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Abstract: Yeasts are increasingly employed in synthetic biology as chassis strains, including conven-
tional and non-conventional species. It is still unclear how genomic evolution determines metabolic
diversity among various yeast species and strains. In this study, we constructed draft GEMs for
332 yeast species using two alternative procedures from the toolbox RAVEN v 2.0. We found that
draft GEMs could reflect the difference in yeast metabolic potentials, and therefore, could be utilized
to probe the evolutionary trend of metabolism among 332 yeast species. We created a pan-draft
metabolic model to account for the metabolic capacity of every sequenced yeast species by merging all
draft GEMs. Further analysis showed that the pan-reactome of yeast has a “closed” property, which
confirmed the great conservatism that exists in yeast metabolic evolution. Lastly, the quantitative
correlations among trait similarity, evolutionary distances, genotype, and model similarity were
thoroughly investigated. The results suggest that the evolutionary distance and genotype, to some
extent, determine model similarity, but not trait similarity, indicating that multiple mechanisms shape
yeast trait evolution. A large-scale reconstruction and integrative analysis of yeast draft GEMs would
be a valuable resource to probe the evolutionary mechanism behind yeast trait variety and to further
refine the existing yeast species-specific GEMs for the community.

Keywords: yeast species; draft metabolic model; metabolic evolution; trait diversity

1. Introduction

It is known that there are over 1500 different yeast species on earth with diverse
metabolic functions, which are currently widely exploited in various fields including
basic biology study, industrial biotechnology, ecology, etc. [1–3]. In general, yeast species
can be classified as conventional or non-conventional yeasts [4]. Conventional yeasts
including Saccharomyces cerevisiae and Schizosaccharomyces pombe are regarded as eukaryotic
model microbes, while non-conventional yeasts contain dozens of useful yeast strains,
including Yarrowia lipolytica, Pichia pastoris, and Kluyveromyces marxianus. As compared with
conventional yeasts, non-conventional yeasts harbor some unique metabolic advantages,
such as high-density aerobic fermentation, extremely diverse metabolic function, wide
substrate utilization spectrum, and strong stress resistance [5,6]. Therefore, these yeasts are
widely used in the production of organic acids, sugar alcohols, terpenoids, lipids, enzymes,
etc. [7,8]. Because of the quick development in sequencing and bioinformatic tools, genome
sequences and detailed gene function annotations for 332 yeasts are now available to
the community [1], laying the groundwork for further exploitation and application of
genomics in the study of yeast biology, evolution, and biotechnology [9]. However, it
has become important to reconstruct genome-scale metabolic models and to derive pan-
metabolic models for all sequenced yeast species [1] in order to understand yeast metabolic
evolution holistically.
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Genome-scale metabolic models (GEMs), as one of the most important classes of
computational models, are important for probing the complex genotype–phenotype re-
lationships [10]. Until now, there have been different procedures and toolboxes to auto-
matically build large-scale GEMs [11–14]. In general, these procedures can be classified as
model construction from a simplified template model and from an open-source biochemical
database. For example, CarveMe can generate GEMs for bacteria based on a template
model built from the BiGG reaction database [12]. By contrast, the RAVEN toolbox provides
two alternative methods to build draft GEMs from two popular databases, i.e., MetaCyc
and KEGG, by blasting the queried genome against a comprehensive gene/protein se-
quence database [14]. Those existing toolboxes provide a convenient way to build GEMs
for any microbe with a whole sequenced genome available [15], although the quality and
prediction performance of GEMs could be influenced by many factors, such as the types
of gap-filling algorithms and the choice of the template models. By comparison, it shows
that the RAVEN toolbox performs better to reflect the metabolic diversity for less-studied
species [15].

Until now, various procedures have been used to build GEMs for yeast species [16],
among which, Lu et al. built GEMs for 332 yeast species using semi-automated procedures
(the related models were renamed as semi-auto GEMs) [17]. In this procedure, a template
model from S. cerevisiae GEMs, Yeast8 was used and additional reactions were added by
re-annotating the pan-genome to generate a so-called simplified template model. Next,
with this template model, the semi-auto GEMs for the studied yeast species were generated
automatically based on the ortholog gene relations, followed by multiple rounds of manual
curation to improve the model prediction performances. By comparison, the quality and
scope of semi-auto GEMs could be comparable with those of existing published yeast
species-specific GEMs. In addition, Correia et al. built a consensus pan-GENRE for
fungi by combining the gene annotation from several popular fungal strains, including
S. cerevisiae and S. pombe, which were then used to build GEMs for 33 yeasts/fungi [18]. As
an alternative procedure, the most recent S. cerevisiae GEMs, Yeast8, was widely used as
the template model for the GEMs reconstruction of single species, and the bi-directional
blast was employed to infer the existence of reactions in other yeast species [16], such as
Y. lipolytica [19] and K. marxianus [20]. Thus, the reconstruction of GEMs for yeast species
relied heavily on Yeast8 [21], which, to some extent, may ignore the metabolic diversity
encoded in the genomes of other numerous non-conventional yeast species.

In this study, to further encompass yeast metabolic diversity and to explore yeast
metabolic evolution, draft GEMs for each sequenced yeast species (draft GEMs) were first
automatically built using the RAVEN toolbox. Then, with standard annotation of reaction
IDs from different sources, a pan-draft metabolic model was compiled as the knowledge
base for the most sequenced yeast species to date. Next, these draft GEMs and pan-draft
models were used to explore the tendencies in genomic and metabolic evolution, as well as
the potential correlations among model similarity, trait similarity, genotype similarity, and
phylogenetic evolutionary distance across yeast species. Additionally, the model similarity
calculated based on draft GEMs and semi-auto GEMs was further compared to display the
advantage of draft GEMs in reflecting the diversity of yeast metabolism. The systematic
reconstruction of yeast draft GEMs and pan-draft metabolic model paves the way to further
refine gene function annotation for all yeast species, and therefore, will set a solid basis to
enhance the quality of different yeast species-specific GEMs in the coming future.

2. Materials and Methods
2.1. Collection of Proteomes for 332 Yeast Species

All the yeast genomes and proteomes were downloaded from https://figshare.com/
articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_subphylum/58
54692, accessed on 23 October 2018) [1]. The protein ID conversion was conducted based on
the ortholog ID, gene ID, and protein ID mapping, which was queried from [1]. In each pro-
teome, the protein ID was started with the yeast species name, such as

https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_subphylum/5854692
https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_subphylum/5854692
https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_subphylum/5854692
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“Yarrowia_lipolytica@Seq_6369”. This type of protein ID and the corresponding protein
sequence were used in the following work.

2.2. Reconstruction of Draft GEMs Using the RAVEN Toolbox

The current RAVEN v2 [14] provides two procedures (getKEGGModelForOrganism
and getMetaCycModelForOrganism) for reconstruction of draft GEMs based on the in-
put proteome. The main parameters used in the method getMetaCycModelForOrganism
(RAVEN ”MetaCyc”) are percent identity and bit-score. Since these parameters in sequence
blast analysis could affect model quality, different values of these two parameters were ex-
plored to estimate the best combinations. In this step, the detailed gene function annotation
of S. cerevisiae (containing the reaction information) from MetaCyc [22] was downloaded as
the reference to evaluate the effects of percent identity and bit-score. Here, the accuracy
was defined as the following formula:

Model accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively, when comparing the output of the RAVEN ”MetaCyc” procedure
with the reference model of S. cerevisiae that already existed in MetaCyc database.

According to the above analysis, the percent identity and bit-score were set as 55% and
110, respectively, for the RAVEN ”MetaCyc” procedure. Since the draft GEMs reconstruc-
tion using the procedure getKEGGModelForOrganism (RAVEN ”KEGG”) need map protein
homology to the ortholog gene families in KEGG, the pretrained HMMs (euk90_kegg100)
and the default parameters were used to build draft GEMs for all yeast species.

2.3. Reconstruction of a Pan-Draft Metabolic Model for 332 Yeast Species

For the reconstruction of comprehensive pan-draft metabolic models for all yeast
species, the draft GEMs for each yeast from the two procedures of the RAVEN toolbox were
combined. First, the reaction ID from each of the two complementary models was stan-
dardized by querying the corresponding ID from known biochemical reaction databases,
such as MetaNet [23] and modelSeed [24] databases. Then, the unique ID from MetaNet
was used for each reaction if possible. If a MetaNet ID could not be found, the original ID
from the MetaCyc or KEGG database was directly used. After this annotation, a combined
reaction ID list and the corresponding reaction information (including the reaction formula
and gene association) were summarized for each yeast species. Meanwhile, to obtain the
subpathway information for each reaction, the KEGG ID was queried utilizing ID mapping.
Based on the KEGG ID of each reaction in the pan-draft model, the subsystem definition
from the KEGG database was assigned for each reaction. Subsequently, all the above unique
reaction IDs were compiled to formulate into the pan-draft model of 332 yeast species. To
analyze the effect of the number of yeast species on the size of the pan-draft model, the
yeast species were randomly selected to calculate the number of pan reactions (all reactions
contained in the sampled yeast species), core reactions (existing in each of sampled yeast
species), and accessory reactions (existing only in part of sampled species).

2.4. Models’ Similarity Calculation

For the metabolic model similarity analysis, the reaction IDs from two GEMs were
extracted and compared. The model similarity for any two yeast species was represented
by the Jaccard distance based on reaction existence in each metabolic model. The Jaccard
distance was calculated based on the following formula:

Jaccard similarity =
RA

⋂
RB

RA ∪ RB
(2)

where RA and RB represent the metabolic reactions in yeast species A and B, respectively.
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2.5. Trait Similarity Calculation

In order to evaluate the trait similarity for any two yeast species, the physiology
datasets including the growth condition on various carbon and nitrogen sources were
downloaded from two previous studies [1,25]. These physiology datasets were also com-
piled in our previous work [17]. In summary, 329 of 332 yeast species have detailed usage
profiles across 32 different substrates. Then, these physiology datasets were used to infer
the trait similarity based on the above procedure in the calculation of the Jaccard distance.

2.6. Evolutionary Distance Calculation across Yeast Species

The time-calibrated phylogenetic tree for 332 yeast species was downloaded from https:
//figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_
subphylum/5854692, accessed on 23 October 2018) [1]. Next, the R function-cophenetic
from R package ape v 5.0 (http://ape-package.ird.fr/) was used to calculate the pairwise
evolutionary distance across yeast species.

2.7. Genotype Similarity Calculation

It is shown that different combinations of two yeast species could have the same
evolutionary distance. Thus, to further characterize yeast genomic evolution in detail,
the gene ortholog relationships from [1] were employed to estimate the existence of each
gene across yeast species. In this analysis, the unified ortholog IDs for each yeast were
collected based on the mapping between the ortholog IDs and gene IDs from [1]. Then, the
genotype similarity for any two yeast species was calculated in a similar way using the
Jaccard distance based on the existence of ortholog IDs across yeast species.

2.8. Statistical Analysis

For two group comparisons in this work, a two-tailed Wilcoxon rank sum test
was conducted.

3. Results
3.1. Reconstruction of Draft GEMs Using the Latest RAVEN Toolbox

Yeast metabolism has undergone systematic evolution to adapt to the growth niches.
To encompass the metabolic diversity of yeast species as much as possible, two alternative
procedures were employed in the RAVEN toolbox [14], that is, built draft GEMs based on
MetaCyc and KEGG databases, respectively, were adopted in this study. Different from our
previous work where a template model, Yeast8 [17], was used, two more comprehensive
databases, i.e., MetaCyc and KEGG, used in RAVEN could largely expand the size of the
referred biochemical reaction network, thus, to some extent, helping to reduce the metabolic
model similarity between any two yeast species. Firstly, as the RAVEN ”MetaCyc” proce-
dure relied heavily on the sequence blast analysis, two main pivotal parameters, percent
identity (Pidentity) and bit-score, were systematically evaluated before the automatic re-
construction of draft GEMs for yeast (Figure 1a, Material and Methods). Next, all the yeast
proteome datasets were downloaded from [1] and used as input to generate draft GEMs
for 332 yeast species plus 11 outgroup fungal species, which then laid a solid foundation
for the reconstruction of pan-draft metabolic models for sequenced yeast species to date.

https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_
https://figshare.com/articles/Tempo_and_mode_of_genome_evolution_in_the_budding_yeast_
http://ape-package.ird.fr/
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Figure 1. Draft yeast species-specific metabolic model reconstruction using the RAVEN toolbox:
(a) Effects of the parameters’ cut-offs on model quality (defined as accuracy) from the RAVEN get-
MetaCycModelForOrganism procedure. Here, the existing model information from BioCyc (as part
of MetaCyc) for S. cerevisiae S288c was set as the reference during the comparison; (b) correlation
in total reaction number for draft GEMs from RAVEN getMetaCycModelForOrganism and from
RAVEN getKEGGModelForOrganism procedures, ρ is Pearson’s correlation coefficient; (c) distribu-
tion of metabolic gene and reaction number from 332 yeast species draft GEMs reconstructed using
RAVEN getMetaCycModelForOrganism; (d) distribution of metabolic gene and reaction number
from 332 yeast species draft models reconstructed using RAVEN getKEGGModelForOrganism.

3.2. Comparative Analysis of All Draft Metabolic Models

At first glance, the number of reactions in draft GEMs produced by the RAVEN
“KEGG” and RAVEN “MetaCyc” procedures, respectively, are positively correlated
(Figure 1b). The detailed distribution of gene number and reaction number from these
draft GEMs are shown in Figure 1c,d. In general, the gene number is typically in the
range of 500–1000, and the reaction number is in the range of 600–1000, for yeast draft
GEMs from the RAVEN “MetaCyc” procedure. By contrast, the gene number is in the
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range of 600–1400, and the reaction number is in the range of 1100–1600, for yeast draft
GEMs from the RAVEN “KEGG” procedure. It should be noted that only reactions with
gene associations were kept for all draft GEMs created by RAVEN, and, the compartment
information for each reaction was left out. Thus, the reaction number in these draft GEMs
was considerably less than that of the manually calibrated yeast GEMs [17], while it is
found that draft GEMs encompass specific reactions which are absent in those manually
calibrated GEMs. For example, during the update of consensus yeast GEMs for S. cerevisiae
from Yeast8 to Yeast9, over 100 reactions can be found from draft GEMs which will be
added into Yeast8 to generate Yeast9 (unpublished datasets).

For those draft GEMs from the aforementioned two procedures, the correlation be-
tween the reaction number and gene number across yeast species exhibits a similar pattern
(Figure 2a,b), suggesting that the number of metabolic genes encoded in the yeast genome
determines the total number of reactions in draft GEMs. When further assessing the effects
of gene set on the size of draft GEMs, it is observed that both the reaction number and
the gene number were not always increased along with the expansion of the gene set. In
detail, if the total number of genes is between 4000 and 8000, it appears that the number of
reactions increases along with the size of the gene set. However, once the overall number
of genes surpasses 8000, the numbers of genes and reactions contained in draft GEMs reach
a plateau, even decreasing at certain data points. As a result, the draft GEM reconstruction
together with total gene number analysis initially indicated that there may be a potential
upper limit on the number of metabolic reactions at the single species level for the models
created directly by RAVEN v 2.0 without manual curation.
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Figure 2. Total gene number determines the metabolic reaction and gene number for draft GEMs
from RAVEN toolbox. Correlations among metabolic gene, reaction number, and total gene number
from 332 yeast species draft models reconstructed using RAVEN getMetaCycModelForOrganism
(a) and RAVEN getKEGGModelForOrganism (b).

3.3. Pan-Draft Metabolic Model Reconstruction and Analysis for Budding Yeasts

To characterize the metabolic diversity encoded in the pan-genome of 332 yeast species,
a pan-draft metabolic model was subsequently created by merging all reactions and genes
from the aforementioned draft GEMs. The standardization of reaction IDs was conducted
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to eliminate repetitions in reactions across all draft GEMs. There are about 3940 distinct
reactions in yeast pan-draft metabolic models as a whole. The occurrence number of each
reaction across yeast species was calculated. Similar to the pan-gene occurrence in previous
studies [26], we discovered that all reactions could be divided into three major types when
taking into consideration their existence in all yeast species, with 37.5% of reactions existing
in over 316 species, 37.56% of reactions existing in less 24 species, and 25.94% of reactions
existing in 24–316 species (Figure 3a). This investigation demonstrated that the expansion
of the yeast pan-metabolic model was significantly facilitated by species-specific reactions.

0

1000

2000

3000

4000

0 50 100 150 200 250 300
Sampled strain number

R
ea

ct
io

n 
nu

m
be

r Pan

Core

Accessory

a b
n=2000.039*N0.1173
R2=0.99

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Occur_num

P
er

ce
nt

ag
e 

of
 re

ac
tio

ns

24

0.3756

316

0.6250

Figure 3. Statistical analysis of the pan-draft metabolic models: (a) Distribution of reactions based on
their occurrence number in 332 yeast species plus 11 outgroup fungal species. The small graph in
(a) represents the cumulative density of reactions based on its existence across 332 yeast species plus
11 outgroup fungal species; (b) profiles of pan-, core, and accessory reactions along with the number
of sampled yeast species. The dotted line represents the predicted pan-reaction number from the
Heaps’ law.

Based on the reaction occurrence frequency in the species under study, the pan-,
accessory, and core reactions can be further defined in the so-called pan-reactome, which
encompasses all related reactions. All reactions existing in pan-reactome are defined
as pan-reactions. The reactions that are common to all yeast species are categorized as
core reactions, while the reactions that only exist in some yeast species are categorized
as accessory reactions. To evaluate the impact of the number of sampled species on the
composition of the pan-reactome, the number of pan-, accessory, and core reactions were
calculated when the number of sampled species was gradually increased (Figure 3b). It
shows that the counts of pan- and accessory reactions increased swiftly at the start of
sampling until the number of randomly selected species was over 50. It has been reported
that Heaps’ law could be applied to assign the ”close” or ”open” property to a pan-genome
for a group of species when more genomes were regularly added [27]. Using the same
premise, the Heaps’ law was used to describe the characteristics of the pan-reactome for the
yeast species. The fitting formula of Heaps’ law in this study is n = 2000.039*N0.1173, where
N is the number of sampled yeast species and n is the total number of reactions. According
to the definition of Heaps’ law, the index in the above formula is significantly smaller than
one, demonstrating that the pan-reactome of yeast species has a “closed” property. Thus, it
is speculated that the yeast pan-reactome will tend to be stable, even when adding more
newly sequenced yeast species.

The composition of the pan-reactome was further explored at the subsystem level.
Within the pan-model, the subsystem definition based on KO annotation from the KEGG [28]
database was given for each reaction. Subsequently, the ratio of core and accessory reactions
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in each subsystem was computed, and then the general distribution of reaction occurrence
was compared at the subsystem level. Comparatively, we discovered that the majority of
core reactions were present in the subsystems involved in core metabolic processes, such
as the TCA cycle and amino acid biosynthesis, whereas accessory reactions predominated
in the subsystems involved in secondary metabolism (Figure 4). It is noted that, for some
ancient pathways, taking the PPP pathway as an example, 25% of the pan-reactome belongs
to the accessory reactions, indicating that based on the current definition of a subsystem
from the KEGG database, a part of the reactions from the PPP pathway was still variable
across yeast species.

Core
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O
cc
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re
nc
e
nu
m
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r

Figure 4. Analysis of the pan-draft metabolic model for 332 yeast species at the subsystem level.
The subsystem definitions are from the KEGG database. The upper graph summarizes the ratio of
core and accessory reactions in each subsystem and the lower graph summarizes the occurrence
number of all reactions from each subsystem across 332 yeast species. The red and blue circle in upper
graph dot represent the ratio of core and accessory reactions in each subsystem, respectively. The red
symbols in the bottom graph represents the core metabolic pathways in yeast species, inclusing TCA
cycle, EMP and PPP pathways.

3.4. Correlations among Trait Similarity, Model Similarity, and Evolutionary Distance

With long-term evolution, strains always gain or lose a trait to ensure greater fitness in
their environment. It is always appealing to illustrate intricate relations between genotypes
and phenotypes for distinct yeasts [3,29]. Here, we employed draft GEMs comparative
analysis, together with a correlation analysis of genotype, phylogeny evolutionary distance,
and phenotype, to investigate the probable mechanism driving yeast metabolic diversity.

To characterize the trend of yeast genomic and metabolic evolution, model similar-
ity (Material and Methods) based on the occurrence of reactions from draft GEMs was
estimated for any two yeast species. Meanwhile, the time-calibrated phylogenetic tree for
332 yeast species from the study [1] was used to infer the evolutionary distance between any
two yeast species. We discovered that the Pearson coefficients between model similarity
and evolutionary distance were −0.73 and −0.79 (p-value < 2.2 × 10−16), respectively,
for draft GEMs derived from the RAVEN ”KEGG” and RAVEN ”MetaCyc” procedures
(Figure 5), indicating that the model similarity inferred from draft GEMs was significantly
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negatively correlated to the evolutionary distance. We ask whether the draft GEMs had a
unique value in such an analysis, thus, the semi-auto GEMs reconstructed from a simplified
template model Yeast8 in our earlier work [17] were employed to conduct a similar analysis.
Interestingly, we found that the Pearson coefficient between model similarity and evolu-
tionary distance based on semi-auto GEMs was only −0.45 (p-value < 2.2 × 10−16), which
confirmed that the draft GEMs actually showed more diversity in metabolism from various
yeast species. Meanwhile, additional calculations were made to determine the quantitative
correlations (represented by the Pearson coefficient) between the model similarity and trait
similarity. Interestingly, such a concise analysis showed that the Pearson coefficient based
on draft GEMs from the RAVEN “KEGG” procedure (Material and Methods) was largest,
while the value was lowest for semi-auto GEMs (Figure 5). Here, we argue that, although
the draft GEMs cannot be used to predict the cellular traits directly, they may, nonetheless,
serve to reflect the divergence in yeast metabolic evolution.
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Figure 5. Correlation analyses among model similarity, evolutionary distance, and trait similarity
across 332 yeast species for draft GEMs built using RAVEN getKEGGModelForOrganism (a), get-
MetaCycModelForOrganism (b), and the semi-auto GEMs from the template model Yeast8 (c). All
the fitting shown as blue lines was based on a generalized additive model, if not stated in this work.

It shows that various pairings of two yeast species may have a comparable evolutionary
distance (Figure 5). As a result, the genotype similarity between any two yeast species was
further estimated based on the ortholog gene relationships from the study [1] (Material and
Methods). The correlation between evolutionary distances and genotype similarity was
initially assessed, and the associated Pearson coefficient was −0.69 (p-value < 2.2 × 10−16)
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(Figure 6a). In the above analysis, the Pearson coefficient between model similarity and trait
similarity ranged from 0.17 to 0.36, which was a very tiny value. Thus, the correlation between
trait similarity and genotype similarity or evolutionary distance was further re-analyzed. We
found that neither genotype similarity nor evolutionary distance were well correlated with
trait similarity (Figure 6b,c), with the corresponding Pearson coefficients of 0.28 and −0.26
(p-value < 2.2 × 10−16), respectively. Actually, yeast trait diversity can be influenced both by
genotype and growth environment, thus, it makes sense that there are no strong relationships
among trait similarity and model similarity, evolutionary distance, or genotype similarity.
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Figure 6. Genotype similarity significantly contributes to model similarity: (a) Correlation between
genotype similarity and genome evolutionary distance; (b) correlation between genotype similarity
and trait similarity; (c) correlation between evolutionary distance and trait similarity; (d) correlation
between genotype similarity and model similarity calculated using GEMs of different sources across
332 yeast species.

We still found that, as compared with the semi-auto GEMs, the model similarity based
on draft GEMs from RAVEN was more correlated with genotype similarity as the corre-
sponding Pearson coefficients for RAVEN “KEGG”, RAVEN “MetaCyc”, and “semi-auto
GEMs” were 0.76, 0.78, and 0.53 (p-value < 2.2× 10−16), respectively (Figure 6d), once again
showcasing that draft GEMs have advantages in characterizing yeast genomic evolution.
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3.5. Model Similarity Comparison between Semi-Auto GEMs and Draft GEMs

Finally, we further compared the model similarity between draft GEMs and the semi-
auto GEMs quantitatively. It initially showed that the model similarity based on semi-auto
GEMs was significantly larger than that based on draft GEMs from the RAVEN “KEGG”
procedure (p-value < 2.2 × 10−16), while the least model similarity was based on the
RAVEN “MetaCyc” procedure (p-value < 2.2 × 10−16) (Figure 7a). This suggested that
semi-auto GEMs were more similar to each other and that the original draft GEMs without
any refinement retained some of the differences in yeast metabolism.
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Figure 7. Similarity comparison for metabolic models from different procedures: (a) Models from
the RAVEN toolbox are more dissimilar from each other than that from semi-auto GEMs from a
template model; (b) model similarity analysis of main clade level for 332 yeast species based on draft
GEMs from the RAVEN “KEGG” procedure. The Pearson coefficient is calculated to represent the
correlation between model similarity and trait similarity.

We subsequently assessed the model similarity within or between the major clades
for 332 yeast species [1] using draft GEMs from the RAVEN “KEGG” procedure as the
corresponding model similarity was better associated with the trait similarity. By com-
parison, it is shown that the model similarity is substantially higher within the major
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clades (taking the CUG-Ala as an example, p-value = 5.784 × 10−5) (Figure 7b) than that
across clades, consistent with the analysis from bacteria [30]. The distribution of model
similarity among different clades varied noticeably; therefore, the associations between
model similarity and trait similarity were further evaluated at the major clade level. We
found that, generally, the Pearson coefficient between model similarity and trait similarity
was lower for yeast species from different clades than that from the same clade (Figure 7b),
suggesting that evolutionarily distant species tended to be divergent in their traits through
long-term evolution and adaption. However, we also found that the Pearson coefficient
at the major clade “Lipomycetaceae” was lowest, which was only −0.08 (p-value = 0.6135)
(Figure 7b). In contrast to yeast species from the other major clades, it appears that there is
no direct positive correlation between model similarity and trait similarity for yeast species
from Lipomycetaceae, while the related model similarity is in the range of 0.87–0.96 and
trait similarity is in the range of 0.40–0.89. When examining the environmental origins
of the yeast species from Lipomycetaceae, it has been reported that species from this major
clade had a widespread distribution [31] and could grow in the soil or in association with
insects. Therefore, despite maintaining similar metabolic network structure, due to the
close evolutionary distance, we speculated that the distinct growth environments may
contribute to the trait variation found in some yeast species.

4. Discussion

In this work, we built a pan-draft metabolic model for yeast species based on 332
different draft GEMs to probe the conservatism and diversity underlying yeast genomic and
metabolic evolution. The procedure to build the pan-draft model is different from previous
studies where the models were built by merging the reaction information from several
existing GEMs of typical fungal species [12,18]. It is possible that, in this procedure, only
several typical organisms’ metabolic capabilities would be fully represented by this type of
pan model, while the metabolic diversity of less-studied organisms would be overlooked
to some extent. To overcome this issue, first, we obtained draft GEMs for each yeast species
with the aid of the RAVEN toolbox [14], where two comprehensive biochemical databases,
KEGG and MetaCyc, were set as the reference to build the species-specific model. Using
such a procedure, the metabolic potential and diversity of each yeast species could be
fully characterized. From the model similarity analysis, it clearly shows that although
the draft GEMs cannot be used to predict the cellular phenotypes directly based on the
constraints from genetic or physiological parameters, they are more dissimilar as compared
with those from the semi-auto GEMs [17]. It should be noted that, in large-scale GEM
reconstruction, the “template model” procedure has been preferred as it guaranteed that
the semi-auto GEMs could have the prediction capability conveniently [12,17]. However,
some drawbacks may exist with this procedure. One challenge is that the semi-auto GEMs
can be similar to each other, therefore, not reflecting the subtle metabolic evolution across
different species/strains (Figure 7a). As a result, these semi-auto GEMs may not be the
best starting point for the pan-reactome analysis for a group of interesting species. In this
respect, draft GEMs and the pan-draft models for yeast species in this work exhibited
potential advantages for exploring the general tendencies in yeast metabolic evolution. As
stated in this work, according to Heaps’ law, the pan-reactome of yeasts belong to a type
of “closeness” in evolution, and the size of the pan-reactome nearly reaches stable once
the number of sampled species is over 50 (Figure 3), which, thus, indicates the relatively
high conservatism in yeast metabolic evolution during the past 400 million years [1]. We
think that this is the first time to illustrate the tendencies in the evolution of the yeast
pan-reactome through a large-scale draft GEMs reconstruction and integrative analysis.
However, the quality of draft GEMs should be further improved as it could be influenced
by multiple factors, such as the algorithms used for gene function annotation and the types
of biochemical reaction database [32]. Note that the draft GEMs cannot be used to predict
the cellular phenotypes directly, the refinement of semi-auto GEMs based on draft GEMs
will be undoubtedly important for the modeling work of non-conventional yeast species.
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Estimating the quantitative correlations between genotype and phenotype is always a
challenging task in biology studies as so many factors could influence the final cellular traits,
such as the auxotroph [33], enzyme promiscuity [34], the lack of transcriptional factor [35],
and the reaction gaps in the downstream pathways [17]. Together with the rich genomic and
physiological datasets [25], large-scale draft GEMs reconstruction and comparative analyses
provide unprecedented chances to explore the correlations among genotype, evolutionary
distance, model similarity, and trait similarity. Our analysis initially shows that evolutionary
distances and environmental differences could shape the divergence in yeast trait evolution,
supporting the view that both intrinsic physiological factors and extrinsic ecological factors
drive yeast metabolic diversity [36]. Consistent with the observation that draft GEMs are
more dissimilar than semi-auto GEMs for paired yeast species, we found that the model
similarity of draft GEMs was more correlated with evolutionary distance and trait similarity,
which performs better than semi-auto GEMs (Figure 6). However, the correlation between
draft GEMs similarity (genotype similarity) and trait similarity is relatively small, with the
largest Pearson coefficient of 0.36. Thus, it initially indicates that the presence of metabolic
potential in the genome is not sufficient to predict the phenotype of the yeasts. In our
analysis, whether or not the yeast could use different substrates qualitatively was defined
as the so-called “trait”. However, there are still many other types of quantitative traits, i.e.,
the specific growth rate and stress tolerance, which were not considered in our analysis;
thus, more standard physiological datasets would be beneficial to fully represent the yeast
metabolic diversity and reflect the genomic evolution. It should be noted that the draft
GEMs only represent the existence of related reactions based on genome annotation, but
how the corresponding enzymes participate in real metabolic activities within cells was not
clear, and the advanced modeling together with the multi-omics integrative analysis, will
be significant to decipher the complex relations between genotype and phenotype during
yeast’s long-term evolution [9].

5. Conclusions

Through the reconstruction of draft GEMs and a pan-draft metabolic model for all
332 yeast species, we discovered that the metabolism of yeasts is quite conservative, with
the pan-reactome for the existing yeast species belonging to the type of “closeness” through
long-term evolution. Additionally, it was demonstrated that draft GEMs directly from
RAVEN without any refinement could better characterize the yeast genomic and metabolic
diversity as compared with the semi-auto GEMs from a template model. Comparatively,
the model similarity calculated by draft GEMs based on the RAVEN ”KEGG” procedure
had the highest correlations with trait similarity among yeast species. However, neither
model similarity nor genotype or evolutionary distance correlated with trait similarity well
(|Pearson coefficient| ≤ 0.36), suggesting that trait diversity may be shaped by multiple
factors. Consistently, it shows that diverse growth environments seem to contribute to trait
diversity among yeast species from specific evolutionary clades. The pan-metabolic model
and draft GEMs from this study should serve as important resources for enhancing the
current yeast species-specific GEMs and for shedding light on the intricate relationships
among genotype, growth environment, and yeast phenotypic diversity.
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