
Trip energy consumption estimation for electric buses

Downloaded from: https://research.chalmers.se, 2022-12-10 10:56 UTC

Citation for the original published paper (version of record):
Ji, J., Bie, Y., Zeng, Z. et al (2022). Trip energy consumption estimation for electric buses.
Communications in Transportation Research, 2. http://dx.doi.org/10.1016/j.commtr.2022.100069

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Communications in Transportation Research 2 (2022) 100069
Contents lists available at ScienceDirect

Communications in Transportation Research

journal homepage: www.journals.elsevier.com/communications-in-transportation-research
Full Length Article
Trip energy consumption estimation for electric buses

Jinhua Ji a, Yiming Bie a,*, Ziling Zeng b, Linhong Wang a,**

a School of Transportation, Jilin University, 130022, Changchun, China
b Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
A R T I C L E I N F O

Keywords:
Electric bus
Trip energy consumption
Regression model
Operational data
Cold region
* Corresponding author.
** Corresponding author.

E-mail addresses: jinhua_ji@126.com (J. Ji), yim

https://doi.org/10.1016/j.commtr.2022.100069
Received 25 April 2022; Received in revised form
Available online 22 June 2022
2772-4247/© 2022 The Author(s). Published by El
(http://creativecommons.org/licenses/by-nc-nd/4.0
A B S T R A C T

This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet
planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province,
China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from
�27.0 to 35.0 �C. TEC of an EB was divided into two parts, which are the energy required by the traction and
battery thermal management system, and the energy required by the air conditioner (AC) system operation,
respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight,
travel distance, and trip travel time as contributing factors. The optimum working temperature and regression
parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the
operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were
conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is
12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB
fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting.
1. Introduction

1.1. Background

To combat climate change, many countries have claimed to have CO2
emissions peak before 2030 and achieve carbon neutrality by 2050 or
2060 (Huang and Zhai, 2021). Electric buses (EBs) have the advantages
of low emissions, noise, and operational costs. In recent years, the rapid
deployment of EBs worldwide is of great significance to improve the
traffic environment and is deemed to be a must to achieve the goal of
carbon neutrality. In a study published in 2019, the Union of Concerned
Scientists reported that while the 40-foot diesel bus emits 2,680 g of CO2
per mile (g/mi), an electric bus charged on the average U.S. energy mix
emits 1,078 g/mi, roughly a 60% reduction (Massoli, 2020). As the
leading country in urban transit electrification, China has the world's
largest EB fleet. From 2016 to 2020, the number of EBs in China has
increased from 94,000 to 379,000. In the US, new city buses will only be
electric ones starting from 2025 in San Francisco (Marcacci, 2018). In
Europe, EBs have been running at Gothenburg, Sweden for six years. By
the end of 2020, about 210 EBs were in operation, accounting for 35% of
the city bus fleet (Sustainable, 2020).
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Despite the rapid expansion, the deployment of EBs still faces chal-
lenges of short driving range and long charging time compared to fuel
buses. Accurately estimating the trip energy consumption (TEC) for the
EBs is essential for multiple planning and operation tasks. Firstly, in EB
scheduling and charge scheduling, mathematical programming models
are often developed to generate optimal plans. Minimizing the total en-
ergy consumption of EBs is one of the most common optimization ob-
jectives (Leou and Hung, 2017; Bie et al., 2021; He et al., 2022; Liu et al.,
2022). In terms of the constraints, the range of battery state of charge
(SOC) is limited to prevent service interruptions due to battery energy
exhaustion (Li et al., 2019; Perumal et al., 2021). Thus, the TEC esti-
mation is the basis for calculating the objectives and constraints of
mathematical programming models. Secondly, deploying the optimal EB
type is one main operation task faced by the bus company. Different EB
types have different battery capacities, passenger capacities, and curb
weights, resulting in different vehicle scheduling plans, energy con-
sumption, and charging demands. The TEC estimation can investigate the
impacts of different EB types on daily operation costs and help the bus
company select the optimal EB type (Kunith et al., 2017; Rogge et al.,
2018; Yao et al., 2020; Zhang et al., 2021b; Qu et al., 2022). Thirdly, the
battery life is affected by the depth of discharge and the number of charge
chalmers.se (Z. Zeng), wanghonglin0520@126.com (L. Wang).
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cycles. Given the daily EB scheduling plan and TEC estimation model, the
operator can calculate the depth of discharge and the number of charge
cycles of each bus. Thus, the battery life can be estimated in advance
(Lajunen, 2018; Ritari et al., 2020; Zhang et al., 2021a).

The TEC of an EB in operation is affected by multiple factors such as
ambient temperature, travel distance, trip travel time, curb weight, and
state of the Air Conditioner (AC). Black-box methods (i.e., artificial
neural network, random forest, support vector machine) are usually
employed in the estimation and they perform well in exploring re-
lationships between input and output variables. These methods obtain
estimators with high accuracy but without closed-formed. In fact, there
are random fluctuations in some contributing factors, such as trip travel
time, passenger demand, etc. The random fluctuations not only affect the
TEC estimation precision, but also the EB operation plan. It is impossible
to develop a robust EB operation optimization model based on the TEC
produced by black-box methods. In such a condition, it is not suitable to
estimate the TEC based on the black-box methods. Besides, the black-box
methods usually require a large amount of EB operational data to
improve the estimation accuracy and do not perform well with a small
amount of data. Therefore, this paper utilizes the regression method to
establish a relationship model between TEC and contributing factors at
the aggregated level. Then a sensitivity analysis is performed for each
factor on the energy consumption. The proposed estimation model pro-
vides a prerequisite for EB fleet planning, operation, and life-cycle benefit
assessment.

1.2. Literature review

In previous studies, most research efforts in energy consumption
concentrated on electric vehicles (Wu et al., 2015; Fiori et al., 2016; Liu
et al., 2017; Qi et al., 2018). However, EBs have a significant difference
from light-duty electric vehicles. An EB running on a fixed route at a
relatively low speed and stopping frequently at bus stations make it not
applicable to use energy consumption estimation methods of EVs in the
case of EBs. Current studies on EB energy consumption can be roughly
categorized into four groups in terms of research approaches, which are
the empirical method, physics-based method, deep learning method, and
regression method.

(i) Empirical method

An empirical method is to estimate the energy consumption of an EB
using an average electricity consumption per hundred kilometers so as to
reduce the complexity of bus operation optimization problems. The
average electricity consumption per hundred kilometers applied in pre-
vious studies includes 124–248 kWh/100 km (Gao et al., 2017),
120–290 kWh/100 km for 10m length EBs (He et al., 2018), 120
kWh/100 km (Li et al., 2019), 150 kWh/100 km in Stockholm, Sweden
(Xylia et al., 2017), 180–300 kWh/100 km for plug-in hybrid buses and
320–500 kWh/100 km for hybrid buses (Stempien and Chan, 2017).
Here the average electricity consumption per hundred kilometers is to
divide the rated capacity by the maximum driving range provided by
vehicle manufacturers or to divide the total energy consumption of an EB
accumulated from its entering into service by the accumulated operation
distance.

Because stochastic volatility in energy consumption induced by dif-
ferences in trip travel times, average vehicle speed, and ambient tem-
perature among various trips is not included, these empirical approaches
for TEC calculations are poor in terms of accuracy.

(ii) Physics-based method

A physics-based method is to calculate the instantaneous energy
consumption utilizing the dynamics model or the vehicle-specific power
model with input data including vehicular instantaneous velocity, ac-
celeration, weight, and road gradient (Hjelkrem et al., 2021). Galleta
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et al. (2018) presented a longitudinal dynamics model to calculate the
energy demand for EBs, which took the details of the operational char-
acteristics of the transportation network into account and required no
high-resolution velocity profiles. Kivek€as et al. (2018) developed a
driving cycle synthetization method that could generate a large number
of varying cycles and passenger numbers based on only a handful of
measured cycles, then the impact on energy consumption variations of an
EB was analyzed using a suburban route in Espoo, Finland. Łebkowski,
2019 established an energy consumption model for EB based on the
vehicle dynamics model and verified it with the actual bus line data in
Poland. Al-Ogaili et al. (2020) developed a longitudinal dynamic model
with a spatial version of a digital elevation model to determine the en-
ergy demand of a large-scale bus network. El-Taweel et al. (2021) pro-
posed a generic model to calculate the EB energy consumption and
generated a set of speed profiles using the basic information of the bus
trip: trip time, trip length, and distances between successive bus stops, to
reflect various traffic conditions and speed behaviors of real-world situ-
ations. Beckers et al. (2020) developed a nonlinear steady-state cornering
model to establish the additional energy losses during cornering. Fiori
et al. (2021) developed a microscopic energy consumption model of
electric buses, which estimated the instantaneous power required for
traction and the average power required by the auxiliary systems,
leveraging on a vast data collection campaign of EB daily operations.

Compared to the empirical method, the physics-based method in-
corporates instantaneous EB movement parameters and leads to an
improvement in estimation accuracy. However, at the stage of EB
scheduling plan optimization, it is impossible to accurately predict the
speed of each bus per second. In addition, the impacts of ambient tem-
perature on the battery heat loss and on-board auxiliary system are often
ignored, which leads to the degradation of prediction performance of
physics-based models.

(iii) Deep learning method

Gao et al. (2018) established a power consumption prediction model
with multiple factors and investigated the related situation of EBs in
Baoding under the temperature range of �9 �C–25 �C. The wavelet
neural network was used to train the power consumption factors together
with power consumption data in the feature library, which was estab-
lished by the grey relational analysis method. Pamuła and Pamuła (2020)
obtained an energy consumption prediction model between consecutive
stations with deep learning networks, leveraging real-world data of EB
fleets in the town of Jaworzno in Poland under the temperature of �5
�C–23 �C. Chen et al. (2021) developed the long short-term memory and
artificial neural network models to estimate instantaneous energy con-
sumption based on continuous monitoring data of electric buses in
Chattanooga. Li et al. (2021) proposed a trip-based electricity con-
sumption prediction model using the random forest algorithm. With
variables of dynamic traffic conditions, route characteristics, and envi-
ronmental conditions as input, the impacts of these three categories of
variables on EB electricity consumption were explored.

The deep learning-based method can perform TEC estimation well
and achieve promising performance in accuracy. However, the rela-
tionship between TEC and contributing factors is not presented in explicit
functions. It is impossible to quantify the impacts of random fluctuations
in contributing factors and develop a robust EB operation optimization
model based on the TEC produced by the deep learning method.

(iv) Regression method

Wang et al. (2017a) developed an estimation model for residual en-
ergy of pure EBs using the time-series algorithm, and the model perfor-
mance was evaluated and analyzed using real data. Abdelaty et al. (2021)
developed a multiple linear regression model to predict the EB energy
consumption considering the impacts of road grade, the initial SOC, road
condition, passenger loading, driver aggressiveness, average speed,
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HVAC, and stop density. Abdelaty and Mohamed (2021) developed a
multivariate multiple linear regression model for EB energy consumption
considering the impacts of vehicular, operational, topological, and
external parameters. However, the ambient temperature was not taken
into the above estimation models. Based on our field investigation,
ambient temperature is one important influencing factor to the EB energy
consumption. In wintertime, the electricity consumption per kilometer of
an EB sharply increases and subsequently the driving range fiercely
shrinks.

1.3. Objective and contributions

The objective of this study is to develop an EB energy consumption
estimation model from the perspective of EB fleet planning, operation,
and evaluation. In such a condition, transit operators are more concerned
with the total energy consumption of each trip, rather than the instan-
taneous energy consumption. Hence, the trip level estimation is selected
in this study. In addition, the proposed model should have an explicit
relationship function between TEC and contributing factors, which is
helpful in developing mathematical programming models for robust EB
scheduling and charge scheduling.

The contributions of this study are threefold: (i) the impacts of travel
distance, curb weight, travel time, ambient temperature, and the dura-
tion of the AC system in the energized state on TEC are analyzed, a
multivariable nonlinear regression model is used to estimate the TEC
accordingly, and sensitivity analysis is performed on trip travel time,
curb weight, and ambient temperature; (ii) in the real-world data used in
this study, the minimum and maximum temperatures are�27.0 and 35.0
�C, respectively, showing a huge divergence of 62.0 �C, which expands
the application range of the proposed estimation model, especially under
low-temperature conditions; (iii) an evaluation method for model
adaptability is proposed, to determine whether the estimation accuracy
of the proposed model meets the requirement of bus scheduling.

The rest of this paper is organized as follows. Section 2 introduces and
depicts the collected real-world operational data of EBs in a cold region.
Section 3 formulates the trip-based energy consumption model of EBs
based on the multivariable regression method, incorporating the energy
consumptions respectively for the vehicle motion and AC system re-
quirements. Section 4 evaluates the model from three aspects, including
estimation accuracy, sensitivity analysis, and model adaptability. Finally,
some concluding remarks and possible future works are given in Section 5.
Fig. 1. Layout of three bus r
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2. Data collection and description

The real-world operational data of EB fleets are collected in Meihekou
City, Jilin Province, China. Meihekou is located at 125.6�E, 42.5�N. The
annual average temperature is 5.5 �C. The lowest and highest recorded
temperatures in history are�33 and 36 �C, respectively. We gathered the
operational data of 31 EBs from 6 January 2020 to 1 March 2021,
involving a total of 4,360 trips through the EB monitoring platform. Note
here that a bus trip is defined as a bus running from the start station to the
terminal station. The gathered information of each trip includes the date,
license plate number, traveling direction, trip distance, curb weight, trip
departure time, trip arrival time, TEC, SOC at the departure time, trip
travel time, average speed, time duration of AC system in the on-state and
the route number. In addition, we also collected the data for average
ambient temperature per hour from the meteorological department.

These 31 EBs are deployed on three routes, including Route 108,
Route 103, and Route 106 (see Fig. 1 for layout). The EBs have three bus
models, denoted respectively by Model A, Model B, and Model C. All EBs
are powered by the LiFePO4 battery purchased in June 2018 with an 8-
year guarantee period. Basic information on the above three routes and
three bus models are illustrated in Tables 1 and 2.

The analysis of the collected data is shown in Fig. 2. Trip travel time
ranges from 14 to 42 min, and its average value is 29 min. The average
TEC of all gathered trips is 5.8 kWh. Considering the route operating
hours, the lowest temperature of our collected trips was recorded as
�27.0 �C, and the highest temperature was 35.0 �C. The variations of
daily highest temperature, daily lowest temperature, and daily average
temperature are plotted in Fig. 3 based on historical weather informa-
tion. The minimum operational time of the AC system is 0 min, while the
maximum value is the trip travel time. Fig. 4 shows a frequency histo-
gram that displays the number of trips under different AC operation
modes in different temperature ranges (5 �C intervals).

3. Methodology

In this section, we analyze how each factor affects the TEC of an EB.
The TEC estimation model is further proposed based on these factors.

3.1. Selection of contributing factors

With fixed operation routes, low operational speed, and repeated
stop-and-go behaviors, multiple factors have impacts on the TEC (deno-
ted by w) of an EB.
outes in Meihekou city.



Table 1
Basic information of the three bus routes.

Route Distance (km) No. of stations No. of buses Dispatching headway (min) Vehicle model No. of samples

108 7.9 24 9 5–15 A 2,032
103a/103b 7.5/10 14/16 17 6 B/C 1,823
106 12 26 5 7–10 C 505

Table 2
Parameters of the three EB models.

Model Battery
rated
capacity
(kWh)

Vehicle size (mm3) Curb
weight
(kg)

Load
capacity
(pax)

No. of
samples

A 162.3 8500✕2500✕3215 8200 60 2032
B 199.37 10500 � 2500 �

3200
11350 76 1409

C 202.93 10500 � 2500 �
3215

10550 76 919
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(i) Travel distance, trip travel time and average speed

Travel time and distance are normally proportional to TEC, although
average speed is inversely proportional. When the travel distance is fixed,
trip travel time is obtained by dividing the travel distance by the average
speed. Travel time or average speed can also be used to indicate traffic
conditions. Specifically, the service level of a bus line decreases during
peak hours, mainly due to the increase in travel time or the decrease in
average speed, while the level of public transport services during off-peak
hours increases due to short travel time or large average speed. Let L, t
and v denote travel distance, travel time and average speed of each trip,
respectively.

(ii) Bus models

Different bus models have different energy consumption rates. A
vehicle with a larger battery capacity, heavier curb weight, and higher
traction force lead to higher energy consumption. Here we use the curb
weight M of an EB to represent model difference and investigate its
impact on TEC.
Fig. 2. Distribution of trip
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(iii) Ambient temperature

Low temperature causes an increase in the internal resistance of a
battery, leading to higher heat evolution of the battery and increased
electricity consumption rate. Furthermore, the battery thermal manage-
ment system would spend additional energy to keep the battery tem-
perature within a proper range around the optimum operating

temperature (T*
g) in both high and low ambient temperatures. In general,

the greater the difference between ambient temperature and T*
g , the more

energy is required (Wang et al., 2017b; Liu et al., 2018). In this study, the
average ambient temperature of each trip is denoted by T.

(iv) Air conditioner system

During summer or winter, the increment in TEC is also resulted from
the operation of the AC system. We use ta to represent the operation time
of the AC system of each trip.

(v) Other factors

In addition to the above factors, there are still other factors that may
affect TEC, such as driving behavior, number of stations and in-
tersections, road grade, battery SOC at the departure time, etc. These
factors are not analyzed in detail due to their minor impacts on TEC
(please refer to Section 5 for details).

The selection of independent variables is the basis of regression
model formulation. We have analyzed the variables influencing w, which
are all potential independent variables. Among these variables, however,
some of them might have no significant impact, or have low quality, or
have dependent correlations with others. These deficiencies increase the
computational burden and further jeopardize the stability of regression
models, making it impossible to directly apply all potential independent
variables.
travel time and TEC.



Fig. 3. Variations of daily temperature during the data collection period.

Fig. 4. Number of trips under different AC operation modes in different temperature ranges.
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When the absolute value of the correlation coefficient is greater than
0.5, the contributing factor is generally considered to have a strong
correlation with TEC. When the value is between 0.3 and 0.5, the cor-
relation is medium. When the value is between 0.1 and 0.3, the corre-
Table 3
Spearman's rank correlation analysis among TEC and contributing factors.

Factors w (kWh) L (km) M (kg)

w (kWh) 1.000
—

L (km) 0.596 1.000
0.000 —

M (kg) 0.418 0.130 1.000
0.000 0.000 —

t (min) 0.423 0.560 �0.087
0.000 0.000 0.000

v (km/h) 0.359 0.350 0.440
0.000 0.000 0.000

T (�C) �0.524 �0.367 �0.043
0.000 0.000 0.002

ta (min) 0.289 0.066 �0.004
0.000 0.001 0.392

Note: In each cell, the upper value represents the Spearman's rank correlation coeffic
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lation is weak. When the value is less than 0.1, no correlation exists. We
first conduct the correlation analysis on each factor using Spearman's
rank correlation coefficient. Table 3 displays Spearman's rank correlation
analysis among TEC and contributing factors. The Spearman's rank
t (min) v (km/h) T (�C) ta (min)

1.000
—

�0.337 1.000
0.000 —

�0.271 �0.226 1.000
0.000 0.000 —

0.021 0.037 0.136 1.000
0.077 0.007 0.000 —

ient, and the lower value represents the P-value.
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correlation coefficient between L and w is 0.596 while that between t and
w is 0.423, which indicate the strong and medium correlations. The
correlation coefficients between w and L, t and v are all greater than 0.3,
and the correlation coefficient between w and v is 0.359, which is smaller
than 0.596 and 0.423. Therefore, we exclude v and keep L and t for
further analysis. L,M, t, T and ta are selected as the explanatory variables
and w is selected as the explained variable.

Then the partial correlation analysis is applied to eliminate effects
from other variables so as to investigate the pure impact of each variable
on w. Results are shown in Table 4. The partial correlation coefficient
between ta and w is 0.541, representing a strong linear correlation be-
tween them. In addition, medium or weak linear correlations are
observed from the following pairs: L and w, M and w, t and w, T and w,
from their partial correlation coefficients as 0.319, 0.346, 0.247 and
�0.451. Thus, there may be nonlinear correlations in these pairs.
3.2. Model structure

TEC of an EB mainly contains three components including traction
energy, the energy required by the battery thermal management system
(BTMS), and the energy required by the AC system operation. The vehicle
traction and BTMS require the battery energy during the EB running, and
their consumptions are affected by some similar factors, such as ambient
temperature, trip travel distance, travel time, etc. Unlike the above two,
the AC system is controlled by the driver and not always in working
condition during the vehicle operation. To actually capture the con-
sumption, the traction energy and the energy required by the BTMS are
combined in the regression and we try to establish a TEC estimated
regression model in the following form:

bwi ¼ bw1i þ bw2i (1)

where i is the serial number of trips and i ¼ 1, 2, …, N, N is the sample
size; bwi is the estimated TEC of an EB, kWh; bw1i is the estimated energy
consumption required by traction and BTMS (T-BTMS), kWh; bw2i is the
estimated energy consumption for the AC system operation, kWh. If the
AC system remains in the off state during the whole trip, then bw2i ¼ 0 andbwi ¼ bw1i.

As described in Section 3.1, there might exist a nonlinear relationship
between bw1i and contributing factors. We plotted the scatter diagrams
among TEC and travel distance, curb weight, and travel time after log-
arithm, respectively. Linear relationships among the independent vari-
able and dependent variables were found, which indicated that the
double logarithm model was suitable for estimating the TEC. In previous
studies (Wang et al., 2017b; Liu et al., 2018), energy efficiency and
ambient temperature approximately presented a “U” shape with incon-
sonant lowest values. In order to increase the stability of the regression
model, reduce the impacts of multicollinearity, and simplify the
following curve fitting, we build a logarithmic linear model, as expressed
by Eq. (2):

lnbw1i ¼ bα0 þ bα1 ln Li þ bα2 ln Mi þ bα3 ln ti þ bα4

���Ti � T
*
g

��� (2)

In Eq. (2), Li is the travel distance of trip i, km.Mi is the curb weight of
the EB serving trip i, kg. ti is the actual travel time of trip i, min. Ti is the

average ambient temperature during trip i, �C. T
*
g is the optimumworking

temperature of EB, �C. bα0, bα1, bα2, bα3 and bα4 are estimated regression
parameters. The number of samples is represented by i ¼ 1, 2, …, N1,
Table 4
Partial correlation analysis among TEC and contributing factors.

w (kWh) L (km) M (kg) t (min) T (�C) ta (min)

Partial correlation 0.319 0.346 0.247 �0.451 0.617
Significance 0.000 0.000 0.000 0.000 0.000

6

where N1 is the size of samples with ta ¼ 0 and here N1 ¼ 3,536.
A dummy variable D1 is introduced to represent the state of the AC

system, D1 ¼ 1when the AC system is in coolingmode whileD1 ¼ 0when
the AC system is in heating mode. Accordingly, the energy consumption
for the AC system operation is modeled as

bw2i ¼
�bζ1tai D1 ¼ 1bζ2tai D1 ¼ 0

(3)

where tai is the recorded operation time of the AC system during trip i,

min; bζ1 and bζ2 are estimated values of regression parameters; i ¼ 1, 2,
…,455 when D1 ¼ 1 and i ¼ 1, 2, …,369 when D1 ¼ 0.
3.3. Regression model calibration

Determination of T*
g for an EB has a significant impact on the

goodness-of-fit of bw1i estimation. Most previous studies took 20 or 25 �C
as the optimum working temperature of the LiFePO4 battery based on
experience (Wang et al., 2011; Hu et al., 2020; Zhang et al., 2020). In our
research, with actual EB operational data of trips where ta ¼ 0, estima-
tions are conducted for the optimumworking temperature and regression
parameters of the bw1i estimation model by combining Fibonacci and
ordinary least squares (OLS). The detailed estimation procedure is
illustrated as follows:

Step 1. Observe the TEC distribution at different temperatures to
determine the temperature search range [c, d]. The objective function at
the j-th working temperature denoted by FðTgjÞ and its loss function
denoted by ψðTgjÞ, are calculated as follows:

F
�
Tgj

�¼ 1
N1

XN1

i¼1

����bw1i � w1i

w1i

���� (4)

ψ
�
Tgj

�¼ XN1

i¼1

ðbu1iÞ2 ¼
XN1

i¼1

�
ln w1i �

�bα0j þ bα1j ln Li

þbα2j ln Mi þ bα3j ln ti þ bα4j

��Ti � Tgj

����2 (5)

where w1i is the observed T-BTMS energy consumption, kWh; bu1i is the
residual error; bα0j, bα1j, bα2j, bα3j, bα4j are coefficients for estimation.

Step 2. Select two initial points Tg1 2 ½c; d� and Tg2 2 ½c; d� which are in
symmetric positions in the interval so that Tg2 ¼ cþ d� Tg1 and
Tg1 < Tg2.

Step 3. Based on OLS, the necessary conditions of minimizing the loss
function are ∂ψ

∂bα0j
¼ 0, ∂ψ

∂bα1j
¼ 0, ∂ψ

∂bα2j
¼ 0, ∂ψ

∂bα3j
¼ 0 and ∂ψ

∂bα4j
¼ 0. Two sets of

linear equations, including all these conditions derived by substituting
Tgj with Tg1 and Tg2 are solved respectively to obtain the estimated co-
efficients bα01 ~ bα41 and bα02 ~ bα42, as well as the functions FðTg1Þ and
FðTg2Þ.
Step 4. Compare values of objective functions FðTg1Þ and FðTg2Þ. If
FðTg1Þ�FðTg2Þ, Tg2 is identified as a bad point. The interval outside the

bad point is abandoned, and [c, Tg2] is kept, which means that T*
g 2 ½c;

Tg2�. Otherwise, ½Tg1; d� is preserved and T*
g 2 ½Tg1; d�.

Step 5. In the narrowed interval, take a point Tg3 which is in a sym-
metric position to the kept point. The estimated regression parametersbα03 ~ bα43 and the objective function FðTg3Þ are calculated by minimizing
the loss function ψðTg3Þ using OLS. The objective function values at the
new point and kept point are compared. The interval outside the bad
point is cut, and the search interval is narrowed further.

Step 6. Repeat the above steps until the deviation between the two
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holding points is not greater than the preset allowable error ε. Derive T*
g

and optimum estimated regression parameters bα*
0j ~ bα*

4j, corresponding
to the minimum loss function value.

For our research scenario, the temperature search range [15 �C, 30
�C], N1 ¼ 3,536, and permissible error ε ¼ 0:1 is imported to the above

procedure. The optimum working temperature of EBs T*
g ¼ 23.3 �C is

exported, and the estimation results of regression parameters of the
logarithmic linear model, which are demonstrated in Table 5.

The F-value of the regression model is 3,453.408, and the regression
model has overall significance at a given significance level α ¼ 0:05. The
t statistic of each coefficient satisfies jtj > t0:025ðN1 � 5Þ, indicating the
significant impact on bw1i. The coefficient of determination R2 and
Adjusted R2 are 0.796 and 0.796, respectively. In order to ensure that the
best estimation can be obtained using OLS, the regression model should
satisfy two assumptions: (i) there is no correlation between any two
random error terms, (ii) random error term has homoscedasticity, which
is denoted by Covðu1i;u1jÞ ¼ 0 and Varðu1iÞ ¼ σ2, (i 6¼ j, i, j¼ 1, 2,…, N1),
respectively. If any of the above hypotheses are not true, the regression
parameters are neither valid estimators nor asymptotically valid ones,
resulting in the meaningless F-value and R2 from the significant test.

According to the Durbin Watson (DW) test, the DW statistic of the
regression model is 2.047, indicating that there is no correlation among
u1i. The white test is performed to test whether heteroscedasticity exists
among u1i. In the white test, an auxiliary regression model is established
as shown in Eq. (6). The explained variable is the square of residual errorbu2
1i and the explanatory variables are the combination of the standard

term, square term, and cross term of each explanatory variable in the
regression model.
bu2
1i ¼ β0 þ β1 ln Li þ β2 ln Mi þ β3 ln ti þ β4

���Ti � T
*
g

���þ β5ðln LiÞ2 þ β6ðln MiÞ2 þ β7ðln tiÞ2 þ β8

���Ti � T
*
g

���2
þβ9ðln LiÞln Mi þ β10ðln LiÞln ti þ β11ðln LiÞ

���Ti � T
*
g

���þ β12ðln MiÞln ti þ β13ðln MiÞ
���Ti � T

*
g

���þ β14

���Ti � T
*
g

���ln ti þ vi
(6)
Under the homoscedasticity hypothesis H0: β0 ¼ ::: ¼ β14, parame-
ters of the auxiliary regression model are estimated using OLS, and the
coefficient of determination R2 ¼ 0.081 is obtained. The statistic N1R2 is
formulated and tested under a given significance level α ¼ 0:05. The
hypothesis is rejected because N1R2 > χ2αð14Þ. Hence, there is hetero-
scedasticity in the T-BTMS energy consumption estimation model.

Weighted Least Square (WLS) is the special case of Generalized Least
Square. It is usually used to deal with heteroscedasticity by assigning
different weights to different observations. To be specific, an observation
with a small variance has a large weight, and an observation with a large
variance has a small weight. This method aims to minimize the sum of the
square of residual errors and formulate a new model eliminating heter-
oscedasticity to further reduce the effect on parameter estimation of

inaccurate observations. Since u1i approximately satisfies Varðu1iÞ � bu2
1i,

we use 1=
ffiffiffiffiffiffiffibu2
1i

q
¼ 1=jbu1ij as the weight and multiply it with both sides of

the original model, as shown in Eqs. (7) and (8).
Table 5
Regression parameter estimation results based on OLS.

Parameters bα*
0 bα*

1 bα*
2 bα*

3 bα*
4

Estimated values �8.108 0.553 0.781 0.354 0.008
Std. Error 0.182 0.019 0.020 0.017 0.000
t statistic �44.433 28.802 40.041 21.170 41.658
P value 0.000 0.000 0.000 0.000 0.000

F-value ¼ 3,453.408 (P-value ¼ 0.0000); R2 ¼ 0.796; Adjusted R2 ¼ 0.796.
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1
jbu1ij lnw1i¼α*

0

1
jbu1ijþα*

1

1
jbu1ij lnLiþα*

2

1
jbu1ij lnMiþα*

3

1
jbu1ij ln tiþα*

4

1
jbu1ij

���Ti�T
*
g

���

þ 1
jbu1iju1i

(7)

Var
	

1
jbu1iju1i



¼
	

1
jbu1ij


2

Varðu1iÞ¼ 1bu2
1i

bu2
1i ¼ 1 (8)

where β0 ~ β14 are regression parameters and vi is a random error term.
This new model satisfies the hypothesis of homoscedasticity, and the
modified T-BTMS energy consumption regression model is expressed in
Eq. (9):

lnbw1i ¼bγ0 þbγ1 ln Li þbγ2 ln Mi þbγ3 ln ti þ bγ4���Ti � T
*
g

��� (9)

Estimated values of regression parameters in Eq. (9) are shown in

Table 6. The optimum working temperature T
*
g is 23.7

�C. The modified
regression model is of overall significance at a given significance level
α ¼ 0:05. The significance test is conducted for the coefficient of each
explanatory variable at the significance level α ¼ 0:05. Results reveal

that ln Li, lnMi, ln ti and
���Ti �T*

g

��� are all significant explanatory variables

to lnbw1i. The standardized coefficients (betas) are used to compare the
impact of each independent parameter on lnbw1i. Accordingly, ln Li has a
substantial impact on the lnbw1i (Std. beta ¼ 0.360), followed by lnMi

(Std. beta ¼ 0.352) and
���Ti �T*

g

��� (Std. beta ¼ 0.343), while ln ti (Std. beta

¼ 0.234) has the lowest weight in affecting lnbw1i.
Similarly, the estimation of regression parameters in the estimation
model of EB energy consumption caused by the AC system operation is
demonstrated in Table 7. At a given significance level α ¼ 0:05, opera-
tion times under cooling and heating modes are significant explanatory
variables of TEC. 1-min operation time changes in cooling mode and
heating mode resulted in average energy consumption changes of 0.053
kWh and 0.110 kWh variations, respectively. tai has a greater impact on
the bw2i when D1 ¼ 0 (Std. beta ¼ 0.435) than D1 ¼ 1 (Std. beta ¼ 0.278).
A more significant increment in energy consumption is observed under
the heating mode since the heating power is larger than the cooling
power of the AC system.

4. Model evaluation and analysis

4.1. Estimation accuracy

Root mean squared error (RMSE), mean absolute error (MAE), mean
Table 6
Regression parameter estimation results based on WLS for bw1i.

Parameters bγ0 bγ1 bγ2 bγ3 bγ4
Estimated
values

�8.091 0.553 0.780 0.353 0.008

Std. Error 0.006 0.001 0.001 0.000 0.000
t statistic �1,251.469 867.665 1,046.558 932.796 2,259.494
P value 0.000 0.000 0.000 0.000 0.000

F-value ¼ 8,449,689 (P-value ¼ 0.000).



Table 7
Regression parameter estimation results based on WLS for bw2i.

Parameters Estimated values Std. Error t statistic P value

bζ1 0.053 0.000 1,088.091 0.000bζ2 0.110 0.000 1,006.768 0.000
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absolute percentage error (MAPE), and Theil coefficient (Theil) are
selected as evaluation indicators of the estimation model and expressed
by Eqs. (10)–(13). The smaller RMSE, MAE, and MAPE are, the higher
estimation accuracy the model has. The scale range of Theil's coefficient
is [0, 1]. A smaller Theil's coefficient indicates a better estimator.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðbwi � wiÞ2
vuut (10)

MAE¼ 1
N

XN
i¼1

jbwi �wij (11)

MAPE¼ 1
N

XN
i¼1

����bwi � wi

wi

����� 100% (12)

Theil¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðbwi � wiÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðbwiÞ2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðwiÞ2
s (13)

The proposed TEC estimation model is evaluated under four sce-
narios: (i) trips with AC off (ta ¼ 0); (ii) trips with AC in cooling mode
(D1 ¼ 1); (iii) trips with AC in heating mode (D1 ¼ 0); and iv) all trips.
The evaluation results are demonstrated in Table 8. Model evaluations
are also performed when applied to different routes and bus models, as
illustrated in Table 9.

Considering all samples, RMSE,MAE,MAPE, and Theil's coefficient of
the TEC estimation model are 0.984 kWh, 0.696 kWh, 12.108%, and
Table 8
Evaluation results of the trip energy consumption estimation model under
different scenarios.

Scenario N RMSE (kWh) MAE (kWh) MAPE (%) Theil coefficient

ta¼0 3536 0.882 0.628 11.727 0.077
D1¼1 455 0.841 0.644 12.284 0.077
D1¼0 369 1.761 1.405 15.538 0.107
All trips 4360 0.984 0.696 12.108 0.082

Table 9
Evaluation results of the trip energy consumption estimation model on different
routes and bus models.

Bus model N RMSE
(kWh)

MAE
(kWh)

MAPE
(%)

Theil
coefficient

108-bus model A 2032 0.705 0.520 11.707 0.078
103-bus model B 1409 0.992 0.722 11.874 0.078
103-bus model C 414 1.324 1.026 14.721 0.086
106-bus model C 505 1.473 1.059 12.229 0.092

Table 10
Comparison results of the two estimation models.

Models Model structure

Model I Ei ¼ θ0 þ θ1GRi þ θ2D
Agg
i þ θ3RCi þ θ4ACi þ θ5PLi þ θ6S

Model II lnbw1i ¼ bα0 þ bα1 ln Li þ bα2 ln Mi þ bα3 ln ti þ bα4

���Ti � T*
g

���
8

0.082, respectively. As demonstrated by Table 9, when the model is
applied to different routes and bus models, MAPE under four scenarios
are 11.707%, 11.874%, 14.721%, and 12.229%, respectively. Theil's
coefficients are all less than 0.1, indicating a reliable accuracy of the
estimation model.

The estimation accuracy of the model under the scenario with AC in
cooling mode (D1 ¼ 1) is higher than that in heating mode (D1 ¼ 0).
RMSE, MAE, and MAPE under the former scenario are 0.841 kWh, 0.644
kWh, and 12.284%, respectively and Theil's coefficient is 0.077. For the
latter scenario, these indicators are 1.761, 1.405 kWh, 15.538%, and
0.107. The possible reason for the difference in estimation accuracy is
that we gathered data from a cold region where cold weather lasts for a
long time each year. The heating mode might be turned on when the
ambient temperature is within [�27.0 �C, 5.0 �C]. The heating power
may differ for each trip and may vary along the trip based on multiple
factors such as passenger numbers, onboard temperature, and ambient
temperature. We only use the AC operation time of a trip to simulate the
impact energy consumption without capturing the AC power changes
during the trip. Therefore, the estimation error of the model when AC in
heating mode is relatively high.
4.2. Comparisons

In this section, the proposed TEC estimation model is compared with
a regression model developed by Abdelaty and Mohamed (2021), which
is shown in Eq. (14):

Ei ¼ θ0 þ θ1GRi þ θ2D
Agg
i þ θ3RCi þ θ4ACi þ θ5PLi þ θ6SDi þ θ7vi

þ θ8SOCi (14)

where Ei is the energy consumption rate of trip i, kWh/km;GRi is the road
grade of trip i, %; DAgg

i is the driver aggressiveness of trip i (three levels:
slow driving behavior, normal driving behavior and aggressive driving
behavior); RCi is the road condition of trip i (three levels: a good dry road
condition, a fair wet road condition and a poor icy road condition); ACi is
the consumed energy of AC system of trip i, kWh; PLi is the passenger
loading of trip i, pax; SDi is the stop density ratio, stops/km; vi is the
average speed of trip i, km/h; SOCi is initial battery SOC at the departure
time of trip i, %; θ0 ~ θ8 are estimated regression parameters, and their
values are �0.782, 0.380, 0.065, 0.260, 0.036, 0.005, 0.128, 0.007 and
0.0124, respectively.

From Eq. (14) we can find that the energy consumption rate estima-
tion needs instantaneous EB movement data to judge the driver aggres-
siveness level. In addition, the number of boarding and alighting
passengers at stops should also be collected to calculate the passenger
loading at each road section. Hence, the data presented in Section 2
cannot be used for model comparison. To conduct the comparison, we
collected the second-by-second operational data of two EBs on Route 108
on May 11 and 12, June 22 and 23, 2021, involving a total of 150 trips.
The data of each trip includes velocity, longitude, latitude, altitude, road
grade, travel distance and SOC per second, the trip energy consumption
and ambient temperature. Via the onboard monitoring video, the
numbers of boarding and alighting passengers at each station were
collected.

During the data collection periods, the AC system was off for all trips,
thus ACi ¼ 0 in Eq. (14). There was no rainfall or snowfall, road condi-
tion was a good dry condition and RCi refer to Level I. The acceleration
rate was between 0.25 and 0.5m/s2, and deceleration rate was between 1
R2 RMSE

Di þ θ7vi þ θ8SOCi 0.961 0.691

0.986 0.336



Fig. 5. Relationship curve between TEC and ambient temperature.

Fig. 6. Relationship curve between TEC and curb weight.
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and 1.5m/s2. Thus,DAgg
i belongs to Level I. SDi can calculated by dividing

the number of stations by route length. GRi and PLi take the average road
grade and passenger loading for all segments of trip i.

The comparison results of the two models are displayed in Table 10.
Model I refer to the model developed by Abdelaty and Mohamed (2021)
and there are 8 contributing factors. Model II is the model proposed in
this study and there are 4 contributing factors.

The R2 of Model II is 0.986, which is larger than that of Model I.
Compared with Model I, the RMSE of Model II decreases by 51.4%.
Overall, Model II outperformsModel I in the estimation accuracy because
of the two following reasons: (i) The curb weight of the EB is considered
in Model II. As shown in Table 2, the curb weights of the three types of
EBs are all larger than 8,200 kg, which is not a negligible factor to the
TEC. (ii) We quantified the effect of ambient temperature on TEC. As the
ambient temperature increases or decreases, the battery thermal man-
agement system would consume more additional energy to maintain the
battery temperature within a proper range.

Passenger loading is not considered in our model (Model II) because
the numbers of boarding and alighting passengers at stations are hard to
be collected. Its impact on the TEC will be explained in the next section.

4.3. Sensitivity analysis

Based on the proposed estimation model, we perform the sensitivity
analysis to explore the effects of ambient temperature, curb weight,
passenger loading, travel distance, and trip travel time on the TEC.

(i) Effect of ambient temperature on TEC

As described in Section 3.3, the optimumworking temperature of EBs
is 23.7 �C. However, in most previous studies, 25 �C is taken as the op-
timum working temperature of EBs (Wang et al., 2011). For all trips, the
MAPE of the estimation model is 14.478% when applying 25 �C as the
optimum working temperature, demonstrating a 2.37% increase
compared to the MAPE when applying 23.7 �C.

The estimation accuracy of the formulated estimation model slightly
fluctuates among different temperature ranges. Here, evaluations are
performed on the model among different temperature ranges with the 10
�C intervals, as shown in Table 11.

We further analyzed the relationship between TEC and ambient
temperature under 6 combinations of different travel distances and curb
weight. We assume that the trip travel time is fixed (average value of
29min) and the AC system is off. The result is shown in Fig. 5. Ambient
temperature, especially extreme cold weather in cold regions, is the main
contributor to the increase in TEC, the reduced driving range, and the
shrinking in battery performance. Compared with bus running under the
optimum working temperature 23.7 �C, TEC of an EB under the tem-
perature of �27.0, �20.0, �10.0, 0.0, 10.0, 20.0, 30.0 and 35.0 �C in-
creases by 47.105%, 39.471%, 29.247%, 19.773%, 10.993%, 2.857%,
4.913%, and 8.984%, respectively.

(ii) Effect of curb weight on TEC

Assuming a fixed trip travel time (29 min), ambient temperature
Table 11
Evaluation results of the estimation model under different temperature ranges.

Temperature
(�C)

N RMSE
(kWh)

MAE
(kWh)

MAPE
(%)

Theil
coefficient

(-30, �20] 198 1.088 0.772 10.548 0.076
(-20, �10] 1,061 1.173 0.826 11.250 0.081
(-10, 0] 849 1.264 0.950 15.173 0.093
(0, 10] 403 1.000 0.748 13.348 0.089
(10, 20] 739 0.544 0.418 9.993 0.063
(20, 30] 963 0.702 0.528 11.772 0.076
(30, 40] 147 0.700 0.533 12.124 0.115
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(23.7 �C), and inactive AC system, the TEC varying curb weight under
different travel distances are shown in Fig. 6. An approximately positive
linear relationship can be observed between TEC and curb weight. TEC
increases with the increase of curb weight, but the increment continues
to decrease. Route 108 with the 8.1 km travel distance (trip length) is
taken as an example. When curb weight increases within the range
[8,200 kg, 18,000 kg], TEC rises from 3.461 to 6.444 kWh, but the
changing rate reduces from 0.033 kWh/100 kg to 0.028 kWh/100 kg.

The weight of the battery system is an essential part of the EB curb
weight. For example, the three bus models in Table 2 are all equipped
with heavy battery packs to provide a larger rated capacity. The weight of
the battery system accounts for 14.7%–15.30% of the curb weights of the
three bus models. The rated capacity of common EBmodels in most cities
is between 50 and 400 kWh. To investigate the effect of battery-rated
capacity on TEC, we take bus model A on Route 108 as an instance of
which battery energy density is 140.40 Wh/kg. We analyze the impact of
battery-rated capacity on TEC under the scenario of fixed trip travel time
(29 min), ambient temperature (23.7 �C), and the inactive AC system, as
demonstrated in Fig. 7.

It is observed that when battery rated capacity rises from 50 to 400
kWh, the weight of the battery system increases from 405 to 2,892 kg,
and curb weight increases from 7,399 to 9,887 kg. As a result, the ratio of
battery system weight to curb weight changes from 5.470% to 29.254%.
Energy consumption rate increases from 0.410 to 0.514 kWh/km by
25.366% simultaneously. In recent years, rapid charging and wireless
charging technologies continue to advance, which can sharply reduce the
charging time for the EB. Thus, it is an alternative to minimize battery
rated capacity further to reduce battery system weight and the corre-
sponding curb weight. In this case, the bus ownership cost and trip en-
ergy consumption reduce accordingly.



Fig. 7. Energy consumption rate of Route 108-vehicle type An under different battery rated capacities.

Fig. 8. Relationship curve between TEC and trip travel time.
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(iii) Effect of passenger loading on TEC

The number of passengers on board is another significant factor
influencing the whole weight of an operating bus. The entire bus weight
contains curb weight and the total weight of passengers onboard. How-
ever, only curb weight is considered in the formulation of the TEC esti-
mation model. For example, for an EB with a passenger capacity of 60
persons, as the average weight of passengers assumed as 60 kg per per-
son, the increment of 3,600 kg will be added to its curb weight and ac-
counts for 30.51% of the whole weight of the bus during its operation,
which is not negligible for TEC.

Assuming that the average passenger weight is 60 kg. We use the
distance between any two consecutive stops as the weighting factor. The
weighted average total passenger weight of each trip is the total pas-
senger weight between every two consecutive stops multiplied by the
corresponding weighting factor denoted bymi, i¼ 1, 2,…, 150. Here 150
is the number of trips with the AC system is off (please refer to the
second-by-second operational data collection in Section 4.2). Eq. (9) is
modified to be Eq. (15), and ~γ0 ~ ~γ4 are the updated fitting coefficients.

lnbw1i ¼~γ0 þ~γ1 ln Li þ~γ2 lnðMi þmiÞþ~γ3 ln ti þ ~γ4

���Ti � T
*
g

��� (15)

According to Eq. (9), RMSE, MAE, and MAPE for these 150 samples
are 0.336 kWh, 0.258 kWh, and 6.706%, respectively. However, these
indicators under Eq. (15) are 0.236 kWh, 0.183 kWh, and 4.960%,
revealing an improvement in estimation accuracy by considering the
number of passengers on board. The improvement in MAPE is not sig-
nificant after considering the passenger loading. This is mainly because
the EB curb weight (Mi) is significantly larger than the weighted average
total passenger weight (mi), especially for the trips in non-peak operating
hours. A slight increase in (Mi þ mi) does not result in a large increase in
TEC. However, in peak hours there are more passengers in the EBs and
the ratio ofmi toMiwould increase. In such a condition, the improvement
in MAPE would be more significant.

(iv) Effects of travel distance and trip travel time on TEC

With fixed ambient temperature (23.7 �C), fixed curb weight (8,200
kg, bus model A), and inactive AC system, the relationship between the
TEC and the trip travel time under different travel distances is shown in
Fig. 8. Positive relationships are observed between TEC and travel
10
distance and between TEC and trip travel time, namely, TEC rises with
the increase in travel distance or trip travel time. In the 8-km route, with
trip travel time increasing within the interval [14 min, 42 min], TEC
grows from 2.765 to 4.076 kWh, and the changing rate drops from 0.070
to 0.034 kWh/min. Similar results are observed in another case of 29-min
average trip travel time, where TEC grows from 3.451 to 4.476 kWh, and
the changing rate drops from 0.254 to 0.207 kWh/km with travel dis-
tance increasing within [7.5 km, 12 km].

The trip travel time of the EB is also an indicator of traffic conditions.
For Route 108, the average trip travel time of an EB in off-peak hours
(14:00–15:30) is 26.48 min, and the average TEC is 4.4 kWh while the
average trip travel time in peak hours (17:00–18:00) is 32.37 min and the
average TEC is 4.7 kWh. Thus, TEC increases by only 6.82% with the
22.24% increment in trip travel time. In a traditional fuel bus case, the
average trip fuel consumptions are 2.84 L and 3.27 L in off-peak and peak
hours, respectively, and the latter is 15.14% higher than the former.
Therefore, compared with fuel buses, traffic conditions have a smaller
impact on EB energy consumption, indicating the significant superiority
in energy conversion efficiency of bus electrification. Besides, vehicle
queuing time at intersections rises in peak hours. As wireless charging
technology advances, EBs can get charged when waiting at the inter-
section. The charging time at charging stations decreases accordingly,
enhancing the operational efficiency of transit systems.
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4.4. Adaptability for bus scheduling

One of the most significant challenges that EBs face is the limited
driving range. In EB scheduling, battery SOC should maintain within a
predefined interval to prolong battery life, and ensure that bus service is
not interrupted due to insufficient remaining battery electricity. There-
fore, the primary objective of formulating the TEC estimation model of
EBs is to provide a calculation method of TEC for bus scheduling. Hence,
we analyze whether the formulated estimation model satisfies practical
requirements in terms of bus scheduling.

From observing actual TEC data of EBs, it is noticed that even with the
exact contributing factors like travel distance, curb weight, trip travel
time, average ambient temperature, and AC system operation time,
minor differences still exist in energy consumption among multiple trips.
This is because TEC is also affected by some other individualized factors,
such as accelerations and decelerations, driving style, and delay at in-
tersections, which are essentially uncontrollable and not incorporated
into Eq. (1). Thus, the energy consumption of any trip h and the daily
energy consumption of EB k should satisfy:

w
0
h ¼ bwh þ buh; h ¼ 1; 2; :::;H (16)

w
0
k ¼w

0
1 þ w

0
2 þ :::w

0
h þ :::þ w

0
H ¼

XH
h¼1

bwh þ
XH
h¼1

buh (17)

where w
0
h is the actual energy consumption of EB k on trip h, kWh; w

0
k is

the actual daily energy consumption of EB k, kWh; bwh is the estimated
energy consumption of EB k on trip h calculated by Eq. (1), kWh; buh is the
residual error; H is the number of trips that EB k should serve in all-day
operation time.

w
0
k is unknown and unobservable during the bus scheduling stage.

Thus, it needs to be calculated through the residual error of the estima-
tion model. The probability distribution function of w0

k, denoted by
Gðw0

kÞ, is determined by the characteristics of buh. Gðw0
kÞ can be obtained

using the probability distribution function of buh and Eq. (17). Battery
rated capacity of EB k is denoted by Qk. To avoid over-discharge and
damage to battery life, a lower bound of battery SOC is set and denoted
by λ1 which means that the remaining battery electricity is no less than
λ1Qk after EB k completing its all-day operation. That is to say, the
maximum useful electricity consumption of EB k is ð1 � λ1ÞQk. As shown
in Eq. (18), when the probability of w

0
k � ð1�λ1ÞQk is higher than or

equal to a preset δ, it is suggested that the accuracy of the estimation
model can cope with the requirements of bus scheduling.

P
�
w

0
k �ð1� λ1ÞQk

�¼Gðð1� λ1ÞQkÞ � δ (18)

As stated in Section 4.2, TEC varies with different ambient tempera-
tures. The lower ambient temperature leads to the higher daily energy
consumption of the EB, so the battery SOC is at a low level at the end of
the operation. This will result in a high possibility of service interruption
due to insufficient remaining battery power. Therefore, this puts forward
higher requirements for the accuracy of EB's TEC estimation model.
Therefore, we randomly select one EB on Route 106 and take its opera-
tional data on 18 January 2021 (the coldest day among the data collec-
tion period) to analyze whether the formulated estimationmodel satisfies
the requirement of bus scheduling.

The battery rated capacity of the selected bus is 202.93 kWh, and 14
trips are required to serve in one day, denoted by H ¼ 14. The heating
mode of the AC was turned on for trip 13 and trip 14. Estimated energy
consumptions of each trip bwh (h ¼ 1; 2;:::; 14) calculated by Eq. (1) and
Eq. (17) are 8.4, 7.4, 7.2, 7.2, 8.4, 8.9, 8.2, 7.8, 8.5, 7.7, 8.7, 8.4, 15.6,
and 13.2 kWh, respectively. Accordingly, the estimated daily energy
consumption of the selected bus bwk ¼ 125.6 kWh.
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The residual error of the formulated estimation model follows the
normal distribution with mean as 0.1 kWh and variance as 0.787 (kWh)2,
denoted by buh ~N(0.1, 0.787). Thus, w

0
k follows the normal distribution

with mean as bwk þ0.1H and variance as 0.787H2, denoted by w
0
k

~N(127.0, 154.252). δ equals 0.9974 under the 3σ rule. When λ1 ¼ 20%,
ð1 � λ1ÞQk ¼ 162.344 kWh. Therefore:

P
�
w

0
k �ð1� λ1ÞQk

�¼Gðð1� λ1ÞQkÞ¼Φ

	
162:344� 127:0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

154:252
p



� Φð2:85Þ

(19)

where Φð 	Þ is the standard normal distribution function. Φð2:85Þ ¼
0.997814, and then we have Pfw0

k � ð1 � λ1ÞQkg ¼ 0.997814 > 0.9974.
Therefore, it is believed that the formulated estimation model can meet
the requirement of bus scheduling.

In this case, two reasons lead to the formulated estimation model
meeting the requirement. One reason is the large battery rated capacity of
this bus and ð1�20%ÞQk reaches to 162.344 kWh. The other reason is the
small number of trips serving per day of the bus and short trip travel times.
Accordingly, the estimated daily energy consumption is only 125.6 and
36.744 kWh less than ð1 � 20%ÞQk. However, if Qk reduces while daily
travel distance or travel time increases, then ð1�20%ÞQk � bwk will keep
reducing, which requires higher estimation accuracy.

5. Discussion

This study used the regression method to obtain the explicit rela-
tionship function between TEC and contributing factors based on real-
world data. By filling the gaps in current studies, it made unique con-
tributions to understanding the impacts of contributing factors on TEC
and EB planning and operation plans.

First, some commonparameters are not considered in this study, suchas
the number of stations and intersections (NOSI), and the road grade. The
Spearman's rankcorrelationcoefficientsof the twoparameterswithTECare
0.066 and 0.165, respectively. The Partial correlations are 0.085 and
�0.038, which shows very weak or no correlation with TEC. The Spear-
man's rank correlation coefficients betweenNOSI and trip distance, and trip
travel time are 0.744 and 0.683, respectively, which shows strong linear
relationships. Thus, the impact of NOSI can be reflected by the constant
term or the fitting coefficients of other contributing factors. The reason for
the weak relationship between road grade and TEC is that the changes of
road slopes are small and the road grades of the three routes are within
[�4%, 4%]. Therefore, the proposedTECestimationmodel ismore suitable
for plain areas.

Second, this study accounted for the influences of ambient tempera-
tures on TEC in cold regions whereas current studies did not. In the real-
world data used in the regression, the minimum and maximum temper-
atures were �27.0 and 35.0 �C, respectively. Due to the significant
impact of the ambient environment on TEC, the difference in daily en-
ergy consumption of an EB fleet on a route could reach up to almost 50%
between summer and winter. Therefore, it is necessary to deploy
different numbers of EBs and charging stations for transit routes in
different seasons and to adjust bus schedules accordingly, which poses a
challenge for transit operation and management.

Third, this study examined the relationship between battery rated
capacity and energy consumption rate. Nowadays, many transit opera-
tors like to purchase EBs with large-capacity batteries. Although this can
increase the driving range, large-capacity batteries are often heavy,
which will lead to an increase in the energy consumption rate, thereby
increasing the operating costs of transit operators. In fact, different bus
routes have different passenger demands, dispatching frequencies, and
EB operating speeds. The transit operator should choose the best EB
model according to the characteristics of each route, rather than the one-
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sided pursuit of a large-capacity battery.
Fourth, the estimation accuracy of the proposed model was examined

using different indicators. Although considering the number of passen-
gers on board could improve the accuracy of the model, the estimation
error was still inevitable. If the error is not considered when developing
the EB scheduling plan, the remaining energy of an EB at the departure
time would be overestimated, resulting in the service interruption.
However, current studies did not consider the impacts of TEC estimation
error and most of them assumed that energy consumption rates of EBs
during operation remain constant. An alternative method is to determine
the probability distribution function (PDF) for TEC based on the collected
TEC, estimated TEC and the errors. The PDF can be used to describe the
stochastic fluctuations in TEC and help improve the reliability of the
planning and operation models for EBs.

6. Conclusions

Based on the real-world EB operational data collected in a cold region,
a multivariable regression model was established, with multiple
contributing factors as input variables and TEC of an EB as the output
variable. The accuracy evaluation of the formulated model is performed
and sensitivity analysis is conducted. The main conclusions of this
research are emphasized as follows:

(i) The nonlinear estimation model well explains relationships be-
tween the TEC and five contributing factors. We provide a method
for analyzing the adaptability of the model in terms of bus
scheduling. The result of the case study shows that the estimation
accuracy of the model has a probability of 99.7814% meeting the
requirements of bus scheduling.

(ii) Ambient temperature is a critical contributor to TEC increments of
EBs. Compared with 23.7 �C (the optimumworking temperature),
the TEC increases by 47.105% and 8.984%, respectively, under
the conditions of the lowest temperature of �27.0 �C and the
highest temperature of 35.0 �C.

(iii) When the battery rated capacity of an EB increases from 50 kWh to
400 kWh, the energy consumption rate rises from 0.410 to 0.514
kWh/km by 25.366%. With the advancement of fast charging and
wireless charging technologies, it has become an alternative to
equip EBs with lower rated capacity batteries, thereby reducing
TEC and operating costs.

(iv) The number of onboard passengers is another important factor
affecting the whole weight of an EB during its operation. MAPE
has a 1.746% reduction by applying the modified TEC estimation
model considering passengers' boarding and alighting.

Replication and data sharing

The partial data used in this research can be found at https://ets-dat
a.sciopen.com/view/ETS2022052200002/1/3.
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