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Abstract
The non-perfused volume (NPV) is an important indicator of treatment success immediately after prostate ablation. However, 
visualization of the NPV first requires an injection of MRI contrast agents into the bloodstream, which has many downsides. 
Purpose of this study was to develop a deep learning model capable of predicting the NPV immediately after prostate ablation 
therapy without the need for MRI contrast agents. A modified 2D deep learning UNet model was developed to predict the 
post-treatment NPV. MRI imaging data from 95 patients who had previously undergone prostate ablation therapy for treat-
ment of localized prostate cancer were used to train, validate, and test the model. Model inputs were T1/T2-weighted and 
thermometry MRI images, which were always acquired without any MRI contrast agents and prior to the final NPV image 
on treatment-day. Model output was the predicted NPV. Model accuracy was assessed using the Dice-Similarity Coefficient 
(DSC) by comparing the predicted to ground truth NPV. A radiologist also performed a qualitative assessment of NPV. 
Mean (std) DSC score for predicted NPV was 85% ± 8.1% compared to ground truth. Model performance was significantly 
better for slices with larger prostate radii (> 24 mm) and for whole-gland rather than partial ablation slices. The predicted 
NPV was indistinguishable from ground truth for 31% of images. Feasibility of predicting NPV using a UNet model without 
MRI contrast agents was clearly established. If developed further, this could improve patient treatment outcomes and could 
obviate the need for contrast agents altogether.
Trial Registration Numbers Three studies were used to populate the data: NCT02766543, NCT03814252 and NCT03350529.

Keywords High intensity focused ultrasound · Deep learning · Contrast-enhanced MRI · UNet model · Clinical trials-
thermal ablation · Control systems engineering · Treatment optimization

1 Introduction

Many patients diagnosed with either localized prostate can-
cer (PCa) or benign prostatic hyperplasia (BPH) require 
treatment [1, 2]. MRI-guided transurethral ultrasound 
ablation (TULSA) is one emerging device that has been 
used to treat both diseases [3–6]. TULSA induces thermal 
coagulation through high-intensity ultrasound. Immediately 
after TULSA ablation, gadolinium-based contrast agents 
(GBCAs) are used to confirm the extent of ablation. The 
non-perfused volume (NPV) [7], which is calculated by 
measuring the absence of GBCA uptake in the prostate, is 
compared to the prescribed target volume. Substantial resid-
ual enhancing tissue inside the target volume is indicative 
of undertreatment.

While GBCAs are generally well-tolerated, they do have 
several downsides. First, they may accumulate in the brain 
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and other body parts [8]. Second, patients with poor kid-
ney function may also be ineligible [9]. Finally, during the 
high temperature exposures of thermal ultrasound, GBCAs 
may stay confined to the tissue-of-interest [10], potentially 
obscuring effects of subsequent ablations [7] and introduc-
ing local susceptibility artifacts [11]. If, during TULSA, 
undertreatment is determined based on post-treatment con-
trast-enhanced (CE)-imaging, follow-up treatment must 
be rescheduled several months later. This can lead to ris-
ing expenses and a negative impact on patient psychology 
[12]. It also necessitates the patient to undergo the entire 
treatment process once more, including renewed device 
instrumentation, meticulous bowel preparation, fasting and 
general anesthesia.

To avoid the use of GBCAs in the diagnostic setting, 
various researchers have used artificial intelligence (AI) to 
generate synthetic CE-images trained on contrast-free MRI 
sequences [13–16]. Most of these groups used the UNet 
architecture [17], a versatile model backbone used previ-
ously for both prostate segmentation [18–20] and prostate 
lesion identification [21], or a variant of Generative Adver-
sarial Networks (GAN) [22]. Specific models included 
a basic 2D and 3D UNet, Fully Convolutional Network 
(FCN) and the Residual Vision Transformers (ResVit). 
Researchers were able to successfully generate accurate 
synthetic T1-weighted (T1w) CE-images from a variety of 
non-contrast MRI native T1w, T2-weighted (T2w), diffusion 
and susceptibility-weighted MRI sequences. Newer state-
of-the-art models have also been used in medical image 
synthesis applications, largely consisting of GAN variants. 
Investigators have successfully synthesized various MRI 
contrast image types in the brain using the Collaborative 
GAN (CollaGAN) [23], ResVit [16], Adversarial Diffusion 
(Syndiff) [24] and Conditional GAN (cGAN) [25] models. 
Other successful applications with GAN-based techniques 
include synthesis of CT to MRI images in the male pelvis 
[16, 24], CT to PET images in the liver [26], and finally 3 T 
to 7 T MRI images in the brain [27].

In the context of TULSA therapy, an identical collection 
of both unenhanced and CE-MRI sequences is acquired dur-
ing every treatment, a fact which can be leveraged for train-
ing a deep learning model to predict NPVs without contrast 
agents. First, a high-resolution T2w planning image is used 
to prescribe the treatment volume. Thereafter, real-time MRI 
thermometry is used to actively monitor the heating, both 
inside the prostate and around critical surrounding struc-
tures. Thermometry does have several limitations, such as 
sensitivity to air and patient motion [28], and in the case of 
TULSA, is a relative temperature technique, underscoring 
the need for post-treatment CE-imaging to assess the extent 
of coagulation. Accurate prediction of the final NPV dur-
ing treatment could therefore allow immediate retreatment 

before it is too late and even obviate the need for GBCAs 
altogether.

The objective of the current study was to train a deep 
learning model using contrast-free, treatment-day MRI 
images acquired during TULSA therapy. The model out-
putted synthetic CE-images. The accuracy of these synthetic 
CE-images and corresponding NPV predictions was com-
pared to ground truth to assess model performance.

2  Materials and methods

2.1  Source data

De-identified imaging data from a retrospective database of 
TULSA treatments was obtained from three separate clinical 
studies. All studies were conducted in accordance with the 
principles of the Declaration of Helsinki. Ethics approval 
was obtained for all studies and written informed consent 
was obtained. Ninety-five patients across four applicable 
patient groups were available:

 (i) Whole-gland ablation for PCa (n = 64)
 (ii) Partial ablation for PCa (n = 20)
 (iii) Treat-and-resect after partial ablation for PCa (n = 5)
 (iv) Partial ablation for BPH (n = 6)

Sixty-four (67%) patients received whole-gland prostate 
ablation, and thirty-one (33%) patients received partial abla-
tion. No patient had missing imaging data. A flow partici-
pant diagram with inclusion and exclusion is demonstrated 
in Online Resource 1.

2.2  Patient characteristics

Table 1 summarizes the patient baseline characteristics. 
All included patients were male and underwent TULSA 
as their first major prostate intervention. The majority of 
PCa patients had low- to intermediate-risk PCa, while BPH 
patients had moderate to severe symptom severity.

2.3  TULSA intervention

TULSA (Profound Medical, Mississauga, Canada) is a class 
II medical device which is used to ablate prostate tissue. A 
detailed description of the TULSA intervention is described 
below (Fig. 1). The entire intervention took place in the 
MRI suite with the patient under general anesthesia, which 
enables physicians to accurately plan treatment volumes 
from high-resolution diagnostic MRI sequences. TULSA 
uses high intensity, spatially directed thermal ultrasound to 
coagulate prostate tissue. The therapeutic ultrasound cath-
eter (22-French), which consists of a rigid brass rod with 
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a plastic handle at the end, has ten individual ultrasound 
4.5 × 5 mm elements located inside the rod with a small cut 
for the ultrasound to escape. Each ultrasound element can be 
controlled independently. The ultrasound catheter is fixated 
with an MRI-compatible robotic arm, which can perform 
both linear and rotational translation. The treatment is moni-
tored using reference-based MRI thermometry, which allows 
physicians to monitor the heat deposition inside the prostate 
during the ablation, as well as around critical surrounding 
structures, such as the sphincter muscle, rectal wall, neuro-
vascular bundles and bladder neck. Cooling water flowing 
through both the ultrasound catheter and a rectal device offer 
protection to the prostatic urethra and rectal wall.

Conformal ablation is achieved via a closed-loop control 
algorithm, which means ultrasound frequency and acoustic 
power, as well as rotation rate during the ablation, are fully 
automated. Dynamic, real-time thermometry images are 
acquired approximately every 5 s, with slices spanning the 
entire prostate, which provide a snapshot of the temperature 
distribution in and around the prostate. A typical treatment 
time is 40–60 min of ablation to treat the entire prostate 
gland. The treatment objective of the TULSA device is to 
achieve at least 240 cumulative equivalent minutes (CEM) at 
the prostate boundary, which is set by the manufacturer and 

cannot be adjusted. The accumulated thermal dose is signifi-
cantly higher inside the prostate boundary however, since the 
ablation occurs inside-out. The control algorithm actively 
monitors the temperature distribution and will automatically 
adjust ultrasound outputs and rotation rate to achieve the 
most conformal ablation up to the treatment volume, but 
not exceeding it. If the operator wishes to achieve a higher 
thermal dose at the prostate boundary beyond 240 CEM, 
they can manually resweep the same target region multiple 
times. This approach was used several times by the TULSA 
operators to account for potentially varying thermal dose 
levels for different biological tissues.

2.4  MR imaging protocol

All patients previously underwent the same TULSA treat-
ment-day imaging protocol, which was conducted at 3 T 
on either Siemens (Prisma/Skryra, Erlangen, Germany) 
or Philips (Achieva/Ingenia, Best, Netherlands) scanners. 
Treatment planning was performed on a transverse T2w 
sequence. Ablation was monitored in real-time with a coa-
ligned echo-planar imaging (EPI) sequence using both Mag-
nitude (Mag) and Phase images. Phase images were then 

Table 1  Baseline patient 
characteristics

N.A Not applicable

Median (IQR)

Treatment intent Age (years) Prostate specific 
antigen (ng/ml)

Gleason score IPSS

Prostate cancer (N = 89) 65 (58–69) 6.5 (5.0–9.1) Gleason 6 (n = 26)
Gleason 7 (n = 60)
Gleason 8 (n = 3)

N.A

Benign prostatic hyperplasia (n = 6) 71 (65–72) 3.4 (2.7–3.7) N.A 20 (16–27)

Fig. 1  Description of MR-guided transurethral ultrasound ablation 
(TULSA) device. The transurethral ultrasound catheter ablates pros-
tate tissue “inside out” to induce thermal coagulation. The therapy 
takes place fully inside the MRI suite, which enables accurate treat-

ment planning and the use of MRI thermometry to monitor the heat-
ing. At the very end of treatment, MRI contrast agents are injected 
into the bloodstream, and the immediate non-perfused volume is 
compared to the prescribed treatment volume
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converted to temperature maps and thermal dose maps [29]. 
Two final temperature-based images were generated, repre-
sentative of the whole treatment:

 (i) A maximum temperature map (TMax), the maximum 
temperature achieved during treatment for each pixel

 (ii) A thermal dose map (TDose), the cumulative thermal 
dose achieved during treatment for each pixel

Immediately after ablation, a native T1w scan without 
contrast was acquired followed by a T1w scan with contrast. 
A final subtraction image (Sub) was created by subtracting 
the native T1w image from the CE-T1w image. These Sub 
images from previously completed TULSA treatments are 
the ground truth images and represent the actual outcome 
from each treatment. Detailed sequence protocol information 
can be found in Online Resource 2.

2.5  Data preparation

By design, all sequences (T2w, EPI and T1w) were already 
spatially coaligned, with a field-of-view of 256 × 256 mm, 
slice spacing of 5 mm, and 12 total slices. All images were 
then resampled to an in-plane resolution of 1 × 1 mm, and 
then center-cropped to 128 × 128 mm. T2w, T1w and Mag 
images were clipped to remove outliers, adjusted to have 
zero mean and variance of one, and then rescaled from 0 to 

1. TMax images were clipped to a range of 35–85 °C, while 
TDose images were clipped to a range from 0 to 10,000 
CEM, and then both were rescaled from 0 to 1. Only those 
slices where prostate was actively ablated were included. 
For each active slice, a corresponding physician-contoured 
prostate mask was generated from the prescribed ablation 
volume.

2.6  Model description

The 2D deep learning UNet model was run on a Quadro 
P4000 NVIDIA GPU with CUDA Toolkit v11.2 and 
CuDNN SDK v8.1. The Tensorflow package was used for 
model training and testing. A description of the model archi-
tecture can be found in Fig. 2. Model inputs included five 
contrast-free, treatment-day MRI sequences including the 
T2w, TMax, TDose, Mag, and native T1w sequences. Model 
output was a synthetic Sub image, which was then compared 
to ground truth Sub image. Ground truth was the Sub image 
from the actual patient treatment that already occurred. The 
comparison of synthetic and ground truth Sub images, along 
with their corresponding NPV, indicates how strong the 
model prediction is. Quantitative analysis to assess image 
similarity is described later in more detail.

Allocation of train, validation and test data was approxi-
mately 80%/10%/10% and stratified to maintain a 2:1 pro-
portion of whole-gland to partial ablation treatments. Train 

Fig. 2  Modified 2D UNet convolutional neural network (CNN) 
architecture. Treatment-day, unenhanced MRI inputs included a 
T2-weighted (T2w) sequence, an echo-planar imaging-based ther-
mometry scan used to monitor the ablation, and a native T1-weighted 
(T1w) acquired immediately after ablation. The thermometry scan 
was converted into three unique image types, including grayscale 
magnitude (Mag), the maximum temperature (TMax) and thermal 
dose (TDose). Ground truth subtraction images were used to train, 
validate, and test the model, which were calculated by performing a 
subtraction of the contrast-enhanced (CE)- and native-T1w images 
(nT1w). MRI inputs were then passed to a CNN, consisting of five 

down- and up-sampling blocks. For the contraction pathway, each 
block used three convolutional layers (kernel size of 3 × 3, stride of 
2). After each convolutional layer, batch normalization was applied 
followed by a leaky rectified linear unit activation function. At the 
end of down-sampling block, max pooling with a size of 2 × 2 was 
used. At the bottom layer, three additional convolutional layers were 
built without max pooling. The convolution process was reversed 
until the original image input dimensions were obtained. Model out-
put was a synthetic CE-enhanced subtraction image (Sub), which was 
compared to ground truth
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and validation datasets were used during model training, and 
the test dataset was used to assess model accuracy. The data 
was split as follows:

 (i) Train: 75 patients with 2505 unique inputs and 501 
unique outputs

 (ii) Validation: 10 patients with 325 unique inputs and 
65 unique outputs

 (iii) Test: 10 patients with 360 unique inputs and 72 
unique outputs

2.7  Custom loss function

During model training, a custom loss function was created 
to minimize the difference between prediction and ground 
truth of Sub images. The custom loss function was a com-
posite of three different functions including the mean abso-
lute error (MAE), the structural similarity index (SSIM) and 
a prostate-weighted loss P1. MAE is the average absolute 
value pixel-by-pixel subtraction between ground truth and 
synthetic images. SSIM is a more complicated metric which 
takes into account perceived changes in image structural 
information, such as luminance and contrast. P1 loss was 
calculated in the same way as MAE, except pixels located 
outside the prostate mask were set to zero. During the initial 
testing phase, one of either the SSIM or MAE loss func-
tions was used in isolation. While the initial results were 
promising, we attempted to further refine the accuracy of the 
model. This was achieved by adding the P1 loss and com-
bining these three metrics into a composite loss function. 
Although the results of that ablation study are not reported 
here, the composite loss function produced the most accurate 
synthetic images compared to ground truth. The weighting 
scheme used by Chen et al. [15] was particularly effective, 
described in more detail below.

Each metric was weighted with individual coefficients 
�1, �2 and �3 and summed, described in Eq. (1).

For the first 40 epochs, �1 = �2 = �3 = 1 . For the next 40 
epochs, the loss function was modified by setting �1 and �2 to 
0.1 and �3 to 10, to force the model to focus on pixels inside 
the prostate. The epoch with the lowest recorded validation 
loss was taken as the final model. The Adam optimizer was 
used for all runs, with a learning rate of 1e−4 and a batch 
size of 12.

(1)
custom loss = (�1 ∗ MAE) + (�2 ∗ (1 − SSIM)) + (�3 ∗ P1)

2.8  Quantitative analysis

Two types of quantitative analyses were executed when com-
paring synthetic to ground truth images:

 (i) Synthetic image quality: Four quantitative metrics 
were used to evaluate image similarity including 
MAE, SSIM, as well as peak signal-to-noise ratio 
(PSNR) and the mean squared error (MSE). Quanti-
tative comparison of ground truth vs. synthetic out-
puts of the CE-images was performed across both 
the entire image and a masked version of the same 
image. For the masked image, pixels inside the pros-
tate kept their original value but outside were set to 
zero.

 (ii) Accuracy of predicted NPV: NPV was manually seg-
mented on both ground truth and synthetic images 
by author C.W. and verified by radiologist P.M. Seg-
mentation was done blindly and randomly to avoid 
bias. Then, the Dice-Similarity Coefficient (DSC) 
was used to assess the accuracy of the NPV predic-
tion. Example NPV segmentation is shown in Fig. 3.

Model accuracy as a function of prostate size, ablation type 
and slice location were also measured. The 95% confidence 
interval (CI) was calculated according to Conover [30]. All 
significant testing was performed using the non-parametric 
Wilcoxon rank-sum test.

2.9  Sensitivity analysis

A sensitivity analysis was performed to determine which 
unenhanced MRI image type was the best NPV predictor. The 
model was thus retrained four times, excluding one or more 
inputs:

 (i) No AXT1
 (ii) No TMax
 (iii) No TDose
 (iv) Only T2w and Mag

2.10  Qualitative assessment

A trained radiologist with over 5 years’ experience was asked 
for general feedback on the overall synthetic CE MRI image 
and NPV quality, which was compared directly to ground 
truth. Particular attention was given to the prostate, surround-
ing anatomy and the NPV. The radiologist was also asked to 
comment if the predicted NPV was indistinguishable from 
ground truth, and if the model tended to under- or overestimate 
the NPV. The ability of the model to predict any unintended 
heating outside the prostate was also assessed.
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3  Results

3.1  Training performance

Training performance is summarized in Online Resource 3.

3.2  Quantitative analysis

Figure  4 is a case example highlighting representative 
model inputs, outputs, and ground truths for three differ-
ent test slices. In all cases, all five inputs were passed to 
the AI model. In the first whole-gland ablation example 
(top row), the AI-predicted NPV showed good agreement 
with ground truth for a mid-gland slice (DSC = 94%). For 
a partial ablation example (middle row), which was per-
formed mid-gland, the AI-predicted NPV was correlated to 
ground truth (DSC = 88%). For the last whole-gland abla-
tion example (bottom row), a slice located near the prostate 
apex, the AI model generated a DSC of 64%, indicative of 
weak similarity.

Table 2 summarizes the image similarity between ground 
truth and synthetic CE-images for all 72 slices in the test 
dataset. The performance across the whole image indicated 
a weak similarity, with a mean SSIM and MAE score of 0.34 
and 0.14, respectively. Within the prostate, the mean SSIM 
and MAE was 0.93 and 0.02, respectively, indicating much 
closer agreement. The mean (std) DSC for the contoured 
NPV was 85% ± 8.1%, with 95% CI lower and upper bounds 
of 84% and 88%.

The accuracy of the DSC was correlated to the size of 
the prostate radius, relative to the urethra center, performing 

significantly better (p < 0.001) when the maximum prostate 
radius was greater than 24 mm. Model performance was 
also significantly better on whole-gland compared to partial 
ablation slices (p < 0.001). Model performance approached 
significance (p = 0.051) for slices located mid-gland com-
pared to the prostate apex and base.

3.3  Sensitivity analysis

Model sensitivity to different training inputs and the result-
ing influence on predicted NPV is summarized in Table 3. 
The predicted NPV was closest to ground truth when trained 
with all five image inputs. Model performance was nearly 
unchanged when trained without the native T1w, TMax or 
TDose inputs, with a worst-case mean of 82.3%, with no 
significant differences detected amongst these four groups. 
Performance dropped significantly (p < 0.001) when the 
model was trained only with T2w and Mag inputs, with the 
mean (std) score dropping to 74.8% ± 13.6%.

3.4  Qualitative assessment

A qualitative assessment was performed by a trained radiolo-
gist for all test images. Overall, it was found that synthetic 
CE-images were blurrier than their ground truth counter-
parts. Synthetic CE-image quality was sub-optimal near the 
prostate apex and bladder neck.

Inside the prostate, the predicted NPV contour was 
more continuous, and smoother compared to ground truth. 
According to the radiologist, the predicted and ground truth 
NPV were indistinguishable for 22/72 (31%) of images, the 

Fig. 3  The non-perfused volume (NPV) is an important metric calcu-
lated at the end of a TULSA ablation, which gives the user immediate 
feedback on the ablation outcome. A hypointense void is surrounded 
by a bright rim of enhancement. A NPV that is considerably smaller 
than the target boundary is indicative of undertreatment. One metric 

used to evaluate model performance was the Dice-Similarity Coeffi-
cient (DSC). For all ground truth and synthetic images, the NPV was 
manually contoured, and the similarity calculated according to the 
DSC. A value of 100% represents a perfect score
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majority located mid-gland, and deemed of sufficient qual-
ity that they could be confidently used to inform treatment 
decisions. The NPV was however under- and overestimated 
for 36/72 (50%) and 14/72 (19%) of images, respectively.

Outside the prostate, minor overshoot into the pelvic 
floor muscle occurred in 15 of 72 (20.0%) of ground truth 

test slices, which was correctly predicted 6 of 15 (40%) 
times by the AI model. While no patient had overshoot 
into the rectal wall on any ground truth test slices, the AI 
model incorrectly predicted overshoot on one single test 
slice, due to a rectal air bubble artifact that appeared on 
the TMax, TDose and native T1w images mid-treatment.

Fig. 4  Model performance for different patient examples. For a mid-
gland, whole-gland prostate cancer (PCa) ablation example (top row), 
the AI-predicted non-perfused volume (NPV) generated a score of 
94%, measured according to the Dice-Similarity Coefficient (DSC) 
compared to ground truth. For a mid-gland, partial PCa ablation 

(middle row), the AI-predicted NPV scored 88% according to DSC. 
For the last whole-gland PCa ablation example (bottom row), in this 
case a slice located near the prostate apex where the prostate radius 
was smaller, a DSC score of 64% was reported

Table 2  Image similarity for 
test dataset, ground truth vs. 
synthetic

Mean (std.)

Structural similar-
ity index
(0 to 1)

Peak signal-to-
noise ratio
(dB)

Mean absolute error
(0 to infinity)

Mean squared error
(0 to infinity)

Whole image 0.34 ± 0.13 14.45 ± 2.18 0.14 ± 0.05 0.04 ± 0.02
Prostate only 0.93 ± 0.04 22.23 ± 2.51 0.02 ± 0.01 0.01 ± 0.004

Table 3  Dice-similarity 
coefficient of non-perfused 
volume—ground truth vs. 
synthetic images

All inputs (%) No native 
T1-weighted 
(%)

No maximum 
temperature (%)

No thermal 
dose (%)

Only T2-weighted 
and magnitude (%)

Mean 85.0 82.4 82.3 82.6 74.8
Std. 8.1 10.6 9.9 10.0 13.6
95% CI lower bound 84 82 82 82 71
95% CI higher bound 88 87 86 88 80
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4  Discussion

Using contrast-free MRI data from treatment-day TULSA 
treatments, realistic synthetic CE-images and accurate pre-
dictions of the NPV were generated by a deep learning 
model.

Across the entire image dataset, a mean SSIM and MAE 
of 0.34 and 0.14 was reported, respectively, which is less 
accurate than demonstrated in the brain [14–16]. Dur-
ing a TULSA procedure, the time between contrast-free 
imaging and GBCA administration is typically one hour 
to ninety minutes, which increases the risk of motion and 
misregistration. Moreover, the TULSA ablation causes 
acute coagulation necrosis in the prostate [31, 32] lead-
ing to complicated cellular, vascular, and inflammatory 
responses within and at the periphery of the thermal lesion 
[7], creating an NPV that is often disjointed and irregular 
in shape.

Despite these challenges, the deep learning model was 
able to accurately predict the NPV with a mean DSC score 
of 85%. For context, various researchers have examined 
the inter-operator variability of whole-gland prostate seg-
mentation [20, 33] with reported DSC scores between 75 
and 92%. Meanwhile, automatic prostate segmentation 
using modern deep learning algorithms have reported DSC 
scores of 87–92% [19, 20] compared to manual segmen-
tation. Radiologist assessment indicated the deep learn-
ing model predicted an NPV that was indistinguishable 
from ground truth for roughly one third of slices, but also 
tended to underestimate the NPV. This is likely influenced 
by the custom loss function weighting, which warrants 
further investigation.

The deep learning model performed better at larger 
prostate radii (> 24 mm). This aligns with both manual 
and automatic segmentation techniques [19, 20, 33, 34], 
where higher variability was observed when contouring 
prostate zonal anatomy and slices near the prostate apex 
and base. This finding may partly be explained by the rela-
tionship between prostate size and the amount of thermal 
energy required to achieve coagulation [35]. To ablate 
further away, increased total thermal energy deposition is 
needed. Higher temperatures and thermal dose effectively 
increase the signal-to-noise ratio and increase the sharp-
ness and size of the final NPV, simplifying the model’s 
task to detect correlations.

The sensitivity analysis offered additional insights. Dur-
ing TULSA ablation, clinical users rely on both the TMax 
and TDose to assess the coagulation extent in real-time. 
Discrepancies between TMax and TDose can occur, which 
may lead to user uncertainty. TDose is a composite of both 
temperature and time, while TMax is the highest recorded 
temperature. No statistical significance was observed when 

dropping TMax and TDose as inputs, leaving which image 
is a better NPV predictor unanswered. Furthermore, the 
native T1w did not have a significant impact on model 
performance. This suggests that real-time, predictive CE-
image generation during thermometry monitoring is fea-
sible, potentially allowing physicians to react even faster 
to any signs of undertreatment.

The radiologist noted that synthetic images tended to be 
blurrier, which has also been reported elsewhere [14, 15]. It 
was noted that the predicted NPV was generally smoother 
and anatomical features near the bladder neck and pros-
tate apex were more difficult to resolve than mid-gland, 
consistent with the quantitative analysis. Several included 
patients were not catheterized or had inefficient suprapu-
bic catheter drainage. Dynamic bladder filling likely lead to 
discrepancies between the planning, thermometry and final 
CE-images, particularly near the bladder neck. Outside the 
prostate, our model correctly predicted NPV extending into 
the pelvic floor 40% of the time. Unintended heating outside 
the prostate can impact the TULSA safety profile, and if 
deemed clinically important, the model could be optimized 
for both the prostate and pelvic floor muscles, through small 
adjustments to the custom loss function.

Since the current work was geared towards establishing 
feasibility, we opted for the well-established and straight-
forward 2D UNet model backbone. Yet it was commonly 
observed that within the same patient, certain cross-sectional 
slices had worse quantitative performance than others. 3D 
CNNs can outperform 2D CNNs [15, 36] which could rec-
tify this problem. On the other hand, 3D CNN’s have only 
marginal performance benefits and introduce increased 
model complexity, longer training times and large memory 
requirements. Traditional CNN models such as UNet may 
also suffer from undesirable loss of detailed structure such as 
irregular anatomy [16, 25]. Repeating the present work with 
state-of-the-art GAN-based variants, such as the CollaGAN, 
ResVit, SynDiff or cGAN, which have been shown to bet-
ter capture higher spatial resolution information due to the 
use of adversarial loss [25], could greatly improve accuracy 
of the post-TULSA NPV predictions. This is particularly 
relevant when one considers that the post-TULSA NPV is 
often irregular or discontinuous.

There are several limitations in this study. The need for 
large amounts of clinical data is essential for deep learning, 
and we included less than one hundred patients, which was 
all that was available. Many disqualifications occurred due 
to patient motion and unintended peristaltic motion causing 
gas bubbles in the rectum, despite the routine use of general 
anesthesia, meticulous bowel preparation, fasting and anti-
peristaltic medication during therapy. Patient motion caused 
challenging registration, which was not addressed. Gas bub-
bles, on the other hand, caused large “blooming” thermom-
etry artifacts, which often extended into the prostate [37], 
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limiting its usefulness as a prediction sequence. Addition-
ally, only one radiologist performed a qualitative assessment 
of synthetic image quality, meaning intra-observer variabil-
ity could not evaluated. This omission was rationalized due 
to the fact this investigation was geared towards establish-
ing feasibility. While data augmentation was not found to 
increase model performance during initial feasibility testing, 
it may play a role in recovering “lost” datasets through crea-
tion of simulated artifacts that the model could potentially 
account for. Another limitation is that the prostate mask was 
manually contoured, which was necessary to train and then 
later evaluate the deep learning model. Manual contouring 
is however labor-intensive and inefficient. Not only would 
automatic prostate segmentation simplify the training and 
evaluation of the deep learning model, it could also help 
streamline the overall treatment-day TULSA workflow.

To summarize, we have demonstrated that by using 
treatment-day, contrast-free MRI sequences from TULSA 
treatment including T2w, EPI and native T1w sequences, 
one can generate synthetic CE-images with predicted NPVs 
close to ground truth. Refinement of this technique can be 
achieved with a larger training set. If developed further, it 
is hoped that this technique will give treating physicians an 
opportunity to optimize treatment outcomes within a sin-
gle treatment session, and potentially obviate the need for 
GBCAs altogether.
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