
 

 
This is a self-archived – parallel published version of this article in the 

publication archive of the University of Vaasa. It might differ from the original. 

New Hybrid Deep Neural Architectural Search-

Based Ensemble Reinforcement Learning 

Strategy for Wind Power Forecasting 

Author(s): Jalali, Seyed Mohammad Jafar; Osório, Gerardo J.; Ahmadian, Sajad; 

Lotfi, Mohamed; Campos, Vasco M. A.; Shafie-khah, Miadreza; 

Khosravi, Abbas; Catalão, João P. S. 

Title: New Hybrid Deep Neural Architectural Search-Based Ensemble 

Reinforcement Learning Strategy for Wind Power Forecasting 

Year: 2022 

Version: Accepted manuscript 

Copyright © 2022 IEEE.  Personal use of this material is permitted.  Permission 

from IEEE must be obtained for all other uses, in any current or future 

media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component 

of this work in other works. 

Please cite the original version: 

 Jalali, S. M. J., Osório, G. J., Ahmadian, S., Lotfi, M., Campos, V. M. A., 

Shafie-khah, M., Khosravi, A. & Catalão, J. P. S. (2022). New Hybrid 

Deep Neural Architectural Search-Based Ensemble Reinforcement 

Learning Strategy for Wind Power Forecasting. IEEE Transactions on 

Industry Applications 58(1), 15-27. 

https://doi.org/10.1109/TIA.2021.3126272 

 

 



New Hybrid Deep Neural Architectural Search-Based
Ensemble Reinforcement Learning Strategy

for Wind Power Forecasting
Seyed Mohammad Jafar Jalali, Gerardo J. Osório, Sajad Ahmadian, Mohamed Lotfi, Member, IEEE,

Vasco M. A. Campos, Miadreza Shafie-khah, Senior Member, IEEE, Abbas Khosravi, Senior Member, IEEE,
and João P. S. Catalão, Senior Member, IEEE

Abstract—Wind power instability and inconsistency involve the
reliability of renewable power energy, the safety of the transmission
system, the electrical grid stability and the rapid developments
of energy market. The study on wind power forecasting is quite
important at this stage in order to facilitate maximum wind energy
growth as well as better efficiency of electrical power systems. In
this work, we propose a novel hybrid data driven model based on
the concepts of deep learning-based convolutional-long short term
memory (CLSTM), mutual information, evolutionary algorithm,
neural architectural search procedure, and ensemble-based deep
reinforcement learning (RL) strategies. We name this hybrid model
as DOCREL. In the first step, the mutual information extracts
the most effective characteristics from raw wind power time series
datasets. Second, we develop an improved version of the evolution-
ary whale optimization algorithm in order to effectively optimize
the architecture of the deep CLSTM models by performing the
neural architectural search procedure. At the end, our proposed
deep RL-based ensemble algorithm integrates the optimized deep
learning models to achieve the lowest possible wind power forecast-
ing errors for two wind power datasets. In comparison with four-
teen state-of-the-art deep learning models, our proposed DOCREL
algorithm represents an excellent performance seasonally for two
different case studies.

Index Terms—Advanced evolutionary algorithm, deep neural
architectural search, ensemble reinforcement learning (RL)
strategy, hybrid model, wind power forecasting.

I. INTRODUCTION

R ENEWABLE energy will be an incredibly prominent
strategic power generation in the foreseeable future. The

volume of renewable energy resources has thus risen signifi-
cantly in recent years and the percentage of electricity generation
in the overall electricity generation has certainly grown [1]. In
the recent years, the wind power generation is considered as one
of the major representatives of renewable energy. Wind power
is intermittent, stochastic, and unstable, affecting the safety
and reliability operation of the electricity grids as well as the
efficiency of potential power suppliers [2], [3]. If the wind farm
power can be predicted accurately, the effect of wind power on
transmission system service will be substantially reduced, the
operational costs of the electricity system will significantly be
lowered and the robust foundation for power system will be
effectively provided [4].

Wind power forecasting can be classified into ultrashort-term
forecasting, short-term forecasting, medium-term forecasting,
and long-term forecasting from the view of time forecasting
scale [5], [6]. Specifically, the ultrashort term forecasting uses
mostly historical wind farm data and the forecasting scale of
several hours and the short-term prediction uses tens of hours of
a couple of days to forecast wind power output. The forecast-
ing methods are primarily classified into physical, statistical,
machine-learning-based, and hybrid methods [7], [8]. In order
to generate the reliable wind power forecasts, the physical
approach is focused largely on the geographical climate and
weather conditions (such as atmospheric pressure, precipitation,
and temperature). Because of the high costs and the complex-
ity of modeling, wind power cannot be accurately predicted
by physical approaches. The statistical models are focused on
analysis of the wind farm’s historical data to determine the
relationship between the wind power and certain variables or
hidden rules, and apply such indicators to boost their prediction
performance [9].
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Recently, the machine learning methodologies have proven to
be highly efficient with remarkable results for many real-world
problems [10]–[16] such as wind power forecasting [17]. Several
previous works involve the use of machine learning algorithms
such as artificial neural network (ANN), support vector regres-
sion, Kalman filter, and extreme learning machine that have
been successfully applied to forecast the wind power energy
in several real-world datasets [18], [19]. On the other hand,
the hybrid approaches are regarded as the efficient models for
integrating two or more forecasting models. In [20], a multistep
wind forecasting model was presented by an ensemble fuzzy
system forecasting model. The Kalman filter and the ANN model
were implemented in [21] to address the wind nonlinear behavior
and uncertainty, and the ARIMA model was introduced to in-
crease their prediction performances. In [22], the wavelet packet
transform and least square support vector machine models are
combined in order to reduce the nonlinearity and instability
of wind data characteristics. Thus, while the wind power fore-
casting methods are continuously improving, the more reliable
forecasting algorithms still need to be achieved. Besides, as
stated in [23], according to the complexity, uncertainty, and
randomness of wind power data, previous physical, statistical,
and intelligent models are not efficiently able to derive the depth
features found in these nonlinear data points.

In recent years, deep learning technology as a member of the
ANN family has received a large amount of success in the imple-
mentation of many forms of classification tasks including speech
recognition and computer vision, and also has been widely
utilized for several real-world regression tasks such as time series
forecasting in energy domain [24]–[28]. Many previous studies
have shown that the deep neural networks can boost the model
performance in complex approximation function mechanisms
and uncover the data complexity attributes with their power-
ful nonlinear capacity by mapping operation. Driven by these
accomplishments, the researchers have started working on the
wind power and wind speed forecasting using the deep learn-
ing technologies. Furthermore, the most widely known deep
learning models in the literature for wind power forecasting are
recognized by stacked autoencoder, stacked denoising autoen-
coder, deep belief network, long short-term memory (LSTM),
and convolutional neural network (CNN) models. Among all
these models, a large number of studies have revealed that the
CNN and LSTM models have an excellent performance for
time series-based wind power forecasting problems [29], [30].
In [31], a LightGBM and CNN-based ensemble learning method
is proposed which achieves better accuracy than the compared
wind power models. An efficient two stage-based strategy by
employing wavelet packet transform algorithm and a novel deep
convolution neural network (EDCNN) model are hybridized to
forecast wind power in [32]. In [33], a hybrid deep learning
model for short-term bidirectional memory-CNN (BiLSTM-
CNN) is proposed for short-term wind power forecasting. First,
the gray correlation analysis is used to pick inputs for the
forecasting model. The proposed hybrid model then extracts
multidimensional input features to forecast wind power from
a temporal-spatial perspective, where the Bi-LSTM model is
used to mine bidirectional temporal characteristics, while CNN’s

convolution and pooling operations are used to extract spatial
characteristics from various input time series. The authors in [34]
proposed a hybrid forecasting framework based on the powerful
feed-forward CNN algorithm and the time-circulation neural
LSTM network models to boost the accuracy of ultrashort-term
forecasting for the wind power datasets. Furthermore, in [35],
the authors proposed a novel residual-based CNN algorithm
for very short-term wind power forecasting. This hybrid frame-
work has a good forecasting performance when compared with
state-of-the-art pretrained networks. An efficient deep neural
network model for short-term wind power forecasting which
is employed by recurrent neural networks and infinite feature
selection has been proposed by [36]. The simulation results of
this model represent that it improves significantly the forecasting
accuracy in different seasons of the year based on the data
from the National Renewable Energy Laboratory. In [37], the
authors introduced a new strategy based on isolated forest and
deep learning neural networks to alleviate the damaging conse-
quences of supervisory control and data acquisition-data outliers
for wind power forecasting. The experimental results showed
that the isolation forest improved the accuracy of training and
testing in deep neural network models for anomaly detection
in wind power prediction. In another work carried out by [38],
the researchers developed a model named by DeepESN which
is introduced based on deep learning technology into the echo
state network (ESN). This novel strategy is employed for the
problem of wind power forecasting and outperforms the exist-
ing well-known algorithms for two case studies. Besides, the
researchers in [39] developed an efficient deep neural network
framework based on the temporal convolutional networks and
orthogonal array tuning method for forecasting the generated
power of the wind turbines in a wind farm. This model showed
an excellent outcome in comparison with multistep ahead deep
learning models including LSTM and CNN-LSTM.

Generally, the deep neural network architectures play a crucial
role in their performance which is a time-consuming and manual
search process that explores a wide range of solutions [40].
The neural architecture search (NAS) methods search for the
hyperparameters in a deep neural network architecture to find the
most optimum architectures automatically and efficiently. The
deep neural network architectures discovered by NAS methods
have achieved the high state-of-the-art efficiency in computer
vision among other tasks [41], [42] but few works have been
implemented by NAS strategy in time series regression prob-
lems specially for wind power forecasting. As an example, the
authors in [7], proposed a novel NAS strategy based on the
rough theory for short-term wind power forecasting. However,
their model was not efficient in discovering the wide range
of hyperparameters for their proposed deep learning model.
In another work proposed by [43], the authors used a random
model based on the NAS strategy, however, this model works
based on the trial and error strategy and also is not intelligent
and efficient enough for power consumption forecasting. Thus,
introducing an intelligent model based on the NAS technology
for the problem of wind power forecasting can be considered
as an essential strategy with the least trial and error efforts. On
the other hand, the previous studies show that the accuracy of an



ensemble learning based-regression model is higher than a single
regression model, but there is a certain degree of overlapping
in the regression models [44]. It is therefore very noteworthy
to investigate how the number of ensemble regression models
can dynamically be reduced under the assumption that their
performance is guaranteed in which we adopt the strength of
the deep reinforcement learning (RL) algorithm in an ensemble
manner.

Thus, in this article, we attempt to propose an accurate hybrid
algorithm based on three main stages: 1) We extract the most
efficient characteristics from raw wind power time series data as
the input for the deep learning models, b) we perform the NAS
technique by boosting the performance of WOA model based
on a two-stage evolutionary strategy to efficiently optimize the
architecture of deep convolutional-LSTM models for having the
most excellent deep learning models without the procedure of
trial and error for designing the deep learning models, and c) at
the end, we design an ensemble deep RL strategy to integrate
the forecasting results obtained by the multiple optimized deep
learning models to obtain the highest possible accuracy from
the wind power time series datasets. It is worth noting that we
consider our proposed method as a hybrid forecasting model due
to combine different methodologies in its main procedure. Each
of these methodologies has significant advantages in boosting
the effectiveness of the proposed method. More specifically, the
mutual information strategy is used to extract more efficient
characteristics from the raw input data. This strategy is very
helpful as the forecasting model can produce more accurate
predictions through employing such efficient extracted charac-
teristics. In addition, a combined deep neural network model is
utilized by integrating the advantages of the CNN and LSTM
neural network. This leads to use the ability of convolutional
layer in extracting latent features of input data, and also the abil-
ity of LSTM model in considering the temporal feature of input
data. Also, an improved version of WOA model is developed
based on the two effective operators to make a better balance
between the exploration and exploitation phases of the WOA
model. Then, this improved optimization algorithm is used to
obtain the optimal values of the parameters of the combined
deep neural network model. Finally, the deep RL model is used
to integrate the final results of the input forecasting models and
obtain more accurate predictions.

The rest of this work is organized as follows: In Section II,
the proposed hybrid deep learning model is explained in details.
In Section III, the wind power datasets and the experimental
setups for running the proposed model are generally described.
The satisfying performance and remarks of the proposed method
are represented in Section IV. Finally, Section V concludes this
article.

II. METHODOLOGY

In this section, we introduce our novel hybrid framework
based on three phases as follows.

Phase 1: In the first step, we utilize the mutual informa-
tion (MI) strategy as a powerful input characteristic extraction
to obtain the effective characteristics for the deep-optimized

Fig. 1. Flowchart of the proposed BWOA.

convolutional-long short term memory (CLSTM) models. MI
assesses a reduction of uncertainty regarding a random variable
dependent on another variable’s information [45]. In contrast
to linear correlations, MI is more generally based on the fact
that all information about variables, both linear and nonlinear,
is contained in this technique, and it is remarkably useful in
assessing the same sort of relationship. MI is also easy to
interpret, based on information theory and indifferent to size
of data bases [45], [46].

Let’s assume the wind power time series are represented
by V = {v(1), v(2), . . . , v(t− 1), v(t), v(t+ 1), · · · }, where
at time t, the wind power is denoted by v(t). As the nature
of wind power data involves the continuous data, the wind
power at the time t+ 1 relies on the previous wind power value
v(t− i+ 1)(i = 1, . . . , N), in which N is set to 100.

Therefore, the corresponding wind power at v(t− i+ 1) is
considered in the prediction of wind power at v(t+ 1), where
n is set to be 8760 samples with resolutions of half-hourly hori-
zons. Thus, we construct the matrix of characteristics (indicated
by C) as follows:

C =
[
C1 C2 C3 · · · C100

]
=

⎡
⎣ v(t)1 · · · v(t− 99)1

v(t)n · · · v(t− 99)n

⎤
⎦ (1)

where Ck(k = 1 . . . 100) matches to the kth feature.



Fig. 2. General overview of the proposed DOCREL framework.

Fig. 3. Actual (indicated by blue) versus predicted (indicated by red) data
points for the year 2019 dataset.

The MI among the future wind power V (t+ 1) =
[ v(t+ 1)1 · · · v(t+ 1)n ]T and all feature vectors are specified
by the following formula:

I(Ck;V (t+ 1) =∫∫
pjoint (Ck(i), v(t+1)) log

pjoint (Ck(i), v(t+ 1))
p(Ck(i))p(v(t+ 1))

dCk(i)dv(t+1)

(2)

where p represents the probability density for a single variable
whereas pjoint denotes to the density of a joint probability
between two variables. When two vectors are distinct from each
other, the value for MI equals zero.

The MI can be determined with the below expression because
of the complexity existed in (2)

I (Ck;V (t+ 1))

= H (Ck) +H(V (t+ 1))−H (Ck, V (t+ 1)) (3)

Fig. 4. Actual (indicated by blue) versus predicted (indicated by red) data
points for the year 2020 dataset.

where H(Ck) and H(V (t+ 1)) are, respectively, the entropy
for vectors Ck and v(t+1), while H(Ck, V (t+ 1)) defines the
joint entropy of the two vectors represented by

H (Ck) = −
∫

p (Ck(i)) log p (Ck(i)) dCk(i) (4)

H(v(t+ 1)) = −
∫

p (v(t+ 1)) log p (v(t+ 1)) dv(t+ 1)

(5)

H (Ck, v(t+ 1)) =

−
∫∫

pjoint (Ck(i), v(t+ 1)) log pjoint (Ck(i), v(t+ 1))

dCk(i)dv(t+ 1). (6)



Fig. 5. Convergence curve of the DOCREL model for the collected wind farm
of the year 2019.

Fig. 6. Convergence curve of the DOCREL model for the collected wind farm
of the year 2020.

Since quantifying the entropy is a challenging task to carry
out, the MI estimation algorithms are the commonly used tech-
niques in the literature. Besides, the MI calculation necessitates
estimating marginal probability density functions as well as
the joint probability density function. To accomplish this, both
parametric and nonparametric techniques can be adopted. The
density distribution is assumed to have a functional form in
parametric density techniques. Nonetheless, for the vast majority
of real-world datasets, the parametric form of the underlying
density distribution is unknown. Nonparametric approaches for
calculating the densities of unknown distributions present a
consistent strategy. The most commonly and efficiently used
nonparametric method for estimating the MI is histogram [47].

In comparison with the kernel model and k-nearest neighbor
model [48], thanks to the simplicity and higher computational
performance of the histogram model, in this work, we use
histogram model [49] in order to determine the optimal MI for

Fig. 7. Violin plots of eleven evolved hyperparameters for the year 2019.

our wind power datasets. To be more specific, the histogram
model avoids the bias accumulation issue happening in the time
series forecasting problems and it efficiently exacts the number
of characteristics to be chosen in the Gaussian scenario on a time
series-based characteristic extraction problem.

Based on the experiments we performed, as i > 39, the MI
value among the predicted wind power V (t+ 1) and the actual
wind power V (t− i+ 1) is minimal sufficient to be dismissed.
Therefore, the MI returns the selected features as x = {v(t−
38), . . . , v(t− 1), v(t)} in order to consider the optimal input
vectors for the optimized deep CLSTM models.

Phase 2: Neural Architectural Search Procedure:
The problem of NAS can be theoretically described here.
We nameD for the space of all datasets,M for the space of the

deep neural network model, and A in quest of the architectural
search space. Thus, using this interpretation, a search space
architecture α ∈ A encodes all the properties needed for net-
work training on a dataset, including selecting the optimization
algorithm for model parameters as well as all hyperparameters
and the regularization strategies used in deep neural network
architecture.

The general deep learning algorithm Λ calculates the model
mα,θ ∈ Mα in a dataset d that splits into the training partition
dtrain and the testing partition dtest . This model is calculated by
minimizing the L loss function which has the R regularization



Fig. 8. Violin plots of eleven evolved hyperparameters for the year 2020.

term in respect of the training dataset which is

Λ(α, d) = argmin
mα,θ∈Mα

L (mα,θ, dtrain ) +R(θ). (7)

The main responsibility of the NAS is in searching the best
architecture α∗ that minimizes or maximizes the objective func-
tion O on the testing partition dataset dvalid indicated by:

α∗ = argmin
α∈A

O (Λ (α, dtrain ) , dvalid ) = argmin
α∈A

f(α). (8)

As our aim in the problem of wind power forecasting is in
minimizing the error of wind power datasets, the consideredO is
in minimization format. In some cases, the researchers consider
O as the negative loss function L.

Optimizing the f response function is a black-box problem
of global optimization. Several approaches such as evolutionary
algorithms, RL, and Bayesian optimization are proposed in
the literature for neural architecture optimization. Among these
methods, evolutionary algorithms are recognized as one of the
most effective and promising optimization methods in deep neu-
ral architectural search for various real-world applications [26].

In this study, we utilize the fusion of both powerful deep CNN
and LSTM neural network models named as CLSTM to design
the baseline of deep neural network architectures for wind power
time-series forecasting problem. The deep CLSTM architectural
models have gained a great deal of research interest due to their
excellent superiority in incorporating the efficiency of automated

feature extraction on CNN and high potential in capturing long-
term temporal dependency by LSTM algorithm. The convolu-
tional layer designed in CLSTM separates the interconnections
by maintaining the probabilistic and stochastic patterns forming
the basis of the original time series. Thus, this deep learning
model generates more precise feature interpretations to make
time frame constraints more accurate toward the LSTM layers.

By providing more details, the data sequence is used for
feature extraction, first, as the input for two consecutive con-
volutional layers. Those low-level features and correlations
among parameters in the sense of sequential affects are thereby
achieved through convolutional mechanisms of the filters with
different properties, nonlinear neuron activation, and functional
interpretation of max pooling operators. The feature map then
is transferred to the LSTM layer, which gives a comprehensive
analysis of three efficient gates in LSTM, i.e., forgetting input,
input and output gates to acquire the complex properties. In
particular, the forgetting gate discards unnecessary or repetitive
information from the earlier cell states. The input gate extracts
efficient new data from the input sequence. In addition, the cell
state signals are extracted and transmitted by the output gate to
the next state. In fact, the stored temporal data are considered
for nonlinear mapping as an input to the dense layers. Finally,
the information acquired is transformed into the output vector
and the forecasting result values are successfully achieved.

The deep CLSTM neural network models have been prac-
ticed to effectively address a number of time series regression
problems such as traffic forecasting [50], global horizontal ir-
radiance forecasting [51], and residential energy consumption
forecasting [52]. In this study, we develop the CLSTM skele-
ton architecture, on which the optimized arrangement of the
hyperparameters is based on the evaluation of our proposed
evolutionary algorithm.

The next step centers on the optimization of the deep CLSTM
hyperparameters using our proposed evolutionary algorithm.

The original whale optimization algorithm introduced by Mir-
jalali and Lewis [53] is a powerful evolutionary algorithm which
has shown significant progress for searching the optimal solu-
tions in solving the real-world optimization problems. However,
when the original WOA faces with high-dimensional problems
such as NAS, it has a slow convergence speed in finding the opti-
mal solution and easily falls into local optima. To overcome these
critical issues of WOA, we improve its standard version using
two powerful optimization operators including quasi-opposition
and Lévy flight trajectory operators. We name our novel robust
evolutionary model as the boosted whale optimization algorithm
(BWOA).

First, we introduce the mechanism of WOA in summary. The
WOA numerically patterned three activities of humpback whales
throughout the hunting procedure, i.e., prey encircling, bubble-
net attacking, and prey searching.

For the phase of encircling prey, humpback whales can well
detect the location of prey and encircle it for capturing the prey.
In order to mimic this mechanism, let us assume the current
optimal solution is globally optimal or located near to it, the other
search agents step more toward the current optimal solution and
update their current position. The following formula explains



Fig. 9. Boxplots of various algorithms based on RMSE for the collected wind farm of the year 2019.

Fig. 10. Boxplots of various algorithms based on RMSE for the collected wind farm of the year 2020.

this behavior:

−→
D =

∣∣∣−→C · −→X∗(t)−−→
X (t)

∣∣∣ (9)

−→
X (t+ 1) =

−→
X∗(t)−−→

A.
−→
D (10)

where X(t) represents the position vector, X∗ denotes to the
best found solution in each iteration that is updated if a better
solution has been found in the search space and t is the current
iteration number. The

−→
A and

−→
C represent two coefficient vectors

which their updating mechanisms are given by

−→
A = 2−→a · −→r −−→a (11)

−→
C = 2 · −→r (12)

where −→a is decreased linearly over the course of iterations from
2 to 0, and r denotes to a random vector in [0, 1].

At bubble-net attacking phase, WOA allows spiral motion to
model humpback whales attacking prey with bubble nets. The
following is the formula for the mathematical modeling of this
behavior:

−→
D′ =

∣∣∣−→X∗(t)−−→
X (t)

∣∣∣ (13)

−→
X ′(t+ 1) =

−→
D′ · ebl · cos(2πl) +−→

X∗(t) (14)



where
−
D
→′ represents the distance from the ith search agent

(whale) to the best found solution (prey), l is a random number
in the interval of [-1, 1], and b represents a constant value to
define the logarithmic spiral shapes.

In searching for prey stage, humpback whales randomly look
for the prey on their position judgment during the hunting
procedure. The formula for numerical simulation of this action
is given by following:

−→
D =

∣∣∣−→C · −−−→Xrand −−→
X
∣∣∣ (15)

−→
X (t+ 1) =

−−−→
Xrand −−→

A · −→D (16)

where
−−−→
Xrand represents a random position vector from the

population.
In WOA, the

−→
A vector determines whether the algorithm

performs the exploration (search for prey) or exploitation (en-
circling prey and bubble-net attacking) phases. If |−→A | > 1, the
algorithm performs exploration ability, otherwise the exploita-
tion ability is activated. It should be noticed that the humpback
whales swim all around the prey in a circle loop while going
around the fish herds with a logarithmic conical movement.
For simplification, we presume the updating position of the
humpback whales with a 50 percent probability, that can be
interpreted mathematically by

−→
X (t+ 1) =

{−→
X∗(t)−−→

A · −→D if p < 0.5−→
D′ · ebl · cos(2πl) +−→

X∗(t) if p > 0.5

(17)

where p represents a random value in [0, 1].
Most of the evolutionary algorithms including WOA incorpo-

rate stochastic operators to evolve during the iterative procedure
resulting in a slow rate of convergence speed. Thus, in order to
resolve this issue, we utilize the quasi-opposition strategy with
the purpose of replacing random search for improving the search
space effectively. The opposite point and the opposite number
are two main concepts of this strategy. For opposite number,
assume x ∈ [a, b] is a real number which its opposite number xo

is given by

xo = a+ b− x. (18)

Quasi-opposite point (Xqo = xqo
1 , xqo

2 , . . . , xqo
n ) can be de-

scribed as the point between the center and the opposite point
of the search space by

xqo
i = rand (ci, x

o
i ) (19)

where ci =
ai+bi

2 . This concept allows dynamic jumping of
evolutionary WOA in the phase of updating position, which
can improve an excellent tradeoff between the exploration and
exploitation capabilities and ensure it does not collapse into local
optimization.

Lévy flight is another powerful evolutionary operator that has
the capability to maximize the diversification of search agents
in evolutionary algorithms which guarantees in discovering the
the search space effectively. This operator is expressed by the

following mathematical formula:
−→
X (t+ 1) =

−→
X (t) + μsign [rand − 1/2]⊕ Levy (20)

Levy ∼ u = t−λ, 1 < λ ≤ 3 (21)

where
−→
X (t) represents the ith search agent at iteration t of the

position vector
−→
X , μ denotes to an uniform distribution random

number, the rand means a random variable in the [0, 1] interval,
⊕ represents the entrywise multiplication, and λ denotes to a
balanced distribution by the random phase length distribution s
using the following formula:

s =
μ

|ν|1/β
(22)

where s means the Lévy flight step distance represented by
Levy(λ). λ in (21) dedicates to λ = 1 + β formula in which
β = 1.5. Both of μ = N(0, σ2

μ) and ν = N(0, σ2
ν) represent the

normal distributions given by the following formula:

σμ=

[
Γ (1 + β)× sin (π × β/2)

Γ (((1 + β/2) )× β × 2(β−1)/2

]1/β

andσν = 1.

(23)

By using the powerful quasi-opposition strategy and the Lévy
flight trajectory operators for the basic version of WOA, the
diversity of the population against slow convergence and poten-
tial enhancement to jump out of maximum local optimization is
increased efficiently. Besides, the exploration and exploitation
phases of the WOA is balanced excellently. The schematic
flowchart of the BWOA algorithm can be seen in Fig. 2

In the next step, we apply the proposed BWOA to evolve
the deep CLSTM hyperparameters to reduce the forecasting
error of wind power dataset. On the other hand, the novel
BWOA addresses the solution representation and fitness func-
tion evaluation, as two major principal considerations utilized
for any evolutionary optimization problem. Thus, all solutions in
BOWA are determined by an eleven-dimensional vector in which
each element represents one of the hyperparameters adopted in
deep CLSTM models. These hyperparameters have the critical
roles in designing the CLSTM architecture. As an example,
max-pooling size, the number of CNN or LSTM layers as well
as the learning rate are the hyperparameters used in CLSTM
network that BOWA optimizes them efficiently.

As that solution space is repetitively searched by the BWOA
strategy, we just need converting the optimum values acquired
with their corresponding discrete hyperparameters. As a re-
sponse, to transform each real value to an integer value, we
model this converting procedure by the following equation:

yij =

⌊
gj ∗ xij − lb

ub− lb
+ 0.5

⌋
, j = 1, . . ., n (24)

where gj represents the maximum number of the item type j,
xij denotes to the real number of jth dimension for the solution
Xi, while the lower and upper bounds for the search space are
defined by lb and ub, respectively.

The BWOA model generates a population of search agents
in which each solution is a representative of eleven dimensional



vector defining as each hyperparameter used in the evolutionary
procedure of CLSTM architecture. Next, the new obtained solu-
tions will update repeatedly using the quasi-opposition strategy
and the Lévy-flight trajectory operators to make an efficient
balance between the exploration and exploitation phases as well
as increasing more the convergence speed. Furthermore, the
WOA meets the stopping condition resulting to the optimal
CLSTM hyperparameter values as the best solution found by
the proposed BWOA strategy.

For determining the efficiency of each solution, a fitness
function has to be defined. Therefore, the input time series data
are divided into training and testing portions. The training set
is necessary for optimizing hyperparameters of CLSTM while
the testing set assesses the efficiency of the final wind power
forecasting model. Suppose �y is a vector which can define the
actual wind power time series data for the following M time
steps:

�y = (y(0), y(1), . . ., y(M−1)) (25)

where y(t) represents the actual wind power values for the time
step t. The combined BWOA-CLSTM model assumes to predict
the wind power values in the following N time steps using the
CLSTM model:

�̂y = (ŷ(M), ŷ(M+1), . . ., ŷ(M+N−1)) (26)

where the predicted values of the time step t is denoted by �y(t).
We represent the input vectors of the deep CLSTM neural

network using the training data of (25), while the CLSTM
predicts the wind power values from the next N time-steps
given in (26). Thus, we assess the fitness values of each BWOA
solution using the well-known mean square error (mse) as the
fitness function using the following formula:

MSE =
1
n

n∑
i=1

(yi − y′i)
2 (27)

where yi and y′i represent the actual and forecasted wind power
values obtained by the CLSTM model, respectively.

As the proposed BWOA-CLSTM looks for the solution
with the lowest mse values, this mechanism achieves the deep
CLSTM neural networks having the best and highest perfor-
mance of the testing set for the data points of wind power
forecasting problem.

Phase 3: By obtaining the best deep CLSTM neural network
models using our novel evolutionary algorithm, the last step of
our hybrid algorithm is to use the powerful deep RL theory. RL
is an online learning methodology that examines the optimal
decision-making procedure by means of trials and errors, and
then produces an optimal outcome during interactions with the
environment. Two most common RL algorithms are Q-learning
and SARSA algorithms, which have been successfully imple-
mented in several real-world applications. Taking into account
the strong convergence of the Q-learning algorithm, this tech-
nique is used in this work as an ensemble learning strategy for
integrating the optimized deep CLSTM networks.

First, we formulate the concepts of state matrix S and
the action matrix a. The state matrix represents the weight in

Algorithm 1: Pseudocode of DOCREL Framework for
Forecasting Wind Power Data-Points.

1: Input: Maxit (Maximum iteration number), Ps

(Population size), CL (Number of CLSTM models).
2: Output: The predicted values of wind power datasets.
3: Begin algorithm:
4: Separate the wind power data points into training Tr

and testing Te sets;
5: while (i < CL) do
6: Set Ps solutions as the initial population in which

each solution is a CLSTM model with random
values of hyperparameters;

7: Calculate fitness value of each solution using (27) as
the mse of related CLSTM model found by Tr set;

8: while (t < Maxiter) do
9: for each search agent do

10: Update a, A, C and p;
11: if (p < 0.5) then
12: if (|A|<1) then
13: Update the position of current search agent by

quasi-opposition strategy based on (19);
14: else if (|A|≥1) then
15: Update the position of the search agent by the (16);
16: end if
17: else if (p≥0.5) then
18: Update the position of the search agent by the

(14);
19: end if
20: end for
21: Update the current search agent position using the

Lévy flight trajectory;
22: Calculate the fitness of all search agents and

update X∗ if a better solution is found;
23: end while
24: Set CLSTM model i according to the

hyperparameters values of the best obtained solution;
25: end while
26: Perform deep Q-learning model to obtain the weights

of CLSTM models as [w1, w2, . . ., wi];
27: Ensemble the results of CLSTM models based on the

obtained weights to forecast the wind power points in
the test set Te;

28: Return the predicted wind power points as the output;
29: End algorithm

the ensemble of the optimized deep CLSTM networks and the
action matrix denotes to the weight estimation of the action
matrix. These two basic concepts in Q-learning are given by
the following formulas:

S = [w1, w2, . . ., wi] a = [Δw1,Δw2, . . .,Δwi] (28)

where, wi represents the weight of the ith optimized deep
CLSTM model. Δwi means the changing weights of the deep
optimized models.



Next, based on the training sets of the optimized deep CLSTM
models, we train the agent in which the agent carries out action a
based on the greedy policy in compliance with the current state
S.

am =

{
Based on maxQ (probability of 1 − ε)
Random (probability of ε)

ε ∈ (0, 1).

(29)
In the third step, we should determine the error function L and
the reward R function. We consider mse as the error function
and the reward function is calculated by

R =

{
+1 + Lm − Lm+1 (Lm+1 < Lm)
−1 + Lm − Lm+1 (Lm+1 > Lm)

. (30)

In the fourth step, we should assess the evaluation function Q
by updating the Q table by

Qm+1 (Sm, am) = Qm (Sm, am)

+γm(R(Sm,am)+λmaxQm(Sm+1, am+1)

−Qm (Sm, am)) (31)

where γ represents the learning rate and the discount parameter
is denoted by λ. We name this advanced framework as deep
optimized convolutional LSTM-based ensemble reinforcement
learning strategy (DOCLER). The major stages of the DOCLER
model can be outlined in the pseudocode given by Algorithm 1.

III. WIND POWER DATASETS AND EXPERIMENTAL SETUPS

The Sotavento wind farms (43.354377 ◦N, 7.881213 ◦W,
644 m.a.s.l.) is employed in this article as the utilized datasets
for the evaluation of our proposed deep learning algorithm. The
wind farm of Sotavento is situated in Galicia, Spain. This wind
farm comprises of 24 wind turbines with a power generation
of 1756 MW. The total historical power generation data of this
wind farm can be obtained from the website by considering
the resolution of half-hour. The accompanying data can be
collected from the Meteogalicia numerical weather prediction
mechanism, depending on the situation of the Sotavento wind
farm. Throughout this study, the total historical wind power data
for both the years of 2019 and 2020 were collected for examining
the DOCREL framework. Each wind power database comprises
17568 GHI time-series data points in an interval of half-hour. We
first split the data based on four different seasons for both of the
2019 and 2020 datasets. Then, we consider 75% of each dataset
to represent the training set and the remaining 25% to represent
the testing set. As mentioned before, we use the MI strategy
to choose the input characteristics for the optimized deep CNN
models which results in 39 wind power input characteristics in
order to train the deep learning models.

For implementing the DOCREL framework, we use the ad-
vanced and intelligent libraries for deep learning, including
Keras and TensorFlow with the hardware devices of 32 GB
RAM, Intel Core i7 CPU, two GeForce GTX 1080 Ti GPUs,
as well the Ubuntu operation system. To execute this proposed
methodology, we program it using Python language program-
ming version 3.7. We configure the proposed BWOA as the
part of CLSTM deep NAS with the number of population and

TABLE I
LIST OF THE PRIMARY CLSTM ARCHITECTURE HYPERPARAMETERS

TABLE II
LIST OF EXPRESSIONS AND VALUATIONS OF CLSTM HYPERPARAMETERS

maximum iteration number equal to 40 and 30, respectively. The
deep Q-learning algorithm is configured as maximum iteration
of 40, learning rate of 0.95, and discount parameter equal to
0.5. It should be mentioned that we feed 10 optimized CLSTM
models to the deep RL ensemble strategy. In order to have a fair
comparison, the proposed DOCLER model and the other com-
petitive deep learning algorithms execute with 10 independent
runs.

Besides, the information regarding the CLSTM hyperparam-
eters and their corresponding ranges are represented in Tables I
and II which are optimized in the process of NAS using the
BWOA model. In addition to these evolved hyperparameters,
the Relu as the activation function and Adam as the optimizer
are selected during the training procedure.

The root mean square error (RMSE) and mean absolute error
(MAE) as the frequently used performance indicators in the
scholarly literature are considered to determine the accuracy
of the deep learning forecasting algorithms. The formulas for
these two evaluation metrics are as following:

RMSE =

√(
1
n

)∑n

i=1
(y′i − yi)2 (32)

MAE =

(
1
n

) n∑
i=1

|y′i − yi| (33)

where y′i denotes the predicted value of yi, where n denotes the
quantity of data points in the testing test.

In order to show how strong the performance of our pro-
posed algorithm is, we compare it with the latest deep learning



TABLE III
EXPERIMENTAL FINDINGS OF FOUR SEASONS FOR THE SPANISH DATASET GATHERED IN THE YEAR 2019

TABLE IV
EXPERIMENTAL FINDINGS OF FOUR SEASONS FOR THE SPANISH DATASET GATHERED IN THE YEAR 2020

algorithms used for wind power forecasting in the literature.
These state-of-the-art deep learning models include LSTM,
Bi-LSTM, CNN-BiLSTM, EnsemLSTM [54], hybridDeep [55],
WD-LSTM [56], and stacked by independent recurrent autoen-
coder (SIRAE) [57], which have shown acceptable performance
for wind power forecasting in the literature. We also test the
effect of powerful hyperparameter searching models including
BWOA-CNN-BiLSTM, BWOA-LSTM, and Bayesian-CNN-
BiLSTM for the deep learning models and also the effect of
different searching models for RL-ensemble based CLSTM
algorithms including Bayesian, genetic algorithm (GA), particle
swarm optimization (PSO), and the standard version of WOA
algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we seasonally examine the performance of
our proposed algorithm against 14 powerful deep learning algo-
rithms on the 2019 and 2020 datasets. We also divide the exper-
iments into 1) comparison of deep learning models, i.e., LSTM,
Bi-LSTM, CNN-BiLSTM, EnsemLSTM, hybridDeep, WD-
LSTM, and SIRAE, 2) comparison of hyperparameter searching

algorithms including BWOA-CNN-BiLSTM, BWOA-LSTM,
and Bayesian-CNN-BiLSTM, 3) comparison of RL-based en-
semble algorithms. Tables III and IV show the performance
of our proposed DOCREL algorithm and other benchmarked
methods based on two evaluation criteria, RMSE and MAE for
four different seasons of the years of 2019 and 2020. As can be
seen from these tables, the proposed DOCREL model for four
seasons of the years of 2019 and 2020 has the lowest error values
among the different benchmarked algorithms for the wind power
datasets. A closer look at these tables reveals that the closest
follower to our proposed algorithm is the WOA-CLSTM-RL
(the standard version of WOA), which for the various seasons
of 2019 and 2020, has the lowest RMSE and MAE error rates
among all benchmarked algorithms for two wind power datasets.

Figs. 3 and 4 demonstrate the actual and predicted wind power
time series datasets for our proposed DOCREL model versus the
second best model (WOA-CLSTM-RL) for the spring season of
the years of 2019 and 2020. As can be seen from these figures,
the real and predicted wind power time series datasets are well
superimposed by DOCREL algorithm, which shows the high
ability of our proposed model in seasonally forecasting two
different wind power datasets. The WOA-CLSTM-RL as the



TABLE V
RUN-TIME ANALYSIS FOR THE PROPOSED DOCREL MODEL AND OTHER

DIFFERENT BENCHMARKS

most competitive algorithm compared with DOCREL cannot
efficiently meet the mapping of the actual and predicted points
for both the 2019 and 2020 wind power datasets.

Furthermore, the convergence curves for two wind power
datasets of the spring season by our proposed algorithm is
displayed on 30 iterations based on the fitness function in Figs. 5
and 6. As can be seen from both of these figures, the proposed
DOCREL algorithm converges excellently and efficiently for
two different Spanish wind power datasets.

In order to represent how effective the proposed DOCREL
framework is in selecting the initial hyperparameters in the opti-
mization process, we show all eleven CLSTM hyperparameters
used by the proposed evolutionary algorithm in Figs. 7 and 8
using the violin plots. The dots in these figures represent each
observation of the initialized value for each hyperparameter.
Based on the results shown in these two figures, the proposed
framework in most hyperparameters has selected values close to
the selected minimum intervals shown in Table II, which shows
the low computational ability of this algorithm in selecting
CLSTM hyperparameters during the evolutionary procedure.
For instance, by a closer look at the Nc hyperparameter for the
year 2019, we figure out that most of the Nc values selected by
DOCREL are with values equal to 2.

In terms of statistics for demonstrating the strength of the
DOCREL algorithm compared to the benchmarked deep learn-
ing algorithms, we show all these methods for the two Spanish
wind power databases for the years of 2019 and 2020, using
the box plot tool. As shown in Figs. 9 and 10, the box plots
of our proposed method has the least amount of errors as well
as the most compact box in terms of comparison with other
deep learning methods. It is worth noting that these results are
obtained based on 10 independent runs.

In order to show the time spent for the proposed algorithm
and other benchmarked algorithms, we show the three times
used to run the algorithms including optimization, training, and
testing times as well as the the number of parameters (i.e., the
number of weights in the connected layers) which can be seen
in Table V. Also, it should be noted that the optimization time
is specific to categories of hyperparameter searching models
as well as RL-based deep learning models because they use
optimization elements in their architectures. Table V shows that
our proposed DOCREL algorithm has the lowest consumption

time based on the seconds among the algorithms that use the
optimization element for their architecture. DOCREL also has
the least amount of consumption time in terms of testing and
training times in comparison to all of the benchmarked algo-
rithms. Furthermore, with having the number of parameters
equal to 328 K, our proposed model considers less parameters
in comparison to other deep-learning algorithms for wind power
forecasting.

V. CONCLUSION

We introduced a deep learning-based hybrid framework in this
work by developing the three phases involving MI strategy as the
efficient characteristic extraction strategy, the optimized deep
CLSTM based on the modified whale optimization algorithm
to perform the neural architectural search procedure, and the
ensemble of deep Q-learning RL model called DOCREL for
wind power forecasting. The wind power data points obtained
from a Spanish wind farm for the years of 2019 and 2020 are used
to verify the effectiveness of the hybrid DOCREL framework.
The experimental results showed the excellent performance of
our proposed DOCREL algorithm in comparison to several state-
of-the-art models for wind power forecasting.
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