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Abstract

Background: Carotid atherosclerosis is a major cause of stroke, traditionally

diagnosed late. Positron emission tomography/computed tomography (PET/CT)

with 18F‐sodium fluoride (NaF) detects arterial wall micro‐calcification long before

macro‐calcification becomes detectable by ultrasound, CT or magnetic resonance

imaging. However, manual PET/CT processing is time‐consuming and requires

experience. We compared a convolutional neural network (CNN) approach with

manual segmentation of the common carotids.

Methods: Segmentation in NaF‐PET/CT scans of 29 healthy volunteers and 20

angina pectoris patients were compared for segmented volume (Vol) and mean,

maximal, and total standardized uptake values (SUVmean, SUVmax, and SUVtotal).

SUVmean was the average of SUVmeans within the VOI, SUVmax the highest SUV

in all voxels in the VOI, and SUVtotal the SUVmean multiplied by the Vol of the VOI.

Intra and Interobserver variability with manual segmentation was examined in 25

randomly selected scans.

Results: Bias for Vol, SUVmean, SUVmax, and SUVtotal were 1.33 ± 2.06,

−0.01 ± 0.05, 0.09 ± 0.48, and 1.18 ± 1.99 in the left and 1.89 ± 1.5, −0.07 ± 0.12,

0.05 ± 0.47, and 1.61 ± 1.47, respectively, in the right common carotid artery.

Manual segmentation lasted typically 20min versus 1min with the CNN‐based

approach. Mean Vol deviation at repeat manual segmentation was 14% and 27% in

left and right common carotids.

Conclusions: CNN‐based segmentation was much faster and provided SUVmean

values virtually identical to manually obtained ones, suggesting CNN‐based analysis

as a promising substitute of slow and cumbersome manual processing.
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1 | INTRODUCTION

Atherosclerosis is the origin of major cardiovascular and cerebro-

vascular diseases, (Lorenz et al., 2006; World Health Organization,

2019) which are the number one cause of mortality worldwide

despite advancements in diagnostic and therapeutic measures

(Barquera et al., 2015; World Health Organization, 2019). Athero-

sclerotic changes develop in childhood, but rarely cause symptoms

until adulthood, in men from age 40−45, in women with a 10‐year

delay (Enos et al., 1955; Holman et al., 1958; McGill, 1968). Carotid

artery disease is a major cause of stroke, accounting for about 20% of

all cases. Carotid artery disease can cause a stroke or transient

ischemic attack (TIA) in three major ways: (a) a plaque narrows and

completely blocks a carotid artery (total occlusion); (b) plaque rupture

damages the lining of the artery with clot formation and finally

thrombosis; (c) an emboli on the plaque breaks off and passes with

the blood to the brain, where it blocks a brain blood vessel. All three

cause an interruption in the blood flow to the brain and can result in

symptoms of stroke or TIA (Chambless et al., 2000; Derlin et al.,

2011; Wu et al., 2017). Carotid artery disease may be present

without symptoms and is usually diagnosed in connection to a stroke

or transient ischaemic attack, the identical symptoms of which

include weakness in face or arms and speech difficulties. In patients

with carotid artery disease, atherosclerosis may develop also in other

arteries throughout the body (Lorenz et al., 2006). After the

emergence of symptoms, atherosclerotic changes may be detected

in plaque form with or without calcification, primarily using structural

imaging modalities, such as conventional X‐rays, ultrasound, CT and

magnetic resonance imaging (Høilund‐Carlsen et al., 2021). The

diagnostic modalities are seldom utilized routinely in individuals with

asymptomatic atherosclerosis and often fail to detect atherosclerotic

plaque unless tissue change is relatively macroscopic (Prabhakaran

et al., 2007).

Positron emission tomography (PET) allows detection of

atherosclerosis by tracking microscopic tissue changes, before

conventional imaging modalities can detect them (McKenney‐

Drake et al., 2018; Raynor et al., 2016). For example, 18F‐sodium

fluoride (NaF) maps microcalcification (Derlin et al., 2011; Høilund‐

Carlsen et al., 2020; Sorci et al., 2020) and thus, NaF detects

microcalcification, a crucial feature of atherosclerosis. However,

PET imaging also has limitations. Analysing PET scans is a relatively

time‐consuming process depending on the target organ. However,

artificial intelligence (AI) models in the shape of image analysis

models, may overcome this limitation as observed in other diseases

including cancer (Lindgren Belal et al., 2019; Dou et al., 2017). More

specifically, large computational models called convolutional neural

networks (CNNs) are time‐efficient and successful approaches for

automated volumetric CT scan segmentation (Mortensen et al.,

2019; Polymeri et al., 2020).

In this study, we aimed to design and test an AI‐based model to

segment the common carotid arteries and examine whether it could

segment faster than the manual approach and provide comparable

data for tracer uptake, so that the AI‐based approach as support or

replacement may serve to increase the routine clinical use of NaF‐

PET for assessment of carotid atherosclerotic burden.

2 | METHODS

2.1 | Study design

CNNs were trained earlier to segment the carotids automatically. A

single image analyser performed manual segmentation of the heart

and aorta in 49 participants, primarily included as a part of the

‘Cardiovascular Molecular Calcification Assessed by 18F‐NaF PET/

CT’ (CAMONA) study (Blomberg et al., 2014, 2015, 2017). The

carotids were segmented in a way to encompass the artery wall and

the inner blood pool. The accuracy of the automated segmentations

was assessed by comparison with measurements obtained by manual

segmentation in the same 49 subjects. We examined intra and

interoperator variability with the manual approach by repeated

manual segmentation in 25 randomly selected scans performed by

the same operator and by two independent operators, respectively.

The random subjects were selected using RandList software. The

CNN‐based segmentation procedure has an inborn 100% repeatabil-

ity (Trägårdh et al.).

2.2 | Study population

The CAMONA study, conducted 2012–2014, included 89 healthy

individuals with low cardiovascular disease risk recruited from the

blood bank of Odense University Hospital or via local advertisement

(Blomberg et al., 2017). Individuals considered healthy if they had no

history of malignant diseases, immunodeficiency syndromes, auto-

immune diseases, alcohol or substance abuse or cardiovascular

diseases. They were preselected by age and gender to guarantee a

balanced inclusion of both genders aged 20–29, 30–39, 40–49,

50–59, and 60 years or older. Also, 50 patients with suspected angina

pectoris referred to the Department of Cardiology at Odense

University Hospital for coronary angiography were included as the

angina pectoris group. All original 89 + 50 subjects were invited to

have a 2‐year follow‐up NaF‐PET/computed tomography (PET/CT)

scan. However, despite direct inquiries, only 29 healthy controls and

20 patients responded. It is their basic NaF‐PET/CT scans, which

constitute the material for the current assessment of the perform-

ance of CNN‐based segmentation.

2.3 | Image analysis

For quantitative manual and automated analysis of the carotids, the

Research Consortium for Medical Image Analysis (RECOMIA [https://

www.recomia.org/]) was used. The carotids were segmented from the

origin (brachiocephalic artery for right and arch of aorta for left carotid

artery) to the end of the bifurcation. VOIs were formed by stacking

2 | PIRI ET AL.
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manually defined region of interests (ROIs) covering the whole carotid

arteries in the CT images of each participant to segment the carotids.

The manual ROI determination contained the carotid arteries (artery

wall and inner blood pool), excluding the vertebral bones and their

uptake halo from the defined ROIs. Quantitative assessment was done

by determining the segmented VOI volume (Vol) in ml and generating

standardized uptake values (SUVs) for NaF uptake (in g/ml) in each

VOI. SUVmean was the average SUV of all VOIs within VOI, SUVmax

the highest SUV of all voxels in these VOIs, and SUVtotal the

SUVmean multiplied in Vol of the VOI.

2.4 | CNN segmentations

For the automatic segmentation, a fully convolutional CNN with the

same structure as the 3D U‐Net (Çiçek et al., 2016) was trained. The

3D U‐Net is designed to have a large receptive field while still being

able to use high‐resolution information. This is achieved by using

max‐pooling downsampling, upconvolution upsampling and skip

connections to process the input image on four different resolutions.

The CNN takes a 100 × 100 × 100 Vol of voxels, where each voxel

has a size of 3.0 × 1.37 × 1.37mm, as input. For this input size, the

CNN outputs an estimated class probability for each voxel of a

12 × 12 × 12 Vol at the centre of the input patch; in this case the

classes are carotid left, carotid right and background.

For training, a set of 50 CT scans with annotations of the carotids

from an external database was used. This data set was created during

a previous project (Trägårdh et al., 2020) and the scans were separate

from the 49 NaF‐PET/CT scans used for the main study. These 50

scans were then divided into a training set of 40 scans and a

validation set of 10 scans. The loss function used was categorical

cross‐entropy and the optimization was done using the Adam

method (Kingma & Ba, 2014) with Nesterov momentum.

To produce the automatic carotid segmentations, the trained

CNN was applied to the whole CT‐scan resulting in an initial

segmentation. For postprocessing, the largest almost connected

component was extracted. Almost refers to the fact that a distance of

20mm between small segmentation components is allowed for them

to still count as connected. To avoid having areas of high activity

originating from surrounding bones which may strongly influence the

SUV statistics, SUV leakage removal was performed. In detail, areas

with SUV above a threshold (two standard deviations (SD) above the

mean SUV in the carotids) and in which the closest activation

maximum was located in the bones, were removed from the

segmentation. The segmentation of the bones was done using an

additional segmentation tool available on the RECOMIA platform

(Trägårdh et al., 2020).

2.5 | Statistical analysis

Frequency (percentage) and mean ± SD were used to express

descriptive statistics. Bland‐Altman plots were used to assess the

agreement between variables in pairwise segmentations (Carkeet,

2015; Gerke, 2020). The mean differences (bias) and the upper and

lower Limits of Agreement (LoA) were calculated for the two

methods. The Sørensen−Dice coefficient (SDC) was calculated to

gauge the similarity of CNN and manual segmentations in the

common carotids segmentation (Zijdenbos et al., 1994).

3 | RESULTS

The mean age (±SD) of the subjects was 52 ±12 years, ranging from 21

to 75. Twenty‐six (53%) were male. The mean height and weight of the

subjects were 173.1 ± 9.1 cm and 82±20.5 kg. An example of CNN

versus manual segmentation is shown in Figure 1. The time required to

manually segment the left and right common carotids was about 20min

compared to less than a minute with the CNN‐based method. The

extracted data in manual and CNN‐based methods is presented in

Table 1. Bland−Altman plots displaying differences between Vol,

SUVmean, SUVmax, SUVtotal values obtained by manual and CNN‐

based segmentation in the left and right common carotids are shown in

Figure 2. Bland−Altman plots exhibited symmetrical difference distribu-

tions around the x‐axis for the paired differences, and variance

homogeneity was observed over the measurement range. The outer

confidence limits of Bland−Altman LoAs in left common carotid were for

Vol −3.78 and 6.46ml, for SUVmean −0.13 and 0.11ml, for SUVmax

−1.11 and 1.29ml and for SUVtotal −3.74 and 6.1ml. The outer

confidence limits of the right common carotid LoAs were for Vol −1.83

and 5.6ml, for SUVmean −0.37 and 0.23ml, for SUVmax −1.12 and

1.23ml and for SUVtotal −2.04 and 5.26ml. The values for intraoperator,

interoperator and manual‐CNN variability in the left and right carotid

artery are shown in Table 2 and Table 3, respectively. The mean Vol

deviation at repeat manual segmentation was 14% and 27%, respec-

tively, in left and right common carotids. The mean SDC for left and right

common carotids are shown inTable 4; the CNN versus manual SDC and

Interobserver SDC were not statistically different in left (p=0.66) and

right (p=0.59) common carotids.

F IGURE 1 A three‐dimentional reconstruction of manual (a) and
CNN‐based (b) common carotids segmentation in the same patient
(right common carotid in light green and left common carotid in blue)

PIRI ET AL. | 3
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TABLE 1 Quantities measured by manual and CNN‐based segmentation

Segment Parameter
All subjects (n = 49) p Value
Manual CNN Difference (95% CI) Manual versus CNN

Left carotid Volume 8.36 ± 1.62 7.02 ± 2.11 1.34 (0.74−1.94) <0.001

SUVmean 0.97 ± 0.23 0.98 ± 0.23 −0.01 (−0.02 to 0.01) 0.19

SUVmax 2.68 ± 0.91 2.59 ± 0.71 0.09 (−0.05 to 0.23) 0.14

SUVtotal 8.02 ± 2.28 6.84 ± 2.47 1.18 (0.6−1.76) <0.001

Right carotid Volume 6.96 ± 1.65 5.08 ± 2.03 1.89 (1.45−2.32) <0.001

SUVmean 1.02 ± 0.23 1.09 ± 0.27 −0.07 (−0.1 to −0.03) <0.001

SUVmax 2.62 ± 0.67 2.57 ± 0.64 0.05 (−0.09 to 0.19) 0.45

SUVtotal 7 ± 2.03 5.39 ± 2.03 1.61 (1.18−2.04) <0.001

F IGURE 2 Bland−Altman plots for differences between Volume (a), SUVmean (b), SUVmax (c), and SUVtotal (d) obtained by Manual and
CNN‐based segmentation (Manual–CNN) plotted against average ((Manual + CNN)/2) in left (upper panel) and right (lower panel) common
carotids (n = 49). The estimated bias of one method relative to the other is the mean difference between values obtained by the two methods
shown as a thick black horizontal line in the centre with its 95% confidence interval (green shade), whereas the Limits of Agreement are indicated
by the thin black horizontal line lines with their 95% confidence interval (purple shades). CNN, convolutional neural network.

TABLE 2 Differences between two left common carotid segmentations: Intraoperator, Interoperator and manual–CNN variability

Parameter
Intraoperator (n = 25) Interoperator (n = 25) Manual–CNN (n = 49)
Mean ± SD LoA Mean ± SD LoA Mean±SD LoA

Volume −0.69 ± 0.98 −2.13 to 1.06 1.73 ± 1.59 −1.39 to 4.85 1.33 ± 2.06 −2.71 to 5.39

SUVmean 0 ± 0.02 −0.04 to 0.04 −0.01 ± 0.06 −0.13 to 0.11 −0.01 ± 0.05 −0.08 to 0.1

SUVmax 0 ± 0.3 −0.58 to 0.59 0.02 ± 0.31 −0.58 to 0.63 0.09 ± 0.48 −0.86 to 1.04

SUVtotal −0.7 ± 0.9 −3.15 to 0.53 1.44 ± 1.59 −1.67 to 4.56 1.18 ± 1.99 −2.71 to 5.07

Abbreviations: LoA, Limits of Agreement, SD, standard deviation.

4 | PIRI ET AL.
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4 | DISCUSSION

4.1 | Principal findings

The CNN‐derived measures in the left and right common carotids

were 0%−15% and 0%−24% lower than the manually derived values,

mainly reflecting deviation in the Vol, whereas values for SUVmean

obtained with the two approaches were very similar in both left and

right common carotids. Moreover, CNN‐based segmentation and

quantification was much faster, observer‐independent and had a

maximal deviation of 13% and 16% at repeat manual segmentation of

the left and right common carotids, respectively.

4.2 | Strengths and weaknesses of the study

An important practical limitation of quantitative PET studies is the

manual or semiautomatic segmentation of the scans. These are time‐

consuming processes requiring an experienced image analyser to

define the VOIs in the scans, which alone may sometimes last half an

hour or more when it comes to carotid artery segmentation. This is a

major issue in many clinical and research studies and one of the

reasons why we decided to turn to AI and deep learning, computer‐

based tools that have improved several aspects of diagnosis in the

medical field. Thus, nuclear cardiology has used AI to facilitate

attenuation correction (Irkle et al., 2015) or automate myocardial

perfusion reports (Kashiwazaki et al., 2018). We developed and

tested CNN‐based models for segmentation of the common carotids

in NaF‐PET/CT studies. To our knowledge, they are the first reported

models used for this purpose. Our model was able to segment much

faster than what is possible with the manual approach even after

training based on a very small number of scans, similar to what we

have previously shown with regard to CNN‐based segmentation of

the aorta and the heart (Piri, Edenbrandt, Larsson, Enqvist,

Nøddeskou‐Fink et al., 2021; Piri, Edenbrandt, Larsson, Enqvist,

Skovrup et al. 2021).

The most important strength of this CNN‐based model was the

ability to segment common carotids comparable to the manual

segmentation, which is difficult even for trained image analysers.

Noncontrast CT used in hybrid imaging modalities, such as NaF‐PET/

CT, is not optimal for studying cardiovascular structures since

distinguishing different anatomic structures is difficult in the absence

of intravenous contrast. Second, common carotids are anatomic

structures prone to relatively large interindividual variation. There-

fore, the ability of this CNN‐based model to distinguish common

carotids beside other similar structures such as jugular vein, lymphatic

nodes and muscles was quite satisfactory.

The main limitation of the CNN‐based segmentation was some

inaccuracy of the segmented VOIs due to variation in the vascular

system, especially the right common carotid, the origin of which

from the brachiocephalic artery is rather difficult to identify. Manual

segmentation of such variations could be challenging as well (Ntaios

et al., 2021). The CNN‐based model is much faster, but we cannot

document that it is also more accurate than the manual one, since

there is no infallible reference to compare with. We can only point

to its superior reproducibility, observer‐independence and appar-

ently also relative independence of PET/CT scanner type and make

(Boellaard et al., 2015; Boellaard et al., 2019; Hagiwara et al., 2020).

We expect that it is a matter of time before CNN‐based

segmentation will outperform the manual segmentation, for the

simple reason that it will continuously learn and improve as more

and more scans of patients with diverse disorders and variable

anatomical structures have been examined for training purposes.

Finally, the proximity of high uptake structures, such as the sternum

or vertebral bones, is another challenging factor, which we tried to

correct for in different ways with the two methods. Also at this

point, it is expected that the CNN‐based methodology will take the

lead based on multiple upcoming training examples and a never‐

ending apprenticeship.

4.3 | Possible mechanisms and implications

The most probable explanation for the difference between CNN‐

based and manual segmentation is the similarity of density between

TABLE 3 Differences between two right common carotid segmentations: Intraoperator, Interoperator and manual‐CNN variability

Parameter
Intraoperator (n = 25) Interoperator (n = 25) Manual‐CNN (n = 49)
Mean ± SD LoA Mean ± SD LoA Mean ± SD LoA

Volume −0.94 ± 1.13 −3.15 to 1.27 1.28 ± 1.91 −2.46 to 5.02 1.89 ± 1.5 −1.05 to 4.82

SUVmean −0.01 ± 0.07 −0.15 to 0.11 0.01 ± 0.06 −0.12 to 0.13 −0.07 ± 0.12 −0.31 to 0.17

SUVmax −0.03 ± 0.34 −0.69 to 0.62 −0.01 ± 0.34 −0.68 to 0.66 0.05 ± 0.47 −0.88 to 0.98

SUVtotal −1.06 ± 1.23 −3.47 to 1.34 1.09 ± 1.9 −2.64 to 4.82 1.61 ± 1.47 −1.28 to 4.5

Abbreviations: LoA, Limits of Agreement; SD, standard deviation.

TABLE 4 The mean SDC ( ± SD) for left and right common
carotids

Intraobserver Interobserver CNN versus manual

Left 0.84 ± 0.05 0.73 ± 0.08 0.72 ± 0.1

Right 0.77 ± 0.09 0.65 ± 0.13 0.63 ± 0.16

Abbreviations: CNN, convolutional neural network; SDC, Sørensen−Dice
coefficient; SD, standard deviation.
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anatomic structures near to the common carotids. This similarity may

lead to mislocating the common carotid arteries, either by inclusion of

adjacent structures in the VOIs or exclusion of common carotid

tissue. So, the Vol of segmented VOIs was in general somewhat

higher with the manual method. This would also lead to a different

SUVtotal, but not influence SUVmean, which remained robust to

minor over‐ or under‐segmentation and, thus, in our view stand out

as the relevant measure of the atherosclerotic burden also in the

carotids as argued elsewhere with regard to the aorta and entire

heart (Høilund‐Carlsen et al., 2019; Piri, Edenbrandt, Larsson, Enqvist,

Nøddeskou‐Fink et al., 2021; Piri, Edenbrandt, Larsson, Enqvist,

Skovrup et al. 2021). However, from here and to recommend NaF‐

PET/CT in all stroke/TIA patients or all patients examined in this way,

we have to await the outcome of an extended clinical application,

which is precisely what CNN‐based quantification makes possible.

4.4 | Unanswered questions and future research

The present work was mainly a feasibility study elucidating if the

CNN approach can segment the carotids from the non‐contrast CT

part of an ordinary PET/CT scan and yield SUVmean measures of

NaF uptake comparable to those obtained manually. That this can be

done in 1min is a huge progress which opens for routine application.

However, to what degree it will impact clinically, only time and

prospective interventional and longitudinal studies can show. It

depends largely on whether arterial NaF uptake is a precursor of

macrocalcification that is detectable by ultrasound and CT, as certain

animal and human studies indicate (Høilund‐Carlsen et al., 2020;

McKenney‐Drake et al., 2018). If so, it is foreseeable that the method

will be applied in patients with suspected stroke/TIA, probably

looking for NaF uptake not only in the carotids but in the entire

preceding part of the arterial system.

It is unknown how well the AI‐based approach will work in

patients with major anatomical variations and to what degree it can

result in reliable estimates of changes over time or due to

intervention. The CNN‐based model presented here is preliminary

and probably the first to demonstrate feasibility of AI‐based common

carotid segmentation. The presented results were acquired after

training on a very limited amount of learning material, a circumstance

which gives reason to believe that the AI‐based approach will after

further training in more extreme cardiovascular cases gradually

become the mainstay of image analysis in patients with suspected or

known atherosclerotic disease.

5 | CONCLUSION

The new CNN‐based model for automated segmentation of common

carotids was fast and reproduced values for common carotid NaF

uptake that were comparable to those acquired by manual

segmentation. With increased ongoing learning we expect that the

CNN‐based processing of NaF‐PET/CT scans will be a valuable time‐

saving addition to routine assessment of the atherosclerotic burden

in the common carotids and other major arteries.
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