
Storing encrypted patient data
in a public cloud

M.Sc. Tech. Thesis
University of Turku
Department of Computing
Software Engineering
2022
Konsta Purtsi

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.



UNIVERSITY OF TURKU
Department of Computing

Konsta Purtsi: Storing encrypted patient data
in a public cloud

M.Sc. Tech. Thesis, 54 p., 27 app. p.
Software Engineering
November 2022

The Finnish laws on individual’s data security as well as The General Data Protec-
tion Regulation (EU) (GDPR) are legislations requiring caution from an organiza-
tion handling private data. A healthcare organization is required to exercise extreme
caution when handling health data as the GDPR considers individual’s health data
”a special category of personal data”, as it is sensitive by nature.
Public cloud providers such as Google Cloud Platform promise to make developing
and hosting web applications simpler. However trusting a third party such as Google
with individual’s health data increases the requirements for security. The developer
may want to implement additional security measures on top of those provided by
default by the cloud provider. Modern cryptographic algorithms use keys to encrypt
and decrypt data. However, storing the keys in a secure and performant way is no
simple task.
This thesis includes an implementation of a server application built to mimic a real
world application for handling patient data. The application is built with TypeScript
and hosted in Google Cloud Platform’s services. The application is used to analyze
the added complexity and performance deficit of implementing strong encryption.
The complexity and performance differences with the application in encrypted mode
are notable. However, a lot of the complexity can be mitigated with good design.
No complex cryptographic algorithms have to be understood by the developer to be
able to implement strong encryption. Existing tools and libraries handle most of
the work.
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1 Introduction

The Finnish laws on individual’s data security as well as The General Data Protec-

tion Regulation (EU) (GDPR) are legislations requiring caution from an organiza-

tion handling private data. A healthcare organization is required to take extreme

caution when handling health data as the GDPR considers individual’s health data

"a special category of personal data", as it is sensitive by nature. Healthcare orga-

nizations must comply with these regulations or face sanctions.

Public cloud providers such as Google Cloud Platform claim to reduce the work

required for developing and maintaining an application. However, organizations us-

ing a public cloud must take even higher caution when dealing with an individual’s

data. The cloud providers promise proper security measures without any configu-

ration needed. The developer must still be cautious when storing data in a public

cloud.

There are multiple strategies for designing and implementing secure web appli-

cations. Modern cryptographic algorithms use secret keys to encrypt and decrypt

data to keep it secure during storage and transit. Building key-based encryption in

the cloud is no simple task. The keys to encrypt the data cannot be stored along

with the data because of the risk of the database leaking allowing a malicious actor

to gain access to the data. However, storing the keys separate from the data might

cause I/O issues on a large scale.



1.2 SCOPE AND RESEARCH METHODS 2

1.1 Research questions and the goal of the thesis

The goal of the thesis is to research how the legislations in Finland affect health-

care organizations. Both the Finnish law and the GDPR are analyzed in terms of

how they affect the technical implementation of a digital service hosted in a public

cloud. The research includes a technical specification and implementation of a server

application built to comply with the regulations.

Research questions of the thesis:

1. What is required from a healthcare organization to comply with the Finnish

law and the GDPR in terms of technical implementation?

2. What is a strong enough encryption strategy for handling individual’s health

data in a public cloud?

3. How does implementing encryption affect the complexity of an application?

4. How does the encryption affect the performance of an application?

1.2 Scope and research methods

The scope of this thesis is to research and analyze how a Finnish healthcare orga-

nization should abide by the General Data Protection Regulation in the European

Union and the Finnish law. The legislations are analyzed in terms of their effect on

the technical implementation of an application.

This thesis describes cloud computing generally and the Google Cloud Platform

specifically in terms of handling encrypted patient data. The application and in-

frastructure are built to handle the data in encrypted state in storage and in transit

between the database and the server application. Handling security between the

client and the server such as authorization and authentication is outside the scope.
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The application is built to match a specification close to a real world applica-

tion. The encryption strategy is decided to be secure enough for handling indi-

vidual’s health data. The difference in complexity between no encryption and the

implemented encryption is analyzed.

The application is also designed with a large amount of simultaneous connections

in mind. The finished application is load tested in both encrypted and unencrypted

modes. The load test results are analyzed in terms of performance difference.

1.3 Structure of the thesis

The thesis consists of background research on the topics of legislations, encryption

and the technologies used. Chapter 2 covers the legislations in effect in Finland

and how a healthcare organization must comply with them. Chapter 3 covers the

theory behind cryptography and how it can be used in a secure web application.

Chapter 4 introduces the technologies used in the conducted research. Chapter 5

lists the technical requirements of the application and the architectural design, tech-

nology choices and encryption strategy used. Chapter 6 goes through the technical

implementation of the application and the infrastructure. Chapter 7 analyses the

effect of implementing encryption on the complexity of the program code and the

infrastructure as well as the performance of the application. Chapter 8 summarizes

the thesis and discusses options for improving the application as well as options for

further research.



2 Patient data in a public cloud

This chapter covers laws effective in Finland on storing individual’s health data.

The jurisdiction is analyzed from the point of view of a healthcare provider storing

patient data in a public cloud. The laws are analyzed more by their technical

requirements rather than their juridical ones.

2.1 Patient data security laws in Finland

The Finnish law includes multiple legislations to follow when storing patient data.

The main laws on this topic are for example Data Protection Act1 1050/2018, Act on

the Status and Rights of Patients2 785/1992 and Act on the Electronic Processing

of Client Data in Healthcare and Social Welfare3 784/2021. The main legislation

to follow on data protection in Finland, which the Finnish laws complement and

expand on, is the General Data Protection Regulation of the European Union. [1]

The General Data Protection Regulation (EU) (GDPR) is a regulation on data

protection and security in the European Union (EU). GDPR applies to all enterprises

storing the data of an individual living inside the European Economic Area (EEA),

regardless whether the processing itself takes place in the Union. GDPR aims to

protect individuals’ data and enhance their control over it, while also making the

1Tietosuojalaki
2Laki potilaan asemasta ja oikeuksista
3Laki sosiaali- ja terveydenhuollon asiakasti- etojen sähköisestä käsittelystä
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regulation simpler to follow for companies. [2]

2.2 Technical requirements of the laws in Finland

The GDPR requires the data controller — an organization that collects data from

EU residents — to provide the individual with information and options. The GDPR

also gives some specifics on how to handle the data securely. Many of these mandates

may be fulfilled using technology. [2]

The GDPR mandates that the data controller is responsible for notifying the

user and collecting consent before collecting any personal data. The individual

must explicitly give consent for example by ticking a box. Silence, inactivity or

pre-ticked boxes do not count as consent. The consent must also be stored in a way

that the data controller can prove that they have collected it. [2]

After collecting consent, the individual has the right to know whether their data

is being processed. The consent may also be given or withdrawn at any time at

will. It should be just as easy to withdraw consent as it is to give it. At the point

the data is collected, the user must be informed of the time period the data will be

stored. If the data is no longer needed for the purpose it was collected for, it should

be deleted. The data controller must also provide a copy of the individual’s data

when requested. The exported data must be in ”a structured and commonly used

and machine-readable” format. [2]

The GDPR also mandates a right to be forgotten for the individual. This means

the individual can request the removal of all data concerning him or her. The

individual may also request the data to be transferred to another data controller.

The controller must oblige to these requests without any undue delay. [2]

Collecting parental consent is also required by the GDPR. Child age is defined

by the specific member state, in the GDPR regulations the default being 16 years.

[2] In the case of Finland the specific age is 13 years [3]. In Finland, a child can use
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advisory, support or preemptive services without their parent’s consent [4].

Handling a Finnish resident’s social security number4 (SSN) is regulated by The

Data Protection Act. Permission for processing the individual’s SSN is granted for

identification of the individual for legal purposes, such as healthcare. The SSN must

not be printed redundantly on any documents. [3]

The GDPR specifies some guidelines on data security. While not too technical,

these guidelines give organizations good pointers on how to handle data. Data

security standards should be judged on a per-case basis, but some of the things the

GDPR suggests are [2]:

• the pseudonymization and encryption of personal data;

• the ability to ensure the ongoing confidentiality, integrity, availability and

resilience of processing systems and services;

• the ability to restore the availability and access to personal data in a timely

manner in the event of a physical or technical incident;

• a process for regularly testing, assessing and evaluating the effectiveness of

technical and organizational measures for ensuring the security of the process-

ing.

The data security measures can be confirmed appropriate by following an ap-

proved code of conduct or by an approved certification mechanism. Each member

state should provide a public authority to supervise GDPR compliance. This super-

visory authority has a broad and sweeping power over data controllers’ activities.

[2] In Finland, this supervisory authority is The Office of the Data Protection Om-

budsman5. [5]

4Sosiaaliturvatunnus
5Tietosuojavaltuutetun toimisto
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2.3 Requirements for storing patient data

The GDPR is very far from actual technical implementation, and only suggests

the developer to consider the pseudonymization and encryption of personal data

regarding the implementation. The GDPR suggests considering the level of security

required for data storage based on the nature of the data as well as the risks related

to any incidents. An individual’s health data is considered "a special category of

personal data" so the developer should take extreme caution when dealing with said

data, as it is sensitive by nature. [2]

Complying with the GDPR regulations will take a fair amount of technology,

even if just for the bookkeeping. Not only must data controllers make individuals’

personal data transparent and editable, they must make records of the individuals’

wishes available to supervisory authorities or else face sanction. Any of these failures

is punishable by a significant fine. [2]

• Failure by a Controller or Processor, or their representative, to provide infor-

mation on request to a supervisory authority required for the performance of

their tasks.

• Failure by a Controller or Processor to provide access to all personal data or

information necessary for performance of supervisory authority tasks.

• Failure to allow access to premises, including any data processing equipment.

• Failure to comply with an order to comply with an individual’s requests.

• Failure to comply with an order to bring processing in to compliance in a

specified manner and in a specified period.

• Failure to comply with an order to communicate a personal data breach to

individuals.
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• Failure to comply with a prohibition on processing.

• Failure to comply with an order to rectify, restrict, or erase data and to notify

3rd parties of such actions.

• Failure of a Certifying Body to comply with an order to cease issuing certifi-

cations.

• Failure to comply with an order to cease transfers of data to 3rd countries or

an international organization.

Validating the privacy practices of an organization GDPR-compliant is not a

well-defined task. GDPR says to follow a code of conduct, but such codes are hard

to come by. Getting a certification from a supervisory authority is another way to

validate an organization’s GDPR compliance. [2]

2.4 GDPR compliance in a public cloud

Public cloud is characterized by providing computation, storage & networking ser-

vices outside of one’s current organization. It also offers near infinite scalability

and on-demand deployments at an inexpensive price. Companies have adopted the

public cloud at a fast speed in recent years – a trend that is probably not going to

be reversed. For example, Amazon Web Services (AWS) provides cloud computing

infrastructure to over 1 million organizations in 190 countries. [6]

As modern computing systems focus on performance, cost-efficiency, reliability,

and scalability, not many organizations give enough thought to security and pri-

vacy. The rise of the GDPR forces organizations to face the issues on privacy and

security. Usage of a public cloud complicates these problems even more, as multiple

organizations can share computing and networking resources. [6]
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While a multitenant cloud has a lot of benefits for the organization using it,

sharing a virtualized pool of computing and networking services is also a possible

cause for security issues. When multiple organizations share the same resource, it

is a lot more likely for personal data to leak or for an unauthorized party to gain

access to the data. Public cloud providers’ lack the tools required to monitor and

audit these types of security issues, and leave a lot of the problems for the developer

to deal with. [7]

Right to be forgotten is not a simple task to adhere to in the real world. Not

only must all manually collected backups be cleared of the individual’s data, the

cloud provider may also have taken copies of the data for performance, security and

scalability reasons. Google reports that their cloud services can take up to 180 days

to get the data fully deleted. [6]

Cloud services are quite opaque in terms of where the data is being processed.

The individual might not know where their data is sent when using such services.

This is especially a problem for multi-layer cloud services, where parts of the infras-

tructure might be handled by an entirely separate cloud services, for purposes such

as handling payments and collecting analytics. The GDPR requires organizations

using cloud to solve this issue by giving precise information on where the individ-

ual’s data is being sent when asking for consent. Knowing where the data is handled

might not be clear to the developer either. [6]

Public cloud services do also provide quite a few tools for hardening a service for

better privacy and security. Cloud providers allow separating resources into virtual

private networks with configurable firewalls between the network and other resources

inside the cloud or the internet. Public cloud also has tooling for implementing for

example public key cryptography and Google Cloud encrypts all data stored on their

cloud storage at rest by default. [8]



3 Background on cryptography

The Finnish Data Protection Act and the GDPR regulate the controller and proces-

sor of any personal data to implement proper technical and organization measures

in terms of security, while taking into account the level of risk related to the nature

of the data stored. Health related data is considered a special category of personal

data by the GDPR and therefore should be handled with extra caution. The GDPR

mentions pseudonymization and encryption of personal as options for improving the

security of sensitive data. As health data is considered very sensitive, appropriate

cautions should be taken when storing and processing it, including the two tools

mentioned by the GDPR. [2]

This chapter explains the basics of cryptography, unfortunately this requires a

small bit of mathematics. Different cryptographic systems are also introduced here,

as well as options for implementing cryptography in a public cloud.

3.1 Cryptography

Cryptography is the science of keeping messages secure. Encryption is a part of cryp-

tography which in layman’s terms means sending text in the form of secret writing.

The message to be sent is first converted into an indiscernible form via cryptographic

methods. The original message is called the plaintext and the encrypted message is

called the ciphertext. The message is then delivered over computer networks. The

receiver then reverses the ciphertext using the reverse of the same cryptographic
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method, resulting in the exact same message that was sent by the sender. Using

cryptography only the sender and the receiver can read the original message and no

third party can intercept it or tamper with it on the way. [9]

The main job for cryptography is to achieve the following traits: confidentiality,

integrity and availability. These concepts are often referred to as the CIA triad.

The meaning for each of them is the following: [10]

• Confidentiality: Only the original sender and the recipient can read the mes-

sage. No third party can eavesdrop on the communications.

• Integrity: The message is transmitted through the communication channel

as-is without any third party tampering with it.

• Availability: The information is readily available without unnecessary delays

to all authorized parties.

The three previously discussed concepts of cryptography are visualized in Fig

3.1.

The CIA triad is quite a well established list of traits. However, some in the cryp-

tography space feel that additional concepts are necessary. The additional concepts

often listed are the following [10]:

• Authenticity: The message can be confirmed authentic using cryptographic

measures. The users communicating are also validated as who they claim to

be.

• Accountability: The actions of an individual are traceable to them. Because

no system is truly secure, it is beneficial to be able to trace the source of a

possible security breach.

A cryptographic algorithm, also called a cipher, is a mathematical function used

for encrypting and decrypting a message. There are often two separate functions:

one for encrypting and the other for decrypting. [9]
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Figure 3.1: Visualization of the CIA triad, the three concepts of data security

A cryptographic algorithm which encryption is based on keeping how the function

works a secret is called a restricted algorithm. Restricted algorithms have been used

historically, but they are quite inadequate by today’s standards. If the secret is

revealed at any point, every user must change to an entirely new algorithm. [9]

Modern cryptographic solutions solve this problem using keys. This key can

be any value on a large range of values, called the keyspace. Both operations,

encryption and decryption, use this key as part of the function. Some algorithms

use a different encryption and decryption keys. The security of these algorithms is

based entirely on the secrecy of the key or keys. The details of the algorithm can

therefore be made public and analyzed. Leaking of the algorithm is no longer an

issue, as long as the eavesdropper does not gain access to the keys. [9]

Cryptographic algorithms can be divided into two general categories: symmetric

and asymmetric, also known as public-key. An algorithm being symmetric means

that the encryption key can be calculated from the decryption key and vice versa. In
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most cases, the encryption and decryption key is the same. Before beginning secure

communication on a single-key algorithm, the sender and receiver must agree on a

key. The key is central to the security of the communication, keeping it a secret

makes the communications a secret. [9]

Public-key algorithms are characterized by using a separate key for both encryp-

tion and decryption. The decryption key cannot be calculated from the encryption

key (in a reasonable time). The encryption key is often called the public key. The

decryption key is referred to as the private key. The algorithms are named "public-

key" because the encryption key can be made public. Anyone can use the public key

to encrypt a message, but only a specific person with the private key can decrypt it.

It is also possible an algorithm uses the private key to encrypt and the public key to

decrypt data. An example of such use case would be digital signatures, which prove

a specific person’s signature to be genuine and the authenticity and integrity of the

message. [9]

The most relevant public-key algorithms use prime numbers as the basis of their

functionality. The primes used are very, very large: many hundred digits long. [11]

Factoring a number means finding its prime factors. The core idea in using primes

in cryptography, is that factoring a number is very time-consuming. For example,

in 1993 a 120-digit hard number was factored in 3 months of real time using 825

mips-years1 of computing power. On the other hand, generating prime numbers and

multiplying them is easy. Answering the question "is n prime?" is a lot easier than

answering the question "what are the factors of n?" because the former is just a

yes/no question. [9] Multiplication is more work than addition, for example, but it

is still relatively easy for a computer to perform. [11]

1Mips-year is an unit used to measure computational effort in cryptography. One mips-year is

the amount of work performed by a single computer in a year, operating at one million operations

per second or 1 MIPS.
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3.2 Pseudonymization

Pseudonymization means changing all identifiable personal data such as e-mail ad-

dresses, names and IP addresses for aliases. The information can no longer be

connected to a specific individual without additional data. Pseudonymization is

highly recommended by the GDPR. Although the process of pseudonymization is

reversible, it significantly lowers the risk of leaking sensitive data. [2] The irreversible

process of changing identifiable personal data for an alias is called anonymisation.

The GDPR suggests organizations to implement pseudonymization, however it

does not define a technique or process for it. The GDPR only gives us the end goal

of pseudonymization: making the data unable to be attributed to a natural person.

By this definition, encryption fulfills this goal. [12]

3.3 Envelope encryption

Envelope encryption is an encryption strategy used with large scale applications. It

allows for both, centralized safekeeping of encryption keys as well as encrypting a

large amount of data. Envelope encryption uses multiple layers of keys by encrypting

a key with another key. The key that is used to encrypt another key is called the

key encryption key (KEK). The key that encrypts the data itself is called the data

encryption key (DEK). The process of decrypting a DEK with a KEK is also called

wrapping, and is visualized in 3.2. Decrypting the data with the DEK is visualized

in 3.3. [8]

Google lists best practices for working with DEKs and KEKs. DEKs should be

generated locally by the program handling the data and always encrypted at rest.

For easy access, the DEK can be stored near the data it encrypts. KEKs should

be managed and stored centrally, for example on Google Cloud Platform’s Cloud

Key Management Service (KMS). The granularity of KEKs should be considered
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by workload, the same KEK can be used for data the workload is responsible for.

KEKs should be rotated regularly and also after any suspicious activity. A new

DEK should be used every time new data is stored. This also means DEKs will

never have to be rotated. The same DEK should never be used for two different

users. [8]

The security advantage of envelope encryption is in the key encryption key and

using a different data encryption key for each chunk of data. Even if a malicious

actor were to gain access to a plaintext DEK, they would only be able to decrypt

a small chunk of data. The malicious actor would need both: the centrally stored

KEK as well as the database with the DEKs to decrypt all the data. [8]

Figure 3.2: Visualization of decrypting a data encryption key with a key encryption

key
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Figure 3.3: Visualization of decrypting data with a plaintext data encryption key



4 Introduction to the technologies

used

This chapter includes introduction on the technologies chosen for the POC (proof-

of-concept) project. The technologies and their roles in the project are explained in

the amount of detail necessary.

The project is built as a POC implementation of a GDPR-compliant patient data

storage for a healthcare organization. The technologies are chosen after evaluating

their fit for the project and their familiarity for the organization after discussing the

choice with them. The chosen technologies are as follows:

• Google Cloud Platform

• Terraform

• PostgreSQL

• Node.js

• TypeScript

• Docker
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4.1 Google Cloud Platform

There are many providers in the cloud computing space. For example, Amazon,

Google, Microsoft, Rackspace and DigitalOcean have grown to provide services for

numerous users. Different providers offer similar products, but the implementation

details and how they work vary significantly. [13]

Google Cloud Platform (GCP) is a selection of cloud computing services pro-

vided by Google. GCP started as Google App Engine framework for hosting web

applications from Google’s data centers and grew from there to offer a wide variety

of services. Nowadays, it is one of the largest cloud computing platforms, but still

behind Amazon Web Services (AWS) and Microsoft Azure in market share. Google

promises the users of its cloud platform 99.95 % reliability, which they achieve by

building safety systems around in their applications by assuming any of the parts

can fail. Google is also running constant performance and load tests on their ser-

vices, finding and troubleshooting problems proactively. [13] Different categories of

services offered GCP are visualized in Fig 4.1.

The most straightforward way to manage the services provided by Google Cloud

Platform is the web-based console served at console.cloud.google.com. Google also

offers tooling called the Cloud SDK for interfacing with Google Cloud Platform.

The SDK supports interacting with Google Cloud Platform products and services

using client libraries for Java, Python, Node.js, Ruby, Go, .NET and PHP. The SDK

also includes a command line tool called the Google Cloud CLI for managing GCP

services. [8]

Google Cloud Platform offers many options for building cloud based services.

GCP offers compute, storage and networking services along with many others. For

example, Google App Engine is a service for hosting a fully managed server-side

application. Cloud SQL is Google cloud’s offering for a fully managed PostgreSQL

database. Cloud DNS is their platform for managing all things DNS as well as
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Figure 4.1: Visualization of the categories of services Google Cloud Platform offers

registering and managing domains. These are only a few examples of the services

provided by Google Cloud Platform. The specific services chosen for the POC are

explained in more technical depth in the next chapter. [8]
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4.2 Terraform

In place of managing cloud computing resources using a web-based console, a client

library or a command line interface, there is another option. Infrastructure as Code

(IaC) is defined as building infrastructure in a declarative way. Instead of clicking

through a graphical interface or building a script to tell a computer how to build

the infrastructure, IaC languages are used to define what the infrastructure is, and

let the IaC technology handle building and changing it. IaC technologies have

the benefit of making the infrastructure more replicable and easier to version and

document. [14]

Terraform is an open source infrastructure as code tool created by HashiCorp.

Terraform as a technology consists of multiple tools: Terraform CLI, Terraform

Cloud and Terraform Enterprise. In the scope of this thesis, the most relevant

tool is Terraform CLI: a command line tool launched using the terraform com-

mand. Terraform CLI can be used for any action the developer would do such as

terraform plan and terraform apply. Terraform uses HashiCorp’s own Hashi-

Corp Configuration Language (HCL) as its main interface. HCL aims to be both: a

human- and a machine-readable configuration language for use with command line

tools. [14]

Terraform allows building both cloud and on-premise infrastructure. Terraform

does not specialize in any technology, but instead it allows for the use of so-called

providers for many different platforms and technologies. At the time of writing

HashiCorp and the Terraform community have released over 1700 different providers

on the Terraform registry1 including for example Amazon Web Services (AWS),

Azure, Google Cloud Platform (GCP), Kubernetes, Helm and many more. Ter-

raform providers interface with different cloud platforms and other services via their

application programming interfaces (APIs). A provider can be created for virtually

1https://registry.terraform.io/
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anything that has an accessible API. [14]

The Terraform workflow consists of three main steps. First, the developer writes

the configuration which defines the infrastructure. The second step is the plan stage

where the developer reviews the changes Terraform will make to the infrastructure,

including things that will be created, updated or destroyed. Third, the developer

applies the planned changes to the actual infrastructure. Terraform will handle

changing the infrastructure in the correct order and updating its own internal state

file. Destroying the infrastructure can be considered the fourth step after the infras-

tructure has served its purpose. [14] The Terraform workflow is visualized in Fig

4.2.

Figure 4.2: Visualization of the steps included in the Terraform workflow

Terraform has an abstraction called a module. A module is a lightweight con-

tainer that includes multiple resources that are used together. Using a module makes
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declaring the architecture itself easier, without declaring the physical parts them-

selves. A module can also take input variables to allow for building configurable and

reusable building blocks. It can return output values as well, which can be used as

arguments elsewhere. [14]

4.3 PostgreSQL

PostgreSQL is an open-source object-relational database management system. It

is designed to handle a large variety of workloads ranging from single servers to

data warehouses and huge web services. It has a history spanning over 30 years

which gives it a reputation as a powerful, reliable, robust and performant database.

PostgreSQL supports a large part of the SQL standard and offers many more modern

features, such as complex queries, foreign keys and updatable views.2 [15]

PostgreSQL is based on a database system developed at the University of Califor-

nia at Berkeley Computer Science Department: POSTGRES, Version 4.2. POST-

GRES pioneered many new concepts for database systems. PostgreSQL is an open-

source successor of POSTGRES. It is released under a very liberal license allowing

for use in any sort of application, be that private, commercial or academic. [15]

The PostgreSQL database runs on macOS, Windows, Linux, FreeBSD and Open-

BSD. [15] In addition to running PostgreSQL on the user’s own server hardware,

many cloud providers sell managed services for hosting PostgreSQL. For example,

The Google Cloud Platform includes a fully-managed service for hosting and ad-

ministering a PostgreSQL database called the Cloud SQL. [8]

2Foreign keys are used to validate the existence of an entry and store a reference to it in another

database table. An updatable view is a database view that can be updated similarly to a regular

table.
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4.4 Node.js

Node.js is a runtime environment for JavaScript which is designed to build scalable

network applications. Node.js is a cross-platform environment which can be used

to run JavaScript outside the browser for use cases such as command line tools and

server-side applications. It is an open-source project built by the OpenJS Foundation

and runs on Google Chrome’s V8 JavaScript engine. Node.js was first released in

2009 and has gained huge popularity among all types of users ever since. [16]

Node.js uses an event-driven architecture for building applications. It executes

code concurrently, such as allowing for multiple connections. This is in contrast

to the more common thread-based model. The concurrency model makes build-

ing scalable systems with Node.js very reasonable, as user will not have to worry

about deadlocking. However, this does not mean Node.js can not take advantage of

multiple cores in your environment. [16]

Node.js is designed to be modular. It can be extended using packages in-

stalled via Node package manager (npm). Npm is a command line tool designed

to make installing packages quick and easy. Npm’s registry has grown to become

the world’s largest software registry. The registry can be browsed using its website

at https://npmjs.com. [17]

Express is a web framework for Node.js. It is designed to be fast, unopinionated

and minimalist. Express makes building solutions such as APIs for web and mobile

applications simple and flexible. Express by itself only includes a thin layer of

web fundamentals required, but it can be expanded with any of Node.js libraries.

Requests to the Express application can also be intercepted and handled with a

method called Middleware. [18]

Pg-promise is another example of a Node.js library built to interface with Post-

greSQL. It is built on top of node-postgres. The name pg-promise comes from

it only first adding promises as its sole feature, JavaScript’s solution for handling
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asynchronous computation. Nowadays the library adds a lot of other features as

well. The features it adds include for example automatic connections, automatic

transactions and improved query formatting. [19]

4.5 TypeScript

TypeScript is a programming language created by Microsoft. TypeScript extends

JavaScript’s syntax by adding types to it. It is a strict superset of JavaScript,

which means all existing JavaScript code is also valid TypeScript code. JavaScript

already provides primitive types such as string and number, but does not do any

type checks with these. TypeScript allows describing types explicitly and inferring

types from constants. The compiler then checks for type errors before ever running

the code. TypeScript promises to give the developer better tooling such as tighter

integration with the editor. It also promises to allow for finding bugs earlier on in

the development. [20]

TypeScript compiles to JavaScript and can run anywhere JavaScript runs. The

possible execution environments include for example web browsers and Node.js.

JavaScript already uses types such as string and number, but it does no checking on

how variables are assigned. TypeScript does this and allows defining more complex

types. [20]

TypeScript uses all the same types JavaScript already has, but also adds a few

more. For example, the any type allows anything to pass into the variable. Type-

Script also has support for defining more complex types. An interface can be used

to define the shape of an object. The type syntax can be used to create even more

specialized types, such as unions and string or number literals. [20] An example of

defining types in TypeScript is shown in Listing 1.

Listing 1 An example of definining types in TypeScript.
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1 // define the shape of a student object.
2 interface Student {
3 name: string;
4 startYear: number;
5 }
6

7 // union of number and string
8 type NumberOrString = number | string;
9

10 // union of OS's as string literals
11 type OS = 'Windows' | 'Linux' | 'MacOS';

TypeScript also adds syntax for defining generics similar to languages like Java

and C#. Generics are used to provide types as variables to either other types or

functions using angle brackets <>. For example, generics are used to define what

type of contents an array has. [20] An example of using generics is shown in Listing

2.

Listing 2 An example of using generics in TypeScript.

1 // An array that takes only strings
2 type StringArray = Array<string>;
3

4 // A generic function for creating a tuple of any type.
5 function duplicate<Type>(arg: Type): [Type, Type] {
6 return [arg, arg]
7 }

4.6 Docker

Docker is a software development tool built to make the same software run anywhere

regardless of the infrastructure. Docker can be used for all steps in the software

delivery pipeline: developing, testing, shipping and running the software. Docker

promises to shorten the gap between development and production. [21]

Docker packages and runs applications in a loosely isolated environment called

a container. Containers are lightweight and self-contained so no other requirements

other than installing Docker itself are set on the host system. This also allows
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sharing containers between different users and machines without changing how the

container functions. When ready, the application can be deployed as a container or

an orchestrated service. The application works the same regardless of where it is

hosted: a local server, a cloud provider or a hybrid between the two. Docker also

allows for responsively scaling of infrastructure due to its portable and lightweight

nature. [21]

an image is a read-only template with instructions on how to create a Docker

container. An image is often based on another base-image, such as the ubuntu

image, with additional customizations on top. The customizations often include

building and running a custom-built application. A custom Docker image is created

with a simplistic Dockerfile format. [21]

A Docker registry stores Docker images. When using docker run or docker

pull commands, the required images are downloaded from the registry of choice.

Docker Hub is the public registry anyone can use. For a more private store of Docker

images, a private registry can be hosted. [21] One cloud hosted option for this is

the Artifact Registry on the Google Cloud Platform. [8]



5 Technical analysis

This chapter explains the technical requirements for the POC (proof-of-concept)

project, which is central to the analysis of the research question of the thesis. The

chapter also lists our options for the technical implementation as well as rationalizes

the decisions made.

5.1 High level specification

The POC projects is built to replicate a close-to real world application for storing

sensitive customer data. The data stored is related to appointment times of any spe-

cific customer. The application must be able to receive new appointment times and

save them persistently. It must also be able to load the state of the appointments.

All the actions are required to be fulfilled in a timely manner. The appointment

must store at least the following data

• The customer’s name

• The customer’s social security number

• Date and time of the appointment

• Practitioner’s name and basic info

• Location’s name and basic info
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The application must be available on the web and use an existing standard for

interfacing with it. Additional technical specifications are discussed in the next

section.

5.2 Technical specifications

The application must support reading and writing data on practitioners and cus-

tomers’ appointments. Preferably, the application provides REST-like endpoints

for both types of data. Each appointment must reference exactly one practitioner

to whom the appointment is reserved. All the data the application saves must be

stored in a persisting PostgreSQL database.

The application must encrypt all data before it is sent to the database i.e. en-

cryption at rest. The master key for decrypting the data must be stored in a secure

place, preferably inside the cloud provider’s pre-made solution.

The application must be hosted inside the Google Cloud Platform’s offering. The

products used can be chosen freely while considering the most practical option for

the task, while preferring fully-managed options.

After the technical implementation of the application and the infrastructure are

built, the performance of the application will be benchmarked with both encryption

enabled and disabled. This is likely to expose bottlenecks of the system, which will

then be analyzed further to improve the performance of the application.

5.3 Technology and architecture decisions

The technological and architectural decisions are explained in this section. The

decisions were based on the specification of the POC project and based on solutions

most commonly used in the industry.

The server application will be built with TypeScript running on top of Node.js.
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TypeScript is a well-proven language for writing business critical applications us-

ing Node.js’ large ecosystem of packages. As the basis for the RESTful applica-

tion, we will use Express: a minimal framework for building web applications. The

database for storing our patient data will be PostgreSQL. The interface library for

our database is pg-promise. These technologies were selected because of their use in

the business as well as their match with our specification.

Docker is used during development for ease of spinning up a local PostgreSQL

database for development. The server application will also be built into a custom

Docker image for production.

For hosting the POC project we have decided to use Google Cloud Platform and

its solutions most compatible with our technology requirements. For hosting the

Node.js application, GCP’s Cloud Run will be used. Cloud Run is a fully-managed

service for running containerized applications. For hosting our application’s Docker

images, we will use GCP’s Artifact Registry. Artifact Registry is a cloud-based

solution for managing a Docker registry. For managing our PostgreSQL database,

GCP’s Cloud SQL is the technology of choice. Cloud SQL is a fully-managed ser-

vice for administering relational databases, and it supports PostgreSQL along with

MySQL and SQL Server.

For managing our sensitive environment variables, GCP’s Secret Manager is the

service selected. Secret Manager promises to store sensitive secrets encrypted and

secure. For secure encryption and decryption of data, without customer accessible

keys, we will use GCP’s Cloud Key Management. The encryption strategy will be

discussed in more detail in the coming sections.

For a real world use case, we might also need solutions for managing routing,

domains and virtual private networks. In our POC project, the Cloud Run applica-

tion is connected straight to the internet using the GCP provided dynamic domain.

Another part of a real world application’s infrastructure not included here is a user
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management solution. This is also outside the scope of the POC project. The

infrastructure is visualized in figure 5.1.

Figure 5.1: Visualization of the infrastructure in the Google Cloud

5.4 Cryptography options on Google Cloud

Google Cloud Platform offers multiple solutions for encrypting data. The easiest

solution for implementing encryption with Google Cloud Platform is to let Google

handle it automatically. Google encrypts all of their customer data at rest by de-

fault, with zero configuration required by the developer. This is done to avoid the

possibility of a data breach allowing a malicious actor direct access to the plaintext

data. This encryption uses the same standards for hardened key management ser-

vices that they use internally. This system uses the AES-256 encryption standard.

[8]

Besides GCP’s encryption by default, developers can choose to encrypt their data

with other options. GCP’s Cloud Key Management Service (KMS) is a solution
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for creating, using, rotating and managing cryptographic keys entirely on Google

Cloud. KMS can be used for example to provide customer-managed encryption keys

(CMEK) for GCP’s Cloud Storage or called by an API to encrypt any plaintext

data. Keys stored in KMS are designed to never leave Google servers making them

theoretically impossible to be stolen if a malicious actor gains access to the system.

While KMS can be used to encrypt almost anything, it is built more for being the

central key store in a multi-layer encryption architecture such as for storing the key

encryption keys in an envelope encryption setup. [8]

GCP also provides the option for customer-supplied encryption keys (CMEK) for

many of its products that encrypt data by default, such as Cloud Storage. Google

does not permanently store these type of keys, instead the key must be provided

along with any operation call. A cryptographic hash of the key is stored on Google

server to validate the requests. [8]

The PostgreSQL database system has built-in support for multiple types of en-

cryption. A fully-managed PostgreSQL limits the developer’s options a little, as

they do not have access to encrypt the entire data partition by themselves. How-

ever, encryption for specific columns using PostgreSQL’s built-in pgcrypto-module

is still possible. The data can also be encrypted on the client side before it is sent

to the database system. [15]

Fully cloud-based applications cannot be considered end-to-end encrypted, as the

cloud provider theoretically has access to the unencrypted data while it is processed.

The solution to this would be encrypting the data on the client-side before it is sent

to the cloud provider. This can be done either on-premises or on the user’s client

device.
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5.5 The encryption strategy used

For the POC project, an additional layer of security on top of GCP’s encryption by

default is required to secure the patient data. For this reason, we will encrypt all

sensitive data on the server before it is written to the database. Google Cloud Key

Management System is our choice of technology for managing secrets. However, we

want to minimize the calls to the KMS API for cost reasons1 and to allow for extra

scalability. For these reasons, we will not encrypt the data itself with the KMS API,

but instead employ envelope encryption.

A great option for strong implementation of envelope encryption is to have the

key encryption keys never leave KMS. The data encryption keys will be generated

on the server per-request to encrypt the data itself locally. The DEKs are encrypted

using the KEKs via KMS. This allows for calling KMS only once per fixed-length

DEK instead of once per each variable-length database column to cut down the

amout of KMS API calls.

In a production environment, the above option is preferred. However, in our

small-scale solution, with plans to stress test the encryption setup, the KEK will

be stored encrypted in an environment variable. The KEK will be encrypted via

KMS and decrypted on application startup. This cuts down on calling the KMS

API even more and makes sure we will never be billed more than a dollar for our

use of its API. Realistically, this is also a security vulnerability, as the key has to

be generated in plaintext outside KMS and is stored in plaintext inside the server

application’s memory. For these reasons, this solution is not recommended for any

real private and sensitive data.

The encryption of the data itself can be handled on the server application code or

by the database itself via PostgreSQL’s built-in pgcrypto. For the POC application,

we decided to encrypt the data on the application itself to remove the bottleneck

1Google bills us $0.03 per 10 000 requests to the API.
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created by having to make two queries to the database: one for the DEK and one

for the data itself. The decision was also made to allow for more research into

implementing encryption.

For encrypting the data and wrapping the data encryption key, Node.js stan-

dard library’s crypto-module was chosen. This module includes a lot of useful cryp-

tographical utilities for generating keys, and encrypting and decrypting data with

multiple encryption algorithms. [16] For our POC project we will use the crypto-

module for generating data keys and implementing AES-256 encryption. We will

use Google Cloud Key Management Service to decrypt our key encryption key on

program startup.



6 Technical implementation

This chapter explains the implementation of our TypeScript application and the

Google Cloud infrastructure. To fulfil the specification for our POC project, we

will build a RESTful API with two resources: appointments and practitioners. The

application does not provide all of the CRUD operations (Create, Read, Update and

Delete). Only creating new resources and reading existing ones is supported. The

functionality for updating or deleting resources has not been implemented. This is

done for simplicity, as it is not needed for the scope of the analysis of this thesis.

The program code of a fully implemented application is listed in Appendix A and

infrastructure code in Appendix B.

6.1 Implementing a minimal application

In this section, we will build an application matching the specification, except there

will be no encryption just yet. Implementing the encryption is done in the next

section.

6.1.1 Implementing the TypeScript application

For the POC project, our application only serves four REST endpoints:

• POST /appointments/ – create a new appointment

• GET /appointments/ – read all the appointments
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• POST /practitioners/ – create a new practitioner

• GET /practitioners/ – read all the practitioners

The file tree of the application providing these four endpoints is visualized in Figure

6.1.

Figure 6.1: The file tree of a fully functional application

The role of each file in the application can be understood via a simple request ex-

ample. For example, the following is the processing flow of a POST /practitioners/

request:

1. index.ts – This is where the Express-application is initialized, along with the

middleware. From here, the request is routed to the correct controller.

2. practitionerController.ts – Handles the routing for the endpoints at

/appointments/. First, the validatePractitioner-function is called, to val-

idate the body of the request. Second, the insertPractitioner-function is

called to save the new practitioner.

3. practitionerValidator.ts – Validates the body of the request is an object,

and it includes the required fields.
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4. practitionerService.ts – Executes an SQL query and inserts a new row

into the database table Practitioner.

A request to the POST /appointments/ is handled very similarly, except that there

is a relation between the appointment: the practitioner it is being booked for. So,

in addition to the flow explained above, the application checks that the practitioner

exists.

A request to either of the GET endpoints does no validation for the request, as

there is no body to validate. It only queries all the rows from the database for the

specified resource.

In addition to the files used to handle the request, there are two files not explained

yet: config.ts and db.ts. The former one handles the environment variable con-

figuration in a type safe way: by throwing if the environment variable does not exist.

The latter initializes the database connection.

6.1.2 Implementing the Google Cloud infrastructure

The infrastructure for our POC project is built on the Google Cloud Platform. It

is managed by the Terraform infrastructure-as-code language. The fully functional

infrastructure is visualized in Figure 6.2.

The role of each notable file and module is as follows:

• gcp_init.tf – Declare the required version of Terraform and the providers

needed. Initialize the Google Cloud Platform’s provider with the correct

project, region and zone.

• main.tf – The constants such as database configuration are declared here. All

of the modules are are loaded and used here.

• modules/artifact-registry – Creates a private Docker repository for stor-

ing the Docker images for our server application.
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• modules/cloud-run – Creates and configures a Cloud Run service to run our

containerized server application.

• modules/cloud-sql Creates a database instance with Cloud SQL. Creates a

database and runs the init.sql script to initialize the tables. Adds a database

user to the database.

Figure 6.2: The file tree of a fully functional infrastructure

Obviously, the implemented POC has numerous limitations. This is the mini-

mum amount of infrastructure needed to run the application without any encryption

for the data. The secrets are also not handled with a proper solution, as they are

plaintext in the infrastructure code. The routing is not handled to a custom domain

either. However, the application is now accessible to anyone on the internet and

this counts as a minimum viable product (MVP) for the POC project specification,

albeit without any security measures yet.
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6.2 Implementing encryption for the application

In this section, the application and infrastructure built in the section before are

improved by adding proper security measures. We will add envelope encryption

to the application and the infrastructure required by it. The secret environment

variables are also moved into GCP’s Secret Manager for added security.

6.2.1 Implementing envelope encryption in the TypeScript

application

Our encryption-specific code is placed inside encryption.ts file. First, the appli-

cation decrypts the key encryption key. This is done via Google’s own

@google-cloud/kms npm-package. An example implementation is shown in Listing

3.

Listing 3 An example implementation for decrypting the key encryption key with

Cloud Key Management.
1 const kms = new KeyManagementServiceClient();
2 const ciphertextBuffer = Buffer.from(KEY_ENCRYPTION_KEY, "base64");
3 const keyName =
4 kms.cryptoKeyPath("dippapoc", "global", KMS_KEYRING, KMS_KEY);
5 const [decryptResponse] = await kms.decrypt({
6 name: keyName,
7 ciphertext: ciphertextBuffer,
8 });
9 const { plaintext } = decryptResponse;

10 const keyEncryptionKey = Buffer.from(plaintext);

Inside the encrypt.ts file, we also declare functions for generating, encrypt-

ing and decrypting pseudorandom data encryption keys, as well as functions for

encrypting and decrypting data with any key provided. The DEKs are gener-

ated using Node.js’ built-in crypto-module’s pseudorandom data generation via the

randomBytes-function. An example implementation for generating a key is shown
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in Listing 4.

Listing 4 An example implementation for generating a pseudorandom data encryp-

tion key.
1 const generateDataKey = (): Buffer => {
2 return crypto.randomBytes(32);
3 };
4 export { generateDataKey };

For encrypting and decrypting data we will declare functions in the same file. En-

cryption is done with the strong AES-256-CBC algorithm supported by the crypto-

module. Encrypting data is done using crypto-module’s createCipheriv-function.

Decrypting data is done similary via the createDecipheriv-function. An example

implementation for implementing encryption and decryption is shown in Listing 5.

Listing 5 An example implementation for AES-256-CBC encryption and

decryption.

1 // previous code omitted.
2 const algorithm = "aes-256-cbc";
3 const initVector = Buffer.from(CRYPTO_INIT_VECTOR, "hex");
4 const encrypt = (key: Buffer, plaintext: string) => {
5 const cipher = crypto.createCipheriv(algorithm, key, initVector);
6 let ciphertext = cipher.update(plaintext, "utf-8", "base64");
7 ciphertext += cipher.final("base64");
8 return ciphertext;
9 };

10 const decrypt = (key: Buffer, ciphertext: string) => {
11 const decipher =
12 crypto.createDecipheriv(algorithm, key, initVector);
13 let plaintext = decipher.update(ciphertext, "base64", "utf-8");
14 plaintext += decipher.final("utf-8");
15 return plaintext;
16 };
17 export { /* ... */ encrypt, decrypt };

The encrypt and decrypt functions created above can be used as-is for encrypt-

ing and decrypting the DEKs. We just need to pass the KEK as the parameter for

key. An example is shown in Listing 6.
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Listing 6 An example implementation for encrypting and decrypting data

encryption keys.

1 // previous code omitted.
2 const encryptDataKey = (dataKey: Buffer): string => {
3 const dataKeyString = dataKey.toString("hex");
4 return encrypt(keyEncryptionKey, dataKeyString);
5 };
6 const decryptDataKey = (dataKey: string): Buffer => {
7 const dataKeyString = decrypt(keyEncryptionKey, dataKey);
8 return Buffer.from(dataKeyString, "hex");
9 };

10 export { /* ... */ encryptDataKey, decryptDataKey };

Using the functions declared in the encryption.ts-file, it is possible to encrypt

and decrypt any of our data objects and data encryption keys. As an example for

how the functions are used, Listing 7 implements encryption and decryption for a

practitioner-object. The encryption is done very similarly for an appointment.

Listing 7 An example implementation for encrypting and decrypting a

practitioner-object.

1 const encryptPractitioner = (
2 practitioner: Practitioner
3 ): EncryptedPractitioner => {
4 const key = generateDataKey();
5 // Encrypt personal data with the data key
6 const firstnames = encrypt(key, practitioner.firstnames);
7 const lastname = encrypt(key, practitioner.lastname);
8 const education = encrypt(key, practitioner.education);
9 // Wrap the data key with the key encryption key

10 const data_key = encryptDataKey(key);
11 return { firstnames, lastname, education, data_key };
12 };
13

14 const decryptPractitioner = (
15 practitioner: EncryptedPractitioner
16 ): Practitioner => {
17 const { data_key, id } = practitioner;
18 // Decrypt the data key with the key encryption key
19 const key = decryptDataKey(data_key);
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20 // Use the data key to decrypt rest of the fields
21 const firstnames = decrypt(key, practitioner.firstnames);
22 const lastname = decrypt(key, practitioner.lastname);
23 const education = decrypt(key, practitioner.education);
24 return { firstnames, lastname, education, id };
25 };

6.2.2 Implementing infrastructure for envelope encryption

The application we now have requires new infrastructure to support envelope encryp-

tion: Google Cloud Key Management. On top of adding a KMS key, we will move

our secret environment variables such as database configuration and cryptographic

secrets into GCP’s Secret Manager.

To add Cloud Key Management to the POC application, we need three new

resources managed by Terraform:

• A KMS keyring to store cryptographic keys

• A KMS key to be used for cryptographic operations

• A KMS IAM member to update the IAM policy to allow Cloud Run to access

it

An example implementation is shown in Listing 8.

Listing 8 An example implementation for adding Cloud Key Management

infrastructure.

1 resource "google_kms_key_ring" "keyring" {
2 name = "dippapoc-keyring"
3 location = "global"
4 }
5 resource "google_kms_crypto_key" "key" {
6 name = "dippapoc-key"
7 key_ring = google_kms_key_ring.keyring.id
8 rotation_period = "2592000s" # 30 days
9 }

10
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11 data "google_project" "project" {}
12 resource "google_kms_crypto_key_iam_member" "kms_compute" {
13 crypto_key_id = google_kms_crypto_key.key.id
14 role = "roles/cloudkms.cryptoKeyDecrypter"
15 member = <<EOF
16 serviceAccount:${
17 data.google_project.project.number
18 }-compute@developer.gserviceaccount.com
19 EOF
20 }

Adding the infrastructure for Secret Manager and the secrets themselves is han-

dled by Terraform. For a single secret that is accessible by Cloud Run, we need

three new resources:

• A Secret Manager Secret for a logical place to store a single secret

• A Secret Manager Secret version which holds the value of the secret itself

• A Secret Manager Secret IAM policy to allow Cloud Run to access the secret

For ease of use, these resources are bundled into a reusable module, which is called

./modules/secret in the example. Referencing the Secret Manager secrets as Cloud

Run environment variables is not very different from referencing the values them-

selves. To reference a Secret Manager secret with Terraform in a Cloud Run service

config, a value_from block is used. An example of this is shown in Listing 9.

Listing 9 An example implementation for referencing a Secret Manager secret in a

Cloud Run service.

1 resource "google_cloud_run_service" "run_service" {
2 name = var.name
3 location = "europe-north1"
4

5 template {
6 spec {
7 containers {
8 image = var.docker_image
9
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10 env {
11 name = "PGUSER"
12 value = var.pguser # the value itself
13 }
14 env {
15 name = "PGPASSWORD"
16 value_from {
17 secret_key_ref {
18 name = var.secret_id_pgpassword # id of a secret
19 key = "latest"
20 }
21 }
22 }
23 }
24 }
25 }
26 }



7 The effect of encryption

This chapter includes analysis on how adding encryption to a backend-application

affects its complexity and performance. The analysis is based on the POC project

built for the thesis.

7.1 The effect on complexity

Adding extra features to any application obviously increases the complexity. This

complexity adds to the cost of maintaining the application, as the codebase gets

larger and therefore harder to reason about. There are options for dealing with the

complexity, such as building abstractions that make reasoning with the program

code on a higher level easier. [22]

7.1.1 The effect on the complexity of the program code

Adding envelope encryption to the program code and encrypting the database

columns increases the complexity of the application. Node.js’ crypto-module han-

dles most of the encryption work, but interfacing with the Cloud Key Management

is done using Google’s pre-made Npm-library which adds a dependency to manage.

A bit of additional configuration is required for accessing the GCP project as well

as storing cryptographic secrets.

In the implemented POC project, the main encryption logic is abstracted into

the encryption.ts-file, into only 6 functions. This is quite a small amount of code
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to implement the encryption, which makes it easier to understand and maintain.

However, it still adds to the overall complexity of the application.

The design of the POC calls the encrypt and decrypt functions right at the

service-level before or after accessing the database respectively. The functions are

called only on the sensitive fields, and not on database identifiers for example. An

example of this is shown in Listing 7. This logic is not very complex, as the encryp-

tion itself is not implemented here, but it still requires adding quite a large amount

of code. The POC has no generic solution for encrypting any object, so an encrypt

and decrypt function have to be created for each data type separately.

7.1.2 The effect on the complexity of the infrastructure

The addition of envelope encryption and storing the secrets required also increases

the requirements of the infrastructure. The two new Google Cloud services added

are Cloud Key Management and Secret Manager. Both of these also require IAM-

configuration to allow our application to access them.

Cloud Key Management is a fully managed service, and not much configuration is

required from the developer. However, being an external API, it adds a possibility

for an I/O bottleneck in our application. This is why the POC application uses

envelope encryption, only wrapping the key encryption key with the KMS. Google

Cloud’s documentation also suggests doing this. [8] The request-based pricing of

KMS is also something that might affect very large applications. Rotating the KMS

keys is also something not implemented in the POC, which should be taken care of

in a real world application.

Service Manager is another fully managed service which requires just as little

configuration. Only the secret, its data and IAM-configuration for the application

are required. Referencing the secrets in Cloud Run’s configuration is not a lot of

added code either. From the application’s point of view, it does not change anything



7.2 THE EFFECT ON PERFORMANCE 46

where the environment variables are stored: the application accesses them the same

way in either case.

7.2 The effect on performance

In this section, the fully built application’s performance is tested. The performance

of the application is tested with both encryption enabled and disabled. The goal is

to measure the overhead caused by the encryption.

7.2.1 Load testing

Load testing refers to the practice of measuring a web application’s quality of service

performance. The quality of service consists of two measures:

• Availability – the percentage of times a customer is able to access the appli-

cation

• Response time – the time it takes for the customer’s action to be fulfilled.

Load testing from a single geographical location and during a single time window

will not give you the complete picture. End-to-end response time is dependent on a

variety of things such as the user’s location and the type of their network connection.

[23]

Load testing can be used to predict a web application’s performance at specific

loads. The load testing data can be further analysed to calculate the throughput of

an application. The throughput is a function of the number of concurrent requests

and the stress on the system resources, most easily measured in request time. [23]
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7.2.2 The testing strategy

To load test the POC application, we will first limit the scaling on the Cloud Run

service to a maximum of one container. This is done to observe changes in the

stress level without needing equally as scalable tooling for running the load tests.

2000 simultaneous requests is enough to observe a difference in the performance of

the application. Under default settings, Cloud Run would activate more than 50

containers to support the load.

The testing will be conducted with Apache’s JMeter: an application designed

to load test and measure performance of many different applications/protocols.1

JMeter is configured to run 2000 simultaneous requests to the server and mea-

sure the response times. The application is first built and deployed with encryp-

tion disabled, and then with encryption enabled. Before each test, the database

is cleared. The test plan is to first call the POST /practitioners/ endpoint 2000

times, adding the number of practitioners in to the database. Second, we will call

the GET /practitioners/ endpoint 2000 times, fetching all of the practitioners

each time. Hypothesis for the results is that the added computation required by

the encryption will cause an increase in response time and therefore a decrease in

throughput.

7.2.3 The results of the load testing

The load test on the POST /practitioners/ endpoint show a clear difference in

both response time and throughput. When encryption is enabled, the server takes

almost a second longer to respond to begin with, and only slows from there. While

unencrypted, the response time does climb as the load increases, but the throughput

still manages to go quite high before plateauing. Both tests succeeded in all of the

requests, so 100% availability was achieved. The visualization of the tests results is

1Homepage of Apache JMeter: https://jmeter.apache.org/
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shown in Figure 7.1.

Figure 7.1: POST /practitioners/ load test results.

The load tests on the GET /practitioners/ endpoint show quite a different

result. At first, both encrypted and unencrypted take approximately the same time

to respond to the request. Both of the response times start climbing as the load

increases, the encrypted response time spiking very sharply. However, both of the

response times plateau after enough load. The encrypted application’s response time

plateauing around a hundred requests, and the unencrypted application’s at around

500 requests. This causes the throughput to start climbing instead. The visualiztion

of the tests results is shown in Figure 7.2.

The reason for the odd results for the GET /practitioners/ endpoint is the

success rate of the requests: the server starts refusing requests after enough load

and responding with HTTP 429 Too Many Requests instead. This means our ap-

plication was not able to serve the load of 2000 simultaneous requests with 100%
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Figure 7.2: GET /practitioners/ load test results.

availability. The number of errors increasing as load increases is visualized in Figure

7.3.

The difference in the two endpoints’ load tests is most likely caused by the

large difference in the work required by each endpoint. Namely, the amount of

data passing through the application. In the case of the POST /practitioners/

endpoint, a single practitioner-object is sent to the server and stored in the database.

As for the GET /practitioners/ endpoint, all of the practitioner-objects in the

database have to be queried from the database and converted into JSON.

7.3 Analysis

The addition of encryption and its requirements on the infrastructure adds to the

complexity of the application. This added complexity will increase the cost of build-



7.3 ANALYSIS 50

Figure 7.3: GET /practitioners/ response time and errors.

ing and maintaining a similar application. However, that complexity is largely dealt

with by existing solutions available, such as the Cloud Key Management and Node.js’

crypto-module used here. No low-level knowledge of implementing cryptography is

required by the developer, only enough to use the existing solutions securely. Due to

the laws in effect in Finland requiring proper security measures from all applications

dealing with sensitive data, the added cost of this extra complexity should be taken

into account when budgeting for such a project.

The hypothesis of encryption affecting performance negatively holds true. How-

ever, the difference is not as large as expected. Modern hardware is excellent at

running encryption, and our application is most likely limited more by its I/O,

rather than the extra computation required by the encryption.

The GET /practitioners/ endpoint failing after some requests is not because

of the encryption, as the unencrypted test was also affected by this. The endpoint’s

functionality of loading an entire database table’s data and sending it to the client
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is not a common real world use case. Calling such an endpoint thousands of times

simultaneously is certainly not a realistic scenario.

The POC project implemented leaves room for improvement in all of the fields

tested. Options for improving the design and implementation are discussed in the

next chapter.



8 Conclusion

The laws regarding storing individuals’ private data in effect in Finland require

additional technical knowledge and work from developers dealing with such data.

Healthcare organizations are forced to comply with the requirements and possibly

implement additional security measures to their digital services. The GDPR also

adds extra measures to using a third party hosting provider. Users of any public

cloud provider have to take extra caution no third party can gain access to the

sensitive data. The individual must also be fully informed on where and how their

data is stored and processed.

The GDPR and the Finnish law do not go into specifics regarding the technical

implementation. However, encryption and pseudonymization of data is encouraged

to keep the data safe from a malicious actor. These requirements have to be con-

sidered when implementing a digital service that stores any private data.

8.1 The results of the research

The proof-of-concept project built to mimic a real world healthcare service shows

clear results on how encryption affects a cloud-based application’s implementation

and performance. Implementing encryption requires additional knowledge on cryp-

tography from the development team. However, the developer of a web application

should almost never create and deploy their own cryptographic algorithm.[24] Li-

braries and tools exist for implementing encryption which should be preferred over
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custom cryptography implementations. Nevertheless, implementing encryption will

increase the complexity of the application.

In the case of the POC project created for this thesis, a lot of the complexity

is handled by existing solutions such as Google Cloud Platform’s Cloud Key Man-

agement and Node.js’ built-in crypto-library. However, implementing encryption

increased the codebase size of both the application and the infrastructure by quite

a bit. This increased complexity makes the codebase harder to understand and

therefore increases the cost to maintain it.

The added computation required by the encryption also affected the performance

of the application. Load testing shows a clear increase in response times when

encryption is enabled. Similarly, the throughput of the application decreased with

encryption. However, this difference between the two tests is not as large as it might

be assumed. The application is most likely more limited by its I/O. The performance

hit might still affect the costs of hosting the application in a public cloud.

8.2 Options for improvement

The POC project was built to mimic a real world healthcare service’s use case and

implementation. However, it is not feature-complete enough to be deployed in to

the real world. All the tested aspects of the application have room for improvement.

The security of the application could be further improved in a few different ways.

The data is only being kept safe from a third party gaining access to the database, as

Google still has access to all the keys required to decrypt it. This could be improved

by storing any of the keys required to decrypt the data outside of the Google Cloud.

In the POC project, the key encryption key is stored inside program memory

during runtime. This responsibility could be moved to the Cloud Key Management

by using its API to encrypt and decrypt the data encryption keys. This would

make it harder for a malicious actor to gain access to both, the KEK and the DEK.
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In a real world use case, the KEK would also have to be rotated regularly, which

was not considered in the POC implementation. The secrets could also be handled

separately from the Terraform configuration, making sure they are not committed

to version control in either Terraform’s configuration or state files.

The added complexity of implementing encryption could also be handled better.

The application could use another layer of abstraction handling the encryption. This

abstraction could be implemented between the business logic and the database layer,

making reasoning about the application logic on a high level easier without having to

consider the underlying encryption. The infrastructure configuration could separate

encryption-specific configuration to its own modules.

The performance of the application can also be improved. The application was

found to handle 2000 simultaneous requests quite well while running in a single pro-

cess. The server application is stateless, which means it can natively scale into mul-

tiple processes in a fully managed service such as GCP’s Cloud Run. The database’s

performance has space for performance improvement as well – perhaps by adding a

fast in-memory cache.

The GET /practitioners/ endpoint failing could be improved with a better

design. In a real world scenario, loading all the rows from an entire database table

is not a good idea. Instead, the client and the server should be designed to use

pagination. This reduces the bottleneck in loading data, as the data is not loaded

all at once.
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Appendix A Application code

Listing 10 package.json

1 {
2 "name": "app",
3 "version": "1.0.0",
4 "description": "A proof-of-concept application for implementing

envelope encryption.",↪→

5 "main": "src/index.ts",
6 "scripts": {
7 "build": "npx tsc",
8 "start": "node build/src/index.js",
9 "dev": "nodemon -q src/index.ts",

10 "prettier": "prettier --write **/*.ts"
11 },
12 "keywords": [],
13 "author": "",
14 "license": "ISC",
15 "dependencies": {
16 "@google-cloud/kms": "^3.0.1",
17 "body-parser": "^1.20.0",
18 "dotenv": "^16.0.1",
19 "express": "^4.18.1",
20 "pg-promise": "^10.11.1",
21 "ts-node": "^10.9.1"
22 },
23 "devDependencies": {
24 "@types/express": "^4.17.13",
25 "@types/node": "^18.0.6",
26 "async-mutex": "^0.4.0",
27 "nodemon": "^2.0.19",
28 "prettier": "^2.7.1",
29 "typescript": "^4.7.4"
30 }
31 }
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Listing 11 tsconfig.json

1 {
2 "compilerOptions": {
3 "target": "es2016",
4 "module": "commonjs",
5 "baseUrl": "./src",
6 "outDir": "./build",
7 "esModuleInterop": true,
8 "forceConsistentCasingInFileNames": true,
9 "strict": true,

10 "noImplicitAny": true,
11 "skipLibCheck": true
12 },
13 "files": ["src/index.ts"]
14 }

Listing 12 docker-compose.yml

1 version: "3"
2

3 services:
4 postgres:
5 image: "postgres:10"
6 ports:
7 - "5432:5432"
8 environment:
9 - POSTGRES_DB=${PGDATABASE}

10 - POSTGRES_USER=${PGUSER}
11 - POSTGRES_PASSWORD=${PGPASSWORD}
12 volumes:
13 - ./sql/:/docker-entrypoint-initdb.d/

Listing 13 Dockerfile

1 FROM node:18 as builder
2

3 # Create app directory
4 WORKDIR /usr/src/app
5

6 # Install app dependencies
7 COPY package*.json ./
8 RUN npm ci
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9

10 # Build the app
11 COPY . .
12 RUN npm run build
13

14 FROM node:18-slim
15

16 # Create app directory
17 WORKDIR /usr/src/app
18

19 # Install app dependencies
20 COPY package*.json ./
21 RUN npm ci --production
22

23 COPY --from=builder /usr/src/app/build ./build
24

25 CMD [ "node", "build/index.js" ]

Listing 14 build.sh

1 #!/bin/bash
2

3 die () {
4 echo >&2 "$@"
5 exit 1
6 }
7

8 [ "$#" -eq 1 ] || die "A tag is required as a parameter."
9

10 # Build, tag and push to Artifact Registry.
11 docker build -t dippapoc . --platform linux/amd64
12 docker tag dippapoc

"europe-north1-docker.pkg.dev/dippapoc/dippapoc-docker-registry/app:$1"↪→

13 docker push
"europe-north1-docker.pkg.dev/dippapoc/dippapoc-docker-registry/app:$1"↪→

Listing 15 sql/init.sql

1 CREATE TABLE IF NOT EXISTS "Practitioner" (
2 id SERIAL PRIMARY KEY,
3 firstnames TEXT NOT NULL,
4 lastname TEXT NOT NULL,
5 education TEXT NOT NULL,
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6 data_key TEXT NOT NULL
7 );
8

9 CREATE TABLE IF NOT EXISTS "PatientAppointment" (
10 id SERIAL PRIMARY KEY,
11 firstnames TEXT NOT NULL,
12 lastname TEXT NOT NULL,
13 ssn TEXT NOT NULL,
14 location TEXT NOT NULL,
15 time TIMESTAMP NOT NULL,
16 practitioner_id SERIAL NOT NULL,
17 data_key TEXT NOT NULL,
18 CONSTRAINT fk_practitioner_id FOREIGN KEY(practitioner_id)

REFERENCES "Practitioner"(id)↪→

19 );

Listing 16 src/index.ts

1 import express, { Request, Response } from "express";
2 import bodyParser from "body-parser";
3

4 import practitioners from "./practitioner/practitionerController";
5 import appointments from "./appointment/appointmentController";
6

7 const app = express();
8 const port = process.env.PORT;
9

10 app.use(bodyParser.json());
11

12 app.get("/", (req: Request, res: Response) => {
13 res.send("Hei maailma!");
14 });
15

16 app.use("/practitioners", practitioners);
17

18 app.use("/appointments", appointments);
19

20 app.listen(port, () => {
21 console.log(`Server is running at http://localhost:${port}`);
22 });

Listing 17 src/config.ts
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1 import dotenv from "dotenv";
2

3 dotenv.config();
4

5 const required = (key: string) => {
6 const env = process.env[key];
7 if (!env) {
8 throw Error(`Environment variable required: ${key}`);
9 }

10 return env;
11 };
12

13 const PGHOST = required("PGHOST");
14 const PGPORT = required("PGPORT");
15 const PGDATABASE = required("PGDATABASE");
16 const PGUSER = required("PGUSER");
17 const PGPASSWORD = required("PGPASSWORD");
18 const KMS_KEYRING = required("KMS_KEYRING");
19 const KMS_KEY = required("KMS_KEY");
20 const KEY_ENCRYPTION_KEY = required("KEY_ENCRYPTION_KEY");
21 const CRYPTO_INIT_VECTOR = required("CRYPTO_INIT_VECTOR");
22

23 export {
24 PGHOST,
25 PGPORT,
26 PGDATABASE,
27 PGUSER,
28 PGPASSWORD,
29 KMS_KEYRING,
30 KMS_KEY,
31 KEY_ENCRYPTION_KEY,
32 CRYPTO_INIT_VECTOR,
33 };

Listing 18 src/db.ts

1 import pgPromise from "pg-promise";
2

3 import { PGHOST, PGPORT, PGDATABASE, PGUSER, PGPASSWORD } from
"./config";↪→

4

5 const configuration = {
6 host: PGHOST,
7 port: Number(PGPORT),
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8 database: PGDATABASE,
9 user: PGUSER,

10 password: PGPASSWORD,
11 poolSize: 20,
12 };
13

14 const pgp = pgPromise();
15 const db = pgp(configuration);
16

17 export default db;

Listing 19 src/encryption.ts

1 import crypto from "crypto";
2 import { KeyManagementServiceClient } from "@google-cloud/kms";
3 import {
4 KMS_KEYRING,
5 KMS_KEY,
6 KEY_ENCRYPTION_KEY,
7 CRYPTO_INIT_VECTOR,
8 } from "./config";
9

10 const kms = new KeyManagementServiceClient();
11

12 let keyEncryptionKey: Buffer;
13 const algorithm = "aes-256-cbc";
14 const initVector = Buffer.from(CRYPTO_INIT_VECTOR, "hex");
15

16 const decryptKeyEncryptionKey = async () => {
17 const ciphertextBuffer = Buffer.from(KEY_ENCRYPTION_KEY, "base64");
18

19 const keyName = kms.cryptoKeyPath("dippapoc", "global",
KMS_KEYRING, KMS_KEY);↪→

20

21 const [decryptResponse] = await kms.decrypt({
22 name: keyName,
23 ciphertext: ciphertextBuffer,
24 });
25

26 const { plaintext } = decryptResponse;
27

28 if (!plaintext) {
29 throw new Error("Failed to decrypt.");
30 }
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31

32 keyEncryptionKey = Buffer.from(plaintext);
33 };
34 decryptKeyEncryptionKey();
35

36 const generateDataKey = (): Buffer => {
37 return crypto.randomBytes(32);
38 };
39

40 const encrypt = (key: Buffer, plaintext: string) => {
41 const cipher = crypto.createCipheriv(algorithm, key, initVector);
42

43 let ciphertext = cipher.update(plaintext, "utf-8", "base64");
44 ciphertext += cipher.final("base64");
45

46 return ciphertext;
47 };
48

49 const decrypt = (key: Buffer, ciphertext: string) => {
50 const decipher = crypto.createDecipheriv(algorithm, key,

initVector);↪→

51

52 let plaintext = decipher.update(ciphertext, "base64", "utf-8");
53 plaintext += decipher.final("utf-8");
54

55 return plaintext;
56 };
57

58 const encryptDataKey = (dataKey: Buffer): string => {
59 const dataKeyString = dataKey.toString("hex");
60 return encrypt(keyEncryptionKey, dataKeyString);
61 };
62

63 const decryptDataKey = (dataKey: string): Buffer => {
64 const dataKeyString = decrypt(keyEncryptionKey, dataKey);
65 return Buffer.from(dataKeyString, "hex");
66 };
67

68 export { generateDataKey, encrypt, decrypt, encryptDataKey,
decryptDataKey };↪→

Listing 20 src/practitioner/practitionerController.ts

1 import { Router } from "express";
2
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3 import { getPractitioners, insertPractitioner } from
"./practitionerService";↪→

4 import { Practitioner } from "./practitionerTypes";
5 import { validatePractitioner } from "./practitionerValidator";
6

7 const router = Router();
8

9 router.get("/", async (req, res) => {
10 try {
11 const practitioners = await getPractitioners();
12 res.status(200).send(practitioners);
13 } catch (err) {
14 console.error("Error finding practitioners", err);
15 res.status(500).send();
16 }
17 });
18

19 router.post("/", async (req, res) => {
20 const practitioner: Practitioner = req.body;
21

22 if (!validatePractitioner(practitioner)) {
23 return res.status(400).send("Invalid request body");
24 }
25

26 try {
27 await insertPractitioner(practitioner);
28 console.log("Successfully inserted practitioner.");
29 res.status(200).send();
30 } catch (err) {
31 console.error("Error inserting practitioner:", err);
32 res.status(500).send();
33 }
34 });
35

36 export default router;

Listing 21 src/practitioner/practitionerTypes.ts

1 export interface Practitioner {
2 firstnames: string;
3 lastname: string;
4 education: string;
5 id?: PractitionerId;
6 }
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7

8 export interface EncryptedPractitioner extends Practitioner {
9 data_key: string;

10 }
11

12 export type PractitionerId = number;

Listing 22 src/practitioner/practitionerValidator.ts

1 import { Practitioner } from "./practitionerTypes";
2

3 const validatePractitioner = (body: Practitioner): body is
Practitioner => {↪→

4 if (typeof body !== "object") {
5 return false;
6 }
7

8 const { id, firstnames, lastname, education } = body;
9

10 if (id && typeof id !== "number") {
11 return false;
12 }
13

14 return (
15 typeof firstnames === "string" &&
16 typeof lastname === "string" &&
17 typeof education === "string"
18 );
19 };
20

21 export { validatePractitioner };

Listing 23 src/practitioner/practitionerService.ts

1 import db from "../db";
2 import {
3 decrypt,
4 decryptDataKey,
5 encrypt,
6 encryptDataKey,
7 generateDataKey,
8 } from "../encryption";
9 import { EncryptedPractitioner, Practitioner } from

"./practitionerTypes";↪→
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10

11 const insertPractitioner = async (practitioner: Practitioner) => {
12 const encryptedPractitioner = await

encryptPractitioner(practitioner);↪→

13

14 return db.none(
15 `INSERT INTO "Practitioner"(firstnames, lastname, education,

data_key)↪→

16 VALUES($(firstnames), $(lastname), $(education),
$(data_key));`,↪→

17 encryptedPractitioner
18 );
19 };
20

21 const getPractitioners = async (): Promise<Practitioner[]> => {
22 const practitioners = await db.manyOrNone<EncryptedPractitioner>(
23 'SELECT * FROM "Practitioner"'
24 );
25

26 return practitioners.map(decryptPractitioner);
27 };
28

29 const getPractitioner = async (id: number): Promise<Practitioner |
null> => {↪→

30 const practitioner = await db.oneOrNone<EncryptedPractitioner>(
31 'SELECT * FROM "Practitioner" WHERE id=$1;',
32 id
33 );
34

35 if (!practitioner) {
36 return null;
37 }
38

39 return decryptPractitioner(practitioner);
40 };
41

42 const encryptPractitioner = (
43 practitioner: Practitioner
44 ): EncryptedPractitioner => {
45 const key = generateDataKey();
46

47 // Encrypt personal data with the data key
48 const firstnames = encrypt(key, practitioner.firstnames);
49 const lastname = encrypt(key, practitioner.lastname);
50 const education = encrypt(key, practitioner.education);
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51

52 // Wrap the data key with the key encryption key
53 const data_key = encryptDataKey(key);
54

55 return { firstnames, lastname, education, data_key };
56 };
57

58 const decryptPractitioner = (
59 practitioner: EncryptedPractitioner
60 ): Practitioner => {
61 const { data_key, id } = practitioner;
62

63 if (!data_key) {
64 throw new Error("Decrypt: dataKey is missing in Practitioner");
65 }
66

67 // Decrypt the data key with the key encryption key
68 const key = decryptDataKey(data_key);
69

70 // Use the data key to decrypt rest of the fields
71 const firstnames = decrypt(key, practitioner.firstnames);
72 const lastname = decrypt(key, practitioner.lastname);
73 const education = decrypt(key, practitioner.education);
74

75 return { firstnames, lastname, education, id };
76 };
77

78 export { insertPractitioner, getPractitioners, getPractitioner };

Listing 24 src/appointment/appointmentController.ts

1 import { Router } from "express";
2

3 import { getPractitioner } from
"../practitioner/practitionerService";↪→

4 import { getAppointments, insertNewAppointment } from
"./appointmentService";↪→

5 import { Appointment } from "./appointmentTypes";
6 import { validateAppointment } from "./appointmentValidator";
7

8 const router = Router();
9

10 router.get("/", async (req, res) => {
11 try {
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12 const appointments = await getAppointments();
13 res.status(200).send(appointments);
14 } catch (err) {
15 console.error("Error getting appointments", err);
16 res.status(500).send();
17 }
18 });
19

20 router.post("/", async (req, res) => {
21 const appointment: Appointment = req.body;
22

23 if (!validateAppointment(appointment)) {
24 return res.status(400).send("Invalid request body");
25 }
26

27 // Check the practitioner exists.
28 const practitioner = await

getPractitioner(appointment.practitioner_id);↪→

29 if (practitioner === null) {
30 return res.status(400).send("Practitioner does not exist.");
31 }
32

33 try {
34 await insertNewAppointment(appointment);
35 console.log("Successfully inserted new appointment.");
36 res.status(200).send();
37 } catch (err) {
38 console.error("Error inserting appointment:", err);
39 res.status(500).send();
40 }
41 });
42

43 export default router;

Listing 25 src/appointment/appointmentTypes.ts

1 import { PractitionerId } from "../practitioner/practitionerTypes";
2

3 export interface Appointment {
4 firstnames: string;
5 lastname: string;
6 ssn: string;
7 location: string;
8 time: string;
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9 practitioner_id: PractitionerId;
10 id?: number;
11 }
12

13 export interface EncryptedAppointment extends Appointment {
14 data_key: string;
15 }

Listing 26 src/appointment/appointmentValidator.ts

1 import { Appointment } from "./appointmentTypes";
2

3 const validateAppointment = (body: Appointment): body is Appointment
=> {↪→

4 if (typeof body !== "object") {
5 return false;
6 }
7

8 const { id, firstnames, lastname, ssn, location, time,
practitioner_id } =↪→

9 body;
10

11 if (id && typeof id !== "number") {
12 return false;
13 }
14

15 return (
16 typeof firstnames === "string" &&
17 typeof lastname === "string" &&
18 typeof ssn === "string" &&
19 typeof location === "string" &&
20 typeof time === "string" &&
21 typeof practitioner_id === "number"
22 );
23 };
24

25 export { validateAppointment };

Listing 27 src/appointment/appointmentService.ts

1 import db from "../db";
2 import {
3 decrypt,
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4 decryptDataKey,
5 encrypt,
6 encryptDataKey,
7 generateDataKey,
8 } from "../encryption";
9 import { Appointment, EncryptedAppointment } from

"./appointmentTypes";↪→

10

11 const insertNewAppointment = (appointment: Appointment):
Promise<null> => {↪→

12 const encryptedAppointment = encryptAppointment(appointment);
13

14 return db.none(
15 `INSERT INTO "PatientAppointment"(firstnames, lastname, ssn,

location, time, practitioner_id, data_key)↪→

16 VALUES($(firstnames), $(lastname), $(ssn), $(location),
$(time), $(practitioner_id), $(data_key));`,↪→

17 encryptedAppointment
18 );
19 };
20

21 const getAppointments = async (): Promise<Appointment[]> => {
22 const appointments = await db.manyOrNone<EncryptedAppointment>(
23 'SELECT * FROM "PatientAppointment";'
24 );
25

26 return appointments.map(decryptAppointment);
27 };
28

29 const encryptAppointment = (appointment: Appointment):
EncryptedAppointment => {↪→

30 const key = generateDataKey();
31

32 // Encrypt personal data with the data key
33 const firstnames = encrypt(key, appointment.firstnames);
34 const lastname = encrypt(key, appointment.lastname);
35 const ssn = encrypt(key, appointment.ssn);
36 const location = encrypt(key, appointment.location);
37

38 // Wrap the data key with the key encryption key
39 const data_key = encryptDataKey(key);
40

41 return {
42 ...appointment,
43 firstnames,
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44 lastname,
45 ssn,
46 location,
47 data_key,
48 };
49 };
50

51 const decryptAppointment = (appointment: EncryptedAppointment):
Appointment => {↪→

52 const { id, time, practitioner_id, data_key } = appointment;
53

54 if (!data_key) {
55 throw new Error("Decrypt: dataKey is missing in Appointment");
56 }
57

58 // Decrypt the data key with the key encryption key
59 const key = decryptDataKey(data_key);
60

61 // Decrypt encrypted fields with the data key
62 const firstnames = decrypt(key, appointment.firstnames);
63 const lastname = decrypt(key, appointment.lastname);
64 const ssn = decrypt(key, appointment.ssn);
65 const location = decrypt(key, appointment.location);
66

67 return {
68 id,
69 time,
70 practitioner_id,
71 firstnames,
72 lastname,
73 ssn,
74 location,
75 };
76 };
77

78 export { insertNewAppointment, getAppointments };
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Listing 28 gcp_init.tf

1 terraform {
2 required_version = ">= 1.3.3"
3

4 required_providers {
5 google = {
6 source = "hashicorp/google"
7 version = "4.41.0"
8 }
9 }

10 }
11

12 provider "google" {
13 credentials = file("gcp-key.json")
14

15 project = "dippapoc"
16 region = "europe-north1"
17 zone = "europe-north1-c"
18 }
19

20 # Enable the APIs we need.
21

22 resource "google_project_service" "kms_api" {
23 service = "cloudkms.googleapis.com"
24 disable_on_destroy = true
25 }
26

27 resource "google_project_service" "cloud_sql_api" {
28 service = "sqladmin.googleapis.com"
29 disable_on_destroy = true
30 }
31

32 resource "google_project_service" "run_api" {
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33 service = "run.googleapis.com"
34 disable_on_destroy = true
35 }
36

37 resource "google_project_service" "artifact_registry_api" {
38 service = "artifactregistry.googleapis.com"
39 disable_on_destroy = true
40 }
41

42 resource "google_project_service" "secretmanager_api" {
43 service = "secretmanager.googleapis.com"
44 disable_on_destroy = false
45 }

Listing 29 main.tf

1 # Warning: don't store secrets like I do.
2 # I recommend Secret Manager without writing the secrets to Terraform

state.↪→

3 locals {
4 db_name = "dippapoc-db"
5 db_database = "dippapoc"
6 db_user = "dbadmin"
7 db_password = "kissa123"
8

9 crypto_init_vector = "<secret>"
10 key_encryption_key = "<secret>"
11 }
12

13 module "secret_db_password" {
14 source = "./modules/secret"
15

16 id = "db_password"
17 value = local.db_password
18 }
19

20 module "secret_crypto_init_vector" {
21 source = "./modules/secret"
22

23 id = "crypto_init_vector"
24 value = local.crypto_init_vector
25 }
26

27 module "secret_key_encryption_key" {



APPENDIX B. INFRASTRUCTURE CODE B-3

28 source = "./modules/secret"
29

30 id = "key_encryption_key"
31 value = local.key_encryption_key
32 }
33

34 # Run the Express app in Cloud Run
35 module "dippapoc-server" {
36 source = "./modules/cloud-run"
37

38 name = "dippapoc-server"
39 docker_image =

"europe-north1-docker.pkg.dev/dippapoc/dippapoc-docker-registry/app:1.0"↪→

40 cloudsql_instances = module.dippapoc-db.connection_name
41

42 # environment variables
43 pghost = "/cloudsql/${module.dippapoc-db.connection_name}"
44 pgport = 5432
45 pgdatabase = local.db_database
46 pguser = local.db_user
47 kms_keyring = module.encryption-key.keyring_name
48 kms_key = module.encryption-key.key_name
49

50 # Secret Manager id's for our secrets
51 secret_id_pgpassword = module.secret_db_password.secret_id
52 secret_id_crypto_init_vector =

module.secret_crypto_init_vector.secret_id↪→

53 secret_id_key_encryption_key =
module.secret_key_encryption_key.secret_id↪→

54 }
55

56 output "server_url" {
57 value = module.dippapoc-server.service_url
58 }
59

60 # Set up a PostgreSQL database for the application
61 module "dippapoc-db" {
62 source = "./modules/cloud-sql"
63

64 name = local.db_name
65 database = local.db_database
66 user = local.db_user
67 password = local.db_password
68 }
69
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70 # Set up an Artifact Registry for holding Docker images
71 module "docker-repository" {
72 source = "./modules/artifact-registry"
73

74 id = "dippapoc-docker-registry"
75 description = "Repository for storing Dippapoc Docker images."
76 }
77

78 # Create a symmetric encryption key in Cloud Key Management
79 module "encryption-key" {
80 source = "./modules/key-management"
81

82 keyring_name = "dippapoc-keyring"
83 key_name = "dippapoc-key"
84 }

Listing 30 modules/secret/gcp_secret_manager_secret.tf

1 # Secret Manager secret
2

3 # Create a secret
4 resource "google_secret_manager_secret" "secret" {
5 secret_id = var.id
6

7 replication {
8 automatic = true
9 }

10 }
11

12 # Attaches secret data for the secret
13 resource "google_secret_manager_secret_version" "secret_data" {
14 secret = google_secret_manager_secret.secret.id
15 secret_data = var.value # Stores secret as a plain txt in state
16 }
17

18 data "google_project" "project" {}
19

20 # Allow the project's compute service account to access the secret
21 resource "google_secret_manager_secret_iam_member"

"secretaccess_compute" {↪→

22 secret_id = google_secret_manager_secret.secret.id
23 role = "roles/secretmanager.secretAccessor"
24 member = "serviceAccount:${
25 data.google_project.project.number
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26 }-compute@developer.gserviceaccount.com"
27 }

Listing 31 modules/secret/variables.tf

1 variable "id" {
2 description = "ID of the secret"
3 type = string
4 }
5

6 variable "value" {
7 description = "Value of the secret"
8 type = string
9 }

Listing 32 modules/secret/outputs.tf

1 output "secret_id" {
2 value = google_secret_manager_secret.secret.secret_id
3 }

Listing 33 modules/cloud-run/gcp_cloud_run.tf

1 # Cloud Run
2

3 # Create the Cloud Run service
4 resource "google_cloud_run_service" "run_service" {
5 name = var.name
6 location = "europe-north1"
7

8 template {
9 spec {

10 containers {
11 image = var.docker_image
12

13 env {
14 name = "PGHOST"
15 value = var.pghost
16 }
17 env {
18 name = "PGPORT"
19 value = var.pgport
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20 }
21 env {
22 name = "PGDATABASE"
23 value = var.pgdatabase
24 }
25 env {
26 name = "PGUSER"
27 value = var.pguser
28 }
29 env {
30 name = "PGPASSWORD"
31 value_from {
32 secret_key_ref {
33 name = var.secret_id_pgpassword
34 key = "latest"
35 }
36 }
37 }
38 env {
39 name = "CRYPTO_INIT_VECTOR"
40 value_from {
41 secret_key_ref {
42 name = var.secret_id_crypto_init_vector
43 key = "latest"
44 }
45 }
46 }
47 env {
48 name = "KEY_ENCRYPTION_KEY"
49 value_from {
50 secret_key_ref {
51 name = var.secret_id_key_encryption_key
52 key = "latest"
53 }
54 }
55 }
56 env {
57 name = "KMS_KEYRING"
58 value = var.kms_keyring
59 }
60 env {
61 name = "KMS_KEY"
62 value = var.kms_key
63 }
64 }
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65 }
66

67 metadata {
68 annotations = {
69 "autoscaling.knative.dev/maxScale" = "1"
70 "run.googleapis.com/cloudsql-instances" =

var.cloudsql_instances↪→

71 }
72 }
73 }
74

75 traffic {
76 percent = 100
77 latest_revision = true
78 }
79 }
80

81 # Allow unauthenticated users to invoke the service
82 resource "google_cloud_run_service_iam_member" "run_all_users" {
83 service = google_cloud_run_service.run_service.name
84 location = google_cloud_run_service.run_service.location
85 role = "roles/run.invoker"
86 member = "allUsers"
87 }

Listing 34 modules/cloud-run/variables.tf

1 variable "name" {
2 description = "Name of the Cloud Run service."
3 type = string
4 }
5

6 variable "docker_image" {
7 description = "Docker container image for Cloud Run."
8 type = string
9 }

10

11 variable "cloudsql_instances" {
12 description = "The Cloud SQL connection_name to connect from Cloud

Run"↪→

13 type = string
14 }
15

16 variable "pghost" {
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17 description = "Hostname for the PG database."
18 type = string
19 }
20

21 variable "pgport" {
22 description = "Port for the PG database."
23 type = number
24 }
25

26 variable "pgdatabase" {
27 description = "Name of the database"
28 type = string
29 }
30

31 variable "pguser" {
32 description = "Username to connect to the database"
33 type = string
34 }
35

36 variable "kms_keyring" {
37 description = "The KMS keyring to use for decrypting the KEK"
38 type = string
39 }
40

41 variable "kms_key" {
42 description = "The KMS key to use for decrypting the KEK"
43 type = string
44 }
45

46 variable "secret_id_pgpassword" {
47 description = "Secret id of the password to connect to the

database"↪→

48 type = string
49 sensitive = true
50 }
51

52 variable "secret_id_crypto_init_vector" {
53 description = "Secret id of the crypto init vector for AES-256

encryption."↪→

54 type = string
55 sensitive = true
56 }
57

58 variable "secret_id_key_encryption_key" {
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59 description = "Secret id of the key encryption key for the AES-256,
encrypted via KMS."↪→

60 type = string
61 sensitive = true
62 }

Listing 35 modules/cloud-run/outputs.tf

1 # Display the service URL
2 output "service_url" {
3 value = google_cloud_run_service.run_service.status[0].url
4 }

Listing 36 modules/cloud-sql/gcp_cloud_sql.tf

1 # Cloud SQL
2

3 # Fire up a database instance
4 resource "google_sql_database_instance" "database_instance" {
5 name = var.name
6 database_version = "POSTGRES_14"
7 region = "europe-north1"
8

9 settings {
10 tier = "db-g1-small"
11 }
12 }
13

14 # Create a database in the instance
15 resource "google_sql_database" "database" {
16 name = var.database
17 instance = google_sql_database_instance.database_instance.name
18

19 # Run init.sql script on the new database instance
20 provisioner "local-exec" {
21 command = <<-EOT
22 gcloud sql instances patch ${var.name}

--authorized-networks=`curl checkip.amazonaws.com`↪→

23 PGPASSWORD=${var.password} psql -f ../app/sql/init.sql -h
${google_sql_database_instance.database_instance.public_ip_address}
-U ${var.user} ${var.database}

↪→

↪→

24 gcloud sql instances patch ${var.name}
--clear-authorized-networks↪→
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25 EOT
26 }
27 }
28

29 # Create a user for the db
30 resource "google_sql_user" "db_user" {
31 name = var.user
32 password = var.password
33 instance = google_sql_database_instance.database_instance.name
34 }

Listing 37 modules/cloud-sql/variables.tf

1 variable "name" {
2 description = "Name of the database instance"
3 type = string
4 }
5

6 variable "database" {
7 description = "Name of the database"
8 type = string
9 }

10

11 variable "user" {
12 description = "Username for the database user"
13 type = string
14 }
15

16 variable "password" {
17 description = "Password for the database user"
18 type = string
19 sensitive = true
20 }

Listing 38 modules/cloud-sql/outputs.tf

1 output "public_ip_address" {
2 value =

google_sql_database_instance.database_instance.public_ip_address↪→

3 }
4

5 output "connection_name" {
6 value =

google_sql_database_instance.database_instance.connection_name↪→

7 }
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Listing 39 modules/artifact-registry/gcp_artifact_registry.tf

1 # Artifact registry
2

3 # Create an Artifact Registry for Docker images
4 resource "google_artifact_registry_repository" "docker_repository" {
5 location = "europe-north1"
6 repository_id = var.id
7 description = var.description
8 format = "DOCKER"
9 }

Listing 40 modules/artifact-registry/variables.tf

1 variable "id" {
2 description = "ID of the Artifact Registry"
3 type = string
4 }
5

6 variable "description" {
7 description = "Description of the Artifact Registry"
8 type = string
9 }

Listing 41 modules/key-management/gcp_kms.tf

1 # Cloud Key Management
2

3 # Create an encryption key in KMS to encrypt our KEK
4 resource "google_kms_key_ring" "keyring" {
5 name = var.keyring_name
6 location = "global"
7 }
8

9 resource "google_kms_crypto_key" "key" {
10 name = var.key_name
11 key_ring = google_kms_key_ring.keyring.id
12 rotation_period = "2592000s" # 30 days
13 }
14

15 data "google_project" "project" {}
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16

17 # Allow the project's compute service account to access the key
18 resource "google_kms_crypto_key_iam_member" "kms_compute" {
19 crypto_key_id = google_kms_crypto_key.key.id
20 role = "roles/cloudkms.cryptoKeyDecrypter"
21 member = "serviceAccount:${
22 data.google_project.project.number
23 }-compute@developer.gserviceaccount.com"
24 }

Listing 42 modules/key-management/variables.tf

1 variable "keyring_name" {
2 description = "The name of the KMS keyring."
3 type = string
4 }
5

6 variable "key_name" {
7 description = "The name of the KMS key."
8 type = string
9 }

Listing 43 modules/key-management/outputs.tf

1 output "keyring_name" {
2 value = google_kms_key_ring.keyring.name
3 }
4

5 output "key_name" {
6 value = google_kms_crypto_key.key.name
7 }
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