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Abstract

Technically, residential energy management systems are fundamental sectors in the smart
grids for implementing demand response programs in the layer of households for man-
aging energy consumption and reducing energy bills. The paper proposes a novel energy
management scheme that takes production and usage into account based on a heuristic
searching operation. In addition to modelling the grid, renewable energy sources, batteries,
and electric vehicles, various kinds of electrical and thermal devices have been examined,
including air conditioners, water heaters, vacuum cleaners etc. A method is developed for
solving the objective constraint issue in a smart home in order to reduce energy consump-
tion and determine feasible operation states among the various loads. Moreover, this paper
proposes a grey wolf optimization method for solving the issue over a longer simula-
tion period. Various cases were examined to evaluate the effectiveness of this suggested
robust optimization algorithm. The outcomes show that the suggested model could not
only reduce energy costs significantly but has also shown good performance for energy
management purposes.

1 INTRODUCTION

Smart grids (SGs) improve reliability, increase renewable energy
consumption and respond quickly to user needs. As renewable
generators (such as wind and solar) and distributed traditional
generators have become part of the grid, SGs are being faced
with numerous problems [1, 2]. SGs face a problem in terms
of economics. As electricity networks contain several tradi-
tional and renewable generators, along with non-dispatchable
and dispatchable loads, the economic operation of SGs requires
optimized management both on the supply side and the
demand side. It is traditional for economic dispatch and demand
response (DR) to be operated independently. The economic dis-
patch seeks to allocate energy production economically between
generators and maintains continuous respect for the system’s
physical limitations. Traditional economic dispatch makes the
assumption that load requirements will remain stationary. Power
systems and markets are increasingly reliant on DR [3]. In addi-
tion to helping consumers make good decisions about their
power usage, it also will decrease the total peak load demand,
change the demand profile and enhance the sustainability of the
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network. The current DR applications have been constructed
for following defined load curves or pricing schemes [4] or elim-
inating a predetermined amount of loads based on a schedule
[5].

In one sense, traditional generators must modify their out-
put when operational conditions change, for example, when
renewable energy production varies. Allocations between them
need to be redistributed economically. Conversely, users adjust
their needs according to their profit functions for maximizing
their profits in response to market prices [6]. As both eco-
nomic dispatch and DR participate in energy markets, their
operations would be affected by one another. By operating
DR, the load profiles would be reshaped, so the productions
would be different from the initial optimum point reached by
the economic dispatch, requiring a second round of economic
dispatch. As a result of economic dispatch, the market pricing
changes, activating DR. The economic dispatch and DR have
been closely linked and must be considered when managing
power online. The interactive method takes a considerable time
for convergence when economic dispatch and DR operate sep-
arately. Therefore, it would be essential to take into account the
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interactions between economic dispatch and DR and to address
them as an integrated system.

Two types of conventional algorithms are used to solve
economic dispatch or DR problems. Analytical techniques,
including Lagrange multipliers [7], gradient search methods [8],
and linear programming [9], fall into group one. In the next
group are heuristic methods including genetic algorithms [10],
evolutionary programming [11], particle swarm optimization
[12] and so on. The majority of these approaches have been
centralized and implemented on a large scale. Centralized solu-
tions tend to be less flexible and prone to single-point failures
[13]. They require complex communication systems for collect-
ing global data, as well as highly efficient central controllers for
processing enormous information. Therefore, such approaches
might have difficulty responding fast enough, for instance, when
operational modes change rapidly, like ones caused by unpre-
dictability and uncertainties in renewable energy sources. These
solutions must therefore improve their response speeds.

Many distributed approaches are suggested as a means
of addressing the shortcomings of centralized solutions. Ref.
[14] offered a DR technique involving optimization of util-
ities. Despite the fact that the study’s bidding procedure is
distributed, there is also the need for a central controller for col-
lecting demand data from users for determining market prices.
Ref. [15] examined an increasing price consensus algorithm
to solve the economic dispatch issue on a distributed basis.
Although economic dispatch is considered in that approach,
DR is not. Ref. [16] examined a population dynamics method
for dispatching distributed generators in SGs. Even so, auc-
tioneer agents working as centralized coordinators are vitally
needed. The intermittent renewable production did not appear
to be taken into account in any of those studies. As renewable
energy generators are increasingly incorporated into the energy
grid and as consumers become more involved in energy mar-
kets, it is imperative to develop effective distributed algorithms
for integrated optimum energy management (EM) taking gen-
erators and consumers into account. There were several studies
that failed to take into account various renewable energy sources
with some neglecting power generation management. Most of
them failed to incorporate electric vehicles (EVs) with vehicle-
to-grid (V2G) capabilities, which is important for smart homes
(SHs). Many studies fail to implement an optimization algo-
rithm for several successive days, and not just for one day-ahead
simulation. Only a few investigations are conducted on EMS for
SHs, which can schedule and control various kinds of electrical
and thermal devices.

The study presents an EM scheme and mathematical mod-
elling methods for the network, renewable energy sources,
batteries, EVs, and various kinds of electrical and thermal
devices. This paper implements an accurate solution strategy
for reducing the energy costs in SHs and determining the
operational states for various loads, next proposes a mixed-
integer linear programming model according to a grey wolf
optimization algorithm (GWOA) for solving the issue over a
long simulation time period. In the study, the following main
contributions are presented: (1) This paper implements a pre-
cise solution approach for minimizing the energy price in SHs

through the schedule and control of generation systems and
both electrical and thermal loads while considering specific pre-
ferred appliance temperatures chosen by users. (2) This study
proposes the GWOA, considering multiple restrictions, in order
to address the issue over a longer simulation period. (3) This
suggested optimization algorithm was evaluated via numerous
simulations with various cases to show that the energy price
was significantly reduced and that this suggested optimization
method was effective.

Following is a summary of the remaining sections. Section 2
describes the SH system in which various generation and usage
systems are integrated. Section 3 develops the problem defini-
tion with each of the limitations associated with every system.
The GWOA would solve the issue over a longer simulation
period is presented in Section 4, which describes the optimiza-
tion methods that are employed for optimizing the electrical
SG and its components. Section 5 discusses simulation out-
comes. Section 6 analyses the effectiveness of this suggested
optimization algorithm, and Section 7 presents a conclusion.

2 PROPOSED SH MODELLING

This section explains the model and formulations required for
handling the proposed problem. In the paper, the suggested
optimization algorithm has been designed for reducing power
consumption costs for day-ahead and long-term simulations
through the control of certain loads based on predetermined
devices’ temperatures and by switching to times with lower tar-
iffs. Smart devices would be categorized into two main groups
in the proposed SH system:

1. Electrical controllable loads (ECL) like cooker hoods,
vacuum cleaners, washing machines and so on.

2. Thermal controllable (TCL) loads like refrigerators (REF),
air conditioning (AC) and electric water heaters (EWH).

Table 1 [17] shows various ECL and TCL parameters, includ-
ing the first start time and the last finish time, as well as energy
usage and period. Moreover, energy production management
must be taken into account. As a result of the perfect align-
ment of such resources, a home photovoltaic (PV) system and
a micro wind turbine (WT) were integrated beside the tradi-
tional power plant. In addition, electric batteries and 2 EVs
will be added to the SH since ref. [18] shows that the optimal
solution would be to use two EVs within a similarly planned
structure. The weather forecast provides 24-h information on
solar radiation and wind speed. In this model, horizon T and
time step t are considered. 1 h can be used as a time slot, so
every day will consist of 24 slots. Figure 1 shows the model of
the SH.

3 PROBLEM FORMULA

In order to solve the problem properly, it is needed to suggest an
MILP model for EM over the period T with t time steps. Time
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TABLE 1 Electrical house devices characteristics

Devices Dryer Oven Cooker hood TV Desktop Laptop Iron Microwave Radio player

Kind ECL ECL ECL ECL ECL ECL ECL ECL ECL

Earliest start time

(h)

13 15 17 19 14 14 5 7 7

Final finish time

(h)

18 19 19 24 24 24 20 9 8

Time window (h) 5 4 2 5 10 10 15 2 1

Duration (h) 1 2 1 5 5 3 2 1 1

Power (kW) 2.5 2.5 0.2 0.3 0.3 0.1 2.7 1.7 0.2

Devices Sensors Dish washer Water heater AC Illumination

Vacuum

cleaner REF

Washing

machine

Other occasional

loads

Kind ECL ECL TCL TCL ECL ECL TCL ECL ECL

Earliest start time

(h)

0 9 24 12 19 7 0 9 0

Final finish time

(h)

24 17 0 24 25 20 24 12 24

Time window (h) 24 8 24 12 5 13 24 3 24

Duration (h) 24 1 1 12 5 1 24 2 5

Power (kW) 0.01 1.7 1.7 1.15 0.5 2 0.175 1.8 3

FIGURE 1 SH framework

slots are assumed to be 1 h, so there are 24 slots per day. Here
would be the formulas describing the related limitations.

3.1 Electrical controllable loads

The electrical devices should be operated within the specified
timeframe:{

V (t , i ) = 0 i f t ⟨Tstart (i ) and t ⟩ Tfinish h (i )

V (t , i ) = Ttreat (i ) i f t ≥ Tstart (i ) and t ≤ Tfinish h (i )

(1)

In which, i shows the index of house devices and t indicates
time period. V (t , i ) indicates the status of beginning of device i

in t (1 = device i begins). Ttreat (i ) shows the run time of device
i, Tstart (i ) indicates the first start time of device i, and Tfinish h(i )
shows the last finish time of device i.

3.2 Thermal controllable loads

3.2.1 Air conditioning

When the AC is in the cooling state, it operates as follows:

Tins (t ) = (∈ ×Tins (t − 1))

+ (1− ) ×

(
Tout (t ) −

(
𝜇 × Bc

ac (t ) × Pac

A

))
(2)

Tins (t ) is the inside room temperature in t . Tout (t ) shows
the outside temperature in t . The coefficient of efficiency of
the AC is shown by 𝜇 and the system inertia is shown by
∈. Pac shows the energy usage of the AC. Bc

ac (t ) indicates the
status of the AC in t (1 = AC turn on in cooling status).
The thermal conductivity of the construction has been shown
by A . When the AC is in the heating state, it operates as
follows:

Tins (t ) = (∈ ×Tins (t − 1))

+ (1− ∈) ×

(
Tout (t ) −

(
𝜇 × Bh

ac (t ) × Pac

A

))
(3)

Bh
ac (t ) shows the mode of the AC in t (1 = AC turn on in

heating state). Activation and deactivation cannot be done at the
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same time:

Bc
ac (t ) + Bh

ac (t ) ≤ 1 (4)

Within the acceptable range, the inside temperature is limited
as follows:

T min_des
ins (t ) ≤ Tins (t ) ≤ T max_des

ins (t ) (5)

T max_des
ins (t ) shows the lower acceptable bound of inside room

temperature in t and T min_des
ins (t ) indicates the upper acceptable

bound of inside room temperature in t . Status to activate the AC
in cooling status:

Bc
ac (t ) =

⎧⎪⎨⎪⎩
0 i f Tins (0) < T min_des

ins (1)

1 i f Tins (0) > T max_des
ins (1)

(6)

Status to activate the AC in heating Status:

Bh
ac (t ) =

⎧⎪⎨⎪⎩
1 i f Tins (0) < T min_des

ins (1)

0 i f Tins (0) > T max_des
ins (1)

(7)

AC operates in the cooling state during the following time
period:

Bc
ac (t ) =

{
0 or 1 i f t ∈ TC

0 i f t ∉ TC

(8)

AC operates in the heating state during the following time
period:

Bh
ac (t ) =

{
0 or 1 i f t ∈ TH

0 i f t ∉ TH

(9)

3.2.2 Refrigerators (REF)

The REF operates as follows:

Tre f (t ) = Tre f (t ) + dt
((

Bre f × Pre f
)

−
(
𝛼re f (t ) × Bre f (t )

)
+ 𝛾re f

)
(10)

Bre f shows the effect of activity likelihood on the REF tem-
perature and 𝛼re f (t ) indicates the effect of the ON and OFF
modes on the REF temperature. The energy usage of the REF
is shown byPre f . Tre f (t ) shows the REF temperature in t . Bre f (t )
shows the mode of the REF in t (1 = REF turn on). The ther-
mal leakage of REF has been shown by 𝛾re f . The temperature
of the REF must be limited to the preferred range:

T min_des
re f

(t ) ≤ Tre f (t ) ≤ T max_des
re f

(t ) (11)

T max_des
re f (t ) shows the upper preferred bound of Ref temper-

ature in t and T min_des
re f (t ) indicates the lower preferred bound of

REF temperature in t . Mode to activate the REF:

Bre f (t ) =

⎧⎪⎨⎪⎩
1 i f Tre f (0) > T max_des

re f
(1)

0 i f Tre f (0) < T min_des
re f

(1)
(12)

3.2.3 Electric water heater (EWH)

The EWH operates as follows:

Cewh ×

(
Tewh (t ) − Tewh (t − 1)

dt

)
=

−1
Rewh

× (Tewh (t ) − Tins (t ))

+ (Bewh (t ) × Pewh ) −
(
cp × q ×

(
T max−des

ewh
(t ) − T cold

ewh

))
(13)

The tank thermal capacity of EWH is shown by Cewh. The
water temperature of EWH in t has been shown by Tewh(t ). T cold

ewh
shows the temperature of the incoming water into the EWH.
T max−des

ewh (t ) indicates the upper preferred temperature bound of
EWH in t and T min−des

ewh (t ) shows the lower preferred tempera-
ture bound of EWH in t . The certain heat constant for water
of EWH has been shown bycp. q shows the hot water flow of
EWH. Bewh(t ) indicates the mode of the EWH in t (1 = EWH
turn on). The thermal resistance of tank walls of EWH has been
shown by Rewh. The energy usage of the EWH has been shown
by Pewh.

The temperature of the water must be limited to the preferred
range:

T min_des
ewh

(t ) ≤ Tewh (t ) ≤ T max_des
ewh

(t ) (14)

Mode to activate the EWH:

Bewh (t ) =

{
0 i f Tewh (0) > T max_des

ewh
(1)

1 i f Tewh (0) < T min_des
ewh

(1)
(15)

3.3 Electric grid

The bounds of energy imported from the system are as follows:

0 ≤ PGrid (t ) ≤ Pmax
Grid (16)

PGrid (t ) defines the energy imported from the system in t and
Pmax

Grid shows the utmost imported energy from the system in t .

3.4 PV system

The bounds of energy produced via PV are as follows:

0 ≤ PPV (t ) ≤ Pmax
PV (17)
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PPV (t ) is the energy produced via the PV system in t and
Pmax

PV shows the utmost permitted PV energy in t . The produced
output energy from PV is as follows [19]:

PPV (t ) ≤ APV × 𝜌 × SI (t ) (18)

APV shows the area of PV. The performance of PV has been
shown by 𝜌. SI(t) shows the solar irradiation in t .

3.5 Wind turbine (WT)

The bounds of the energy produced via wind system are as
follows:

0 ≤ PW (t ) ≤ Pmax
W (19)

PW (t ) shows the energy produced via the wind system
in t and Pmax

W indicates the utmost permitted wind power
in t . The produced output energy from wind system is as
follows [20]:

⎧⎪⎪⎨⎪⎪⎩

PW (t ) = 0 ifv f
⟨

vci and v f
⟩

vco

PW (t ) = Prated ifvr ≤ v f ≤ vco

PW (t ) = Prated ×
v f − vci

vr − vci
i f vci ≤ v f ≤ vr

(20)

Prated shows the rated energy of the wind system. v f shows
the prediction wind speed, vr shows the rated speed of the WT,
vci indicates the cut-in speed of the WT and vco shows the cut-off
speed of the WT.

3.6 Battery storage system (BSS)

The bounds of permitted charging energy are as follows:

PCh
B

(t ) ≤ PCmax
B ×Y (t ) (21)

PCh
B (t ) indicates the energy charging BSS in t , and PCmax

B
shows the utmost permitted energy charging of battery. Y (t )
shows the mode of the battery in t (1 = charging).

The limit of allowed discharging power:

PDisch
B

(t ) ≤ PDmax
B × Z (t ) (22)

PDisch
B (t ) indicates the discharging energy from battery in

t and PDmax
B shows the utmost permitted energy discharg-

ing of battery. Z (t ) shows the mode of the battery in t
(1 = discharging).

Charging and discharging cannot be done at the same time:

Y (t ) + Z (t ) ≤ 1 (23)

Energy saved in the battery for t > 1:

NomB × SOCB (t ) = NomB × SOCB (t − 1)

+

(
PCh

B
(t ) × dt

ec
−
(
ed × PDisch

B
(t ) × dt

))
(24)

NomB shows the battery nominal capacity. SOCB (t ) indicates
the mode of charging of the battery in t . ec indicates the charge
coefficient factor and ed shows the discharge coefficient factor.

This is the battery’s earliest status:

NomB × SOCB (1) = Nomint
B

(
PCh

B (1) × dt

ec
−
(
ed × PDisch

B
(1) × dt

))
(25)

Here, Nomint
B shows the first battery capacity.

Limit of mode of charging of the battery is as follows:

SOC min
B ≤ SOCB (t ) ≤ 1 (26)

Utmost battery charging bound is as follows:

PCh
B

(1) × dt

ec
− (NomB × SOCB (t − 1)) ≤ NomB (27)

3.7 Electric vehicles

The bounds of permitted charge energy are as follows:{
PCh

EV
(t , j ) ≤ PCmax

EV
( j ) ×W (t , j ) ∀t ∈ Tstay

PCh
EV

(t , j ) = 0 ∀t ∉ Tstay

(28)

where j indicates the index of EVs. PCmax
EV ( j ) is the utmost

permitted energy charging of EV battery j and PCh
EV (t , j ) shows

the energy charging by EV j in t . W (t , j ) shows the mode of the
EV battery j in t (1 = charging). Limit of permitted discharge
energy and EV travel demand:{

PDisch
EV

(t , j ) ≤ PDmax
EV

( j ) × X (t , j ) ∀t ∈ [1, … , T ]

PDisch
EV

(t , j ) × dt = DEVdriv (t , j ) ∀t ∉ Tstay

(29)

PDisch
EV (t , j ) indicates the discharging energy from EV j in t

and PDmax
EV ( j ) shows the utmost permitted energy discharging

of EV battery j . X (t , j ) shows the mode of the EV battery j in t
(1 = discharging). T defines the set of optimization time period
and Tstayshows the set of interval whenever electrical devices are
at house. DEVdrive (t , j ) shows the driving electricity demand of
EV j in t .
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Charging and discharging cannot be done at the same time:

W (t , j ) + X (t , j ) ≤ 1 (30)

Energy saved in the EV battery for t > 1:

NomEV ( j ) × SOCEV (t , j ) = NomEV ( j ) × SOCEV (t − 1, j )

+

(
PCh

B
(t , j ) × dt

ec
−
(
ed × PDisch

EV
(t , j ) × dt

))
(31)

in which, NomEV ( j ) shows the nominal capacity of electrical
device battery j .

The earliest mode of EV battery is as follows:

NomEV ( j ) × SOCEV (t , 1) = Nomint
EV

( j )

+

(
PCh

EV
(1, j ) × dt

ec
−
(
ed × PDisch

EV
(1, j ) × dt

))
(32)

in which, Nomint
EV ( j ) shows the first capacity of electrical device

battery j .
Bound of mode of charging of EV battery is as follows:

SOC min
EV

( j ) ≤ SOCEV (t , j ) ≤ 1 (33)

in which, SOC min
EV ( j ) shows the minimal mode of charging of

EV battery and SOCEV (t , j ) indicates the mode of charging of
the EV battery j in t .

The utmost EV battery charging bound is as follows:

PCh
EV

(t , j ) × dt

ec
− (NomEV ( j ) × SOCEV (t − 1, 1)) ≤ NomEV ( j )

(34)

3.8 Grid power balance

Balance among usage and generation must be guaranteed by the
distribution system:

PGrid (t ) + PPV (t ) + PW (t ) +
NEV∑

j

PDisch
EV

(t , j ) + PDisch
B

(t ) =

∑
i

(
Dappl (i ) ×V (i, t )

)
+ Dth (t ) +

NEV∑
j

PCh
EV

(t , j ) + Pin ject (t )

(35)

Dappl (i ) defines the constant energy usage of device i, Dth(t )
shows the energy usage of thermal controllable loads in t and
Pin ject (t ) indicates the amount of energy selling to the grid in t .
NEV shows the whole number of electrical devices.

Injecting into the system at the same time as EV batteries are
being discharged is prohibited:

Pin ject (t ) ≤ Pmax
in ject × M (t ) (36)

PGrid (t ) ≤ Pmax
Grid × N (t ) (37)

M (t ) + N (t ) ≤ 1 (38)

M (t ) + X (t , j ) ≤ 1 (39)

M (t ) + Z (t ) ≤ 1 (40)

M (t ) indicates the mode of the injecting into the system
in t and N (t ) shows the mode of the grid generation in
t . NEV shows the overall number of EVs. The equality has
been guaranteed in case of t ∈ Tstay (Tstay = interval whenever
EV remains at house), if not, the EV power must be elim-
inated from the formula since this study assumes there was
no charge procedure for the electrical device if it was not at
home.

3.9 Objective function

The objective function of the system can be determined in the
following way:

min f (cost ) =
∑{[

(PGrid (t ) × dt ) ×CGrid (t )]

+
[
(PPV (t ) × dt ) ×CPV ] +

[
(PW (t ) × dt )CW ]

+

[
NEV∑

j

(PDisch
EV

(t , j ) × dt ) ×C Disch
EV

]

+
[(

PDisch
B

(t ) × dt
)
×C Disch

B

]
−

[(
Pin ject (t ) × dt

)
×CSell

]}
(41)

where f shows the objective function of the optimization prob-
lem. CGrid (t ) shows the price of energy produced via the grid in
t , CPV (t ) shows the production and maintenance price of PV in
t , CW (t ) shows the production and maintenance price of wind
system in t , C Disch

EV (t ) indicates the maintenance price of elec-
trical device in t , and C Disch

B (t ) shows the maintenance price of
BSS in t .
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Its goal is to reduce residential consumers’ day-ahead energy
bills.

4 THE IMPROVED GWOA

As explained before, the proposed problem has a non-linear
and complex structure which needs to get solved in a proper
way. This paper proposes the MGWOA here for making
exploration and exploitation more effective by improving the
randomized nature of the existing algorithm. In the GWOA
iteration procedure, 𝛼 indicates the solution with the highest
fitness, 𝛽 shows the second optimum solution and 𝛿 rep-
resents third optimum solution, and 𝜔 refers to all other
possible solutions. There are two basic parts of the GWOA:
encircling and hunting the target. Encircling is expressed as
follows [21]:

D⃗ = |||C⃗ ⋅ X⃗p (k) − X⃗ (k)||| (42)

X⃗ (k + 1) = X⃗p (k) − A⃗.D⃗ (43)

In which, the existing iteration has been shown by k, the
place vector of target has been shown by X⃗p, the place vec-

tor of the grey wolves has been shown by X⃗ ⋅ C⃗ and A⃗ show
the randomly selected coefficients vectors and are determined
as follows:

A⃗ = 2a⃗ ⋅ r⃗1 − a⃗ (44)

C⃗ = 2 ⋅ r⃗2 (45)

r⃗1 and r⃗2 show randomly selected variables among 0 and 1
in each iteration. a⃗ reduces from 2 to 0 linearly with increasing
iterations in the base GWO, resulting in a direct effect on A⃗. The
search space is explored if |A⃗| > 1 and the exploitation trend is
enhanced if |A⃗| < 1 [22]. In MGWO, a non-linear a⃗ has been
used for improving agents’ exploring capabilities during the first
iterations:

a⃗ = 2 ⋅ cos (k∕Maxk ) (46)

In which, the utmost iteration number is shown by Maxk.
Main GWOA updates and stores 𝛼, 𝛽 and 𝛿 during all itera-
tions. Based on the three optimum position vectors, the rest
of the search agents (like Omega wolves) must update their
location vectors. The updating procedure is described by these
formulas:

D⃗𝛼 =
|||C⃗1 ⋅ X⃗𝛼 − X⃗ ||| (47)

D⃗𝛽 =
|||C⃗2 ⋅ X⃗𝛽 − X⃗ ||| (48)

D⃗𝛿 =
|||C⃗3 ⋅ X⃗𝛿 − X⃗ ||| (49)

X⃗1 = X⃗𝛼 − A⃗1 ⋅
(

D⃗𝛼

)
(50)

X⃗2 = X⃗𝛽 − A⃗2 ⋅
(

D⃗𝛽

)
(51)

X⃗3 = X⃗𝛿 − A⃗3 ⋅
(

D⃗𝛿

)
(52)

X⃗ (k + 1) =
X⃗1 + X⃗2 + X⃗3

3
(53)

There is also a possibility that the newly determined location
resulting from Equation (53) exceeds the bounds of variables. In
the suggested MGWO, this is revised through moving randomly
toward the boundary exceeding for increasing randomness,
whereas in the main GWO, it is corrected by the boundary in
the following way:

X⃗ j (k + 1) =

⎧⎪⎨⎪⎩
X⃗ j (k) + r ⋅

(
U b j − X⃗ j (k)

)
, i f

(
X⃗ j (k + 1)

)
> U b j

X⃗ j (k) + r ⋅
(

Lb j − X⃗ j (k)
)
, i f

(
X⃗ j (k + 1)

)
> Lb j

(54)

In which r has been selected randomly among 0 and 1, U b j

shows the upper bound and Lb j indicates the lower bound of
the j th variable. In addition, the fitness value f (X⃗ j (k + 1)) has
been compared to f (X⃗ j (k)). The improved fitness value and
related locations have been maintained.

Figure 2 illustrates the flowchart of this suggested algorithm
for solving EM in an SH. Here are the stages that are used for
solving the objective restricted issue of finding the best oper-
ating states of various loads in order to organize among the
recognizable production systems in an SH.

5 SIMULATION OUTCOMES

The following part simulates the applied EM scheme. In the
optimization procedure of the scenario that has included whole
systems, there would be 563 variables scheduled for a 24-h
period, of which 247 would be continuous variables and 316
would be discrete variables, and it takes 0.04 s of CPU time for
all iterations. For the 168-h period, there would be 3971 vari-
ables, out of which 1753 would be continuous variables and
2218 would be discrete variables, and all iterations take 0.11 s.
Table 2 shows the major simulation parameters. Meteonorme
6.1″ has been used to provide the hourly solar radiation and ref.
[23] for the wind speed forecast. EV has a driving electricity
demand of 2 kW.

A maintenance cost of 0.01€/kWh has been selected for
CPV (t ), CW (t ), C Disch

EV (t ) and C Disch
B (t ) [24]. The price of sell-

ing energy to the grid would be 0.10€/kWh, while the price
of purchasing energy has been taken based on ref. [25]. It is
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FIGURE 2 Flowchart of proposed method for consecutive day

TABLE 2 Simulation parameters

Parameters 𝝆 Apv Pmax
pv

PV Values 18.6% 25 m2 3.5 kW

EV Parameters SOC min
EV ( j ) PCmax

EV ( j ),PDmax
EV ( j ) Nomint

EV ( j ) NomEV ( j )

Values 20% 3.3 kW 16 kWh 24 kWh

WT Parameters vr Prated Pmax
w vco vci

Values 14 m/s 2.1 kW 2.4 kW 25 m/s 4 m/s

BSS Parameters ec ,ed SOC min
B Pmax

B ,PDmax
B Nomint

B NomB

Values 95% 20% 1 kW 6 kWh 10 kWh
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TABLE 3 Suggested cases for one day

Scenario 1 2 3 4 5

V2G × ×
√ √ √

Battery × ×
√ √ √

Generation system Grid
√ √ √ √ √

RER × ×
√ √ √

DR program TCL × × × ×
√

ECL ×
√

×
√ √

recommended that the consumer adopts the following temper-
ature ranges: between 3 and 8◦C for the REF, between 55 and
60◦C for the EWH, and between 20 and 23◦C for the indoor
temperature. We have made some assumptions in this work:

1. The power grid is assumed to be symmetrical load structure
and thus one-phase analysis would suffice.

2. It is assumed that there is no harmonic load in the system.
3. It is assumed that the next-day load pattern consumption

could be guessed properly.

A variety of cases have been presented to demonstrate lower
energy costs, as well as the robustness and effectiveness of this
suggested residential EM system. First, five scenarios are per-
formed with a simulation period of 24 h, and a simulation for
the final case has been performed with a longer simulation
period. Please note it that as similar to other evolutionary algo-
rithms, we have tried to provide the most fitting values for the
parameters based on a sensitivity analysis. That is clear that there
is no simple and straightforward method for finding the most
fitting values for any of the algorithms. Instead, the most reli-
able and suitable method is still sensitivity analysis, which can
provide promising solutions.

5.1 Simulation for one day

Table 3 presents five scenarios, each corresponding to a
simulation period of 24 h.

Scenario-1. This would be an essential case where 1 house-
hold user purchases energy solely from the network.

Scenario-2. Scenario one plus the DR program through the
shift of several ECL to the intervals with lower cost.

Scenario-3. Scenario one in addition to the combination of
the PV, WT, BSS and EVs.

Scenario-4. Scenario three in addition to the considering
DR program through the shift of several ECL to the
intervals with lower cost.

Scenario-5. Scenario four plus the DR program with TCL
that could preserve several predetermined temperature
at the optimum range.

Figure 3 and Table 4 reveal the outcomes of the precise
solution process used to determine the lowest energy costs

TABLE 4 Simulation outcomes for one day

Scenario 1 2 3 4 5

Price (€ cents) 1009 642 35 −39 −107

Computation time (s) 0.3 0.5 0.3 0.5 16

Sold power (kW) – – 18.6 26.7 29.5

Bought power (kw) 64.7 64.7 36.8 45.3 36.3

and operating states for a SH while organizing between the
proposed generation systems. Since the DR program is inte-
grated through ECL, there is a reduction in cost between cases
one and two, from 1008.56 to 642.03€ cents. In the third sce-
nario, the cost decreases to 34.45€ when the solar and wind
system, BSS, and V2G are considered, and the user profits
from the excess energy by injecting 18.57 kW into the sys-
tem. Taking into account the ELC, scenario 4′s price has been
reduced to −39.42€, and the amount of energy delivered to
the network would be 26.66 kW. Scenario five, with the TCL
applied, achieved an enormous reduction in the price, reaching
−106.89€ cents. Furthermore, the network has a minimal pur-
chasing energy of 36.28 kW and also a maximal sold energy of
29.52 kW. For each case, the computation time would be small,
but it rises in the last case in which the whole of the systems are
controlled and scheduled.

5.2 Simulating consecutive days

A similar EM model as in case five has been executed for a sim-
ulation period of 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h
for each system. Table 5 compares the MILP or the precise
solution and the GWOA discussed in Section 4 in order to min-
imize energy costs and computation time. It can be observed
that in the simulation period of 24, the optimum solution with
the MILP and a sufficient computing time is 16.23 and in the
simulation period of 48, the optimum solution with the MILP
and a sufficient computing time is 49.39 s. For the rest, the
simulation would be terminated at 600 s to find near-optimum
solutions. As a result, by applying a GWOA, a solution would
be found for the challenging formulation, and a majority of the
outcomes over the various periods would be similar to those
achieved by MILP. There is a dramatic reduction in compu-
tation time in every scenario; in particular, there is a decrease
of 94% from 600 s to 35.18 s in the 72 h simulation time.
Using the 48-h period, the minimal gap has been calculated
as −4.60 %, with the optimum outcome with the MILP algo-
rithm being −99.93€ cents and with the GWOA being −95.33€
cents.

In the case of surplus power that is sold to the grid, the value
of the objective function would not be positive. Figure 4 illus-
trates the EM for the total sources of the 48-h period in which
the whole generation and usage systems have been planned to
meet every constraint. Therefore, the GWOA could obtain a
good solution with a minimal run time and within a suitable
tolerance if the precise approach cannot.
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FIGURE 3 EM for single day: (a) Senario-1; (b) Senario-2; (c) Senario-3; (d) Senario-4; (e) Senario-5

TABLE 5 Simulation outcomes of consecutive day

Scenario 5

Period (h) 24 48 72 96 120 144 168

F (cost) GWOA (€ cents) – −95.4 −83.1 −60.9 −38.8 −19.5 4.7

Gap (%) – −4.7 −6.9 −4.6 −6.9 −8.6 23.1

MILP (€ cents) −107.2 −99.7 −89.9 −66.4 −44.1 −22.2 4.1

Computation time GWOA (s) – 25.5 347 68.7 77.9 88.1 175.1

MILP (s) 16.23 49.39 600 600 600 600 600

6 ALGORITHM EFFICIENCY
ASSESSMENT

This paper tests and evaluates the efficiency and effectiveness
of the GWOA by using various curves of the purchasing price,
illustrated in Figure 5. Five curves are chosen at random, every
one of which was simulated with whole periods as shown in

Table 6: 48, 72, 96, 120, 144, and 168 h. During a 48-h simu-
lation, the average of outcomes achieved using MILP would be
190.97€ cents, whereas the solution of the GWOA would be
194.70€ cents with a gap of 1.95%. There is a 90% reduction
in computation time from 164.26 to 16.15 s. A 72-h simula-
tion period has an average of 395.53€ cents achieved with MILP
compared to 402.08€ cents achieved by the GWOA with a gap
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TABLE 6 Simulation outcomes for various price curve

Scenario 5

Period 48 48 48 48 48 Average

N⋅ of price curve 1 2 3 4 5

F (cost) GWOA (€ cents) 301.5 344.7 188.7 161.8 −22.8 194.8

Gap (%) 3.1 2.6 0.1 0.5 −0.7 1.1

MILP (€ cents) 294.4 341.2 189.7 159.7 −23.9 192.2

Computation time GWOA (s) 16.7 6.3 17.1 16.9 24.2 16.2

MILP (s) 600 11.8 45.2 33.1 137.2 165.5

Scenario 5

Period 72 72 72 72 72 Average

N⋅ of price curve 1 2 3 4 5

F (cost) GWOA (€ cents) 579.4 639.8 409.7 341.2 32.5 401.9

Gap (%) 2.9 2.6 0.3 0.1 -3.1 0.6

MILP (€ cents) 565.9 631.2 409.8 341.2 33.6 396.3

Computation time GWOA (s) 16.1 11.9 10.8 19.2 35.3 18.7

MILP (s) 17.4 22.5 12.9 46.1 600 139.8

Scenario 5

Period 96 96 96 96 96 Average

N⋅ of price curve 1 2 3 4 5

F (cost) GWOA (€ cents) 879.1 968.1 639.6 499.5 93.7 616

Gap (%) 3.6 3.5 −0.8 −5.2 −6.4 1.1

MILP (€ cents) 856.1 938.2 648.1 532.8 109.8 617

Computation time GWOA (s) 18.8 14.2 18.9 54.2 15.9 24.4

MILP (s) 600 600 600 600 600 600

Scenario 5

Period 120 120 120 120 120 Average

N⋅ of price curve 1 2 3 4 5

F (cost) GWOA (€ cents) 1198.4 1308.2 879.8 684.3 158.9 845.9

Gap (%) 6.3 6.2 1.4 −4.2 −4.3 1.1

MILP (€ cents) 1128.2 1233.5 869.4 709.7 165.9 821.3

Computation time GWOA (s) 24.1 20.1 25.9 35.9 62.9 33.8

MILP (s) 600 600 151.2 600 600 510.2

Scenario 5

Period 144 144 144 144 144 Average

N⋅ of price curve 1 2 3 4 5

F(cost) GWOA (€ cents) 1499.7 1641.6 1122.3 861.6 225.8 1070.2

Gap (%) 7.2 7.2 2.2 −3.6 −3.9 1.8

MILP (€ cents) 1398.9 1531.2 1101.2 891.5 229.8 1030.5

Computation time GWOA (s) 29.1 19.8 28.9 63.4 155.7 59.4

MILP (s) 228 113.4 72.7 600 600 322.8

Scenario 5

Period 168 168 168 168 168 Average

N⋅ of price curve 1 2 3 4 5

F (cost) GWOA (€ cents) 1831.8 1985.2 1358.7 1033.5 294.6 1300.8

Gap (%) 7.9 7.9 2.3 −3.7 −4.6 2

MILP (€ cents) 1702.4 1838.4 1329.3 1078.5 311.7 1252.1

Computation time GWOA (s) 25.7 17.8 25.3 77.7 88.2 46.9

MILP (s) 600 600 600 600 600 600
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FIGURE 5 Various price curves

of 1.66%. This reduces computation time by 87% from 139.46
to 18.40 s. A 96-h simulation time horizon yields the following
average result: 616.34€ cents with MILP while 621.31€ cents
with the GWOA with a gap of 0.81%.

There is a 96% decrease in computation time from 600 s to
24.37 s. A 120-h simulation period obtains an average of 823.56€
cents using MILP, and 848.03€ cents using GWOA, with a gap
of 2.97%. There is a 93% decrease in computing time from
509.79 to 33.67 s. A 144-h simulation period gives an average
of 1030.08€ cents for MILP and 1069.20€ cents for GWOA;
the gap is 3.80%. There is 82% decrease in computation time
from 321.06 s to 59.16 s. Lastly, a 168-h simulation period gives
an average of 1250.76€ cents for MILP and 1301.45€ cents
for GWOA; the gap is 4.05%. There is a 92% reduction in
computation time from 600 to 47.09 s. The outcomes demon-
strate that this suggested GWOA works efficiently and would be
adaptive to the factor variation since the global optimum solu-
tion would be close to the optimum solution in whole cases
in simulating consecutive days. In addition, the computation
time is significantly reduced, which is important in real-time
applications.

7 CONCLUSION

The study proposes a new EM system that takes into account
production as well as usage systems. Within the scheme,
renewable energy sources can be scheduled with the grid at
generation, and after that, various thermal and electric devices,
batteries, and EVs can be controlled and managed. An opti-
mization algorithm has also been applied to address the issue of
long-term simulations, which will decrease consumers’ energy
bills in SHs for consecutive days. The efficiency of this sug-
gested method would be demonstrated by comparing it with
a GWOA. According to outcomes, the optimal solution would
be found in scenario five, in which the TCL adjusts the REF,
EWH, and room temperature for minimizing the power usage
and maintaining the lowest satisfaction level. Moreover, the
outcomes demonstrate that this suggested optimization algo-
rithm is capable of obtaining a close-to-optimum solution with
a strong reduction in computation time. Numerous SHs will be
considered in future research for adapting microgrid EM sys-
tems. The results show that more than 50% improvement could
be made for the energy management part. The main limitation
of the proposed model is its ability for handling the centralized
structure problems. In other words, the proposed problem for-
mulation is not structured for the decentralized or distributed
models. Moreover, the model performance relies on the search-
ability of the evolutionary algorithms. This can be assessed in
the future works.
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