

Cerpolech

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

Highlights from KEROGREEN's plasmaroute towards e-Kerosene

Stefan Welzel (DIFFER) Peter Pfeifer (KIT)

Final Event, 27th September 2022

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

HYGEAR

INERATEC

Overview

Process chain

- Plasmolysis to split CO₂ into CO and O₂
- Oxygen separator including material and membrane development
- CO Purification
- Syngas generation by sorption-enhanced water gas shift (SE-WGS)
- Fischer-Tropsch (FT) Synthesis to produce hydrocarbons
- Hydrocracking (HC) of long hydrocarbon chains to produce Kerosene crude
- Full process integration
- Process efficiency
- Life cycle assessment

Upstream processes

Upstream processes

Plasmolysis: What is a plasma?

- Driven by electricity (only)
- "Switchable" (= no inherent inertia)

https://sciencenotes.org/20-examples-of-plasma-physics/

Plasmolysis Module

- New container-sized module developed from scratch (2450 \rightarrow 915 MHz)
- "Operator-free", turn-key module (6 kW_{el})
- Key figures
 - Output: 0.7 kg CO / h (15 ... 35% conversion)
 - Energy cost: 0.12 kWh/kg CO

Non-linear process characterised by strong gradients and (local) temperatures >> 1000 K

Upstream processes

Development of a oxygen separation module

Oxygen separation: Our electrochemical approach

- Oxygen separation
 - Complex (difficult) process
 - Lack of literature ← → Material challenge
- Electrochemical approach
 - Oxygen (ion) conduction electrolyte
 - Solid Oxide Electrolyte Cell (SOEC)
 - Electrochemical oxygen pumping upon applied voltage

Final Meeting, 27^h September 2022

A Pandiyan et al Journal of CO₂ Utilization 57 (2022) 101904

Oxygen separation: Our electrochemical approach

- Oxygen separation
 - Complex (difficult) process
 - Lack of literature $\leftarrow \rightarrow$ Material challenge •
- Electrochemical approach
 - Oxygen (ion) conduction electrolyte
 - Solid Oxide Electrolyte Cell (SOEC)
 - Electrochemical oxygen pumping upon applied voltage ٠

Final Meeting, 27^h September 2022

A Pandiyan et al Journal of CO₂ Utilization 57 (2022) 101904

Oxygen Separation: Module Development

Final Meeting, 27^h September 2022

Barelli et al Energies 13 (2020) 6173 www.sofc-fuelcell.com

Oxygen Separation: Module Development

www.sofc-fuelcell.com

2020 Research and Innovation Programme under GA-Nr. 763909

Oxygen Separation I: Material Screening

Automating 3D materials discovery using High-Troughput – DFT calculations

Which perovskites are good for

- CO₂ catalysis?
- O₂ catalysis?
- O transport?
- H₂ production?
- ... etc. ?

•

Oxygen Separation II: Material Production

- Complete process chain from feedstock chemicals to customized powders
- Solution \rightarrow Continuous Spray Pyrolysis \rightarrow Calcination \rightarrow Milling
- Spray pyrolysis process
 - Agglomerates of submicron powder with crystallites 10-500 nm
 - Specific surface area in the range of 1-50 m²/g
 - Production capacity: several tons per year

Agglomerates

Cerpotech

Final Meeting, 27^h September 2022

Oxygen Separation III: Material Processing

- Development of an alternative coating methodology for solid oxide cells
- → Spray coating instead of traditional tape casting

Spray coating process

Individual cells before testing

Oxygen Separation IV: Separation performance

- High Faradaic efficiency observed (> 90%)
- 91% less oxygen when compared to the plasmolysis equivalent feed
- Increased CO production (up to 138% of plasmolysis feed)
- No cell degradation observed for > 100 hours

Final Meeting, 27^h September 2022

A Pandiyan et al Journal of CO₂ Utilization 57 (2022) 101904

Oxygen Separation V: Modules @ Technical scale

- Commercial SOE cell stack modified with KEROGREEN electrode materials
- Cell stack equipped with functional technical layer(s)" to accommodate fluctuating gas stream supplied from plasmolysis module
- Key figures
 - Surface area: 5600 cm² (> 5 NI/min oxygen removal capacity)
 - 1.5 kW_{el} electrical power equivalent

DIFFER

Integrated plasma + separator module

Final Meeting, 27^h September 2022

Oxygen separation V: Performance Testbenches

Preparation of testbenches for KEROGREEN gas mixture (CO₂ / CO / O₂)

Final Meeting, 27^h September 2022

Upstream processes

Development of a CO purification module

Final Meeting, 27^h September 2022

CO purification: Pressure Swing Adsorption

- Modular and scalable purification systems
- From few NI/min to several thousand Nm³/h
- Kerogreen lab scale system was assembled and tested

Smaller scale module

KEROGREEN lab scale module

Industrial scale purification module

Size of Modules

Final Meeting, 27^h September 2022

CO Purification Module

- Results from test campaign showed good agreement with model in terms of CO yield
- However the purity grade was overestimated by the model
- For applications where CO purity of 99.6 % is required: modifications to be applied to the commercial scale system: a two-stage system with recirculation
- Some key numbers
 - CO yield after purification 78 % at 98 % purity (Target CO yield for industrial scale: 68 % at 96 % purity)
 - Maximum CO yield of 95 % was achieved
 - Maximum CO purity reached was 98.2 %

Downstream process

Development of sorption-enhanced water gas shift (SE-WGS)

Sorption Enhanced Water Gas Shift (SE-WGS)

- Required to produce synthesis gas $(CO + H_2)$ from pure CO
- Combines CO₂ removal from reaction (sent back to Plasma reactor)

 $2\mathbf{H}_2\mathbf{0} + 2\mathbf{CO} + (\mathbf{CO}) \rightleftharpoons 2\mathbf{H}_2 + (\mathbf{CO}_2)_{ads} + (\mathbf{CO})$

Adsorbed and in cycles desorbed for recovery

- Work started from the scratch in lab
 - effect of pressure
 - effect of steam
 - effect of reactor filling

SE-WGS in technical scale @ container site

- Completed reactor design for optimal temperature regulation
- Six chambers in one reactor for switching between reaction & adsorption vs desorption
- Subsequent desorption with steam to avoid impurities in recycled CO₂
- Pre-evaluation of performance by modeling with determined kinetics suggests a four step operation, which is programmed along with two step operation (M2-M4) for each of the chambers

SE-WGS in technical scale @ container site

Implementation in operational scheme and build-up of SE-WGS skid

loading at four steps (more efficiency)

... to be validated!

Downstream process

Development of Fischer-Tropsch module

INERATEC's Fischer-Tropsch technology

- INERATEC's Fischer-Tropsch reactors are based on modular microchannel technology, thus
 - Reaction temperature can be controlled precisely / safe operation
 - Ramp-up & load changes are possible in minutes, not in days like standard technology (slurry bubble column reactors)
 - High conversion per pass & consequently low process complexity
 - Factor 80 in volumetric process intensification

FT module (up to 1,25 MW capacity)

Final Meeting, 27^h September 2022

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

INERATEC

What was built?

- A Fischer-Tropsch Synthesis unit with 3 stages of separation
- The waxes are recycled from hot trap to the hydrocracking unit (cooperation with KIT)

Results from Fischer-Tropsch campaigns

- Stable reaction zone temperatures achieved because of stable inlet volume flows
- It was managed to produce 0,111/h of liquid products
- The results confirm nicely the simulations the plant was based on
- Contamination of O₂ has effects on process and catalyst e.g., $1\% O_2$ reduces CO conversion from 44% to 28% -> High limit for O_2 : 200 – 500 ppm
- Outlook:
 - Currently, INERATEC has built two 1MW plants and is in commissioning phase
 - Further, INERATEC is working on a plant with a capacity of 3500t/a in cooperation at Industriepark Höchst in Frankfurt

Downstream process

Development of individual modules

Hydrocracking to increase Kerosene yield

- In addition to adapt properties (increase yield of species for cold-flow properties)
- "Cut" of long chains (solids at room temperature) from Fischer-Tropsch synthesis towards hydrocarbon molecules C₈-C₁₄ (Kerosene fraction)
- Started from pre-existing lab scale setup:

Trade-off between conversion of long chains (C_{21+}) and selectivity to hydrocarbons C_{10} - C_{20}

HC integration into FT-synthesis skid

n-Alkanes Others

- With wax recycling from hot trap (wax condensation) back to the hydrocracking reactor which is located directly behind the Fischer-**Tropsch reactor**
- Avoids partially the typical trade-off by covering the catalyst with liquid and thus reduces overcracking
- Only ~2 kg residual wax in the whole campaign

5.0

4.5

4.0

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

FT reference

HC integration into FT-synthesis skid

- Hydrocracking performance increases with increased HC temperature and wax recycling i.e., "others" (isomers after further hydrogenation upgrading) content increases in both the intermediate and cold trap
- Pre-condition for successful upgrading towards Kerosene reached

Full process integration

Validation of integration

• e.g., test run plasma completed

Calculation of process efficiency

- Applied process and model scheme in commercial software Aspen® & Matlab Simulink®
- CO_2 efficiency ($X_{CO_2} = \frac{\dot{V}_{Synthesis Gas}}{\dot{V}_{CO_2,Feed}}$, before FT reactor) is 17% => all CO_2 needs to be recycled!
- At 40 I(N)/min CO₂ a Kerosene output of 0.042 kg/h is produced in single pass
- Full CO₂ recycling needs to be implemented on industrial scale

Goals

Ranking of KeroGreen and competitors

=> Identification of performance requirements

Improvement of KeroGreen

=> Fulfilling of performance requirements

Methods

Environmental aspects: Life Cycle Assessment (LCA)

Economic aspects: Life Cycle Costing (LCC)

Social aspects: s(ocial)LCA - numerous approaches => Indicator: Acceptability

Generally: competing technologies with numerous pros and cons & our technology in early stage

An example: results for GHG emissions

- benefits from KeroGreen only in case of pure renewable power generation with high mean loads and full use of by-products; also in future limited potentials for on-shore power production in middle Europe
- only small differences among the four investigated concepts
- similar pattern for other impacts e.g., eutrophication or particle matter formation

Thank you for your attention,

...buy SAF and do CO_2 compensation, when you fly...

...or go by train!

Contacts

Dr. Stefan Welzel Dutch Institute for Fundamental Energy Research (DIFFER) Solar Fuels - Facilities & Instrumentation De Zaale 20 5612 AJ Eindhoven, The Netherlands <u>s.welzel@differ.nl</u> +31.(0)40.3334.770

Prof. Peter Pfeifer Karlsruhe Institut für Technologie Institut für Mikroverfahrenstechnik Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen peter.pfeifer@kit.edu +49 (0) 172 3604443

