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Abstract—Multitarget Tracking (MTT) is the problem of
tracking the states of an unknown number of objects using
noisy measurements, with important applications to autonomous
driving, surveillance, robotics, and others. In the model-based
Bayesian setting, there are conjugate priors that enable us
to express the multi-object posterior in closed form, which
could theoretically provide Bayes-optimal estimates. However, the
posterior involves a super-exponential growth of the number of
hypotheses over time, forcing state-of-the-art methods to resort to
approximations for remaining tractable, which can impact their
performance in complex scenarios. Model-free methods based on
deep-learning provide an attractive alternative, as they can, in
principle, learn the optimal filter from data, but to the best of
our knowledge were never compared to current state-of-the-art
Bayesian filters, specially not in contexts where accurate models
are available. In this paper, we propose a high-performing deep-
learning method for MTT based on the Transformer architecture
and compare it to two state-of-the-art Bayesian filters, in a setting
where we assume the correct model is provided. Although this
gives an edge to the model-based filters, it also allows us to
generate unlimited training data. We show that the proposed
model outperforms state-of-the-art Bayesian filters in complex
scenarios, while matching their performance in simpler cases,
which validates the applicability of deep-learning also in the
model-based regime. The code for all our implementations is
made available at https://github.com/JulianoLagana/MT3.

Index Terms—Multitarget tracking, Multi-object tracking,
Transformers, Deep learning, Multi-object conjugate prior.

I. INTRODUCTION

Multitarget tracking (MTT) is the problem of tracking a
varying number of targets/objects through time based on noisy
measurements. Methods capable of such functionality are im-
portant for several applications, such as pedestrian tracking [1],
autonomous driving [2], air traffic control [3], oceanography
[4], and many others. The main challenge of MTT comes from
the fact that objects may appear and disappear from the scene
at every time-step, and that there can be missed and false
detections. Therefore, a key challenge of MTT is to address the
unknown correspondence between targets and measurements,
a task referred to as data association.

In situations where we have access to accurate multitarget
models, and observe only low-dimensional, individual object
detections, the state of the art is achieved by model-based
Bayesian methods. Typical examples are the Poisson multi-
Bernoulli mixture (PMBM) filter [5] and the delta-generalized
labeled multi-Bernoulli (δ-GLMB) [6] filter, which use the
random finite set framework to formulate the tracking problem.
These methods make use of multi-object conjugate priors

to obtain a closed-form expression for the multi-object pos-
terior and can, in theory, provide Bayes-optimal estimates.
In practice, however, the complexity of the data association
and track management makes it intractable to compute the
optimal solution [5], [6]. Thus, these methods must resort to
approximations of the true posterior density, which become in-
creasingly inaccurate as the data association problem becomes
more challenging.

In recent years, MTT algorithms based on deep learning
have emerged as attractive alternatives to traditional Bayesian
methods, usually optimizing a model with a large number of
parameters by minimizing the empirical risk on an annotated
dataset for the problem at hand [7]. Such methods have
achieved unmatched performance in settings where no models
are available and high-dimensional measurements are provided
[8], [9], by extracting informative features from the data to
aid in estimating the quantities of interest. However, to the
best of our knowledge these methods have never been directly
compared to the performance of current state-of-the-art model-
based Bayesian methods such as the PMBM and δ-GLMB
filters, specially not in contexts where accurate models of the
environment are available.

In this paper, we study how deep learning MTT compares
to the state-of-the-art Bayesian filters PMBM and δ-GLMB,
in the model-based regime. In particular, we propose the
MultiTarget Tracking Transformer (MT3), a high-performing,
specific type of neural network for MTT based on the Trans-
former [10] architecture, and evaluate it in scenarios where we
assume that the models are correct. In principle, this context
gives the model-based methods an edge because they have
access to the true models. However, at the same time we can
use the available models to generate as much training data as
necessary for MT3, allowing high-capacity architectures that
can potentially obtain better performance. Our results show
that MT3 performs competitively to PMBM and δ-GLMB with
reasonable computational complexity in a relatively simple
scenario, while outperforming them when the task becomes
more complex. This demonstrates the applicability of deep-
learning-based MTT methods also in the model-based regime.

The remainder of the paper is organized as follows. In
Section II, we present the multitarget models used and the
problem formulation. In Section III, a short background on
the Transformer architecture is provided. Section IV details the
proposed MT3 algorithm, and Section V the simulation results
and ablation studies, followed by conclusions in Section VI.

https://github.com/JulianoLagana/MT3


Notations: Throughout the paper, we use the following
notations: scalars are denoted by lowercase or uppercase letters
with no special typesetting x, vectors by lowercase boldface
letters x, matrices by uppercase boldface letters X, and sets
by uppercase blackboard-bold letters X. Sequences of scalars
are abbreviated as x1:n, and sequences of vectors as x1:n. In
addition, we define Na = {i ∈ N | i ≤ a}, a ∈ N.

II. MULTITARGET MODELS AND PROBLEM FORMULATION

In this work we follow the standard multitarget transition
and observation models for point objects [11, Chap. 5], without
target spawning. The state vector for object i at time-step t is
xti ∈ Rdx , and Xt is the set of all object states at time-step
t. New objects arrive according to a Poisson point process
(PPP) with birth intensity λb(x), while existing objects de-
part according to independent and identically distributed (iid)
Markovian processes where the survival probability is ps(x).
The motion models for the objects are also iid Markovian
processes, where the single-object transition density is denoted
f(xt+1 | xt).

At every time-step, each of the existing objects may give
rise to at most one measurement (and each measurement is the
result of at most one object), where the probability of detection
in state x is pd(x). Clutter measurements arrive according to
a PPP with intensity λc, independent of the existing objects
or true measurements. Each non-clutter/true measurement is
independent of all other objects and measurements conditioned
on its corresponding target, and the single object measurement
likelihood is denoted g(zt | xt), zt ∈ Rdz . Lastly, the set of
all measurements (true and clutter) generated at time-step t
is denoted Zt. For this paper we focus on the problem of
multitarget estimation using a moving window: the estimation
of XT given knowledge of the measurements from τ time-
steps in the past until the current time [ZT−τ , · · · ,ZT ].

III. BACKGROUND ON TRANSFORMERS

The Transformer architecture, first introduced in [10], is
a type of neural network tailored for sequence-to-sequence
function approximation, making it well-suited to the MTT
problem. Its structure is comprised of an encoder and a de-
coder, as shown in Fig. 1. The Transformer processes the input
sequence1 x1:n into an output sequence y1:k in a learnable
way, and its main building block is the self-attention layer. The
optimization of the trainable parameters of the Transformer
architecture is typically done by stochastic gradient descent on
some loss function LT (y1:k,g1:k), that compares the output
sequence with a ground-truth sequence g1:k. This section
provides a background review on the self-attention layer and
the encoder/decoder modules of the Transformer model.

A. Self-Attention Layer

The self-attention layer is the main building block of the
Transformer architecture and processes an input sequence x1:n

1The symbols x, X, y, Y used for this section are not connected to the
rest of the paper; we make use of the standard notation from the Transformer
literature (e.g. x for the input to layers/modules, and y for their outputs).
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Fig. 1. Simplified diagram illustrating the Transformer architecture. Encoder
on the left, containing N encoder blocks, processes the input sequence x1:n

into embeddings e1:n. DETR decoder on the right, containing M decoder
blocks, uses the embeddings e1:n produced by the encoder together with the
object queries o1:k to predict the output sequence y1:k .

into an output sequence y1:n, where xi,yi ∈ Rd, i ∈ Nn.
We also introduce X =

[
x1, · · · ,xn

]
∈ Rd×n and similarly

Y =
[
y1, · · · ,yn

]
∈ Rd×n.

The first step is to compute three linear transformations of
the input,

Q = WQX, K = WKX, V = WV X, (1)

referred to as queries, keys, and values, respectively, and
where WQ,WK ,WV ∈ Rd×d are the learnable parameters
of the self-attention layer. The output is constructed using the
queries, keys, and values as

Y = V · Softmax-c
(

K>Q√
d

)
, (2)

where Softmax-c is the column-wise application of the Soft-
max function, defined as

[Softmax-c(Z)]i,j =
eZi,j∑d
k=1 e

Zk,j
; i ∈ Nd, j ∈ Nn

for Z ∈ Rd×n. Note that each output yi of the self-attention
layer directly depends on every input xi. This allows the
model to learn about the pair-wise relations among all the
elements of the input sequence, using a constant number of
model parameters that does not depend on the sequence length.
Furthermore, compound applications of the self-attention layer
result in more complex and improved representations of each
element in the sequence, allowing for more complicated rela-
tions to be learned. These properties are beneficial for tackling
the data association problem in MTT, allowing the model to



leverage on complex, long-range patterns in the sequence of
measurements when detecting objects.

In practice, Transformers use so-called multi-headed self-
attention layers (shown in orange in Fig. 1), where X is fed
to nh different self-attention layers (with independent learn-
able parameters) in parallel, generating nh different values
Y1, · · · ,Ynh . The final output is then computed by vertically
stacking the results and applying a linear transformation to
reduce the dimensionality:

Y = W0

 Y1

...
Ynh

 (3)

where W0 ∈ Rd×dnn is a learnable parameter of the multi-
head self-attention layer. Finally, Y is converted back to a
sequence y1:n = MultiAttention(x1:n). These multi-headed
self-attention layers are then used to form the two main
modules of a Transformer model: the encoder and the decoder.

B. Transformer Encoder

The encoder module of the Transformer model is the part re-
sponsible for transforming the input sequence into a sequence
where each element has now a representation (embedding) that
depends on all other elements in the sequence. Specifically,
this is done by stacking N “encoder blocks” on top of each
other, as shown in the left of Fig. 1. The output for encoder
layer l ∈ NN is computed as

t
(l)
1:n = MultiAttention(x

(l−1)
1:n ) (4)

t̃
(l)
1:n = LayerNorm(x

(l−1)
1:n + t

(l)
1:n) (5)

x
(l)
1:n = LayerNorm(t̃

(l)
1:n + FFN(t̃

(l)
1:n)) , (6)

where x
(0)
1:n is the input sequence x1:n, MultiAttention is

a multiheaded self-attention layer, FFN is a fully-connected
feed-forward network, and LayerNorm is a Layer Normal-
ization layer [12]. The output of the last layer x

(N)
1:n is the

encoded input sequence, denoted e1:n in Fig. 1. Once the
encoder is trained, each ei, i ∈ Nn will contain an improved
representation of xi that potentially summarizes the relevant
information from all other xj , j ∈ Nn \ i, in a way that is
helpful for the task at hand. In MTT, for example, it can
contain relevant information about other measurements from
the same object at different time steps.

As one can infer from this type of architecture, the encoder
blocks are permutation-equivariant, and can be seen as learning
mappings between input and output sets. However, in many
applications (e.g. translation, sentiment analysis, MTT), there
is important information encoded in the order of the elements
in the input sequence. To allow the Transformer model to
leverage on such information, one usually adds a “positional
encoding” q1:n vector to the input of every encoder (and
often decoder) layer, using x

(l)
1:n + q1:n, in the subsequent

computations instead of x1:n, where qi = fp(i). The function
fp can either be fixed, usually with sinusoidal components
[10], or learnable [13].

C. DETR Decoder

The Transformer decoder is the module responsible for
using the embeddings computed by the encoder to predict the
output sequence y1:k. Different Transformer decoder struc-
tures have been proposed for different problems [10], [14],
[15], and the one used in this paper is similar to the one
proposed in [13]. Specifically, instead of performing predic-
tions autoregressively as in [10], the DEtection TRansformer
(DETR) [13] decoder takes as input the encoded input se-
quence and a sequence of “object queries” o1:k (learnable
vectors), and computes all of its predictions in parallel. Each
object query oi learns to attend to aspects of the embeddings
e1:n which are helpful for predicting the output yi. In MTT,
for example, an object query oi can potentially learn to only
attend to the embeddings of the true measurements from a
certain object, making it possible for the decoder self-attention
layers to perform the easier task of regression.

As shown in Fig 1, the decoder is comprised of M “decoder
blocks” stacked on top of each other, where the input of the
next block is the output of the previous one. Similarly to the
encoder, the input is processed by layers of self-attention fol-
lowed by an FFN, with normalization layers in-between. The
Cross-attention layer shown in Fig 1 is a regular multi-head
attention layer as described in section III-A, with the difference
that the matrices K and V in (1) are respectively computed by
multiplying WK and WV with e1:n, while Q is computed as
usual, by multiplying WQ with the output from the previous
normalization layer. All of the subsequent computations are
the same as regular multiheaded self-attention.

IV. MTT USING TRANSFORMERS

This section describes our proposed transformer architecture
MT3: MultiTarget Tracking with Transformers. We approach
the task of model-based MTT using deep learning, where the
available transition and observation models are used for gener-
ating unlimited training data. In comparison to traditional MTT
algorithms, we sidestep the need for using recursive pruning
strategies that impair estimation performance by proposing
a network structure able to implicitly reason about the data
association hypotheses across the entire sequence, given all
measurements.

A. MT3 Architecture

MT3 uses an encoder-decoder architecture for processing
the input measurement sequence, as shown in Fig. 2. The idea
is that the Transformer encoder can process the measurement
sequence, generating a new, improved representation for each
measurement capable of encoding helpful properties such as
which measurements come from the same object, which are
clutter measurements, etc. We feed these new representations
into a modified DETR decoder, which can then leverage on
them for implicitly performing soft data associations using
cross-attention, and subsequent state estimation with the de-
coder self-attention.
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Fig. 2. High-level diagram of the MT3 architecture. The measurements z1:n
are processed by the encoder, producing embeddings e1:n. These embeddings
are used by a selection mechanism for generating object queries o1:k . Lastly,
e1:n and o1:k are used by the decoder for predicting the object states, x̂T

1:k ,
and corresponding existence probabilities p1:k .

Concretely, the measurements [ZT−τ , · · · ,ZT ] are collected
in a sequence

z1:n = [zT−τ1 , · · · , zT−τ
nT−τ

, · · · , zT1 , · · · , zTnT ], (7)

where nt .= |Zt|, n =
∑T
i=T−τ n

i
z , and the elements of each

Zi are added in random order to the sequence. As shown in
Fig. 2, the sequence z1:n is fed to a Transformer encoder (N
blocks), which generates embeddings for each measurement,
resulting in a sequence e1:n. The sequence of embeddings
e1:n is then fed to a Transformer decoder (containing M
encoder blocks), together with object queries o1:k produced by
a selection mechanism (explained in Section IV-B), to produce
the output: estimated states for the objects present at time-step
T , x̂T1:k, and corresponding existence probabilities, p1:k.

B. Selection Mechanism

In order to produce the object queries o1:k, a selection
mechanism similar to the two-stage encoder proposed in [16]
is used: instead of using learned object queries that are the
same for all sequences z1:n, the k most promising measure-
ments in z1:n are used as starting points, in order to facilitate
the task of the decoder. To that end, each embedding ei is fed
to two different FFN layers, see Fig. 2. To select the most
promising measurements, scores mi = Softmax(FFN1(ei)) ∈
[0, 1], i ∈ Nn are computed, and the measurements with the
top-k-scores are then selected as candidates for the object
queries. In order to allow more flexibility, the second FFN
computes offsets δi = FFN2(ei) ∈ Rdz , i ∈ Nn, which are
added to the chosen measurements:

z̃i = zri + δri , i ∈ Nk . (8)

where r = argsort(m1:n), and argsort is a function that
returns the indices that would sort the input array (i.e.,
mri ≥ mrj ⇐⇒ i > j, for r = argsort(m1:n)). The

sequence z̃1:k is then fed to an FFN layer, producing the object
queries o1:k for the decoder

oi = FFN(z̃i), i ∈ Nk , (9)

where each element oi ∈ Rd′ , and d′ > dz is a hyperparame-
ter. Changing the value of the hyperparameter k then decides
the trade-off between model capacity and computational re-
quirements.

C. Iterative Refinement of State
We also adopt the idea of iterative refinement [16]–[19].

Instead of directly predicting the quantity of interest, each
layer in the decoder predicts adjustments to the predictions
made in the previous layer. In MT3, the output yl1:k from
each decoder layer l ∈ NM is fed through an FFN, producing
adjustments ∆l

1:k for each of the k objects. The estimated
position at layer L is then computed as

x̂T,Li = z̃i +

L∑
l=1

∆l
i , i ∈ Nk . (10)

The existence probabilities, however, are not iteratively re-
fined, and are computed directly by feeding the output of each
decoder layer l through an FFN:

pli = FFN(yli), i ∈ Nk . (11)

Therefore, at each decoder layer l, estimates x̂T,l1:k and existence
probabilities pl1:k are produced. The final output of MT3,
shown in Fig. 2, is defined as the estimates computed at the
last decoder layer M : x̂T1:k = x̂T,M1:k and p1:k = pM1:k.

D. Loss Function
We use the same loss function as defined in [13], which is

based on the localization error and probabilities of missed and
false targets, given the best match between ground-truth and
predictions. Instead of applying such loss only to the final
outputs (x̂T1:k, p1:k), we apply it to the estimates produced
at all the decoder layers, summing all contributions together.
This was shown to improve performance for deep Transformer
decoder structures, accelerating learning [13], [20].

Given a prediction made by the Transformer at decoder
layer l:

al1:k =
(

(x̂T,l1 , pl1), ..., (x̂T,lk , plk)
)
,

and ground-truth states for all objects present at time-step T :

g1:|XT | =
(
xT1 , ...,x

T
|XT |

)
,

we assume2, in the same fashion as [13], that k ≥ |XT | and
then pad g1:|XT | with ∅ elements so that k = |XT |. The best
match is then computed as

σl∗ = arg min
σ

k∑
i=1

Lm(ali,gσ(i)) (12)

2We choose a value of k which is large in comparison to the generative
model, and enforce the inequality constraint during training by not adding
more than k objects in a scene, k being the number of object queries of the
model being trained. This restriction is only applied during training, during
inference this loss needs not be computed.



where σ is a permutation function:

σ : Nk → Nk | σ(i) = σ(j)⇒ i = j ,

and Lm is the matching loss, defined as

Lm(ali,gj) =

{
0 if alj = ∅
‖x̂T,li − xTi ‖ − pli otherwise.

(13)

The optimization problem in (12) can be efficiently solved
using the Hungarian algorithm [21]. Given the best match σl∗
at each layer l, the final loss used to train the model is:

LT (a1:M
1:k ,g1:k) =

M∑
l=1

k∑
i=1

L(ali,gσl∗(i)) (14)

where L is defined as

L(ali,gj) =

{
− log(1− pi) if gj = ∅
‖x̂T,li − xTi ‖ − log(pi) otherwise.

(15)

E. Contrastive Auxiliary Learning

Training on auxiliary tasks often helps the training process
and the generalization performance of the final model, by
leveraging on information helpful for the task which is present
in the inputs, but not being directly used by the primary
loss chosen for training [22]. In MTT, this could be the
information of whether a measurement is clutter or not, or
if it comes from the same object as another measurement.
Although such information is helpful for solving the task,
it is not directly used by the loss chosen in Section IV-D.
In order to steer the model into quickly learning how to
perform this task, we use an idea inspired by Supervised
Contrastive Learning [23] to create the contrastive loss Lc,
with the aid of object labels for each of the measurements.
The idea is to encourage the encoder to generate embeddings
of measurements which are similar for measurements coming
from the same object, but dissimilar for measurements coming
from different objects. False measurements are treated as
coming all from the same dummy object (and therefore their
encoded representations should be similar to each other, but
dissimilar to the representations of all other measurements).

Concretely, for a given sequence of measurements z1:n, let
bi be the object from which measurement zi came from, i ∈
Nn. We define Pi = {j ∈ Nn | j 6= i , bi = bj}, that is, Pi is
the set of indices of measurements that came from the same
object as zi. The auxiliary loss Lc is then defined as:

Lc(u1:n,P1:n) = α

n∑
i=1

−1

|Pi|
∑
i+∈Pi

log
eu
>
i ui+∑

j∈Nn\i
eu
>
i uj

(16)

where, u1:n is a sequence of vectors computed by processing
each ei, i ∈ Nn (embeddings of z1:n computed by the encoder)
with an FFN layer and normalizing to unit length, and α ≥ 0
is a hyperparameter used to control the importance of this
task. Minimizing this loss can be understood as making u>i uj
large when zi and zj are from the same object, but small when
they are from different objects. Training on the sum of this

auxiliary loss and the loss defined in (14) accelerated learning
and improved the final performance of the trained model in
both tasks considered in Section V.

F. Preprocessing

We perform three steps of preprocessing: normalization,
dimensionality augmentation, and addition of a temporal en-
coding, whose main aspects are explained in this subsection.
For additional information we refer the reader to our code.
For preprocessing, we first normalize all dimensions of each
measurement vector zi in z1:n to be in [0, 1], using the known
field-of-view dimensions. Then, to use self-attention layers
of higher dimensionality, we increase the dimension of each
measurement vector using a linear transformation

z′i = Wzi + b, i ∈ Nn , (17)

where z′i ∈ Rd′ is the dimensionality augmented measurement
vector, d′ was defined in Section IV-B, and W ∈ Rd′×dz ,
b ∈ Rd′ are learnable parameters. Lastly, we add positional
encodings to the inputs of all the encoder and decoder layers,
with learnable fp as described in section III-B, similar to [13].
However, instead of using the position of the elements as input
to fp, we use the corresponding time-step for that position in
the sequence.

V. RESULTS

We evaluate the performance of MT3 in two tasks of dif-
ferent complexity using synthetic data, and compare it against
two state-of-the-art Bayesian RFS filters: the PMBM filter [5],
[24], and the δ-GLMB filter [6], both with linear/Gaussian
implementation. Furthermore, we perform a series of ablation
studies to evaluate the importance of different components of
the MT3 architecture.

A. Definition of the Tasks

We compare the performance of the three trackers under two
different variations, henceforth referred to as Task 1 and Task
2. For both tasks, τ = 20, λb(x) = 10−3, ps(x) = 0.95, the
field of view is the 2D square [−10, 10] × [−10, 10], and we
use Poisson models with parameter λ0 for the initial number of
objects. The motion model used is the nearly constant velocity
model, defined as:

f(xt+1|xt) = N

([
I I∆t

0 I

]
xt , σ2

q

[
I

∆3
t

3 I
∆2
t

2

I
∆2
t

2 I∆t

])
(18)

where xt+1,xt ∈ Rdx , dx = 4 represents target position and
velocity in 2D, ∆t = 0.1 is the sampling period, σq controls
the magnitude of the process noise, and the state for new-
born objects is sampled from N (0, 3I). The linear Gaussian
measurement model is used with measurement likelihood

g
(
zt | xt) = N (Hxt, Iσ2

z

)
(19)

where H selects the position components from xt, and σz
controls the magnitude of the measurement noise.

Task 1 has λ0 = 4, pd = 0.9, λc = 0.05, σq = 0.5,
and σz = 0.1. We expect the model-based Bayesian trackers



to be able to approximate well the optimal solution in this
context, making them a strong benchmark for evaluating the
Transformer-based model. Task 2 has λ0 = 6, pd = 0.8,
λc = 0.075, σq = 0.9, and σz = 0.3. The lower signal-to-noise
ratio in this task makes it considerably harder for conventional
MTT algorithms to perform well with a feasible computational
complexity, since the number of probable hypothesis to keep
track of grows considerably.

B. Algorithms

1) PMBM: The PMBM filter provides a closed-form solu-
tion for multiple point object tracking with standard multitar-
get models with Poisson birth. The unknown data associations
lead to an intractably large number of terms in the PMBM
density. To achieve computational tractability of the PMBM
filter, it is necessary to reduce the number of PMBM parame-
ters. First, gating is used to remove unlikely measurement-to-
object associations, by thresholding the squared Mahalanobis
distance, where the gating size is 20. Second, we use Murty’s
algorithm [25] to find up to 200 best assignments. Third,
we prune multi-Bernoullis with weight smaller than 10−4,
Bernoulli components with probability of existence smaller
than 10−5 and Poisson mixture components with weight
smaller than 10−5. Object state estimation is performed by
obtaining the global hypothesis with highest weight at time-
step T and reporting the means of the Bernoullis whose
existence is above 0.5 (Estimator 1 in [5]). PMBM was run
on a machine with 2x16 core Intel Xeon Gold 6226R CPU,
amounting to average inference times per sample of 2.4s and
13.2s for Task 1 and Task 2, respectively.

2) δ-GLMB: The δ-GLMB filter provides a closed-form
solution for MTT when the object birth model is a multi-
Bernoulli (mixture). To achieve computational tractability of
the δ-GLMB filter, gating and Murty’s algorithm are imple-
mented to remove unlikely measurement-to-object associations
as in the PMBM filter. In addition, we prune multi-Bernoullis
with weight smaller than 10−4. Object states are extracted
from the global hypothesis with the highest weight. Average
inference times per sample on the same machine as above
were 16.8s and 23.3s for Task 1 and Task 2, respectively

3) MT3: The architecture choice used for the encoder is
the same as in [10], and for decoder the same as in [13].
We use 6 encoder and 6 decoder layers, and in all of them
the multiheaded self-attention layers have 8 heads. All FFN
layers in the encoder and decoder layers are comprised of
2048 hidden units, and we use a dropout rate of 0.1 during
training. The increased state dimensionality d′ is set to 256.
The FFNs used for predicting measurement adjustments δi
in (8), state refinements ∆l

1:k in (10), object queries oi in
(9), and existence probabilities pli in (11) are all comprised
of single-layer neural networks with 128 hidden units, while
the FFN used in the computation of ui’s in (16) has 256.
Furthermore, in all our experiments we set the contrastive
loss weight α = 4.0, and we extract target estimates from
x̂ti with pi ≥ 0.9. MT3 was trained on a V100 GPU for
approximately 110 hours on each task, amounting to 800k and

600k gradient descent steps for Task 1 and Task 2, respectively.
The ADAM optimizer [26] was used, with a batch size of 32.
Each batch of samples is generated using the known transition
and observation models available for each task. The initial
learning rate was set to 5 · 10−5, and whenever the total loss
value LT did not decrease for 50k consecutive time-steps,
the learning rate was reduced by a factor of 4. Once trained,
inference times for MT3 on the same hardware were 0.032s
and 0.035s per sample, for Task 1 and Task 2, respectively.
The code used to define, train, and evaluate our model is made
publicly available.

C. Performance Metrics

We evaluate the performance of each algorithm using the
Generalized optimal sub-pattern assignment (GOSPA) metric
[27] with α = 2 between predictions X̂ = {x̂T1 , · · · , x̂T|X̂|} and
the ground-truth states X = {xT1 , · · · ,xT|X|}, defined as

d(c,2)
p (X̂,X) =

min
γ∈Γ

( ∑
(i,j)∈γ

d(x̂Ti ,x
T
j )p

︸ ︷︷ ︸
Localization

+
cp

2
(|X̂| − |γ|)︸ ︷︷ ︸

False detections

+
cp

2
(|X| − |γ|)︸ ︷︷ ︸

Missed detections

) 1
p

(20)
where the minimization is over assignment sets between
the elements of X and Y , such that γ ⊆ {1, · · · , |X̂|} ×
{1, · · · , |X|}, while (i, j), (i, j′) ∈ γ =⇒ j = j′, and
(i, j), (i′, j) ∈ γ =⇒ i = i′. In all our experiments we
use c = 2.0, p = 1, and

d(x̂Ti ,x
T
i ) = ‖Hx̂Ti −HxTi ‖ . (21)

We evaluate the estimation performance of the three trackers
using Monte Carlo simulation with 1000 runs.

D. Task 1 Results

The resulting average GOSPA scores for Task 1 are shown
in Table I, along with corresponding decompositions. The
localization decomposition is provided after normalizing it
by the number of detected objects, so as to provide an
easier comparison between methods with large differences
in missed detection rates.d In terms of total GOSPA error,
PMBM performs best in this task, with MT3 achieving a close
second place. The δ-GLMB filter attains worse performance
than PMBM in this task, mainly because PMBM has a more
efficient hypothesis structure than δ-GLMB [28]. MT3 obtains
the lowest missed and false detection rates, which implies that
it performs the data association task the best.

TABLE I
GOSPA AND ITS DECOMPOSITIONS FOR TASK 1.

Method GOSPA Localization Missed False

PMBM 1.267 0.102 0.632 0.195
δ-GLMB 1.863 0.098 1.137 0.335
MT3 1.277 0.141 0.528 0.094
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Fig. 3. Evaluation sample for Task 1. The measurements generated during
the τ = 20 simulation time-steps are shown in black, with their transparency
illustrating the time-step in which they were taken (more opaque x’s corre-
spond to more recent measurements, closer to t = T ). Clutter is depicted as
small black circles and true measurements as black crosses.

As a simple visual assessment of the task complexity as
well as the trackers’ performance, an evaluation sample from
this task is plotted in Fig. 3. We show only the predictions for
the best and second-best performing trackers to reduce visual
clutter. From the figure we can see that neither PMBM nor
MT3 had difficulty in finding all targets among the clutter.
Note that the faint black crosses in the borders of the image
correspond to measurements generated by objects which left
the scene at a time-step prior to t = T , so no predictions are
made for them.

E. Task 2 Results

The resulting average GOSPA scores for Task 2 are shown
in Table II, along with corresponding decompositions. In
this setting, MT3 outperforms the alternatives, having not
only considerably lower missed detection rates, but also the
lowest overall GOSPA score. Traditional methods have more
difficulty in keeping track of all possible data association
hypotheses, and approximations must be made so that the
posterior computation remains feasible [11]. We hypothesize
the Transformer model, in contrast, can efficiently learn to
leverage complex time correlations in the input sequence
to directly predict the object states, thus sidestepping the

TABLE II
GOSPA AND ITS DECOMPOSITIONS FOR TASK 2.

Method GOSPA Localization Missed False

PMBM 4.075 0.3025 3.225 0.163
δ-GLMB 4.450 0.280 3.515 0.323
MT3 3.662 0.3767 1.995 0.364
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Fig. 4. Evaluation sample for Task 2. Same symbol convention from Fig. 3.
Note the increased number of false and missed measurements, coupled with
more measurement and motion noise, making the tracking considerably harder.

complicated posterior computation and resulting in better
performance.

An example evaluation sample from this task is shown in
Fig 4, together with the predictions for the best and second-
best performing trackers. In it, we can see that MT3 was
still able to predict reasonable estimates for the position of
most objects, and PMBM presented more missed detections,
especially for newborn objects. For some detected objects
(e.g., at approximately (3, 7)), although MT3 was able to
detect it while PMBM failed to do so, MT3’s state estimate
seems suboptimal, judging from the trend in the measure-
ments. This type of prediction may explain MT3’s larger
localization errors. From the results, we hypothesize that the
Transformer architecture as used in MT3 is good at reasoning
probable data association hypotheses, but future work could
improve it for better state regression.

F. Ablation studies

To shed light on the importance of the design choices for
the MT3 algorithm, we conducted a series of ablation studies
of MT3 in Task 2:

1) No contrastive loss: the term α in (16) was set to zero.
2) No iterative refinement: ∆l

1:k in (10) was set to zeros
for all l 6= M .

3) No selection mechanism: o1:k in (9) is set to a learned
lookup table (similar to [13]), no dependence on z1:n

nor e1:n.
4) No intermediate decoder losses: L(ali,gj) in (14) is set

to zero for all l 6= M .
All other hyperparameters were kept constant, and the ab-
lations were trained on exactly the same data, for the same
number of gradient steps (600k). The average GOSPA scores



TABLE III
ABLATION STUDIES FOR THE MT3 ARCHITECTURE IN TASK 2.

Ablation GOSPA

MT3 (original) 3.662
MT3, no contrastive loss 3.729
MT3, no iterative refinement 4.094
MT3, no selection mechanism 4.587
MT3, no intermediate decoder losses 5.055

for the original architecture and the ablations are shown in
Table III, computed using 1000 Monte Carlo simulations. The
results show not only that all of the considered components
are indeed beneficial in terms of final GOSPA score, but also
their relative importances. Removing the intermediate decoder
losses has the strongest effect.

VI. CONCLUSION

In this work, we performed a comparison of two state-of-
the-art model-based Bayesian methods for multitarget tracking
to a deep learning approach based on the Transformer archi-
tecture. The evaluation showed that the proposed architecture,
MT3, performs competitively to the model-based Bayesian
methods, while being able to outperform them in more com-
plicated tasks. Our results provide evidence that deep-learning
models are suitable for the MTT task also in the model-based
regime, where model-based Bayesian trackers have long been
regarded as state of the art.

Interesting future research directions include developing
training loss functions which are closer to the standard per-
formance metric used in this setting (GOSPA), evaluating the
quality of the uncertainties produced [29], and investigating
the performance of MT3 and related algorithms under model
mismatch. Furthermore, we note that MT3 can be easily gen-
eralized to other contexts outside of the model-based regime
without drastic changes to the overall architecture.
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[27] A. S. Rahmathullah, Á. F. Garcı́a-Fernández, and L. Svensson, “Gen-
eralized optimal sub-pattern assignment metric,” in IEEE International
Conference on Information Fusion (Fusion), 2017.
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