i] shape = (number of words, vocabulary size)

vector[0] shape = (4,5)

vector[1] shape = (5,5)

vector shape = (number of utterances,) = (2,)

Padding and masking VS generator

Since every sentence has a distinctive length, the shape of the array that represents each utter-

ance fluctuates depending on the number of words, but the input data for an LSTM model must be

a tensor of shape (batch size, vocabulary size). To overcome this, two methods were implemented.

First, padding and masking [53]. Padding is used to transform smaller samples by adding

values to them until they all have the same size. In this case, post padding was used because the

values were added at the end of each instance. This process creates noise in the input data, so it is

24 Project Development

required to inform the model that these new values should be ignored. For that, a masking layer is

necessary, and since RNNs support mask arguments, it is possible to pass it manually when calling

the model’s layers.

vocabulary = [’this’, ’example’, ’and’, ’another’, ’one’]

utterances = [’this is an example’, ’and this is another one’]

vector = [[[1 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 1 0 0 0]

[-10 -10 -10 -10 -10]] #padded values

[[0 0 1 0 0]

[1 0 0 0 0]

[0 0 0 0 0]

[0 0 0 1 0]

[0 0 0 0 1]]]

vector[i] shape = (max number of words, vocabulary size) = (5,5)

vector shape = (number of utterances,) = (2,)

The other method consisted of developing a generator and passing it as the input of the fit

method to train the model: the generator iterates across the inputs and outputs, selects a random

sample, and yields the features and targets. When using the generator, the batch size is one.

Using the generator proved the best approach. Therefore, the results presented in Chapter 4

only concern the generator.

def gen(X,y):

while True:

ix = np.random.choice(len(X), len(y), False)

for i in ix:

XA = np.asarray(X)

yield (np.expand_dims(XA[i], 0),

np.expand_dims(np.expand_dims(y[i],0),0))

3.2 Methodology 25

Oversampling

With the previous network, it was possible to use class weights on method fit. However, with

the LSTM and using the generator, it was necessary to do oversampling because instead of using

fit like before, the fit generator was used. Although it supposedly permitted the class weight

parameter, many problems arose when trying to use it. On top of that, because this method was

deprecated, it was hard to find helpful information about it.

Having said that, the oversampling consisted of randomly copying data from the minority

classes until there was the same number of utterances from each category. This method was

chosen instead of undersampling due to the reduced number of instances of certain classes, which

led to the model being under-fitted: the training accuracy was very low because the algorithm

didn’t have enough data to learn from.

Defining the model

LSTMs are RNNs that store memory and, therefore, can discard irrelevant information and

save only valuable data. They are usually used with sequential data and are beneficial for text

classification problems.

The model used with the generator is a sequential model with eight layers [47]. The first is

an LSTM layer with 128 memory units, activation ReLu [49] and input shape (none, vocabulary

size). The first parameter is none since the batch size cannot be specified at this stage due to the

variable length of the samples.

Using padding and masking, the first layer is the masking layer with mask value -10 so that

the network ignores the padded values, and input shape (length of the samples, vocabulary size).

The second is the LSTM layer also with 128 memory units, and activation ReLu [49].

In both cases the LSTM layer is followed by six dense layers, also with the ReLu function,

and the final dense layer has the number of cells equal to the number of classes and activation

Softmax.

The compile method uses categorical cross entropy for the loss function, an Adam optimiser

with a learning rate of 0,001, and accuracy metrics.

The fit generator method was used to train the model [52] and has the following arguments:

input data from the generator; number of epochs; number of steps per epoch (equal to the number

of batches in training); validation data from the generator; validation steps (equal to the number

of batches in validation).

Both models’ summary can be seen in Figures 3.2 and 3.3.

26 Project Development

Figure 3.2: LSTM network model summary, with generator (for vocabulary A).

Figure 3.3: LSTM network model summary, with masking layer (for vocabulary A).

3.2 Methodology 27

Model predictions

The creation of a prediction function was a necessary step to obtain an array with the final

predictions. With the method predict generator, each word gets associated with a probability of

belonging to a class, unlike the previous model that predicted the final label for each sentence.

For sentiment classification, the function evaluates the probabilities and assigns each sentence

a class according to the following criteria: if all words have a higher probability of being neutral,

then the sentence is neutral; if at least one word has a higher probability of being negative/positive,

then the sentence is negative/positive. For emotion classification the same logic was followed, but

with the seven distinct classes. The most likely emotion was chosen as the final classification.

The confusion matrix and multilabel confusion matrix are obtained like before, and so are the

metrics.

28 Project Development

Chapter 4

Experiments and Results

This chapter exposes the metrics used to evaluate the model’s performance, the experiments

carried out, and their final results.

4.1 Metrics for performance evaluation

Both models’ performance will be evaluated according to the same metrics, each of them ex-

plained below. In classification problems such as this, a comparison between the predicted and the

actual values is performed. A simple way of doing this is through a confusion matrix.

4.1.1 Confusion Matrix

With a confusion matrix it is possible to visualise how many instances the model correctly

classified for each class, and extract important metrics such as classification accuracy, precision,

recall and F1-score.

In Table 4.1 each row represents the predictions, each column represents the actual classifica-

tions, and the four cells are defined as:

• TruePositives - number of positive class samples predicted correctly.

• TrueNegatives - number of negative class samples predicted correctly.

• FalsePositives - number of negative class samples predicted incorrectly.

• FalseNegatives - number of positive class samples predicted incorrectly.

Table 4.1: Confusion matrix for binary classification.

Predictions
Yes No

Yes True Positive False Positive
Real No False Negative True Negative

29

30 Experiments and Results

4.1.2 Precision

Precision [54] is defined as the number of positives predicted correctly (true positives) divided

by the total number of positives predicted (sum of true positives and false positives). It represents

how much the model can be trusted when it makes a positive prediction. It assumes values between

0 and 1.

Precision =
T P

T P+FP
(4.1)

where:
TP is the number of TruePositives;
FP is the number of FalsePositives.

4.1.3 Recall

Recall [54] is defined as the number of positives predicted correctly (true positives) divided by

the total number of positives (sum of true positives and false negatives). Values range between 0

and 1.

Recall =
T P

T P+FN
(4.2)

where:
TP is the number of TruePositives;
FN is the number of FalseNegatives.

4.1.4 Accuracy

Classification Accuracy [54] is defined as the number of correct predictions (sum of true pos-

itives and true negatives) divided by the total number of predictions (sum of true positives, true

negatives, false positives, and false negatives). It is comprehended between 0 and 1.

Accuracy =
T P+T N

T P+T N +FN +FP
(4.3)

where:
TP is the number of TruePositives;
TN is the number of TrueNegatives;
FP is the number of FalsePositives;
FN is the number of FalseNegatives.

4.2 Existing models 31

4.1.5 Balanced Accuracy

Balanced Accuracy [54] is defined as the arithmetic mean of each class’ recall, and is calculated

for imbalanced datasets because with this formula every class has the same weight.

BalancedAccuracy =
T P

Totalrow1
+ T N

Totalrow2

nclasses
(4.4)

where:
TP is the number of TruePositives;
TN is the number of TrueNegatives;
n_classes is the number of classes.

While accuracy benefits the majority class because it treats all classes the same way, more

importance is given to the minority classes with balanced accuracy.

4.1.6 F1-Score

F1-Score [54] is defined as the harmonic mean of precision and recall. It ranges between 0 and

1, and if the value is close to 1 then there’s a good balance between precision and recall.

F1-Score = 2 ·
(

precision · recall
precision+ recall

)
(4.5)

4.1.7 Weighted metrics

Weighted metrics take into consideration the weight of each class. These values can be calcu-

lated by multiplying each metric (precision, recall or F1-score) by the number of samples in each

class, adding the results, and dividing it by the total number of samples.

4.2 Existing models

MELD, the dataset used in the development of this work, has already been used by Poria et al.

(2018) [5], Poria et al. (2019) [26], and Poria et al. (2019) [27] for the same purpose, as seen in

Chapter 2. The average F-score results are shown on Table 4.2.

Note that both the LSTM-based model and DialogueRNN can analyse the conversational con-

text, which improves classification. Given that the developed system is context-independent, the

model’s performance can only be compared to TextCNN.

32 Experiments and Results

Table 4.2: Existing models’ F-Score results on MELD.

F-score
Model Sentiment Emotion

TextCNN 64.25% 52.02%
LSTM-based model - 56.44%
DialogueRNN 66.10% 57.03%

4.3 Results

Two different models were developed, a MLP and a LSTM model. The first was experimented

on two sets of attributes: vocabulary A with 3659 words; and vocabulary B with 490; and the

second only on vocabulary A. On top of that, there were two types of classification: 3-class, with

labels neutral, positive, and negative; and 7-class, with labels neutral, anger, fear, disgust, surprise,

sadness, and joy.

Figure 4.1: Representative diagram of the experiments performed.

4.3.1 First experiment

The first model to be analysed is the MLP. Four confusion matrix were obtained, shown in

Figures 4.2 to 4.5 , as well as the values of the previously mentioned metrics, in Tables 4.3 and

4.5. The weighted metrics can be seen in Tables 4.4 and 4.6.

For vocabulary A, let us analyse the obtained results present in Table 4.3 for sentiment classi-

fication. In 100 predictions, our model predicted the correct classification approximately 50 times

for neutral and 60 times for both positive and negative. In terms of precision, out of the 50 pre-

dictions for neutral, 43 were correct; for positive, 32 out of 60; and for negative only 23 out of 60.

Out of all neutral values, our model predicted 43 correctly, which means it has a 48% recall when

attributing a neutral classification. The same goes for positive and negative recall values of 19%

and 31%, respectively. Observing the F1-Score, a value based on precision and recall, the neutral

classification achieves better results than positive and negative.

The overall results are much worse using vocabulary B, although it seems to predict positives

more accurately.

The results for emotion classification can be seen in Table 4.5. Once again, vocabulary A

outperforms vocabulary B. For A, the classes with higher precision rates are neutral, disgust and

joy. B also obtained a high precision in joy.

4.3 Results 33

Table 4.3: Comparison of the performance of the 3-class model on both vocabularies.

Vocabulary A Vocabulary B
Sentiment Label Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Neutral 50.60% 43.09% 48.19% 0.45 50.76% 15.64% 45.74% 0.23
Positive 59.24% 32.09% 19.36% 0.24 41.12% 63.98% 20.05% 0.31
Negative 59.28% 23.32% 31.43% 0.27 60.83% 18.58% 31.04% 0.23

Table 4.4: Weighted metrics of the 3-class model on both vocabularies.

Vocabulary A Vocabulary B
Weighted Precision 31.51% 39.71%
Weighted Recall 29.04% 28.75%
Weighted F1-score 29.20% 26.83%

Figure 4.2: Three class confusion matrix for vocabulary A.

Figure 4.3: Three class confusion matrix for vocabulary B.

34 Experiments and Results

Table 4.5: Comparison of the performance of the 7-class model on both vocabularies.

Vocabulary A Vocabulary B
Emotion Label Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Neutral 51.27% 30.12% 48.53% 0.372 51.59% 3.24% 42.39% 0.060
Anger 78.70% 9.55% 12.12% 0.107 84.51% 2.99% 13.51% 0.049
Fear 91.52% 6.52% 1.73% 0.027 88.50% 4.35% 0.81% 0.014
Disgust 73.17% 22.73% 2.35% 0.043 86.58% 12.12% 2.79% 0.045
Surprise 81.78% 8.49% 9.87% 0.091 86.03% 3.32% 9.18% 0.049
Sadness 85.71% 5.03% 5.56% 0.053 74.44% 14.07% 5.61% 0.080
Joy 76.63% 10.69% 15.11% 0.125 50.56% 46.56% 15.06% 0.228

Table 4.6: Weighted metrics of the 7-class model on both vocabularies.

Vocabulary A Vocabulary B
Weighted Precision 31.21% 18.99%
Weighted Recall 31.94% 27.43%
Weighted F1-score 22.75% 8.40%

Figure 4.4: Seven class confusion matrix for vocabulary A.

Figure 4.5: Seven class confusion matrix for vocabulary B.

4.3 Results 35

Conclusions

A final comparison of the results can be seen in Figure 4.6. Overall, it is clear that vocabulary

A has better results for sentiment and emotion classification, with an average accuracy of 34.55%

and 19.39% respectively, than B, with an average accuracy of 26.35% and 11.11%.

This can be explained by the reduced size of vocabulary B. Although B is filled with words

deemed relevant to sentiment analysis, the fact that very few patterns in the testing set exist, results

in sparsity thus decreasing the training accuracy and leads to unreliable results.

Three-class classification also obtained better results than seven-class. Regarding the emotion

classification, the number of samples corresponding to each class was highly unbalanced, resulting

in the model’s poor performance, specifically for the minority classes. This unbalance is very

clear in emotion classification, where the majority class’ accuracy (neutral) is far superior to the

remaining classes.

In short, the developed MLP model achieved a maximum accuracy of 34.55% and 29.20%

weighted F1-score for sentiment classification and 19.39% accuracy and 22.75% weighted F1-

score for emotion.

Figure 4.6: Average accuracy of the model on both vocabularies.

4.3.2 Second experiment

Considering how the textual input was vectorized for the LSTM, it did not make sense to exper-

iment using vocabulary B due to the high number of sparse vectors. Therefore, all results obtained

with this network only regard vocabulary A.

Just like before, four confusion matrix were obtained, yet only the results concerning sentiment

classification will be presented, and can be seen in Figure 4.7 and in Table 4.7.

36 Experiments and Results

The reason for this is that the oversampling technique, used to compensate the imbalanced

data, led the model to overfit. An overfitting behaviour can be characterised as when the model

ends up memorizing data patterns, failing to generalize when facing unseen data. Due to this,

instead of properly attributing labels to each utterance, the developed model ends up always pre-

dicting the same class - disgust.

Table 4.7: Performance of the 3-class model on vocabulary A.

Vocabulary A
Sentiment Label Accuracy Precision Recall F1 score
Neutral 52.07% 2.66% 48.49% 0.05
Positive 45.14% 60.63% 20.73% 0.31
Negative 53.82% 37.53% 31.35% 0.34

Table 4.8: Weighted metrics of the 3-class model on vocabulary A.

Vocabulary A
Weighted Precision 41.53%
Weighted Recall 29.73%
Weighted F1-score 26.70%

Figure 4.7: Three class confusion matrix for vocabulary A.

Conclusions

The LSTM achieved an overall accuracy of 25.52% and a 26.70% weighted F1-score for senti-

ment classification, values fairly close to the ones obtained with the MLP. Therefore one conclu-

sion to be taken should be that the dataset was not appropriate for the developed work, since it

resulted in equally low metrics despite testing two distinct deep learning methods.

Chapter 5

Conclusions and Future Work

The proposed work involved designing a system capable of detecting three sentiments – nega-

tive, neutral, and positive – and seven emotions – joy, sadness, fear, anger, surprise, disgust, and

neutral – in a multiparty dialogue.

The initial phase of the project development relied on the comprehension of theoretical aspects

required for the proper realisation of the proposed work and on understanding the difficulties and

limitations that could arise in the process.

After that, a thorough investigation was conducted to comprehend how existing models work.

This was accomplished by studying the literature regarding similar systems and exploring state-

of-the-art solutions.

It was possible to start developing the system after doing the necessary research. The process

was divided into stages: pre-processing textual data from the dataset; creating two distinct vo-

cabularies; defining two models, a multilayer perceptron network and a long short-term memory

network; vectorizing and normalizing data according to the model’s needs; training the models;

evaluating their performance.

5.1 Satisfaction of the objectives

The first conclusion that must be drawn is that the choice of the dataset was not the most appro-

priate considering the type of strategy chosen for the project.

First of all, it is a highly imbalanced dataset, especially regarding emotions, which caused a

lot of setbacks during the work. Secondly, the words that make up the dataset are not very relevant

in the sense that they do not represent any specific sentiment or emotion.

Regarding this, a previous analysis of the dataset showed that the words that occurred more

frequently were the ones that were eliminated during the pre-processing phase because they were

considered stopwords or words without any sentimental weight. The remaining words, through

which vocabulary A was created (and from that vocabulary B), had such a low frequency, appear-

ing only in one or another utterance, that it was impossible to find a relationship between these

exact words and the sentiment/emotion associated with it. For this reason, the chosen method

37

38 Conclusions and Future Work

of analyzing keywords that indicated a particular sentiment/emotion was not the most reasonable

alternative.

Following this, it can also be concluded that picking the appropriate vocabulary is a crucial step

in text classification. The chosen procedure was selecting words from the complete set that could

imply some sentiment or emotion. Using this vocabulary A, the results obtained for sentiment

classification were reasonable using both models.

The creation of vocabulary B took it a step further and compared the initial selection with a

list of positive and negative words, keeping only those mutual to both lists. However, given the

reduced occurrence of these words during the dialogues, this vocabulary did not generate great

results.

Regarding emotion classification using the first model, the results were unsatisfactory. The

dataset is highly imbalanced when it comes to emotion. Algorithms are designed to maximize

accuracy, so whenever there is a disproportional ratio of samples per class, the model mainly

predicts the majority class, disregarding the minorities. Even though weights were attributed to

each class, the effect of this imbalance was still perceptible in the results.

The results obtained cannot be fairly compared with the other existing models tested on MELD,

given that the chosen approach is quite distinct. Regardless, in terms of accuracy, the produced

work did not outperform them, which can be justified by the feature extraction method. Although

it seemed highly pertinent for sentiment and emotion classification, it may not have been the best

fit for this particular dataset, as mentioned before.

5.2 Future work

This work was only the first step toward creating a dialogue analysis system capable of detecting

misuse and malicious behaviours.

Future work includes choosing a more appropriate and less imbalanced dataset, in order to

achieve better results.

Only after that it would be possible to start improving this project by developing a contex-

tual model, which represents an increase in the system’s complexity. In a dialogue, there is a

high probability of interdependence between the utterances [28]. Therefore, the system must con-

sider the current sentence, and the ones said previously to constantly update the context and the

conversation flow.

On top of that, the model could be updated to learn interactions between the interlocutors

like Ghosal et al. (2020) [55] proposes, using different elements of common sense such as per-

sonalities, mental states, intents, and emotions to improve the extraction of information from the

dialogues.

5.2 Future work 39

Lastly, to provide robust emotion classification in the context of a multi-party conversation,

the model could be combined with image and speech analysis systems, creating a multimodal

approach that could serve as a powerful security system.

40 Conclusions and Future Work

References

[1] Keiron O’shea and Ryan Nash. An introduction to convolutional neural networks. Technical
report.

[2] Sentiment analysis applications in business | repustate. https://www.repustate.com/
sentiment-analysis-applications/. Accessed on 10.03.2022.

[3] How can you benefit from using emotion recognition software? https://sightcorp.
com/knowledge-base/emotion-recognition/. Accessed on 10.03.2022.

[4] Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, and Sou-
janya Poria. Cosmic: Commonsense knowledge for emotion identification in conversa-
tions. Findings of the Association for Computational Linguistics Findings of ACL: EMNLP
2020, pages 2470–2481, 10 2020. URL: https://arxiv.org/abs/2010.02795v1,
doi:10.18653/V1/2020.FINDINGS-EMNLP.224.

[5] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria,
and Rada Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in
conversations. ACL 2019 - 57th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages 527–536, 10 2018. URL: https:
//arxiv.org/abs/1810.02508v6, doi:10.18653/v1/p19-1050.

[6] Elizabeth D Liddy. Natural language processing natural language processing natural lan-
guage processing 1. 2001. URL: https://surface.syr.edu/istpub.

[7] What are neural networks? | ibm. https://www.ibm.com/cloud/learn/
neural-networks. Accessed on 8.02.2022.

[8] Yuandong Luan and Shaofu Lin. Research on text classification based on cnn and lstm. Pro-
ceedings of 2019 IEEE International Conference on Artificial Intelligence and Computer
Applications, ICAICA 2019, pages 352–355, 3 2019. doi:10.1109/ICAICA.2019.
8873454.

[9] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of
lstm and bilstm in forecasting time series. pages 3285–3292, 2019. doi:10.1109/
BigData47090.2019.9005997.

[10] What are recurrent neural networks? | ibm. https://www.ibm.com/cloud/learn/
recurrent-neural-networks. Accessed on 8.02.2022.

[11] Ankush Chatterjee, Umang Gupta, Manoj Kumar Chinnakotla, Radhakrishnan Srikanth,
Michel Galley, and Puneet Agrawal. Understanding emotions in text using deep learning
and big data. Computers in Human Behavior, 93:309–317, 4 2019. doi:10.1016/J.
CHB.2018.12.029.

41

https://www.repustate.com/sentiment-analysis-applications/
https://www.repustate.com/sentiment-analysis-applications/
https://sightcorp.com/knowledge-base/emotion-recognition/
https://sightcorp.com/knowledge-base/emotion-recognition/
https://arxiv.org/abs/2010.02795v1
http://dx.doi.org/10.18653/V1/2020.FINDINGS-EMNLP.224
https://arxiv.org/abs/1810.02508v6
https://arxiv.org/abs/1810.02508v6
http://dx.doi.org/10.18653/v1/p19-1050
https://surface.syr.edu/istpub
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
http://dx.doi.org/10.1109/ICAICA.2019.8873454
http://dx.doi.org/10.1109/ICAICA.2019.8873454
http://dx.doi.org/10.1109/BigData47090.2019.9005997
http://dx.doi.org/10.1109/BigData47090.2019.9005997
https://www.ibm.com/cloud/learn/recurrent-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks
http://dx.doi.org/10.1016/J.CHB.2018.12.029
http://dx.doi.org/10.1016/J.CHB.2018.12.029

42 REFERENCES

[12] Chung-Hsien Wu, Ze-Jing Chuang, and Yu-Chung Lin. Emotion recognition from text us-
ing semantic labels and separable mixture models. ACM Transactions on Asian Language
Information Processing, 5:165–182, 2006.

[13] Doaa Mohey El-Din. Enhancement bag-of-words model for solving the challenges of senti-
ment analysis. International Journal of Advanced Computer Science and Applications, 7(1),
2016.

[14] Niko Colneric and Janez Demsar. Emotion recognition on twitter: Comparative study and
training a unison model. IEEE Transactions on Affective Computing, 11:433–446, 7 2020.
doi:10.1109/TAFFC.2018.2807817.

[15] Yoon Kim. Convolutional neural networks for sentence classification. Technical report,
2014. URL: http://nlp.stanford.edu/sentiment/.

[16] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. pages 1631–1642, 2013. URL: http://nlp.stanford.
edu/.

[17] Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
Tensor fusion network for multimodal sentiment analysis. 2017.

[18] Amir Zadeh, Paul Pu Liang, Jonathan Vanbriesen, Soujanya Poria, Edmund Tong, Erik Cam-
bria, Minghai Chen, and Louis-Philippe Morency. Multimodal language analysis in the
wild: Cmu-mosei dataset and interpretable dynamic fusion graph. pages 2236–2246. URL:
https://github.com/A2Zadeh/CMU-.

[19] Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun Yan. Combining knowledge with
deep convolutional neural networks for short text classification. 2017. URL: https:
//concept.msra.cn/.

[20] Soujanya Poria, Erik Cambria, and Alexander Gelbukh. Deep convolutional neural network
textual features and multiple kernel learning for utterance-level multimodal sentiment anal-
ysis. pages 17–21, 2015. URL: www.gelbukh.com.

[21] Louis Philippe Morency, Rada Mihalcea, and Payal Doshi. Towards multimodal senti-
ment analysis: Harvesting opinions from the web. ICMI’11 - Proceedings of the 2011
ACM International Conference on Multimodal Interaction, pages 169–176, 2011. doi:
10.1145/2070481.2070509.

[22] Sayyed M Zahiri and Jinho D Choi. Emotion detection on tv show transcripts with sequence-
based convolutional neural networks. 2018.

[23] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks
for visual recognition and description. June 2015.

[24] Devamanyu Hazarika, Soujanya Poria, Amir Zadeh, Erik Cambria, Louis-Philippe Morency,
and Roger Zimmermann. Conversational memory network for emotion recognition in dyadic
dialogue videos. Technical report, 2018.

http://dx.doi.org/10.1109/TAFFC.2018.2807817
http://nlp.stanford.edu/sentiment/
http://nlp.stanford.edu/
http://nlp.stanford.edu/
https://github.com/A2Zadeh/CMU-
https://concept.msra.cn/
https://concept.msra.cn/
www.gelbukh.com
http://dx.doi.org/10.1145/2070481.2070509
http://dx.doi.org/10.1145/2070481.2070509

REFERENCES 43

[25] Carlos Busso, Murtaza Bulut, Chi Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim,
Jeannette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan. Iemocap: interactive emo-
tional dyadic motion capture database. Language Resources and Evaluation 2008 42:4,
42:335–359, 11 2008. URL: https://link.springer.com/article/10.1007/
s10579-008-9076-6, doi:10.1007/S10579-008-9076-6.

[26] Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Mazumder, Amir Zadeh,
and Louis-Philippe Morency. Context-dependent sentiment analysis in user-generated
videos. pages 873–883. URL: https://doi.org/10.18653/v1/P17-1081, doi:
10.18653/v1/P17-1081.

[27] Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gel-
bukh, and Erik Cambria. Dialoguernn: An attentive rnn for emotion detection in conversa-
tions. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6818–6825, Jul.
2019. URL: https://ojs.aaai.org/index.php/AAAI/article/view/4657.

[28] Sheng Yeh Chen, Chao Chun Hsu, Chuan Chun Kuo, Ting Hao Kenneth Huang, and Lun Wei
Ku. Emotionlines: An emotion corpus of multi-party conversations. LREC 2018 - 11th
International Conference on Language Resources and Evaluation, pages 1597–1601, 2019.
URL: https://github.com/declare-lab/MELD.

[29] Jorge Oliveira and Isabel Praça. On the usage of pre-trained speech recognition deep layers
to detect emotions. 2021. URL: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=9319855.

[30] Jupyter project documentation — jupyter documentation 4.1.1 alpha documentation.
https://docs.jupyter.org/en/latest/. Accessed on 16.07.2022.

[31] Paperspace docs | paperspace. https://docs.paperspace.com/. Accessed on
15.07.2022.

[32] About keras. https://keras.io/about/. Accessed on 25.06.2022.

[33] Tensorflow. https://www.tensorflow.org/. Accessed on 25.06.2022.

[34] Intro to data structures — pandas 1.4.3 documentation. https://pandas.pydata.org/
docs/user_guide/dsintro.html. Accessed on 16.07.2022.

[35] re — regular expression operations — python 3.10.6 documentation. https://docs.
python.org/3/library/re.html. Accessed on 16.07.2022.

[36] Nltk :: Natural language toolkit. https://www.nltk.org/. Accessed on 16.07.2022.

[37] Nltk stop words - python tutorial. https://pythonspot.com/nltk-stop-words/.
Accessed on 16.07.2022.

[38] Python programming tutorials. https://pythonprogramming.net/
lemmatizing-nltk-tutorial/. Accessed on 16.07.2022.

[39] Wenhu Chen, Yu Su, Yilin Shen, Zhiyu Chen, Xifeng Yan, and William Wang. How large
a vocabulary does text classification need? a variational approach to vocabulary selection.
pages 3487–3497.

https://link.springer.com/article/10.1007/s10579-008-9076-6
https://link.springer.com/article/10.1007/s10579-008-9076-6
http://dx.doi.org/10.1007/S10579-008-9076-6
https://doi.org/10.18653/v1/P17-1081
http://dx.doi.org/10.18653/v1/P17-1081
http://dx.doi.org/10.18653/v1/P17-1081
https://ojs.aaai.org/index.php/AAAI/article/view/4657
https://github.com/declare-lab/MELD
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9319855
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9319855
https://docs.jupyter.org/en/latest/
https://docs.paperspace.com/
https://keras.io/about/
https://www.tensorflow.org/
https://pandas.pydata.org/docs/user_guide/dsintro.html
https://pandas.pydata.org/docs/user_guide/dsintro.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://www.nltk.org/
https://pythonspot.com/nltk-stop-words/
https://pythonprogramming.net/lemmatizing-nltk-tutorial/
https://pythonprogramming.net/lemmatizing-nltk-tutorial/

44 REFERENCES

[40] Nltk :: Sample usage for wordnet. https://www.nltk.org/howto/wordnet.html.
Accessed on 25.06.2022.

[41] Python programming tutorials. https://pythonprogramming.net/
part-of-speech-tagging-nltk-tutorial/. Accessed on 16.07.2022.

[42] Bing Liu. Sentiment analysis and opinion mining. 2012.

[43] sklearn.preprocessing.onehotencoder — scikit-learn 1.1.2 documentation. https://
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html. Accessed on 15.07.2022.

[44] 1. introduction — version 0.9.1. https://imbalanced-learn.org/stable/
introduction.html. Accessed on 20.01.2022.

[45] tf.keras.model | tensorflow core v2.9.1. https://www.tensorflow.org/api_docs/
python/tf/keras/Model. Accessed on 25.06.2022.

[46] Method to generate class weights given a multi-class or multi-label set of classes us-
ing python, supporting one-hot-encoded labels. · github. https://gist.github.
com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c#file-generate_
class_weights-py. Accessed on 16.07.2022.

[47] The sequential model. https://keras.io/guides/sequential_model/. Accessed
on 25.06.2022.

[48] Batchnormalization layer. https://keras.io/api/layers/normalization_
layers/batch_normalization/. Accessed on 25.06.2022.

[49] Layer activation functions. https://keras.io/api/layers/activations/. Ac-
cessed on 25.06.2022.

[50] Probabilistic losses. https://keras.io/api/losses/probabilistic_losses/
#categoricalcrossentropy-class. Accessed on 25.06.2022.

[51] Accuracy metrics. https://keras.io/api/metrics/accuracy_metrics/
#accuracy-class. Accessed on 25.06.2022.

[52] tf.keras.optimizers.adam | tensorflow core v2.9.1. https://www.tensorflow.org/
api_docs/python/tf/keras/optimizers/Adam. Accessed on 25.06.2022.

[53] Masking and padding with keras | tensorflow core. https://www.tensorflow.org/
guide/keras/masking_and_padding. Accessed on 25.06.2022.

[54] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class classi-
fication: an overview. 8 2020. URL: https://arxiv.org/abs/2008.05756v1,
doi:10.48550/arxiv.2008.05756.

[55] Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, and Sou-
janya Poria. Cosmic: Commonsense knowledge for emotion identification in conversa-
tions. Findings of the Association for Computational Linguistics Findings of ACL: EMNLP
2020, pages 2470–2481, 10 2020. URL: https://arxiv.org/abs/2010.02795v1,
doi:10.18653/V1/2020.FINDINGS-EMNLP.224.

https://www.nltk.org/howto/wordnet.html
https://pythonprogramming.net/part-of-speech-tagging-nltk-tutorial/
https://pythonprogramming.net/part-of-speech-tagging-nltk-tutorial/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://imbalanced-learn.org/stable/introduction.html
https://imbalanced-learn.org/stable/introduction.html
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://gist.github.com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c#file-generate_class_weights-py
https://gist.github.com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c#file-generate_class_weights-py
https://gist.github.com/angeligareta/83d9024c5e72ac9ebc34c9f0b073c64c#file-generate_class_weights-py
https://keras.io/guides/sequential_model/
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://keras.io/api/layers/activations/
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/#categoricalcrossentropy-class
https://keras.io/api/metrics/accuracy_metrics/#accuracy-class
https://keras.io/api/metrics/accuracy_metrics/#accuracy-class
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/guide/keras/masking_and_padding
https://www.tensorflow.org/guide/keras/masking_and_padding
https://arxiv.org/abs/2008.05756v1
http://dx.doi.org/10.48550/arxiv.2008.05756
https://arxiv.org/abs/2010.02795v1
http://dx.doi.org/10.18653/V1/2020.FINDINGS-EMNLP.224

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals and Contributions
	1.3 Dissertation Structure

	2 Literature Review
	2.1 Background
	2.1.1 Text-mining and Natural Language Processing
	2.1.2 Deep Learning

	2.2 State of the Art
	2.3 Summary

	3 Project Development
	3.1 Dataset
	3.1.1 EmotionLines Dataset
	3.1.2 Multimodal EmotionLines Dataset

	3.2 Methodology
	3.2.1 Pre-processing input text
	3.2.2 Delineating vocabulary
	3.2.3 Normalising labels
	3.2.4 Generating class weights
	3.2.5 Multilayer perceptron network model
	3.2.6 Long short-term memory network model

	4 Experiments and Results
	4.1 Metrics for performance evaluation
	4.1.1 Confusion Matrix
	4.1.2 Precision
	4.1.3 Recall
	4.1.4 Accuracy
	4.1.5 Balanced Accuracy
	4.1.6 F1-Score
	4.1.7 Weighted metrics

	4.2 Existing models
	4.3 Results
	4.3.1 First experiment
	4.3.2 Second experiment

	5 Conclusions and Future Work
	5.1 Satisfaction of the objectives
	5.2 Future work

	References

