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Abstract. For image registration of breast MRI and X-ray mammogra-
phy we apply detailed biomechanical models. Synthesizing X-ray mam-
mograms from these models is an important processing step for optimiz-
ing registration parameters and deriving images for multi-modal diagno-
sis. A fast computation time for creating synthetic images is essential to
enable a clinically relevant application. In this paper we present a method
to create synthetic X-ray attenuation images with an hardware-optimized
ray tracing algorithm on recent graphics processing units’ (GPU) ray
tracing (RT) cores. The ray tracing algorithm is able to calculate the
attenuation of the X-rays by tracing through a triangular polygon-mesh.
We use the Vulkan API, which enables access to RT cores. One frame
for a triangle mesh with over 5 million triangles in the mesh and a de-
tector resolution of 1080×1080 can be calculated and transferred to and
from the GPU in about 0.76 seconds on NVidia RTX 2070 Super GPU.
Calculation duration of an interactive application without the transfer
overhead allows real time application with more than 30 frames per sec-
ond (fps) even for very large polygon models. The presented method is
able to calculate synthetic X-ray images in a short time and has the po-
tential for real-time applications. Also it is the very first implementation
using RT cores for this purpose. The toolbox will be available as an open
source.
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1 Background

Image registration is a crucial step for image analysis because valuable informa-
tion from different images can be combined. The goal of image registration is to
find corresponding locations in two or more images and combine the information
of these images [9]. Therefore, the accurate integration of the information from
two or more images is important for the quality of the result [7].

For early breast cancer diagnosis often multiple modalities are applied. To
combine those modalities an image registration is important due to the consid-
erably different patient positioning, dimensionality and deformation state of the
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breast. To tackle these huge non-linear deformations we develop image registra-
tion methods based on biomechanical models of the breast, e.g. for combining
the diagnostic values of Magnetic Resonance Images (MRI) and X-ray mam-
mograms. For this purpose a synthetic X-ray image has to be generated from
the biomechanical model, which is represented by a polygoal mesh, in order to
compare it to the real mammogram for iterative optimization of registration pa-
rameters and final combined diagnosis [4][5][10]. For future application in which
e.g. biomechanical model generation may be computed on GPUs, the computa-
tion time is essential to enable a clinically relevant application.

Beside our own application, the demand for synthetic X-ray images is high
because it not just enables image registration but also a wide variety of medical
imaging applications such as evaluation of CT reconstruction algorithms, and
can furthermore be used e.g. in the field of non-destructive testing [3].

The geometry of (biomechanical) anatomical models are often described with
polygon meshes. Typically the polygons are triangles, rectangles or hexagons. In
our image registration method, biomechanical models are automatically created
from segmented MRI volumes using the iso2mesh [1] toolbox which is based on
tetgen [11] and Computational Geometry Algorithms Library (CGAL) [8]. It
produces tetrahedral meshes which are subsequently applied for a deformation
simulation with FEM. These polygon meshes allow the use of ray tracing algo-
rithms for calculation of the interaction of X-rays with the tissue in order to
create synthetic X-ray images.

The available toolboxes for the calculation of synthetic X-ray images are
mostly based on volume images using ray casting, thereby requiring an addi-
tional processing step to convert the mesh into a voxel volume in case of image
registration application [13].

Few implementations exist with respect to X-ray simulation based on polygon
meshes. Due to the similarity to ray tracing applications in computer vision,
these methods are typically well suited for parallel processing on GPUs. An
example for such a ray tracing based algorithm on GPU and with L-Buffers is
presented in [12]. The computation time demonstrated is approx. 10 ms for a
detector resolution of 1024×768 pixels and a mesh with 11,102 triangles.

An important motivating factor for this work was the development of ray
tracing (RT) cores in recent graphics card generations. Because ray tracing is
often considered as too computationally intensive, RT cores accelerate the ray
tracing principle with hardware-optimized intersection calculation. To our best
knowledge, there is no toolbox available using the RT cores of recent GPU gen-
erations for X-ray simulations in medical application. This work therefore aims
at incorporating the recent advances in GPU computing for fast generation of
synthetic X-ray images from potentially very large polygon meshes. In order
to combine the advantages of GPU accelerated computing and prototyping in
scripting languages, such as MATLAB, we made use of the Vulkan API [14] for
implementation of the ray tracing functionality and furthermore developed a
MATLAB wrapper to evaluate the results and enable further processing.



X-ray synthesis using GPU accelerated ray tracing 3

2 Methods

2.1 Basic principle

X-rays traveling through a material are attenuated depending on the material
characteristics. The received X-ray intensity at a detector depends on the ini-
tial intensity of the X-ray source, the absorption property of the material and
the distance it travels trough the material. This relationship can be expressed
by the Beer-Lambert-Law, which is the basic physical principle we use for our
application. The Beer-Lambert-Law is defined as

I = I0 exp

(
−
∫
µ(xn)dx

)
(1)

where I0 represents the initial intensity of the X-ray emitted at the X-ray
source, In represents the intensity received at a detector position n. Nowadays
digital detectors are mainly used for data acquisition, which discretize the field
of view into pixels. xn expresses a position on the ray connecting source and
detector. The function µ(xn) describes the corresponding attenuation coefficient
at x1. The integral integrates over the traversed part in the material.

Assuming locally isotropic materials, the integral can be discretized as the
sum of the product of the partial distances a ray travels through one material
and the material’s X-ray attenuation coefficient.

To determine the partial distances, which a ray travels through the respective
materials in a polygon mesh, intersections of the ray and the polygons need to be
calculated, which is a classical ray tracing problem known from computer vision.
Once intersection points are known, the partial distance can be calculated by
the Euclidean distance between the intersection points. Expressing one ray by
a directional vector

−→
d from source to detector, all intersection points can be

described by t · −→d where t is a scalar describing the proportional distance from
the source. Following this approach the Beer-Lambert law can be re-written as

In = I0 exp

− (m−1)∑
k=1

(‖(tk+1 − tk)
−→
d ‖µ(xm,n))

 (2)

where m is the number of intersections between ray and polygon mesh and
tk is the relative distance from the source to a specific intersection. An visual
example is given in Figure 2.

In our implementation we define a point source for the X-rays. Rays origi-
nating from the source are tracked through the polygon mesh using ray tracing
until they hit a detector pixel. For this purpose a directional vector from the
source to a detector is calculated. Refraction is currently neglected and hence
the tracing is performed along straight lines. The expansion of an X-ray is not
considered. Detector pixels are modeled as point detectors with an ideal transfer
function.

The polygon mesh represents the surfaces of different tissues. Multiple sur-
faces can be interlaced. In our data structure we encode the material type by
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assigning region IDs to every polygon, which together with a lookup table are
able to identify the attenuation coefficient for the respective material.

2.2 Implementation on special purpose ray tracing units of GPUs

For implementing the algorithms on the special purpose RT cores of GPUs we
use the Vulkan API, which is a standardized API for GPU applications pro-
vided by the Khronos group [14]. Vulkan executes commands on driver level and
allows cross-platform implementation. To achieve compatibility with different
GPU brands, it is possible to let Vulkan take over the execution of functions
called by the user.

Vulkan provides special data structures for ray tracing problems. The polygon
mesh is represented by two entities (nodes and faces). This data structure is also
known as face-vertex mesh. These two entities can be forwarded to Vulkan, which
creates an acceleration structure (AS). The node entity contains the coordinates
of the vertices of a polygon. The faces entity holds the indices of vertices, which
are connected to polygons. To use hardware accelerated intersection calculation
provided by RT cores, the polygon shapes are restricted to triangles.

The implementation is based on the well known examples provided by Willems
[15]. For generating and handling rays, three shaders are used. The “raygen

shader” calculates the ray direction
−→
d and defines the parameter of the ray.

After that the raygen shader starts the ray tracing with an Vulkan API call
traceNV . The Vulkan library then executes a selected shader whenever an in-
tersection between the ray and the AS is detected. We use the “anyhit shader”
to acquire all information about the intersection such as the material type µ(x)
and the distance t, calculated with full precision (32 bit). After all intersections
are detected or after a ray does not further intersect with another triangle, the
“miss shader” will be called by Vulkan. In this shader we implement the atten-
uation calculation by sorting the intersections and summing up the product of
distances and attenuation coefficients according to the Beer-Lambert law given
in equation Equation 2.

Figure 1 illustrates the implementation of shaders for the described function-
ality. The construction of the AS and the execution of the shaders are performend
by the Vulkan library. In order to start the ray tracing shaders, the host calls
the QueueSubmit function.

We implemented the ray tracing principle with Vulkan in a headless-mode,
i.e. the application does not display the resulting images. Instead we integrated
the method into the MATLAB scripting language via a MEX interface.

3 Results

3.1 Validation of attenuation calculation

In order to validate the implementation we calculated the attenuation of an ana-
lytical example. For this purpose, triangles belonging to different tissue types are
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Fig. 1. Simplified X-ray calculation. The parameters are passed via a MEX interface,
the AS is built by Vulkan. Then the shaders get executed, which calculates the atten-
uation with the Beer-Lamber-Law. The result is an synthetic X-ray projection.

placed perpendicular to a ray. We define one detector pixel and source position.
Using the analytic positions of source, detector and triangles makes it possible
to calculate the analytic attenuation and test the result of the implementation
against it (Figure 2).

The deviation is in the range of the data type precision for every tested
analytical example. For the example given in Figure 2 the relative error of the
computed attenuation was 5.7× 10−8 %. The analytic example can be recreated
and further tested as a part of the open source toolbox.

In Figure 3 the synthetic X-ray images generated by the presented method
for four examples are shown for visual assessment. The breast example shows
small artifacts at the bottom edge caused by holes in the underlying mesh and
not by the toolbox.

To demonstrate the application for image registration based on biomechan-
ical models, Figure 4 shows a synthetic X-ray image based on the deformed
biomechanical model compared to an real X-ray mammogram. We can see, that
the shape of the breast and the inner structures look similar, even though the fine
structures are not visible in the synthetic X-ray image due to limited resolution
of the underlying MRI data.

3.2 Performance evaluation

To evaluate the computational performance we created several examples with
a varying number of triangles and a varying resolution of the detector. Both
parameters have a direct effect on the calculation time.

Table 1 presents the different properties of the examples and the execution
times for one image. Both the computation time with and without data transfer
to and from the GPU are illustrated.
Thereby we created two scenarios: (1) Direct application with MATLAB MEX
interface for calculating one synthetic X-ray image, (2) interactive application
in which only the rendering for the X-ray synthesis on the GPU is considered
and data transfer to/from the GPU are neglected. This second scenario may
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Fig. 2. Structure of the analytical example to determine the accuracy with two layers.
The blue circle represents the source. The triangles are at the material surface in a mesh
and the different colours represent different material types. The orange line represents
the ray and the end is e.g. at the detector plate or at an defined maximum length.

be thought of e.g. a real time renderer with varying source position while the
polygon mesh data is not changed.

All calculations are performed on a NVidia RTX 2070 Super GPU on a
Windows workstation PC.

A basic observation from Table 1 is the considerable overhead of the data
transfer to and from the GPU by comparing the calculation times of scenario
1 and scenario 2. With increasing number of triangles the calculation time in
scenario 2 increases. Furthermore it can be noticed that e.g. the “veins” example
with considerably less triangles than the “breast” example, but more pixels on
the detector plane takes longer to compute for scenario 1.

To further investigate the dependencies of the computation time, the ge-
ometry used in the “breast” example was taken as a basis to create polygon
meshes with different number of triangles. Additionally the detector resolution
was varied. Figure 5 shows the results of this analysis in frames per second (fps).

As we can see, the detector resolution has a stronger influence on the compu-
tational performance than the number of triangles, because the higher resolution
leads to more possible intersections as more rays are generated and more hits
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Fig. 3. Exemplary results of the X-ray simulation for the examples from Table 1. The
“test” example models a simple plate made from one material. The “boxes” example
models three interleaved boxes of different material. The “veins” example was provided
by [6] and displays a part of the veins in the human body. The “breast” example models
the geometry of a breast based on a segmented MRI scan as typically used in our
biomechanical model based image registration.
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Fig. 4. Comparison between real and synthetic X-ray image.
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Example Triangles Pixels Calc. time (scen. 1) Calc. time (scen. 2)

test 15,626 150×200 0.31 ± 0.0096 0.0009 ± 0.000087

boxes 47,580 250×200 0.31 ± 0.0089 0.0014 ± 0.000088

veins[6] 215,728 1681×2071 0.86 ± 0.0117 0.0041 ± 0.000031

breast 5,185,459 1080×1080 0.76 ± 0.0117 0.025 ± 0.0018
Table 1. Calculation time results with different examples. Properties of the examples
(first column), number of triangle in the polygon mesh, number of pixels on the de-
tector. Times are given for one frame in seconds as mean of 100 measurements ± the
standard deviation. The first calculation time shows the time with transfer from and to
MATLAB (i.e. scenario 1), the second calculation time shows the time for computing
1 frame without data transfer, e.g. real time application (i.e. scenario 2).
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Fig. 5. Rendering times in frames per second for different detector resolutions and
different amount of triangles in the polygon mesh. Left column: dependency on detector
resolution. (Resolutions: 75×100 = 0.911mm/px, 297×397 = 0.23mm/px, 741×991 =
0.091mm/px, 1481 × 1981 = 0.046mm/px) Right column: dependency on number of
triangles. Top row: results for scenario 1. Bottom row: results for scenario 2.

are detected. The difference in fps is small up to the 113,000 triangle example
for both scenario 1 and 2, while a constant decrease in fps can be observed for
increasing detector resolution.
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For all examples, the overall fps is considerably higher without data transfer.
In scenario 1, for large problems (around 4 million triangles, detector resolution
1481×1981 pixels) the fps is nearly 1, while small problems (around 11,000 tri-
angles, detector resolution 75×100 pixels) reach about 30 fps. Scenario 2 reaches
up to 21 fps for the large problem and up to 2700 fps for the small one.

Deeper analysis of the differences between scenario 1 and scenario 2 showed
that the data transfer and the initialization of the Vulkan library need more
than 95% of the computation time of one frame in scenario 1. As these steps
have to be done only once for a real time application, this explains the huge time
differences between scenario 1 and scenario 2.

4 Discussion and Conclusion

In this paper we presented a method for synthesizing X-ray attenuation images
based on polygon meshes using ray tracing. To our best knowledge, the provided
toolbox is the first example using RT cores for such purposes as other tool-
boxes concentrate on memory-management [12][13] or volume based methods
[2]. Because this is the first approach to use RT cores to generate synthesizing
X-ray attenuation images, this paper focuses on the implementation. In future,
comparison with other proposals will be made in more detail. With the MEX
interface an easy access from a high level scripting language, which is often used
in scientific applications, is possible.

The main purpose of this method is to accelerate the biomechanical model
based image registration of MR images and X-ray mammograms in future. While
this has been easily achieved compared to the former applied method using ray
casting through a voxel grid [4], the real time potential of the method is even
higher and may open up new fields of application. The method has limitations,
like a straight ray approximation, negligence of refraction and considering a
monochromatic case only. However these limitations may be overcome in future,
because e.g. refraction is common in ray tracing problems in computer vision
and may as such be easily introduced in the algorithm.

The computational performance reached by the current implementation is
very promising. Further optimization may concern the data transfer to and from
the GPU as well as potentially reducing the overhead by the Vulkan library.
Furthermore in the current implementation the execution time of the miss shader
needs between 30% and 50% of the total rendering time for one frame. This may
be optimized by replacing the current sorting method of intersections with e.g.
the approach presented in [12].

Even though the resulting toolbox was originally developed for synthesizing
X-ray images for our model-based image registration, the performance of the
GPUs has the potential, that the simulator can be used as a real time application
for other purposes than registration, as we demonstrate in the result section.

The presented methods have been assembled in a toolbox such that it can be
used in a wide field of biomedical applications. To achieve this goal, we share this
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toolbox as open source project including all examples presented in this paper,
which can be accessed at the following web page:

https://git.scc.kit.edu/dach/raytracingx-rayprojectionsimulator
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