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We present an efficient and highly scalable geometric numerical method for two-
dimensional ideal fluid dynamics on the sphere. The starting point is Zeitlin’s finite-
dimensional model of hydrodynamics. The efficiency stems from exploiting a tridiagonal 
splitting of the discrete spherical Laplacian combined with highly optimized, scalable nu-
merical algorithms. For time-stepping, we adopt a recently developed isospectral integrator 
able to preserve the geometric structure of Euler’s equations, in particular conservation of 
the Casimir functions. To overcome previous computational bottlenecks, we formulate the 
matrix Lie algebra basis through a sequence of tridiagonal eigenvalue problems, efficiently 
solved by well-established linear algebra libraries. The same tridiagonal splitting allows for 
computation of the stream matrix, involving the inverse Laplacian, for which we design 
an efficient parallel implementation on distributed memory systems. The resulting overall 
computational complexity is O(N3) per time-step for N2 spatial degrees of freedom. The 
dominating computational cost is matrix-matrix multiplication, carried out via the paral-
lel library ScaLAPACK. Scaling tests show approximately linear scaling up to around 2500
cores for the matrix size N = 4096 with a computational time per time-step of about 
0.55 seconds. These results allow for long-time simulations and the gathering of statis-
tical quantities while simultaneously conserving the Casimir functions. We illustrate the 
developed algorithm for Euler’s equations at the resolution N = 2048.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Two-dimensional ideal hydrodynamics possess geometric properties that affect its qualitative long-time behaviour. In 
his seminal work, Arnold [1] found that ideal fluids can be described as a Hamiltonian system on the cotangent bundle 
of the infinite-dimensional Lie group of volume-preserving diffeomorphisms. For two-dimensional fluids, this observation 
implies the existence of infinitely many first integrals, called Casimir functions [2,3]. Physically, they state the conservation 
of the integrated powers of vorticity and reflect that vorticity is advected along stream-lines. There is strong evidence 
that the long-time qualitative dynamics of non-viscous two-dimensional fluids is tied to the conservation of Casimirs, both 
enstrophy and higher order Casimirs [4,5]. To better capture the correct long-time behaviour it is therefore natural to 
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look for numerical methods that preserve these conservation laws. Existing Casimir preserving methods, however, rely on 
computationally expensive mappings between Lie algebras and Lie groups, such as the exponential map, which render them 
impractical for large-scale applications. In this work, based on recent advances in geometric integration [6,7], we show how 
to devise an efficient Casimir-preserving method, exploiting optimised linear algebra algorithms in conjunction with scalable 
parallel computing techniques, that allows simulation of high-resolution flows.

The Hamiltonian description of two-dimensional ideal hydrodynamics carries the structure of an infinite-dimensional 
Lie-Poisson system (cf. [2]). The first step is to find a finite-dimensional Lie-Poisson system corresponding to a spatial dis-
cretization of the original PDE. This was achieved by Zeitlin [8,9], who provided a self-consistent truncation of the Euler 
equations based on the theory of geometric quantisation, as devised by Hoppe [10] and later analysed by Bordemann et 
al. [11,12]. Quantisation, here, refers to the process of constructing a sequence of matrix Lie algebras for which the Pois-
son bracket is approximated by the matrix commutator. Once such a construction is accomplished, a Lie-Poisson time-step 
integrator should be employed to preserve the underlying geometric structure of the system.

The finite-mode approximation of hydrodynamics proposed by Zeitlin has been investigated through numerical simula-
tion. Indeed, McLachlan [13] developed a Lie-Poisson preserving integrator for simulation of Euler’s equations on the flat 
torus. This method exploits a number of symmetries of the quantised Euler equations on the periodic square to devise a 
clever splitting of the flow map. Each component of the flow map is, in fact, a Poisson map that is solved exactly by means 
of the fast Fourier transform. The complexity of McLachlan’s algorithm is O(N3 ln N) for N2 spatial degrees of freedom. In 
comparison, the direct approach requires O(N4) computations only to evaluate the quantised Poisson bracket. Nevertheless, 
even though the single map components can be solved efficiently, O(N) such maps have to be computed sequentially which 
render the overall method unfeasible for N � 102.

Since the work of McLachlan, little progress was made on algorithms based on Zeitlin’s model until the work of Modin 
and Viviani [6,7], which provides a new class of Lie-Poisson integrators for isospectral flows. The governing equations are 
cast into an evolution equation for the vorticity matrix by making use of the quantised basis derived by Hoppe [10]. The 
resulting discrete system is isospectral, i.e., the eigenvalues of the vorticity matrix are constants of motion. In turn, conser-
vation of the spectrum is analogous to conservation of the Casimir functions. Specifically, the methods in [6] are based on 
a discrete Lie-Poisson reduction of symplectic Runge-Kutta schemes, where time-stepping is performed directly at the level 
of the matrix Lie algebra to avoid computationally unfeasible Lie algebra to Lie group maps. The new isospectral methods 
thereby present a potential for the development of efficient algorithms for geometric integration of systems characterised 
by a large number of degrees of freedom such as fluid systems: the subject of our work here.

The complexity of the isospectral methods by Modin and Viviani [6] is O(N3) per time-step due to matrix multiplication 
in the commutator. An optimal method would have complexity O(N2), thus scaling linearly with the spatial degrees of 
freedom. To construct a Lie-Poisson integrator with complexity lower than O(N3) is still an open problem, so an algorithm 
with optimal complexity is currently out of reach. Nevertheless, the isospectral integrator developed here is characterised by 
a low count of matrix-matrix multiplications per time-step and for those multiplications we use highly optimised and scal-
able linear-algebra packages. Furthermore, the block-tridiagonal form of the discrete Laplacian can be efficiently exploited to 
compute the quantised basis and the stream function. This technique allows for simulations of matrix size N � 103 allowing 
for the resolutions required for the wide spectrum of scales of motion typical of fluid systems, such as turbulent flows.

Although the geometric integrator we develop is applicable to different fluid domains, we focus here on flows on the 
sphere. In contrast to the flat torus—the domain most often simulated in numerical studies—the sphere is more appealing 
from a geophysical viewpoint. Moreover, no artificial boundary conditions have to be imposed making the sphere an ideal 
numerical test-ground [14].

The paper is structured as follows. In Sec. 2 the developed Lie-Poisson integrator is presented, via the quantised matrix 
formulation of Euler’s equations as a spatial discretisation scheme. In Sec. 3 the details of the numerical algorithms and their 
parallelisation are discussed. The capability of the method developed is illustrated in Sec. 4, where a long-time simulation of 
the Euler equations on the unit sphere is presented. Flow visualisations and the kinetic energy spectrum at different times 
are also given. Conclusions and main results are given in Sec. 5.

2. Problem definition and numerical method

In this section we begin by summarising the main steps that lead to the construction of the Lie-Poisson integrator devel-
oped in [7]. To this end, consider the incompressible Euler equations on the unit sphere S2 ⊂ R3 embedded in Euclidean 
3-space. Expressed in the vorticity ω : S2 →R, they are{

ω̇ = {ψ,ω},
�ψ = ω,

(1)

where ψ is the stream-function, related to vorticity ω via the Laplace-Beltrami operator �, and {·, ·} is the Poisson bracket 
defined by

{ψ,ω}(x) = x · (∇ψ × ∇ω), x ∈ S2 ⊂ R3.

The Euler equations (1) constitute a Lie–Poisson system on C∞(S2), for the Lie–Poisson bracket given by
2
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{F,G}L P (ω) =
∫
S2

ω

{
δF
δω

(ω),
δG
δω

(ω)

}
,

for smooth functionals F ,G : C∞(S2) →R. With respect to this Lie–Poisson structure, the Hamiltonian that yields the Euler 
equations (1) is

H(ω) = −1

2

∫
ωψ.

In other words, equation (1) can be written

dF
dt

(ω) = {F,H}L P (ω), ∀F : C∞(S2) → R. (2)

For this system there exists infinitely many Casimir functions, i.e., functionals C : C∞(S2) →R such that

{F,C}L P ≡ 0 ∀F : C∞(S2) → R. (3)

In particular, the integrated powers of vorticity

Ck(ω) =
∫

ωk, k = 1,2, . . . (4)

are invariants of motion independently of the choice of Hamiltonian H.
In order to derive a discretisation that captures the conservation laws (3) in a discrete sense, it is essential to look at 

Euler’s equations from the geometric viewpoint and embed the underlying differential structure into the discrete system. 
This process of consistent discretisation is called quantisation (cf. [10–12]). For completeness, we briefly summarise its 
meaning in the following.

As a first step, the construction of a numerical scheme that embeds a Lie-Poisson structure requires a finite truncation 
of the Poisson bracket. In [8,9], Zeitlin gave an approach based on the theory of geometric quantisation. This consists of 
a sequence of matrix Lie algebras of real dimension N2, which approximates the infinite-dimensional Poisson algebra of 
functions as N goes to infinity. Unrelated to the work of Zeitlin, but motivated by natural questions of classical limits in 
theoretical physics, Bordemann et al. [12] showed that there exists a basis of u(N) (the Lie algebra of skew-Hermitian 
matrices) for which the structure constants converge to those of the spherical harmonics basis of the Poisson algebra 
C∞(S2). A projection �N : C∞(S2) → u(N) can be constructed, via the spherical harmonics basis Ylm for C∞(S2) and a 
corresponding basis T N

lm for u(N), such that for N → ∞
�N f − �N g → 0 implies f = g,

�N { f , g} = N3/2

√
16π

[�N f ,�N g] +O(1/N2).
(5)

In other words, we have a way of approximating smooth functions on S2 by finite-dimensional matrices in u(N): this is 
the essence of Zeitlin’s idea. The setting naturally restricts to the subalgebra su(N) ⊂ u(N) of traceless matrices, which 
correspond to zero mean vorticity and stream-function. Using the discrete basis T N

lm one then obtains a spatial discretization 
of (1) in the matrix form [9,6]:{

Ẇ = [P , W ]
�N P = W ,

(6)

where W ∈ su(N) is the vorticity matrix, P ∈ su(N) is the stream matrix and �N is the quantized Laplacian given by [15]. 
Notice that traces of powers of the vorticity matrix W ,

Ck(W ) = Tr(W k) for k = 1, . . . , N, (7)

are conserved by the system (6). This is the discrete analogue of conservation of integrated powers of vorticity in the 
continuum.

Once the spatial discretization (6) is obtained, the second step is to derive a time-stepping integrator such that the 
Casimir functions (7) are conserved. The key observation is that the matrix flow (6) is isospectral (it preserves the eigen-
values of W ), which in turn implies conservation of Casimirs. (More specifically, isospectrality is equivalent to preservation 
of co-adjoint orbits, cf. [2].) Now, the methods by Modin and Viviani [6] (see also Viviani [16]) are precisely applicable for 
Lie-Poisson systems realised as isospectral flows. The approach uses symplectic Runge-Kutta methods in conjunction with 
discrete Lie–Poisson reduction to derive numerical schemes for which the time-stepping is performed directly at the level 
3
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of the matrix Lie algebra. The approach avoids usage of the exponential map. A particularly simple integrator of this class, 
and the one we adopt here, arises from the symplectic midpoint method and is given as follows [16]:⎧⎨⎩Wn =

(
I − h

2 �−1
N W̃

)
W̃

(
I + h

2 �−1
N W̃

)
Wn+1 =

(
I + h

2 �−1
N W̃

)
W̃

(
I − h

2 �−1
N W̃

)
,

(8)

with n the time level, h the time-step and W̃ an implicitly defined matrix. The computation of the latter requires an 
iterative method. We found the following simple fixed point iteration to be efficient [17]:

W̃ k+1 = Wn + h

2

(
�−1

N W̃ k W̃ k − W̃ k�−1
N W̃ k

)
+ h2

4
�−1

N W̃ k W̃ k�−1
N W̃ k, (9)

where k indicates the iteration step. Integration of (6) by means of (8) preserves the spectrum of W , and thus the discrete 
Casimir functions, up to the tolerance set for the convergence of (9). Numerical tests have shown that a number of 2 to 3
iterations are sufficient to reach a tolerance of 10−12 in the infinity norm of the matrix (W̃ k+1 − W̃ k). This is due to the 
fact that the initial vorticity is always normalized (with respect to the spectral norm) and that the scaling factor N3/2 of 
the commutator in (5) is absorbed in the time-step (see [17] for a more extensive discussion on the relation between the 
number of iterations with respect to N).

In the next section we present a detailed account of the numerical algorithms employed for the solution of (8) and their 
parallelisation.

3. Main algorithms and parallelisation

The numerical scheme (8) can be broken down into three main components:

• the computation of matrix multiplications stemming from the commutator (Sec. 3.1),
• the construction the quantised basis (Sec. 3.2), and
• the computation of the inverse Laplacian (Sec. 3.3).

Linear algebra algorithms are taken from the well-established and optimised library LAPACK [18] and its parallel extension 
ScaLAPACK [19]. The parallelisation will be carried out by means of MPI [20] combined with openMP multithreading [21]. 
The overall complexity of the developed Lie-Poisson integrator is reduced to that of matrix multiplication resulting from the 
commutator, the latter being O(N3). Therefore, we select a distribution memory layout that allows for optimal computation 
of matrix-matrix multiplications referred to as block-cyclic decomposition [19]. In essence, the latter assigns matrix blocks to 
MPI processes in a cyclic manner in order to optimise load-balance and communication across processors for dense matrix 
operations. We refer to the ScaLAPACK User’ Guide for a complete description.

3.1. Computation of the matrix commutator

The commutator in the quantised system (6) gives rise to matrix multiplications in the isospectral integrator (8). Dense 
matrix multiplications are carried out by the routine pzgemm, which optimises data communication across MPI processes 
through a block-cyclic decomposition of the computational domain [19]. Inspection of (9) shows that three matrix multi-
plications are needed for the computation of each iteration of W̃ k . However, given the skew-symmetry of both the stream 
matrix and the vorticity matrix, the third term on the right-hand-side of (9) can be computed as the conjugate transpose 
of the second term. Clearly, the same simplification applies also to the second equation in (8). Thus, only two dense matrix 
multiplications, of complexity O(N3), are needed for each update of W̃ k and Wn+1.

3.2. Computation of the quantised basis

Given an initial condition in terms of spherical harmonic coefficients, ωlm , the vorticity matrix is assembled by the 
projection onto the quantised basis

W0 =
N−1∑
l=0

l∑
m=−l

iωlm T̂ N
lm, (10)

where

T N
lm = i((T̂ N

lm + (−1)m(T̂ N
l−m)/

√
2, for m > 0

T N
lm = (T̂ N

lm − (−1)m T̂ N
l−m)/

√
2, for m < 0

T N
l0 = îT N

l0 , for m = 0,
4
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for the basis elements T N
lm ∈ su(N) introduced in Sec. 2. In [10] an explicit expression for the computation of T̂ N

lm is given:(
T̂ N

lm

)
i j

= (−1)[(N−1)/2]−i
√

2l + 1

(
N−1

2 l N−1
2−i m j

)
, (11)

where the bracket denotes the Wigner 3j-symbols. While the analytical expression (11) is theoretically appealing, it is in 
practice unfeasible to compute as N becomes large. This is due to the fact that known analytic formula for the 3j-symbols 
contain large factorials that are computationally expensive and difficult to compute on a computer. Here, we suggest a 
more efficient alternative, essential for numerical simulation of fluid systems. Analogous to the continuum case, the discrete 
spherical Laplacian satisfies [15]

�N T̂ N
lm = −l(l + 1)T̂ N

lm, ∀ l = 1, ..., N,m = −l, ..., l. (12)

Thus, matrices T̂ N
lm can be found as solutions to the eigenvalue problem (12). The discrete Laplacian is a forth-order tensor, 

hence dense linear algebra would require O(N4) operations to apply the quantised Laplacian. However, �N admits splitting 
into (2N − 1) blocks �m of size N − |m| corresponding to the mth diagonal of the matrix W . In particular, for m ≥ 0 one 
has

�m
ij =2δ

j
i (s(2i + 1 + m) − i(i + m))

− δ
j
i+1

√
(i + m + 1)(N − 1 − i − m)

√
(i + 1)(N − 1 − i)

− δ
j
i−1

√
(i + m)(N − i − m)

√
i(N − i),

(13)

where s = (N − 1)/2 and i, j = 0, ..., N − m − 1. Thus, not only does the Laplacian split into blocks corresponding to the 
diagonals, but also on each such block the operator �m is sparse corresponding to a tribanded matrix. The quantised basis 
can hence be computed by solving N tridiagonal eigenvalue problems at most of size N . The computation of the eigenvectors 
is carried out by the parallel LAPACK routine pdstedc [19], a highly optimised library for symmetric tridiagonal matrices 
which enables data distribution through MPI [20]. The remaining components of (10) for m < 0 can be found by skew-
symmetry. Formulated as an eigenvalue problem, the overall complexity of the computation of the quantised basis is then 
O(N3). We remark that the elements of the basis are only needed to generate the initial conditions and at a few selected 
times when the spherical harmonic coefficients ωlm are extracted from W for post-processing.

3.3. Computation of the inverse Laplacian

Scheme (8) involves the computation of the stream matrix P = �−1
N W . The discrete Laplacian �N is a fourth-order 

tensor, which can be expressed as a matrix of size N2 × N2. As such, a naive computation of its inverse would be unfeasible. 
However, �N splits into the blocks (13) and on each such block we have a tridiagonal system. Thus, the problem of finding 
the stream matrix can be formulated in terms of a set tridiagonal systems, one on each block. To this aim we introduce 
the following notation. Given an N × N matrix A, we identify Am with its m-th diagonal defined as the m-th sub-diagonal 
for 1 ≤ m ≤ N − 1 and the main diagonal for m = 0. As shown in [15], the tridiagonal Laplacian (13) acts on stream-matrix 
diagonal elements Pm and produces vorticity-matrix diagonal elements Wm , i.e.,

�m Pm = Wm, m = 0, .., N − 1. (14)

The solution of systems (14) yields the lower triangular part of P . Moreover, since P ∈ su(N), its upper triangular part is 
computed by skew-symmetry. In summary, the stream matrix can be computed by solving N tridiagonal systems, the largest 
(for m = 0) having size N . Thus, the overall complexity to solve for the stream matrix is reduced to O(N2).

Particular care has to be taken when implementing (14) on a distributed-memory system. As pointed out in Sec. 3.2, 
the matrix data layout is based on a block-cycling distribution, which is optimal for matrix multiplication. Therefore, the N
diagonals of W are scattered among processors and mapped into memory in a non-trivial way. In order to extract the diag-
onals in a simple and efficient way, we first redistribute W into a block-column memory layout (see Fig. 1) via pzgemr2d, 
a routine that provides a copy among different matrix memory layouts within the ScaLAPACK standard. Subsequently, an 
approximately equal number of diagonals of W is assigned to the available MPI ranks. As it is clear from Fig. 1, some values 
of the diagonals owned by a given MPI rank are stored in the local memory of a different MPI rank. This array of values is 
communicated among processors using derived types MPI_Type_Indexed. The latter are a particularly efficient means of 
parallel communication when the data structure of the algorithm remains constant throughout its execution, as it is the case 
here. One can, in fact, encode the memory layout of the data to be transferred into the derived data type and send them 
across processors in a single MPI instruction, thus reducing communication to a minimum and avoiding buffering of data 
altogether. Furthermore, data are transferred in a non-blocking manner, by the pair MPI_Issend, MPI_Irecv, reducing 
waiting times.

To illustrate the parallel strategy for the computation of the stream matrix and the construction of derived types
MPI_Type_Indexed, we sketch the data transfer sent by rank 1 to rank 0, for a 7 × 7 matrix distributed over three MPI 
5
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Fig. 1. Sketch of a matrix of size N = 7 distributed over three MPI processes across columns. The red boxes indicate the data local to each MPI rank. 
The diagonals Wm of the vorticity matrix, corresponding to the tridiagonal systems (14), are represented by filled blocks. Wm having the same color are 
assigned to the same MPI rank, as indicated in the left of the figure. The construction of the MPI_Type_Indexed related to the mapping of W0 and W3

stored in the memory of rank 1 is shown at the bottom of the figure. The diagonal values are identified by specifying their displacement in memory as 
indicated by arrows at the bottom of the figure. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

processes (Fig. 1). Rank 0 handles the tridiagonal systems (14) for m = 0, 3, 6, whose right-hand sides Wm are indicated by 
the dark grey blocks. Clearly, part of W0 and W3 is stored in the local memory of rank 1 and needs to be communicated 
to rank 0 for the systems to be solved. These matrix elements, W (4, 4), W (7, 4) and W (5, 5), are first mapped into an 
indexed data type by specifying their memory displacement from the first element held in memory by rank 1, i.e., from 
the element W (1, 4) following a column-major order (see sketch at the bottom of Fig. 1). Subsequently, the mapped values 
are sent with a single MPI instruction to rank 0 where they are reconstructed to form contiguous buffers containing the 
full right-hand sides Wm . The corresponding set of tridiagonal systems is then solved, by a pool of threads, employing the 
LAPACK routine zpttrs, a dedicated linear solver for Hermitian positive definite tridiagonal matrices. Once the solution 
vectors are computed, they are sent back to their corresponding diagonals Pm and, finally, the matrix W is redistributed 
into the block-cycling memory layout. This procedure is applied by all MPI ranks.

Scaling tests indicate that the developed parallel algorithm is efficient and scalable, as we illustrate in the next section.

3.4. Parallel performance

The parallel performance of the algorithm detailed in Sec. 3 is analysed on the supercomputer Galileo100 [22], which 
mounts Intel CPU CascadeLake 8260 equipped with 24 cores each. We carry out a scaling test for matrix size N = 2048
and N = 4096. These resolutions allow for the study of complex flows that span a wide range of scales of motion, as 
demonstrated in [5] for the case of two-dimensional turbulence. The number of iterations in (9) is set to 3. As pointed out 
in Sec. 2, this was found to be sufficient to reach a tolerance of 10−12, independently of N , for a time-step that resolve the 
flow time-scale.

Fig. 2 shows the computational time per time-step as a function of the number of cores. A full MPI parallelisation 
(solid line) is compared with an hybrid parallelisation for two different numbers of threads per MPI process equal to 12
(dash-dotted line) and 24 (dashed line). The best performance is found when employing 12 threads: approximately linear 
scaling is observed with the lowest computational time at the largest number of cores simulated. The full MPI parallelisation 
appears to be more efficient for smaller matrix sizes, while it deviates from linear scaling for large N . Doubling the number 
of threads to 24 does not improve the computational time and results in an earlier departure from linear scaling compared 
to the case where 12 threads are employed. Our findings thus indicate that a certain degree of multithreading leads to 
an overall better parallel performance for large N . However, we remark that the degree at which hybrid parallelisation is 
favourable is system-dependent. What ultimately matters is the computational time one can achieve by means of parallel 
computing. Here we show that, for N = 4096, a time-step is completed in around 0.55 seconds, which in turn allows for 
6
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Fig. 2. Computational time per time-step as a function of the number of cores, for N = 2048 (left figure) and for N = 4096 (right figure), using fully MPI 
parallelisation (solid line), hybrid MPI parallelisation with 12 threads (dash-dotted line) and hybrid MPI parallelisation with 24 threads (dashed line). Linear 
scaling is shown as a reference by the dotted line.

long-time simulations and gathering of statistical quantities of the flow, as for example demonstrated in [23] and in the 
following section.

4. Simulation of Euler’s equations

In this section we illustrate the capability of the developed numerical method by simulating the discrete Euler equations 
(6) for N = 2048. At the initial time, modes of spherical harmonics of degree 2 ≤ l ≤ 20 are given a random value of 
approximately the same magnitude. The system then evolves for a total of 106 time-steps corresponding to 200 time units. 
For this simulation 512 cores were employed. A qualitative illustration of the evolution of the vorticity field is shown in 
Fig. 3. From an initial random distribution of vorticity in spherical harmonic space, the flow evolves into well recognisable 
large-scale vortical structures. At the same time, owing to non-linear interactions, part of the energy injected at larger scales 
flows toward the high-wave-number end of the spectrum. Since the simulated flow is inviscid and the geometric integrator 
preserves the integrated powers of vorticity, neither physical dissipation nor artificial numerical dissipation play a role in 
the flow dynamics. As a result, after a sufficiently long time all simulated scales will acquire a certain amount of energy, as 
it becomes visible by the roughness of the vorticity field at t = 200.

In Fig. 4 we present the kinetic energy spectrum for the same computational times shown in Fig. 3. As time evolves, 
energy is transferred to small scales where an approximate l−3 scaling is established. The −3 exponent is consistent with 
the theory of Kraichnan [24] on the direct cascade of enstrophy of two-dimensional turbulence, extensively investigated 
numerically (see Bofetta [25] and references therein) and recently also revisited in the work of Cifani et al. [5]. Moreover, 
recent studies by Modin and Viviani [26] suggest that, for even longer times, the −3 exponent is replaced by the l−1 scaling 
at small scales. It is outside the scope of this paper to investigate thoroughly such phenomenon, which we leave for future 
studies. Here, we show that the developed numerical method and parallel algorithms allow for the simulation of Lie–Poisson 
flows at unprecedented high resolutions while conserving the underlying Poisson structure.

The relative error of the Casimir functions Ck (4) with respect to their values at the initial time for k = 2, ..., 5 is shown 
in Fig. 5. For this simulation the tolerance for the fixed point iteration (9) has been set to 10−12. For all Casimirs considered 
the error does not exceed 10−10 at the final time. For some Ck a sub-linear accumulation of error is observed. Similar trends 
were found for higher order Ck .

5. Conclusions

The main achievement documented in this paper is the development of a computationally efficient geometric integrator 
for Lie–Poisson flows on the sphere. We have extended the isospectral integrator [16] to high performance computing 
and demonstrated its capabilities for the simulation of high-resolution two-dimensional ideal flows on the sphere. This was 
accomplished by exploiting a tridiagonal splitting of the discrete spherical Laplacian in combination with highly efficient and 
scalable numerical algorithms. In particular, we overcome the problem of computing the discrete basis for the Lie algebra 
from its explicit expression in terms of the Wigner 3j-symbols [10,9], which involves large factorials that are problematic to 
handle computationally. We reformulated, instead, the construction of the quantised basis as O(N) tridiagonal eigenvalue 
problems of size O(N). This allowed us to simulate for N as large as 4096. The same tridiagonal splitting was then used 
for the computation of the stream matrix. As a result, we have effectively reduced the complexity of the latter from the 
inversion of an N2 × N2 matrix to that of the inversion of a set of tridiagonal matrices with overall complexity O(N2), thus 
scaling optimally with respect to the N2 spatial degrees of freedom.
7
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Fig. 3. Vorticity field at t = 10 (top-left figure), t = 60 (top-right figure), t = 100 (bottom-left figure) and t = 200 (bottom-right figure). Colours range from 
blue corresponding to ω = −0.8 to red corresponding to ω = 0.8.

Fig. 4. Kinetic energy spectrum scaled by the mean kinetic energy K as a function of the spherical harmonic index l at different times: t = 10 (black line), 
t = 60 (blue line), t = 100 (green line) and t = 200 (red line). The l−3 scaling is represented by the dashed black line.

Particular attention has been given to the parallel implementation of �−1
N . Subsets of tridiagonal systems are assigned 

to each MPI process and solved locally by the optimised linear algebra package LAPACK. Data communication required to 
assemble such systems was carried out by constructing indexed derived MPI data types. The latter were employed in order 
to map the memory layout of the diagonals of the vorticity matrix and used in combination with non-blocking communi-
cation instructions. As a result, data transfer is completed with the minimum amount of MPI calls avoiding buffering. We 
found this to be essential for parallel scalability.
8
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Fig. 5. Relative error of the Casimir functions Ck for k = 2, ...,5 as a function of time. The tolerance for the fixed point iteration (9) is set to 10−12.

Having reduced the computation of the inverse Laplacian to O(N2) operations, the overall complexity of the method is 
that of matrix multiplication in the commutator, which is O(N3). Dense matrix multiplications were carried out by em-
ploying the linear algebra library for distributed memory ScaLAPACK. The latter operates on a block-cycling decomposition, 
which optimises load-balance and communication across processors. The scaling tests, which we performed on two matrix 
sizes, N = 2048 and N = 4096, showed approximately linear scaling up to around 2500 cores. Combining MPI with multi-
threading appears to be advantageous, attaining the lowest computational time per time-step of 0.55 seconds for N = 4096. 
This computational time allows for long-time simulations and gathering of statistical quantities of complex flows.

As an illustration of the capabilities of the developed algorithm, we simulated Euler’s equations for a matrix size of 
2048 × 2048. The simulation was carried out for 106 time-steps corresponding to a total of 200 time units. Conservation of 
the Casimir functions is shown to be robust over the entire simulation time, increasing only sub-linearly for some of the 
Casimirs.

In summary, we have developed the first Lie–Poisson integrator able to simulate fluid flows that span over a wide range 
of scales of motion. We expect this tool to be valuable in long-time studies of two-dimensional ideal fluid dynamics, partic-
ularly for a better understanding of how conservation of the Lie–Poisson structure and the Casimirs affects the qualitative 
behaviour.
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