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Abstract
Automatic grouping of textual answers has the
potential of allowing batch grading, but is chal-
lenging because the answers, especially longer
essays, have many claims. To explore the fea-
sibility of grouping together answers based on
their semantic meaning, this paper investigates
the grouping of short textual answers, proxies
of single claims. This is approached as a para-
phrase identification task, where neural and
non-neural sentence embeddings and a para-
phrase identification model are tested. These
methods are evaluated on a dataset consisting
of over 4000 short textual answers from various
disciplines. The results map out the suitable
question types for the paraphrase identification
model and those for the neural and non-neural
methods.

1 Introduction

Computer-assisted assessment brings about the
promise of alleviating the workload of teachers, al-
lowing them to concentrate manual efforts towards
more creative pedagogical tasks. Not all assess-
ment types, however, have widely adopted fully
automated or computer-assisted grading methods.
Essays, for example, are a common way to evaluate
student knowledge, but are resource-demanding to
grade. An angle to automatic essay evaluation is
to group together similar essays for batch grading,
but this is complicated by the complex structure
of essays. Short answers, on the other hand, of-
ten consist of only one or a few claims, and thus
represent a desirable starting point for textual an-
swer clustering. In addition to being a simplified
target for studying textual answer clustering, short
answers are also a common form of assessment;
Very short answer questions have been shown to
have desirable traits of reliable assessments, such
as the scores showing a fair and balanced distribu-
tion (Puthiaparampil and Rahman, 2020).

Automated short answer assessment is used in
this paper as an umbrella term to refer to compu-

tationally assisting the evaluation of short textual
answers, while there is no unified definition for
short textual answers (Roy et al., 2015). Whereas
some impose only length restrictions on the tex-
tual answers (e.g. one phrase to one paragraph),
others have additional criteria such as the answer
being a natural language response, or the focus of
the assessment being knowledge content instead of
grammar (Burrows et al., 2015; Roy et al., 2015).
In practice, the definition for short textual answers
depends on the actual application, and the answers
vary in terms of textual length, topic, assessment
criteria, educational level of students, etc. These
variations have fueled the long ongoing research
on automated assessment of short textual answers.
Roy et al. (2015) survey computer-assisted assess-
ment techniques developed in the years 2000–2015
targeting short answers ranging from a sentence
long to a maximum of 100 words. They suggest
a matchmaking framework to guide the choice of
appropriate techniques for practitioners and call
for computer-assisted assessment methods that do
not rely on model answers, as automated short an-
swer grading (ASAG) systems usually do. One
such alternative method is to group together se-
mantically similar short textual answers for batch
grading. This is a less explored research area but
has been shown to effectively reduce the number
of manual actions required for grading (Basu et al.,
2013).

The essence of both ASAG and short answer
grouping is how the texts are represented, and thus
their research methods are influenced by the ad-
vances in semantic textual similarity (STS) and
paraphrase research. Here, a typical ASAG sys-
tem would measure the similarity between teacher-
supplied model answer(s) and student answers,
whereas short answer grouping measures and
groups student answers among themselves. Apart
from traditional string-based and corpus statistics-
based methods, dense vector representation meth-
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ods based on deep learning are naturally highly
applicable to the task. A typical example of such
methods are Sentence-Transformers (Reimers and
Gurevych, 2019) that adapt the BERT model to sen-
tence representation by explicitly optimizing the
similarity of dense-vector representation for pairs
of sentences known to carry the same meaning.
Such models can be applied to answer grouping in
a straightforward manner by comparing the dense
representations of sentences across different an-
swers. In a different line of work, Kanerva et al.
(2021b) approach paraphrase detection as a form of
semantic search by training a question-answering
type of a model to detect a paraphrase of a query
from a given context document. This methodology
can be seen as highly relevant to examining answer
grouping: given an answer, or a part of an answer
constituting a single claim, such model can then
identify answers containing the same claim or its
paraphrase among other students’ answers. Such
an approach would, in theory, then allow the grad-
ing teacher to retrieve all such answers and carry
out a common grading action. While not elimi-
nating manual grading work, this approach could
potentially significantly reduce the need, if paired
with an appropriate interface and workflow.

In this paper, we pursue this direction, approach-
ing answer grouping from an information retrieval
(IR) perspective, i.e. given an answer, or a claim
from one answer, the task is to identify other an-
swers containing the same claim or its paraphrase,
not relying on the availability of model answers.
The objective here is to retrieve similar answers for
a given query to support e.g. batch grading. While
we do not want to limit our methods to short answer
assessment only, full long essays are likely too long
as retrieval candidates. Rather than retrieving on
essay level, the natural unit for the retrieval would
be to do it on the claim level, looking for similar
claims inside the essays. However, for the time
being we lack any manual annotation for individ-
ual claims posed in the essays, making the evalua-
tion of such claim-level retrieval methods difficult.
Therefore, we approach the problem by using short
answers only, where the answer typically includes
only one or a few claims. The overall score as-
signed for the answer can then be used as a proxy
of claim similarity, as all answers with high scores
can be assumed to contain similar claims, even if
using different wordings. We therefore formulate
the overall task setup as such: Given one claim

as a query (in the form of a short answer), how
well the experimented models are able to retrieve a
similar claim among all candidates answering the
same prompt (here “prompt” refers to the question
posed by the teacher to which the students are an-
swering) when judging the similarity based on the
scores assigned to the answers. We use a dataset of
over 4,000 teacher-graded short answers from ac-
tual university examinations of 24 distinct courses.
We test non-neural and neural sentence embedding
methods as well as the above-mentioned question
answering -based paraphrase retrieval model, and
map which types of questions are suitable for what
types of answer grouping methods.

2 Related work

The most researched direction for automated evalu-
ation of short textual answers is automatic short an-
swer grading (ASAG). This research field has seen
the application of rule-based, machine learning,
and deep learning methods (Burrows et al., 2015;
Roy et al., 2015; Bonthu et al., 2021). ASAG is typ-
ically modelled as a supervised learning task and
seen as either a classification or a regression task,
where a student answer is compared to a model
answer, and the output label or score is based on
their similarity. Consequently, model answers are
usually required for these systems. Camus and
Filighera (2020) test the performance of various
Transformer-based (Vaswani et al., 2017) language
models on the SemEval-2013 dataset (Dzikovska
et al., 2013), one of the most common ASAG
dataset. They find that a Robustly Optimized BERT
Pretraining Approach (RoBERTa)-large model (Liu
et al., 2019) fine-tuned on the Multi-Genre Natu-
ral Language Inference (MNLI) dataset (Williams
et al., 2018) performs best.

Short answer grouping is a less explored research
direction, where short textual answers are grouped
together based on their similarity. Basu et al. (2013)
use a feature-based similarity metric to group short
textual answers into hierarchical clusters. Their
features include i.a. difference in length, fraction
of words with matching base forms, and cosine-
similarity of TFIDF vectors. They show that such
clustering can effectively reduce the number of ac-
tions required for grading. Hämäläinen et al. (2018)
use the Hyperlink-Induced Topic Search (HITS) al-
gorithm (Kleinberg, 1999) to cluster open-ended
questionnaire answers from students. Applying this
method to both English and Finnish datasets, they
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obtain satisfactory results on the English dataset
but less ideal results on the Finnish dataset, poten-
tially due to the Finnish answers being longer in
length. Both the study of Basu et al. (2013) and
Hämäläinen et al. (2018) predate the era of deep
neural network-based methods of meaning repre-
sentation.

3 Data

Our experiments are based on a large scale dataset
of over 261K anonymized textual answers from
different university-level examinations. However,
for the purpose of this study, the dataset is heavily
filtered in order to obtain a subset including only
examples considered as short answers suitable for
the study. We aim to find prompts looking for
concise fact-based descriptions, which are likely
to contain only a single claim and therefore have
an increased likelihood that two answers with a
high score are likely to be paraphrases of each
other (although that naturally cannot be guaranteed
without manual annotation). Such suitable prompts
ask for example term definitions, listings of the
components of certain concepts, explanation of
the workings of a process or device, explanations
why e.g. a German noun is of a certain gender, or
basically anything targeting to a short semantic-
focused answer. In addition to the proper answer
content, we also need the prompts to fit to our
retrieval task setting, meaning that for each unique
prompt, we need to have several student answers
as retrieval candidates. One such example prompt
together with few graded student answers for it is
given in Table 1.

The original dataset is a collection1 of 261K stu-
dent answers gathered across various disciplines in
the University of Turku, Finland. Together with the
textual answers, the data include the course identi-
fier, question prompt, assigned score, and possible
score range for each answer. The textual answers
are written by mainly undergraduate students, and
the most common languages are Finnish and En-
glish. Figure 1 illustrates the data filtering process.
The filtering criteria for identifying a suitable short
answer subset for this study are as follows: the
prompt length must be under 10 tokens and the
answer length under 30 tokens as determined based
on the FinBERT model tokenizer2, and the lan-

1The nature of student examination answer data unfortu-
nately precludes its free distribution.

2https://huggingface.co/TurkuNLP/
bert-base-finnish-cased-v1

guage of the answer must be Finnish. All answers
with 0 as the highest possible score are excluded,
as these are often dummy prompts related to course
feedback, assignment submission, or attendance
rather than being actual exam questions. Addi-
tionally, due to the retrieval task setup used, each
prompt included in the subset must have at least
10 answers passing the above-mentioned filtering
in order to have enough retrieval candidates in the
experiments.

After the automatic filtering, some amount of
manual cleaning is also used to remove answers
and prompts unsuitable for the experiments. These
mostly include prompts from language courses tar-
geting to grammatical correctness rather than se-
mantics (therefore including very little variation),
prompts asking the students to name parts of a fig-
ure, or occasional dummy prompts that passed the
zero score filter.

Statistics of the final filtered subset are summa-
rized in Table 2, the final dataset including prompts
from 24 different courses and 12 different disci-
plines. In total, there are 4,082 student answers.
The disciplines of the courses are otherwise evenly
distributed, except for life sciences, which has 9
courses with 93 prompts and 2523 answers, ac-
counting for more than half of the obtained short
answers. On average, each prompt has about 24
different answers. The maximum number of an-
swers a prompt has is 75, while 22 prompts pass
the filter with the minimum of 10 answers. Since
the highest possible score varies across courses
and prompts, the assigned scores of each answer
are normalized to a range of 0–1 with respect to
the highest possible score. For pass-fail questions,
scores of passed answers are converted to 1 and the
failed ones 0. The normalized score distribution of
the short answers is shown in Table 3.

4 Experiments

The grouping of semantically similar answers is
approached from an IR point of view. For each an-
swer, the answer itself is considered the query and
all the other answers to the same prompt are con-
sidered the documents. This is repeated for every
answer of a prompt. Three methods are tested for
retrieval: TFIDF, Sentence-Transformers, and the
paraphrase span detection model (Kanerva et al.,
2021a). The grade is used as a proxy allowing for
method comparison: intuitively, a correct retrieval
i.e. an answer which paraphrases the answer used
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Prompt: digital legacy
Score Answer
1.0 A digital legacy is all the files and data about a person that remain on the internet or the digital

world after the death of the person.
1.0 The trace that we leave behind digitally when we die (e.g. files, digital photos and usernames).
1.0 All the digital material that remains of a person after death. Digital legacies include for

examples passwords, usernames and photos of the deceased person.
0.5 Traces left by the user of a computer or other technological device. What websites they have

visited and what software they have on their device.
0.5 Any data a person leaves behind on the Internet or other computer systems.
0.0 All the things that were born in the digital form.
0.0 Digital legacy means electronic waste, often exported to the third world.
0.0 The evolutionary trajectory of digital devices.

Table 1: An illustrative example of one example prompt together with few student answers for it translated into
English.

Figure 1: Illustrative diagram of the data filtering process.

Courses Prompts Answers
Full dataset
Total 1,745 — 261K
Filtered subset
Communication 1 1 10
Computer sciences 1 14 393
Economics 1 3 37
Educational sciences 2 6 62
German 1 14 172
Information 1 11 437
systems science
Life sciences 9 93 2523
Media research 1 1 10
Medicine 2 3 33
Philology 1 6 86
Philosophy 1 5 65
Psychology 3 14 254
Total 24 171 4,082

Table 2: Statistics of the filtered short answers dataset
used in this study.

as the query, should have the same grade. Conse-
quently, a method which is better at the retrieval
task should, on average, be more likely to retrieve
answers with the same score as the query than a
method which is worse at the retrieval task. As
we are mostly interested in relative method perfor-
mance, we measure and report the success of the

Normalized score Occurrence
0.0 754
0.25 53
0.5 298
0.75 137
1.0 2792

Table 3: Occurrences of the normalized score of 4082
short answers. 15 values between the range of 0-1 are
omitted in the table due to low (<10) occurrences.

retrieval by top-1 accuracy and R-precision. The
relevance of the retrieval is binary, meaning that re-
trieval with matching grade to the query is counted
as “correct”, and otherwise “incorrect”.

4.1 TFIDF
The term frequency–inverse document frequency
(TFIDF) represents a commonly used family of IR
metrics based on lexical overlap. TFIDF estimates
the importance of a word in a document by the num-
ber of times it appears in the document, and the
inverse of the number of documents the word ap-
pears in a document collection. It generates sparse
high-dimensional vectors without inherent similar-
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ity between words.
For our experiments, TFIDF representation is

generated for every short answer. The TFIDF rep-
resentation of an answer is calculated from the
entire collection of over 201K Finnish textual an-
swers. The features used are the ngrams (n=2–5)
of character within word boundaries. The short
answers are used as-is, without stop word removal
or lemmatization because these processing did not
improve the results in our preliminary experiments.

4.2 Sentence-Transformers

Sentence-Transformers are trained from language
models such as BERT or XLM-R (Conneau
et al., 2020) using Siamese or triplet networks
to induce sentence encoders whose representa-
tion can be compared using cosine similarity
(Reimers and Gurevych, 2019). The resulting
representations are dense, low-dimensional,
and context-sensitive. For our experiments,
two Sentence-Transformer models available
on HuggingFace (Wolf et al., 2019) are tested:
sbert-cased-finnish-paraphrase and
paraphrase-xlm-r-multilingual-v1
(thereafter SBERT-Finn and XLM-R←SBERT-
para). The SBERT-Finn model is based on the
FinBERT-base-cased model (Virtanen et al., 2019),
fine-tuned for an epoch on the Finnish Paraphrase
Corpus (Kanerva et al., 2021a), as well as 500K
of positive and 5M of negative automatically
collected paraphrase pair candidates3, with mean
pooling and a classification objective. The
XLM-R←SBERT-para is fine-tuned from the
XLM-RoBERTa-base model (Conneau et al.,
2020) to mimic the embeddings of the English
Sentence-BERT (Reimers and Gurevych, 2020).
The fine-tuning uses a teacher–student framework
and parallel data of over 50 languages. The
resulting model was reported to outperform
multiple competitive baselines on the multilingual
semantic textual similarity 2017 dataset (Cer et al.,
2017).

4.3 Span detection model

Treating paraphrase recognition as a span detection
task, Kanerva et al. (2021b) train FinBERT models
to paraphrase recognition taking inspiration from
the question answering task, where given a query, a
question answering model retrieves a span out of a
given document as the answer to the query. Instead

3https://turkunlp.org/paraphrase.html

of retrieving answers, the paraphrase span detec-
tion model takes in a query and identifies a span
from the given document that paraphrases the query.
The models are trained on the Finnish Paraphrase
Corpus, which includes not only the paraphrase
pairs but also their context documents where each
paraphrase statement originally occurred. They
train two flavors of models, one with only positive
examples always selecting a span from the given
document, and the other being able to produce a
null span, indicating that no paraphrase of the query
can be detected from the given document.

For our experiments, an answer of a prompt is
used as the query and all other answers from the
same prompt are concatenated as the context docu-
ment, as shown in Figure 2. The model produces
candidate spans that it detects as paraphrases of the
query, and the most likely prediction is selected
as the final retrieval. The full model that also pre-
dicts null spans is used as there may not always
be other answers that are semantically similar to
an answer. The model produces several (start-of-
span, end-of-span) candidates sorted based on an
assigned probability score for each. The model is
modified so that the probability is always calcu-
lated for a whole answer, instead of arbitrary spans.
The retrieved spans can be considered as all the
predictions ranked before the null span.

4.4 Evaluation metrics

Top 1 accuracy measures if the first retrieved doc-
ument (an answer to the same prompt as a query)
is correct, i.e. if it has the same grade/score as the
query. Top 1 accuracy allows for quick understand-
ing of how well the method roughly works, though
it does not take into account the expected value of
a random retrieval (e.g. if all the answers to the
prompt score the same, the accuracy is high no
matter what the model retrieves), nor how close
numerically the score of the retrieval is to that of
the query, if they are not equal. The course-wise
top 1 accuracy is reported, which is calculated as
the arithmetic average of the prompt-wise top 1 ac-
curacy. The prompt-wise top 1 accuracy is in turn
calculated from the arithmetic average of the top
1 accuracy of all the queries answering the same
prompt. For the span detection model, a null predic-
tion is ignored for the calculation of top 1 accuracy.
That is, the first non-null prediction is taken if the
first prediction is null.

Since the grades of all the answers are available,
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Figure 2: Illustration of the span detection setup. The blue text is in its original language while the black text has
been translated from Finnish.

the total number of relevant documents is known.
This allows for the calculation of R-precision, the
number of relevant documents in the first R re-
trievals, where R is the total number of relevant
documents for a query. R-precision is also equal
to recall with R as cutoff. As with the top 1 accu-
racy, null spans are ignored for the calculation of
R-precision in the case of the span detection model.

5 Results

The top 1 accuracy and R-precision of the methods
across the 24 courses are shown in Tables 4 and 5
respectively. Courses numbers 8 and 17 have val-
ues of 1.0 on both metrics for all methods because
both of them have 10 answers to a prompt where
all students answer correctly. Excluding these
two courses, the span detection model scores the
best or equally the best with another method on
11 and 12 courses respectively on top 1 accuracy
and R-precision, outperforming the other methods.
SBERT-Finn performs well in terms of R-precision
on the life sciences discipline, performing the best
on 8 out of 9 courses. The numerical differences of
the accuracy values among these four methods are
oftentimes minimal, and we investigate the ones
with bigger differences to establish whether cer-
tain kinds of prompts are particularly suitable for
a given method. We observe that the neural rep-
resentation is advantageous when the prompts are
challenging, which leads to the students inventing
plausible answers using the keywords. An example
of a query from a prompt where the TFIDF method

underperforms the neural method by a large margin
(0.4 vs. 0.7) is shown in Table 6. This prompt is
challenging not only because it requires the recol-
lection of certain principles, but also that there are
multiple key points the students have to make to
obtain a full score.

Compared to the other methods, the span detec-
tion model performs well on retrieving relevant
answers, but it also assigns relatively high probabil-
ities to null spans. When using the position of the
null span as cutoff instead of the number of rele-
vant documents, we observe that the span detection
model scores the best or equally the best on only
6 out of 24 courses, whereas TFIDF, SBERT-Finn
and XLM-R←SBERT-para achieve 10, 14, and 7
respectively4.

6 Discussion

In this paper, the span detection model is forced to
only predict the probabilities of whole documents
being paraphrases of the query. If this restriction
is removed, the span detection model is capable of
predicting arbitrary spans as the paraphrases of the
query. This becomes relevant when obtaining the
full score requires mentioning of multiple claims.
For example, if a prompt asks students to explain
abbreviations, a full scoring answer requires the
student to provide the full form of an abbreviation
and explain what it means. In our initial experi-

4This result is not shown, since the cutoff is only mean-
ingful for the span detection model, and its application to the
other methods is merely for comparison purposes
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Course Discipline TFIDF SBERT- XLM-R← Span No. No.
ID Finn SBERT-para detection prompts queries
1 communication 0.6 0.6 0.3 0.6 10 1
2 computer sciences 0.619 0.622 0.654 0.649 393 3
3 economics 0.30 0.39 0.39 0.31 37 2
4 educational sciences 0.3 0.3 0.1 0.4 21 1
5 educational sciences 0.49 0.56 0.44 0.56 41 2
6 German 0.84 0.81 0.76 0.82 172 2
7 information systems science 0.471 0.474 0.458 0.489 437 3
8 life sciences 1.0 1.0 1.0 1.0 10 1
9 life sciences 0.97 0.97 0.91 0.91 32 2

10 life sciences 0.49 0.46 0.36 0.54 33 2
11 life sciences 0.855 0.867 0.859 0.864 748 3
12 life sciences 0.852 0.841 0.853 0.864 365 3
13 life sciences 0.89 0.88 0.88 0.90 198 2
14 life sciences 0.83 0.76 0.75 0.75 114 2
15 life sciences 0.788 0.794 0.779 0.800 990 3
16 life sciences 0.74 0.70 0.68 0.65 33 2
17 media research 1.0 1.0 1.0 1.0 10 1
18 medicine 0.6 1.0 0.8 1.0 12 1
19 medicine 0.5 0.7 0.6 0.5 21 1
20 philology 0.73 0.65 0.68 0.76 86 2
21 philosophy 0.44 0.47 0.45 0.45 65 2
22 psychology 0.58 0.44 0.52 0.50 94 2
23 psychology 0.66 0.68 0.75 0.75 68 2
24 psychology 0.54 0.67 0.55 0.66 92 2

Number of best or equal best 8 11 5 13 — —

Table 4: Top 1 accuracy by course. No. prompts refers to the number of prompts, or exam questions, in a course. No.
queries refers to the total number of short answers in a course.

ments, we observe that the span detection model
can retrieve a span out of the full answer which is
semantically equivalent to a partial answer. The
evaluation of such retrievals, however, is not possi-
ble given our current data without manual annota-
tions because a full scoring answer has a different
score than a partial answer, nor is there a way to
attribute which sub-spans of the full answer con-
tribute how much to the final score. The exploration
of how the span detection model can be applied to
answers consisting of multiple claims may pave the
way to eventually automatically evaluating essays.
A potential way is to combine the answers of re-
lated prompts as queries and documents. We leave
this to future work.

A challenge for experimental design is the se-
lection of suitable metrics. Top 1 accuracy has the
advantage of being easily understandable and in-
terpretable, but its calculation ignores the expected
value of random retrievals. R-precision mitigates
the randomness to some extend, since it takes into
account the top R retrievals where R is the number
of relevant documents. When all the documents are
relevant, R-precision is always 1 and it is not imme-
diately obvious if the model performs meaningful
prediction, though this can arguable be regarded
as unsuitable data for retrieval, or, from a practical

point of view, the retrievals will always be relevant.
The design of R-precision is not completely com-
patible with the nature of the span detection model,
as the model predicts null, which has to be taken
into account if it ranks among the top R. The null
prediction can either be regarded as an irrelevant
prediction, or ignored altogether as we have done
so in this paper. The use of binary relevance means
a retrieved document is either relevant if it has the
same score as the query, or irrelevant if it does not.
This does not take advantage of some of the scores
being of higher granularity. For example, if the
query scores 1 and model A retrieves a document
scoring 0.7 and model B a document scoring 0.3,
the retrieval of model A is likely better than that of
model B. An ideal metric would thus take into ac-
count the numerical difference between the scores
of the query and the retrieval, as well as the infor-
mativeness of the set of documents available for
retrieval.

A class of metrics we have explored but did not
eventually use is normalized discounted cumulative
gain (NDCG). NDCG is a class of commonly used
IR metrics, where the discounted cumulative gain,
which sums the relevance of the query and retrieval
(which can be graded instead of binary) discounted
by the ranked position, is normalized by the ideal

268



Course Discipline TFIDF SBERT- XLM-R← Span No. No.
ID Finn SBERT-para detection prompts queries
1 communication 0.5 0.4 0.5 0.5 10 1
2 computer sciences 0.589 0.608 0.600 0.615 393 3
3 economics 0.29 0.38 0.35 0.44 37 2
4 educational sciences 0.4 0.4 0.3 0.5 21 1
5 educational sciences 0.42 0.48 0.42 0.54 41 2
6 German 0.86 0.82 0.78 0.80 172 2
7 information systems science 0.387 0.403 0.393 0.400 437 3
8 life sciences 1.0 1.0 1.0 1.0 10 1
9 life sciences 0.93 0.96 0.91 0.84 32 2

10 life sciences 0.59 0.63 0.59 0.62 33 2
11 life sciences 0.790 0.802 0.792 0.799 748 3
12 life sciences 0.809 0.829 0.817 0.822 365 3
13 life sciences 0.89 0.89 0.88 0.88 198 2
14 life sciences 0.76 0.74 0.76 0.77 114 2
15 life sciences 0.737 0.741 0.738 0.734 990 3
16 life sciences 0.60 0.64 0.59 0.54 33 2
17 media research 1.0 1.0 1.0 1.0 10 1
18 medicine 0.6 0.6 0.5 0.7 12 1
19 medicine 0.6 0.6 0.6 0.6 21 1
20 philology 0.58 0.58 0.56 0.60 86 2
21 philosophy 0.43 0.43 0.42 0.44 65 2
22 psychology 0.42 0.45 0.40 0.42 94 2
23 psychology 0.65 0.68 0.70 0.71 68 2
24 psychology 0.54 0.56 0.54 0.59 92 2

Number of best or equal best 6 12 4 14 — —

Table 5: R-precision by course. No. prompts refers to the number of prompts, or exam questions, in a course. No.
queries refers to the total number of short answers in a course.

Query 0.5 The central principle of processing level theories is that the quality of information is thought
to be more important than its duration.

Model Score Top 1 retrieval
TFIDF 0.0 In processing level theory, stimuli are processed in parts, at different levels.

SBERT-Finn 0.5 The theory is that the more information you process, the better it is remembered. The quality of
processing is more important than the duration.

XLM-R← 0.5 The most important thing in information processing is quality, not duration.
SBERT-para

Span detection 0.5 The most important thing in information processing is quality, not duration.

Table 6: Example retrievals of the four methods to a query answering the prompt “Key principles of the theory of
processing levels”. Example of a full-scoring answer is “The quality of a process means more than its duration. The
processing of meanings improves memory retention.”

discounted cumulative gain (Wang et al., 2013). It
is not suitable for this task, however, as the task
differs from typical IR scenarios in that we have
a small number of answers where the retrieval of
all relevant answers are important, whereas in e.g.
web search the focus is on ranking the most relevant
document as high as possible.

The multilingual sentence embedding model
does not outperform the non-neural baseline. This
is somewhat surprising, as some of the short an-
swers contain code-switching, such as the exam-
ples in Figure 2. This shows that language-specific
sentence embeddings and models are still more
suitable for this task.

The task setup is only an approximation. The
same grade does not imply the query and document

being paraphrases, not for high grades nor for low
grades, unless the grading criteria is semantically
stringent, in the cases of e.g. translation studies.
However, the hope is that the noise can be mitigated
by using a large dataset and some signals can be
seen as to whether the models are able to retrieve
semantically documents. Our results show that they
indeed can.

7 Conclusion

In this work, we explored several methods for
grouping student answers to exam prompt. In ad-
dition to the standard setup whereby whole short
answers are represented as either sparse (TFIDF)
or dense (Transformer) vectors and compared to
one another, we also tested a more retrieval-style
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approach, whereby we formed documents by con-
catenating a number of answers to the same prompt
and testing to what extent the model is able to re-
trieve similar answers from such documents. This
approach models the case of matching individual
claims in longer answers.

Unsurprisingly, we find that the dense representa-
tions are more suitable to the task. Interestingly, we
find that a span detection model trained on Finnish
paraphrase data performs better than sentence-level
embedding comparison methods. It might therefore
be fruitful to pursue models which are not restricted
to apriori given sentence boundaries, and which are
capable of finding individual claims in collections
of potentially longer essay-style answers.

While the study is based on real exam answers
from a number of courses, the data lacks manual
annotation of the semantic equivalence of answers,
which is challenging to produce. Further, to be able
to use the grades as a proxy to retrieval evaluation,
we had to restrict ourselves to short, fact-checking
questions, only using a small portion of the over
200,000 answers we have at our disposal. A natural
further study would expand the use of the retrieval
model to longer answers and employ teachers to
evaluate the retrievals provided by the model and
establish the overall benefit of such approach.
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