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ABSTRACT: The simulation of human brain neurons by synaptic
devices could be an effective strategy to break through the
notorious “von Neumann Bottleneck” and “Memory Wall”. Herein,
opto electronic synapses based on layered hafnium disulfide (HfS2)
transistors have been investigated. The basic functions of biological
synapses are realized and optimized by modifying pulsed light
conditions. Furthermore, 2 × 2 pixel imaging chips have also been
developed. Two pixel visual information is illuminated on diagonal
pixels of the imaging array by applying light pulses (λ = 405 nm)
with different pulse frequencies, mimicking short term memory and
long term memory characteristics of the human vision system. In
addition, an optically/electrically driven neuromorphic computa
tion is demonstrated by machine learning to classify hand written numbers with an accuracy of about 88.5%. This work will be an
important step toward an artificial neural network comprising neuromorphic vision sensing and training functions.
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1. INTRODUCTION

In neurobiology, exploring and mimicking the biological
perception mechanism concerning human brain neurons are
an important research area.1,2 Complicated information
processing strategies are very efficient since calculation and
memory storage occur in one action by adjusting the
connection strength.3 Therefore, the concept of “brain like
engineering” is proposed based on the operation mechanism of
neural networks, which is different from that of traditional
computers designed by the von Neumann architecture.4,5

Artificial neural networks (ANNs) can emulate human brain
functions (learning, multiobject detection, classification,
recognition, etc.) by low power consumption and high
efficiency parallel multitasking at hardware levels, which
could overcome the notorious “von Neumann Bottleneck”
and “Memory Wall”.6−9 The human brain consists of billions
of neuronal cells connected by synapses. Thus, synaptic
plasticity has been a focus of attention as the crucial substrate
of synaptic memory and learning. Information can be
processed and stored at the same time by adjusting the
synapse weight.10 Therefore, it is crucial to emulate different
synaptic functions based on the concept of bioelectronics to
develop neuromorphic engineering, especially simulating the
human visual system.11,12

It is well known that the human visual system consists of
three basic parts: retina, optic nerve, and visual cortex.12,13 The
cone cells and rod cells on the retina can sense light signals and

convert them into electrical signals. The electrical signals are
transmitted to ganglion cells through bipolar cells and
horizontal cells, finally forming optical fibers which can
transmit signals to the visual center in the brain. Synaptic
devices act as cone cells and rod cells in the artificial retina
system. More opto electronic synaptic transistors will be
integrated in ANNs with the development of optical
interconnection technology. Optical information has the
advantages of low transmission loss and strong anti
interference ability.14 Therefore, research on the function of
a visual system is mainly focused on the opto electronic
synaptic devices.8,11,12,15 Recently, two dimensional (2D)
layered transition metal dichalcogenides exhibit excellent
electrical and optical properties due to the unique internal
and interfacial structure,16−19 making them channels of
transistors for artificial synaptic devices.20−24 For the case of
hafnium disulfide (HfS2), it has a super high theoretical
acoustic phonon limited mobility (1800−3500 cm2 V−1 s−1)
and a wide photo electric response range (1−2 eV) with a
band gap of about 1.2 eV.24,25 In particular, the photo
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responsivity of HfS2 can reach 890 A/W and photogain over
2300 under a back gate voltage of 80 V.26 Besides, HfS2
contains Hf elements, and it is easy to integrate with the
high k material HfO2.

27 The ultra high responsiveness and
compatibility with silicon lay a good foundation for the use of
optical synapses.
Herein, we have investigated the electronic and photo

electric properties of HfS2 based synaptic transistors and arrays
in detail. The synaptic plasticity behavior including short term
plasticity (STP), paired pulse facilitation (PPF), long term
potentiation (LTP), long term depression (LTD), and so forth
have been well mimicked by our HfS2 based synapses.
Furthermore, the 2 × 2 pixel imaging chips are fabricated for
the integration of a synaptic device into an artificial vision
system. In addition, the continuous increase/decrease of
synapse weight of LTP/LTD is emulated by applying light
and voltage pulses, respectively. The conductance states of
LTP/LTD show a stable and linear increase/decrease. Finally,
a 784 × 150 × 10 ANN is conducted for pattern recognition
with an accuracy of 88.5%. These results indicate that optically
modulated HfS2 based synapses can be well applied to artificial
vision systems.

2. MATERIALS AND METHODS
2.1. HfS2-Based Device Fabrication. Few layer HfS2 flakes were

mechanically exfoliated from a bulk HfS2 single crystal and then dry
transferred to 280 nm thick SiO2/Si substrates with predefined
markers for electron beam lithography. A two layer (copolymer/950
K) polymethyl methacrylate resist system was adopted to realize an
ideal shape of Ni/Au (2/60 nm) electrodes without side walls, which
were evaporated via a thermal evaporator. For the fabrication of a
synapse array architecture, the spacing between two HfS2 based
devices is about 3 mm.
2.2. Characterization. The morphology and thickness of as

transferred HfS2 flakes were measured using an optical microscope
and an atomic force microscope (Dimension Icon, Bruker). A
confocal micro Raman spectrometer (Jobin Yvon LabRAM HR
Evolution, HORIBA) with a 532 nm excitation laser line was used
to detect the lattice vibrations of 2D layered semiconductor HfS2.

2.3. Synaptic Plasticity of the HfS2-Based Transistors. A
Keithley 4200 SCS semiconductor parameter analyzer was used for
electronic and photo electric measurements of HfS2 based synaptic
transistors. All measurements are performed under vacuum conditions
and dark conditions with exposure to the target light sources only. For
the photo electric measurements, a commercial light emitting diode
with an illumination wavelength of 405 nm (Thorlabs, Inc.) was
employed. Light pulse with tunable power intensity, pulse width, and
frequency were controlled using a laser diode/temperature controller
(ITC4001, Thorlabs, Inc.). The pulsed gate voltage was generated by
a semiconductor pulse generator unit module.

2.4. Neural Network Simulation. A multiple layer perceptron
neural network with an interval hidden feature vector is conducted on
the basis of the CrossSim (Pytorch) platform.28 The network consists
of an input layer (784 neurons), a hidden layer (150 neurons), and an
output layer (10 neurons). The neural network simulations are carried
out on a image version (28 × 28 pixels) of hand written digits from
the Modified National Institute of Standards and Technology
(MNIST) data set. Therefore, the network size is 784 × 150 × 10.
After training with randomly selected 8000 images per epoch from 60
000 images of the training data set, the recognition accuracy of 10
digits is estimated by using 10 000 images from a separate testing data
set.

3. RESULTS AND DISCUSSION

3.1. Structure and Electrical Properties of HfS2-Based
Transistors. Figure 1a shows a schematic illustration of a
HfS2 based field effect transistor. Details for the fabrication of
HfS2 based devices can be founded in Section 2.1. As shown in
Figures 1b and S1a (Supporting Information), the HfS2 based
devices are fabricated in a transistor configuration. The
concentration of the carriers in the channel can be modulated
by applying various gate voltages.22,29 In Figure 1c, the AFM
image and the corresponding line profile clearly express the
HfS2 thickness of about 9.8 nm (i.e., ∼16 layers). Note that the
HfS2 flake with a finite thickness of 7−12 nm can bring a high
performance of the HfS2 based transistor. Figure 1d illustrates
the Raman spectrum of a HfS2 sheet, which is similar to that of
HfS2 single crystals (cf. Figure S1b, Supporting Information).
According to the D3d

3 (P3m1) space group symmetry of HfS2,

Figure 1. (a) Schematic illustration of a HfS2 based field effect transistor. (b) Optical image of the HfS2 based synaptic transistor. (c) AFM image
of the HfS2 sheet on the SiO2/Si substrate. Inset: the line profile of a HfS2 sheet. (d) Raman spectrum of the HfS2 sheet used in the device. The two
peaks located at about 260 and 338 cm−1 are assigned to the first order Raman active modes Eg and A1g, respectively. (e) Output and (f) transfer
characteristic curves of the transistor in a dark environment at room temperature.
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the two peaks near 260 and 338 cm−1 are assigned to the first
order Raman active modes Eg and A1g, respectively. Theoret
ically, the two Raman active modes Eg and A1g, predicted at the
Γ point belong to the in and out plane modes, respec
tively.26,30 The corresponding lattice vibrations are sketched in
Figure 1d. The results suggest that the as transferred HfS2
sheets are of high quality, which could exhibit better electronic
and photo electric behavior for artificial vision systems.
The basic electrical performance of HfS2 based transistors is

measured in a high vacuum environment (∼10−6 Torr). The
devices in this work are back gated field effect transistors
fabricated on p+ Si/SiO2 substrates. Therefore, the source
drain current mostly occurs near the interface at HfS2/SiO2.
The output characteristics show that the drain source current
(IDS) changes linearly as a function of the drain source voltage
(VDS) under various gate voltages (VGS) from −80 to +80 V, as
depicted in Figure 1e. It indicates that a good Ohmic contact is
formed between the channel and electrodes. Figure 1f shows
the transfer characteristic curves as a function of VGS measured
by applying various VDS from 20 to 100 mV with a step of 20
mV, suggesting an n type feature of the HfS2 based transistor.
The hysteresis between the forward and backward curves is
mainly due to the charge trapping at the interface between
HfS2 and SiO2.

31 To explore the origin of the hysteresis for
devices with a p+ Si/SiO2/HfS2 structure, a layer of h BN was
inserted between HfS2 and SiO2. As shown in Figure S2a
(Supporting Information), the hysteresis of the transfer
characteristic curve for devices with the p+ Si/SiO2/h BN/
HfS2 structure can be negligible. Therefore, the HfS2/SiO2
interface dominates the memory behavior. Moreover, a
nonlinear double slope transfer curve could originate from
the surface adsorbate, mobile ions, gate voltage induced stress,

or interface traps.17,32 The electron mobility of about 1−3 cm2

V−1 s−1 and on/off current ratio (∼105) is obtained from the
representative transfer curves. Furthermore, the transfer
characteristics are investigated under dark and light irradiation
conditions (cf. Figure S2b, Supporting Information). The IDS
in the transfer curves becomes larger as the light power density
increases, which means that more photo generated carriers are
generated with increasing light power density. The device
performance is pivotal to the consistency of device operations
and the simulation of synaptic behavior. Therefore, we
provided the statistical distribution of the performance of 20
fabricated devices in transfer characteristic curves, on/off ratio,
mobility, and threshold voltages (Vth) as shown in Figure S3
(Supporting Information), which indicates our devices have a
good reproducibility.

3.2. Synaptic Plasticity of the HfS2-Based Transistors.
In neurobiology of vision, photo receptor neurons on the
retina are the basis for the human visual system to perceive or
receive external light signals.33 In order to simulate the opto
synaptic dynamics, a 405 nm laser is irradiated vertically on the
HfS2 based synaptic transistors, as illustrated in the inset of
Figure 2a. Here, the drain electrode is defined as a post
synaptic terminal, which connects to post synaptic neurons.
Their connection strength (synaptic weight) can be adjusted
by an external stimulus, which is mapped to synaptic
transistors.34 Zhang et al. reported that the work function
and band gap of HfS2 are 5.71 and 1.13 eV, respectively.35

Figure 2a shows a typical behavior of post synaptic current
(PSC) in a spike stimulation, which includes three stages:
before, during, and after illumination. Before illumination, the
energy band of the semiconductor surface is bent upward when
HfS2 is in contact with the p+ Si/SiO2 substrate due to the

Figure 2. (a) Typical behavior of the PSC under a single light spike stimulation. The inset shows the schematic diagram of an artificial synaptic
opto electronic transistor under light illumination (λ = 405 nm). Light stimulation (gate electrodes) connects with pre synaptic neurons (writing)
and drain/source electrodes connect with post synaptic neurons (reading). Energy band diagrams of the HfS2/SiO2/p

+ Si architecture for the cases
(b) before, (c) during, and (d) after illumination.
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surface defects of SiO2 (Si−O dangling bonds and movable
positive charges) as shown in Figure 2b. During illumination, a
large number of photo generated electrons and holes will
rapidly generate in the channel, and the upward bending trend
of the energy band will be greatly reduced (cf. Figure 2c). At
this time, the channel current will increase rapidly. After
stimulation, as shown in Figure 2d, the photo generated
electrons quickly recombine with holes, and the current drops.
However, the current cannot drop to the initial state before
illumination in a short time since a part of trapped electrons
can be released by the interface traps. The current drop in the
channel is alleviated. The upward curvature of the energy band
of the semiconductor surface increases. Therefore, the interface
defects dominate the channel current and memory behavior in
this way.
Figure 3a shows the schematic diagram of the human optic

nerve system. The visual system of human eyes can be
considered as a combination of three parts in sequence,33 the
retina located inside the back wall of human eyes, the lateral
geniculate located in the thalamus, and the visual cortex of the
brain. In this work, the HfS2 based devices were employed as
optic neural synapses that execute the optical seeing functions.
For the case of synaptic devices, the conductance states in the
channel are modulated by applying a light pulse to mimic the
synaptic weight of biological synapses. In the HfS2 based

synapses, the layered HfS2 has ultrahigh responsivity, photo
gain, and fast response time, which provide a foundation for
finely controlling channel current by a low energy light pulse.
Since synaptic plasticity is very susceptible to environmental
and historical activities, the artificial synaptic plasticity of HfS2
based synaptic devices has been explored systematically by
applying light pulses with various parameters such as power
density, pulse width, pulse number, and frequency. Figure 3b
plots the PSC measured by applying a fixed VDS (0.1 V) and
various power densities (P) of a single light pulse (wavelength:
405 nm and pulse width: 0.5 s). The PSC increases with the
increasing power density of the light pulse due to the
generation of photo carriers in HfS2. Fortunately, a similar
phenomenon is observed in biological excitatory synapses.36 It
indicates that our synaptic devices can simulate biological
synaptic functions well, which can be used in artificial vision
systems. Note that the PSC does not decay back to the resting
current value, which indicates memory behavior.37 Further
more, the decay of the PSC was simulated by a parameterized
Kohlrausch law y = A0 + A1 × exp[−(t/τ)β].38 For the case of
laser power density of 43.3 mW/cm2, the extracted stretch
index (β) is 0.354 ± 0.007 and the retention time (τ) is about
128 ± 8 ms, which means that the feature time of the carrier
migration is about 128 ms, as shown in Figure S3 and the inset
of Figure 3c. The corresponding synaptic weight change (W)

Figure 3. (a) Schematic diagram of the human optic nerve system. (b) PSC stimulated by a single light pulse with different power densities from
1.6 to 43.3 mW/cm2 at a fixed pulse width (0.5 s). (c) Corresponding weight change (ΔPSC/PSC) as a function of light power density. Inset: The
extracted retention time τ as a function of light power intensity based on the Kohlrausch law. (d) PSC stimulated by a series of light pulses with the
same power density (43.3 mW/cm2) and different light pulse widths from 50 ms to 1 s. The inset is the corresponding weight change as a function
of the light pulse width. (e) PPF index and the best fitted curve as a function of the paired pre synaptic spike interval Δt. Inset: PSC amplitudes (A1
and A2) caused by a pair of light pulses. (f) STM and (g) LTM triggered by laser pulses (power density: 43.3 mW/cm2 and pulse width: 0.5 s) with
different pulse numbers. (h) PSC curves after various numbers of light pulses (pulse width: 0.5 s and pulse period: 2 s). Note that all the PSC (IDS)
measurements are carried out by applying a VDS of 0.1 V.
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under various power densities of light pulses is plotted in
Figure 3c. Here,W = ΔPSC/PSC=(A − A0)/A × 100%, where
A and A0 are the amplitudes of the PSC after a light simulation
and initial level before light simulation, respectively. A higher
optical power density provides high cumulative excitation
energy, which results in the generation of higher photo
generated charge carriers in HfS2 and weight changes. In
addition, the spike duration dependent PSC shows that the
excitatory response increases with increasing pulse width from
50 ms to 1 s (cf. Figure 3d). Note that the corresponding
weight change has a rapid increase at about 0.3 s and then
reaches a saturation point, which is similar to that in biological
neurons.39 In addition, the pulse width dependent PSC decay
is evaluated based on the Kohlrausch law (cf. Figure S4). Note
that the synaptic plasticity is well consistent with the synaptic
behavior of human vision systems.
PPF is an important factor of STP, which manifests in the

enhanced synaptic response caused by two consecutive stimuli
in biological synapses.40 Moreover, PPF is related to complex
tasks performed by neurons, playing an important role in the
process of decoding time information and audiovisual signals.10

It appears that the PSC change caused by the second light
stimulus is greater than that caused by the first light pulse. The
PPF index of the HfS2 synapse can be defined by the following
formula:11,41 PPF = A2/A1 × 100%, where A1 and A2 are the
amplitudes of the first and second PSCs, respectively (cf.
Figure 3e). The synaptic devices successfully simulate the PPF
behavior of biological synapses and demonstrate the trend of
the PPF index as a function of pulse interval (Δt) between two
consecutive light stimuli. The PPF index decreases gradually
from 111 to 105% with increasing Δt from 0.8 to 5 s. Note that
the value of the PPF index is slightly smaller compared to other
reported PPF indexes, which may be from the excellent
photoelectric response performance of HfS2 or a small laser
power density.24 In addition, the behavior can be simulated
well by a parameterized double exponential function:11,24 The
PPF index = a0 + a1 × exp(−Δt/τ1) + a2 × exp(−Δt/τ2) with
two characteristic timescales τ1 = 822 ± 17 ms and τ2 = 11.1 ±
1.3 s, which are comparable to those measured in biological
synapses.42 Therefore, a narrow pulse width of 500 ms (less
than τ1) is applied in the following measurements for
investigating the LTP behavior. In Figure 3f,g, light pulses
with a fixed pulse width (0.5 s), pulse interval (0.5 s), and
power density (43.3 mW/cm2) are used to mimic the short
term memory (STM) and long term memory (LTM)

behaviors of the artificial synapses by changing the pulse
number. Figure 3f shows that the STM behavior of the synapse
device has been achieved by irradiating a series of light pulses
(pulse number N = 10). The PSC decays and returns to the
initial state in a short period of time. On the other hand, light
pulses with the same intensity/width (N = 50) are applied,
which induces an LTM behavior since the PSC decays slowly
and there is a longer time of relaxation (cf. Figure 3g). The
above results indicate that the transformation between STM
and LTM in the HfS2 synaptic devices can be realized by
modulating the light pulse number. In order to further mimic
the STM and LTM behaviors of artificial synapses, the light
spikes with different pulse numbers (N = 5, 10, 20, 30, 50, and
100) are applied to stimulate the artificial synapses, as shown
in Figure 3h. As the pulse number increases, the PSC increases.
The behavior is similar to that of brain functions of learning,
remembering, and forgetting.43 As the number of learning
increases, the memory is enhanced and harder to forget. The
STM and LTM behaviors of synaptic devices are consistent
with those of human visual synapses caused by light
stimulation.
The spike rate is another important factor for assessing the

plasticity of neuron synapses. The related learning behavior
can be explained by the BCM (Bienenstock, Cooper, and
Munro) theory.44,45 In this work, the spike rate dependent
plasticity of the HfS2 based synapses has been investigated, as
shown in Figure 4a. The change in current is derived by the
relationship: (A20 − A1)/A1 × 100%. Here, A20 and A1 are the
PSC amplitudes of the 20th and first spikes, respectively.8 At
the low frequency region below 0.5 Hz, it is much lower than
that at a high frequency above 1.0 Hz. In a further step, 2 × 2
pixel imaging chips are fabricated using HfS2 based transistors,
which provide more possibilities for the integration of artificial
synaptic devices into an artificial vision system. Note that the
channel thickness of the four HfS2 based devices is uniform in
the range of 7−12 nm with a high performance. The light
pulses with two typical spike rates are illuminated on the
diagonal of the pixel array (cf. Figures 4b,c). It exhibits two
illumination patterns (#1 and #2) stimulated by 30 continuous
light pulses with the frequencies of 0.2 and 1 Hz, respectively.
The PSC changes of the diagonal devices in the pixel array
before stimulation (in the dark), soon after stimulation(<0.5
s), and 10 min after stimulation were measured to assess the
memory/learning retention. For comparison, the PSCs of the
four devices are normalized. It means that “0” corresponds to

Figure 4. Imaging 2 × 2 array of information perception and memory based on HfS2 synaptic devices. (a) Change in photocurrent of a synaptic
transistor (single pixel) as a function of an illumination pulse frequency of a 405 nm laser with a power density of 43.3 mW/cm2 and a pulse width
of 500 ms. (b) Pattern #1 encoded by light pulses with a frequency of 0.2 Hz. The 2 × 2 pixel array demonstrates STM. (c) Encoding of Pattern #2
on the imaging array by light pulses with a frequency of 1 Hz, demonstrating LTM.
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the dark current before stimulation, and “1” denotes the
maximum photocurrent soon after pulsed light stimulations.
The current of all four pixels is quite low in the dark before
stimuli. Figure 4b reveals an STM characteristic since the pixels
return to the original state after 10 min. In the case of Pattern
#2 (cf. Figure 4c), after the 1 Hz pulsed light stimuli, the
irradiated and unirradiated pixels are well recognized due to
the relatively high current contrast. LTM behavior has been
achieved since the higher frequency (1 Hz) spikes result in a
longer pattern retention compared to that stimulated by lower
frequency (0.2 Hz) spikes (Pattern #1). This phenomenon was
also obtained in other artificial synapses based on layered black
phosphorus, which is not stable under an air condition.8 After
the LTM simulation, a voltage pulse (+80 V, 5 s) is applied to
perform a reset of the pixel information. The integration of
optically written and electrically erased artificial synaptic arrays
further highlights the flexibility for artificial vision systems.
3.3. Artificial Neural Network for Pattern Recogni-

tion. The LTP and LTD demonstrate a continuous increase
and decrease in the PSC under consecutive stimulations at a
synapse, respectively. The LTP/LTD characteristic curves of
HfS2 based synapses for different light pulse widths have been
investigated, as illustrated in Figure 5a. The LTP was measured
under 100 sequential light pulses with pulse widths of 400, 600,
800, and 1000 ms at a fixed power density of 43.3 mW/cm2.
The LTD was modulated by 100 voltage pulses with gradually
increasing amplitude from 0.15 to 15 V at a step of 0.15 V.
Under continuous light stimulation, the conductance of the
channel gradually increases with increasing number of light
pulses. On the other hand, it gradually decreases as the pulse
number increases under consecutive positive gate voltage
pulses. The LTP/LTD profiles for different pulse widths reveal

that a wider light pulse will induce a high conductance (cf.
Figure S6). In order to further investigate the weight update
rule in the ANN simulations used for recognition of hand
written number and digital images, the nonlinearity (NL) is
calculated by fitting LTP/LTD profiles with the following
equations46

α= + β
+

− − −G G en n
G G G G

1 p
/np min max min

(1)

α= − β
+

− − −G G en n
G G G G

1 d
/nd max max min (2)

where Gn and Gn+1 are the conductance of the nth and (n+1)th
pulses, Gmin and Gmax are the minimum and maximum
conductance, αp and αd denote the step size of the
conductance between two points in the potentiation and
depression curves, and βp and βd are the NL of the potentiation
and depression curves, respectively. Figure 5b shows the NL as
a function of pulse width. It is found that the NL values (∼1)
derived from the LTD curves are smaller than those (∼2.5)
obtained from the LTP curves. The NL values of the LTP
characteristic curves decreased from 2.85 to 2.24 first and then
increased to 2.35 as the light pulse width increased from 0.4 to
1 s because more electron−hole pairs can be generated by a
light pulse with a larger width. Furthermore, the relation
between laser power and plasticity has been investigated, as
shown in Figure S8 (Supporting Information). As the light
power intensity increases from 7.7 to 35.7 mW/cm2, the NL
values show an increasing trend from 1.6 to 3.2. It suggests that
the width and power of a light pulse have a significant effect on
the performance of the ANN.
In order to demonstrate the application of our devices to the

neuromorphic calculation of artificial vision systems, Figure 5c

Figure 5. (a) Potentiation and depression emulated by an artificial opto electronic synaptic transistor under various pulse widths (400, 600, 800,
and 1000 ms) with 100 consecutive pulses. LTP is obtained by light pulses (405 nm, pulse period is 1.6 s, and laser power density is 43.3 mW/
cm2). LTD is measured by adjusting the amplitude of voltage pulses from 0.15 to 15 V with a step of 0.15 V. (b) NL of LTP (upper panel) and
LTD (lower panel) as a function of pulse width. (c) Schematic of an ANN structure which is simulated with the standard back propagation
algorithm. (d) Recognition accuracy evolution as a function of training epochs for 28 × 28 pixel hand written MNIST digit images based on the
LTP and LTD characteristic curves measured under light and voltage pulse spikes, respectively.
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illustrates an example of machine learning by simulating an
ANN based on the measured long term plasticity character
istics (LTP and LTD). First, we classify 28 × 28 pixel hand
written digit images adopted from the MNIST data set by
designing a single layer perceptron model with a back
propagation algorithm.47 The network is composed of 784
input neurons (V0−V783), 150 hidden neurons, and 10 output
neurons. The input image with 28 × 28 pixels and the obtained
digits (Y0−Y9) serve as the input and output vectors,
respectively. In the simulation process, each neuron receives
the value corresponding to the image pixel in the input layer,
assigns it to the input vector (Vm), and then converts it into 10
output values to supply the output neuron through the weight
matrix (Wm,n). Here, the synapse weight is expressed as the
difference between the conductance values of two equivalent
synaptic devices.48 Note that the conductance of synaptic
devices implemented in hardware is always positive, whereas it
has positive and negative values in software. In particular, the
ANN is trained with one way and two way update methods,
and the MNIST recognition rates of these cases were
compared. With the method, 60 000 images from the
MNIST data set are used to train the ANN at each training
epoch. The training epoch dependent recognition accuracies of
LTP/LTD curves with different pulse widths (400, 600, 800,
and 1000 ms) of HfS2 based synapses are shown in Figure 5d.
It suggests that the recognition accuracy value of the opto
electronic neural network can be as high as 88.5%. Moreover,
the relevant curves trained with the two way update method
have been plotted in Figure S9 (Supporting Information).

4. CONCLUSIONS
In summary, the 2D layered HfS2 semiconductor with excellent
photo electric response is utilized to construct synapses for
neuromorphic vision sensors. It is demonstrated that the n
type HfS2 based synaptic devices can simulate the synaptic
plasticity of biological synapses under various pulsed light
conditions. As the optic spike rate (frequency) increases, the
STM can be transformed into LTM, corresponding to the
learning, remembering, and forgetting behavior of the human
brain. In a further step, the synaptic devices are integrated into
2 × 2 array pixel images to mimic human like brain behaviors.
Finally, the LTP/LTD was realized through the combination
of pulsed light and electrical stimulations. Moreover, an ANN
for MNIST hand written number recognition is constructed
with a recognition accuracy of about 88.5%. The synaptic
plasticity behaviors of HfS2 based synaptic devices and the
high recognition rate provide a new option for developing an
efficient artificial vision system.
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