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Abstract
Receiver Operating Characteristic (ROC) curve analysis and area under the ROC 
curve (AUC) are commonly used performance measures in diagnostic systems. In 
this work, we assume a setting, where a classifier is inferred from multivariate data 
to predict the diagnostic outcome for new cases. Cross-validation is a resampling 
method for estimating the prediction performance of a classifier on data not used 
for inferring it. Tournament leave-pair-out (TLPO) cross-validation has been shown 
to be better than other resampling methods at producing a ranking of data that can 
be used for estimating the ROC curves and areas under them. However, the time 
complexity of TLPOCV, O

(

n
2
)

 , means that it is impractical in many applications. 
In this article, a method called quicksort leave-pair-out cross-validation (QLPOCV) 
is presented in order to decrease the time complexity of obtaining a reliable rank-
ing of data to O(n log n) . The proposed method is compared with existing ones in 
an experimental study, demonstrating that in terms of ROC curves and AUC values 
QLPOCV produces as accurate performance estimation as TLPOCV, outperforming 
both k-fold and leave-one-out cross-validation.
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1 Introduction

Diagnostic tests are used to support decision-making in medicine, and their qual-
ity is commonly measured by Receiver Operating Characteristic (ROC) curve 
analysis. An ROC curve describes the ordered sequence of trade-offs between 
the diagnostic test correctly/incorrectly detecting a disease (Pepe 2003). In other 
words, ROC curve analysis describes disease detectability independently of 
the threshold effects. In addition, it is independent of disease prevalence (Metz 
1978). ROC curve analysis is particularly useful when the data distributions are 
skewed or there are different benefits/costs for correctly/incorrectly detecting a 
disease (Fawcett 2006).

In this work, we assume that the diagnostic test is carried out by a classifier 
inferred from data using a machine learning algorithm. The classifier can be a 
non-linear function of multiple input variables. The prediction performance of 
the classifier cannot be reliably estimated on the data it was inferred from. For 
example, a 1-nearest neighbor classifier has always perfect fit to the data it was 
inferred from, but this estimate provides no information about its actual predic-
tion performance on new data. Rather, the performance estimate should be done 
on independent test data (i.e., data not used in the training of the classifier). Con-
sequently, the available data is split into training and test sets.

In medical research, the available data for an ROC curve analysis is usually 
scarce, as data sets tend to be small in sample size (Berisha et  al. 2021), varying 
from some dozens to a few hundreds of observations. For this reason, splitting the 
available data into training and test set may be a challenge when evaluating the per-
formance of a classifier. Hence, cross-validation methods provide means to make the 
most of the data in the evaluation process. Furthermore, cross-validation is suitable 
for all types of classifiers (i.e., linear, and non-linear) since a complex classifier can-
not obtain high performance simply due to overfitting, as the evaluation of the clas-
sifier is always performed on data not used in the training phase.

Several cross-validation methods produce a ranking of data and hence could 
be used when ROC curve analysis is wanted. The most common cross-validation 
methods, leave-one-out cross-validation (LOOCV) and k-fold cross-validation, 
have been shown to produce biased estimates of the area under the ROC curve 
(AUC) (Airola et al. 2011; Forman and Scholz 2010; Montoya Perez et al. 2019; 
Parker et al. 2007; Smith et al. 2014). LOOCV and pooled k-fold cross-validation 
(PkFCV) produce rankings of data, unlike averaged k-fold cross-validation, but 
the biased estimates of AUC imply biased estimates of the ROC curves as well. 
Leave-pair-out cross-validation (LPOCV) has been shown to reduce the bias in 
AUC estimation in comparison to LOOCV and PkFCV (Airola et al. 2011), but 
does not provide a ranking of data and thus cannot be used when ROC curve anal-
ysis is wanted. Tournament leave-pair-out cross-validation (TLPOCV) has then 
been introduced as a method that provides a ranking of data while also producing 
an almost unbiased estimate of the AUC (Montoya Perez et al. 2019).

Computation time is something that must be taken into account when using 
methods that require many repetitions, e.g. simulation study, permutation test 
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(Golland et  al. 2005) or nested cross-validation (Varma and Simon 2006). All 
cross-validation methods may be time-consuming if the learning process is not 
efficient because in cross-validation a model is trained as many times as how 
many hold-out sets there are. In TLPOCV for a sample of size n, there are n(n−1)

2
 

pairs that will be one by one left out as a hold-out set and the model is learned 
on the rest of the data. In other words, n(n−1)

2
 prediction functions are learned in 

total when executing TLPOCV. Tournament leave-pair-out CV is the least biased 
cross-validation method that also produces a ranking of data, but is very time-
consuming as the sample size is increased.

Quicksort is a classical sorting algorithm, which can be used to create a ranking 
of data in a time-efficient manner (Ailon and Mohri 2008). In this article, we com-
bine quicksort with LPOCV and show that the resulting ranking is as reliable for the 
ROC curve analysis as the ranking produced by TLPOCV. This means that quicksort 
leave-pair-out cross-validation (QLPOCV) is faster than TLPOCV but equally good.

The structure of the article is as follows: In Sect.  2 preliminary information is 
presented and previously developed methods are described in more detail. After 
that the quicksort algorithm is described, and our modification to add leave-pair-out 
cross-validation to it is presented in Sect. 3. The quality of the presented method is 
estimated with an experimental study by using both generated data and a real data 
set. The setup and the results of the experimental study are presented in Sect.  4. 
Finally, the article is concluded and future research is discussed in Sect. 5.

2  Preliminaries

2.1  ROC curve analysis

Receiver Operating Characteristic curve analysis is a statistical tool for describing 
the performance of a test that returns continuous results instead of directly returning 
binary labels (Bradley 1997; Fawcett 2006; Hanley and McNeil 1982; Pepe 2003). 
In our case, the continuous results are predictions made by a function f ∶ I → ℝ 
which is returned by a machine learning algorithm. The labels are then obtained by 
a binary classifier

where t is a decision threshold for a positive label, i is the index of a datum whose 
label is being predicted and f

Dtraining
 is a prediction function that is learned on data 

Dtraining . For convenience, the subscript notation of training data is used only when 
necessary. In this article the prediction functions are inferred from a fixed training 
set. Sometimes the estimates of this kind are said to be conditional on the training 
data (Airola et al. 2011; Hastie et al. 2017). As we focus on binary classifiers, a data 
set is assumed to consist of data points from two classes, which are referred to as 
positives and negatives. Usually, the positives are associated with label 1 and nega-
tives with 0 or -1. The feature representation of data is not relevant while explaining 

Ct(i) =

{

1 if f
Dtraining

(i) > t and

0 otherwise,
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the methodology. Thus, we refer to the data points only by their indices. The index 
set of a sample of size n is I = {1, 2, ..., n} = I+ ∪ I− , where I+ and I− are subsets 
of the indices of positive and negative data points, respectively.

The quality of a classifier is often measured by several conditional prob-
abilities. The probability of correctly predicting a positive sample unit as 
positive  ℙ

(

Ct(i) = 1|i ∈ I+

)

 is called sensitivity or true positive rate (TPR). 
Similarly for the negatives: ℙ

(

Ct(i) = 0|i ∈ I−

)

 is called true negative rate or 
specificity. Also, the type I and II errors can be denoted as conditional prob-
abilities ℙ

(

Ct(i) = 1|i ∈ I−

)

 and ℙ
(

Ct(i) = 0|i ∈ I+

)

 , respectively. Type I error is 
also called false positive rate (FPR), and type II error false negative rate (Sha-
piro 1999). Later in this article, terms TPR and FPR are mostly used but some-
times sensitivity and specificity are used instead, so please note the connections 
between the terms: TPR is exactly the same as sensitivity, and FPR is the com-
plement of specificity: ℙ

(

Ct(i) = 1|i ∈ I−

)

= 1 − ℙ
(

Ct(i) = 0|i ∈ I−

)

.
In ROC curve analysis, the conditional probabilities are calculated for 

every possible t ∈ (−∞,∞) as the predicted labels vary as a function of t. An 
ROC curve visualizes the sequence of all possible pairs (FPR(t), TPR(t)) of 
sensitivity and specificity values ordered by the values of t. The data can be 
ranked from the smallest to the greatest according to the predicted values: 
f
(

i1
)

≤ f
(

i2
)

≤ ⋯ ≤ f
(

in
)

 . If t < f
(

i1
)

 , every datum is predicted to belong to the 
positive class, which implies that TPR = 1 and FPR = 1 . If f

(

ij
)

≤ t < f
(

ij+1
)

 
for any j ∈ {1,… , n − 1} , data points ij+1,… , in are predicted to belong to the 
positive class and data points i1,… , ij to the negative class, and TPR ∈ [0, 1] and 
FPR ∈ [0, 1] depending on the real labels. If f

(

in
)

< t , every datum is predicted 
to belong to the negative class implying that TPR = 0 and FPR = 0.

The qualities of classifiers with different prediction functions can be com-
pared by their ROC curves. An ROC curve goes from (0,0) to (1,1) in a unit 
square. The closer it is to the top left corner of the square, i.e. point (0,1), the 
better the classifier is. If the curve reaches that point, there exists a threshold 
for the classifier that perfectly separates the negatives from the positives. The 
ROC curve is a straight line on the diagonal from (0,0) to (1,1) if the classifier 
predicts the labels at random. There are several ways to estimate an ROC curve 
(Gonçalves et al. 2014). In this article, we use an empirical estimator in a way 
that is described in Sect. 4.1.

In addition to comparing the ROC curves, also the areas under them can be 
used to compare the qualities of the classifiers. Area under the ROC curve is 
a summary statistic of the ROC curve and its value is the probability that the 
classifier ranks a randomly chosen positive unit higher than it ranks a randomly 
chosen negative unit ℙ

(

f (j) < f (i)|j ∈ I−, i ∈ I+

)

.
True ROC curve and the corresponding AUC value are not usually known. If f 

was tested on a large (n → ∞) , representative sample, the TPR and FPR could be 
considered as population level probabilities. Then the resulting ROC curve is an 
approximation of the true ROC curve and its AUC approximates the true AUC.
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2.2  Cross‑validation for ROC curve analysis

If there was access to a large enough data set, it could be divided into separate 
training and test data sets so that f could be learned from the training data and the 
evaluation of C could be done on the independent test data as was described in 
Subsect. 2.1. However, in medical data analysis the available data set is usually 
so small that dividing it into training data and independent test data would lead to 
a situation where there are not enough data to learn a reliable model nor enough 
data to validate it. Cross-validation (CV) is then commonly used.

In cross-validation, the data set is repeatedly split into separate training and 
test sets. For each split, the training set is used to train f and build C, and the test 
set is then used to measure the performance of the obtained classifier. In k-fold 
CV, the data set is divided into k disjoint equally sized subsets, i.e. folds. Then 
the learning and performance evaluation are repeated k times so that each fold 
is exactly once used as test set and the other k − 1 times included in the training 
data. In order to perform ROC curve analysis, a pooled version of k-fold CV is 
needed. In PkFCV all predictions are gathered together and then an ROC curve 
is drawn or an AUC value is calculated. If only AUC value is wanted, then also 
averaged k-fold CV could be used. In that, an AUC value is calculated for each 
test fold and the final estimate of the AUC is the average of them (Bradley 1997). 
A special case of k-fold CV is leave-one-out CV, where k = n . Then pooling is 
the only possible approach even for AUC estimation.

However, it may be risky to use pooled CV for AUC estimation, because the 
estimates may be biased (Airola et al. 2011; Forman and Scholz 2010; Montoya 
Perez et al. 2019; Parker et al. 2007; Smith et al. 2014). The bias is a consequence 
of comparing predictions from different CV rounds. Then the compared predic-
tions are made by different prediction functions f

I⧵l , where l ∈ {1,… , k} refers to 
the data points in the lth fold, which may differ a lot from one another if the learn-
ing algorithm is unstable. A learning algorithm is unstable if a small change in 
the training data changes the output of the algorithm greatly (Shalev-Shwartz and 
Ben-David 2014).

An extreme case of this pooling bias in CV can be demonstrated by the follow-
ing example (Montoya Perez et al. 2019): Let us assume that the prediction func-
tion returns the probability of a positive label in the training data, which means 
that the prediction for an independent test set is a constant and AUC = 0.5. How-
ever, for LOOCV ÂUCLOO = 0 , since the negative left out data points will always 
have higher predicted probability than the positive ones. The opposite effect of 
falsely getting ÂUCLOO = 1 can also take place with standard software implemen-
tations, for example, with the balanced support vector machine implementation in 
scikit-learn (Pedregosa et al. 2011), that automatically adjusts weights inversely 
proportional to class frequencies. Also, with PkFCV, such negative bias for AUC 
may appear if the left out fold has different class proportions than the training 
folds.

Leave-pair-out CV is an averaging based CV method, that has been shown to 
produce an almost unbiased estimate of the AUC (Airola et al. 2011)
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where H is the Heaviside step function

The idea of LPOCV is to hold out each pair consisting of one positive and one nega-
tive unit as a test set and then use averaging when calculating the AUC value. Thus, 
only the predictions made with one prediction function are compared while also 
maximizing the size of training data. LPOCV is good for the AUC estimation, but 
cannot be used for ROC curve analysis, because it does not provide all the informa-
tion that is needed.

As was explained in the Sect. 2.1, a ranking of data is required in order to perform 
ROC curve analysis. This can be obtained, while producing the almost unbiased 
estimate of AUC, by expanding the idea of LPOCV: in tournament leave-pair-out 
CV (Montoya Perez et al. 2019) each possible pair, not only the positive-negative 
pairs, is once held out as test set. The ranking is generated by sorting tournament 
scores of the sample units. A tournament score

describes how many times data point i was predicted to have a higher value than the 
other sample units. The reliability of TLPOCV has been validated experimentally 

(Montoya Perez et  al. 2019). In TLPOCV, a prediction function is learned 
(

n

2

)

 

times. Therefore, it is time-consuming if there is even slightly larger data set.

3  Quicksort leave‑pair‑out cross‑validation

Balcan et  al. (2008) and Ailon and Mohri (2008) have studied the reduction from 
ranking to classification. Ailon and Mohri have shown that quicksort can be used to 
decrease the time complexity of the preference-based ranking setting. Quicksort is a 
sorting algorithm originally presented by Hoare (1962). It is based on the divide-and-
conquer paradigm, which means that the problem is divided into sub-problems which 
are recursively solved, and finally the results of the sub-problems are combined to form 
the result of the original problem (Cormen et al. 1990). Ailon and Mohri (2008) have 

ÂUCLPO

(

f
I

)

=
1

|

|

I+
|

|

|

|

I−
|

|

∑

i∈I+

∑

j∈I−

H
(

f
I⧵{i,j}(i) − f

I⧵{i,j}(j)
)

,

H(a) =

⎧

⎪

⎨

⎪

⎩

0 if a < 0,
1

2
if a = 0 and

1 if a > 0.

S(i) =
∑

j∈I⧵{i}

H
(

f
I⧵{i,j}(i) − f

I⧵{i,j}(j)
)
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shown that their "algorithm produces high-quality global rankings in a time-efficient 
manner" and proved bounds for the ranking quality. This approach serves as the basis 
for the fast CV algorithm proposed in our study.

The algorithm presented by Ailon and Mohri (2008) uses a pairwise preference 
function, that takes as input two data points and predicts which one is more likely to 
belong to the positive class. The preference function is learned from a training data 
set using a machine learning algorithm. The simplest way to construct a ranking of 
data points for a new data set with the pairwise preference function is to compute a 
tournament graph where all data points are compared, and then sort the data accord-
ing to number of "wins" in the tournament. This however requires O

(

n2
)

 comparisons. 
Ailon and Mohri propose a method that can compute an accurate ranking for data with 
only O(n log n) comparisons as follows. First, a pivot element p is picked uniformly at 
random from the set of data points. Then, the pre-learned preference function is used to 
define the order of the pivot element and the other data points. This way two sub-prob-
lems are created and then the same process is run on the smaller sets of data points. 
One of the subsets consists of the data points that are preferred to the pivot element 
and the other subset consists of data points for which the pivot element is preferred to 
them. The algorithm returns the data points in order from the most preferred to the least 
preferred.

Quicksort leave-pair-out CV consists of the same steps as described above. What is 
different now is that instead of using a pre-learned preference function, the compari-
sons are done by using LPO prediction functions f

I⧵{i,p} for data points i and pivot ele-
ment p. In our calculations the order of preference is reversed. In QLPOCV, the hold-
out pairs are formed so that the pivot element is paired with every other data point 
in the current set. This procedure is described for an index set I ⊆ I  in supplemen-
tal materials in Algorithm 1. In addition, a demonstration of executing the algorithm 
is presented in the supplemental materials together with discussion related to a graph 
presentation of the comparisons in TLPO and QLPO CV and the effect of possibly 
existing cycles on the order returned by QLPO. If there is at least one cycle in the cor-
responding graph, the order returned by QLPOCV depends on the randomly selected 
pivot elements.

The time complexity of quicksort is O(n log n) in terms of number of calls to a pref-
erence function (Ailon and Mohri 2008). As there is randomness in the algorithm, the 
exact number of comparisons cannot be calculated. Hoare (1962) states that the aver-
age number of comparisons required by quicksort is 2 ln 2 × n log2 n . Another formula 
for the expected value of the number of comparisons together with a formula for vari-
ance of the number of comparisons has been discussed by (Iliopoulos 2013). It can be 
seen in Fig. 1 how remarkable the difference between the number of comparisons of 
quicksort and TLPOCV is as the sample size is increased. Since the time complexity 
of QLPOCV is the same as that of quicksort, it can be seen that QLPOCV requires a 
lot smaller number of comparisons than TLPOCV in order to produce a ranking of the 
data.
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4  Experimental study

An experimental study was conducted in order to estimate the quality of the rank-
ing produced by QLPOCV. Those results were compared with the results of TLPO, 
LOO and pooled 10-fold (P10F) CVs. The quality of the results was measured by 
ROC curves and AUC values. Three classification methods and both simulated and 
real data were used in the study.

4.1  Methods

The study was conducted as a Monte Carlo study, where the calculations were 
repeated and the results are described by averages and credible intervals (Edwards 
et al. 1963). The empirical ROC curves were vertically averaged at fixed FPRs. The 
fixed points were 

{

0,
1

|I−|
,

2

|I−|
,… ,

|I−|−1

|I−|
, 1
}

 . As the empirical ROC curve is a step 
function, there may be two different TPR values at one FPR value. The averages 
were calculated separately for lower and higher TPR values at the given FPR. A 
credible interval of an ROC curve is a range where the ROC curve is with a given 
probability. We used symmetric 95 % credible intervals, which means that they are 
formed by excluding equal amount (2.5 %) of the smallest and the largest TPR val-
ues at the fixed FPRs. True ROC curves and their AUC values were approximated so 
that the whole sample I  was used for training the model and an independent test set 
was used for evaluating the model.

A classification algorithm determines the form of the prediction function f. The 
classification methods used in the study were regularized least-squares (RLS), logis-
tic regression (LR) and random forest (RF). Even though RLS and LR are similar 
methods, they are both included in the study because LR is commonly used and 
RLS is better optimized for this type of problem. In RLS the learning task is to mini-
mize a penalized version of the least-squares function (Hoerl and Kennard 1970; 
Rifkin et al. 2003). Also the version of LR that was used, was penalized. The pen-
alty that was used in both classifiers is called Tikhonov regularization (Rifkin and 
Lippert 2007) and it is used to control the model complexity and prevent overfitting. 

Fig. 1  The effect of sample size on the number of pairs whose predicted values are compared in order to 
obtain a ranking by using quicksort or tournament leave-pair-out cross-validation
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Random forest is different from the other two classification methods in that it is nei-
ther linear nor parametric. RF is an ensemble method and uses bagging (Breiman 
2001).

Python 3.7.6 was used to generate the simulation data and compute the predic-
tions. ROC curve analysis, calculations of AUC values and visualizations were done 
with R 4.1.3. For RLS method, including fast cross-validation algorithms, we used 
RLScore library (Pahikkala and Airola 2016) implementation with regularization 
parameter set to one. For logistic regression and RF we used functions from Scikit-
learn library (Pedregosa et al. 2011). For logistic regression we used l2 penalization 
with C=1 and liblinear solver, and for RF one hundred decision trees in a forest.

4.2  Simulation

4.2.1  Setup

In the first part of the experimental study, we used a non-linear generative model 
presented by Luckett et al. (2021) as a baseline for the data generation process. In 
that process, the features � ∼ Nnf

(

��, �2
�
)

 , where nf is the number of features, � 
is a vector of ones or negative ones determining the sign of the distributions mean 
values, and � is an nf × nf identity matrix. The probability for positive mean values 
is q and for negative mean values 1 − q . Variance of each feature is a constant �2 and 
there is no explicit covariance between the features. A datum is in the positive class 
with a probability that is obtained by scaling expression �⊤𝛽 + X2

1
+ X2

2
+ 4X1X2 to 

range [0, 1] by a sigmoid function.
We added another parameter to the above expression so that we could measure 

the effects of the linear and non-linear parts:

We generated data populations of size 106 with parameters

and � was varied from 0 to 1 in steps of 0.25. From every population, we sampled 
an independent test data of size 104 and 1 000 separate samples of sizes 30 and 100 
with fractions of positives 10 % and 50 %. The sample sizes and fractions of posi-
tives are similar to the ones that have been used previously (see (Airola et al. 2011; 
Montoya Perez et al. 2019)) and are chosen so that the simulation study reflects real 
world situations with small and possibly highly unbalanced data sets.

The data distributions of the positive and the negative classes are more or less 
overlapping in every population as is demonstrated in Fig. 2 for the first two fea-
tures. When � = 0 , only features X1 and X2 are used in expression (1). In Fig. 2 it can 
be seen that the distributions of the positives and negatives are then highly overlap-
ping and hence there is not much of a signal that could be used for predicting the 
class label. As � is increased, the linear combination of the features starts to increase 

(1)𝜃�⊤𝛽 + (1 − 𝜃)
(

X2
1
+ X2

2
+ 4X1X2

)

.

nf = 10, q = 0.25, 𝜇 = 0.5, 𝜎 = 1, 𝛽 = (2, 1, 1, 1, 1, 0, ..., 0)⊤
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the signal in data. According to the Fig. 2, the distributions are the least overlapping 
when the linear generative model has been used for generating the population data.

4.2.2  Results

In Fig. 3 are presented the resulting ROC curves of four settings of the simulation 
study. The selected cases are the extremes in two aspects: 1) The cases with the 
smallest and the largest number of positives and 2) the non-linear and linear data 
generation processes. It can be seen that the ROC curves are different from one case 
to another. For the case where the sample size is 30 and fraction of positives is 10 % 
(upper row), the average ROC curves for QLPO and TLPO are approximately equal 
to the approximated true ROC curve, whereas for P10F and LOO CV there can be 
seen a negative bias, especially when the learning algorithm is the random forest. 
For balanced samples of size 100 (lower row) such bias is not observed. The esti-
mates are accurate but not precise as the credible intervals demonstrate. For unbal-
anced samples of size 30, the credible intervals cover almost the entire possible area. 
The credible intervals narrow as the number of positives is increased.

The ROC curves are quite different also when comparing them in the second 
aspect. When the data are generated by the non-linear generative model, the ROC 
curves are on average along the diagonal, as can be seen in the left column of Fig. 3. 
This means that for this kind of data, the learning algorithms are not able to learn 
anything and the predictions are made at random. Then again, the ROC curves are 
closer to the top left corner when the data are generated by the linear generative 
model (see the right column of the figure). Then there is some signal, which can be 
used for predicting the labels.

The shape of the ROC curve is obviously directly related to the area under it. The 
AUC values of every case of the simulation study are presented in Fig. 4. In that, 
one can see even more easily that the closer the data generation process is to the 
linear model, the better the algorithms are able to distinguish the positive class from 
the negative, i.e. the higher the AUC values. Again, it is visible that increasing the 
number of positives has a decreasing effect on the width of the credible intervals. 
Nevertheless, there are no large differences in the performance between the machine 
learning algorithms. When comparing the cross-validation methods to one another 

Fig. 2  Joint density functions of the first two features
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while keeping other parameters constant, the average ÂUCQLPO and ÂUCTLPO val-
ues are equal to the approximated true AUC whereas average ÂUCP10F and ÂUCLOO 
values are slightly less. Meaning that, QLPO and TLPO CV are equally good, and 
P10F and LOO CV are slightly worse.

4.3  Real data

Analogous calculations were computed as well on a medical data set in order to 
validate the results of the simulation study. The real data set is the same as has 
been used in a previous study by Montoya Perez et al. (2019). The data set con-
sists of 85  876 voxels, of which 9  268 are labelled as positives and 76  608 as 
negatives, and six voxel-wise features extracted from Diffusion-weighted imaging 

(a) (b)

(c) (d)

Fig. 3  Average ROC curves and 95 % credible intervals over 1 000 repetitions for quicksort leave-pair-
out, tournament leave-pair-out, pooled 10-fold and leave-one-out cross-validation methods for logistic 
regression, random forest and regularized least-squares classification algorithms. The subplots are for 
different sample sizes, fractions of positives and weights of the linear term: a) sample size = 30, fraction 
of positives = 0.1, and � = 0.0 , b) sample size = 30, fraction of positives = 0.1, and � = 1.0 , c) sample 
size = 100, fraction of positives = 0.5, and � = 0.0 , and d) sample size = 100, fraction of positives = 0.5, 
and � = 1.0
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(DWI) parametric maps of 20 patients with histologically confirmed prostate can-
cer in the peripheral zone. The features are the parameters derived using DWI 
decay modelling: ADCm, ADCk and K as described in Toivonen et al. (2015) and 
the corresponding Gabor texture for each parametric map (Gabor-ADCm, Gabor-
ADCk, Gabor-K). In previous studies, these features have shown potential for 
discriminating voxels belonging to prostate cancer (Ginsburg et al. 2011; Langer 
et  al. 2009; Merisaari and Jambor 2015; Montoya Perez et  al. 2016; Toivonen 
et al. 2015).

The calculations were repeated as many times as how many disjoint training 
sets were possible to sample from the real data. Hence, the number of repetitions 
is different for different sample sizes. Balanced samples of sizes 30 and 100 were 
drawn from the data without replacement 617 and 185 times, respectively. Each 

Fig. 4  Average and 95 % credible intervals of the AUC value over 1 000 repetitions for quicksort leave-
pair-out, tournament leave-pair-out, pooled 10-fold and leave-one-out cross-validation methods in the 
unbalanced and balanced data cases for logistic regression, random forest and regularized least-squares 
classification algorithms
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sample was once used as training data and the remaining data were used as inde-
pendent test set. Finally, the results were averaged over repetitions.

The average ROC curves and AUC values are presented in Fig. 5. These results 
are mainly consistent with the results of the simulation study. Now that the data 
are balanced, and there is some signal in the data, the ROC curves are above 
the diagonal and the credible intervals do not completely cover the possible area. 
The average ÂUCQLPO and ÂUCTLPO are closer than the average ÂUCP10F and 
ÂUCLOO  to the approximated true AUC. The biggest difference in these and the 
simulation study results is the strong negative bias that is observed with logistic 
regression when LOO or P10F CV is used. A smaller negative bias is observed 
with RLS when LOO or pooled 10-fold CV is used. Sometimes this happens 
because of unstable classifiers and the bias is a consequence of pooling the results 
from different cross-validation rounds and thus from different classifiers.

Fig. 5  Results of the real data experimental study for quicksort leave-pair-out, tournament leave-pair-out, 
pooled 10-fold and leave-one-out cross-validation methods for logistic regression, random forest and reg-
ularized least-squares classification algorithms. Upper row: Average ROC curves and their 95 % credible 
intervals. Lower row: Average AUC values and 95 % credible intervals
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4.4  Runtime analysis

In Sect. 3 the time complexity of QLPO algorithm was compared to the time com-
plexity of TLPOCV in terms of number of comparisons as a function of sample 
size. In order to compare the predicted values of two sample units i and j, a LPO 
prediction function f

I⧵{i,j} needs to be learned. Thus, the number of prediction func-
tions to be learned equals the number of comparisons for QLPO and TLPO cross-
validations. Then again, for P10F the number of prediction functions needed is 10 
for every sample size, and for LOOCV it is equal to the sample size.

The training time depends on the algorithm and how it is implemented. We 
noticed already when running the experimental study, that RLS is much faster than 
LR, and LR much faster than RF. Random forest is obviously slower because it is an 
ensemble method and every estimate is based on one hundred decision trees, mean-
ing that for every prediction function, 100 decision trees need to be learned.

In order to highlight the importance of the choice of a learning algorithm and a 
cross-validation method on runtime, we executed a runtime analysis separately from 
the experimental study. The calculations were repeated 100 times, computed 10 in 
parallel on a computer equipped with Intel(R) Core(TM) i7-11800H (2,30 GHz). 
Average runtimes for sample sizes 30, 50 and 100 are presented in Table 1.

The results clearly demonstrate what was already discussed: RLS is a lot faster 
than LR, and RF is a lot slower than LR and RLS. What is little surprising is that 
TLPOCV actually is faster than QLPOCV when RLS is used. The implementation 
of RLS is based on utilizing Sherman-Morrison-Woodbury formula, which makes it 
possible to compute all predictions in time no greater than what it takes to learn the 
model once on the data (Pahikkala et al. 2008; Pahikkala and Airola 2016). Hence, 
it is faster to call it once with a large number of pairs than call it several times with 
a smaller number of pairs. Nevertheless, the difference is some milliseconds, so the 
choice between the methods should not affect the total runtime too much even when 
the calculations are repeated many times.

For LR and RF the runtimes are of completely different magnitude and vary 
more from one cross-validation method to another. For these algorithms, P10FCV 
is clearly the fastest, TLPOCV the slowest, and QLPOCV and LOOCV are 
about the same in the middle, as is expected according to the time complexities. 
 Runtime is not the primary criterion, so even though the pooled CV methods are 

Table 1  Average runtimes in seconds for the cross-validation methods with RLS, LR and RF, and sample 
sizes 30, 50 and 100

Sample size 30 50 100

Algorithm RLS LR RF RLS LR RF RLS LR RF

QLPO 0.002 0.1 20 0.005 0.3 40 0.007 0.5 70
TLPO 0.001 9 60 0.002 80 300 0.006 1500 1600
P10F 0.002 0.03 1 0.002 0.05 2 0.002 0.03 2
LOO 0.001 0.1 4 0.002 0.2 9 0.004 0.3 10



1 3

Quicksort leave‑pair‑out cross‑validation for ROC curve…

faster, they are not recommended over QLPOCV, because of the possible exist-
ence of the pooling bias.

5  Conclusion and future research

In this work, we presented a method called quicksort leave-pair-out cross-vali-
dation which combines leave-pair-out cross-validation with quicksort algorithm 
and produces a ranking of data that is needed for ROC curve analysis. The 
importance of this method compared to the previously presented TLPOCV is 
that in QLPOCV a remarkably smaller number of prediction functions needs to 
be learned in order to produce equally good results. The change from TLPOCV 
to QLPOCV decreases the time complexity from O

(

n2
)

 to O(n log n) in terms of 
number of prediction functions to be learned as a function of sample size.

We compared this new method to previously existing methods by an experi-
mental study consisting of two parts: one with generated data and the other with 
real data. The results demonstrated that QLPOCV produces as good estimates as 
TLPOCV of both the ROC curves and the AUC values. In addition, LOO and 
pooled 10-fold CV were used in the experimental study. As expected, the results 
of the latter CV methods were worse than the results of the former CV meth-
ods. Finally, we conducted a runtime analysis to highlight the importance of the 
choice of classifier and CV method. The runtime analysis showed that QLPOCV 
is significantly faster method than TLPOCV unless RLS classifier is used. Thus, 
based on the experimental study presented in this article, QLPOCV should be 
preferred to TLPOCV when other classifiers are used.

Several new questions arose while conducting this research, and they will be 
considered as future research. One of them is what is already briefly discussed 
in the supplemental material: the effect of possibly existing cycles in the cor-
responding tournament graph. The order returned by QLPOCV depends on the 
randomly chosen pivot elements if the learning algorithm is so unstable that there 
are cycles. This means that there is some probability distribution for the differ-
ent orders, and the estimates of ROC curves and AUC values depend on the ran-
domly chosen pivot elements, too. This kind of theoretical research would lead to 
achieving deeper understanding about the properties of the method.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 022- 01288-3.
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