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We propose a new approach to calculate the conformational free energy of a macromolecule in a
compact stable state in implicit solvent. The free energy is evaluated with respect to an artificial ref-
erence system without internal interactions that is confined to a small well-defined multidimensional
volume of a regular shape occupying approximately the same part of the conformational space as
the macromolecule of interest. We present a practical implementation of our method, successfully
apply it to a β-hairpin in all-atom representation, verify the results with direct parallel tempering
simulations, and discuss the possibilities of further improvements. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817195]

I. INTRODUCTION

The conformational free energy of a certain state of a
macromolecular system is an important measure of its sta-
bility. Although it is possible to estimate the free energy from
numerical simulations, it is not usually easy. As a rule, such
estimation is done in an indirect way: one obtains not the “ab-
solute” free energy, but the free energy difference calculated
in comparison with some other reference state or reference
system. The reliability of the estimation strongly depends on
similarity of the two compared states (systems): the less is the
similarity, the more difficult it is to obtain a reliable estima-
tion. (For reviews, see, for example, Refs. 1–4.)

In the present study, we consider the possibility to ap-
proach the problem from the other side. We are interested
in calculation of the “absolute” conformational free energy
F without comparison to other physical states or systems. In
principle, it can be done by means of the formula

〈eβU (x)〉 = 1

Z

∫
dx e−βU (x) eβU (x) = V

Z
, (1)

where x is a point in the conformational space, U(x) is the
potential energy, β = 1/kBT is the inverse Boltzmann con-
stant multiplied by the inverse temperature, Z = e−βF is the
partition function, and V = ∫

dx is the total volume of the
conformational space, which we assume to be finite. The av-
erage quantity 〈eβU(x)〉 can be, in principle, found in numerical
simulations. But, in practice, the accuracy of results in most
cases would be absolutely unsatisfactory. The problem here
is not that the regions with the highest values of eβU(x) would
not be sampled, as this inconvenience can be easily eliminated
in some non-canonical sampling procedure. The real problem
is that one has to sample the whole huge multidimensional
conformational space, making the simulations unfeasible.

However, the situation might dramatically improve if the
system, in the state of interest, occupies only a small region
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of the total conformational space. One can confine this region
(or its representative part) by a boundary with a regular shape,
such as a multidimensional box or ellipsoid, for which the
volume V can be easily defined. In this case, the numerical
evaluation of the ratio V/Z might become quite feasible, either
by direct computation of 〈eβU(x)〉 or by some more elaborate
technique.

Here, we report our first implementation of this approach
and show that, for certain systems, it can be quite efficient.

II. THE METHOD OF THE “ABSOLUTE” FREE
ENERGY COMPUTATION

We consider a macromolecule as a classical system with
the potential energy U(x), where x is a point in the D-
dimensional space of internal degrees of freedom measured
in some dimensionless units. The solvent is taken into account
implicitly. We assume that the system is in a compact stable
state, such as the native state of a protein, so that conforma-
tional fluctuations are relatively small. Numerical simulation
methods (e.g., Monte Carlo) applied to this system produce a
set of structures that occupy only a very small part of the to-
tal conformational space. Given these structures, we can con-
struct a small D-dimensional ellipsoid that comprises a no-
ticeable fraction (say, ∼10%–50%) of the total set. After that,
we define another system in such a way that its potential en-
ergy inside the ellipsoid is equal to zero, but all the conforma-
tions outside it are forbidden. The new system is quite similar,
in some respect, to the original one. Its free energy, however,
can be calculated analytically, as its partition function is just
equal to the volume of the ellipsoid. Taking advantage of the
similarity of the two systems, one can relatively easily calcu-
late the free energy difference between them by known meth-
ods and, thus, evaluate the free energy of the original system.
Below, we describe this procedure in more detail.

For the construction of the ellipsoid we use a technique
that is similar to the principal component analysis (PCA).5
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Let us consider N conformations obtained in a simulation run
of (N − 1) steps as the D × N matrix X = ‖xdn‖, where d
= 1, . . . , D and n = 1, . . . , N, so that the nth column of this ma-
trix represents the conformation xn after (n − 1) steps. Let x̄

= 1
N

N∑
n=1

xn be the average conformation and let X̃

= ‖xdn − x̄d‖ be the matrix of all conformations shifted
by the vector x̄. The covariance matrix is defined as CX

= X̃X̃
T
/(N − 1). We denote its eigenvalues by λ1, . . . , λD,

its normalized eigenvectors by e1, . . . , eD, and the ma-
trix composed of the normalized eigenvectors (taken as
columns) by E = ‖e1 . . . eD‖. We define the new set of de-
grees of freedom by the transformation y = �−1/2ET(x − x̄),
where �−1/2 is the diagonal matrix with the diagonal elements
λ

−1/2
1 , . . . , λ

−1/2
D . As can be verified by straightforward com-

putations, the average value of yn is equal to zero and the
covariance matrix CY = YYT/(N − 1) for the transformed
dataset Y = �−1/2ETX̃ is equal to the unit matrix. In the
space of the y-vectors, we draw now a D-dimensional sphere
with the center at the origin y = 0 and the radius R, such
that a certain non-zero fraction p of all the data points yn lie
within this sphere. (In principle, the value of p can be cho-
sen arbitrary. However, this choice will affect the accuracy of
the final result. The range p ∼ 0.1–0.5 seems to be a reason-
able suggestion.) The volume of a multidimensional sphere is
known to be VD(R) = πD/2RD/�(1 + D/2), where �(. . . ) is
the gamma-function.6 In the x-space, the corresponding ellip-
soid has the volume

V0 = VD(R)
D∏

d=1

λ
1/2
d . (2)

It should be noted that the dimensionality of the ellipsoid re-
mains the same as that of the whole conformational space,
despite the use of the PCA, which is usually associated with
reduction of degrees of freedom.

As a next step, we can define a set of (K + 1) auxil-
iary systems confined to the interior of the ellipsoid with the
energy functions Uk(x) = αkU(x), k = 0, 1, . . . , K, where
the constants αk satisfy the inequality 0 = α0 < α1 < . . .
< αK = 1. The exact values of K and the constants αk should
be chosen in such a way that the free energy differences be-
tween the neighboring systems can be reliably evaluated with-
out the need for any other intermediate auxiliary systems. In
this study, we calculate these free energy differences in the
following way.

Consider a volume v in the conformational space that can
be well sampled by the simulations of both the neighboring
systems defined by the energies Uk(x) and Uk+1(x). Let Z

(v)
k

and Z
(v)
k+1 be the partition functions of the corresponding sub-

systems constrained to the given volume. Their ratio can be
calculated by the free energy perturbation method:7

Z
(v)
k+1

Z
(v)
k

=

∫
v

dx exp(−βUk) exp[−β(Uk+1 − Uk)]
∫
v

dx exp(−βUk)

= 〈exp[−β(Uk+1 − Uk)]〉(v)
k , (3)

where the notation 〈. . .〉(v)
k stands for averaging over the equi-

librium ensemble of the kth subsystem. In terms of the simu-
lation data, Eq. (3) means

Z
(v)
k+1

Z
(v)
k

= 1

N
(v)
k

∑
x(k)

n ∈ v

exp
[−β(αk+1 − αk)U

(
x(k)

n

)]
, (4)

where the summation is carried out over the conformations
x(k)

n of the kth system within the volume v, with N
(v)
k being

the total number of such conformations.
In this study, however, we use a more symmetrical ex-

pression for the ratio of the partition functions. Introducing
an intermediate system with the energy Uk+1/2(x) = 1

2 [Uk(x)
+ Uk+1(x)], we have

Z
(v)
k+1

Z
(v)
k

= Z
(v)
k+1

Z
(v)
k+1/2

Z
(v)
k+1/2

Z
(v)
k

= 〈exp[−β(Uk+1/2 − Uk)]〉(v)
k

〈exp[−β(Uk+1/2 − Uk+1)]〉(v)
k+1

.

(5)

The partition function of the kth system can be expressed as
Zk = (Nk/N

(v)
k )Z(v)

k , where Nk is the total number of confor-
mations in the simulation dataset. Hence, for the ratio of the
partition functions of the neighboring systems, after perform-
ing the averaging as in Eq. (4), we get from Eq. (5)

Zk+1

Zk

=
Nk+1

∑
x(k)

n ∈ v

exp
[− 1

2β(αk+1 − αk)U
(
x(k)

n

)]

Nk

∑
x(k+1)

n ∈ v

exp
[− 1

2β(αk − αk+1)U
(
x(k+1)

n

)] . (6)

Note that the both summations are still carried out only for
the conformations belonging to the volume v. Practically, this
volume can be conveniently defined by the condition that, for
x ∈ v, the value of the function U(x) belongs to a certain in-
terval, Umin

k,k+1 < U (x) < Umax
k,k+1, chosen in such a way that the

density function for the probability distribution of U(x) can be
reliably estimated everywhere within it for both the neighbor-
ing systems.

Combining all together, we can now write down the final
expression for the free energy of the original system:

F = −kBT ln

(
1

p

ZK

ZK−1

ZK−1

ZK−2
. . .

Z1

Z0
V0

)
, (7)

where the volume V0 of the confining ellipsoid is defined by
Eq. (2) and the ratios Zk+1/Zk are the quantities obtained from
simulations according to Eq. (6).

III. IMPLEMENTATION FOR A β-HAIRPIN

A. Simulation details

For the purpose of illustration we applied our approach
to Trp zipper 1, a small polypeptide that forms a β-hairpin at
room temperature.8 The Monte Carlo (MC) simulations were
performed using SIMONA program9 and the all-atom force
field PFF02 with implicit solvent10 that was shown to rea-
sonably reproduce the thermodynamic properties of Trp zip-
per 1.11 In order to prevent too large values of U(x) for the
auxiliary system with α0 = 0, we modified the force field in
such a way that the absolute values of the Lennard-Jones and
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electrostatic energies of interaction between any two atoms
were limited to 10 kcal/mol. All the lengths and angles of the
covalent bonds were fixed, and the only degrees of freedom
were the dihedral angles of the backbone and side chains. The
total number of degrees of freedom was D = 48. The follow-
ing two types of MC moves were used: (1) the random change
of a dihedral angle in the interval (−15◦, 15◦) and (2) the local
perturbation of the backbone within four consecutive residues
based on the exact loop closure algorithm.12

B. Folded ensemble

The calculation of the free energy of the native β-hairpin
was done for the temperature T = 160 K, which is quite be-
low the folding transition mid-point that was estimated to be
∼230 K. (By the temperature we mean just the formal param-
eter used in our simulations with the given force field without
any relation to realistic values.) The set of systems with dif-
ferent αk values was simulated in a single parallel tempering
run, since, in the frame of the MC procedure, the system with
the energy αkU(x) at the temperature T is equivalent to the
system with the energy U(x) at the temperature Tk = T/αk. A
conformation was considered to belong to the native state if
its root-mean-square deviation (RMSD) from the first struc-
ture deposited in the Protein Data Bank (PDB) under the code
1LE0 did not exceed 4.3 Å.

First of all, we performed parallel tempering simulation
of the system constrained to the native state. (Although the
parallel tempering is formally not required at this stage, we
still used this technique to provide better quality of results.)
From the total trajectory of 5 × 107 MC steps we registered
at equal intervals 10 000 conformations corresponding to the
temperature T = 160 K. These conformations were available
in terms of D = 48 dihedral angles xd, which had to be put in
an interval (xmin

d , xmin
d + 2π ) optimized for the further PCA-

like procedure of the ellipsoid construction. For each angle
xd, we built a histogram of m = 100 bins and defined the xmin

d

value as the mid-point of the longest series of consecutive bins
for which the occupancy was equal or below the threshold of
h = 0.36%. If the occupancies of all the bins were above this
threshold, then xmin

d was taken as the mid-point of the lowest
bin. (We used this simplified procedure with the given val-
ues of m and h for historical reasons. A stricter approach to
the PCA in the space of dihedral angles can be found, for ex-
ample, in Ref. 13.) After the transformation to the y-space
(described above), we calculated the average distance of the
y-points to the origin, which turned to be 6.6086, and took
this value as the radius R of the constraining sphere. The frac-
tion of the points lying within it was p = 0.646. Note that the
radius R is quite close to the ideal theoretical value of

√
D

= 6.9282 calculated under the assumption that each compo-
nent of the y-vector has a Gaussian distribution.

The second parallel tempering run was performed for the
system that, in the y-space, was confined to the given sphere
and, in the x-space, to the corresponding ellipsoid. Although
the constraint for the RMSD was now formally discarded, it
was actually fulfilled for all the conformations (otherwise one
would have to introduce an additional correction factor into
Eq. (7)). The MC trajectory consisted of 5 × 107 steps. The

temperature range was from 160 to 1020 K, the latter value
serving as an approximation to infinity. After this run we were
able, in the frame of our model, to calculate the free energy
Fnat of the native state according to Eq. (7).

C. Unfolded ensemble

The polypeptide chain of Trp zipper 1 turned out to be
small enough to allow calculation of the free energy Funf

of the unfolded state in a similar way, though without con-
struction of the ellipsoid. The third parallel tempering run, of
5 × 107 steps, was carried out for the system with forbid-
den native state (RMSD > 4.3 Å) in the temperature range
from 160 to 2500 K. In addition, three non-parallel runs of
the same length were performed with the infinite tempera-
ture: the first one with the energies constrained to the values
below the threshold of h′′ = 80 kcal/mol, the second one with
the threshold of h′ = 200 kcal/mol, and the last one with-
out any threshold. The RMSD constraint was not necessary
this time, as the occurrence of the native state was highly im-
probable. The partition function Z0 in the latter case is obvi-
ously equal to (2π )D with a very good accuracy, as the frac-
tion of the conformational space corresponding to the native
state (which should be excluded) is negligible. The partition
function of the system with the threshold h′ was calculated
from the relation Z′

0 = p′Z0, where p′ is the fraction of the
conformations with the energy below h′ in the unconstrained
ensemble. In a similar way, the partition function of the sys-
tem with the threshold h′′ was obtained as Z′′

0 = p′′Z′
0, where

p′′ is the fraction of the conformations lying below the thresh-
old h′′ in the ensemble constrained by the threshold h′. The
ratio Z1/Z

′′
0 , where Z1 is the partition function of the replica

with the highest temperature in the parallel tempering run,
was determined in the standard way according to Eq. (6), as
the corresponding ensembles were sufficiently overlapping.
The free energy of the unfolded state was found as

Funf = −kBT ln

(
ZK

ZK−1

ZK−1

ZK−2
. . .

Z1

Z′′
0

p′′p′(2π )D
)

, (8)

where Zk is the partition function of the kth replica, k = 1, . . . ,
K, so that ZK = Zunf corresponds to the lowest temperature T
= 160 K.

At last, a control parallel tempering run, of 1.5 × 108

steps, without any constraints was performed in the temper-
ature range from 160 to 350 K, which allowed direct cal-
culation of the folding free energy �F dir

fold = kBT ln[punf/

(1 − punf)], where punf is the fraction of unfolded conforma-
tions at T = 160 K.

IV. RESULTS

The β-hairpin structure of Trp zipper 1, which was used
as a model system in the present study, is shown in Fig. 1. We
estimated the free energy of the native state of this polypep-
tide from the data obtained by MC simulations in the all atom
force field PFF02 at the reduced temperature T = 160 K, quite
below the folding mid-point (∼230 K). The dimensionality
of this system is D = 48, with the dihedral angles being the
only degrees of freedom. After the preliminary simulation, we
confined the further simulations to a D-dimensional ellipsoid
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FIG. 1. The native structure of Trp zipper 1 (the first model deposited in the
PDB under the code 1LE0).

comprising considerable part of the native state ensemble, as
described above. The probability distribution functions for the
potential energy of the confined system at different tempera-
tures Tk are presented in Fig. 2. Since the regions where these
functions can be reliably evaluated are overlapping, one can
use Eqs. (2), (6), and (7), with αk = T/Tk, to estimate the free
energy Fnat of the native state. We found that Fnat was equal to
8.16 ± 0.02 kcal/mol. Here and below, the presented numeri-
cal values of the free energies are corrected by subtracting the
constant term −kBTln (2π )D, where (2π )D is the volume of
the total conformational space, so that these values are inde-
pendent from the measurement units used for the degrees of
freedom.

The distribution functions of the potential energy for
the unfolded state at different temperatures Tk are displayed
in Fig. 3. The overlapping between “neighboring” distribu-
tions is sufficient for reliable evaluation of the free energy
according to Eq. (8). The free energy of the unfolded state
at the reduced temperature T = 160 K was found to be
Funf = 9.49 ± 0.06 kcal/mol. Consequently, the free en-
ergy of folding is equal to �Ffold = Fnat − Funf = −1.33
± 0.06 kcal/mol. This value is to be compared with the es-
timation obtained from the direct parallel tempering simu-
lations of the unconstrained system, which yielded �F dir

fold
= −1.24 ± 0.10 kcal/mol. Taking into account the accuracy
of the calculations, the agreement is quite good. Note that the
highest accuracy was achieved for the compact native state,
for which our approach is best suited.
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FIG. 2. The probability density functions for the potential energy U(x) at dif-
ferent temperatures Tk for the system confined to the ellipsoid that occupies
approximately the same part of the conformational space as the native state.
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FIG. 3. The probability density functions for the potential energy U(x) at
different temperatures Tk for unfolded conformations.

V. DISCUSSION

The presented method for calculation of the free energies
proved to be quite efficient for the short polypeptide Trp zip-
per 1, which was taken as a model case. In general, however,
one can expect that the applicability of our approach would
strongly depend on the particularities of the considered sys-
tem. The more compact is the given state of a system, the
more reliable is the method.

In our calculations, the “absolute” free energy of
the folded hairpin was estimated with the accuracy of
0.02 kcal/mol. Surprisingly enough, it was also possible to
get the “absolute” free energy of the unfolded state, in which
case, however, the statistical error was noticeably larger,
0.06 kcal/mol, whereas the computational efforts were ap-
proximately the same. As the unfolded state is far from be-
ing compact, no confining ellipsoid could be constructed
and, hence, the procedure was reduced to the usual umbrella
sampling.14 Our method, in its pure form, is most suitable for
the case when the free energies of two compact stable states
of the same protein should be compared. This kind of prob-
lem may occur, for example, in the course of protein structure
prediction, when one has to decide between two or more dis-
similar decoys with close energy values.15

The present calculation of the folding free energy was
performed for the purpose of illustration and verification, be-
cause the result could be easily compared with that obtained
by the direct simulations by parallel tempering MC. We find it
encouraging that, for the given system, our approach yielded
higher accuracy than 0.10 kcal/mol achieved in the direct sim-
ulations that took approximately equal computational time.
The gain in efficiency is particularly noticeable for the com-
pact folded state.

In the present study, we applied canonical weights to
protein conformations and kept the energy landscape very
ragged, which is quite natural to start with, but obviously
not optimal. (The cutoff of 10 kcal/mol used for Lennard-
Jones and electrostatic pairwise interactions was far from be-
ing enough to eliminate raggedness.) We see further possible
improvement of the method in reweighting (or smoothing) the
clashing conformations, so that the whole confining ellipsoid
can be efficiently sampled in very few simulation runs, which
is not unrealistic for a compact subsystem. This question is
now under investigation.
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In principle, the sampling of the confining ellipsoid can
be improved by reduction of its size. This can be achieved,
for example, by reiterating the procedure of ellipsoid con-
struction: new full-energy simulations restrained to the first
ellipsoid are performed, and the obtained set of conforma-
tions is used to build the second ellipsoid that comprises only
a small part of this set, and so on. We find, however, that the
costs of such reiterations are considerably larger than the re-
sulting gains, at least for the chosen model system. It should
be noted that iterative restraining of a system to decreasingly
smaller regions in the conformational space is the key pro-
cedure of the deactivated morphing,16 which is another tech-
nique of free energy computation. However, in the frame of
the deactivated morphing the high costs of this procedure are
justified, as they are compensated by the possibility to treat
the explicit solvent.

In addition to the dihedral angles considered in this study,
other types of degrees of freedom can be used as well. The
only requirement is that they should be uniformly distributed
when the potential energy is set to zero: U(x) ≡ 0. Thus,
instead of the bond angle γ , one should take cos γ and in-
stead of the bond length r, the quantity r3, or, speaking more
strictly, (r/r0)3, where r0 is some constant length (for example,
1 Å), as the degrees of freedom are supposed to be dimension-
less. In the case when the system consists of two associated
molecules, the translational degrees of freedom can be used
straightforwardly (divided by r0), but the set of the Euler an-
gles (ϕ, θ , ψ) should be substituted by (ϕ, cos θ , ψ).

The presented method is compatible with the Brown-
ian dynamics and, in principle, with the molecular dynamics
(with a suitable thermostat). As the Brownian dynamics main-
tains the detailed balance, it can be formally considered as a
special case of MC, and, hence, the rejection of the moves
leading out from the confining ellipsoid should be performed
according to the usual MC rules: after rejecting a move, the
system returns to the previous state, which is counted in the
generated ensemble for another time. In molecular dynamics,
keeping the system inside the ellipsoid is a more delicate mat-
ter as it additionally may involve reinitialization of velocities
after the rejected move.

One should mention that the force field PFF02 used in
this study was originally designed for prediction of protein
structures. It was shown that its global minimum is capable to
reproduce the experiment native structure of proteins.10 How-
ever, any scaling factor can be applied simultaneously to all
terms of this force field without affecting this capability. For
that reason, the simulation temperatures are given here as for-
mal parameters. For example, the denaturation mid-point of
Trp zipper 1 was estimated to be ∼230 K, whereas the ex-
perimental value8 is 323 K, which yields the correction co-
efficient of 1.4. Thus, for the PFF02, the room temperature
corresponds to 213 K. The folding probability at this temper-
ature extracted from our simulations is 0.70 (data not shown),
being in a good agreement with the experimental value of 0.73
reported by Cochran et al.8 The free energy barrier between
the folded and unfolded states is not particularly high, so that
one can directly observe folding-unfolding events in ordinary
MC simulations. In order to avoid this trivial situation, we, for
the purpose of illustration, took a lower temperature, 160 K.

Extrapolation of experimental data to this temperature using
Eq. (4) of Ref. 17 gives the folding probability of 0.22, no-
ticeably smaller than the value 0.98 corresponding to our free
energy estimations. This disagreement is, however, quite ex-
pectable, as the force field parameters do not depend on the
temperature, so that the effect of cold denaturation cannot be
reproduced.

The only essential limitation of our method is the re-
quirement of implicit solvent. Although the force fields with
implicit solvent are widely used in simulations of proteins
and other macromolecules,18 they are not capable to capture
some fine effects of solute-solvent interactions. This limita-
tion, however, will be removed as soon as we have an efficient
procedure to estimate the free energy difference between a
system with implicit solvent and its counterpart with explicit
solvent. This problem, however, does not seem to be difficult.

A typical force field with explicit solvent contains the fol-
lowing terms:

U expl(x, s) = Up(x) + UE
ps(x, s) + ULJ

ps (x, s) + Us(s), (9)

where x represents, as before, a point in the conformational
space of a protein, s denotes the coordinates of the solvent
molecules, Up(x) and Us(s) are the energies of internal in-
teractions within the protein and the solvent, respectively,
whereas the external interactions between the protein and the
solvent are represented by the electrostatic, ULJ

ps (x, s), and
Lennard-Jones, UE

ps(x, s), potentials. A typical force field with
implicit solvent has the form

U impl(x) = Up(x) + F E
ps(x) + F LJ

ps (x), (10)

where Up(x) is the same term as in Eq. (9) and the terms
F E

ps(x) and F LJ
ps (x) approximate the free energies of electro-

static and surface interactions with the solvent, respectively.
Consider the “intermediate” system given by the conforma-
tional energy:

U interm(x, s) = Up(x) + F E
ps(x) + ULJ

ps (x, s) + Us(s). (11)

Formally, it treats the solvent explicitly; however, the ex-
ternal electrostatics is substituted by the implicit term
F E

ps(x). In this system, the explicit protein-solvent interac-
tions are so simplified that they can be approximated with
high accuracy by the implicit solvent model described by
Eq. (10), where the term F LJ

ps (x) is just proportional to the
surface area S(x) of the protein: F LJ

ps (x) = σS(x), with the co-
efficient σ being a macroscopic property of the solvent. On
the other hand, the “intermediate” system is quite similar to
the system with explicit solvent (Eq. (9)), so that the corre-
sponding free energy difference �F can be estimated by the
standard techniques. The quantity �F is to be used as a cor-
rection to the “absolute” free energy F of the system with im-
plicit solvent (Eq. (10)), which is available by our method.

VI. CONCLUSIONS

We considered the problem of free energy estimation
for a macromolecule in the implicit solvent approximation.
If the molecule is in a compact stable state with relatively
small structural fluctuations, one can take the advantage of
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this compactness to calculate the “absolute” free energy by
the new method proposed in this study. The epithet “absolute”
means that the free energy evaluation is done not in compar-
ison with some other physical state, but rather in comparison
with an artificial reference system which is simple enough
to allow analytical calculation of its free energy. The sim-
plicity of the reference system is achieved by switching off
all internal interactions and by confining its conformations
to a small multidimensional ellipsoid in the same conforma-
tional space region that is occupied by the macromolecule of
interest.

The new method is easy to implement. We demonstrated
its efficiency and reliability for a model system of 48 degrees
of freedom and discussed the possibilities of its further im-
provement. We believe that the new approach will be a useful
contribution to the existing repertoire of the efficient methods
for calculation of the free energy.
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