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Summary We examine a nonparametric least-squares regression model that endogenously
selects the functional form of the regression function from the family of continuous, monotonic
increasing and globally concave functions that can be nondifferentiable. We show that this
family of functions can be characterized without a loss of generality by a subset of continuous,
piece-wise linear functions whose intercept and slope coefficients are constrained to satisfy
the required monotonicity and concavity conditions. This representation theorem is useful at
least in three respects. First, it enables us to derive an explicit representation for the regression
function, which can be used for assessing marginal properties and for the purposes of forecasting
and ex post economic modelling. Second, it enables us to transform the infinite dimensional
regression problem into a tractable quadratic programming (QP) form, which can be solved
by standard QP algorithms and solver software. Importantly, the QP formulation applies to the
general multiple regression setting. Third, an operational computational procedure enables us
to apply bootstrap techniques to draw statistical inference.

Keywords: Concavity, Convexity, Curve fitting, Linear splines, Local linear approximation,
Nonparametric methods, Regression analysis.

1. INTRODUCTION

Nonparametric regression techniques that avoid strong prior assumptions about the functional
form are attracting increasing attention in econometrics. Nonparametric least squares subject
to continuity, monotonicity and concavity constraints [henceforth referred to as Convex
Nonparametric Least Squares (CNLS)] are one of the oldest approaches, dating back to the seminal
work by Hildreth (1954). This method draws its power from the shape constraints that coincide
with the standard regularity conditions of the microeconomic theory (see e.g. Varian, 1982, 1984).
In contrast to the kernel regression and spline smoothing techniques, CNLS does not require
specification of a smoothing parameter. Thus, CNLS circumvents the fundamental bias-variance
tradeoff (see e.g. Yatchew, 2003, for discussion) associated with most other nonparametric
regression techniques.

Earlier work on CNLS has mainly focused on the statistical properties, and the essential aspects
of the CNLS estimators are nowadays well understood. The maximum-likelihood interpretation
of CNLS was already noted by Hildreth (1954), and Hanson and Pledger (1976) have proved
its consistency. More recently, Nemirovskii et al. (1985), Mammen (1991) and Mammen and
Thomas-Agnan (1999) have shown that CNLS achieves the standard nonparametric rate of
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convergence OP(n−1/(2+m)) where n is the number of observations and m is the number of
regressors. Imposing further smoothness assumptions or derivative bounds can improve the rate
of convergence and alleviate the curse of dimensionality (see e.g. Mammen, 1991, Yatchew, 1998,
Mammen and Thomas-Agnan, 1999, and Yatchew and Härdle, in press). Groeneboom et al. (2001)
have derived the asymptotic distribution of the univariate CNLS estimator at a fixed point.

Despite the attractive theoretical properties, empirical applications of CNLS remain scarce.
There are many factors restricting the diffusion of CNLS to econometrics. In our view, three major
barriers are

(1) the lack of explicit regression function,
(2) computational complexity and
(3) difficulty of statistical inference.

The lack of a tractable closed-form expression for the CNLS regression function presents a
clear disadvantage relative to the parametric methods and some other nonparametric techniques
such as kernel smoothing. Indeed, economists are often interested in the marginal properties and
elasticities of the function, which cannot be assessed based on a discrete set of fitted values
provided by CNLS. Moreover, a simple closed-form expression of the regression function is
necessary for using the regression results in ex post economic modelling (e.g. using estimated
utility and production functions in a computable general equilibrium model).

The computational complexity of CNLS is due to the fact that the functional form of the
regression function is not assumed a priori, but it is endogenously selected from an infinitely
large family of continuous, monotonic increasing and concave functions. Efficient computational
algorithms have been developed by Wu (1982), Fraser and Massam (1989), Goldman and Ruud
(1995), Ruud (1996) and Meyer (1999), but the implementation of these procedures requires
considerable programming skills. More importantly, most existing computational procedures are
restricted to the single regressor case where the observations can be sorted according to the
explanatory variable. These algorithms cannot be generalized (even in principle) to the multiple
regressor setting involving a vector of regressors.

In principle, conventional methods of statistical inference could be adapted to the context
of CNLS. However, the degrees of freedom depend on the number of different hyperplane
segments or the number of observations projected to a given segment (see Meyer, 2003, 2006,
for discussion). Moreover, the segments are endogenously determined in the model, and the
coefficients of the segments may not be unique in the multiple regression setting. For these reasons,
the bootstrap approach appears to be the most promising tool for statistical inferences (see e.g.
Efron, 1979, 1982, and Efron and Tibshirani, 1993). However, implementing computationally
intensive bootstrap simulations requires a fast, tractable algorithm for computing the estimator.

This paper presents a representation theorem that helps us to overcome (or at least lower) each
of these three barriers. Firstly, drawing insight from the celebrated Afriat’s Theorem, we derive
an explicit representor function which can be used for assessing marginal properties and for the
purposes of forecasting and ex post economic modelling. The representor function is a simple
piece-wise linear function that is easy to compute given the coefficients estimated by CNLS.
Secondly, the representation theorem is useful from the computational point of view: it enables
us to transform the infinite dimensional CNLS problem into a tractable quadratic programming
(QP) form, which can be solved by standard QP algorithms and solver software. Importantly,
the QP formulation applies to the general multiple regression setting. Thirdly, existence of a
tractable computational procedure enables one to apply computationally intensive bootstrap or

C© 2008 The Author. Journal compilation C© The Royal Economic Society 2008



310 T. Kuosmanen

Monte Carlo simulations to draw statistical inference or assess the small sample performance
of the estimator, respectively. Finally, in addition to tackling these three barriers, we point out a
number of interesting links between CNLS and parallel developments in the literature.

The rest of the paper is organized as follows. Section 2 presents our main result. Section 3
applies the result to formulate the infinite dimensional CNLS problem as a finite dimensional
QP problem. Section 4 derives an explicit representor function that provides the first-order
approximation for any arbitrary regression function in the neighbourhood of observed points.
Section 5 illustrates the potential of the method by means of Monte Carlo simulations. Section 6
presents a concluding discussion and points some directions for future research. In the interest of
readability, all formal proofs of mathematical theorems are presented in Appendix A. A GAMS
code for computing the CNLS regression is presented in Appendix B.

2. THE REPRESENTATION THEOREM

Consider the canonical multiple regression model

yi = f (xi ) + εi , i = 1, . . . , n, (2.1)

where yi is the dependent variable, f is an unknown regression function to be estimated, xi ∈ R
m

is the vector of explanatory variables and εi is the idiosyncratic error term. Errors ε = (ε1, . . . ,
εn)′ ∈ R

n are assumed to be uncorrelated random variables with E(ε) = 0 and Var(εi ) = σ 2 <

∞∀i = 1, . . . , n (i.e. the Gauss–Markov conditions). The data set of n observations is denoted
by (X,y), with y = (y1, . . . , yn)′ ∈ R

n and X = (x1, . . . , xn) ∈ R
m×n .

In contrast to the linear and nonlinear parametric approaches, we assume no particular
functional form for f a priori. Instead, we impose a more general condition that f belongs to
the set of continuous, monotonic increasing and globally concave functions denoted by

F2 =
{

f : R
m → R

∣∣∣∣∣ ∀x, x′ ∈ R
m

: x ≥ x′ ⇒ f (x) ≥ f (x′);

∀x′, x′′ ∈ R
m

: x = λx′ + (1 − λ)x′′, λ ∈ [0, 1] ⇒ f (x) ≥ λ f (x′) + (1 − λ) f (x′′)

}
.

(2.2)

The rationale behind the continuity, monotonicity and concavity postulates lies in their central
role in the microeconomic theory (see e.g. Varian, 1982, 1984).

The CNLS problem is to find f ∈ F2 that minimizes the sum of squares of the residuals,
formally:

min
f

n∑
i=1

(yi − f (xi ))
2 s.t . f ∈ F2. (2.3)

In other words, the CNLS estimator of f is a monotonic increasing and concave function that
minimizes the L2-norm of the residuals. The CNLS problem (2.3) does not restrict beforehand to
any particular functional form, but selects the best-fitting function f from the family F2, which
includes an infinite number of functions. This makes problem (2.3) generally hard to solve.
Single regressor algorithms developed by Wu (1982), Fraser and Massam (1989) and Meyer
(1999) require that the data are sorted in ascending order according to the scalar-valued regressor
x. However, such a sorting is not possible in the general multiple regression setting where x is a
vector.
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The Sobolev least-squares models (e.g. Wahba, 1990) differ from CNLS in that functions f
must be differentiable (smooth) at every point of its domain and the Sobolev norm of f is bounded
from above. The Sobolev models that impose monotonicity and concavity (e.g. Yatchew and Bos,
1997, and Yatchew and Härdle, in press) are hence constrained variants of (2.3). Inspired by that
literature, we next try to identify a subset of representor functions G:G ⊂ F2 such that replacing
the constraint f ∈ F2 by f ∈ G does not influence the optimal solution of problem (2.3) but
makes it easier to solve.

Consider the following family of piece-wise linear functions

G2(X) = {g : R
m → R |g(x) = min

i∈{1,...,n}
αi + β′

i x; (2.4)

βi ≥ 0 ∀i = 1, . . . , n; (2.5)

αi + β′
i xi ≤ αh + β′

hxi ∀h, i = 1, . . . , n
}
. (2.6)

Clearly, functions g ∈ G2(X) are continuous, monotonic increasing and globally concave for
any arbitrary X. Hence G2 ⊂ F2. The following theorem shows that this class of functions can
be used as representors when solving the infinite dimensional CNLS problem (2.3).

THEOREM 2.1. Given an arbitrary finite real-valued data (X,y), denote the optimal solution to the
CNLS problem (2.3) by s2

f and let

s2
g ≡ min

g

n∑
i=1

(yi − g(xi ))
2 s.t . g ∈ G2(X). (2.7)

Then s2
f = s2

g .

This result augments the representation theorems of the Sobolev least squares (e.g. Yatchew
and Bos, 1997) to the nonsmooth CNLS setting. A number of parallel results are known in
the literature. In the microeconomic theory, the celebrated Afriat’s Theorem relates continuous,
monotonic, concave utility functions with piece-wise linear representors in a directly analogous
way (Afriat, 1967, and Varian, 1982). In the productive efficiency literature, Banker and
Maindiratta (1992) have applied the Afriat inequalities in the maximum-likelihood estimation
of frontier production functions perturbed by skewed, non-Gaussian error terms. In the present
context of nonparametric regression, the possibility to use the Afriat inequalities to model
concavity/convexity constraints has been briefly suggested by Matzkin (1994, 1999) and Yatchew
(1998); Theorem 2.1 confirms and further elaborates these conjectures. In the context of limited
dependent variable models, Matzkin (1991, 1992) has employed the Afriat inequalities to develop
consistent semi- and nonparametric estimators for the consumer’s utility function. Finally,
Mammen (1991) has derived a similar theorem for a class of nonparametric regression functions
constrained by qualitative shape restrictions, showing that these functions can be represented by
a class of piece-wise monotonic or piece-wise concave/convex splines.

The link between CNLS and spline smoothing becomes evident if we interpret the piece-
wise linear representors g ∈ G2(X) as linear spline functions. In contrast to the spline functions,
however, here the partition to the linear segments is not fixed a priori. Indeed, the number and
the location of the segments are here endogenously determined to maximize the empirical fit.
Theorem 2.1 implies that the CNLS problem (2.3) can be equivalently stated as a linear spline
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smoothing problem where the knots (i.e. the vertices of the hyperplane segments) are optimally
selected to minimize the sum of squares of residuals subject to the monotonicity and concavity
constraints for the spline function. It is worth to emphasize that the knots do not generally coincide
with the observed points, but occur typically somewhere between them (see Figure 1 below for a
graphical illustration). Moreover, the number of knots is usually a small fraction of n.

Theorem 2.1 extends in a straightforward fashion to globally convex and/or monotonic
decreasing functions. In the case of a convex regression function, the signs of the inequality
constraints (2.6) should be reversed. Similarly, a monotonic decreasing function is obtained
by reversing the signs of the inequalities (2.5). One could easily impose further assumptions
about linear homogeneity. If function f is known to be homogenous of degree one (e.g. if f is a
production function exhibiting constant returns to scale or an expected utility function exhibiting
risk neutrality), we may simply impose an additional constraint αi = 0 (or delete αi altogether)
in (2.4)–(2.6). This will guarantee that functions g pass through the origin. On the other hand, the
monotonicity constraints (2.5) could be relaxed to estimate (inverse) U-shaped curves. However,
removing the concavity constraints (2.6) does not directly lead us to the isotonic regression
model considered by Barlow et al. (1972) and Sasabuchi et al. (1983). Establishing formal links
between CNLS and isotonic regression formulations and exploring the intermediate cases of
quasi-concave/convex regression are left as a challenge for future research.

3. QUADRATIC PROGRAMMING FORMULATION

Theorem 2.1 is important from the computational point of view. It enables us to transform
the infinite dimensional problem (2.3) into the finite dimensional QP problem (2.7). This QP
formulation can be expressed more intuitively as

min
ε,α,β

n∑
i=1

ε2
i

yi = αi + β′
i xi + εi

αi + β′
i xi ≤ αh + β′

hxi ∀h, i = 1, . . . , n

βi ≥ 0 ∀i = 1, . . . , n. (3.1)

The first constraint of (3.1) can be interpreted as the regression equation: note that coefficients
αi , βi are specific to each observation i :i = 1, . . . , n. The second constraint is a system of Afriat
inequalities that guarantee concavity [equivalent to (2.6)]. The Afriat inequalities are the key to
modelling concavity constraints in the general multiple regressor setting. The third constraint
ensures monotonicity [equivalent to (2.5)].

The QP problems represent the simplest thinkable class of nonlinear optimization problems;
many sophisticated algorithms and powerful solvers are nowadays available for such problems.1

1QP is a standard class of problems within nonlinear programming (NLP). The quadratic objective function implies
that the first-order conditions are linear. Hence, the QP problems are amenable to the standard simplex and interior point
algorithms developed for linear programming. A variety of commercial and sharewere solver software are available for
solving QP problems. High-performance QP solvers include, e.g., CPLEX, LINDO, MOSEK and QPOPT, but also general
NLS solvers such as MINOS and BQPD can handle QP problems. Most solvers can be used integrated with standard
mathematical modelling systems/languages such as GAMS, Gauss, Mathematica and Matlab.
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The QP formulation of the CNLS problem presents a clear advantage to the earlier computational
algorithms that only apply in the single regression case (e.g. Wu, 1982, Fraser and Massam, 1989,
and Meyer, 1999).

It is worth to note the structural similarity between problem (3.1) and the varying coefficient
(or random parameters) regression models (e.g. Fan and Zhang, 1999, and Greene, 2005). The
varying coefficient models assume a conditional linear structure that allows the coefficients of the
linear regression function to differ across (groups of) observations, similar to (3.1). Interestingly,
our representation theorem shows that the varying coefficient approach (conventionally used for
estimating n different regression functions of the same a priori specified functional form) can be
used for estimating n tangent hyper-planes to a single, unspecified regression function.

The piece-wise linear structure of CNLS also resembles the nonparametric data envelopment
analysis (DEA) frontiers (compare with Banker and Maindiratta, 1992). The key difference
between CNLS and DEA concerns the treatment of residuals εi . In DEA, the residual term is
interpreted as deterministic inefficiency that can only take negative values. The standard variable
returns to scale DEA model is obtained as a special case of (3.1) if the residuals are constrained to
be non-positive [i.e. one adds constraint εi ≤ 0 ∀i = 1, . . . , n to problem (3.1); see Kuosmanen,
2006 for details].

4. DERIVING AN EXPLICIT REPRESENTOR FUNCTION

This section takes a more detailed view on the representor functions g. Interestingly, the solution
to a complex problem need not itself be very complex: Theorem 2.1 shows that the infinite
dimensional optimization problem (2.3) always has an optimal solution that takes the form of a
simple piece-wise linear function. Given the estimated coefficients (α̂i , β̂i ) from (3.1), we can
construct the following explicit representor function

ĝ(x) ≡ min
i∈{1,...,n}

{
α̂i + β̂

′
i x

}
. (4.1)

In principle, function ĝ consists of n hyperplane segments. In practice, however, the estimated
coefficients (α̂i , β̂i ) are clustered to a relatively small number of alternative values: the number
of different hyperplane segments is usually much lower than n (see Section 5 for some simulation
evidence). When the number of different segments embedded in (4.1) is small, the values of ĝ are
easy to enumerate. The simplicity of the representor is an appealing feature for its potential ex
post uses in economic modelling. The use of ĝ as an estimator of f is justified by the following
result:

COROLLARY 4.1. Denote the set of functions that minimize the CNLS problem (2.3) by F∗
2. For

any finite real-valued data (X, y), the function ĝ defined by (4.1) and (3.1) is one of the optimal
solutions to problem (2.3), that is, ĝ ∈ F∗

2 .

The representor ĝ and its coefficients (α̂i , β̂i ) have a compelling interpretation: vector β̂i can

be interpreted as an estimator of the subgradient vector ∇ f (xi ), and equation y = α̂i + β̂
′
i x is

an estimator of the tangent hyperplane of f at point xi . In other words, function ĝ provides a
local first-order Taylor series approximation to any f ∈ F∗

2 in the neighbourhood of the observed

C© 2008 The Author. Journal compilation C© The Royal Economic Society 2008



314 T. Kuosmanen

points xi .2 This justifies the use of the representor ĝ for forecasting the values of y not just at the
observed points, but also at unobserved points in the neighbourhood of observations.

Coefficients β̂i can also be used for nonparametric estimation of the marginal properties and
elasticities. We can calculate the rate of substitution between variables k and m at point xi as

∂ ĝ(xi )
/
∂xk

∂ ĝ(xi )
/
∂xm

= β̂ik

β̂im
, (4.2)

and further, the elasticity of substitution as

ek,m(xi ) = β̂ik

β̂im
· xim

xik
. (4.3)

These substitution rates and elasticities are simple to compute given the estimated β̂i
coefficients.

One should note that the optimal solution to problem (2.3) is not necessarily unique; there
generally exists a family of alternate optima, denoted by F∗

2. The optimal solution to problem
(3.1) need not be unique either, although the fitted values and most of the coefficients typically
do have a unique solution. The set of alternative representor functions characterized by (3.1) and
(4.1) form a subset of F∗

2. The lack of a unique solution might be seen as a serious problem of
identification, but this does not render the CNLS model meaningless. In fact, it is possible to
derive tight lower and upper bounds for the alternate optima within F∗

2. Specifically, functions f
∈ F∗

2 are bounded by the following piece-wise linear functions

ĝmin(x) = min
α∈R,β∈R

m

{
α + β′x

∣∣α + β′xi ≥ ŷi ∀i = 1, . . . , n
}
, (4.4)

and

ĝmax(x) = max
φ∈R,α∈R

n
,β∈R

m×n

{
φ

∣∣φ ≤ αi + β′
i x ∀i ; αi + β′

i xi = ŷi ∀i ; αi + β′
i xh ≥ ŷh ∀h �= i

}
,

(4.5)

where

ŷi = ĝ(xi ) = yi − ε̂i , i = 1, . . . , n, (4.6)

denote the fitted values of the dependent variable.

THEOREM 4.1. For any finite real-valued data (X, y), function ĝmin is the tightest possible lower
bound for the family of functions F∗

2, and ĝmax is the tightest possible upper bound for F∗
2.

Specifically,

ĝmin(x) = min
f

f (x) s.t . f ∈ F∗
2 (4.7)

and

ĝmax(x) = max
f

f (x) s.t . f ∈ F∗
2 (4.8)

for all x ∈ R
m .

2In contrast to the flexible functional forms that can be interpreted as second-order Taylor approximations around a
single, unknown expansion point, CNLS uses all n observations as expansion points for the local linear approximation.
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Theorem 4.1 further highlights the role of the piece-wise linear functions in CNLS. The
boundary functions ĝmin and ĝmax are analogous to the under- and overproduction functions
derived by Varian (1984). The lower bound ĝmin satisfies the maintained regularity properties.
Moreover, since ĝmin(xi ) = ŷi ∀i = 1, . . . , n, we have ĝmin ∈ F∗

2 : there exists a unique piece-
wise linear function that characterizes the lower boundary of family F∗

2 for all x ∈ R
m . By contrast,

the upper bound ĝmax is not globally concave, and thus ĝmax /∈ F∗
2 . For any given x ∈ R

m , the
upper bound ĝmax(x) is achieved by some f ∈ F∗

2, but in general, no concave function is able to
reach the upper bound of F∗

2 at all points x ∈ R
m simultaneously.

In small samples, the boundary functions satisfy inequalities ĝmin(x) ≤ ĝ(x) ≤ ĝmax(x) ∀x ∈
R

m . The consistency result by Hanson and Pledger (1976) implies that ĝmin(x) − ĝmax(x)
p→ 0 as

n → ∞. Given a large enough density of observations within the observed range, the lower and
upper bounds coincide with the representor ĝ.

5. MONTE CARLO SIMULATIONS

5.1. Single regression example

This section examines the CNLS representor function and the method as a whole by simple
Monte Carlo simulations.3 To gain intuition, we first illustrate the CNLS representor in the single
regression case. Suppose the true regression function is of the form f (x) = ln(x) + 1. We drew a
random sample of 100 observations of the x values from Uni[1,11], calculated the corresponding
true f (xi) values and perturbed them by adding a random error term drawn independently from
N (0, 0.62). This gives the observed yi values for the dependent variable. Figure 1 illustrates the
observed sample by the scatter plot. Also the true function f (solid grey curve) is plotted in the
figure.

We solved the QP problem (3.1) by using the GAMS software with Minos nonlinear
programming (NLP) solver. The coefficient of determination was R2 = 0.795. The optimal
solution to (3.1) provides coefficients α̂i , β̂i , which were used for constructing the piece-wise
linear representor ĝ, plotted in Figure 1. This function consists of six different line segments;
the estimated α̂i , β̂i coefficients were clustered to six different vectors in this example. Recall
that, in contrast to the linear spline smoothing methods, the positions of the line segments are not
fixed ex ante but the number and the length of the segments are endogenously determined within
the model. As Figure 1 shows, function ĝ (solid black curve) provides a good approximation of
the true f throughout the observed range of x, not only at the observed points but also in their
neighbourhood. To appreciate this result, we also fitted the log-linear Cobb–Douglas function
with OLS (broken grey curve). As Figure 1 indicates, the Cobb–Douglas function proved too
inflexible for capturing the shape of the true f in this example.

5.2. Multiple regression simulations

We next performed more systematic Monte Carlo simulations in the two-regressor setting, fixing
the sample size at 100 as before. Three different specifications for the true regression function f
were considered:

3For empirical applications, an interested reader is referred to working papers Kuosmanen (2006) and Kuosmanen and
Kortelainen (2007) that apply CNLS to production frontier estimation in cross-sectional and panel settings.
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Figure 1. Illustration of ĝ of the CNLS regression.

(1) Cobb–Douglas: f CD(x1, x2) = x0.4
1 · x0.5

2
(2) Generalized Leontief: f GL(x1, x2) = (0.2x0.5

1 + 0.3x0.5
2 + 0.4x0.5

1 · x0.5
2 )0.9

(3) Piece-wise linear: f PWL(x1, x2) = min {x1 + 2x2, 2x1 + x2, 0.5x1 + x2+225,x1 + 0.5x2+
225}.

The values x1 and x2 were independently and randomly sampled from the uniform distribution
Uni[100,200], and the true f (x1, x2) were computed. Subsequently, random error terms drawn from
N (0, σ 2) were added to f (x1, x2). Three different levels of standard deviation were considered:
(A) low σ = 2.5, (B) medium σ = 5 and (C) high σ = 10. The resulting data sets perturbed
by errors were treated as the observations. We computed 250 simulations for each of the nine
alternative scenarios, referred to as (1A), (1B), . . . , (3C). The GAMS code for solving the CNLS
model is presented in Appendix B.

First, we know that the CNLS representor ĝ satisfies the regularity properties globally, but
how useful the estimated ĝ functions can be in practical economic modelling? The answer to this
question obviously depends on the complexity of the functions. Table 1 sheds further light on this
question by describing the number of hyperplane segments in each scenario. We find that typically
about 20 hyper-plane segments suffice to characterize the CNLS function; in some scenarios the
number was less than 10, in others, as high as 50. Relatively small number of segments is desirable
for analytical and computational convenience as well as for narrowing the gap between lower and
upper bounds. Somewhat surprisingly, CNLS uses large numbers of segments in Scenario 3 where
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Table 1. CNLS representor: the number of different hyperplane segments in each scenarios.

Signal-to Average St.Dev. Min Max %

True Error noise no. of no. of no. of no. of observations

function variance ratio∗ segments segm. segm. segm. with β̂m = 0

Cobb– σ = 2.5 4.5 23.1 4.9 9 35 5.3

Douglas σ = 5 2.25 20.8 4.7 6 33 8.6

σ = 10 1.13 18.7 4.7 6 30 7.6

Generalized σ = 2.5 2 20.5 4.8 6 34 8.9

Leontief σ = 5 1 18.7 4.9 6 32 14.7

σ = 10 0.5 16.8 4.4 7 27 25.3

Piece-wise σ = 2.5 20 36.9 4.4 25 49 2.7

linear σ = 5 10 37.7 4.9 24 51 4.8

σ = 10 5 33.7 4.9 19 48 8.0
∗Measured by the expected standard deviation of f (x1, x2) values divided by σ .

the true piece-wise linear function consists of only four linear segments. This seems to be due to
the fact that the number of hyperplane segments is positively correlated with the signal-to-noise
ratio: the noisier the data, the smaller the number of segments.

The right-most column of Table 1 reports the percentage of observations for which any of
the elements in vector β̂i is zero. Recall that these slope coefficients determine the substitution
properties. While the zero values are consistent with the regularity conditions, the economic
interpretation of the regression becomes odd if there are many zero substitution rates. In these
simulations, the percentages of zero coefficients are relatively small.

The average number of observations per hyperplane segment was four; in Scenarios 1 and 2
this average exceeded five. This means that the bounds ĝmin and ĝmax coincided with ĝ for very
large proportions of the curve. The percentage of observations i such that ĝmin(xi ) = ĝmax(xi )
varied between 70 and 95 per scenario, with the mean value of 87.4 across all scenarios. That
is, the min and max bounds coincide for almost 90 per cent area of the estimated surfaces. The
deviations typically occurred near the boundaries of the observed range of x.

Consider next the empirical fit. Table 2 reports the coefficient of determination (R2), log-
likelihood (lnL) and the mean-squared error (MSE) statistics for each scenario. To put the
performance of CNLS in a perspective, we also estimated the Cobb–Douglas and translog
regression functions using OLS.

The CNLS always gave the highest R2 and log-likelihood values as expected. The difference
is notable especially in Scenarios 2C and 3A. Moreover, we see that the empirical fit and the MSE
values tend to deteriorate as the error variance increases (the only exception is the MSE of the
translog regression that decreased in Scenario 3.

In Scenario 1, we see that the correctly specified Cobb–Douglas model yields the lowest
MSE. The empirical fit of the more flexible CNLS and translog models becomes ‘too good’ in
this scenario; the error variance is underestimated. The translog specification performs somewhat
better than the CNLS in Scenario 1, but the difference is relatively small. In Scenarios 2A and 2B
(the standard deviation of 2.5 and 5), the translog regression yields the lowest MSE, which is hardly
surprising since both translog and generalized Leontief belong to the family of flexible function
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Table 2. Goodness of fit: average of 250 simulations (standard deviation in parentheses).

CNLS estim. Cobb–Douglas estim. Translog estim.
True

function Std. dev. R2 LnL MSE R2 lnL MSE R2 lnL MSE

Cobb– σ = 2.5 0.960 −179 0.79 0.954 −187 0.22 0.954 −186 0.41

Douglas (0.008) (8.54) (0.34) (0.009) (6.83) (0.16) (0.009) (7.85) (0.23)

σ = 5 0.856 −250 2.71 0.838 −256 0.89 0.841 −255 1.68

(0.029) (8.34) (1.23) (0.029) (6.83) (0.64) (0.030) (7.86) (0.92)

σ = 10 0.606 −321 9.48 0.561 −326 3.99 0.575 −325 7.09

(0.068) (8.16) (4.47) (0.070) (7.54) (2.97) (0.070) (7.88) (3.81)

Gener. σ = 2.5 0.830 −181 0.66 0.813 −187 7.58 0.809 −187 0.23

Leontief (0.034) (8.31) (0.30) (0.031) (6.83) (1.04) (0.035) (7.52) (0.16)

σ = 5 0.562 −252 2.33 0.530 −256 38.46 0.518 −256 1.00

(0.073) (8.13) (1.10) (0.064) (6.86) (8.97) (0.074) (7.54) (0.75)

σ = 10 0.281 −322 8.19 0.053 −557 46821 0.045 −335 111

(0.084) (7.97) (4.02) (0.095) (143) (40176) (0.259) (12.8) (132)

Piece- σ = 2.5 0.998 −171 1.65 0.973 −305 58.94 0.973 −305 59.18

wise (0.000) (9.66) (0.50) (0.005) (6.33) (8.04) (0.004) (6.08) (7.16)

linear σ = 5 0.992 −242 5.58 0.965 −318 59.79 (8.20) 0.985 −276 15.07

(0.001) (9.40) (1.80) (0.006) (6.32) (0.003) (7.71) (2.27)

σ = 10 0.969 −314 17.86 0.963 −350 62.83 0.957 −330 20.00

(0.007) (9.08) (6.20) (0.005) (6.78) (9.00) (0.01) (7.89) (4.36)

forms. The MSE statistics of the CNLS come very close to those of translog in these two scenarios,
while Cobb–Douglas has notably higher MSE. When standard deviation is increased to 10 in
Scenario 2C, the CNLS still provides reasonably accurate estimates, but the performance of the
Cobb–Douglass and translog regressions is catastrophic. In Scenario 3, the CNLS has the lowest
MSE throughout, as expected. The Cobb–Douglas specification performs poorly throughout all
sub-scenarios, while the translog performs relatively well when the standard deviation of error
increases to 10. Overall, the MSE statistics suggest the CNLS provides more robust performance
than the two parametric candidates considered. Increasing the number of observations would
further improve the accuracy of CNLS, whereas increasing the number of explanatory variables
would likely favour OLS.

We conclude by emphasizing that consistency with the regularity properties implied by the
economic theory is often a more important criterion than the empirical fit. In this respect, CNLS
will always satisfy monotonicity and concavity by construction. The Cobb–Douglas function
satisfies monotonicity but can violate concavity, while translog can violate both. Table 3 reports the
frequencies of violations in each scenario. Our simulations suggest that the parametric regression
models are surprisingly likely to violate the regularity conditions even when the true functions
satisfy the properties and the empirical fit is reasonably good. For example, in Scenario 2C, 80 per
cent of the estimated Cobb–Douglas functions were convex although the true underlying function
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Table 3. Violations of concavity and monotonicity (per cent of simulations).

True Error Cobb–Douglas Translog Translog

function variance concavity concavity monotonicity

Cobb–Douglas σ = 2.5 0 52.6 0.000

σ = 5 0.4 44.3 0.016

σ = 10 23.2 41.7 1.26

Generalized Leontief σ = 2.5 0 0 0

σ = 5 14.4 0 0

σ = 10 80 0 0

Piece-wise linear σ = 2.5 0 0 0

σ = 5 0 100 0.000

σ = 10 0 100 0.000

was concave. The estimated translog functions also frequently violated convexity in Scenarios 1
and 3.

6. CONCLUSIONS AND DISCUSSION

CNLS draws its power from the shape constraints that coincide with the standard regularity
conditions of the microeconomic theory, avoiding prior assumptions about the functional form or
its smoothness. Despite its attractive theoretical properties, applications of CNLS are scarce. In
the Introduction, we noted as three major barriers of application: (1) the lack of explicit regression
function, (2) computational complexity and (3) difficulty of statistical inference. Our main result
is a representation theorem, which shows that the complex, infinite dimensional CNLS problem
always has a simple solution characterized by a continuous, piece-wise linear function. Making
use of this result, we derived an explicit formulation for a representor function, which can be used
as an estimator of the unknown regression function. The representation theorem also enabled us
to express the CNLS problem as a QP problem. This facilitates the computation of the CNLS
estimators by standard QP algorithms and solver software. Furthermore, a tractable computational
procedure enables us to draw statistical inference by applying bootstrap simulations. Thus, we
hope that the results of this paper may help to lower the barriers of using CNLS in empirical
economic applications. From a methodological point of view, we noted a number of interesting
links between CNLS and parallel developments in the literature.

The CNLS approach offers a rich framework for further extensions that fall beyond the scope
of this paper. We have restricted attention on estimation of monotonic increasing and concave
functions, but the method applies to estimation of monotonic decreasing and/or convex functions in
a straightforward fashion. One could relax monotonicity to estimate (inverted) U-shaped functions
(such as the Kuznets curves). Relaxing concavity, one arrives at the isotonic regression setting
(Barlow et al., 1972). One could also postulate convexity or concavity to apply for a specific
range of values, to estimate S-shaped production functions. One might also model homogeneity
or homotheticity properties, as briefly suggested in Section 4. The practical implementation of
these alternative properties deserves further elaboration.
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Another research topic is to adapt the general-purpose regression approach presented here
to more specific areas in econometrics, for example, time series or panel data analyses. In the
field of production frontier estimation, CNLS has a great potential for unifying the field currently
dominated by two separate branches: the parametric regression-based stochastic frontier analysis
(SFA) and the deterministic nonparametric DEA (see Kuosmanen, 2006, and Kuosmanen and
Kortelainen, 2007, for further discussion). Consumer demand analysis is another area where
CNLS has potential to bridge the gap between the nonparametric tests (Afriat, 1967, and Varian,
1982, 1985) and the parametric estimation of demand systems (e.g. Deaton, 1986).

We conclude by noting that the generality of the nonparametric approach does have a price:
the rates of convergence are low when the model involves many explanatory variables, which
means that large numbers of observations are required to get meaningful estimates. Our Monte
Carlo simulations suggest that the method works well when there are relatively few explanatory
variables relative to the sample size. In applications with many explanatory variables, the ’curse
of dimensionality’ could be alleviated by imposing some further semi-parametric structure (e.g.
partial linear model). While the asymptotic properties of the nonparametric least squares are well
understood, further work is needed to shed light on the impact of the monotonicity, concavity
and other inequality constraints on the small sample performance of nonparametic least-squares
estimators.
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APPENDIX A: PROOFS

Proof of Theorem 2.1: It is easy to verify that functions g ∈ G2 satisfy continuity, monotonicity
and concavity. Hence G2 ⊂ F2. This implies that problem (2.7) involves more stringent constraints
than (2.3), and thus we must have s2

g ≥ s2
f for any arbitrary data.

Suppose s2
g > s2

f . Thus, there exists function f̂ = arg min s2
f such that f̂ ∈ F2\G2. Define

the subdifferential of f̂ at point xi ∈ R
m as

∂ f̂ (xi ) = {∇ f̂ (xi ) ∈ R
m

∣∣∇ f̂ (xi ) · (x − xi ) ≤ f̂ (x) − f̂ (xi ) ∀x ∈ R
m}

, (A.1)

where vector ∇ f̂ (xi ) is referred to as subgradient. Since f̂ is continuous, for every observed point
xi , i = 1, . . . , n there exists a set of tangent hyperplanes

Hi = {
hi : R

m → R
∣∣hi (x) = f̂ (xi ) + ∇ f̂ (xi ) · (x − xi ); ∇ f̂ (xi ) ∈ ∂ f̂ (xi )

}
. (A.2)

Monotonicity implies that

∇ f̂ (xi ) ≥ 0 ∀∇ f̂ (xi ) ∈ ∂ f̂ (xi ), i = 1, . . . , n. (A.3)

Concavity implies that

hi (xi ) ≤ hk(xi ) ∀hi ∈ Hi ; hk ∈ Hk ; k, i = 1, . . . , n. (A.4)

Note that the objective function of (2.7) depends on the value of f̂ at a finite set of points xi ,
i = 1, . . . , n. Since hi (xi ) = f̂ (xi ) ∀hi ∈ Hi ; i = 1, . . . , n, without loss of generality, we can
represent function f̂ by its tangent hyperplanes at these points. Since by assumption s2

g > s2
f ,

there exists at least one tangent hyperplane hi ∈ H i for some i ∈ {1, . . . , n} that is not feasible
for functions g ∈ G2.

To see that the last claim implies a contradiction, we note that for any given ∇ f̂ (xi ) ∈ ∂ f̂ (xi ),
it is possible to set

βi = ∇ f̂ (xi ) (A.5)

and

αi = hi (0). (A.6)
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With this parametrization, we immediately see that the monotonicity condition (A.3) is
equivalent to (2.5). Moreover, the concavity condition (A.4) can be re-written as

f̂ (xi ) + ∇ f̂ (xi ) · (xi − xi ) ≤ f̂ (xk) + ∇ f̂ (xk) · (xi − xk) ∀k, i = 1, . . . , n (A.7)

⇔ ( f̂ (xi ) − ∇ f̂ (xi ) · xi ) + ∇ f̂ (xi ) · xi

≤ ( f̂ (xk) − ∇ f̂ (xk) · xk) + ∇ f̂ (xk) · xi ∀k, i = 1, . . . , n (A.8)

⇔ αi + β′
i xi ≤ αk + β′

kxi ∀k, i = 1, . . . , n. (A.9)

Inequalities (A.9) are equivalent to the concavity constraints (2.6). Thus, any set of supporting
hyperplanes available for functions f̂ ∈ F2 is also available for functions g ∈ G2. Since the
assumption s2

g > s2
f results as a contradiction, we must have s2

g = s2
f . �

Proof of Corollary 4.1: Since G2 ⊂ F2, then ĝ ∈ G2 ⇒ ĝ ∈ F2. Since problems (2.3) and (3.1)
depend on the value of functions f and ĝ at a finite set of points xi , i = 1, . . . , n, Theorem 2.1
directly implies that ĝ ∈ G∗

2 ⇒ ĝ ∈ F∗
2 . �

Proof of Theorem 4.1: We start from the lower bound. Note first that ĝmin is continuous, monotonic
increasing and concave: ĝmin ∈ F2. Secondly, note that ĝmin(xi ) = ŷi ∀i ∈ {1, . . . , n}. These two
observations imply that ĝmin ∈ F∗

2 .

Consider an arbitrary f̂ ∈ F∗
2 , and let ∇ f̂ (x) ∈ ∂ f̂ (x) be a subgradient of f̂ at an arbitrary

point x ∈ R
m . The supporting hyperplane theorem (e.g. Rockafellar, 1970) implies that, for all

fitted points (xi , ŷi ), i = 1, . . . , n, the tangent hyperplanes of a concave f̂ at point x must satisfy

f̂ (x) + ∇ f̂ (x) · (xi − x) ≥ ŷi ∀∇ f̂ (x) ∈ ∂ f̂ (x). (A.10)

Using α = f̂ (x) − ∇ f̂ (x) · x and β = ∇ f̂ (x), function ĝmin can be re-written as

ĝmin(x) = min
α∈R

β∈R
m

{
α + β′x |α + β′xi ≥ ŷi ∀i = 1, . . . , n

}
(A.11)

= min
f̂

{
( f̂ (x) − ∇ f̂ (x) · x) + ∇ f̂ (x) · x

∣∣( f̂ (x) − ∇ f̂ (x) · x) + ∇ f̂ (x) · xi ≥ ŷi ∀i = 1, . . . , n
}

(A.12)

= min
f̂

{
f̂ (x)

∣∣ f̂ (x) + ∇ f̂ (x) · (xi − x) ≥ ŷi ∀i = 1, . . . , n
}
. (A.13)

Therefore, ĝmin(x) = min
f

{ f (x)| f ∈ F∗
2 }. This completes the first part of the proof.

Consider next the upper bound

ĝmax(x) = max
φ∈R,α∈R

n ,β∈R
m×n

{
φ

∣∣φ ≤ αi + β′
i x ∀i ; αi + β′

i xi = ŷi ∀i ; αi + β′
i xh ≥ ŷh ∀h �= i

}
.

(A.14)
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Note that there must exist some observation i = arg min
i∈{1,...,n}

αi + β′
i x for which the constraint

φ ≤ αi + β′
i x holds as equality. Therefore, the upper bound (A.14) can be equivalently written as

ĝmax(x) = min
i∈{1,...,n}

(
max

αi ∈R,βi ∈R
m

{
αi + β′

i x
∣∣αi + β′

i xi = ŷi ; αi + β′
i xh ≥ ŷh ∀h �= i

})
.

(A.15)

This minimax formulation reveals that function ĝmax is not concave, and thus, ĝmax /∈ F∗
2 .

Using again α = f̂ (x) − ∇ f̂ (x) · x and β = ∇ f̂ (x), function ĝmax can be expressed as

ĝmax(x) = min
i∈{1,...,n}

(
max

f̂i

{
f̂i (x)

∣∣ f̂i (xi ) = ŷi ; f̂i (x) + ∇ f̂i (x) · (xh − x) ≥ ŷh ∀h �= i
})

.

(A.16)

Consider first the embedded maximization problem in (A.16). The problem is analogous to
(A.13), except that we have replaced the minimization by maximization, and we force the tangent
line to pass through a given point (xi , ŷi ). Constraint f̂i (xi ) = ŷi is necessary in (A.16), because
otherwise the problem would be unbounded. In essence, the embedded maximization problem of
(A.16) finds the tangent hyperplane through a fixed point (xi , ŷi ) with the largest value at point x.
The first-order conditions of problem max f

{
f (x)

∣∣ f ∈ F∗
2

}
imply that the optimum is achieved

at one of the points f̂i (x) on the tangent hyperplane of some i ∈ {1, . . . , n}.
To see why the optimum must be the minimum value over i ∈ {1, . . . , n}, consider observations

i, j ∈ {1, . . . , n} and let f̂ ∗
j (x), f̂ ∗

i (x) be the optimal solutions to the embedded maximization

problem of (A.16) such that f̂ ∗
j (x) > f̂ ∗

i (x). The maximizing property of f̂ ∗
i (x) implies that

there exists a subset S ⊂ {1, . . . , n} such that f̂ ∗
i (x) + ∇ f̂ ∗

i (x) · (xs − x) = ŷs ∀s ∈ S (i.e. the
constraints of the maximization problem in (A.16) are binding for all observations s ∈ S).
But then it is possible to construct point (�x, �y) as a convex combination �x = ∑

s∈S λsxs + λ j x,
�y = ∑

s∈S λs ŷs + λ j f̂ j (x),
∑

s∈S λs + λ j = 1, λsλ j ≥ 0 ∀s ∈ S such that �x = xi and �y > ŷi .
Therefore, choosing point (x, f̂ ∗

j (x)) violates of the concavity postulate. As this argument applies
to any observations i, j ∈ {1, . . . , n}, the only feasible solution is obtained by minimizing over
observations i ∈ {1, . . . , n}. Therefore, ĝmax(x) = max f { f (x)| f ∈ F∗

2 .}. �

REMARK A.1. The dual problem of (4.4) provides some further intuition especially to the first part
of the proof of Theorem 4.1. The dual formulation can be written as

ĝmin(x) = max
z∈R

n
+

{
n∑

i=1

zi ŷi

∣∣∣∣∣ x ≥
n∑

i=1

zi xi ;
n∑

i=1

zi = 1

}
, (A.17)

where zi represents the weight assigned to observation i. In essence, the dual problem (A.17)
maximizes the weighted average of the fitted values ŷi , subject to the constraint that the weighted
average of the observed explanatory variables is less than or equal to the given level of x. Below
the observed range, problem (A.17) is infeasible and is hence assigned the value −∞, whereas
above the observed range ĝmin(x) = maxn{ŷn}.
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APPENDIX B: GAMS CODE FOR THE CNLS REGRESSION (100
OBSERVATIONS, TWO EXPLANATORY VARIABLES)

SETS
k observations /1∗100/
alias(k,m);

PARAMETERS
Y(k) dependent variable
X1(k) value of explanatory variable 1 in observation k
X2(k) value of explanatory variable 2 in observation k

VARIABLES
E(k) residual of k
A(k) constant
SS sum of square of errors;

POSITIVE VARIABLES
B1(k) beta 1 coefficients
B2(k) beta 2 coefficients;

EQUATIONS
QSSE objective = sum of squares of residuals
QREGRESSION(k) regression equation
QCONCAVITY(k,m) concavity constraint;
QSSE.. SS = e = sum(k,E(k)∗E(k));
QREGRESSION(k).. Y (k) = e = A(k)+B1(k)*X1(k)+B2(k)*X2(k)+E(k);
QCONCAVITY(k,m).. Y (m) = l = A(k)+B1(k)*X1(m)+B2(k)*X2(m)+E(m);
MODEL CNLS /all/
SOLVE CNLS using NLP Minimizing SS;
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