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1. Introduction

Modeling the electrical stimulation of nerves requires biophysically consistent descriptions amenable also
for computational purposes. A typical nerve in the peripheral nervous system contains several grouped
fascicles, each of them comprising hundreds of axons [1]. This complex microstructure of neural tissue
presents an obvious problem for those attempting to describe its macroscopic response to electrical excita-
tion. Specifically, one needs to know both how signals propagate along a single axon and how axons influence
each other in a bundle.

Electric currents along individual axons are usually modeled via cable theory, which dates back to works of
W. Thomson (Lord Kelvin). Fundamental insights into nerve cell excitability were made by A. Hodgkin and
A. Huxley, who proposed a model that describes ionic mechanisms underlying the initiation and propagation
of action potentials in axons [2]. Later a more simple model for nonlinear dynamics in axons was introduced
in [3], known as the FitzHugh-Nagumo model.
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Multiscale homogenization techniques were used in recent works [4,5] to derive an effective cable equation
describing propagation of signals in myelinated axons. Ideas of homogenization theory can also be naturally
applied to account for ephaptic coupling in bundles of axons, where neighboring axons can communicate via
current flow through the extracellular space. In 1978, experiments on giant squid axons were conducted [6]
revealing evidence of ephaptic events and their physiological importance. Ephaptic interactions might be
modeled by coupled systems of a large number of cable equations (cf. [7,8]), but a continuous mathematical
model for a fascicle of myelinated axons, to our best knowledge, has not been rigorously derived. An
analogous coupling phenomenon is observed in the electrical conductance of cardiac tissues [9], leading to the
celebrated bidomain model, first derived by J. Neu and W. Krassowska [10]. In [11] the authors study the well-
posedness of the reaction—diffusion systems modeling cardiac electric activity at the micro- and macroscopic
level. They focus on the FitzHugh-Nagumo model (with recovery variable), and present a formal derivation
of the effective bidomain model. The homogenization procedure is justified in [12] where I'-convergence
is employed for the asymptotic analysis. Homogenization techniques based on two-scale convergence and
unfolding are applied to model syncytial tissues [13—16].

The multiscale analysis of syncytial tissues includes proving the well-posedness of the microscopic
problem, carrying out the homogenization procedure, and checking the well-posedness of the effective
bidomain model. The latter question is interesting by itself, with solvability properties derived via different
approaches depending on the nonlinearity. For instance, the solvability for a bidomain model in [11] is proven
through a reformulation as a Cauchy problem for a variational evolution inequality in a properly chosen
Sobolev space. This approach applies to the case of FitzZHugh-Nagumo equations. In [17], the authors derive
existence and uniqueness results for solutions of a wide class of models, including the classical Hodgkin—
Huxley one, the first membrane model for ionic currents in an axon, and the Phase-I Luo-Rudy (LR1)
model. In [18] the coupled parabolic and elliptic PDEs are reformulated into a single parabolic PDE by the
introduction of a bidomain operator, which is non-differential and non-local. This approach applies to fairly
general ionic models, such as the Aliev—Panfilov and MacCulloch ones.

The asymptotic analysis of a nerve fascicle with a large number of axons also leads to a bidomain model. It
was suggested in [19] that bidomain models provide a unified framework for modeling electrical stimulation
of both peripheral nerves, cortical neurons, and syncytical tissues. In [20] a linear model is considered
without recovery variables. Therein, it is hypothesized that the homogenization procedure in [12] leading
to a macroscopic bidomain model for syncytical tissues can also be carried out for a fascicle of unmyelinated
axons. We extend this result to a nonlinear case and rigorously derive a bidomain model for a fascicle of
myelinated axons. In particular, we consider the propagation of signals in a fascicle formed by a large number
of axons. The microstructure of the fascicle is depicted as a set of closely packed thin cylinders —axons— with
myelin sheaths arranged periodically in the surrounding extracellular matrix. The characteristic microscale
of the structure is given by a small parameter ¢ > 0. Distances between neighboring axons, their diameters
and the spacing of unmyelinated parts of the axon’s membrane —Ranvier nodes— are assumed to be of order
€. By means of two-scale analysis we derive a bidomain model that describes the asymptotic behavior of the
transmembrane potential on Ranvier nodes when ¢ is sufficiently small. We adopt the FitzHugh—Nagumo
dynamics on the unmyelinated membrane. Main technical difficulties come from the nonlinear dynamics and
the lack of a priori estimates ensuring strong convergence of the membrane potential on the Ranvier nodes.
This lack of compactness is caused by the fact that the axons form a disconnected microstructure inside the
fascicle, which stands in the contrast with connected microstructure of syncytial tissues. In order to derive
the homogenized problem we recast the problem to a form allowing us to combine the two-scale convergence
machinery with the method of monotone operators. Well-posedness of the micro- and macroscopic problems
are also shown via reduction to parabolic equations with monotone operators.
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Fig. 1. A fascicle of myelinated axons and the periodicity cell Y.

2. Microscopic model
2.1. Problem setup

A nerve fascicle is modeled by the cylinder 2 := (0,L) x w C R? with length L > 0 and cross-section
w C R?, being a bounded domain in R? with a Lipschitz boundary dw (see Fig. 1). The lateral boundary of
the cylinder is denoted by X' := [0, L] x dw, with bases Sy := {0} xw, S, := {L} xw. The bulk of the cylinder
consists of an intracellular part formed by thin cylinders (axons), an extracellular part, and myelin sheaths.

To describe the microstructure of the fascicle, we introduce a periodicity cell Y := [—%7 %) x [=Ry, RO)Z,
consisting of three disjoint Lipschitz domains: (i) an intracellular part Y; := [f%, %) X Dy, where D, is the

disk with radius 0 < o < %; (ii) a myelin sheath Y,,; (iii) an extracellular domain Y,. The real positive radii
satisfy 79 < Ro. We denote by I, = Y; NY,, the interface between Y; and Y,,. The interface between
the extracellular domain Y, and a myelin sheath Y}, is I == Y. N Y,,. The unmyelinated part of the
boundary of Y; ~the Ranvier node— will be denoted by I' = Y; NY . (see Fig. 1). We will assume that I’
does not degenerate, and, for simplicity, that I" is connected.

The periodicity cell is translated by vertices of the lattice Z x (2R¢Z)? to form a Y-periodic structure,
and then scaled by a small parameter € > 0. We take only those axons that are entirely contained in 2. As
a result, the domain is the union of three disjoint parts 07, 2¢, 2™, and their boundaries (see Fig. 1). The
unmyelinated part of the boundary of 2! is denoted by I'.. The boundary of the myelin is denoted by I'"™. Let
u. denotes the electric potential u. = ul in 2!, | =i,e. We assume that u. satisfies homogeneous Neumann
boundary conditions on the boundary of the myelin sheath /", i.e. the myelin sheath is assumed to be a
perfect insulator (see [4] for other insulation assumptions). The transmembrane potential v. = [u.] = ul —u¢
is the potential jump across the Ranvier nodes I'.. We assume that the conductivity is a piecewise constant

a. 1in 2°

a; in .Qg,

function:

with a. and a; real, positive and bounded. On I. we further assume current continuity, and FitzHugh—
Nagumo [3,21] dynamics for the transmembrane potential. Namely, the ionic current is described as

3
v
—= - Ve = Ye,

3

where g. is the recovery variable whose evolution is governed by the ordinary differential equation:

Iion(v67 ge) =

O0tge = Ove + a — bge,

with constant coeflicients 6, a,b > 0. The recovery variable is introduced to eliminate the excitability of the
model after excitation has occurred (see [3]).
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We consider an arbitrary time interval (0, T), with T' > 0. The electric activity in the bundle §2 is described
by the following system of equations for the unknowns v. and g.:

—div (a:Vu.) = 0, (t,x) € (0,T) x (2°U 02°)

a.Vut v =a;Vul -v (t,x) € (0,T) x I&,

e(CmOh[ue] + Lion ([uc], ge)) = —aiVul - v, (t,2) € (0,T) x I,

9rge = Oluc] + a — bye, (t,z) € (0,T) x I,

ue =0, (t,x) € (0,T) x (So U SL), (1)
ac.Vug - v = J(t, ), (t,z) € (0,T) x X,

Vul - v =0, (t,z) € (0,T) x I'™,

1] (0,2) = V2(2), g:(0,2) = G2(a), z €I,

where v denotes the unit normal on I, I'™, and X, exterior to 2!, 2™ and {2, respectively. The function
JE(t, ) models an external boundary exmtatlon of the nerve fascicle. The membrane capacity per unit area
¢m 1s assumed to be a positive constant. The myelin sheath is assumed to be a perfect insulator implying
that the electrical field does not penetrate it: this leads to the homogeneous Neumann boundary condition
on I'™. That is why the equation in the bulk is posed for x € 2! U £¢.

System (1), modeling the electrical conduction in nerves, arises from Maxwell equations in the quasi-
stationary approximation. A derivation of (1) from the first principles is presented in [22] (see also [23] for a
numerical comparison of different models). On the membrane I'. we assume the continuity of fluxes condition
and the nonlinear FitzHugh dynamics for the potential jump (action potential) [u.]. A similar model has
been used for modeling the electric conduction in the cardiac tissue (cf. [11,12,15,16]). While the cardiac
tissue models assume that both intracellular and extracellular domains are connected, in the present model
the intracellular domain is formed by non-intersecting individual axons.

We study the asymptotic behavior of u., as ¢ — 0, and derive a macroscopic model describing the
potential u. in the fascicle, under the following conditions:

(H1) The initial data is such that' V|| 4p.) < C. Moreover, we assume that V. can be extended to the
whole (2 such that, keeping the same notation for the extension, [|[VO||z1(o) < C and V = 0 on
So U Sr. We also assume that there exists a weak limit V2 — V0 in H(£2).

(H2) There exists G° € L?(£2), such that

e for any ¢ € C(2), it holds that

lime [ G%xz)o(x |F|/GO

e=0  Jp, Y]

o[ |G do — 1 [, |G dz, e —0.

(H3) The external excitation J¢ € L?((0,T) x X) converges weakly to J¢(t,z), as € — 0, and

T
/ / 8,J¢)? dodr < C.
0o Jx

Remark 1. Hypothesis (H2) actually assumes strong two-scale convergence (cf. Proposition 2.5 in [24]).
Hypothesis (H2) is satisfied if GO is sufficiently regular, e.g., continuous, and independent of e. Note that
(H1) and (H2) are not satisfied for rapidly oscillating initial data.

1 Throughout, C denotes a generic constant independent of ¢, whose value may be different from line to line.
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Remark 2. The scaling factor € in the nonlinear equation for [u.] on I leads to a limit bidomain model
and a nontrivial coupling of the potentials in the individual axons in the bundle through the extracellular
currents. Different scaling factors in the equation on the Ranvier nodes I'. might be considered. In [25,26],
the authors address an hierarchy of models for the electrical conduction of biological tissue in linear and
nonlinear cases. Namely, for €¥, k = —1,0, 1, the homogenization procedure yields different limit problems.

2.2. Main result

The main result of the paper (Theorem 2.1 below) shows that the asymptotic behavior of solutions of the
boundary value problem (1) is described by the following effective bidomain model in £2:

emOtvo + Lion(vo, 90) = af 0%111%, (t,z) € (0,T) x {2,
emOrvo + Lion(vo, go) = —le( EHVUS) , (t,z) € (0,T) x £,
0190 = Ovg + a — b go, (t,z) € (0,T) x {2, (2)
ué’e(t7x) =0, (t,z) € (0,T) x (S U Sr),
aStVug v = Je, (t,z) € (0,T) x X,
vo(0,2) = VO(x), g0(0,2) = G°(x), x € 2,
where vy = uj) — u§. The effective scalar coefficient a$f is
eff |Y‘
a; = (3)
i
The effective matrix a$ffe R3*3 is given by
1
(@dM)p = I ac(ONg (y) + or) dy,  k,1=1,2,3, (4)
Ye

with the functions N, k = 1,2, 3, solving the following auxiliary cell problems in Y,

—AN]S = O7 Yy € Yea
VNE v =—u, yel'Uurl,,,
Ni(y) is Y — periodic.

Theorem 2.1.  Under hypothesis (H1)-(H3), the solutions v. = [uc], ge of the microscopic problem (1)
converge to the solutions vo = uly — u§, go of the macroscopic one (2) in the following sense:

(i) For any ¢(t,z) € C([0,T] x §2), it holds that

r
lims/ / ve(t, ) P(t, x) do,dt = | |/ /votx (t, ) dxdt,
e—0 Ie |Y|

and for any t € [0,T] limg_mefps \UE|2 do = IY\ fQ |vo\ dx.
(ii) For any ¢(t,z) € C([0,T] x 2),

[T i "
lim ¢ / / g2 (t, 2)p(t, x) dopdt = 1) / / go(t, 2)(t, ) ddt,
=0 Jo Jr Y1 Jo Jo

and for any t € [0,T] hmgﬁoafr 92| do = I‘Q\ [ 190 da.

(i) lim. 0 fo fﬂg,e ub® — =0.
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Remark 3. If vy is continuous, the convergences (i), (ii) imply strong convergence of v.. Namely, for any

t € [0,T], one obtains
lim 5/ |ve — U0|2d0' =0.
e—0 Ie

In general, approximating v in L?(£2) by vos € C(§2), we have that

6—0 e—0

lim sup lim supa/ |ve — v05|2 do = 0.
Ire

Remark 4. This result can be generalized to the case of a varying cross section, as in [5]. In such a case,
the solution N7 of the cell problem (A.5) is no longer constant, and the corresponding effective coefficient is
given by
ast = i/ ai(01N} + 1)dy.
'l Jy,

Remark 5. Hypothesis (H2) can be generalized to the case of an oscillating initial function GY. Namely,
assume that there exists G°(z,y) € L?(2 x I'), Y-periodic in y such that

o for any ¢(z,y) € C(2 x Y), Y-periodic in v,

;i_r}%s/& Gg(x)gb (:17, g) do, = % /Q /F GO(z,y)é(z,y) doydz;

2 2
o c [ 1G do = 5y [, [ 1GO(2,y)|” doyda, - 0.

Then, the two-scale limit go(t,x,y) of g. does depend on the fast variable y, and denoting go(t,z) =
|T£| [ 9o(t, z,y) doy, the effective problem reads

em Oty + Tion(vo, go) = afﬂailmlug, (t,z) € (0,T) x {2,
emOtvo + Lion(vo, go) = —div (aEHVUS) , (t,z) € (0,T) x £2,

O0rgo = Bvg + a — b o, (t,z,y) € (0,T) x 2 XY,
ug®(t, z) = 0, (t,z) € (0,T) x (Sp U SL),
altVug v = J°, (t,z) € (0,T) x X,
v9(0,2) = VO(x), §0(0,2) = G°(z,y) rxeN, yey.

Thanks to the linearity of the equation 0,gp = 6vg + a — bgo, averaging in y, yields (2) with the initial
condition go(0,z) = ﬁ [ G%(x,y) doy,.

2.8. Well-posedness

In order to show the well-posedness of the microscopic problem (1), we write it as a Cauchy problem for
an abstract parabolic equation.
¢ in 0!

6 in Q° #"¢ =0 on Sy U Sr, and integrate by parts:
€

We multiply (1) by a smooth function ¢ = {

5/ CmOve[d] do —|—/ a:Vu. - Vodr + 5/ Lion(ve, ge)|[d] do = / JEpdo.
Ie 2LUnNE I z
Let us introduce an auxiliary function ¢. solving the following problem:

—div (a.Vg.) =0, reNUNCUTL,
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Vq. -v =0, T € e, (5)
acVqe v =J:(t,x), x € X,
g =0, x € (SoUSL).

Since the jump of ¢. through the Ranvier nodes I, is zero, the change of unknown
Ue = Ue — G

allows us to transfer the external excitation J¢ from the lateral boundary X to the membrane I;. Namely,
we get the following weak formulation for the new unknown function u.:

5/ emOve[@] do —l—/ . a:Vu. - Vodx + e’:‘/ Tion(ve, g2 )[¢] do + / (a;Vge - v)[p] do = 0.
Ie Qiunge Ie

I'e

Let us define the subspace
Hiyos, (22008 = {o e H(QIU08) + 6lg 5, =0},
and introduce the operator A, : D(A.) ¢ HY?(I'.) — H~/?(I.) as follows

(Acve, [P)r2(r.) = /Q e e Vle Vo dz, V ¢ € Hgyus, (920U ), (6)
U0

where 1. € HY(£2¢ U 0¢), for a given jump [u.] = v, solves the following problem:

—div (a.Vu.) =0, r € NIUNL,

aeVﬂg-V:aiVﬂé -V, x € Iy,

ol — e = v, zel, (7)
a:Vu, -v =0, € e,

aeViu, v =0, e X,

u: =0, x € (SpUSL).

Thus, problem (1) can be rewritten in the following compact form:
ecmOpve + Acve + lion (e, gc) = —a; Vg - v, (8)
0tge + bge — Ov. = a

on I.. In order to reduce the problem to a monotone one, we perform the following change of unknowns:

_[We) _ _xt Ve 0 __ Vgo
v (i) = () = (&) ®

with A real positive. Substituting (9) into (8) yields
1 e [Pt ai
£ N (A _ iy,
€0y (1;:6> + | cm Aswe + Cm ( 3 e e he) eAwe = e_)\t ( Cm 4 V) )
€ e(b+ \)h. — ebw, ea

which can be further rewritten as follows:

€O We + Ac(t, We) = Fo(t), (t,x) € (0,T) x I, (10)
7
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W.(0,z) = Wo(x), z€Tl..

with
Ac(t,W.) == B (t,W.) + B (t,W.), (11)
Bgl) (t, WE) — iAEUJE +e <>\ — C}ﬂ) We — éhs , (12)
e(b+ A)he — ebw,
2\t .
BA(t,W.) == ngm“’? . FL(t) = e (—:T;qu ' ”) . (13)
0 €a

Here the operator A. is defined in (6).
The existence of a unique solution to problem (10) follows from Theorem 1.4 in [27] and Remark 1.8 in

Chapter 2 (see also Theorem 4.1 in [28]). For the reader’s convenience, we formulate the corresponding result
below.

Lemma 2.2. LetV;, i = 1,...,m, be reflexive Banach spaces, and H be a real Hilbert space such that
V; C HCV/. Let A(t) = 1", Ai(t), and let {A;(t); t € [0,T]}, i = 1,...,m, be a family of nonlinear,
monotone, and demi-continuous operators from V; to V! that satisfy the following conditions:

(i) The function t — A;(t)u(t) € V! is measurable for every measurable function v : [0,T] — V.
(ii) There exists a seminorm [u] on V; such that, for some constants c; > 0 and s > 0, we have that

[u] + ax|lullz = azllullv;,
and for some<c >0 and p; > 1,
(A;(t)u,u) >eul?t, uweV,;, tel0,T)].
(#i) For some C and the same p; > 1 as in (i),
1A @ullyy < COL+ Jlullf ), we Vi, t€0,T].

Then, for everyug € H and f € Y%, L%(0,T;V;), 1/p; + 1/q; = 1, there is a unique absolutely continuous
function uw € N, W4 ([0, T); V/) that satisfies

w e L™([0,T]; H), u e nNi™,LPi([0,T]; V;),

%(t) +A@UE) = £(t), ae t € (0,T),
u(0) = up.

In order to apply Lemma 2.2, we introduce the necessary functional spaces:
H = L*(I.) x L*(I.),
HY(I.) = {v=(u"—u°) o ul € HY (2, w' =0on SN Syl = z',e},
Vo= BVAL) x IXT), Vi = H-V3(L) x T¥(T),
Vo = LY(I.) x L¥(I.), V§ = L*3(I.) x L*(I%).

As the operator A;(t,) : Vi — V] we take Bél)(t, -) given by (12); as the operator As(t,-) : Vo — V3 we
take B (t,-) given by (13). Let us check that the operator A.(¢,-) = BY + B® satisfies the assumptions of
Lemma 2.2 with p; = 2 and py = 4. The right-hand side F. satisfies clearly the assumptions of Lemma 2.2.

8
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Lemma 2.3. For every t € [0,T], the linear operator Bél)(t, ) : Vi = VY has the following properties:

(i) Monotonicity:
(BW(t, W) — BO(t, W), Wy — Wa) >0, VW, Wy e V.

(i) Coercivity:
(B (&, W), W) > C1[WI,, VW eV,

(iii) Boundedness:
IBO (tW)llyy < ColWihy, VW e Vi

Proof. (i) The monotonicity of the operator Bél) follows from its linearity and coercivity properties (as

shown below).
(ii) By (12), for any W. € HY/?(I'.) x L*(I.), we have that
1 - 1
(BO(t, W), W) = — / ae| V. dz + ¢ ()\ — ) lwe|? do
Qiunge ¢ Ie

Cm m
1
— ¢ <9+ c) / hewedo +e(b+X) [ |he|” do.
m € I'e

At

Here, w. = e *u, solves (7) with the jump on I'. that equals to e **v.. Using the trace inequality and

choosing \ sufficiently large and independent of €, we obtain

(Bgl)(t,WE),WE) 2 C‘waaH%

HY/2(I.) + Cg”ha”i%pg) = CEHWEH%Q-

Here C7,C5, and C° are positive constants.
(iii) Let us estimate the norm of Bél)(t, W). For any W, € Vi and a test function @ = ([p],¥)T € V4, by
(11) we find that

1 " 1
(Bél)(t, Ww.), QS)L2([‘E)2 = — a:Vue - Vodr + ¢ <)‘ - ) / we[‘ﬁ]do
Cm quﬂg Cm Te

- = hg[@]da—f—e(b—l—)\)/ hevdo — <0 | wodo.
Cm Jr, I Ie

There, ¢ solves a stationary problem (7) with a given jump [¢] on I%. Cleatly, |[Vie|[r2givgey) <

C||w5||ﬁ1/2(F ) The test function ¢ is estimated in a standard way in terms of ”[(p]Hﬁl/?(r ) Then, by
the Cauchy—Schwarz inequality, one retrieves
(BOWW.), 8) g2y < Cullwelass oyl 9172,
4 Calllwel ooy + el 181
which proves the estimate from above for HBél)(t, W)||V1/. O
Lemma 2.4. For every t € [0,T], the operator B§2)(t, ) : Vo = V4 has the following properties:
(i) Monotonicity:
(B2 (¢, W1) — B®) (¢, Wa), Wy — Wa) >0, ¥V Wy, W; € Va.

(ii) Coercivity: || - ||ar.y defines a seminorm on Va such that, for some constants a; > 0 and az > 0, we

have

IWllzacr) + aalWla = az Wi,
and

(BO(t, W), W) > C1|W|i,, YW eW.
9
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(iii) Boundedness:
IBE (&, W)llyy < CalWlGagr,y, VW E Ve

Proof. (i) The monotonicity of B follows from the monotonicity of the cubic function f(u) = u3.

(ii) By definition (13), it holds that

ceMt .
BEEWI W) = 5— [ funfdor
Cm, I
which proves (ii).
(iiif) The boundedness follows from (13):
3
4 4
@ e2At 3 3 662)‘t 3 B 3

”Be (t7W€)||V2’ =& A ?m(w(i) do = Tm”wEHL‘l(FE) < C ||WEHV27

where C® is a positive constant. [

Obviously, the function ¢ — A.(¢t, W) satisfies the measurability assumption of Lemma 2.2, and the
demi-continuity property follows from the estimates in Lemmas 2.3 and 2.4.

3. Proof of Theorem 2.1

3.1. A priori estimates

The next lemma provides estimates for (2., h.) = e *(uc, g.), where [2.] = w,, at time t = 0.

Lemma 3.1. Under hypotheses (H1)-(H3), at time t = 0 the following estimate holds

/ aE|Vz€\2da:‘ —|—/ |ZE|2dO') <C. (14)
Qiung t=0 = t=0

Proof. One can see that the operator A, given by (6) can be defined by means of the minimization problem

(Acwe,w:) = min / a€|V¢€|2al9v7
[ Qiung

s]:ws

where the minimum is taken over the functions ¢. € H'(£2! U £2¢) with the given jump [¢.] = w. on I%.
Consider the test function '
be = {VEO in 2
0in £2¢

Then, thanks to (H1) it holds that

/ a€|Vz€|2dx’ = (A we, w,) = / al-|VVEO|2 dx < C.
QiU t=0 t=0 2%

The proof of the lemma is completed by using an extension operator from 2¢ to {2 (see (17) below) together
with the trace inequality. [

We now prove the a priori estimates for the solutions of (10).

10
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Lemma 3.2 (A4 Priori Estimates). Let W, = (we, he) be a solution of (10). Then, fort € [0,T], the following
estimates hold:

(i) e [ lwe|" do +e [y [ |0rwe|dodr < C.

(ii) & [ |he|* do + £ [ [, 10-he|* dodr < C.
(iii) Let z. = e~ *u, with the jump [z.] = w. on I'.. Then, one has that

[ Gl aivala<c
QLuNE

for a constant C independent of € and t, but depending on T and the norms of initial functions HGSHLQ(FS),

||VEO||L4(F5); HValHHl(Q)'

Proof. We will work with the equation in vector form (10) and derive the a priori estimates for the pair
(we, he). Let z. be the solution of the stationary problem with the jump w,:

—div (a:Vz:) =0, r € U N,
aeVzl-v=a;Vz v, z el
2h— 28 = w, xz €I, (15)
a:Vze v =0, € Iy,
oMt
acVz. - v=—JE, e X,
Cm
ze =0, xE(S()USL).

We multiply (10) by W, and integrate over I%:

e 9 1 € 22t 4

— O |we|” do + — a:Vze - Vzeodr + — w; do

2 I. Cm Jotung Cm Jr. 3
1 1

+e <>\ - ) / lwe|* do — & <9+ > / how, do + fat/ |he|? do (16)
Cm I Cm I 2 I

—At
+e(A+ b)/ |he|? do = ¢ / JEze do + 5ae*’\t/ hedo.
Ie Cm Jx Ie

It is known [29] that there exists an extension operator P from (2f to £ such that [[VP.2¢[|p2¢0) <
ClIV2E|| 2oy with a constant C' independent of e. This result combined with the Friedrichs inequality
(ze = 0 on Sy U Sr) implies that

[Pzl 10y < CIVZEN L2(0¢)- (17)

By the trace inequality, the L*(X)-norm of z is then bounded by [[V2¢|[12(ge). Using Young’s inequality
with a parameter in (16) and (17), one retrieves

9, (a/ \w5\2d0+5/ |h8|2do-> +/, \VZE|2dx—|—6/ .| do
I Ie LUNE I'e
+ (s/ |w5|2d0+€/ |h5|2do> gc/ |J¢? do. (18)
€ e X

Applying the Gronwall inequality in (18), we obtain the following estimate:

5/ \w5\2d0+£/ Ihe2do < C. (19)
Ie I.

11
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Integrating (18) with respect to t gives

t t
// |Vz€\2da:+s// .| do (20)
0 LUNE 0 JIe
t
gc(//|J;2dng+s/ |V50|2d0+5/ |G2|2dg>.
0o Jx I'e I's

Next, we derive the estimates for 9;W.. To this end, we multiply (10) by 9;W. and integrate over

(0,t) x I
// 0, w,|* dodr + = // |0, he|* dodr
Ie I's

1

+— ae|Vze|* do — — A ae|Vze|? da:‘

20177, Qiune QCm ntune t=

do — —— V| d

HRTT /F " dor 12¢,, FE‘ el do

#5000 [ular-So- =) [ P

(A= — |"do— (AN — — | do

2 Cm I 2 Cm, I

%(Hb)/ |he|? do — (A+b)/F G do (21)

t
§2/\E/ / lwe|* dodr
0 I
e t
+2925// |w€|2dadr+7// |h€|2dgd7'
0 JrIe Cm Jo Jre

e—)\t

+
t=0

/ /J ZEdO'dT—/ €
0 Cm
t
+ sae’At/ he dafsa/ G? dchrsa/\/ e*”/ h. dodr.
I's I's 0 e

Combining (19), (20), and (14) we get

¢
E/ / |8Tw€\2dad7+/_ |Vz€|2dx+5/ lwe|* do < C.
0 JIe UNE I's

Thanks to the homogeneous Dirichlet boundary condition on the bases SoUSy, the L2-norm of z, is estimated
in terms on the Vz.. Namely,
Q|2 if2
|z2|" dex < C |0z, 22| de,
02 2

/ |z§|2dx§C/ V28| da.
08 92¢

The proof of Lemma 3.2 is finally complete. O

1
/Jezsda—— Jezgda‘

/ 0rJEze dodT
=

3.2. Derivation of the macroscopic model

Since the axons inside the bundle are disconnected, a priori estimates provided by Lemma 3.2 do not
imply the strong convergence of the transmembrane potential v. on I.. In turn, this makes passing to the

12
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limit in the nonlinear term I;,, problematic. We choose to combine the two-scale convergence machinery
with the method of monotone operators due to G. Minty [30]. For reader’s convenience we provide a brief
description of the method for a simple case in Appendix A, while its adaptation for problem (1) is presented
below. For passage to the limit, as ¢ — 0, we will use the two-scale convergence [31]. We refer to [24] for
two-scale convergence on periodic surfaces (namely, on I7.).

Definition 3.3. We say that a sequence {ul(t,r)} two-scale converges to the function u}(t,z,y) in
L%(0,T; L2(02)), l = i,e, as € — 0, and write

ul(t,z) 2 ub(t, 2, y),
if

il Jou lucPdzdt < C.
(ii) For any ¢(t,z) € C(0,T; L*(12)), ¥(y) € L*(Y}), one has that

i | ' / 2ot ay (2) ot = v/ ' | [ bteaott.apit) dydo

for some function u} € L2(0,T; L?(2 x Y)).

Definition 3.4. A sequence {v.(t,z)} converges two-scale to the function vy (¢, x,y) in L?(0,T; L*(I%)), as
e — 0, if

i) EIOT Jr vidodt <C.
(ii) For any ¢(t,z) € C([0,T]; C(2)), ¥(y) € C(I') we have that

L / ' / ve(t2)o(t ) (2) dog dt
IYI/ //vot“f o(t,2)(y) doy dx dt

for some function vy € L?(0,T; L*(2 x I')).
(iii) We say that {v.} converges t-pointwise two-scale in L?(I%) if, for any ¢ € [0,7], and for any ¢(z) €
C(02), ¥(y) € C(I') we have

lim E/F Ve (t, 2) () (g) dog = % /Q/Fvo(t,ac,y)ﬂa:)d)(y) doy dz

e—0

for some function vg € L?(0,T; L*(2 x I')).

Lemma 3.5. Let W, be a solution of (10), and let z. be a solution of problem (15). Then there exist
functions 2, € L*(0,T; L?(R2)), | = i,e, such that 81.12'8,8%28 € L20,T;L*(2)) ( =1,2,3), wo = 2} — 2§ €
LA(0,T; L*(£2)), and up to a subsequence, as € — 0, the following two-scale convergence holds:

(i) X' (2) 2(tx) 2 X (w)2b(t. @) in L(0.T; L)), L= ire.
(i) x* (£) Vzi(t,z) N X' (y)[€104, 25 (t, )+ V2L (t, z,y)], where 2i(t, x,y) € L*((0,T)x 2; H'(Y;))
is 1-periodic in y; .
(iii) x° (%) Vz£(t, x) 2 e (y) [V2§(t, ) + Vy2§(t, x,y)], where 25(t,z,y) € L*((0,T) x 2; H*(Y.))
is Y -periodic in y.
(iv) we EN wo(t, ) t-pointwise in L*(I.), and wo = (25 — 2§).
Moreover, O;w, 2 By in L2(0,T; L*(I%)).

13
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(v) he N Bo(t,m,y) t-pointwise in L*(I'.), and Oph. 2 8,57”) in L2(0,T; L?(I%)).

Proof. From a priori estimates the two-scale convergence of z¢ and Vz¢ is proved applying standard
arguments (see [31]). When it comes to 2! and its gradient, the main difficulty stems from the fact that
Qg consists of many disconnected components.

Since z! is bounded uniformly in ¢ (cf. Lemma 3.2) in L?((0,T) x (2¢), there exists a subsequence — still
denoted by {z!} - such that x'(£)z%(t, z) converging two-scale to some x*(y)z4(t, z,y) in L*(0, T; L*(2xY)).
Similarly, due to (20), up to a subsequence, x* (£) Vz£(t,z) converges two-scale to x*(y)p'(t,x,y). Let us

show that z§ = z{(t, z). Take a smooth test function @ (t,z, £) = ¢(t,z)¢ (£), where ¢ € C([0,T]; C5°(12)),
and ¢ € (C*(Y;))? is 1-periodic in y; and such that 1) = 0 on I},; U T.

s/OT/Ei V() - ot x) (%) dxdt
=—c /OT /Qg’ 2H(t, 2)Ve(t,z) -9 (g) dzdt
— /OT/;' 2Lt 2)p(t, z)divya) (g) dxdt.

Passing to the limit, we derive

I :
— / / / 2o(t, z, y)p(t, )divyy(y) dydedt = 0,
Y1Jo Jaly

which implies that 0y, 2§(¢, z,y) =0, i = 1,2, 3. Thus, z{ = 2}(t, z).
Next we prove that 9,25 € L*((0,T) x £2). Let us take a test function & (t,z,%) = ¢(t,z)er +
o(t,z)VyNi (£) such that

€
AN =0, Y
VNj-v=—v;, T'UIy,, (22)

N is 1-periodic in y;.

Integrating by parts yields
T ‘ "
/ Vzi(t,x)- @ (t,x, f) dxdt
0 ' €

i
- /OT / 2i(t,w) (o1 + VN (g)) - V(t, z) dadt,

and passing to the limit, as € — 0, we obtain

T
ﬁ/o /Q/Y Ptz y) - o(t,z) (e1 + VyNi(y)) dydzdt (23)

1 T i %
o [ ] e e 9N dpisa

Let us observe that [, 8, Ni(y)dy = 0 for k # 1. Indeed, for k # 1, y can be taken as a test function in
(22):
0= */ AN{ (y)y dy:/ 8y, N1 (y) dy.
Y; Y;

7

Furthermore, it holds that H
(S
i

a;

a

/Y (611 + 0y, Ni(y) dy = 611/

i

14
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Consequently, it is straightforward to check that
1 ) 1 )
afft = —/ a; (140, Ni(y)) dy = —/ a; (1+ ale{(y))Q dy > 0. (24)
1Tl Jy, 'l Jy,

We turn back to (23). Due to (24), we have the estimate

24 (t, )0y, p(t, ) dadt
7}

(@™ 11/ / / (t,z,y) - o(t,z) (e1 + V,Ni(y)) dydzdt

(2

< Cllell L2 o,myx0)-

Next, we show that p’(t,z,y) = €10, 2§(t, ) + V21 (¢, z,y) for some 2} periodic in y;. Take a smooth test
function ¢(t, 2)¥(y) such that divyy) =0in Y;, ¢ - v =0 on I',; U T, and periodic in y;.

T
/ vzl w(t,x)w( dxdt / / HAVe(t,z) - (5) dadt.
o Joi fol €

Passing to the limit, as € — 0 we obtain

i /OT / /Y 't ayily) dydad =~ /OT / /Y #V(t,2) - (y) dydad.

Since fY Yr(y)dy =0 for k # 1,

/ / / (t,z,y) - o(t, ) (y) dydadt = / / / azlzo (t, x)o(t, )y (y) dydzdt,

T
/ / / (0 (2. y) — €104, 26(t,2)) 9(t, x) - () dydadt = 0.
o Jely

Since 1 is solenoidal, there exists 2% (t,x,y) € L?((0,T) x £2; H*(Y;)), 1-periodic in y;, such that

and thus

pi(tvmvy) = elaxlz(i)(t,l') + vyzi(ta x»y)

Next we prove that the jump w. converges two-scale in L%*(0,T; L?(I.)) to z§ — 25. To this end, for
Y € HY?(I'), we consider test functions ¢!, [ = i, e, solving

~ 1
a0 = [ wdo, yen,
il Jr
Vil v =y, yel; VLU =0, ye€ L,

Yl is Y — periodic.

Integration by parts yields

//wegatx )dxdt
*5/ /sz (t,z) yzbZ()d:z:dtJrs/ /ZZVgotI) yw()d:cdt
15
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|Y|/ /Z 2ho(t, ) /1/1 ) dodxdt
—5/ Vz o(t, )V yw dmdt—e/ /E 2V (L, ) - Vi (g) dadt

zwtw/w ) dodzxdt.
L

Passing to the limit, as € — 0, we get

|Y1|/OT/Q/Fwo(t,Ivy)w(t,z)@b(y)dodmt
::;Aaéﬁpwwmm@m@mmmu

that proves the two-scale convergence of w. to the difference wy = z§ — 2§.
Note that the uniform bound of w. in L*((0,T) x I'.) — by Lemma 3.2(i) — implies wo € L*((0,T) x £2).
Indeed, for smooth ¢(t, ), we have that

|F|/ /wotx tx)dxdt—hm&\ﬂ/ / we(t, x)p(t, x) dodt
I’
T I T i
< Y] lim 5/ \we|* dodt 5/ |<p(t,;v)|4/3 dodt
€0 0o Jr. 0o Jr.
3
T . 1
< i 3
< Ctll_r% (5/ - lo(t, )] damdt>
il L
lo(t, x) 3 dxdt
(w

By density of smooth functions in L3 ((0,T)x02), lwol a((0,r)x 2y < C- Thanks to the uniform in € estimates
(i), (ii) in Lemma 3.2, (iv) and (v) hold. Indeed, for any ¢t € [0,7] and any ¢(¢t,z) € CY([0,T] x £2),
¥(y) € C(I'), such that ¢(0,z) =0

6/1“5 wE(t’x)@(tax)w(g)da
— 5/0 /FE (we (T, 2)07 (T, @) + Orwe (T, 2) (7, )Y (=) do

€
1 t

— |Y|/o /Q /F(wo(T, 2)0rp(7, ) + Orwo (T, 2)p(T, 7)) (y)do,dxdr
1

iﬁéﬁmewwmme%&DD

Lemma 3.6. Let the initial functions V satisfy hypothesis (H1). Then V2 2 VO in L3(I:), and

r
limsupe \VEO|2da:u/ |V0\2dx.
re Y1 /o

e—=0

Proof. The weak two-scale convergence follows from Proposition 2.6 in [24]. Approximating V° by smooth
functions V) in H'($2), we find

5/ |VEO|2dU:5/ \1/80—145°|2da+25/ (\go—%o)noda+a/ V02 do. (25)
I. I. I I

16
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Applying the trace inequality in the rescaled periodicity cell €Y', adding up over all the cells in {2, and using
assumption (H1) leads to

/ VO — VO do < Ce? / IV (V. V;;O)|2dx+c/ VO — VO da
2
< Ce? / |V(VE -V d:c—i—C/ VO — VO dx

+ C/ VO —VOPdz — 0, &6—0.
Q
Then, since VY is smooth, it converges strongly two-scale, and passing to the limit as ¢ — 0 in (25) we obtain

lim limsupe |V€0\2d0 / |V0| dz,
r. |Y\

=0 £50

as stated. O

We proceed with the Minty method for passing to the limit in the microscopic problem. Consider arbitrary
functions pf(t,z) € C*°([0,T] x 2) and p!(¢,z,y) € C>([0,T] x 2 x Y), Y-periodic in y, and such that
ph = pt =0 when z € Sy N Sr. Take the test function

M, = <[Mp€]) , where p = p(t,z), and

uitw) +eps (Lo, D), we
pe() = ) ) g )
uo(t, ) + el (t,x, g) , xe

The monotonicity property of the operator A (¢,-) entails
t
/ / (Ao(r, W2) — Au(r, M.)) - (Wo — M.) dodr > 0. (26)
I’
By the definition of A, (6),

(Ae(le] = ) () =iy € [ ¥l = 20) - Ve = 22) d,

where z. solves (15). It follows then from (26), (10), and the definition of the operator A.(t,-) that

t

t
5/ Orwe ([pe] — we) dodr + 5/ O-he(p — he) dodr
0 Jr.

0 JI.
1t
—|——// acVite - V(e — 2z) dedr + €( /\—— // wel([pe] — we) dodr
Cm Jo eUNL Ie
t
== [ ) =y dodr 4 <o) / | oo —no)dods (27)
m JO 5 5

[ loello o) dodr + e [ [ (] — ) o

t —\T t
+ / / < (a;iV@e - v)([e] — we) dodr — ECL/ / e (p — he)dodr > 0.
o Jr. Cm 0 JrIe

17
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Consider the first two terms in (27), specifically integrals e fg J . WeOrwe dodr and e fot / 1. herhe dodr.
Integrating by parts with respect to time, passing to the limit as € — 0, and using the lower semi-continuity
of L?-norm with respect to two-scale convergence (Proposition 2.5, [24]) and Lemma 3.6 renders

F t
lim sup / / weOrwe dodt — | | / / woOr W dde}
e—=0 Ire |Y| 0o J
= lim 2do |F| 2d
= sup | = 2 w wj dx
e—0 I (7

=t 2|Y|
0 || 0\2
4+ lim |—= \/ 200+ =L \/ dxz| > 0.

Similarly, for the integral of h.d;h., denoting the mean value of the two-scale limit Eo(t,x,y) in y by
ho(t,l’) = ﬁ f[* ho(t,.’l?,y) dy? we get

t
limsup[s/ / hedyhe dadT——/ / hods hodxdT
e—0 0 I's |Y|

. 5 |
=1 [f/ h2 do /h
Tt ) =t 2[Y]J,'°

£ 0 || 0y2
+Eh%[ 2/(G) a7+ o7 | (€) dx]zo.

T= t

For smooth pf (¢, z) and p (t,x,y), [ = i,e, we use Lemma 3.5 to pass to the limit in the third term:

1 t
— / / a:Vie - V(e — 2o ) dedr
Cm Jo UL

1 t . . , , , .
- —— / / / a; (Vg + Vyut) - (Vg + Vyui — 01zpe1 — Vy21)dadydr
enlY | Jo Jo Y;

1 t
i Y| /0 /_Q /y ac(Vug + Vyui) - (Vg + Vyui — Vg — Vyzi)dedydr.

Taking the limit in (27) as € — 0 (along a subsequence) we obtain

1imsup[€/ / wgaTwEdadT— //woa wodxdT]
e—0 0o Jr. |Y| 0

t r
—Himsup 5/ / he0+h. dodr — u/ / hoOrhg dach
e—0 I |Y|

| / 1]
<
S Orwo([po] — wo) dedr + — v/,

+ — / / / a;i(Vug + Vyui) - (Vg + Vypi — 01z5e1 — Vyzi)dadydr
emlY] Jo Jo Y;

8 ho(p — ho) dxdr

1 t
T IYI/ / /y ac (Vi + Vyp§) - (Vi + Vyp§ — Vg — V25 )dadydr

r
+( *a ||Y||/ / pol([po] — wo) dxdr (28)

- — wy) dxdTt ﬂ ' _ vdr
\Y\cm/ /p([’““’] 0) dd +(b+A)|Y|/O /Qp(p ho) dad
||£'||/ / N’O p hO dxdr + 3cl7|n[;|/|/ / 62)\7—[/1‘0]3([N0} 7w0) dudr

—>\T
// - 6 — 26) dodr — |Y|// e (p — ho) dodr,
b m
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where [uo] = pi — us. Consider the spaces
H;={z"€ L*(2): 02" € L>(2), 2 =0o0n Sy US.},
H,={2°c L*(2): Vz*c L*(2)3 2°=0o0n SyuUSL},

with the standard H'-norm in H,, and

; ;
ol = ([ )+ ([ 1on,ef )
2 2

By density of smooth functions, inequality (28) still holds for test functions p! € L2((0,T) x £2; H*(Y})),
and pb € L?(0,T; Hy) such that [uo] € L*((0,T) x £2).

Modifying the test function u by setting pé(z,y) = it (z,y) — Vb -y’ we transform the integrand in
the fourth line of (28) to the form

ai(Oz,pber + Vyiih) - (O, pber + Vit — 0y, z0e1 — Vy2h).

Then, for smooth test functions ¥!(t,z), ©(t,z) vanishing at x = 0, L, and ¥'(¢,z,y) periodic in y and
equal to zero when z =0, L, [ =i, e, we can set

ph(t,z) = 25 (t, ) + opl(t, ), 1=i,e,
pi(t,z,y) = 21 (t, @,y) + 6 (¢, x,y),
iy (tw,y) = 21(t @, y) + 0W' (t,2,y),
p(t,z) = ho(t, z) + dp(t, x),

where 0 is a small auxiliary parameter. Setting [1)] = ¥ — 1*, we have that

t
limsup[e/ / weOrwe dodt — —/ /woa W danT}
e—0 0 JrIe |Y| 2
t
—Himsup s/ / heOrhe deT——/ / hoO- hodxdT
e—0 Ie |Y|

5|F\// 5\F|//
< OrwolY] dedr + O-ho o dxdr
Y] woly YT Jo Jo "

+ 7/ / / @i (O, (26 + 00 )er + V, (25 + 6¥")) - (0p,¥'er + V, U')dadydr
Cm|Y| 0o JnJY;

5 t
"o |Y|/ / / ac(V (26 + 00°) + Vy (25 + 00°)) - (Vi< + V, ¥°)dadydr

1 5F
+ (A= — | ‘// wo + 0[Y)])[¢] dxdT (29)
\Y|
5|F| or|
— |Y\cm/ / (ho + 09)[¢] dzdT + (b + X) |Y| / / (ho + 0p)p dxdr

5||;||// (wo + S[])p dadr + mIYl // 2 (o 1 51011 dedr

r
// _’\TJewedadT—aé‘ ‘//e_)‘ﬂpdadt
Y] Q

Since the left-hand side of (29) is non-negative and ¢ is arbitrary, we obtain

. \F\/
limsup |e we | do — dx =0,
mawple [ ol i wol?
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lim sup |e he|? do — /h d
Hop[ | Ihl m |ol?

Note that the last convergence implies that the two-scale limit Eo does not depend on y. Indeed, by
Proposition 2.5 in [24], one has the estimate

limsupe [ |he|>do > // ol doydz > | /h da.
nsupe [ o2 i [ J, ol dovie 2 57 [ il
Thus, one can see that )
|F|/ / \ho\ daydx—/ (F/hoday> dz.
Moreover, it is clear that

1 ~ 2 1 ~ 2
Jr
|F| / / h() h() h() dedZL'
|F| /|h0| daydsc—/ |ho|” du,

1 ~ 2 ~
|[,|/ / ‘h07h0| dCTydIE:O = h():ho(t,l').
nJr

Now, dividing (29) by ¢ # 0 and passing to the limit as 6 — +0 and 6 — —0, we derive

vl ,
Orwo[v] dedt + — Orho ¢ dxdr
Y] |Y|

+ 7/ / / ai(Op, 2be1 + Vy2i) - (0, ¥'er + V, U')dydzdr

which yields

1 t
+ 7/ / / ae(Vz§ + Vy27) - (VY + V, 0¢) dydzdr
cml|Y| Ye

t
o DI;l// Y| dxdr — |Yl|;m/ / ho[v] dxdT
b+ A |F| /hogadxdr— //wogodxdr
|Y| Y]
7] // Twd dxdT—// JewedadT
30m|Y| O y Cm
||£||// Ao dzdr = 0.

Taking ¢° = ¢ = ¢ = 0, we obtain 2{(t,x,y) = N¢(y) - Vz§(t,z), 2i(t,z,y) = Ni(y)0s, 24(t,z), where
Ng, Ni solve the cell problems (A.4) and (A.5), respectively. Note that in the case when Y; is a cylinder —
constant cross-section —, N7 (y) is constant. Recalling the definition of the effective coefficients (aS)y; (4),

and taking ¥! = 0, we obtain

t t
//BTwo[w]dde—i—/ /5)Th0<pdxd7
0 Jo 0 Jao
t
i// MOy, 25 Dy U dxd7+—// a2 - Vil dadr
+ /\——//wo dxdr——//ho ) dedr (30)
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t ¢
+ (b—|—)\)/ hop dxdr — 0/ / wop dxdT
0o J 0 J
3Cm/ / ) dedr
_ |Y‘ 7)\7' €e,/e
= JYdodr +a Ao dodr.
cml| '] Jo

Performlng the change of unknowns ulo = e’\Tz(lJ, vo = e wg, go = e hg, and taking the test functions

e~ and e~ in place of ¢ and ¥ in (30), we obtain a weak formulation of (2):

t
/ / Orvo[W] dxdr
0 J0
1 ! eﬁ eff
+ — 6x1u0 Dy d;z:d7'+ — c'Vug - Vy© dedr
m Jo
I L A I
+ 7/ / (sv5 — vo — go) [¥] dwdr
Cm 0 7] 3

t
+/ /(5‘Tgo+bg()70vofa)cpdmd7'
0o Jo

Y| /t/
= JY® dodr.
emll Jo Js

Note that in view of the well-posedness of the limit problem proved in the next section, the convergence

takes place for the whole sequence. The proof of Theorem 2.1 is completed.

4. Well-posedness of the macroscopic problem

In order to prove the well-posedness of the homogenized problem given by its weak formulation (30), we
rewrite it in matrix form as an abstract parabolic equation. We introduce ¢ solving the auxiliary problem
in {2:

— div(aﬁHqu) Cﬂ:821£1qo 0, T € L2,
Vg v = F'Je re X, (31)
qo =0, T € SoUSyL.

Here, the effective coefficient a$" = [Yi|a;/|I'|. Multiplication (31) by a smooth test function 9 such that
¢ =0 on Sy U Sy, leads to

Y]

7 Jw do /Q a®tVqo - Vop© da + /Q a0, qo0y, V° d. (32)

Substituting (32) into (30), and introducing 2z} = 2, —qoe ™, I = i, e, we have the following weak formulation:

//Bwo ]dmd7+//8hocpdxd7'
eﬁa - eff e
// 1 Oy 0y + // Vi Vi dadr
()\—)//wo dxdT——//ho | dzdr (33)
—I—(b—l—)\)//hogodxdr—ﬁ//wogodxdT
0 Jo 0 Jo
21
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1 /t/ 2Ar, 3
+ — e“Mwg Y] dedT
e o o ol¥]
¢ ¢
:a/ / e_’\TcpdadT—i—/ / e_)‘TafH@ilwlqo [¢] dadr.
0o Jo 0o Je

We seek to rewrite the weak formulation (33) in matrix form as an abstract parabolic equation. To this end,
we first introduce the following functional spaces:

Hy = L*(2) x L*(),

H;y={z"€ L*(2): 0,,2' € L*(2), 22 =00n SyUSL},
H,={2°c L*(2): Vz*c L*(2)® 2°=0o0n SyUSL},
Xo={w=2"—2°: 2'c H;, 2°€ H,.}.

lalfy, = [ Je o+ [ o= e
2 2

For the one associated to H., we adopt the standard H'-norm. For each element wy € X, we associate a

The norm in H; is given by

unique pair (2, 2§) € H; x H, solving the following problem

— a0, 7 = div(ad"VZ), z €N,
Zo — 26 = wo, x € 12, (34)
alfivze v =0, x e X,
=%=0, x e SyU Sy

The pair (2, 25) can be determined by solving the minimization problem
) ;12 ~ - ; ~
lewollZy, = mf{/ﬂag%ﬂzm dx+/9agﬁwg-wg de | % e W, % ew, )
Note that Wy is a Hilbert space with a scalar product given by
(w1, w2)w, = / a$%9,, 2% Oy, 25 do + / alftV2¢ - V2§ di,
Q 2

where (2%, 2¢) and (24, 25) solve (34) for wy, wo given. Now (33) is written in the form
1 1 62)\25 &
o, (wo) n — Aegwo + — <3w8‘ —wp — ho) +Awo | _ e (a‘f aglml%>

ho m Cm a
(b + )\)ho - H’LUO

where the operator Aeg defined on smooth functions wqy by

1 o 1 N
(et ()20 o= - [ a0 Z 00,00+ = [ a2V Vo o,
Cm J 0 Cm JQ
and (2§, z§) solve (34). In operator form one writes

oWy +A0(t,Wo) = Fo(t), (t,.’t) S (O,T) x £, (35)
Wo(0,2) = Wi(z), =€ 0.

Therein, we have the following operators

Ao(t, Wo) = B (¢, Wo) + B (t, W),

22
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1 1 1

— A A= —)wo — —h
B(()l)(tv WO) =1 Cm o+ ( Cm )wO Cm 0 )

(b+ \ho — Bug

62)\t 3

B (8, Wo) = | 3¢, |,
0
eff n2
— -t [ @ 37/'1371 q0
Fo(t) =€ ( a .

Introducing the spaces

Hy = L*(2) x L*(),
Vi=Xox L*2), V/=X|xIL*%2),
Vo = LA(0Q) x L2(2), Vi =LY3(Q)x L*(N),

we can prove the existence of a unique solution Wy € L*°((0,T); Ho) N L?((0,T); V1) N L4((0,T); Va) to
problem (35). It follows, as in Section 2.3, from Theorem 1.4 in [27] and Remark 1.8 in Chapter 2.
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Appendix A. Formal asymptotic expansions

So as to provide an insight on how the effective coefficients and the corresponding cell problems in (2)
appear, we apply the formal asymptotic expansion method to the stationary problem A.v. = ¢f for some
smooth function f = f(z). Specifically, we write

—div (a.Vu.) =0, e U,
a.Vul - v =a;Vul - v = cf(x), x € I,
ul —uf =, x € I, (A1)
ae.Vue -v =0, zel"UX,
ue =0, IL’E(S()USL).
Take
! l l 2 1 _T
us(:c)wuo(x,y)Jrsul(z,y)Jre UQ(IIZ’,y)+'~~ y Y= e’

where x € 2! and y € Y}, | € {i,e}. Then we get
1
div(a;Vul) ~ E—Qdivy(alvyué)

1
+ - (divy(a;Vyup) + divy (@ Vyul) + dive (a,V,uf))
+ div, (alkué) + div, (alvyull) + divy(alkull) + divy(alvyué)
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+ & (divy (@ Vauh) + dive (@ Vyub) + divy (aVub))
+ 2div, () Vub).

2 1

Taking the terms of order e7= in the volume and the ones of order e~ on the boundary, we obtain the

following problem for u}:
—divy (@ Vyup) =0, yey,

aVyub v =0 ye TUrm™,

ué is 1-periodic in yq,

and ug is Y-periodic.
The solution (defined up to an additive constant) does not depend on the fast variable y:

ub(a,y) = ub(a), I=ie. (A.2)

For the next step, we take the terms of order e~! in the volume and those of order 1 on the boundary:

~div,(a;V,u}) =0, y ey,
aVyul v =—a;Vub v, yel'Uly, (A.3)
u! is 1-periodic in ¢,
and u$ is Y-periodic.

The solvability condition reads — |’ r a;Vgub - v = 0, which is fulfilled thanks to (A.2). By seeking a solution
of (A.3) in the form v} (z,y) = N!(y) - V,ul(z), we obtain

a'Vyuy(2,y) - v = a0y, Ni (y)v;0n, up(2),

where we assume summation over the repeated indexes. The boundary condition in (A.3) yields a boundary
condition for N; on I' U I[,:

<8yjN}(y) + 5@,]‘) v; = 0.
Then, the functions N¢, k = 1,2, 3, solve the cell problems:

—AN;;:O, erea
VN v =—yy, yel'Ul,, (A.4)
y — Ng(y) is Y — periodic;

For the functions N}, due to the periodicity in only one variable yi, one can see that N}.(y) = —yy for k # 1,
that yields 9, Ni = 0. The first component Nj solves the problem

VN -v=—v, yel'Ul,, (A.5)
y — Ni(y) is 1 — periodic;
Finally, taking the terms of order 1 in the volume and the ones of order €' on the boundary, we obtain the
following problem for u):
—div, (a'V,ub) = div,(a'V,ubh) + div, (a'V,uh) + div, (' V,ub), y €Y,
a'Vyub v = —a' Vol v 4 f(a), yel,
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alvyué~V:O, y € Iy,
ub is 1-periodic in g

and u§ is Y-periodic.
Here /! is the exterior unit normal, and v® = —* on I'. The solvability condition reads

/ (divy (a'Voub) + dive (@ Vyuh) + divy(a' Veul)) dY — / a'Vub - vldo = 0.
Y; r

Integrating by parts in the third term of the volume integral, substituting the expression u!(z,y) =
N!(y)0y,ul(x), and taking into account that Nj(y) = —yx and [, 9;.1 Nidy = 0, we obtain

- 3kj“8(ff)/ a® (0;Ni (y) + 0x;) dy = |I'| f (),

Yilaidnug(e) = || f(z).
Introducing the effective coefficient

1
(aiﬁ)k’l = m v ae(alNlj(y) + 6k’l)dy7 k7l = 132737

and adding the boundary conditions on Sy U Sy and X, we arrive at

Y. .

Haiauug = —a*TAuf = f(z), x € 12,

ug® =0, z € SyUSy,
atVue v =0, el

Appendix B. Monotonicity method

The passage to the limit in the microscopic problem requires us to adapt the method of monotone
operators due to G. Minty [30]. The application of the method to problem (1) is given in Section 3.2. The
proof is quite technical, and in order to extract the main idea of the method we provide its brief description
for a model case when the monotone operator is independent of €. In [31], it is shown how to combine the
method of monotone operators and the two-scale convergence for a stationary problem.

Let A be a nonlinear continuous monotone operator in a Hilbert space H. The scalar product in H will
be denoted by (u,v). We consider a parabolic problem

Orue + Aue) = fe, (B.1)
u€|t:0 =V

Assume that we know that u. converges weakly to ug, d;u. converges weakly to 0;ug, and f., V.0 converge
strongly in H to f and VO, respectively, as ¢ — 0. We aim to show that wug satisfies the limit equation
Oruo + A(ug) = f. Note that, because of the weak convergence, we cannot pass to the limit in the nonlinear
term A(u.) directly.

By monotonicity, for any wy,ws € D(A), one has

(A(wl) — A(wg),wl — U)g) Z 0.
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Taking wy = u., wy = ug + ¢, with 6 € R and ¢ € C1([0,T]; D(A)), and using (B.1), we get

0< /O (A(u2) — At + 60), ue — (o + 5))dr.
= /0 (fe,ue — (ug + 6¢))dr — /0 (Orue, ue)dT —|—/0 (Orue, (up + dp))dr. (B.2)
- / (Auo + 8), uz — (g + 5p))dr.

Integrating by parts, we get

! 1 [td 2 1 2 Lo
| (Orueyue)dr =5 | rlluellzrdr = 5 lue(t )l = 51Vl

Then inequality (B.2) transforms into
1 1 1 1
et 3 — 2 ot ) — SIVOI + 51V
t t
< / (feyue — (ug + 0p))dr — / (Orug, uo)dr (B.3)
ot : 0
+ / (Orue, (up + dp))dr — / (A(ug + d¢), ue — (ug + 0p))dr.
0 0
Passage to the limit, as € — 0, in (B.3) yields
1.
0 < 5 limsup (|fuc(t, WM = lluolt, )IF)
e—0
t
< 5/ (=f + Orupg + A(up + ), p)dr.
0
Since the left-hand side is positive and § is arbitrary, that delivers the strong convergence of u.
limsup (Jlue (¢, )l|7 — lluo(t, )| 7) = 0.
e—0

Furthermore,
¢
/ (Orug + A(ug + d) — f,d¢)dr > 0. (B.4)
0

Dividing (B.4) first by ¢ > 0 and passing to the limit, as 6 — 0, we obtain

/ (Orug + A(ug) — f,p)dr > 0.
0

Then, dividing (B.4) by ¢ < 0 and passing to the limit, as 6 — 0, we have the opposite inequality

t
/0 (Oruo + A(uo) — f,@)dr < 0.

Thus,
t
/ (Orup + A(ug) — f,p)dT = 0.
0

The last equality holds for an arbitrary ¢ € C1(0,7T; D(A)), so dyug + A(ug) = f.
This method is used for problem (10), where both the domain and the operator A depend on e, and the
test functions have a more complicated two-scale structure.
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