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Bayesian probability updates
using sampling/importance
resampling: Applications in
nuclear theory

Weiguang Jiang* and Christian Forssén

Department of Physics, Chalmers University of Technology, Göteborg, Sweden

We review an established Bayesian sampling method called sampling/

importance resampling and highlight situations in nuclear theory when it can

be particularly useful. To this end we both analyse a toy problem and

demonstrate realistic applications of importance resampling to infer the

posterior distribution for parameters of ΔNNLO interaction model based on

chiral effective field theory and to estimate the posterior probability distribution

of target observables. The limitation of the method is also showcased in

extreme situations where importance resampling breaks.
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1 Introduction

Bayesian inference is an appealing approach for dealing with theoretical uncertainties

and has been applied in different nuclear physics studies [1–16]. In the practice of

Bayesian analyses, a sampling procedure is usually inevitable for approximating the

posterior probability distribution of model parameters and for performing predictive

computations. Various Markov chain Monte Carlo (MCMC) methods [17–21] are often

used for this purpose, even for complicated models with high-dimensional parameter

spaces. However, MCMC sampling typically requires many likelihood evaluations, which

is often a costly operation in nuclear theory, and there is a need to explore other sampling

techniques. In this paper, we review an established method called sampling/importance

resampling (S/IR) [22–24] and demonstrate its use in realistic nuclear physics applications

where we also perform comparisons with MCMC sampling.

In recent years, there has been an increasing demand for precision nuclear theory.

This implies a challenge to not just achieve accurate theoretical predictions but also to

quantify accompanying uncertainties. The use of ab initio many-body methods and

nuclear interaction models based on chiral effective field theory (χEFT) has shown a

potential to describe finite nuclei and nuclear matter based on extant experimental data

(e.g. nucleon-nucleon scattering, few-body sector) with controlled approximations

[25–29]. The interaction model is parametrized in terms of low-energy constants

(LECs), the number of which is growing order-by-order according to the rules of a
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corresponding power counting [30–32]. Very importantly, the

systematic expansion allows to quantify the truncation error and

to incorporate this knowledge in the analysis [4–6, 10–14].

Indeed, Bayesian inference is an excellent framework to

incorporate different sources of uncertainty and to propagate

error bars to the model predictions. Starting from Bayes’ theorem

pr θ|D( )∝L θ( )pr θ( ), (1)

where pr(θ|D) is the posterior probability density function

(PDF) for the vector θ of LECs (conditional on the data D),

L(θ) ≡ pr(D |θ) is the likelihood and pr(θ) is the prior. Then for
any model prediction one needs to evaluate the expectation value

of a function of interest y(θ) (target observables) according to the

posterior. This involves integrals such as

∫ dθy θ( )pr θ|D( ), (2)

which can not be analytically solved for realistic cases. Fortunately,

integrals such as Eq. 2 can be approximately evaluated using a

finite set of samples {θi}Ni�1 from pr(θ|D). MCMC sampling

methods are the main computational tool for providing such

samples, even for high-dimensional parameter volumes [16].

However the use of MCMC in nuclear theory typically requires

massive computations to record sufficiently many samples from

the Markov chain. There are certainly situations where MCMC

sampling is not ideal, or even becomes infeasible:

1) When the posterior is conditioned on some calibration data

for which our model evaluations are very costly. Then we

might only afford a limited number of full likelihood

evaluations and our MCMC sampling becomes less likely

to converge.

2) Bayesian posterior updates in which calibration data is added

in several different stages. This typically requires that the

MCMC sampling must be carried out repeatedly from

scratch.

3) Model checking where we want to explore the sensitivity to

prior assignments. This is a second example of posterior

updating.

4) The prediction of target observables for which our model

evaluations become very costly and the handling of a large

number of MCMC samples becomes infeasible.

These are situations where one might want to use the S/IR

method [23, 24], which can exploit the previous results of model

evaluations to allow posterior probability updates at a much

smaller computational cost compared to the full MCMCmethod.

In the following sections we first review the S/IR method and

then present both toy and realistic applications in which its

performance is compared with full MCMC sampling. Finally, we

illustrate limitations of the method by considering cases where

S/IR fails and we highlight the importance of the so-called

effective number of samples. More difficult scenarios, in

which the method fails without a clear warning, are left for

the concluding remarks.

2 Sampling/importance resampling

The basic idea of S/IR is to utilize the inherent duality

between samples and the density (probability distribution)

from which they were generated [23]. This duality offers an

opportunity to indirectly recreate a density (that might be hard to

compute) from samples that are easy to obtain. Here we give a

brief review of the method and illustrate with a toy problem.

Let us consider a target density h(θ). In our applications this

target will be the posterior PDF pr(θ|D) from Eq. 1. Instead of

attempting to directly collect samples from h(θ), as would be the

goal in MCMC approaches, the S/IR method uses a detour. We

first obtain samples from a simple (even analytic) density g(θ).

We then resample from this finite set using a resampling

algorithm to approximately recreate samples from the target

density h(θ). There are (at least) two different resampling

methods. In this paper we only focus on one of them called

weighted bootstrap (more details of resampling methods can be

found in Refs. [22, 23]).

Assuming we are interested in the target density h(θ) = f(θ)/∫
f(θ) dθ, the procedure of resampling via weighted bootstrap can

be summarized as follows:

1) Generate the set {θi}ni�1 of samples from a sampling

density g(θ).

2) Calculate ωi = f(θi)/ g(θi) for the n samples and define

importance weights as: qi � ωi /∑n
j�1ωj.

3) Draw N new samples {θ*i }Ni�1 from the discrete distribution

{θi}ni�1 with probability mass qi on θi.

4) The set of samples {θi*}Ni�1 will then be approximately

distributed according to the target density h(θ).

Intuitively, the distribution of θ* should be good

approximation of h(θ) when n is large enough. Here we

justify this claim via the cumulative distribution function of

θ* (for the one-dimensional case)

pr θ*≤ a( ) � ∑n
i�1

qi ·H a − θi( ) �
1
n
∑n

i�1ωi ·H a − θi( )
1
n
∑n

i�1ωi

n �→∞→
Eg

f θ( )
g θ( ) ·H a − θ( )[ ]
Eg

f θ( )
g θ( )[ ]

�
∫a

−∞
f θ( ) dθ

∫∞

−∞
f θ( ) dθ

� ∫
a

−∞
h θ( ) dθ, (3)

withEg[X(θ)] � ∫∞
−∞ X(θ)g(θ) dθ the expectation value ofX(θ)

with respect to g(θ), and H Heaviside step function such that

H a − θ( ) � 1 if θ ≤ a,
0 if θ > a.{ (4)
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The above resampling method can be applied to generate

samples from the posterior PDF h(θ) � pr(θ|D) in a Bayesian

analysis. It remains to choose a sampling distribution, g(θ), which

in principle could be any continuous density distribution.

However, recall that h(θ) can be expressed in terms of an

unnormalized distribution f(θ), and using Bayes’ theorem 1)

we can set f(θ) � L(θ)pr(θ). Thus, choosing the prior pr(θ) as
the sampling distribution g(θ) we find that the importance

weights are expressed in terms of the likelihood,

qi � L(θi)/∑n
j�1L(θj). Assuming that it is simple to collect

samples from the prior, the costly operation will be the

evaluation of L(θi). Here we make the side remark that an

effective and computationally cost-saving approximation can be

made if we manage to perform a pre-screening to identify (and

ignore) samples that will give a very small importance weight. We

also note that the above choice of g(θ) = pr(θ) is purely for

simplicity and one can perform importance resampling with

any g(θ).

In Figure 1 we follow the above procedure and give a simple

example of S/IR to illustrate how to get samples from a posterior

distribution. We consider a two-dimensional parametric model

with θ = (θ1, θ2). Given dataD obtained under themodel we have:

pr θ1, θ2|D( ) � L θ1, θ2( )pr θ1, θ2( )
∫∫L θ1, θ2( )pr θ1, θ2( ) dθ1dθ2

. (5)

For simplicity and illustration, the joint prior distribution for θ1,

θ2 is set to be uniform over the unit square as shown in Figure 1A.

In this example we also assume that the data D follows a

multivariate Student-t distribution such that the likelihood

function is

L θ1, θ2( ) � Γ ] + p( )/2[ ]
Γ ]/2( )]p/2πp/2|Σ|1/2 1 + 1

]
θ − μ( )TΣ−1 θ − μ( )[ ]− μ+p( )/2

, (6)

where the dimension p = 2, the degrees of freedom ] = 2, the

mean vector μ = (0.2, 0.5) and the scale matrix Σ = [[0.02, 0.005],

[0.005, 0.02]].

The importance weights qi are then computed for n = 2000

samples drawn from the prior (these prior samples are shown in

Figure 1A). The resulting histogram of importance weights is

shown in Figure 1B. Here the weights have been rescaled as ~qi �
qi/ max({q}) such that the sample with the largest probability

mass corresponds to 1 in the histogram. We also define the

effective number of samples, neff, as the sum of rescaled

importance weights, neff � ∑n
i�1~qi. Finally, in Figure 1C we

show N = 20, 000 new samples {θi*}Ni�1 that are drawn from

the prior samples {θi}ni�1 according to the probability mass qi for

each θi. The blue and green contour lines represent (68% and

90%) credible regions for the resampled distribution and for the

FIGURE 1
Illustration of S/IR procedures. (A) Samples {θ}ni�1 from the uniform prior in a unit square (n= 2000 samples are shown). (B)Histogramof rescaled
importance weights ~qi � qi/max({q}) where qi � L(θi)/∑n

j�1L(θj) with L(θ) as in Eq. 6. The number of effective samples is neff = 214.6. Note that the
samples are drawn from a unit square and that the tail of the target distribution is not covered. (C) Samples {θ*}Ni�1 of the posterior (blue dots with 10%
opacity) resampled from the prior samples with probability mass qi. The contour lines for the 68% and 90% credible regions of the posterior
samples (blue dashed) are shown and compared with those of the exact bivariate target distribution (green solid). Summary histograms of the
marginal distributions for θ1 and θ2 are shown in the top and right subplots.

TABLE 1 Target values, z, and error assignments, ε, for observables
used in the model calibration and for predictions. Energies in
[MeV], point-proton radii in [fm], and the deuteron quadrupole
moment in [e2fm2].

Calibration observables

Observable z εexp εmodel εmethod εem (%)

E(2H) −2.2298 0 0.05 0.0005 0.001

Rp(
2H) 1.976 0 0.005 0.0002 0.0005

Q(2H) 0.27 0.01 0.003 0.0005 0.001

Predicted observables

E(3H) −8.4818 0 0.17 0.0005 0.01

E(4He) −28.2956 0 0.55 0.0005 0.01

Rp(
4He) 1.455 0 0.016 0.0002 0.003
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Student-t distribution, respectively. This result demonstrates that

the samples generated by the S/IR method give a very good

approximation of the target posterior distribution.

3 Nuclear physics applications

Now that we have reviewed the basic idea of the S/IR method,

we move on to present realistic applications of the resampling

technique in nuclear structure calculations. Here we study

Bayesian inference involving the ΔNNLO chiral interaction

[33] with explicit inclusion of delta isobar degree of freedom

at next-to-next-to-leading order. In Weinberg’s power counting

the ΔNNLO interaction model is parametrized by 17 LECs, with

four pion-nucleon LECs (c1,2,3,4) that are inferred from pion-

nucleon scattering data and 13 additional LECs that should be

inferred from extant experimental data of low-energy nucleon-

nucleon scattering and bound-state nuclear observables.

For this application we treat only a subset of the parameters

as active and keep the other LECs fixed at values taken from the

ΔNNLOGO(450) interaction [34]. Specifically, we consider

deuteron observables and use seven active model parameters:

c1,2,3,4, ~C3S1, C3S1, CE1. Our Gaussian likelihood contains three

data wih independent errors: the deuteron ground state energy E,

its point-proton radius Rp and one-body quadrupole moment Q

with experimental and theoretical targets from Refs. [35–37].

Note that the target point-proton radii were transformed from

experimental charge radii using the same relation as in Ref. [38].

For the targetQ we use the theoretical result obtained by the CD-

Bonn [37] model. With these simplified conditions, we perform

S/IR as well as MCMC sampling to study 1) the posterior PDF for

the LECs and 2) posterior predictive distributions (PPDs) for

selected few-body observables. This application therefore allows

a straightforward comparison of the two different sampling

methods in a realistic setting. We note that the inclusion of

all 17 LECs as active parameters would have required more

FIGURE 2
The joint posterior of LECs sampled with S/IR (blue) compared with MCMC sampling (orange). The LECs are shown in units of 104 GeV−1,
104 GeV−2 and 104 GeV−4 for ci, ~Ci and Ci, respectively. The likelihood observables and assigned errors are given in Table 1. The contour lines indicate
68% and 90% credible regions.
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careful tuning of the MCMC sampling algorithm and

corresponding convergence studies.

It is the computation of observables, e.g., for likelihood

evaluations, which is usually the major, time-consuming

bottleneck in Bayesian analyses using MCMC methods. In this

application, the statistical analysis is enabled by the use of

emulators which mimic the outputs of many-body solvers but are

faster by orders ofmagnitude. The emulators employed here for the

ground-state observables of the deuteron, and later for few-body

observables, are based on eigenvector continuation [39–41]. These

emulators allow to reduce the computation time from seconds to

millisecondswhilekeepingtherelativeerror(comparedwithfullno-

core shell model calculation) within 0.001%. Unfortunately,

emulators are not yet available for all nuclear observables. The

MCMC sampling of posterior PDFs, or the evaluation of

expectation integrals such as Eq. 2, will typically not work for

models with observables that require heavy calculations.

The experimental target values and error assignments for

the calibration observables used to condition the posterior

PDF are listed in the upper half of Table 1. In this study we

assume a normally-distributed likelihood, and consider

different sources of error when calibrating the model

predictions with experimental data. The errors are assumed

to be independent. They include experimental, εexp, model

(χEFT truncation) discrepancy, εmodel, many-body method,

εmethod, and emulator, εem, errors. The χEFT truncation errors

are estimated based on order-by-order calculations as in Ref.

[33]. More details on the determination of the error scales can

be found in Ref. [42].

Furthermore, we take advantage of previous studies and

incorporate information about c1,2,3,4 from a Roy-Steiner

analysis of pion-nucleon scattering data [43] and identify a

non-implausible domain for ~C3S1, C3S1, CE1 from a history

matching approach in Ref. [42]. With this prior knowledge we

FIGURE 3
The PPD obtained from samples of the LECs posterior distribution as shown in Figure 2. The bivariate histograms and the corresponding
contour lines denote the joint distribution of observables generate by S/IR (blue) and MCMC sampling (orange). The marginal distributions of the
observables are shown in the diagonal panels.
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set up the prior distribution of the seven LECs as the product of a

multivariate Gaussian for c1,2,3,4 and a uniform distribution for
~C3S1, C3S1, CE1

1. We note that the use of history matching is very

beneficial for both S/IR and MCMC sampling. For S/IR it allows

to select a sampling distribution that promises a large overlap

with the target distribution and it identifies prior samples that are

likely to have large weights in the resampling step. For MCMC,

the non-implausible samples from history matching serve as

good starting points for the walkers and thereby give faster

convergence.

3.1 Posterior sampling

Once we have the prior and the likelihood function we are able

to draw samples from the posterior PDF and to analyze the ab initio

description of few-nucleon systems with the present interaction

model. The joint posterior of the LECs is shown in Figure 2, where

we compare bivariate, marginal distributions from S/IR andMCMC

sampling. For the MCMC sampling we employed an open-source

Python toolkit called emcee [44] that performs affine-invariant

ensemble sampling. We use 150 walkers that are warmed up

with 5,000 initial steps and then move for 5 × 105 steps. This

amounts to 7.6 × 107 likelihood evaluations. The positions of the

walkers are recorded every 500 steps which gives 1.5 × 105 samples

from the posterior distribution of the LECs. On the other hand, for

S/IR we first acquire 2 × 104 samples from the prior distribution and

perform the same number of likelihood evaluations to get the

importance weights. From this limited set we then draw 1.5 ×

FIGURE 4
The posterior predictive distribution from sampling over two different posterior distributions. PPDA=2 (blue) is calibrated by the deuteron
observables while PPDA=2,3,4 (green) is calibrated by the deuteron, 3H and 4He observables. Themarginal distributions of the observables are shown in
the diagonal panels.

1 Specifically we use the non-implausible domain that was identified in
wave 2 of the history matching performed in Ref. [42]. This wave only
included deuteron observables.
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105 samples using resampling (the same final number as inMCMC).

Note that several prior samples occur more than once in the final

sample set. Here the number of effective samples for S/IR is neff =

1589.9. As we can see from Figure 2, the contour lines of both

sampling methods are in good agreement and, e.g., the correlation

structure of the LEC pairs are equally well described. The histograms

of S/IR and MCMC samples are both plotted in the figure but are

almost impossible to distinguish.

As a second stage we use the inferred model to perform

model checking of the calibration observables and to predict the
3H ground-state energy and the 4He ground-state energy and

point-proton radius (see Table 1). For this purpose the PPD is

defined as the set

yth θ( ): θ ~ pr θ |D( ){ }, (7)

where yth(θ) is the theoretical predictions of selected

observables using the model parameter vector θ. Figure 3

illustrate the PPD of the three deuteron observables using S/IR

(blue) and MCMC sampling (orange). The marginal

histograms of the observable predictions are shown in the

diagonal panels of the corner plot. In this study both sampling

methods give very similar distributions for all observables.

Note that the predictive distributions for the three deuteron

observables can be considered as model checking since they

appeared in the likelihood function and therefore conditioned

the LEC posterior. The 3H and 4He observables, on the other

hand, are predictions in this study. Their distributions are

characterized by larger variances compared to the deuteron

predictions.

3.2 Posterior probability updates

As mentioned in the introduction, the S/IR method requires a

minimum amount of computation to produce new samples when

the posterior PDF is updated for various reasons. Here we present

FIGURE 5
The posterior of LECs sampled with S/IR (blue) compared with MCMC sampling (orange) for a situation when the deuteron calibration
observables are associated with errors that have been reduced by an order of magnitude (see text for details). The LECs are shown in units of
104 GeV−1, 104 GeV−2 and 104 GeV−4 for ci, ~Ci and Ci, respectively.
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one likely scenario where the posterior is changed due to different

choices of calibration data (for instance the inclusion of newly-

accessible observables). Let us start from the previously described

calibration of our interaction model with three selected deuteron

observables. If we add 3H and 4He observables into the calibration

(experimental target values and error assignments as in Table 1) to

further condition the model, the likelihood function needs to be

updated accordingly. The sampling of the posterior PDF should be

repeated from the beginning and the new samples should be used to

construct PPDs. However, using S/IR we resample from the same set

of prior samples—only with different importance weights. The same

set of samples also appear in the sampling of PPDs. To distinguish

the original and the updated posteriors we use the notation PPDA=2

to denote predictions with only deuteron observable as calibration

data and PPDA=2,3,4 with
3H and 4He added to the likelihood. These

two different PPDs, generated by S/IR, are shown in Figure 4. Note

that the PPDA=2 (blue) is the same as in Figure 3, and is shown here

as a benchmark. As expected we observe that the description of 3H

and 4He observables is more accurate and more precise (smaller

variations) with PPDA=2,3,4 (green) as compared with PPDA=2 (blue).

We also find that the deuteron ground state energy is slightly

improved with the updated posterior. This can be explained by

the anti-correlation between Rp(
4He) and E(2H). The additional

constraints imposed by Rp(
4He) through the likelihood function

propagates to E(2H) via the correlation structure.

3.3 S/IR limitations

So far we have focused on the feasibility and advantage of

the S/IR approach. However, there are some important

limitations and we recommend users to be mindful of the

number of effective samples. In Figure 4, we found that our

S/IR sampling of PPDA=2 has neff = 1589.9, while for PPDA=2,3,4

it drops to neff = 314.9. This can be understood by the

resampling from a fixed set of prior samples. The more

FIGURE 6
The PPD generated using S/IR (blue) and MCMC sampling (orange) for the posterior distributions shown in Figure 5. Marginal histograms of the
observables are shown in the diagonal panels.
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complex the likelihood function, the less effective the samples.

As seen in Figure 4, the contour lines of PPDA=2,3,4 is less

smooth then those obtained from PPDA=2 due to the smaller

number of effective samples. The S/IR method will eventually

break when neff becomes too small. An intermediate remedy

could be the use of kernel density estimators, although that

approach typically introduces an undesired sensitivity to the

choice of kernel widths.

A similar situation occurs when the target observables are

characterized by very small error assignments. This leads to a

sharply peaked likelihood function and a decreased overlap with

the prior samples. The resulting large variance of importance

weights implies that the final set representing the posterior

distribution will be dominated by a very small number of

samples. Here we show such an example where resampling no

longer works. We attempted to reconstruct a PPD with only

deuteron observables in the calibration, but where all error

assignments in Table 1 had been reduced by an order of

magnitude. The results of this analysis are shown in Figures 5,

6 which display the PDFs and PPDs, respectively, generated by

S/IR (blue) and compared with MCMC (orange). The S/IR

method does not perform well in this case. With neff = 4.4 the

PDF and PPD generated by S/IR are represented by a few

samples. The MCMC sampling, on the other hand, does

manage to identify the updated distribution.

Unfortunately one can also envision more difficult scenarios

in which S/IR could fail without any clear signatures. For

example, if the prior has a very small overlap with the

posterior there is a risk that many prior samples get a similar

importance weight (such that the number of effective samples is

large) but that one has missed the most interesting region. Again,

history matching is a very useful tool in the analysis as it can be

used to ensure that we are focusing on the LECs domain that

covers the mode(s) of the posterior.

4 Summary

In this paper we reviewed an established sampling method

known as S/IR. Specifically, we applied importance resampling

using the weighted bootstrap algorithm and sampled the

posterior PDF for selected LECs of the ΔNNLO interaction

model conditioned on deuteron observables. The resulting

PDF and PPD were compared with those obtained from

MCMC sampling and a very good agreement was found. We

also demonstrated Bayesian updating using S/IR by the addition

of 3H and 4He observables to the calibration data set. As expected,

the predictions of 3H and 4He observables were improved, but

also the description of the deuteron ground-state energy which

could be explained by the correlation structure between E(2H)

and Rp(
4He). Finally, we illustrated some limitations of the S/IR

method that were signaled by small numbers of effective samples.

We found that such situations occured when the likelihood

became too complex for the limited model, or when prior

samples failed to resolve a very peaked posterior that resulted

from small tolerances. We also argued that prior knowledge of

the posterior landscape is very useful to avoid possible failure

scenarios that might not be signaled by the number of effective

samples.
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