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Abstract

The spectral theory of the normalized Laplacian for chemical hypergraphs is further investigated.
The signless normalized Laplacian is introduced and it is shown that its spectrum for classical
hypergraphs coincides with the spectrum of the normalized Laplacian for bipartite chemical hy-
pergraphs. Furthermore, the spectra of special families of hypergraphs are established.
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1. Introduction

In this work we bring forward the study of the normalized Laplacian that has been estab-
lished for chemical hypergraphs: hypergraphs with the additional structure that each vertex in a
hyperedge is either an input, an output or both (in which case we say that it is a catalyst for that
hyperedge). Chemical hypergraphs have been introduced in [19] with the idea of modeling chem-
ical reaction networks and related ones, such as metabolic networks. In this model, each vertex
represents a chemical element and each hyperedge represents a chemical reaction. Furthermore, in
[24], chemical hypergraphs have been used for modeling dynamical systems with high order inter-
actions. In this model, vertices represent oscillators while hyperedges represent the interactions on
which the dynamics depends.
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The spectrum of the normalized Laplacian L reflects many structural properties of the network
and several theoretical results on the eigenvalues have been established in [19, 23, 26]. Further-
more, as shown in [23], by defining the vertex degree in a way that it does not take catalysts into
account, studying the spectrum of L for chemical hypergraphs is equivalent to studying the spec-
trum of the oriented hypergraphs introduced in [28] by Reff and Rusnak, in which catalysts are
not included. Therefore, without loss of generality we can work on oriented hypergraphs. Here, in
particular, we focus on the bipartite case and we show that the spectrum of the normalized Lapla-
cian for bipartite chemical hypergraphs coincides with the spectrum of the signless normalized
Laplacian that we introduce for classical hypergraphs. Furthermore, we establish the spectra of
the signless normalized Laplacian for special families of such classical hypergraphs.

Classical hypergraphs are widely used in various disciplines. For instance, they offer a valid
model for transport networks [2], neural networks (in whose context they are often called neu-
ral codes) [11, 15, 10, 9, 20, 12, 13, 25], social networks [34], epidemiology networks [6] and
communication networks [33], just to mention some examples. It is worth noting that a simplicial
complex S is a particular case of hypergraph with the additional constraint that, if a hyperedge
belongs to S, then also all its subsets belong to S. Simplicial complexes are also widely present in
applications. On the one hand, their more precise structure allows for a deeper theoretical study,
compared to general hypergraphs. On the other hand, the constraints of simplicial complexes can
be translated as constraints on the model, and this is not always convenient. Consider, for instance,
a collaboration network that represents coauthoring of research papers: in this case, the fact that
authors A, B and C have written a paper all together does not imply that A, B and C have all
written single author papers, nor that A and B have written a paper together without C. In this
case, a hypergraph would give a better model than a simplicial complex.

Structure of the paper. In Section 2 we introduce the basic definitions which are needed
throughout the paper, while in Section 3 we introduce and discuss twin vertices. In Section 4 we
prove new properties of bipartite oriented hypergraphs and we show that, from the spectral point
of view, these are equivalent to classical hypergraphs with no input/output structure. Finally, in
Section 5 we investigate the spectra of new hypergraph structures that we introduce with the idea
of generalizing well known graph structures.

2. Basic definitions

Definition 2.1 ([28, 19]). An oriented hypergraph is a pair Γ = (V ,H) such that V is a finite set
of vertices and H is a set such that every element h in H is a pair of disjoint elements (hin, hout)
(input and output) in P(V), where we write P(V) for the power set of V . The elements of H are
called the oriented hyperedges. Changing the orientation of a hyperedge h means exchanging its
input and output, leading to the pair (hout, hin).

Definition 2.2. Given h = (hin, hout) ∈ H, we say that hin1 and hout are the orientation sets of h.
Two vertices i and j are co-oriented in h if they belong to the same orientation sets of h; we say
that they are anti-oriented in h if they belong to different orientation sets of h.

486



www.ejgta.org

Signless normalized Laplacian for hypergraphs | E. Andreotti and R. Mulas

From now on, we fix an oriented hypergraph Γ = (V ,H) on N vertices v1, . . . , vN and M
hyperedges h1, . . . , hM . For simplicity, we assume that Γ has no isolated vertices.

Remark 2.1. Simple graphs can be seen as oriented hypergraphs such that #hin = #hout = 1 for
each h ∈ H, that is, each edge has exactly one input and one output.

Definition 2.3. The underlying hypergraph of Γ is Γ′ := (V ,H′) where

H′ := {(hin ∪ hout, ∅) : h = (hin, hout) ∈ H}.

Definition 2.4 ([23]). The degree of a vertex v is

deg(v) := # hyperedges containing v.

Similarly, the cardinality of a hyperedge h is

#h := #{hin ∪ hout}.

Definition 2.5 ([19, 26]). The normalized Laplace operator associated to Γ is the N ×N matrix

L := Id−D−1A,

where Id is the N × N identity matrix, D is the diagonal degree matrix and A is the adjacency
matrix defined by Aii := 0 for each i = 1, . . . , n and

Aij :=#{hyperedges in which vi and vj are anti-oriented}
−#{hyperedges in which vi and vj are co-oriented}

for i ̸= j.

We define the spectrum of Γ as the spectrum of L. As shown in [19, 26], this spectrum is given
by N real, nonnegative eigenvalues whose sum is N . We denote them by

λ1 ≤ . . . ≤ λN .

Definition 2.6. We say that two vertices vi and vj are adjacent, denoted vi ∼ vj , if they are
contained at least in one common hyperedge.

Remark 2.2. Consider a graph Γ and let Γ′ be its underlying hypergraph. Then, the adjacency
matrix A of Γ and the adjacency matrix A′ of Γ′ are such that A′ = −A, while the degree matrices
of Γ and Γ′ coincide. Therefore, the normalized Laplacians of Γ and Γ′ are

L = Id−D−1A and L′ = Id+D−1A = 2 · Id−L,

respectively. Hence, λ is an eigenvalue for L if and only if 2− λ is an eigenvalue for L′.

Definition 2.7. Let Γ be an oriented hypergraph and let Γ′ be its underlying hypergraph. The
signless normalized Laplacian of Γ is the normalized Laplacian of Γ′.
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3. Twin vertices

Definition 3.1 ([26]). Two vertices vi and vj are duplicate if Aik = Ajk for all k. In particular, in
this case, Aij = Aji = Aii = 0.

In [26] it is shown that n̂ duplicate vertices produce the eigenvalue 1 with multiplicity at least
n̂− 1. Similarly, in this section we discuss twin vertices.

Definition 3.2. We say that two vertices vi and vj are twins if they belong exactly to the same
hyperedges, with the same orientations. In particular, Aij = − deg(vi) = − deg(vj) and Aik =
Ajk for all k ̸= i, j.

Remark 3.1. While duplicate vertices are known also for graphs, twin vertices cannot exist for
graphs, since in this case one assumes that each edge has one input and one output.

We now generalize the notions of duplicate vertices and twin vertices by defining duplicate
families of twin vertices.

Definition 3.3. Let Γ = (V ,H) be an oriented hypergraph. We say that a family of vertices
V1 ⊔ · · · ⊔ Vl ⊂ V is a l-duplicate family of t-twin vertices if

• For each α ∈ {1, . . . , l}, #Vα = t and the t vertices in Vα are twins to each other;

• For each α, β ∈ {1, . . . , l} with α ̸= β, for each vi ∈ Vα and for each vj ∈ Vβ , we have that
Aij = 0 and Aik = Ajk for all vertices vk that are not in the l-family, i.e. vk ∈ V\V1⊔· · ·⊔Vl.

Proposition 3.1. If Γ contains a l-duplicate family of t twins, then:

• t is an eigenvalue with multiplicity at least l − 1;

• 0 is an eigenvalue with multiplicity at least l(t− 1).

Proof. In order to show that t is an eigenvalue with multiplicity at least l−1, consider the following
l − 1 functions. For α = 2, . . . , l, let fα : V → R such that fα := 1 on V1, fα := −1 on Vα and
fα := 0 otherwise. Then,

• For each vi ∈ V1,

Lfα(vi) = 1− 1

deg vi

∑
vi ̸=vj∈V1

− deg vi = 1 + t− 1 = t · fα(vi);

• For each vj ∈ Vα,

Lfα(vj) = −1− 1

deg vj

∑
vj ̸=vi∈Vα

deg vj = −1− (t− 1) = t · fα(vj);
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• For each vk ∈ V \ V1 ⊔ Vα,

Lfα(vk) = − 1

deg vk

∑
vi∈V1

Aik −
∑
vj∈Vα

Ajk

 = 0 = t · fα(vk).

Therefore, fα is an eigenfunction for t. Furthermore, the functions f2, . . . , fl are linearly
independent. Therefore, t is an eigenvalue with multiplicity at least l − 1.

Similarly, in order to prove that 0 is eigenvalue with multiplicity at least l(t − 1), let Vα =
{vα1 , . . . , vαt } and consider the l(t − 1) functions gαj : V → R defined as follows, for α = 1, . . . , l
and j = 2, . . . , t. Let gαj (v

α
1 ) := 1, gαj (v

α
j ) := −1 and gαj := 0 otherwise. Then, since g : V → R

is an eigenfunction for 0 if and only if∑
v∈hin

g(v) =
∑

w∈hout

g(w) ∀h = (hin, hout) ∈ H

(as shown in [19], Equation (5)), it is clear that each gαj is an eigenfunction for 0. Since, further-
more, these are l(t− 1) linearly independent functions, 0 has multiplicity at least l(t− 1).

Proposition 3.2. If Γ has n̂ vertices that are twins to each other, 0 is an eigenvalue with multiplicity
at least n̂ − 1. Furthermore, if vi and vj are twin vertices and f is an eigenfunction for L with
eigenvalue λ ̸= 0, then f(vi) = f(vj).

Proof. The first claim follows from Proposition 3.1, by taking t = 1.

Now, assume that vi and vj are twin vertices and let f be an eigenfunction for L with eigenvalue
λ ̸= 0. Then,

λf(vi) = Lf(vi) = f(vi) + f(vj)−
1

deg vi

(∑
k ̸=i,j

Aikf(vk)

)
= Lf(vj) = λf(vj).

Since λ ̸= 0, this implies that f(vi) = f(vj).

4. Bipartite hypergraphs

Definition 4.1 ([19]). We say that an oriented hypergraph Γ is bipartite if one can decompose the
vertex set as a disjoint union V = V1 ⊔ V2 such that, for every hyperedge h of Γ, either h has all
its inputs in V1 and all its outputs in V2, or vice versa (Figure 1).

We now give the definition of vertex-bipartite hypergraph that, as we shall see in Lemma 4.1
below, coincides with the definition of bipartite hypergraph.

Definition 4.2. We say that an oriented hypergraph Γ is vertex-bipartite if one can decompose the
hyperedge set as a disjoint union H = H1 ⊔ H2 such that, for every vertex v of Γ, either v is an
input only for hyperedges in H1 and it is an output only for hyperedges in H2, or vice versa.
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v1
+

v2
+

−
v3−

v4
−

v5
−
+

v6
+

h1

h2

Figure 1. A bipartite hypergraph with V1 = {v1, v2, v3} and V2 = {v4, v5, v6}.

Lemma 4.1. Up to changing the orientation of some hyperedges, a hypergraph is bipartite if and
only if it is vertex-bipartite.

Proof. Assume that Γ is bipartite. Up to changing the orientation of some hyperedges, we can
assume that the vertex set has a decomposition V = V1 ⊔ V2 such that each hyperedge h has
all its inputs in V1 and all its outputs in V2. Therefore, every vertex in V1 is an input only for
hyperedges in H, and every vertex in V2 is only an output for hyperedges in H. It follows that the
decomposition of the hyperedge set as H = H ⊔ ∅ gives a vertex-bipartition.
Now, assume that Γ is vertex-bipartite, with H = H1 ⊔ H2. Assume, by contradiction, that Γ is
not bipartite. Then, up to changing the orientation of some hyperedges, there exist two vertices
v, w ∈ V and two hyperedges h1, h2 ∈ H such that:

1. h1 has both v and w as inputs;
2. h2 has v as input and w as output.

The fact that v is an input in both h1 and h2 implies that h1 and h2 are in the same Hi. On the other
hand, the fact that w is an input for h1 and an output for h2 implies that h1 and h2 do not belong to
the same Hi. This brings to a contradiction. Therefore, Γ is bipartite.

Proposition 4.1. If Γ is bipartite, then it is isospectral to its underlying hypergraph, therefore, in
particular, also to every other bipartite hypergraph that has the same underlying hypergraph as Γ.

Proof. Since Γ is bipartite, up to switching (without loss of generality) the orientations of some
hyperedges we can assume that all the inputs are in V1 and all the outputs are in V2, with V =
V1 ⊔V2. Furthermore, by Lemma 49 in [19], we can move a vertex from V1 to V2 or vice versa, by
letting it be always an output or always an input, without affecting the spectrum. In particular, if
we move all vertices to V1, we obtain the underlying hypergraph of Γ.

Remark 4.1. As a consequence of Proposition 4.1, without loss of generality we can always as-
sume that a bipartite hypergraph Γ has only inputs, when studying the spectrum of the normalized
Laplacian. In this case,

• Aij = −#{h ∈ H : vi, vj ∈ H} for each i ̸= j;

•
∑

j Aij = −
∑

h∋vi(#h− 1), for each vi ∈ V .

From here on we work on a hypergraph Γ = (V ,H) that has only inputs. Therefore, we focus
on the signless normalized Laplacian of classical hypergraphs.
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Figure 2. A 5-hyperflower with 3 twins.

5. Families of hypergraphs

5.1. Hyperflowers
We now introduce and study hyperflowers: hypergraphs in which there is a set of nodes, the

core, that is well connected to the other vertices, and a set of peripheral nodes such that each of
them is contained in exactly one hyperedge. Hyperflowers are therefore a generalization of star
graphs [4].

Definition 5.1. A (l, r)-hyperflower with t twins (Figure 2) is an hypergraph Γ = (V ,H) whose
vertex set can be written as V = U ⊔W , where:

• U is a set of t · l nodes v11, . . . , v1l, . . . , vt1, . . . , vtl which are called peripheral;

• There exist r disjoint sets of vertices h1, . . . , hr ∈ P(W) \ {∅} such that

H = {h|h = hi ∪
t⋃

z=1

vzj for i = 1, . . . , r and j = 1, . . . , l}.

If t = 1, we simply say that Γ is a (l, r)-hyperflower.
If r = 1, we simply say that Γ is a l-hyperflower with t twins.

Remark 5.1. The (l, r)-hyperflowers in Definition 5.1 are a particular case of the hyperstars in
[2], that also include weights and non-disjoint sets h1, . . . , hr. Here we choose to study the par-
ticular structure of (l, r)-hyperflowers (and their generalizations with twins) because the strong
symmetries of these structures allows for a deeper study of the spectrum.

Proposition 5.1. The spectrum of the (l, 2)-hyperflower on N nodes is given by:

• 0, with multiplicity N − l − 1;
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• 1, with multiplicity ≥ l − 1;

• λN > 1;

• λN−1 = N − λN − l + 1 ≥ 1.

In the particular case in which #h is constant for each h ∈ H, λN = N−l
2

+ 1 and λN−1 =
N−l
2

.

Proof. By [26, Corollary 3.5], 1 is an eigenvalue with multiplicity at least l − 1. Now, the N − l
vertices vl+1, . . . , vN form two classes of twin vertices that generate the eigenvalue 0 with multi-
plicity at least N − l − 2. In particular, there exist N − l − 2 linearly independent corresponding
eigenfunctions fi : V → R such that fi(v) = 1 for some v /∈ {v1, . . . , vl}, fi(w) = −1 for a given
w twin of v, and fi = 0 otherwise. If we let g(vj) := 1 for each j = 1, . . . , l, g(v′1) := −1 for
exactly one v′1 ∈ h1 and g(v′2) := −1 for exactly one v′2 ∈ h2, it’s easy to see that g is also an
eigenfunction of 0. Furthermore, the fi’s and g are all linearly independent, which implies that 0
has multiplicity at least N − l − 1.

Now, by [23, Theorem 3.1], λN ≥
∑

h∈H #h

|H| > 1. We have therefore listed already N − 1

eigenvalues and there is only one eigenvalue λ missing. Since
∑N

i=1 λi = N , we have that λ =
N − λN − l + 1. In particular, since by [23, Theorem 3.1] λN ≤ maxh∈H #h with equality if and
only if #h is constant, and maxh∈H #h ≤ N − l, we have that

λ = N − λN − l + 1 ≥ 1,

with equality if and only if #h is constant and equal to N−l, that is, if and only if #h1 = #h2 = 1.
Hence, λ = λN−1 and we have that λN−1 = 1 if and only if #h1 = #h2 = 1.

In general, if #h is constant for each h ∈ H, then by [23, Theorem 3.1] λN = #h = N−l
2

+ 1
and therefore λN−1 =

N−l
2

.

Proposition 5.2. Let Γ be an (l, r)–hyperflower with peripheral vertices v1, . . . , vl. Let Γ̂ :=
(V̂ , Ĥ) be the (1, r)–hyperflower defined by

V̂ := V \ {v2, . . . , vl} and Ĥ := {h ∈ H : v2, . . . , vl /∈ h}.

Then, the spectrum of Γ is given by:

• The N − l + 1 eigenvalues of Γ̂, with multiplicity;

• 1, with multiplicity at least l − 1.

Proof. By [26, Corollary 3.5], adding v2, . . . , vl to Γ̂ produces the eigenvalue 1 with multiplicity
l − 1. Therefore, it is left to show that, if λ is an eigenvalue of Γ̂, then λ is also an eigenvalue of
Γ. Let L and A be the Laplacian and the adjacency matrix on Γ, respectively, and let L̂ and Â be
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the Laplacian and the adjacency matrix on Γ̂, respectively. Let also f̂ be an eigenfunction for Γ̂
corresponding to the eigenvalue λ. Then,

L̂f̂(vk) = f̂(vk)−
1

degΓ̂ vk

∑
vi∈V̂\{vk}

Âikf̂(vi) = λ · f̂(vk), for all vk ∈ V̂ .

Now, let f : V → R be such that f := f̂ on V̂ and f(v2) := · · · := f(vl) := f̂(v1). Then,

Lf(v1) = f(v1)−
1

deg v1

∑
vi∈V̂\{v1}

Ai1f(vi) = f̂(v1)−
1

degΓ̂ v1

∑
vi∈V̂\{v1}

Âi1f̂(vi)

= L̂f̂(vk) = λ · f̂(v1) = λ · f(v1).

Similarly, for j ∈ 2, . . . , l,

Lf(vj) = f(vj)−
1

deg vj

∑
vi∈V̂\{v1}

Aijf(vi) = f̂(v1)−
1

degΓ̂ v1

∑
vi∈V̂\{v1}

Âi1f̂(vi) = λ·f̂(v1) = λ·f(vj).

Furthermore, for each vk ∈ V \ {v1, . . . , vl}, we have that

• degΓ̂(vk) = 1 while deg(vk) = l;

• For each vk′ ∈ V \ {v1, . . . , vl, vk} such that Âkk′ ̸= 0, Âkk′ = −1 while Akk′ = −l;

• Âk1 = Ak1 = −1, and Akj = −1 for each j ∈ 2, . . . , l.

Therefore, for for each vk ∈ V \ {v1, . . . , vl},

Lf(vk) = f(vk)−
1

deg vk

(∑
k′

Akk′f(vk′) +
l∑

j=1

Akjf(vj)

)

= f̂(vk)−
1

l

(∑
k′

(−l)f̂(vk′) + (−1)
l∑

j=1

f̂(v1)

)
= f̂(vk) +

∑
k′

f̂(vk′) + f̂(v1)

= L̂f̂(vk) = λ · f̂(vk) = λ · f(vk).

This proves that λ is an eigenvalue for L, and f is a corresponding eigenfunction.

Remark 5.2. Proposition 5.2 tells us that, in order to know the spectrum of a (l, r)–hyperflower,
we can study the spectrum of the (1, r)–hyperflower obtained by deleting l− 1 peripheral vertices
and the hyperedges containing them, and then add l − 1 1’s to the spectrum.

Proposition 5.3. The spectrum of the l-hyperflower with t twins is given by:
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• 0, with multiplicity N − l;

• t, with multiplicity l − 1;

• λN = N − tl + t.

Proof. Since all hyperedges have cardinality N − tl+ t, by [23, Theorem 3.1] we have that λN =
N − tl + t. Furthermore, by Proposition 3.1, t is an eigenvalue with multiplicity at least l − 1.
Since, clearly, N − tl + t > t, we have listed l eigenvalues whose sum is N . It follows that 0 has
multiplicity N − l.

5.2. Complete hypergraphs
Definition 5.2 ([26]). We say that Γ = (V ,H) is the c-complete hypergraph, for some c ≥ 2, if V
has cardinality N and H is given by all possible

(
N
c

)
hyperedges of cardinality c.

Proposition 5.4. The spectrum of the c-complete hypergraph is given by:

• N−c
N−1

, with multiplicity N − 1;

• c, with multiplicity 1.

Proof. By [23, Theorem 3.1], λN = c. Now, observe that each vertex v has degree d :=
(
N−1
c−1

)
,

while a := Aij = −
(
N−2
c−2

)
is constant for all i ̸= j. Therefore, a

d
= − c−1

N−1
and

Lf(v) = f(v)− a

d

(∑
w ̸=v

f(w)

)
= f(v) +

c− 1

N − 1

(∑
w ̸=v

f(w)

)
, ∀v ∈ V .

Now, for each i = 2, . . . , N , let fi(v1) := 1, fi(vi) := −1 and fi := 0 otherwise. Then,

• Lfi(v1) = 1− c−1
N−1

= N−c
N−1

· fi(v1),

• Lfi(vi) = −1 + c−1
N−1

= N−c
N−1

· fi(vi), and

• Lfi(vj) = 0 = N−c
N−1

· fi(vj) for all j ̸= 1, i.

Therefore, the fi’s are N − 1 linearly independent eigenfunctions for N−c
N−1

. This proves the claim.

Example 5.1. Proposition 5.4 tells us that the signless spectrum of the complete graph on N nodes
is given by N−2

N−1
, with multiplicity N − 1, and 2 with multiplicity 1. By Remark 2.2, this is

equivalent to saying that the spectrum of the complete graph is given by N
N−1

, with multiplicity N−
1, and 0 with multiplicity 1. This is a well known result (see [8]) and Proposition 5.4 generalizes
it.
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Figure 3. A 3-lattice.

5.3. Lattice Hypergraphs
Lattice graphs, also called grid graphs, are well known both in graph theory and in applications

[5, 3, 1, 7, 17, 18, 27, 29, 14, 31]. For instance, they model topologies used in transportation
networks, such as the Manhattan street network, and crystal structures used in crystallography.
These structures and their spectra are also widely used in statistical mechanics, in the study of
ASEP, TASEP and SSEP models [21, 32, 30], which have applications in the Ising model, (lattice)
gas and which also describe the movement of ribosomes along the mRNA [16]. In this section we
generalize the notion of lattice graph to the case of hypergraphs.

Definition 5.3. Given l ∈ N≥2, we define the l-lattice as the hypergraph Γ = (V ,H) on l2 nodes
and 2l hyperedges that can be drawn so that:

• The vertices form a l × l grid, and

• The hyperedges are exactly the rows and the columns of the grid (Figure 3).

Proposition 5.5. The spectrum of the l-lattice is given by:

• 0, with multiplicity l2 − 2l + 1;

• l
2
, with multiplicity 2(l − 1);

• l, with multiplicity 1.

Proof. By [23, Theorem 3.1], λl2 = l. Furthermore, by [19, Corollay 33], since the maximum
number of linearly independent hyperedges is 2l − 1, this implies that 0 is an eigenvalue with
multiplicity l2 − 2l + 1.

Now, observe that deg v = 2 for each v and

Aij =

{
−1, if vi ∼ vj;

0, otherwise,
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for all i ̸= j. Therefore,

Lf(v) = f(v) +
1

2

(∑
w∼v

f(w)

)
, for all v ∈ V . (1)

Fix a row of the l-lattice given by the vertices w1, . . . , wl. For i = 1, . . . , l − 1, let fi : V → R
be 1 on the neighbors of wi with respect to the row, −1 on the neighbors of wi with respect to its
column, and 0 otherwise. Then, by (1), it is easy to check that fi is an eigenfunction for l

2
. Since

the fi’s are linearly independent, this proves the claim.

5.4. Hypercycles
Definition 5.4. Fix N and l ∈ {2, . . . , N

2
}. We say that Γ = (V ,H) is the l-hypercycle on N nodes

(Figure 4) if V = {v1, . . . , vN}, H = {h1, . . . , hN} and

hi = {vi, . . . , vi+l−1},

where we let vN+i := vi for each i = 1, . . . , N .

Theorem 5.2. The eigenvalues of the l-hypercycle are

λi = 1 +

∑N
r=1 m(r) · cos

(
2πir
N

)
l

, for i = 1, . . . , N,

where m : {0, . . . , N} → Z is such that:

• m(r) := l − r for all r ∈ {1, . . . , l − 1}

• m(N − k) := m(k) = l − k for all k ∈ {1, . . . , l − 1}

• m := 0 otherwise.

Proof. By construction, all vertices have degree l. Therefore, by [26, Remark 2.17], proving the
claim is equivalent to proving that the eigenvalues of the adjacency matrix are

µi = −
N∑
r=1

m(r) · cos
(
2πir

N

)
, for i = 1, . . . , N.

Observe that the adjacency matrix can be written as
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A = −



0 l − 1 l − 2 · · · 1 0 · · · 0 1 · · · l − 2 l − 1
l − 1 0 l − 1 l − 2 · · · 1 0 · · · 0 1 · · · l − 2

l − 2 l − 1 0
. . . . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 0

0 1
. . . ...

... 0
. . . . . . 0

0
. . . 1

1 0
. . . . . . ...

... . . . . . . . . . . . . l − 1 l − 2

l − 2
. . . . . . . . . . . . l − 1 0 l − 1

l − 1 l − 2 · · · · · · 0 · · · 0 1 · · · · · · l − 1 0


Therefore,

A = −


m(0) m(N − 1) m(N − 2) · · · m(1)
m(1) m(0) m(N − 1) · · · m(2)
m(2) m(1) m(0) · · · m(3)

...
...

... . . . ...
m(N − 1) m(N − 2) m(N − 3) · · · m(0)


where

• m(r) := l − r for all r ∈ {1, . . . , l − 1}

• m(N − k) := m(k) = l − k for all k ∈ {1, . . . , l − 1}

• m := 0 otherwise.

Hence, A is a (symmetric) circulant matrix. By [22], the eigenvalues of A are

µi = −
N∑
r=1

m(r) · cos
(
2πir

N

)
, for i = 1, . . . , N.

This proves the claim.
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Figure 4. The 3-hypercycle on 6 nodes.
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[6] Á. Bodó, G.Y. Katona, and P.L. Simon, SIS epidemic propagation on hypergraphs, Bull.
Math. Biol. 78(4) (2016), 713–735.

[7] T.Y. Chang, Domination Numbers of Grid Graphs, PhD thesis, Tampa, FL: University of
South Florida, 1992.

[8] F. Chung, Spectral graph theory, American Mathematical Society, (1997).

[9] C. Curto, What can topology tell us about the neural code?, Bull. Amer. Math. Soc. 54 (2017),
63–78.

[10] C. Curto, E. Gross, J. Jeffries, K. Morrison, Z. Rosen M. Omar, A. Shiu, and N. Youngs,
What makes a neural code convex?, SIAM J. Appl. Algebra Geom. 1 (2016), 222–238.

[11] C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs, The neural ring: an algebraic tool for
analyzing the intrinsic structure of neural codes, Bull. Math. Biol. 75(9) (2013), 1571–1611.

498



www.ejgta.org

Signless normalized Laplacian for hypergraphs | E. Andreotti and R. Mulas

[12] M.K. Franke and M. Hoch, Investigating an algebraic signature for max intersection-complete
codes, Texas A&M Mathematics REU, 2017.

[13] M.K. Franke and S. Muthiah, Every neural code can be realized by convex sets, Adv. Appl.
Math. 99 (2018), 83–93.

[14] L.R. Fuentes, I.J. Dejter, and C.A. Araujo, Rainbow perfect domination in lattice graphs,
Electron, J. Graph Theory Appl. 6(1) (2018), 95–112.

[15] C. Giusti and V. Itskov, A no-go theorem for one-layer feedforward networks, Neural Com-
put. 26 (2014), 2527–2540.

[16] A.A. Gritsenko, M. Hulsman, M.J.T. Reinders, and D. de Ridder, Unbiased quantitative mod-
els of protein translation derived from ribosome profiling data, PLoS Computational Biology
11 (2015).

[17] A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter. Hamilton paths in grid graphs, SIAM J.
Comput. 11 (1982), 676–686.

[18] H. Iwashita, Y. Nakazawa, J. Kawahara, T. Uno, and S.I. Minato, Efficient Computation of
the Number of Paths in a Grid Graph with Minimal Perfect Hash Functions, TCS Technical
Report. No. TCS-TR-A-13-64. Hokkaido University Division of Computer Science., 2013.

[19] J. Jost and R. Mulas, Hypergraph Laplace operators for chemical reaction networks, Advances
in Mathematics 351 (2019), 870–896.

[20] C. Lienkaemper, A. Shiu, and Z. Woodstock, Obstructions to convexity in neural codes, Adv.
Appl. Math. 85 (2017), 31–59.

[21] K. Mallick, Some exact results for the exclusion process, Journal of Statistical Mechanics:
Theory and Experiment, 01 (2011), P01024.

[22] J. Montaldi, Notes on circulant matrices, Manchester Institute for Mathematical Sciences
School of Mathematics, (2012).

[23] R. Mulas, Sharp bounds for the largest eigenvalue, Math. notes 109 (2021), 102–109.

[24] R. Mulas, C. Kuehn, and J. Jost, Coupled dynamics on hypergraphs: Master stability of
steady states and synchronization, Phys. Rev. E 101 (2020), 062313.

[25] R. Mulas and N.M. Tran, Minimal embedding dimensions of connected neural codes, Journal
of Algebraic Statistics 11(1) (2020), 99–106.

[26] R. Mulas and D. Zhang, Spectral theory of Laplace Operators on oriented hypergraphs, Dis-
crete Math. 344(6) (2021), 112372.

499



www.ejgta.org

Signless normalized Laplacian for hypergraphs | E. Andreotti and R. Mulas

[27] V. Reddy and S. Skiena, Frequencies of large distances in integer lattices, Technical Report,
Department of Computer Science. Stony Brook, NY: State University of New York, Stony
Brook, 1989.

[28] N. Reff and L. Rusnak, An oriented hypergraphic approach to algebraic graph theory, Linear
Algebra and its Applications 437 (2012), 2262–2270.

[29] T.G. Schmalz, G.E. Hite, and D.J. Klein, Compact self-avoiding circuits on two-dimensional
lattices, J. Phys. A: Math. Gen. 17 (1984), 445–453.
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