
Finite element method for the quasiclassical theory of superconductivity

Downloaded from: https://research.chalmers.se, 2022-12-10 11:01 UTC

Citation for the original published paper (version of record):
Seja, K., Löfwander, T. (2022). Finite element method for the quasiclassical theory of
superconductivity. Physical Review B, 106(14). http://dx.doi.org/10.1103/PhysRevB.106.144511

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



PHYSICAL REVIEW B 106, 144511 (2022)

Finite element method for the quasiclassical theory of superconductivity
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The Eilenberger-Larkin-Ovchinnikov-Eliashberg quasiclassical theory of superconductivity is a powerful
method enabling studies of a wide range of equilibrium and nonequilibrium phenomena in conventional and
unconventional superconductors. We introduce here a finite element method, based on a discontinuous Galerkin
approach, to self-consistently solve the underlying transport equations for general device geometries, arbitrary
mean free path, and symmetry of the superconducting order parameter. We present results on (i) the influence of
scalar impurity scattering on phase crystals in d-wave superconducting grains at low temperatures and (ii) the
current flow and focusing in d-wave superconducting weak links, modeling recent experimental realizations of
grooved high-temperature superconducting Dayem bridges. The high adaptability of this finite element method
for quasiclassical theory paves the way for future investigations of superconducting devices and new physical
phenomena in unconventional superconductors.

DOI: 10.1103/PhysRevB.106.144511

I. INTRODUCTION

The quasiclassical theory of superconductivity [1–3] al-
lows the study of a wide range of phenomena in both
conventional and unconventional superconductors on a meso-
scopic scale. Solving the underlying transport equations is,
however, a highly involved numerical problem, especially
when a self-consistent determination of the self-energies is
required. We propose here a finite element method (FEM),
specifically a discontinuous Galerkin (DG) approach, that can
be used to solve the underlying transport equations of the
full Eilenberger quasiclassical theory in realistic supercon-
ducting systems in two or three dimensions. The DG method
of solving transport equations in dimension D � 2 was first
proposed in the 1970s for the neutron transport equation in the
context of nuclear reactors [4–6] but has since been applied
to (in)compressible flow dynamics, chemical transport, and
many other areas of physics [7].

Such a FEM offers several advantages over finite difference
methods used in the past [8,9]. First, the solution strategy
introduced here is directly applicable to systems in one, two,
or three dimensions, up to a slight adaption of the boundary
conditions depending on the dimension. Second, it provides
better adaptability of the discretization to the geometry under
investigation as well as the degree of approximating functions
which improves convergence [10].

For dirty conventional superconductors, where the mean
free path � is much shorter than the superconducting
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coherence length ξ0, the diffusive approximation due to Us-
adel is valid. An implementation of a FEM for the underlying
Usadel diffusion equations has been reported [11] and used to
analyze experimental results [12] as well as to investigate new
physics in higher-dimensional structures [13]. The method we
present here is valid for superconductors with arbitrary mean
free path and order-parameter symmetry, and thus extends
the possibility of finite-element analysis to a wide range of
superconducting materials and phenomena.

This paper is organized as follows. In Sec. II, we review
the underlying equations of the quasiclassical theory of su-
perconductivity and present the reformulation in terms of a
discontinous Galerkin method. This is followed by results
on two example problems in Sec. III. First, we investigate
the effect of scalar impurites on phase crystals in a closed
system. Second, we model a current biased superconducting
Dayem bridge as an example for current flow and focusing
in a geometry with open boundaries. We conclude with an
outlook on possible further applications of the method in
Sec. IV.

II. THEORY

A. Quasiclassical theory

The core of the quasiclassical theory of superconductivity
is the Eilenberger equation,

ih̄vF · ∇ǧ(pF, R, ε) + [ετ̂31̌ − ȟ(pF, R, ε), ǧ(pF, R, ε)] = 0,

(1)

for the quasiclassical Green’s function ǧ(pF, R, ε) together
with a normalization condition

ǧ(pF, R, ε)2 = −π2. (2)

The above form is for the time-independent steady state that
we assume in this paper. In this case, the propagators only
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depend on momentum direction on the Fermi surface, pF,
spatial coordinate, R, and energy, ε. In Eq. (1), vF is the Fermi
velocity, the [A, B] denotes a commutator between matrices
A and B, a ˇ marks Keldysh-space matrices, τ̂3 is the third
Pauli matrix in Nambu (particle-hole) space, indicated by a
,̂ and ȟ is the self-energy matrix. The three elements of the
Keldysh-space matrix ǧ are

ǧ(pF, R, ε) =
(

ĝR(pF, R, ε) ĝK(pF, R, ε)
0 ĝA(pF, R, ε)

)
, (3)

where the spectrum of the system is determined by the
retarded (advanced) component ĝR (ĝA), while information
about the occupation of states is contained in the Keldysh
component ĝK . All three components are in turn matrices
in Nambu space that we will detail below. To shorten the
notation, we often drop the explicit dependences on pF, R,
and ε. The self-energy matrix ȟ has the same form as ǧ in
Keldysh space with the Nambu-space components

ĥR,A =
(

� �

�̃ �̃

)R,A

, ĥK =
(

� �

−�̃ −�̃

)K

. (4)

This set of equations was first derived by Eilenberger [1],
and separately Larkin and Ovchinnikov [2], and generalized
to nonequilibrium by Eliashberg [3].

Instead of solving Eq. (1) directly, it is advantageous to use
parametrizing functions for ǧ that guarantee that the normal-
ization condition, Eq. (2), is satisfied. One well-established
choice is a parametrization in terms of coherence ampli-
tudes γ , γ̃ [14–17] and generalized distribution functions x, x̃
[18,19]. The coherence amplitudes determine the retarded
component

ĝR = −2π i

(
G F

−F̃ −G̃

)R

+ iπτ̂3, (5)

where GR ≡ (1 − γ Rγ̃ R)−1 and FR ≡ GRγ R. The expression
for the advanced element ĝA is analogous to ĝR. The Keldysh
component also involves the distribution functions x and x̃,

ĝK =
(

g f
− f̃ −g̃

)K

≡ −2π i

(
G F

−F̃ −G̃

)R(
x 0
0 x̃

)(
G F

−F̃ −G̃

)A

. (6)

Generally all elements of ĝR,A,K are matrices in a space of
internal degrees of freedom such as spin, but in the following
we assume a spin-singlet superconductor for simplicity. Then,
γ can be written as γ = γsingletiσ2—where γsinglet is a scalar
function and σ2 is the second Pauli matrix in spin space—
while x is proportional to the unit matrix in spin space. One
central symmetry of the theory is particle-hole conjugation,
expressed as

Ã(pF, R, ε) = A∗(−pF, R,−ε∗). (7)

Starting from Eq. (1), a set of coupled equations for the
parametrizing functions can be derived. In the steady state,
the equations for γ (pF, R, ε) and x(pF, R, ε) read

(ih̄vF · ∇ + 2ε)γ R,A = (γ �̃γ + �γ − γ �̃ − �)R,A, (8)

ih̄vF · ∇x − (γ �̃ + �)Rx − x(�γ̃ − �)A

= −γ R�̃Kγ̃ A + �Kγ̃ A + γ R�̃K − �K. (9)

Equations for the remaining amplitudes γ̃ R/A and distribution
x̃ can be obtained via the tilde symmetry in Eq. (7). Note
that both equations are transport equations along a transport
direction vF, indicated by the directional derivative vF · ∇. So-
lutions of these differential equations have to be found along
semiclassical trajectories determined by vF, a starting point,
and an end point. Along such a trajectory, Eq. (8) is a Riccati
equation that is well studied in literature [20]. Observables are
then determined by an average over all possible momentum
orientations vF on the Fermi surface. For our two-dimensional
case we use a circular Fermi surface, where the orientation is
fully determined by the angle to the x axis, ϕF. The average of
an observable or self-energy A is then

〈A(pF)〉FS = 1

2π

∫ 2π

0
dϕF A(ϕF). (10)

After solving Eq. (1), all self-energies have to be recalculated
until self-consistency is achieved. In the present paper, we use

ȟ(pF, R, ε) = ȟmf (pF, R) + ȟs(R, ε), (11)

where ȟmf is the mean-field order parameter, given by

�0(R) = λNF

∫ εc

−εc

dε

8π i
〈Tr[iσ2ηd (pF) f K(pF, R, ε)]〉FS.

(12)
Here, ηd is the basis function for the respective order-
parameter symmetry. For the dx2−y2 order parameter, which we
will consider in this paper, we can choose ηd = cos[2(ϕF −
α)], where the angle α specifies the misalignment of the main
crystal axis to the geometric axis. The self-energy ȟs describes
scalar impurity scattering. Assuming an average dilute impu-
rity concentration ni, the impurity self-energy is found from
the t-matrix equation in the noncrossing approximation [21]:

ȟs = niť ≡ ni

(
t̂ R t̂K

0 t̂ A

)
. (13)

For scattering that is isotropic in momentum space with an
s-wave scattering potential u0 the elements of ť satisfy the
equations

t̂R,A = u01̂ + u2
0NF〈ĝR,A〉FS

1̂ − [u0NF〈ĝR,A〉FS]2
, (14)

t̂K = NFt̂R〈ĝK〉FSt̂
A. (15)

The two parameters of the model, the isotropic impurity po-
tential u0 and impurity concentration ni, can equivalently be
written as a scattering energy �u = nimp/πNF and a scatter-
ing phase shift δ0 = arctan(πNFu0). They can be combined
into � ≡ �u sin2 δ0, the so-called pair-breaking energy, which
determines the normal-state mean free path � = h̄vF/(2�). We
restrict ourselves here to the weak-scattering Born limit,

ĥR
s,Born(R, ε) = �

π
〈ĝR(pF, R, ε)〉FS, (16)
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or the opposite strong-scattering unitary limit,

ĥR
s,unit (R, ε) = −π�

〈ĝR(pF, R, ε)〉FS

〈ĝR(pF, R, ε)〉2
FS

. (17)

Solving Eqs. (8) and (9) allows one to construct the full
quasiclassical Green’s function ǧ that solves Eq. (1), and can
be used to calculate physical observables. For example, we
find the momentum-resolved density of states

N (pF, R, ε) = − 1

4π
Im Tr[τ̂3ĝR(pF, R, ε)], (18)

which determines the full density of states,

N (R, ε) = 2NF〈N (pF, R, ε)〉FS. (19)

Here, NF is the normal-state density of states per spin at the
Fermi level. The charge current density is obtained via

j(R) = eNF

∫ ∞

−∞

dε

8π i
〈Tr[vFτ̂3ĝK(pF, R, ε)]〉FS. (20)

We use j0 = evFNFkBTc as the unit for charge current. If both
the system and all connected reservoirs are in equilibrium the
Keldysh Green’s function at temperature T simply reads

ĝK = (ĝR − ĝA) tanh
ε

2T
. (21)

By replacing the energy ε with imaginary-axis Matsubara
frequencies iεn = iπkBT (2n + 1) in Eq. (8) we can then solve
for the Matsubara coherence function γ M. For better numer-
ical performance alternatives such as the Ozaki poles of a
continued-fraction expansion [22] can be used. This is the
case for the results presented in this paper.

B. Trajectory method

Self-consistent numerical solutions of Eqs. (8) and (9)
require a discretization of the self-energies on a grid, and
similarly discretizing the trajectories in “steps.” In (quasi-
)one-dimensional systems it is always possible to choose the
two to be commensurate. One possible choice is to model the
energy landscape and the coherence functions as piecewise
constant in between grid points. In this case, analytic solutions
to Eqs. (8) and (9) in a region of constant self-energies can be
found. This leads to a stepping method where the solution for
the equation of motion, Eq. (8), is found along the trajectory
by stepping along the trajectory step by step from one region
to another.

In contrast, the steps cannot be made commensurate with
the self-energy grid for all momentum orientations at once
in two or three dimensions, as sketched Fig. 1. A step-
ping method is still possible and has been implemented for
two-dimensional systems [9]. The discrepancy between the
self-energy grid and the trajectory steps require frequent in-
terpolation from the self-energy grid to the “stepping grid.”

Here, we describe an alternative solution strategy that relies
on a finite element method, more specifically a discontinuous
Galerkin method. The solution to the differential equation is
then defined on the same grid as the self-energies which
avoids grid interpolation.

FIG. 1. (a) For quasi-one-dimensional models, the trajectory
steps can be chosen to be commensurate with the grid of self-energy
points. (b) Already in two dimensions, this is not possible. As an
example, the starting part of a trajectory for angle ϕF is shown. For
equal grid spacing and step size h the steps (green dots) along the
trajectory do not coincide with the self-energy grid (black dots).

C. Discontinuous Galerkin method for the
coherence amplitude γ

The underlying assumption of finite element methods is
that a given geometry can be decomposed into a collection
of elements or cells, as indicated in Fig. 2. Note that we use a
two-dimensional geometry and triangular cells for illustration,
but the method introduced here can be directly applied to
three-dimensional models as well. The original differential
equation then has to be translated to its weak form. We will
focus on the Riccati equation for γ R but will drop the super-
script R in the following. The derivation is largely identical
for the advanced function γ A. For ease of notation, we focus
on the spin-degenerate case now which will result in a scalar
equation for the coherence amplitude γ . The generalization
to the full two-by-two spin structure follows along identical
lines but will produce a coupled system of equations for four
unknowns, with equally many independent test functions.

We start from Eq. (8) that can, in the scalar case, be rear-
ranged to read

ih̄vF · ∇γ + γ �̃γ + 2εγ − �γ + γ �̃ = −�. (22)

(a) (b)

FIG. 2. (a) Example for a domain � (gray) with boundary ∂�

(orange) and a triangulation (green). The green dots mark geometric
nodes of the underlying mesh, while the green edges mark the outline
of the triangulation cells. (b) Inflow (outflow) boundaries ∂�− (∂�+)
in dark red (light blue) for a given transport direction vF (orange ar-
row). The small outer arrows indicate the (outward-pointing) surface
normals. All cell edges that are not part of the boundary, marked in
green, form the internal edges labeled τ .
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Multiplying both sides by a, for now unspecified, test function
φ(R) ≡ φ, and integrating over the entire domain � gives

ih̄
∫

�

φ vF · ∇γ d� +
∫

�

φ(γ �̃γ + 2εγ − �γ + γ �̃)d�

= −
∫

�

φ� d�. (23)

We now assume to have a triangulation T , meaning a collec-
tion of triangles Tj that satisfy � = ∪Tj∈T Tj . The integration
is then split into a sum of integrals over each triangle,

∑
Tj∈T

[
ih̄

∫
Tj

φ vF · ∇γ d� j +
∫

Tj

φ(γ �̃γ )d� j

+
∫

Tj

φ(2εγ − �γ + γ �̃)d� j

]

= −
∑
Tj∈T

∫
Tj

φ� d� j . (24)

Performing a partial integration on the first term on the left
hand side in Eq. (24), we arrive at

∑
Tj∈T

[
ih̄

∫
∂� j

φ (γ vF) · n j ds j − ih̄
∫

Tj

γ vF · (∇φ)d� j

+
∫

Tj

φ(2εγ + γ �̃γ − �γ + γ �̃)d� j

]

= −
∑
Tj∈T

∫
Tj

φ� d� j, (25)

where n j is the outer normal for ∂� j , the boundary of a given
cell. For triangular cells each element boundary ∂� j consists
of three edges. Each edge, in turn, is either part of the geo-
metric boundary ∂� or part of the collection of internal edges
τ . The geometric boundary ∂� can be further decomposed
into the inflow boundary ∂�− and the outflow boundary ∂�+,
defined via

∂�− ≡ {R ∈ ∂� | vF · n(R) < 0}, (26)

∂�+ ≡ {R ∈ ∂� | vF · n(R) � 0}. (27)

The three sets are sketched in Fig. 2(b). In a discontin-
uous Galerkin method the unknown function γ as well
as the test function φ can have different values on the
two sides of a given edge. Each internal edge τ j ∈ τ is
shared by two cells and thus integrated over twice in the
sum over all the boundary integrals. It can be shown [23]
that summing this double integration over each edge al-
lows one to rewrite the first term on the left-hand side

FIG. 3. Sketch of two neighboring cells, 1 and 2, with the shared
edge in between them. The two normal vectors n1 and n2 to the
shared edge are chosen such that they are pointing out of their
respective cell. The red dots indicate nodes that are involved in a
surface integral over the edge; the orange dot is a node that does
not contribute. The displacements of the dots from the actual nodal
points of the cells are introduced only to illustrate the DG method.

in Eq. (25) as

∑
Tj∈T

∫
∂� j

φ (γ vF) · n j ds j

=
∑
τ j∈τ

∫
τ j

{γ vF} · [φ] dτ j +
∑

s j∈∂�+

∫
s j

(n j · vF) γφ ds j

+
∑

s j∈∂�−

∫
s j

(n j · vF) γφ ds j, (28)

where the summations on the right-hand side are over indi-
vidual edges rather than closed boundaries of each triangle.
The different brackets in the first term on the right-hand side
denote the jump [. . . ] and average {. . . } of a function over an
edge shared by two cells 1 and 2. They are defined for vectors
a and scalars φ as

[a] ≡ a1 · n1 + a2 · n2, [φ] ≡ φ1n1 + φ2n2, (29)

{a} ≡ 1
2 (a1 + a2), {φ} ≡ 1

2 (φ1 + φ2), (30)

with the index denoting the value in the respective cell, and the
outward-pointing normal vector ni in each of the two cells;
see Fig. 3. We note that in the literature the jump operator
is sometimes written including the normal vector, i.e., [a] =
[a · n]. For edges on either the inflow or outflow boundary the
function only has values on one side so no average or jump
of the function values appears in the other two terms on the
right-hand side of Eq. (28).

Up until this point the derivation is identical for the re-
tarded and advanced functions, γ R and γ A, but starts to
be different in the following. For the retarded function, γ R,
a boundary condition γB has to be provided on the inflow
boundary ∂�−. We address how these starting values are
obtained in Sec. II D. On the outflow boundary ∂�+ and on in-
ternal edges τ , the values of γ R are unknown and determined
in the solution step. This corresponds to solving Eq. (8) for
the retarded function in the direction of vF with a boundary
value at the start point of a given trajectory. For the advanced
function γ A, ∂�− and ∂�+ are swapped, corresponding to
the stable integration direction opposite to vF in the stepping
method. The remaining functions γ̃ R,A are similarly swapped
with respect to their nontilde counterpart. The naming of ∂�−
(∂�+) as inflow (outflow) boundary is thus only descriptive
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for γ R and γ̃ A but follows the naming conventions established
in literature.

Lastly, we note that for the imaginary-frequency Matsubara
coherence function γ M, the propagation directions and flow
boundaries correspond to the one for γ R (γ A) for positive
(negative) Matsubara poles.

As discussed in literature [24], better convergence and
stability can be achieved for this weak form by replacing the
average operator in the first term in Eq. (28) by the so-called
upwind value, denoted by a subscript u and given by

{γ RvF}u ≡

⎧⎪⎨
⎪⎩

γ R
1 vF if vF · n1 > 0,

γ R
2 vF if vF · n1 < 0,

{γ R}vF if vF · n1 = 0.

(31)

The upwind value enforces a propagation of the function
values across cell edges in the transport direction vF, corre-
sponding to the propagation along trajectories in the stepping
method. A corresponding downwind value with swapped signs
in the inequalities in Eq. (31) has to be used for the advanced
function γ A. This is similar to the exchange of ∂�+ and ∂�−
for the boundary values. The final weak form for the retarded
function γ R thus becomes

ih̄
∑
τ j∈τ

∫
τ j

{γ RvF}u · [φ] dτ j + ih̄
∑

s j∈∂�+

∫
s j

(γ Rn j · vF)φ ds j

− ih̄
∑
Tj∈T

∫
Tj

(γ RvF) · ∇φ d� j

+
∑
Tj∈T

∫
Tj

(2εγ R + γ R�̃γ R − �γ R + γ R�̃)φ d� j

= −
∑
Tj∈T

∫
Tj

φ� d� j − ih̄
∑

s j∈∂�−

∫
s j

(n j · vF)φ γ R
B ds j .

(32)

Equation (32) is of the form

L(γ , φ) = f (φ), (33)

where f does not depend on the unknown function γ while
L does. In the FEM language, L is the bilinear form and
f the linear form of the weak formulation of Eq. (8). An
approximate weak solution γ R

w to Eq. (32) can be found using
a discontinuous Galerkin method. Such a method assumes that
the approximate weak solution γ R

w can, within each cell, be
written as a sum of polynomials of finite order k. Depending
on k, there are Nj independent degrees of freedom, or nodes,
for a given cell Tj . In two dimensions, the common choice
of k = 1 (linear functions) or k = 2 (quadratic functions) re-
quires three and six nodes, respectively. For each of the Nj

nodes, there is an associated polynomial φi. In this paper we
use simple Lagrange polynomials that satisfy

φi(x j ) = δi j . (34)

Using this cellwise basis we can write

γ R
w

∣∣
Tj

(R) ≈
Nj∑

i=1

a j,iφi(R), (35)

where a j,i are expansion coefficients or weights. The function
values on the nodes then fully determine aj,i and by Eq. (35)
the function everywhere in the individual cell. The main dif-
ference to a continuous Galerkin method is that the values of
a j,i on nodes shared between neighboring cells are indepen-
dent; the global function can thus be discontinuous across cell
edges. Such a discontinuous Galerkin method has been found
to give better convergence for the transport equations and
allows for higher mesh adaptability; see also the discussion
in Refs. [6,10,25].

We expand the self-energies in the same basis with weights
� j,i and � j,i, while the test function φ used in Eq. (32) can
be chosen to have the same form but with unit weights, φ =∑

i φi(x).
Inserting Eq. (35) and the basis functions into Eq. (32)

gives an equation system for the unknown coefficients a j,i for
each cell. Renumerating a j,i → ai′ and combining all the local
equations, we get a collection of scalar equations of the form∑

j,k

a jQi jkak +
∑

k

Pikak = fi, (36)

where i = 1, . . . , N is an index over all the N nodes in our
domain. In two dimensions, a triangulation with NT triangles
and Nj nodes per cell will have a total number of N = NT Nj

nodes. Here, the tensor Qi jk is due to the quadratic term
γ �̃γ in Eq. (32), while the remaining linear parts of L(γ , φ)
are combined into a matrix Pik . The nonlinearity prevents a
solution of Eq. (36) by matrix inversion. Instead, the vector a
is determined as an (approximate) zero of the residual vector
r, with components

ri(a) ≡
∑

j,k

a jQi jkak +
∑

k

Pikak − fi, (37)

where again i = 1, . . . , N as in Eq. (36). This approximate
zero is found by iterative minimization. We find that a numer-
ically efficient strategy is Newton iteration using the Jacobian
matrix Ji j (a, φ) of Eq. (32), which can be calculated from the
residual via the Gateaux derivate

Ji j (a, φ, δa j ) ≡ lim
h→0

ri(a j + h δa j, φ) − ri(a j, φ)

h
. (38)

Starting from a guess a0, one iterates the solution vector via
Newton steps an+1 = an + (δa)n, where (δa)n is the solu-
tion to a linear equation system obtained by combining all
Ji j (an, φ)(δa j )n = −ri(an, φ) for i = 1, . . . , N .

D. Boundary values

As outlined in Sec. II C, the weak form in Eq. (32) contains
boundary values γB, in the case of the retarded function on the
inflow boundary ∂�−. Note that the inflow boundary will be
different for different orientations of vF. These boundary val-
ues correspond to the starting value of the coherence function
at the start point of a trajectory in a stepping method.

We treat the entire boundary ∂�, including the inflow
boundary, as a collection of planar interfaces of finite length.
Scattering at such atomically sharp interfaces cannot be de-
scribed within quasiclassical theory itself; the theory has to be
supplemented by external boundary conditions. Using scatter-
ing theory, such conditions have been derived for specularly
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FIG. 4. Coupling of each node (red dot) on the inflow boundary
∂�− to virtual reservoir points (black empty circle).

scattering interfaces [18,19,26–29] where the momentum par-
allel to the surface is conserved in the scattering process. The
boundary conditions in the spin scalar case at a given interface
are expressed in terms of the normal-state scattering matrix

S =
( √

R i
√

D
i
√

D
√

R

)
, (39)

where R and D are, respectively, the reflectivity and trans-
mittivity of the interface satisfying R + D = 1. The boundary
condition for γ R

B is then of the form

γ R
B = �out

(
γ R

in,1, γ
R
in,2,S

)
, (40)

where γ R
in,i=1,2 are the incoming functions inside and outside

the system. Within the FEM nomenclature such boundary
conditions are referred to as Dirichlet boundary conditions. In
a discontinuous Galerkin method, they are weakly enforced
through the last term on the right-hand side in Eq. (32). On a
given segment the entire function is determined by the values
on the nodes; hence it is sufficient to apply the boundary
condition at the nodes only.

At a fully reflective segment, R = 1, specular scattering
relates the outgoing function for an angle ϕF to the function
incoming from within the system for a different angle ϕ′

F. On
a boundary segment with an outward-pointing normal n that
spans an angle βn to the x axis, we find

ϕ′
F = π − ϕF + 2βn. (41)

This relation holds in systems with a two-dimensional Fermi
surface where the orientation of vF can be parametrized by
one scalar parameter only. In three dimensions an analogous
relation for two scalar parameters has to be used. The weak
form in Eq. (32), however, is valid in two and three dimensions
if one replaces cells and edges with appropriately chosen
polyhedra and surface planes.

Starting from a bulk guess as an incoming function, we use
the incoming functions at an iteration n to obtain the outgoing
function in the next, n + 1, iteration. At a fully transparent
segment, D = 1, the outgoing function solely depends an
incoming function from a reservoir that is not directly sim-
ulated. This reservoir can for example be a superconducting
contact or a normal-metal reservoir. We model both cases by
associating a virtual “reservoir” point with each node on the
given boundary segment; see Fig. 4.

We model a superconducting contact by using a bulk co-
herence function γbulk as the incoming coherence function
from the reservoir. On each virtual point, the order parame-
ter and superfluid momentum pS are then iterated such that
we enforce a certain current density across the respective
boundary segment. In the case of a normal-metal reservoir,

a voltage bias (temperature bias) can be modeled by fixed
electrochemical potential (temperature) of the reservoir so no
update is required. This induces a nonequilibrium occupation
at the system edge that propagates in the system.

For further details, we refer to our recent publications
on nonequilibrium setups in (quasi-)one-dimensional mod-
els [30,31]. For intermediate values of the transparency, D ∈
(0, 1), the boundary condition Eq. (40) gives a weighted com-
bination of the two scenarios described above.

E. Nonequilibrium distribution x

A weak form for the nonequilibrium distribution x can be
obtained in a largely identical procedure as outlined for the
coherence amplitude γ in Sec. II C. After partial integration
over the term containing the derivative vF · ∇x of splitting
of the resulting boundary integrals has to be performed. The
specification of boundary values and flow direction for x (x̃)
then follows that of γ R (γ A). The main difference to the
coherence amplitude is that Eq. (9) is clearly linear in x. Hence
the solution of the resulting matrix equation can be obtained
through matrix inversion rather than the iterative solution of a
nonlinear problem.

F. Self-consistency and numerical aspects

A self-consistent solution of the Eilenberger equation re-
quires an iterative procedure of solving the underlying
transport equation followed by an update of all self-energies.
In equilibrium, this leads to the following recipe for the re-
tarded functions.

(1) Provide a current guess of all self-energies in ĥR, see
Eq. (4), and boundary values γ R

B and γ̃ R
B .

(2) Find weak solutions γ R
w to Eq. (32), and similarly γ̃ R

w ,
for all energies ε and momentum angles ϕF.

(3) Update all self-energies through Eqs. (12) and (16) or
(17).

(4) Update all boundary values γ R
B and γ̃ R

B as described in
Sec. II D.

Nonequilibrium situations also require weak solutions xw

and x̃w and updates of the Keldysh self-energies ĥK. The above
procedure has to be repeated until a self-consistent solution
is found, signalized for example by convergence of the self-
energies up to a desired accuracy. Only then is charge-current
conservation,

∇ · j(R) = 0, (42)

guaranteed everywhere in the system. For a given guess of
all self-energies, the solution of Eq. (32) is an independent
problem for each energy ε and momentum orientation ϕF.
This makes the problem highly parallelizable. The solutions
for all energies ε and angles ϕF only need to be combined to
obtain a new guess of the self-energies. For the FEM solution
step we use the open-source package GRIDAP [32], while
the meshes are created in GMSH [33]. Detail on the specific
meshes used for the results presented in this paper can be
found in the Supplemental Material [34].
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FIG. 5. Phase crystal for � = 5 × 10−4πkBTc, unitary limit, and T = 0.12Tc. (a) |�|(x, y), the absolute value of the order parameter.
(b) χ (x, y), the superconducting phase. In (c) the color map shows the absolute value of the current |j(x, y)|, while the flow direction is
indicated by the superimposed vector field (white arrows).

III. RESULTS

To illustrate the strategies and the advantages of solving
the Riccati equations with a FEM together with the self-
consistency equations for the order parameter and scalar
impurity self-energies, we present two examples. Both in-
volve two-dimensional d-wave superconductors modeling for
instance a single superconducting plane of a high-temperature
superconductor. The first example is a closed system, a
square island (see Fig. 5), where the superconducting crystal
axes are rotated 45◦ relative to the main axes of the square.
For this orientation of the order parameter relative to the
edges, below a phase transition temperature T ∗ ≈ 0.17Tc,
time-reversal symmetry has been predicted to be broken in
an unusual way [9,35–39]. The characteristic of this state,
referred to as a phase crystal [37], is a nontrivial, structured
ordering of the superconducting phase χ (R) resulting in pat-
terns of current flow consisting of loops near the edges. In the
present example we show the correctness of the FEM solution
by studying the detrimental influence of scalar impurity scat-
tering within a self-consistent homogeneous scattering model.
In the second example we study an open system, a current
biased d-wave superconducting bridge with an inhomoge-
neous density of impurities, modeling experiments on grooved
Dayem bridges [40,41]. In this case we also demonstrate how
to self-consistently enforce a current boundary condition at
the source and drain leads and current conservation across the
bridge. This nicely illustrates the effect of current focusing
and we predict the spatial variation of the superconducting
phase over the bridge. In both example setups we assume
that scattering at nontransparent boundaries is specular, as
discussed in Sec. II D.

A. Effect of scalar impurities on phase crystals

Consider the square d-wave superconducting island in
Fig. 5. When the crystal axes are misaligned by 45◦

relative to the surface norms, the d-wave order param-
eter is suppressed to zero at the edges; see Fig. 5(a).
This reflects the formation of zero-energy surface An-
dreev bound states [42–44]. At temperatures below T ∗ ≈
0.17Tc a second-order phase transition was recently predicted,
where time-reversal symmetry is broken and a nonuniform
state appears with circulating currents near the edges [9].
The influence of mesoscopic roughness of the boundaries
[35] and magnetic field [36] have been investigated earlier.
Within a tight-binding model, also the influence of band
structure was investigated [38]. Recently, an investigation of
strong correlations within a Gutzwiller approximation pre-
venting double occupancy on each tight-binding site was
reported [39]. In the latter study it was shown that An-
derson disorder suppresses T ∗, but surprisingly that strong
correlations weaken the influence of this disorder. In our
example, we study the suppression of T ∗ within a different
model for the scalar impurities. In our quasiclassical treat-
ment we self-consistently compute the impurity self-energy
in a homogeneous scattering model for two types of dis-
order: the Born limiting of weak scattering, Eq. (16), and
the unitary limit of diverging scattering potential strength,
Eq. (17).

In both cases, larger impurity concentrations suppress the
current flow up to a critical value �∗ at which the phase crystal
is no longer energetically favorable and a uniform supercon-
ducting state is formed instead. Examples of current flow
patterns for two temperatures, T = 0.03Tc and T = 0.07Tc, in
the unitary limit for a larger value of the impurity concentra-
tion is shown in Fig. 6. As compared to the almost clean case
in Fig. 5(c), for such impurity concentrations, such as Fig. 6
(normal state mean free path � ≈ 22ξ0), the pattern remains
largely unchanged at the lower temperature while the absolute
value of the current is reduced. At the higher temperature
for the same impurity concentration, a pattern with a reduced
number of loops is observed; see Fig. 6(b).
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FIG. 6. Absolute value of the current flow |j(x, y)| (color map),
with the flow direction indicated by the superimposed vector field
(white arrows). Note that the arrows are only illustrative and not
scaled to to the magnitude of the flow. The impurities scatter in the
unitary limit with a pair breaking parameter � = 4.55 × 10−2πkBTc

(mean free path � ≈ 22ξ0). In (a) T = 0.03Tc and in (b) T =
0.07Tc, corresponding to the second and rightmost brown diamond
in Fig. 7(b).

As a measure of the total amount of current flow in the
system we use the integrated quantity

j2 ≡
∫

�

|j(x, y)|2 d�. (43)

This average measure depends on temperature, impurity
concentration, and type of impurities (Born or unitary), as
summarized in Fig. 7. For the relatively clean case (blue
circles), the suppression of j2 with temperature leads to an
estimate of the transition temperature T ∗. For T < T ∗ the
phase crystal is energetically favorable [9]. The correspond-
ing temperature dependencies of j2 for increasing impurity
concentration � is shown in Fig. 7(a) for the Born limit and
Fig. 7(b) for the unitary limit. Generally, for the same temper-
ature and impurity concentration the currents are smaller for
scattering in the Born limit. It is well known that the surface
Andreev bound states are less broadened in the unitary limit
than in the Born limit [45]. As a result of the larger broadening
of the Andreev bound states in the Born limit the spontaneous

FIG. 7. Area-integrated current flow, see Eq. (43), at varying
temperature for different impurity concentrations in the Born limit
(upper figure) and in the unitary scattering limit (lower figure).

currents are energetically less favorable. For a temperature
T = 0.1Tc the currents are well developed in the clean case,
with a typical wavelength for the current loops of ∼12ξ0 (two
loops with opposite circulations [9]). With increasing �, first
the pattern changes to a single loop and then vanishes at this
temperature at a mean free path of order � ∼ 30ξ0 in both the
unitary and Born limits. These results indicate that the phase
diagram in � − T space can be rich and should be investigated
in further detail, but this is beyond the scope of the present
paper.

B. Focusing of current flow in a Dayem bridge

As an example of an open system with current flow we
consider a d-wave superconducting bridge, inspired by recent
experimental realizations of Dayem bridges [40,41]. Figure 8
shows the model for such a bridge. It consists of two supercon-
ducting reservoirs smoothly connected to a narrow channel
of reduced width. The d-wave order parameter is in this case
aligned with the bridge, such that the lobes are along x and y
directions. Additionally, a groove can be etched into the chan-
nel. To model this groove we include a position-dependent
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FIG. 8. Sketch of an approximate Dayem-bridge geometry. A
wide, transparent contact of width Wl = 60ξ0 connects, via a lead
of length Ll = 15ξ0, to a narrow channel of width Wch = 22ξ0 and
length Lch = 60ξ0. At the connection of lead and channel, the width
of the system linearly changes by �W = 19ξ0 over a length of �L =
6ξ0. Only the orange-shaded area is simulated; the gray areas to the
left and right indicate the superconducting reservoirs, connected here
with a fully transparent interface (D = 1).

impurity concentration of Gaussian shape in the center of the
channel,

�(x) = �0 + �peake−(x−xcenter )2/2w2
groove . (44)

In the results presented here we use xcenter = 45ξ0, at the
center of the channel, and wgroove = √

0.2ξ0. With these pa-
rameters the impurity concentration has a smooth Gaussian
profile over a characteristic scale of roughly 10ξ0 around x0.
For impurity concentrations, we choose �0 = 5 × 10−4πkBTc

and �peak = 0.05πkBTc, corresponding to a normal-state mean
free path of �0 = 2000ξ0 and �peak = 20ξ0, respectively. Un-
less noted otherwise, all results below are for a temperature of
T = 0.7Tc.

The reduced mean free path in the groove results in a
suppression of the order parameter by around 20% in the dirty
region in the center of the channel already in equilibrium, as
compared to the case without an impurity concentration pro-
file; see in Fig. 9. Note also that the order parameter is, in both
cases, partially suppressed at the tilted edges in the transition
area between the wide contact and the narrow channel, which
is a result of the partially pair-breaking nature of the walls
there.

We now enforce a constant boundary current density of
jx = jb = 0.01 j0 at the left and right edges of the system.
Upon a self-consistent calculation, the current that is flowing
in the x direction from the left reservoir gets spatially focused
to flow into the narrow channel.

By integration of Eq. (42) and application of Gauss’ the-
orem in two dimensions we can reinterpret the condition of
local current conservation as∫

int C
∇ · j d� =

∫
C

n · j ds = 0, (45)

where C is a closed contour within our system and int C the
enclosed area. An example for such a contour is shown in
Fig. 9(a). We always include the left system edge as well as

FIG. 9. Reduction of the order parameter by the reduced mean
free path in the central groove of the channel. (a) Constant impurity
concentration � = �0; (b) spatial variation according to Eq. (44).
In (a), an example for a contour described in the text and used for
Eq. (45) is superimposed. The integrated current incoming at the left
edge and through the dashed line parallel to the y axis on the right
edge has to be conserved.

the upper and lower edges of the geometry. The last part of the
contour is then a line parallel to the y axis at different distances
to the left edge.

We can then integrate jx(x, y), the x component of the
current, over the local height W (x) of the structure,

Ix(x) ≡
∫ W (x)

0
jx(x, y) dy. (46)

Since no current can flow out of the reflective walls, the
integrated current flow through the left and right contour edge,
indicated as dashed lines in Fig. 9(a), has to be conserved
throughout the system. In the results presented here, this is
the case up to a relative error of δIx < 2 × 10−2Ix(0).

A self-consistent result of the spatially redistributed current
flow is shown Fig. 10. The focusing of the current from the
wide lead into the narrow channel is clearly visible. For the
same imposed boundary current the flow pattern is basically
identical for both grooved and nongrooved channels since the
y-integrated current, Eq. (46), is conserved across the weak
link in both cases. However, the suppression of the order
parameter in the grooved Dayem bridge leads to an increased
phase gradient in the channel. This can be more clearly seen
by plotting the phase χ and x component of the superfluid
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FIG. 10. Current flow with weak link for a uniform boundary current density of j = 0.01 j0x̂. (a) The x component jx , (b) the y component
jy, and (c) absolute value |j| with the vector field j superimposed.

momentum

px
s ≡ h̄

2
∂xχ (x, y), (47)

along a line cut in the x direction for constant y = Wl/2, in the
middle of the channel. Both quantities are shown in Fig. 11 for
a nongrooved (blue dashed lines) and a grooved Dayem bridge

FIG. 11. Variation of the superconducting order parameter along
a line cut in the center of the channel, y ≈ Wl/2, with �peak = 0
(dashed blue) and �peak = 5 × 10−2πkBTc (solid orange).

(orange solid lines). In order to carry the same current in the x
direction the phase gradient is enhanced in the groove region
to compensate for the reduced order parameter. For increasing
values of the boundary current, the suppression of the order
parameter amplitude and the enhancement of the superfluid
momentum become more and more pronounced; see Fig. 12.
Beyond the highest boundary current jb > 0.025 j0 supercon-
ductivity breaks down locally in the channel in the sense that
the order parameter is locally suppressed to zero during the
self-consistency iteration. After that we find no self-consistent
stationary solution for the order parameter in the weak link.

IV. DISCUSSION AND OUTLOOK

In this paper, we have presented a reformulation of Eilen-
berger’s quasiclassical theory of superconductivity in terms
of a discontinuous Galerkin method. We applied the method,
first, to study the influence of scalar impurity scattering on
phase crystals in d-wave superconductors and, second, to
investigate the current flow through a geometric constriction
in the form of a Dayem bridge.

In the first case, we find that scalar impurity scattering
suppresses the spontaneous flow patterns of phase crystals. As
a result the average flow gets suppressed compared to a clean
d-wave superconductor and the characteristic temperature T ∗,
where the phase crystal is destroyed, is reduced. For the same
impurity concentration the spontaneous flow is lower for im-
purities in the Born limit compared to the limit of unitary
scattering. We attribute this to the increased broadening of the
surface Andreev bound states in the Born limit which makes
spontaneous flow energetically less favorable.

Our second example shows the strength of the FEM
method in the application to open superconducting systems in
the presence of current flow. Generally, the constriction in the
Dayem bridge geometry leads to a increased phase gradient in
the narrow channel. In the case of a grooved Dayem bridge,
the reduced mean free path in the groove requires a strong
increase in the phase gradient within the groove region in or-
der to carry the same current. As a result, the groove can lead
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FIG. 12. Variation of the superconducting order parameter along
a line cut in the center of the channel, y ≈ Wl/2 (see Fig. 8), for
�peak = 0 (dotted blue) and �peak = 5 × 10−2πkBTc (other lines) at
different values of the boundary current jb. (a) The x component
of the superflow px

s = (h̄/2)∂xχ (x, y) and (b) the suppression of the
order parameter in the groove.

to a quick suppression of superconductivity with increasing
current although the flow itself is nondissipative.

The method presented here gives a powerful and versatile
numerical technique to study conventional and unconven-
tional superconductors with arbitrary mean free path in two-
and three-dimensional geometries. The adaptability of a FEM
to arbitrary geometries allows the investigation of realistic
device geometries and experimental setups. An extension to
the case of full spin structure of the quasiclassical propa-
gators follows identical steps as discussed here and would
allow one to study for example the effects of spin-orbit in-
teractions and other unconventional superconductors. Another
extension, relevant for, e.g., the situation in the Dayem bridge
when we cannot find self-consistent stationary solutions at
high imposed currents, would be to include time dependence.
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APPENDIX: COMPARISON OF NUMERICAL
PERFORMANCE

To benchmark the numerical performance of the DG
method presented in this paper, we use a simple example in
one dimension. Specifically, we assume a clean system with
an order-parameter profile of the form

�(x) = �0 tanh
x − xmid

2ξ0
, (A1)

where �0 = 1.5kBTc, xmid = 7.5ξ0, and let x ∈ [0, 15ξ0].
This profile is similar to that close to a fully reflective,
pair-breaking interface to a d-wave superconductor. For
this scenario, we compare (1) the “stepping” method, see
Sec. II B, (2) an implicit midpoint method, a well-known
finite-difference scheme, see also Appendix C in Ref. [46],
and (3) the DG method presented here, for different order k of
the approximating polynomials.

In all cases, we assume a uniform grid of N points (or
nodes), which gives rise to a step size or cell size h = L/N =
15ξ0/N . As a starting value, we assume γ (x = 0) = 0 at the
start of the trajectory.

In the absence of an analytic solution for the order-
parameter profile in Eq. (A1), we take the numerical solution
of the stepping method for a very dense grid, using Nmax =
51200 points, as the reference solution. As a measure of the
numerical error, we use the summed difference

δγ (N ) =
N∑

i=1

|γN (xi ) − γNmax (xi )|, (A2)

where we choose the xi such that they are included in the grid
for all values of N . A plot of the error scaling as function of N ,
normalized to δγ (Nmin) the error for the grid with the lowest
number of points Nmin = 25, is shown in Fig. 13.

For our benchmark problem, we find that the error δγ (N )
is of order O(1/N ) for both the stepping method and a
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corresponding DG method with piecewise constant polyno-
mials (k = 0) as approximating functions. Once we use linear
approximating functions (k = 1), we get an improved scaling
behavior of order O(1/N2), which we also find in the midpoint
method. In both approaches, this improved error scaling is
only found if the self-energy profile is also modeled as a
linearly varying function in a given step length or cell. For
a DG method with quadratic polynomials (k = 2), we find
an error scaling of order O(1/N3) (not shown in Fig. 13).
From the literature on DG methods we expect that for ap-
proximating polynomials up to order k, the error scaling is of
order O((1/N )k+1) for linear hyperbolic problems on uniform
grids [10]. While some literature exists on DG methods for

nonlinear problems [47], it appears that a more thorough anal-
ysis of the error scaling for the nonlinear Riccati equation is
an open question.

The computational time needed to solve this example in
one dimension scales linearly with the number of nodes N
and is thus of the same order of magnitude for all presented
methods. In two dimensions, the midpoint method should
scale as N2 on a square geometry while the equivalent FEM
is predicted to scale as Nd2, where d is the so-called band
width of entries around the diagonal [25]. Since d is deter-
mined by the upwind or downwind coupling of neighboring
cells, d can be made small compared to N by numerical
optimization.
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