
Versatile Configuration and Control Framework for
Real Time Data Acquisition Systems

N. Karcher, R. Gebauer, R. Bauknecht, R. Illichmann, O. Sander

Abstract—Modern physics experiments often utilize FPGA-
based systems for real-time data acquisition. Integrated analog
electronics demand for complex calibration routines. Further-
more, versatile configuration and control of the whole system is a
key requirement. Beside low-level register interface to the FPGA,
also access to I2C and SPI buses is often needed to configure the
complete system. Calibration through an FPGA is inflexible and
yields a complex hardware implementation. On the contrary,
calibration through a remote system is possible but considerably
slower due to repetitive network accesses. By using SoC-FPGA
solutions with a microprocessor, more sophisticated configuration
and calibration solutions, as well as standard remote access
protocols, can be efficiently integrated in software.

Based on Xilinx Zynq US+ SoC-FPGAs, we implemented a
versatile control framework. This software framework offers a
convenient access to the hardware and a flexible abstraction
via remote-procedure calls (RPCs). Based on the open source
RPC library gRPC, functionality with low-latent control flow,
complex algorithms, data conversions and processing, as well
as configuration via external buses can be provided to a client
via Ethernet. Furthermore, client interfaces for various pro-
gramming languages can be generated automatically which eases
collaboration among different working groups and integration
into existing software. This contribution presents the framework
as well as benchmarks regarding latency and data throughput.

Index Terms—Remote Procedure Calls, SoC-FPGA, Software-
defined Radio, Remote Control, Ethernet

I. INTRODUCTION

FIELD Programmable Gate Arrays (FPGAs) are nowadays
commonly utilized in real-time data acquisition sys-

tems of small, medium, and large scale physics experiments.
Thereby, the role of FPGAs has expanded to a wide variety
of tasks, including data moving, online processing, trigger
systems, and more. Configuration and calibration of these sys-
tems has become a complex task on its own. Additional com-
ponents surrounding the FPGA, such as clock chips, optical
transceivers, analog-to-digital or digital-to-analog converters,
further alleviate the configuration and calibration complexity.
These tasks could be implemented inside the FPGA. However,
this would require a lot of implementation effort, take a
considerable amount of resources, and only provide limited
flexibility.

Modern heterogeneous FPGAs integrate traditional CPU
cores with an FPGA fabric into a so-called multi-processor
system-on-chip (MPSoC), thereby allowing for a customized
partitioning of the given workload into software and hardware.
Primarily non-time-critical control-flow driven configuration

Manuscript received XXX; revised November 3, 2020.
N. Karcher, R. Gebauer, R. Bauknecht, R. Illichmann, O. Sander from

Institute for Data Processing and Electronics (IPE), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, Email: karcher@kit.edu

and calibration tasks can be handled in software. Quicker
implementation time and features such as advanced arithmetic
support with hardware division or floating-point calculations
come in handy for these tasks. Also, remote monitoring
and control access to DAQ systems is mandatory for larger
experiments that can contain dozens of such platforms and
measure over a longer time period.

We designed and implemented a versatile control framework
for DAQ systems based on heterogeneous MPSoCs. Our devel-
opment primarily targets the application domains concerning
the readout of superconducting sensors and quantum bits.
Both fields need highly customized FPGA processing due
to performance and latency requirements. At the same time,
both applications utilize complex calibration procedures which
are better suited for software implementation. Our software
framework offers convenient access to the resources of the
system via remote-procedure calls (RPC). These offer a flex-
ible abstraction as they can either execute a low-level access
or complete calibration sequences. Utilizing the open-source
RPC library gRPC the client can connect to the provided
functionality. It also allows to automatically generate a client
interface for languages like Python, Go, C/C++, Rust, C# and
many more.

The main component of the presented implemented soft-
ware framework is the ServiceHub daemon. The ServiceHub,
including its plugins, can be used to control and configure the
platform, as well as acquire data with light to medium data
rates. The key benefits of this approach based on a SoC-FPGA
combined with the gRPC system is a modular reliable control
solution with a flexible abstraction of functionality. It offers
easy integration in existing client applications and encapsulates
fast control flow and math on the device itself. Furthermore,
due to gRPC features, it allows users to implement a client in
their preferred language.

II. FUNDAMENTALS

A. Heterogeneous SoC-FPGA

The two largest FPGA manufactures, Xilinx and Intel,
offer System-on-Chip devices that incorporate large Field-
Programmable-Gate-Arrays (FPGA) for custom logic imple-
mentation and CPU cores for custom software. For the targeted
DAQ systems, the Xilinx Zynq UltraScale+ [1] SoC-FPGA
family is used. It consists of two partitions: the Processing
System (PS) and the Programmable Logic (PL). The PS
integrates a four core CPU (ARM Cortex A53), a two core
RPU (ARM Cortex R5), GPU and various interface controllers
such as Ethernet MACs, I2C and SPI bus masters, and a DDR4
controller. The hardware units are interconnected via an AXI

ar
X

iv
:2

01
1.

00
11

2v
1 

 [
ee

ss
.S

Y
] 

 3
0 

O
ct

 2
02

0

mailto:karcher@kit.edu


bus system. The PS side can run a fully featured operating
system and is supported by the Linux Kernel. The PL offers an
FPGA with additional hard ip cores, dependent on the device
type. The PS connects to the PL with three AXI master, nine
slave interfaces, clocks and other connections like interrupt
lines. AXI compatible devices in the PL can be configured
to share the physical address space with the PS. This allows
to access devices through memory mapping, hence to access
it with Linux kernel platform drivers or through userspace
drivers.

B. Remote Procedure Calls
Software following the procedural programming paradigm

contains the concept of procedure calls, which encapsulate
a given piece of functionality. The encapsulated code can
be parameterized with function parameters and eventually
returns a result to the calling context. Remote Procedure Calls
(RPC) separate the calling context and the executing context
in to different processes or even computer systems, allowing
an inter-process communication (IPC). Local procedure calls
are cheap, whereas remote procedure calls are not [2] –
Arguments and return values for remote procedure calls need
to be serialized and made platform independent to bridge
between two different hosts. Hereby marshalling is used to
make data types platform independent. Network access adds
an overhead and therefore additional call latency. In contrast,
two different processes can be seamlessly coupled by RPC
which eases implementation of a distributed system. gRPC [3]
is an RPC library. It is based on the protobuf library and was
initially developed by Google. Both libraries together offer
serialization, code generation and additional security layers.
GRPC is based on HTTP/2.0 over TCP/IP and transfers the
data in a binary protobuf format. The calls over TCP/IP can be
affected by retransmission that could lead to undeterministic
latency. This counts for any protocol on standard Ethernet,
without any additional hardware [4]. Software with tighter
timing constraints should be run directly on the device. It
proves to be advantageous that the flow control offers a reliable
data transfer as well as connection monitoring. Deadlines for
an RPC call can be defined before a call in order to detect a
connection timeout.

The two basic principles of gRPC for describing the inter-
face definition are RPC functions and protobuf messages. The
latter defines the structure of call arguments and return values.
Both are defined by the developer inside a protocol definition
file. The latter is used to generate both interface sides, the stub-
classes for calling and base-classes (or Servicer) for called
context. Hereby the generator is able create files for various
programming languages, making the server agnostic to the
client language. A main advantage between gRPC and other
RPC solutions is the wide support of target languages, from C
up to JavaScript. GRPC provides bidirectional streaming and
binary data format and has a very active development group,
as well as a rich documentation.

C. Target System-Architectures
The control software presented in this paper was devel-

oped for readout system for metallic magnetic calorimeters

SPI & I²C
controller

Python client

RPU (FreeRTOS) APU (Linux)

FPGA

Platform (Zynq US)

Taskrunner ServiceHub

RF electronics

Interconnect

AXI IP Cores

ADCDAC

Experiment

Digital signals
Analog signals

AXI4 bus

User

M
e
m

o
ry

Ethernet

Memory
controller

RFSoC

Fig. 1. Combined platform diagram of the qubit and micro calorimeter
readout system. The qubit readout uses the RFSoC family that integrates the
ADC/DAC stage, whereas the calorimeter readout uses an external conversion
stage. The qubit readout system also integrates ARM R5 core to render real-
time control flows possible through the Taskrunner framework [5].

and superconducting quantum bits (qubits). In the context
of experiments with these special superconducting circuits,
the data acquisition system consists of three partitions: a
frequency conversion, a digital-to-analog conversion, and a
data processing system. Each partition needs to be config-
ured and calibrated before, or in predefined intervals during,
measurements. For repetitive calibrations, data is processed in
order to configure external chips via I2C and SPI; in addition,
the FPGA IP Cores are reconfigured to achieve an iterative
optimization. This interplay requires fast feedback of the
calibration results to configuration values to prevent downtime
during measurement, which would cause an increased absolute
run time.

Figure 1 contains a block diagram of the generalized readout
system concept for qubits and metallic magnetic calorimeters.
Although the physical system components are similar, the
internal firmware and SoC usage is significantly different.
For the readout of metallic magnetic calorimeters, which is
one type of superconducting sensors, the platform follows a
streaming architecture. It can acquire and process a continuous
data stream in real-time, filters, demodulates and triggers to
evaluate 8000 Events/s in a raw-data stream of 20 GB s−1. The
real-time processing is exclusively done on the FPGA side
of the device on a sample-per-sample basis. The processing
system side of the SoC is used for calibration, control, and
data transfer. During processing inside the FPGA partition,
the stream is reduced to a moderate rate below 80 MB s−1 [6]
that can be sent to a backend server via a ServiceHub plugin.

For the readout and control of superconducting quantum
bits, it is necessary to generate and evaluate microwave pulses.



The major difference in firmware is that the acquisition is
not continuous but in repetitive control and readout intervals.
It also separates the task between the application processor,
the real-time processor, and a sequencer on the FPGA to
achieve different accuracy levels, down to the nanosecond
timescale for pulse generation and acquisition [5], [7]. The
system is mainly used as measurement equipment to perform
basic research on superconducting qubits and determine their
characteristics. The gRPC protocol interface of the platform
allows easy integration into the python-based measurement
framework Qkit [8], that configures the device and gathers the
data. Also more complex driver capabilities are implemented
inside the ServiceHub plugins, thereby providing a better
abstraction, reducing the complexity of client-side drivers and
making them easier to maintain.

D. Related Work
The ServiceHub framework is a middleware between the

hardware and the client application. It should be distinguished
from pure system monitoring software like IPMI, OpenBMC
or u-bmc. These programs run in parallel to the actual op-
erating system and are often executed on co-processors with
their own operating system and kernel. The ServiceHub is
dependent on a running Linux operating system.

A common control instrument for FPGA systems is the
IP-Bus [9] which implements a protocol on top of UDP/IP.
The IP-Bus provides pure register resources of an FPGA via
network and is characterized by a low round-trip latency of
250 µs. However, the protocol offers only limited possibilities
for complex calibrations without frequent network access, as
this is done with additionally provided software ControlHub
and uHAL which are executed on a remote computer system.

The closest representative to the system presented can
be found in the protocols for the control of measurement
equipment. Besides the well-known representative LXI, there
is the RPC-based VXI-11 protocol. This enables the generation
of types, stubs and basic structures in C. However, it uses these
features to implement the IEEE 488.2 standard. Therefore a
seamless integration in software is not possible, it is usually
integrated via VISA. VXI-11 is now considered obsolete and
is replaced by the non-RPC based HiSLIP.

Beside the instrument control protocols, the EPICS software
can be found in distributed systems of accelerator physics
and was also migrated to the Zynq platform. EPICS focuses
on slow control. It utilizes process variables (PV) that can
represent values in memory or of control or monitor devices
[10]. The variables can be fetched, changed and monitored
with Channel Access or the newer pvAccess module. pvAccess
also allows to implement modern service based drivers and
extend them with a custom RPC functionality. EPICS IOC was
already migrated to Zynq [11]. The IOC is usually used in a
distributed EPICS network for slow control [10] and sharing
of process variables, whereas our system focuses on efficient
and fast peer-to-peer access and data transfer.

GRPC based solutions are not commonly used on embedded
SoC-FPGAs, but there is research related to hardware accel-
eration techniques in which gRPC is used to distribute tasks
among FPGA platforms [12].

gRPC API

Client PluginServer Endpoint Hardware

Driver Access

Fig. 2. Core principle of operation of the ServiceHub

III. SERVICEHUB SOFTWARE

The ServiceHub forms a configurable, modular plugin
loader offering a standardized interface for gRPC function
registration, logging, health and plugin management. A plugin
is an entity for controlling a specific device or software
class, including FPGA IP cores with AXI interface, external
devices attached to the SoC or even other plugins within the
ServiceHub.

The idea of the ServiceHub is shown in fig. 2. The client
communicates with a single gRPC server. The functionality
of the daemon is kept modular and is encapsulated in plugins.
All functionality of a plugin is implemented in a C++ class
from which functions for remote configuration are exposed
to the client-side. These are defined in gRPC protocol files
that are eventually also used to generate stub classes which
are inserted in a client application. The plugins are loaded if
defined in the main configuration. A plugin may include one
or multiple so-called endpoints which implement the drivers
to access underlying hardware devices. One endpoint per
physical device is instantiated automatically via the device tree
of the Linux kernel. A plugin can control other plugins, this
allows to coordinate the interplay between different plugins,
e.g. to conduct calibrations.

A. Plugin Structure and Mechanism

A ServiceHub plugin is a class that inherits from two
other classes. The functional part inherits from a service-
class, which is provided by gRPC via code generation. This
generated code originates from the protocol file describing the
interface between RPC client and server. The second, virtual
base class qualifies the class as a ServiceHub plugin. This
ensures that every plugin implements the same set of basic
functionality, allowing the ServiceHub to handle every plugin
the same way. Each plugin class can be instantiated with
exported symbols of wrapper functions for constructor and
destructor of the plugin. This ensures the plugin can be loaded
properly by the server executable. A macro function for eased
exporting is provided.

ServiceHub plugins can be created without full access to
the ServiceHub code. A common set of headers forms a
template for plugins with a compatible interface. This allows
the ServiceHub to handle all plugins the same way while
keeping a strict separation between plugin and server code
without affecting any functionality of the gRPC protocol. The
internal structure of the program is shown in fig. 3.

The functionality of a plugin can be split up into two
layers. The access layer provides an interface to the hardware
or system resources which are needed to fulfill the plugin
task. Hardware resources are usually encapsulated in a so-
called endpoint type, which is described more closely in



section III-B. The plugin task is defined by the code in the
control layer. Decisions, higher level algorithms and plugin-
plugin interactions are usually implemented there.

When the ServiceHub server is started, it first reads its
configuration file using the json library by Niels Lohmann
[13]. Next to server configuration values, this file also includes
a list of plugin requests and plugin-specific configuration
values. To keep flexibility, plugins are loaded at run-time and
implement the functionality available to the user, internally as
well as externally via gRPC. For each requested plugin, the
server tries to locate the plugin library and to load the exported
symbols for plugin creation and deletion. This is done via
the dynamic linker interface given in the dlfcn.h header.
If dynamic linkage is successful, the logger for the plugin
is created and the constructor is called with the previously
described arguments.

At instantiation, every plugin object is assigned a logger
and a configuration. The logger is dedicated to the plugin
and based on the spdlog library [14]. The configuration is
a segment of the full configuration file. Additionally, plugin
objects receive a pointer of an interface type which allows
limited access to ServiceHub resources such as a list of
currently loaded plugins.

After instantiation, the plugin objects are added to a gRPC
server instance, which handles all network communication
after the startup has finished. While running, the server accepts
all RPC requests for the loaded plugins and relays them to the
dynamically loaded code.

Plugins can be controlled by other plugins to enhance
reusability. To achieve this, a plugin can request access to
currently loaded plugins from the ServiceHub. The requested
plugins can then be controlled via their public interface.

B. Hardware and Kernel Access

The ServiceHub framework offers a set of functions and
base classes to enable hardware access. The functions are
summarized in so-called endpoint types, the parent classes.

An endpoint type defines the type of access: For AXI
registers the endpoint is instantiated with a memory map
(PlatformEndpoint), to control kernel drivers a file IO is
used in the endpoint (SysfsEndpoint). New final endpoints
can be implemented by deriving the types. Each endpoint
type brings along a static factory method which is called in
the constructor of the plugin. The connection between the
hardware and the instances of the final endpoint is established
via the device tree. For each entry in the device tree an instance
is created. The device tree can be used to read out the address
ranges, and the device tree node can be compared with the
sysfs paths to find the path to the Linux device driver.

The access functions are implemented as template func-
tions. Different types can be read or written with read
<type>(address), write<>(address, var). Fur-
thermore, overloaded functions for bitwise access are offered.
For Linux device drivers the node name in the sysfs must be
specified instead of an address. The Linux Kernel drivers allow
access to external devices (I2C, SPI) or devices that require
interrupt support.

Client Application

ServiceHub

gRPC/protobuf
Messages via TCP/IP

gRCP
Stubs

Experiment
ControlAdmin Access

gRPC Server

Plugin Store

Plugin 1

Plugin 2

Plugin N
...

Control Layer
gRPC Stubs

System Access
via Endpoints

Infrastructure

Storage

SysFS Info

Device Tree

API

Logging

Configuration

Watchdog

ZynqMP-SoC

Fig. 3. Structure of the ServiceHub host and the controlled plugins. The
admin access is allowed by a gRPC service internal to the host.

C. Reliability

Experiments that are operated over a long period of time
require a reliable monitoring of the driver components and the
hardware. The ServiceHub offers functions to enable plugins
to report their health status and, if necessary, to register with
a software watchdog. If one of the endpoints within a plugin
is no longer functional, the endpoints can be reloaded without
stopping the gRPC server.

The ServiceHub registers with the hardware watchdog of the
Zynq-SoC via the watchdog kernel driver. If the ServiceHub
does not respond due to a malfunction, the system will be
rebooted.

An optional plugin is provided which offers monitoring
of relevant system parameters such as temperature, voltages
and boot data integrity via check sums. The plugin features
an interface to the monitoring tool monit as well [15]. If
activated, this allows to further review the system state regard-
ing resource utilization and executed processes. The plugin is
notified by monit if an issue is detected and acts accordingly.

IV. PERFORMANCE EVALUATION

As middleware, the ServiceHub encapsulates functionality
on the device and interacts with the hardware registers with
the lowest possible latency. On the other hand, the RPCs are
executed via network, where a much higher latency can be
expected. For a comprehensive analysis, the access times of the
memory-mapped registers are checked first, followed by the
network accesses. Subsequently, a throughput measurement is
presented. Finally, the slow control connection via the kernel
drivers is evaluated.



A. Measurement Setup

A Xilinx ZCU102 evaluation board with a Zynq US+
SoC was used for the measurement. The board is connected
via 1 Gbit s−1 Ethernet to a client PC without any additional
switches or routers. On the host PC a CentOS 7 with more
recent GCC 7.2 devtoolset was used to build and run the
necessary libraries and client application. On the target system
a Yocto Linux based on the 2018.3 version branch of Xilinx
was installed. The ServiceHub was compiled with GCC 7.3.
For both the host- and the cross-compiler, the compiler flag
for code optimization (-O2) was enabled. During execution,
the application on host and client is changed to highest
priority (-20) and FIFO scheduling, in order to minimize
disturbance due to other processes. A Linux kernel real-time
patch set(PREEMPT RT) was not used.

The hardware of the target system consists of an AXI4
interconnect which is connected to the HPM0 master port of
the PS. A generic AXI4Lite slave, which is used for register
benchmarking, is connected to the interconnect. There are
four slave devices connected to it in total. From ZynqMP to
Interconnect a 128 bit wide interface is used. The AXI4Lite
DUT slave has a 32 bit interface. The AXI bus system on the
PL side is clocked with 125 MHz derived from the IOCLK.

B. Register Access

Access to AXI register is usually used to configure IP cores,
query status or transfer small amounts of data. In the mea-
surements, the access times to 32 bit registers of the AXI4Lite
module are examined. AXI4Lite is a simplified version of the
AXI4 interface, which does not support certain features like
burst read access. This saves resources at the expense of data
throughput. During the benchmark, single register accesses are
performed without ascending or descending addresses. This
avoids burst reads in the AXI4 infrastructure within the PS.

To estimate the additional latency caused by the Linux
operating system, the ServiceHub, and the endpoint structure,
the measurement is performed in three ways. First, using a
bare metal program on the ARM Cortex A53, second the
pointer access with the Linux memory map and third inside
an endpoint with the endpoint API located on the top level of
the software stack.

TABLE I
SINGLE 32 BIT LATENCIES. COMPARISON BETWEEN ACCESSES IN BARE

METAL SOFTWARE, WITH LINUX MMAP POINTER, WITH ENDPOINT API
AND FROM CLIENT VIA ETHERNET.

Bare Metal Linux
MMAP Endpoint Client

Read(R) (299 ± 4) ns (326 ± 7) ns (482 ± 17) ns (274 ± 16) µs
Write(W) (210 ± 2) ns (243 ± 9) ns (280 ± 99) ns (262 ± 15) µs
W&R (721 ± 18) ns (254 ± 9) µs

From the measured values in table I one can recognize that
the memory mapping in the Linux operating system produces
a light overhead, compared to bare metal. The memory is
mapped with the parameter O SYNC, and for write operations
the intrinsic dsb was used to flush the data. On the endpoint
level, the latency is further increased as it includes additional
function calls.

20 22 24 26 28 210 212 214 216 218
101

102

103

104

105

106

107

108

Array size

t/
n
s

read
write

Fig. 4. Endpoint 32 bit access latencies depending on array length. Read
latency is significantly larger than write latency. The larger error bar for the
second write measurement results from spikes in the measurement (compare
fig. 5). (N=1000 averages)

1 2 4 8 16 32

103

104

Array size

t/
n
s

read
write

Fig. 5. Endpoint 32 bit access latency boxplot for small transfer sizes. The box
represents the quartiles, the whiskers the 99 %-quantile. Outliers (indicated by
the additional markers) occurred for read and write operations and are in the
range of 10 µs. (N=1000 averages)

In fig. 4 the latency is shown as a function of the transfer
size measured using the 32 bit endpoint access. The latency
first increases non-linearly due to the overhead in the Endpoint
API before entering a linear regime for larger transfers. In
fig. 5 the latency distribution for small transfer sizes is shown.
All latency measurements are strongly affected by outliers in
the range of 10 µs which are likely caused by other processes
within Linux. The standard deviation is considerably improved
for bare metal software (see table I).

As one can expect, the access time over network is sig-
nificantly increased. Measurement results for the duration of
register read and write operations via the gRPC client are given
in fig. 6 and table I. Also the latency remains constant at
first because only single packets are transmitted. For larger



20 22 24 26 28 210 212 214 216 218

106

107

108

Array size

t/
n
s

hardware read
hardware write
software read

Fig. 6. Client access 32 bit access latencies depending on array length. This
latency involves network access over gRPC, therefore is significantly higher
than in Figure 4. For smaller package sizes the network access dominates
the latency. For larger array sizes the endpoint bandwidth gets significant
and limits the data throughput thereby the access latency. The single call
throughput to hardware is read 81 Mbit s−1 and write 140 Mbit s−1. – in
comparison for a write to a variable in software it is 314 Mbit s−1. (N=1000
averages)

1 2 4 8 16 32

250

320

400

500

Array size

t/
u
s

read
write

Fig. 7. GRPC Client 32 bit access latency boxplot for small transfer sizes.
The box represents the quartiles, the whiskers the 99 %-quantile. (N=1000
averages)

transfers the bandwidth is limited due to the hardware access
latency (read operations with 81 Mbit s−1). If the packets are
written to arrays in software the throughput is limited to
314 Mbit s−1 for read access. The combined write and read
access is handled within a single remote procedure call and is
therefore similar to the other duration values. fig. 7 shows the
boxplot of network access for small data sizes. Since Ethernet
itself is not a deterministic protocol [4], the spread of the
distribution is widened.

210 211 212 213 214 215 216 217

200

400

600

800

1,000

Blocksize in bytes

M
bi

t/s

4 B read
4 B write
1 B read
1 B write

Fig. 8. GRPC transfer spreed measurement. A preallocated and prefilled array
of 32 bit and 8 bit arrays were transfered between the ZynqMP platform and
the client PC. Each block size was sent 210 times through the stream. (N=10
averages)

C. Data Transfer Speed

For limited data forwarding during measurements, the gRPC
interface can be used. The data can be transferred via a single
gRPC call or with streams, that can be continuously read or
written to. We investigate three different transfer methods, the
single call transfer speed, a stream with 32 bit integer value
arrays and a stream with plain byte arrays.

For flow rate measurements, all compression in the gRPC
channel was disabled and transmitted arrays were filled with
random data. This suppresses possible optimizations in serial-
ization. The measured data throughput is shown in fig. 8. The
transfer with byte arrays results in speeds of 940 / 934 Mbit s−1

(read/write) [16]. This is much faster than with 32 bit arrays,
which are only transferred with 456 / 479 Mbit s−1. During
the transfer, one of the cores of the ARM processor is fully
utilized, the difference in transfer rates could be caused by the
more demanding marshalling of 4 B integers.

D. I2C Latency

Although i2c is a bus system that is among the scope of slow
control, its speed is an important parameter to benchmark.
External devices such as control voltage generators monitoring
devices utilize this bus and are relevant for system calibration.
The measurement setup uses the on-die Cadence controller
and an Analog Devices AD5675R digital-to-analog converter
chip is used that is connected to the i2c PMOD connector
of the ZCU102 board. This connector is directly attached to
the SDA/SCL pins, with a voltage level shifter but without any
multiplexer in between. In order to benchmark the latency, the
ad5696-i2c iio kernel driver is used in combination with a
SysfsEndpoint to write a 16 bit value to the DAC registers.

In table II the latency for accesses on the device and from
client are shown. The register access time for i2c is in the same
order of magnitude as for Ethernet. The minimum latencies
of distribution compare well to the single Ethernet and i2c



TABLE II
SINGLE 16 BIT LATENCIES OF AN I2C DEVICE VIA THE LINUX KERNEL
DRIVER AND THE SYSFS INTERFACE. COMPARISON BETWEEN DIRECT

ENDPOINT ACCESS AND ACCESS FROM A GRPC CLIENT VIA ETHERNET
(N=10000 AVERAGES). THE CLIENT MINIMUM IS THE SMALLEST

OUTLIER OF THE DISTRIBUTION.

Endpoint Client Client minimum
Read(R) (257 ± 2) µs (805 ± 47) µs 614 µs
Write(W) (161 ± 1) µs (472 ± 10) µs 396 µs

W&R (413 ± 2) µs (909 ± 64) µs 674 µs

latency. For the larger part of transfers the combination shows
an increase of client access latency.

V. CONCLUSION

We developed and presented a control software for Linux
based SoC-FPGA systems called ServiceHub. It is specifically
targeted on heterogeneous electronics systems that integrate
different hardware components and need flexible means for
external configuration and data access. The software is al-
ready actively used in measurement systems for the readout
of superconducting sensors and quantum bits. The modular
approach includes a gRPC server and allows the definition of
plugins which can be used to control single hardware modules
or groups via gRPC. It also provides an abstraction layer that
simplifies the input and output to platform devices or Linux
kernel drivers. The access latency over the abstraction layer is
in the range of 482 ns for register reads and 280 ns writes and
over the gRPC interface data rates of up to 941 Mbit s−1 read
and 934 Mbit s−1 write are possible.

The gRPC based interface makes it easy to connect other
clients from different programming languages and enables a
flexible hierarchical abstraction of functionality. The achieved
latencies and speeds are fully sufficient to control the device,
but the bare metal benchmark suggests that latency can be
further reduced. Also the use of a real time patch-set for
the Linux kernel could improve the spikes in read and write
operations within the endpoints. For higher data rates in future
experiments the throughput can be increased by integrating
a second network interface and RDMA-based solutions like
RoCE [17]. The gRPC interface, however, completely utilizes
the bandwidth of the 1 Gbit s−1 Ethernet.

ACKNOWLEDGMENT

Nick Karcher acknowledges the support by the Doctoral
School Karlsruhe School of Elementary and Astroparticle
Physics: Science and Technology. Richard Gebauer acknowl-
edges support by the State Graduate Sponsorship Program
(LGF) and the Helmholtz International Research School for
Teratronics (HIRST).

REFERENCES

[1] Xilinx. DS891, Zynq UltraScale+ MPSoC Data Sheet: Overview. 2017.
[2] JE White. RFC 707: High-level framework for network-based resource

sharing. RFC, Dec 1975.
[3] The Linux Foundation. gRPC GIT. https://github.com/grpc/grpc, 2020.
[4] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth, F. Golatowski,

D. Timmermann, and J. Schacht. Survey on real-time communication
via ethernet in industrial automation environments. In IEEE ETFA
Proceedings, pages 1–8, 2014.

[5] Richard Gebauer, Nick Karcher, Jonas Hurst, Marc Weber, and Oliver
Sander. Accelerating complex control schemes on a heterogeneous
MPSoC platform for quantum computing, 2020.

[6] O. Sander, N. Karcher, O. Krömer, S. Kempf, M. Wegner, C. Enss,
and M. Weber. Software-defined radio readout system for the ECHo
experiment. IEEE Trans Nucl Sci, 66(7):1204–1209, 2019.

[7] Richard Gebauer, Nick Karcher, Daria Gusenkova, Martin Spiecker,
Lukas Grünhaupt, Ivan Takmakov, Patrick Winkel, Luca Planat, Nicolas
Roch, Wolfgang Wernsdorfer, Alexey V. Ustinov, Marc Weber, Martin
Weides, Ioan M. Pop, Oliver Sander, Aleksey Fedorov, and Alexey
Rubtsov. State preparation of a fluxonium qubit with feedback from a
custom fpga-based platform. AIP Proceedings, 2241(1):020015, 2020.

[8] KIT. Qkit GIT. https://github.com/qkitgroup/qkit, 2020.
[9] C. Ghabrous Larrea, K. Harder, D. Newbold, D. Sankey, A. Rose,

A. Thea, and T. Williams. IPbus: a flexible ethernet-based control system
for xTCA hardware. J Instrum, 10(02):C02019–C02019, feb 2015.

[10] L R Dalesio, A J Kozubal, and M R Kraimer. Epics architecture. 1
1991.

[11] S. Lee, C. Son, and H. Jang. Distributed and parallel real-time control
system equipped fpga-zynq and epics middleware. In 2016 IEEE-NPSS
Real Time Conf, pages 1–4, 2016.

[12] R. Kerherve, J. Lallet, L. Beaulieu, I. Fajjari, P. Veitch, J. Dion,
B. Sayadi, and L. Roullet. Next generation platform as a service:
Toward virtualized dvb-rcs2 decoding system. IEEE Trans Broadcast,
65(2):425–433, 2019.

[13] Niels Lohmann. nlohmann json GIT. https://github.com/nlohmann/json,
2020.

[14] Gabi Melman. spdlog GIT. https://github.com/gabime/spdlog, 2020.
[15] Tildeslash Ltd. monit GIT. https://bitbucket.org/tildeslash/monit, 2020.
[16] Eric Gamess and Rina Surós. An upper bound model for tcp and udp

throughput in ipv4 and ipv6. J Netw Comput Appl, 31(4):585 – 602,
2008.

[17] InfiniBand Trade Association. Annex A17: RoCEv2, 1 edition, 9 2014.

https://github.com/grpc/grpc
https://github.com/qkitgroup/qkit
https://github.com/nlohmann/json
https://github.com/gabime/spdlog
https://bitbucket.org/tildeslash/monit

	I Introduction
	II Fundamentals
	II-A Heterogeneous SoC-FPGA
	II-B Remote Procedure Calls
	II-C Target System-Architectures
	II-D Related Work

	III ServiceHub Software
	III-A Plugin Structure and Mechanism
	III-B Hardware and Kernel Access
	III-C Reliability

	IV Performance Evaluation
	IV-A Measurement Setup
	IV-B Register Access
	IV-C Data Transfer Speed
	IV-D I2C Latency

	V Conclusion
	References

