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EEG Based Driver Fatigue Detection Using FAWT
and Multiboosting approaches

Abstract—Globally, 14-20% of road accidents are mainly due
to driver fatigue caused of which are instance sickness, travelling
for long distance, boredom as a resistance of driving along
the same route consistently and lack of enough sleep etc. This
paper presents a flexible analytic wavelet transform (FAWT)
based advanced machine learning method using single modality
neurophysiological brain electroencephalogram (EEG) signals to
detect the driver fatigues (i.e., FATIGUE and REST) and to
alarm the driver at earliest for preventing the risks during
driving. First signals of undertaking study groups are subjected
to the FAWT that separates the signals into low and high pass
channels. Subsequently relevant sub-band frequency components
with proper setting of tuning parameters are extracted. Then,
comprehensive low order features which are statistically signifi-
cant for p < 0.05, are evaluated from the input subband searched
space and embedded them to various ensemble methods under
multiboost strategy. Results are evaluated in terms of various
parameters including accuracy, F-score, AUC and kappa. Results
show that the proposed approach is promising in classification
and it achieves optimum individual accuracies of 97.10% and
97.90% in categorizing FATIGUE and REST states with F-
score of 97.50%, AUC of 0.975 and κ of 0.950. Comparison
of the proposed method with the prior methods in the context
of feature, accuracy, modality profiles undertaken, indicates the
effectiveness and reliability of the proposed method for real-world
applications.

Index Terms—Electroencephalograph (EEG), driver fatigue,
FAWT and multiboosting

I. ABBREVIATION

The abbreviations used herein are as follows. EEG:
electroencephalogram; EMG: electromyography; EOG: elec-
trooculography; ECG: electrocardiogram; BVP: blood volume
pulse; LBP: local binary pattern; ANN: artificial neural net-
work; SVM: support vector machine; PSD: power spectrum
density; ICA: independent components analysis; DWT: dis-
crete wavelet; RoF: rotation forest; k-NN: k-nearest neigh-
bor; EMD: empirical mode decomposition; DBN: deep belief
networks; fNIRS: functional near-infra-red spectroscopy; RF:
random forest, DT: decision tree; CART: classification and
regression tree; FAWT: Flexible Analytic Wavelet Transform;
LP: low pass; HP: high pass; LDA: linear discriminant anal-
ysis; ME: misclassification error; Ac: accuracy; TRP: true
positive rate, FPR: false positive rate; PRe: precision; F-Sc:
F-score; FP: false positive; FN: negative; TN: true negative;
TP: positive; BNN: Bayesian neural network; AUC: area under
curve; CNN: convolutional neural network; DCBP: dynamic
centre based binary pattern; FFT: fast Fourier transformation
and MTTP: multi threshold based ternary pattern.

II. INTRODUCTION

FATIGUE detection and alarming the driver using ad-
vanced machine learning approach become essential to

avoid unwanted road accidents [1], [2]. Fatigue indicates ex-
treme tiredness, weariness, or exhaustion as a result of mental
or physical exertion or illness. It reduces the attention, focus
and concentration of driver and it accounts 14-20% of total
road accidents globally [3]. It poses risk to the driver as well
as other passengers, vehicles drivers, cyclists and pedestrians
in the context injuries and fatalities. So, an automatic fatigue
detection and monitoring system for alarming the driver just
before feeling of fatigue is required. Such learning algorithm
would have wide applications in Internet of things (IoT) based
platform, smart phone, in-built car detection systems.

Earlier methods employed various physiological fea-
tures [4] of electroencephalogram (EEG) [2], electromyogra-
phy (EMG), electrooculography (EOG) [5], electrocardiogram
(ECG) [6], and facial expression features during driver’s
yawning and blinking state [1]. Some approaches employed
individual’s self-reported fatigue [7] and video measurement
of facial expression, reaction time, steering errors and lane
deviation [2]. However, self-report based approach requires
time to validate the the symptoms [2]. Also, they are po-
tentially unreliable due to biased subjective feedback. Non-
direct video based approach requires recording of driver
face during on road condition that may violate the driver
privacy issue. Also driver is aware of such recording setup for
which finding of actual condition of driver becomes difficult.
Recent real-time methods include embedded yawning state
detection [8], drowsiness detection using independent multi-
modalities blood volume pulse (BVP) and eye blink and
yawn signals [9], combination of local binary pattern (LBP)
and facial expression [10], eye-state detection [11] and deep-
learning based methods [12], [13]. Wide spread use of various
aforesaid signals through different methods and subsequent
conclusions indicate reliability and effectiveness of signals and
methods. Among them, EEG-based methods are considered to
be more effective. It is due to fact that EEG carries inherent
information contents of neurophysiological brain activities and
considered as a good indicator of fatigue [40]. EEG signal can
be recorded from the scalp attaching flat electrode and it can
be divided into various frequency bands such as gamma (30-
42 Hz), Beta (13-30 Hz), Alpha (8-13 Hz), Theta (4-8 Hz)
and Delta (0.5-4 Hz) waves. Presence of beta wave indicates
alertness of the person or may also be present early stage of
sleep. Theta and delta associated with early stage of sleep
and deep sleep, whereas alpha indicates relaxed condition and
exhibits first sign of fatigue. Thus, it is comprehensive in
nature for detecting the driver fatigues [1], [2], [14], [15]. It
is worth mentioning that changes in heart rate variability [18]
and in brain activities [19] are related to fatigue. Therefore,
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researchers focus on developing more realistic model by fully
exploring EEG signals in all formats.

Previous methods employed various time, time-frequency,
wavelet and statistical features, and learning strategies [20].
For instance, Vuckovic et al. [38] evaluated EEG signal time
series of inter and intra-hemispheric cross spectral density and
employed to artificial neural network (ANN) for classification
of driver fatigue or alert. Method [21] converted time domain
EEG signal to alpha, theta, beta and delta bands and evalu-
ated frequency domain features for classification task. Hu et
al. [21] evaluated functional spectrum based frequency domain
features which were embedded into support vector machine
(SVM). Method [22] adopted power spectrum density (PSD)
and sparse representation classification combined with singular
value decomposition in PSD to estimate driver vigilance level.
Wang et al. [23] employed wavelet entropy and spectral
entropy features for fatigue classification task. Many prior
methods employed various forms of entropy features such
as sample entropy [24], permutation entropy [25], and fuzzy
entropy [26]. Various methods combined different statistical
model with typical feature extraction methods for improving
classification performance. Luo et al. [1] adopted an adap-
tive multiscaling factor algorithm and evaluated multi-scale
entropy features which were embedded to the SVM. Chai
et al. [2] combined blind source separation technique using
independent components analysis (ICA) with autoregressive
model. Then, extracted multivariate features were employed to
the bayesian network for classification. Method [14] employed
linear distributed current dipole over EEG wavelet search
space and evaluated chaotic entropy for fatigue classification.
Tuncer et al. [15] employed dynamic binary and ternary
patterns based discrete wavelet (DWT) searched space and
extracted low order measures were applied to various shallow
classifiers including ANN, rotation forest (RoF), SVM and
k-nearest neighbor (k-NN). Mu et al. [16] adopted fuzzy
entropy based SVM tool for classification of normal and
fatigue states. Also, Yin et al. [17] adopted fuzzy entropy
based support system for mobile application. Method [18] em-
ployed spectrum entropy, approximate entropy, sample entropy
and fuzzy entropy features from EEG signal. Method [19]
employed empirical mode decomposition (EMD) features for
fatigue detection. Method [41] and [42] employed sparse-deep
belief networks (DBN) that combined both supervised and
unsupervised learning and Hidden Markov Model (HMM) for
EEG based fatigue detection. Despite significant achievements,
many aforesaid methods have cons including theoretical bot-
tleneck and multiple constraints associated with various tradi-
tional algorithm that limits the implementation in real-world
problems. For instance EMD based method often suffers mode
mixing problem [27]. Many prior methods employed various
feature extraction techniques in single or multimodality format
in order to detect fatigues.Multiple modalities based methods
employed EEG and EOG [37], EEG, EOG and EMG [9],
EEG, ECG, EOG and functional near-infra-red spectroscopy
(fNIRS) [6], and EEG, EMG and respiration [36] and extracted
features through different models which were then combined
for final consequences. Although they focused to improve the
performance, use of multiple process models for handling

various modalities data increases the size as well as com-
plexity of decision module which in fact obscure its real-time
implementation. Additionally, as mentioned earlier, methods
that based on EEG profile are more comprehensive in nature.
Another important issue is that model performance depends on
two aspects, one initial learning framework and proper choice
of classification model. However, the most cited methods em-
ployed typical shallow classification models such as SVM [1],
ANN, RF, k-NN [15], RoF, random forest (RF), decision tree
(DT), classification and regression tree (CART) [28], deep
learning, C4.5, LAD-tree etc.. Besides theoretical bottlenecks,
they often pose curse of dimensionality, overfitting, instability
issues during handing of large or small volume data. For
instance deep learning often provides good learning ability
but it introduces high degree of freedom due to multiple layer
structures [27]. It work as black box that does not enable
complete understanding of reason of higher classification
performance. ANN requires trail and error strategy in learning
stages for proper setting of optimal parameters and may
suffer computational complexity issue in case of high order
training space. SVM requires kernel parameter setting for
good learning ability which needs multiple processing steps.
Therefore, it is essential to develop more realistic technique
either by introducing new input feature search space or using
generalized version of performance boosting models or both
for better way of fatigue detection and to promote human-
machine interaction. In this context, typical learning models
with embedded performance boosting strategies like boosting,
multiboost [29] could eliminate the theoretical bottlenecks or
others issues for smooth implementation in decision making
platform for real-world applications. It could also ensure high
and reliable performance over wide varieties of database or
online data.

This paper addresses advanced ensemble learning method
using flexible analytic wavelet transform (FAWT) [30] for
fatigue detection in order to alert, focus and elicit the concen-
tration of diver during on-road journey. The main contributions
of the presented work are as follow:

1) It addresses the FAWT based feature extraction frame-
work that allow to decompose signals into low and high
pass channels with proper choice of inherent model pa-
rameters setting. FAWT is more robust signal processing
method that extracts inherent information contents from
signal for which it is widely popular in non-stationary
signal analysis [31]. Processing of such input feature
searched space through a given technique could lead
to more relevant and discriminant features that could
comprehensively represent the physiological process.

2) It employed publically available tested EEG data and
subsequently various FAWT components are evaluated.
Then, a set of low order statistical features is evaluated,
followed by statistical significant test to extract compre-
hensive measures that could replicate the physiological
information of signals.

3) It finally proposed a FAWT-based Adaboost learning
algorithm for detection and alarming of driver fatigue.
The algorithm is then validated with multiple partitioned
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data sets which were collected from various male and
female participants using standard EEG acquisition pro-
tocol. The performances of algorithm in classifying the
FATIGUE and REST states are measured in terms of
various markers. The improved performance markers
ensure the robustness and reliability of FAWT based
discriminant features as well as the proposed boosting
based learning.

4) The performances of proposed algorithm are compared
with various similar prior methods in the context of
modalities profiles, type of features, complexity, limi-
tations and performances. Results and subsequent com-
parative analysis reveal that the proposed FAWT-based
multiboost learning is promising and thus, it ensures the
real-time implementation in hardware setup for driver
fatigue detection.

The article is organized as follows: Section III describes
EEG database and theoretical basis of the proposed method,
FAWT, feature extraction and reduction, and classification
through multiboosting approaches. Section IV explains the
results and discussion. Section V provides comparative study,
and finally concludes with section VI.

III. METHOD

A. EEG dataset

This study employs open source EEG dataset [1] obtained
using platform environment that includes a static ZY-31D vehi-
cle driving simulator (Beijing-China Joint Teaching Equipment
Co. Ltd.). The platform includes three 24-inch monitor and
software teaching system ZM-601 V9.2 for driving simula-
tions. The system includes 32 electrodes EEG collecting cap,
computer system with window size of 7× 64, EEG recording
and processing software Neuroscan 3.2 and MATLAB-based
signal analysis platform. The experiment included signals from
sixteen valid candidates of age range 17-25 years. Before
experiment, it was ensured that no individual get sick in week.
In order to get valid outcomes, the individual took adequate
sleep without consuming energy drink, alcohol, tea etc., in the
night before the experiment. Furthermore, prior to experiment,
individuals were informed about the experimental procedure,
setup and electrode setting for smooth cooperation during
experiment. After calm down to normal state, the laboratory
assistant started acquiring EEG data of five minutes duration
using software. These signals were assigned as normal EEG
data. Then subjects are moved into the simulated driving state
and asked for keep driving for a while. Different individual
came into the state of fatigue at different times refer to
Li’s subjective fatigue scale and Borg’s CR-10 scale. The
experiment was considered as effective while result showed
the candidate was in fatigue and EEG of same duration was
recorded which were referred to as fatigue state and then data
acquisition was completed. Details of recording procedure is
mentioned in [1].

Signals were preprocessed by platform Neuroscan 3.2 soft-
ware with proper setting of signal parameters, viz, sampling
frequency of 1 kHz, bandwidth of 0.15-45 Hz and notch
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Fig. 1: EEG signals of fatigue and rest state of driver.

frequency of 50 Hz. Main preprocessing steps included re-
moval of drift, noise, electrooculogram and epoch, baseline
correction, artifact removal. Afterwards, each candidate results
were separated into two normal and fatigue groups. Fig. 1
shows EEG signal of fatigue and rest.

B. Flexible Analytic Wavelet Transform (FAWT)

FAWT [30], [31] is an advanced version of DWT that offers
wide coverage of time-frequency scale of signal. It contains
Hilbert transform pair of atoms which make it suitable for
signal analysis that contains oscillation. The input controlling
parameters of FAWT include quality factor (Q), number of
decomposition (J) and redundancy (r), where Q limits the
number of oscillations in mother wavelet which is defined in
terms of frequency ratio and constant parameter β as [31],

Q =
ω0

∆ω
, β =

2

Q+ 1
(1)

ω0 and ∆ω are being central frequency and bandwidth of
signal, and r controls the localization of wavelet time. The
redundancy parameter r controls the time localization of the
wavelet. FAWT decomposes the signal using iterative filter
bank that contains high pass and low pass channels. In
doing so, FAWT enables the specifying the proper choice of
the dilation factor, Q and r through versatile adjustment of
parameters namely, positive constant β and e, f , g, h. The
parameter e and f are adjusted for up and down sampling of
high pass filter, and g and h are adjusted for up and down
sampling of low pass channel. It provides J decomposition
levels in iterative way and each level comprises of low pass
(LP) and high pass (HP) channels that separates the negative
and positive frequencies respectively. The frequency responses
H(ω) and G(ω) of HP and LP are as follows:

H(ω) =



(ef)1/2 |ω| < ωp

(ef)1/2θ(
ω − ωp
ωs − ωp

), ωp ≤ ω ≤ ωs

(ef)1/2θ(
π − (ω − ωp)
ωs − ωp

), −ωs ≤ ω ≤ −ωp

0 |ω| ≥ ωs
(2)
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G(ω) =



(gh)1/2θ(
π − ω − ω0

ω1 − ω0
), ω0 ≤ ω < ω1

(gh)1/2, ω1 < ω < ω2

(gh)1/2θ(
ω − ω2)

ω3 − ω2
), ω2 ≤ ω ≤ ω3

0, ωε[(0, ω0) ∩ (ω3, 2π)]
(3)

Various parameters associated with above filter banks are

ωp =
(1− β)π + e

e
, ωs =

π

f
, ω0 =

(1− β)π + e

g
, ω1 =

eπ

fg
,

ω2 =
π − e
g

, ω3 =
π + e

g
, ε ≤ e− f + βf

e+ f
π. It is worth

mentioning that the value of r that indicates the ration of input
and output samples, needs to be greater than one in order to
avoid information loss. It is defined as

r = (
g

h
)

1

1− e/f
(4)

For perfect reconstruction the value of β needs to be less than
one and its limiting range is as follows, from where the Q is
calculated.

1− e

f
≤ β ≤ g

h
(5)

Wide success of the FAWT in real-world applications such
as myocardial infarction, focal EEG [32] is mainly due to its
promising inherent characteristics of shift invariant, tunable
oscillatory criteria and flexible time-frequency coverage.

C. Feature extraction and reduction

The implementation of FAWT is accomplished with chosen
parameter with seven level of decomposition. Then sub-band
signals are reconstructed in decreasing order of frequency
for two state EEG signals. In evaluating the sub-bands of
FAWT, the value of e/f is set at 3/4 (dilation factor) as
suggested by [32] with fixed value of r and Q as mentioned.
Furthermore, the value of g/h is set at 1/2 so as to get
proper limiting value of r in order to avoid information loss.
The value of r is chosen as per constraints expressed in
(4). Then, analysis is carried out to extract suitable feature
searched space of sub-band components. From the sub-bands
of each signals, compact statistical measures such as mean,
standard deviation, skewness and kurtosis are evaluated since
FAWT provides high dimensional feature search space. Such
statistical measures are shown to be promising in carrying
inherent signal information [33]. Six such features include
i) mean absolute values of coefficients in each sub-band,
ii) average power of the coefficients in each sub-band, iii)
standard deviation of the coefficients in each sub-band, iv)
ratio of the absolute mean values of coefficients of adjacent
sub-bands, v) skewness of the coefficients in each sub-band,
and vi) Kurtosis of the coefficients in each sub-band. Thus,
total ninety five statistical features are extracted and features
are subjected to the linear discriminant analysis (LDA) to get
optimum decision surface for better classification accuracy.
LDA minimizes within-class variance and maximizes between-
class variance to attain optimal discriminant features. Features
are processed through typical significant test. The features that
have p < 0.05 aRE considered statistically significant with 95
confidence level. Finally the best combination of significant

feature matrix is evaluated by assessing the classification
performance over training dataset.

D. Classification through multiboosting approaches

Typical machine learning models that work as weak learner
suffer various difficulties as mentioned in the section II. They
often fail in providing stable and reasonable performances de-
spite of good feature extraction framework to the available fea-
ture search space. In that case, ensemble meta algorithms play
crucial role in enhancing the performance by adopting various
boosting strategies such as Adaptive boosting (AdaBoost) and
multiboosting (multiBoost). They create and combine weak
learner to build better classifier and better inferences reduc-
ing the variance and over fitting of the weak learners [34],
e.g., CART. Thereby, it improves the performance of weak
classifier and enhance the learning ability, performance and
stability of weak learners [34]. It averages the outputs of all
weak classifiers for final conclusion. It also employs voting
(for classification) or averaging (for numeric prediction) to
syndicate the output of individual model. It combines models
of the same type, e.g., DTs. The boosting strategy emphases
weight assignment to the models based on its confidence rather
than giving equal weight to all models. Most popular boosting
algorithm in classification and regression (e.g., C4.5 tree) is
AdaBoost [29]. It is simple even far simpler than SVM and
easy to implement, tremendous flexibility in choosing weak
classifiers and provides effective results.

For a given training data {(xi, yi)}Ni=1, where, N is the
number of iterations, xi ∈ RK and yi ∈ {1, 1}, there are large
number of weak classifiers, denoted fm(x) ∈ {1, 1}, and a
0-1 loss function I, defined as

I(fm(x), y) =

{
0, iffm(xi) = yi

1, iffm(xi) 6= yi

Algorithm 1: Adaboost algorithm

for i = 1 to N , w(1)
i

for m = 1 to M , do
Fit weak classifier m to minimize the objective function:

εm =

∑
i = 1Nw

(m)
i I(fm(xi) 6= yi)∑
i w

(m)
i

where I(fm(xi) 6= yi) = 1 if fm(xi) 6= yi and 0
otherwise
αm = ln

1− εm
εm

for all i do
wm+1
i = w

(m)
i eαmI(fm(xi)6=yi)

end for
end for
The final classifier after training is based on a linear

combination of the weak classifiers

g(x) = sign
( N∑
i=1

αmfm(x)

)
(7)

It is a greedy algorithm that builds up incrementally a strong
classifier g(x) by optimizing the weights for, and adding, one
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weak classifier at a time. Its generalized version is M -array
classifiers, i.e., multiBoost that has parallel model learning
ability and high potential to eliminate the over fitting. They
have high learning ability of non-linear dynamic and could
provide better understanding of the source thereof. This study
focuses on use of multiBoost based meta algorithm with
various typical learning models for classification of fatigue
and rest. It also aims to explore the proper feature extraction
framework using FAWT and learning models

IV. RESULTS AND DISCUSSION

A. Performance markers

The performances of meta multiBoost algorithm are inves-
tigated in terms of various typical bio as well as statistical
markers to ensure the integrity of the proposed FAWT-based
feature extraction framework and learning strategy using EEG
signal for fatigue detection. This study employs several weak
learners with multiBoost with same sets of features to en-
sure quality of FAWT-based statistical features. K-fold cross-
validation is employed to partition the dataset into 10 subsets.
Then, one set is used training as well as for feature extraction
and remaining sets are used for testing the models. Various
parameters evaluated in this study including misclassification
error (ME), accuracy (Ac), true positive rate (TPR), false
positive rate (FPR), precision (PRe), and statistical parameters-
F-score (Fsc) and kappa (κ) which are as follows:

ME =
FP + FN

TP + TN + FP + FN
(8)

Ac =
TP + TN

TP + TN + FP + FN
(9)

TPR =
TP

TP + FN
;FPR =

FP

TN + FP
(10)

PRe =
TP

TP + FP
;FSc =

(β2 − 1).PRe.Re

β2.PRe+Re
(11)

κ =
P0 − Pe
1− Pe

(12)

Here ME indicates the fraction of incorrectly classified in-
stances to all instances; Ac indicates total correct cases (fatigue
and rest) classified by the model to the available cases in the
datasets; TPR indicates positive cases (i.e., fatigue) correctly
identified to the total cases, and whereas FPR indicates correct
negative cases (i.e., rest) classified to all negative instances;
PRe defines the ratio of instances correctly classified as pos-
itive to all instances classified as positive, and F-score (FSc)
measures the balance while β = 1 and favours PRe if β > 1
and recall (Re) otherwise. Also P0 and Pe indicate observed
agreement and agreement expected by chance. The remaining
terms associated the cited measures are false positive (FP) and
negative (FN), and true negative (TN) and positive (TP). Two
additional parameters are sensitivity and specificity (1−FPR)
that measure the correct rate of positive cases similar to TPR
and negative cases. These parameters are estimated from the
formulated confusion matrix. Additional parameters which
are also estimated are area under curve (AUC) and Kappa
coefficient (κ). The AUC indicates the degree or measure

of separability and the kappa κ measures the agreement or
disagreement of measurements (κ = 1 or 0).

B. Classification performances

The EEG dataset is divided into multiple sets through cross-
validation technique for training and performance measures.
Each folded dataset contains same proportion of two states-
FATIGUE and REST of driver, namely, FAT and REST. The
estimated features evaluated through well-defined framework
are subjected to the ensemble models in multiBoost mode to
classify FAT and REST states through and repeated measures
over folded datasets are reported in terms of mean values.
Table I outlines the performances of the classifiers in terms of
Ac, FSc, AUC, and κ. It is seen that the boosting inspired
models specifically listed in the bottom of Table I show
the most prominent as well as balanced parameter values.
In addition to the accuracies, higher values of FSc, AUC
and κ, indicate the efficacy of these inspired models as
compared to the other models and their corresponding typical
model. As is evident, multiBoost-SVM, multiBoost-ANN and
multiBoost-rotation forest provide higher average recognition
rates of 97.20%, 96.90% and 96.70%, and 97.90%, 96.50%
and 96.30% in categorizing the FAT and REST respectively,
whereas lowest recognition rate are 80.60% and 86.30% in
case of Extra Tree. Furthermore, all models provide higher
as well as uniform accuracies in classifying the REST which
is presumably due to higher discriminant feature set of the
REST groups as compared to the feature sets belonging to FAT
groups. However, optimum level of Ac is obtained in case of
inspired SVM with promising value of FSc of 97.5%, error
of 2.50%, AUC of 0.975 and κ of 0.950. It is pertinent to be
mentioned that the performances of learning models depend
on two important aspects, one is how preciously the proposed
feature search space framework extracts the relevant features
that comprehensively indicate the inherent characteristics of
signals associated with specific behaviours of drivers, and
other one is configuration of the learning models. Another
factor that influences the performance is the dimensionality
of feature space, which are taken into consideration through
the proper feature extraction strategy such as FAWT and
subsequent processing stages. In the context of good perfor-
mance, many deep learning such as DBN, recurrent neural
network, convolutional neural network (CNN), deep neural
network and deep Boltzmann machine show promising results
in biomedical applications. However, major difficulties of such
methods as mentioned earlier are dimensionality and lack of
understanding of causes of good performance and they act as
black box that limit their utilities in real-world setup [27].
The algorithm is implemented in MATLAB [Intel Core i5—
, RAM, Processor, XXXXXXX] and the computation time
falls in the range of xx–xx s including feature extraction and
classification. Significant results over wide varieties datasets
indicate robustness as well as stability of the proposed method.
Many factors such as complexity, cost burden and ease of
implementation promote to employ simple performance boost-
ing models with efficient feature extraction and processing
pipeline. As is evident, the proposed method is effective in
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TABLE I: Classification performance of the models under multiboosting strategy in terms of various markers.

# Multiboost-model Accuracy (Ac) [%] Accuracy (Ac) [%] Mean Ac [%] Error [%] F-Score [%] AUC Kappa (κ)
FATIGUE REST

Extra Tree 86.30 87.30 86.80 13.20 86.80 0.868 0.735
Random tree 86.50 89.60 88.00 12.00 88.00 0.880 0.760
K-NN 90.40 94.40 92.40 7.60 92.40 0.955 0.848
REP tree 92.10 94.20 93.10 6.90 93.10 0.985 0.863
CART 92.50 94.80 93.60 6.40 93.60 0.984 0.873
C4.5 93.30 94.60 94.00 6.00 94.00 0.988 0.879
Random Forest 94.80 94.00 94.40 7.60 94.40 0.989 0.888
Rotation Forest 96.70 96.30 96.50 3.50 96.50 0.981 0.929
ANN 96.90 96.00 96.50 3.50 96.50 0.978 0.929
SVM 97.10 97.90 97.50 2.50 97.50 0.975 0.950

reducing various cited issues and outweighs the challenges of
many typical classifiers. Thus, it also ensures the possibility of
getting good results over wide range of database. The efficacy
of the proposed method is also explored in comprehensive
comparison study in following section.

V. COMPARATIVE STUDY

In order to explore the efficacy of the advocated method
in the context of modality profile, type of feature, model and
its learning ability, this study focuses on many prior two-and
three-class classification methods. Table II includes two-class
methods that employed single modality profile EEG [1], [2],
[15], [17]–[19], eye vision [12] and video [10] and multiple
modalities profiles [6], [37], and three-class methods that em-
ployed multiple modalities [9], [14], [36]. It provides a quick
lookout on recent progress of learning methodologies and per-
formances with use of single or multiple modalities and typical
models. Although our study focuses on single modality profile,
however its comparison with various aforesaid methodologies
in respect to their various attributes helps understanding the
performance dependency profile, simplicity of feature extrac-
tion framework as well as the performances. Many methods
employed multi-scale entropy [1], autoregressive coefficient
for Bayesian neural network (BNN) [2], DWT-based dynamic
centre based binary pattern (DCBP) and multi threshold based
ternary pattern (MTTP) features [15], entropies, i.e., spectrum,
approximate, sample and fuzzy entropy (SpEn, ApEn, SamEn,
FuzEn) [18], EMD based intrinsic mode function features
(EMD-EMF) [27], fast Fourier transformation (FFT) using
EEG signals for detection of FAT, REST, normal (NOR), mild
fatigue (M-FAT), excessive fatigue (EX-FAT), sleep-deprive
(SLEEP-DEP) etc., and reported mean accuracies. However,
use of DWT in feature extraction framework creates high
dimensional feature space in terms of approximate and details
coefficients (i.e., low and high frequency components). It also
requires to choose the proper mother wavelet that often tricky.
Proper choice of wavelet also depends on ground subjective
knowledge and morphology of signal. In such circumstances,
choice of specific components for feature extraction may
fails in carrying inherent signal information. EMD based
approaches often suffer mode mixing problem [27]. In such
context, FAWT is more suitable for nonlinear problems as
it offer more tuning parameters for proper processing and
extraction of low frequency components for analysis. Some
methods employed multiple modalities data such as driver

facial expression [1] and video recording of facial expression
along with reaction time and steering error [7] which are
unreliable due to biased information. Some prior methods used
various statistical forms of entropies [18], band power, and
fractal density for fatigue detection and reported the infer-
ences. However, random combinations of features may provide
good performance over a limited dataset, but it may not ensure
good performance over varieties of datasets. Their major
limitations are involvement of multiple independent theoretical
frameworks for parameter selection, and complexity at each
stage which makes them unsuitable in real-world environment.
On the other hand, many methods employed various combina-
tion of multiple modalities profiles such as EEG+EOG [37],
EEG+EOG+EMG [9], EEG+ECG+EOG+fNIRS [6], and
EEG+EMG+respiration [36] that embedded to the HMM,
for feature extraction as shown in the Table II intending to
enhance classification results. These methods require multi-
ple processing frameworks for handling multiple modalities
profiles. The processing steps associated with same or differ-
ent types of mathematical frameworks significantly increase
theoretical bottleneck as well as computational cost. Some
methods employing eyes’ closure duration or percentage and
yawning frequency of mouth features and eye vision with
multiple poses [12]. However, EEG comprehensively reflects
brain activities that directly related to fatigue [15], [19]. In that
case, choice of single profile based proper feature searched
space framework is more suitable rather than considering
multiple profiles based searched framework for consistent
and reliable performances. Thus, EEG based fatigue detection
with FAWT based feature extraction framework and advanced
learning models that outweighs the challenges of various
typical models.

It is seen that aforesaid approaches employed typical shal-
low models like SVM, SVM-RBF, ANN, k-NN, EMD, ICA-
autoregressive, kernel SVM (k-SVM), LBP-SVM, principal
component analysis-SVM (PCA-SVM), and RF models which
are often considered as weak learners due to their inherent
theoretical bottlenecks and requirements of various parame-
ters tuning. For example, SVM-RBF requires proper setting
of kernel parameter (γ) during training stages before final
task, whereas shallow SVM suffers instability and over-fitting
issues. Deep learning models such as DBN [35], CNN, BNN
often provides good learning ability due to their multiple layer
structures and nodes. However, they introduce high degree of
freedom and computational cost, lack of model interpretations
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TABLE II: Comparison of advocated method with the state-of-the-art methods in the context of feature, classifier, driver states and
performance markers.

Method Signal Type of feature Classifier Subject State Ac [%] AUC
Chai et al. [2] EEG ICA-AR BNN 43 FAT,ALERT 88.20 0.930
Mu et al. [18] EEG (Sp, Ap,Sam, fuz)En. SVM 12 FAT,REST 87.69 –
Yin et al. [17] EEG Fuzzy-entropy SVM 12 FAT,NOR 95.00 –
Khushaba [37] EEG,EOG Fuzzy mutual-DWT LDA,LSVM, 31 DROWSINESS, FAT 95-97 –

KNN, k-SVM
Zhang et al. [9] EEG,EOG,EMG Approx. entropy ANN 20 NOR, MILD,EX-FAT ∼96.50 0.990

MOOD SWING,
Aritra et al. [14] EEG ApEn, SamEn, PCA-SVM 11 11 FAT STATES 86.00 –
Ahn et al. [6] EEG,ECG,EOG, fNIRS PSD-RPL LDA 11 REST, SLEEP-DEP 84.50 –
Luo et al. [1] EEG multi-scale En SVM 16 FAT, NOR 95.37 –
Zhang et al. [10] Video LBP SVM, LBP-SVM 1 FAT, NOR 85.85 –

Boost-LBP-SVM
Mandal et al. [12] Eye Vison Fused-feature PCA-SVM 4 2 EYE STATES ∼ 95.18 –
Zhao et al. [13] Video (eye, mouth) texture DBN 30 DROWSINESS 96.70 –
Tuncer et al. [15] EEG DWT-(DCBP,MTTP) KNN,RF,ANN,SVM 16 FAT,REST 97.29 –
Kaur et al. [19] EEG EMD-IMF ANN 8 DROWSY,AWAKE 88.22 –
Fu et al. [36] EEG,EMG, Respiration Contextual HMM 12 ALERT, M-FAT,FAT – 0892
The Proposed EEG FAWT-Features Multiboost-SVM 16 FAT,REST 97.90,97.10 0.975

and reason of higher performances. In contrast to them, the
proposed FAWT-multiBoost ensemble method is simple, well-
defined and it is single modality based approach. It adopts
an advanced learning under unique multiBoost criteria and
provides significant performances which are superior to the
prior methods. In comparison to the various methods, the
proposed method not only provides higher performance than
single modality based methods [1], [2], [12], [14], [15], [17]–
[19], but also even higher than multiple modalities based
methods [6], [9], [10], [13], [36], [37]. It is to be mentioned
that the proposed method shows very close performance with
that of the method [15], however, unlike that our method
employed well-defined FAWT based feature extraction frame-
work and strong learning model. In context to feature, the
proposed method enables an easy feature extraction pipeline
as compared to other methods, specifically, multiple modalities
based methods. In order to ensure effectiveness of the proposed
feature extraction strategy and the estimated features are
embedded to many ensemble models and performances are in-
vestigated over multiple partitioned datasets. Promising results
outlined in Table I and subsequent comparison in II conclude
many important aspects. First, EEG based methods are effec-
tive and the proposed feature extraction framework effectively
extracts compact information contents that reflects brain phys-
iological activities. Second, low order FAWT based features
are comprehensive in nature for which multiple ensemble
methods quickly learn due to their multifarious advantages
and provide higher outcomes with minimum diversity on the
outcomes. Importantly, the performance of classifiers even of
the best classifier depends on the quality of features extracted
by a given frame. Thus, it ensures high possibility of getting
good performance over wide databases of same or different
modality, although it is not undertaken in this study. Therefore,
limitation of this study is that the performances are assessed
over single dataset that was partitioned. Dataset was collected
from few participants, future study will aim to include large
dataset of more participants. It is also required to adopt the
proposed scheme for classification of others fatigue related
studies using diverse datasets. This issue is justified using

multiple partitioned datasets and subsequently good inferences
are obtained through cross-validation technique. Since all
subsets are associated with same study groups, thereby, it
is required to employ diverse dataset as per requirement of
machine learning protocol, which will be studied as future
work.

VI. CONCLUSION

This paper presents a flexible analytic wavelet transform
based advanced learning model with unique performance
boosting strategy for detection of driver fatigue states using
EEG signals. In developing the proposed model, FAWT based
feature extraction strategy was developed based on filtered
EEG signals and subsequently significant statistical measures
with p < 0.05 were evaluated. Then, features were embed-
ded to ensemble learning models-SVM, CART, k-NN, ANN,
RF, RoF, REP-tree, LAD-tree, C4.5 and classification perfor-
mances were investigated in terms of accuracy and statistical
parameters through the cross-validation technique. Promising
performances of various learning models are compared with
many state-of-the-art methods. The method achieves an opti-
mum accuracy in case of multiBoost-SVM which is 97.90% in
categorizing REST with an average accuracy of 97.50% over
both states. Also reasonably higher values of F-score, AUC
and κ also indicate the effectiveness of the advocated method.
Thus, significant performances as well as comparison analysis
with the prior methods evince the integrity and reliability of
proposed method which utilized single modality data profile,
for real-time implementation. The future work will be carried
out over wide varieties of dataset and then on implementing
wearable prototype device for real-world application.
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