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Abstract—The time response of the ultrasound transducers
used in our 3D ultrasound tomography device shows a slight
reverberation. This may causes artifacts in the reconstructed
images. Loss properties of materials used in the array fabri-
cation have a big impact on their complex vibration behavior.
Unfortunately, material parameters for accurate modeling are
often not available in literature. Here, we present a method to
derive loss properties of polymers and composites and how to
include them in a finite element analysis (FEA). The method
has three steps: First, an experiment to measure the frequency
and thickness dependent sound attenuation. Second, a brute-force
fit to a frequency-power law expression to obtain an analytic
formulation. Third, a conversion of the sound attenuation to
an equivalent structural loss factor. The last step is necessary
as acoustic attenuation can not directly be implemented in
structural mechanics FEA. We applied the method to derive loss
properties of the filler and backing material which we use for
our ultrasound transducer arrays. When including the loss factor
in the simulation a reverberation is predicted, which matches
the measurement well. Hence, considering loss properties allows
more accurate modeling of complex vibration behavior. This aids
in optimizing our ultrasound transducer array design towards
better 3D ultrasound imaging.

Index Terms—vibration damping; acoustic attenuation; struc-
tural loss factor; loss factor conversion; ultrasound transducers

I. INTRODUCTION

Ultrasound Computer Tomography (USCT) is an emerging
imaging approach for early breast cancer screening [1]. In
comparison to mammography and magnetic resonance imag-
ing, ultrasound is essentially harmless, cost-effective and does
not require the use of potentially harmful contrast agents
[2], [3]. At the Karlsruhe Institute of Technology we are
working on a full 3D USCT system which allows simultaneous
reflection and transmission imaging [4].

The requirements emanating from the applied image re-
construction algorithms resulted in a special transducer array
design, schematically shown in Fig. 1 [5], [6]. There, 18 piezo-
ceramic fibers with a diameter of 0.46 mm and a thickness
of 0.6 mm are embedded in a filler material. The fibers are
pseudo-randomly distributed on a 35.5 mm diameter disk [7].
This disk is then sandwiched between a PCB and a matching
layer to form functional ultrasound transducer arrays.

The pulse response in water of a representative transducer
is shown in Fig. 2. There, reverberation after the main pulse
can be observed, which is also reflected in ripples in the
corresponding frequency spectrum. This reverberation may
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Fig. 1. Assembly of ultrasound transducer arrays used for our USCT system.
A piezoceramic fiber is embedded in a filler material, and connected on front
and back side to achieve the desired performance.

cause artifacts in the reconstructed images and is therefore
an undesirable effect [8].

Internal transducer reverberation often arises from sound
reflections on edges and surfaces within the transducer [9].
Another factor is the vibration behavior of the piezoceramic
material, which ideally exhibits high frequency separation
between distinct resonance modes. For our transducers, the
low thickness-to-diameter ratio of 0.6/0.46 leads to a small
separation between the thickness and lateral mode and hence,
to complex oscillation behavior [10].

To understand the origin of the reverberation, an accurate
transducer model is needed. There, a key challenge is to obtain
all necessary material parameters. Frequency-dependent loss
properties are often not given in literature, but play an impor-
tant role in modeling the vibration behavior correctly. Fig. 3
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Fig. 2. Measured time response and the corresponding frequency spectrum
of one representative transducer. The reverberations are reflected as additional
signals after the main pulse and ripples in the spectrum.



Fig. 3. Frequency response from FEA of one USCT transducer with varying
loss factors ηs for the backing and filler material.

shows the effect of low and high damping on the simulated
frequency response of our transducers. Low damping results
in a non-uniform response with high ripples throughout the
spectrum. High damping shows too uniform behavior when
comparing it with the measurement in Fig. 2. The true damping
values are somewhere in between these two parameters. In this
paper we present a method to derive this frequency-dependent
material damping from measurement and use it in FEA.

II. MATERIALS AND METHODS

In acoustics, losses can be described mathematically accord-
ing to Eq. 1 [11]. There, p0 is the initial sound pressure, ω the
angular frequency, v the speed of sound and α the medium
specific sound attenuation coefficient.

p(x) = p0 · e−αx · cos(ω/v · x) (1)

To obtain loss properties of the backing and filler material,
we applied the following method. First, an experiment was
conducted to measure α with high precision and accuracy.
Next the data was fitted to an analytic expression. Then an
approach how to convert α to an equivalent structural loss
factor ηs is presented, which is a suitable method for many
FEA tools to account for damping.

A. Sound attenuation measurement

To obtain α for the filler and the backing material, we con-
ducted an ultrasound transmission experiment. Four samples
from each material with a diameter of 30 mm and varying
thicknesses were produced. These samples were placed in
a water tank in between two transducers and exposed to
ultrasonic pulses (see Fig. 4). A signal processing chain
with broadband chirps, coded excitation, matched filtering and
averaging was developed to achieve sufficient signal strength
for samples which exhibit high damping [12].

The attenuation was obtained for each sample by com-
paring the amplitudes of the transmission signal with an
empty measurement. Surface reflections were compensated by
normalizing the results with the transmission coefficient T ,
calculated from the acoustic impedances Z of the materials
according to Eq. 2.

T = 4 · ZwaterZmat/(Zwater + Zmat)
2 (2)

Fig. 4. Ultrasound transmission setup to measure acoustic material properties.
Four samples (a) from the filler and backing material were exposed to
ultrasound pulses (color matches results in Fig. 5). The signals are generated
by the emitting transducer (b), pass through the water filled container and the
material sample and are recorded by the receiver (c).

Fig. 5a and 5b show the measured α of the filler and backing
material for each of the four material samples. A relationship
between the attenuation and two properties can be clearly
stated: The thicker the sample, the higher the attenuation. In
addition, a significant nonlinear rise with frequency is present.

Even though we put much effort in obtaining high signal-
to-noise, the range of the measured attenuation exhibits some
limitation. Attenuations above 30 dB show high deviations
from the expected trend. In addition, the frequency range is
limited by the used ultrasound transducers. For the subsequent
model fit we therefore excluded all data indicated with the grey
areas in Fig. 5a and 5b.
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Fig. 5. Measured frequency and thickness dependent sound attenuation α of
the filler material (a) and the backing material (b). At f0, linear regression
was calculated to obtain the relationship between attenuation α and the
material thickness d. The grey areas in (a) and (b) indicate the frequency
and attenuation ranges where data was excluded from the subsequent model
fit.



B. Model fit
To model the attenuation as a function of the thickness

and frequency, we used the frequency-power law according
to Eq. 3 [13]. There, β is a positive number describing the
loss behavior, a0 is the attenuation at the frequency f0 and
the factor 8.7 is the conversion from Neper to dB.

α(f, d) = 1/8.7 · a0(f/f0)β with a0 = a1d+ a2 (3)

The relation between a0 (in dB) and the material thickness d
is assumed to be linear. The coefficients a1 and a2 were
therefore derived from linear regression as shown in Fig. 5c
for the filler, and Fig. 5d for the backing. The regression was
calculated at distinct frequencies f0 for each material to obtain
valid data. However, the thickest backing sample was excluded
as it deviates significantly from linear regression.

To obtain the best fit parameters, a brute-force optimization
by varying β was conducted. Typical values for β of polymers
are in the range of 1 to 1.4 [14]. Therefore, this range was
extended by 0.2 towards lower and higher values. The mod-
eling results were evaluated with respect to the measurement
using least-square minimization (see [10] for more details).
The resulting best-fit parameters are listed in Tab. I.

The calculated attenuation using the best-fit parameters
compared with the four measured material samples is shown
in Fig. 6a and 6b for the filler and the backing material
respectively. The attenuation behavior can be predicted with
an overall fit accuracy of 55% for the filler, and 53% for the
backing. These relatively low fits result from a single sample
of each material and are likely caused by slightly varying
measurement conditions and limits of the experimental setup.
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Fig. 6. Model-to-measurement comparison when using the best-fit parameters
of β for the filler (a) and the backing material (b).

TABLE I
BEST-FIT MODEL PARAMETERS FOR THE ANALYTIC EXPRESSION OF α.

Parameter Unit Filler Backing
f0 MHz 2.5 1
β - 1.16 1.39
a1 dB/m 727 1035
a2 dB 1.44 0.73

C. Attenuation model conversion

The utilized FEA tool (Comsol Multiphysics) does not
support the direct use of acoustic attenuation in solids. An
alternative way to account for damping is a hysteretic stiffness
model. There, the structural loss factor ηs is added to the
materials spring constant as a complex factor [15]. To use the
derived expression in a FEA, we converted α to an equivalent
structural loss factor ηs, as explained below.

Linear viscous damping is described by Eq. 4, where ξ is
the viscous damping ratio, ω0 the natural frequency and u0
the initial amplitude.

u(t) = u0 · e−ξω0·t · cos(ωt) (4)

When invoking ξ ≈ ηs/2 and converting from the time to
the spatial domain using t = x/v, Eq. 4 can be rewritten
according to Eq. 5.

u(x) = u0 · e−
ηsω0
2v ·x · cos(ω/v · x) (5)

The relation in Eq. 6 between α and ηs can be derived when
comparing Eq. 1 with Eq. 5, similarly stated in [16].

ηs(f, d) = 2v/ω0 · α(f, d) with ω0 =
√
k/m (6)

A valid assumption for polymers is that they exhibit vis-
coelastic damping properties [17]. With that assumption, the
spring constant k can be approximated by k = E · s/L [15].
There, E is the materials modulus, s the cross section and
L the effective length of the damping material. This finally
leads to the expression in Eq. 7, where ρ is the density of the
material.

ηs(f, d) = 2vL · α(f, d) ·
√
ρ/E (7)

III. RESULTS

When applying the presented method, we obtain structural
loss factors for the filler and backing material as shown in
Fig. 7a. The backing exhibits very high losses with rising
frequencies. At approx. 1 MHz it exceeds ηs values of 2, which
represents the threshold for overdamping. The filler material
has a much lower attenuation in the given frequency range.
It does not reach the threshold, which from theory causes
additional oscillation after an impulse response. To illustrate
the different behavior Fig. 7b shows an example of a 2.5 MHz
ringdown for both materials.

The results of the FEA using the derived loss factors com-
pared to the representative measurement is shown in Fig. 8.
Some reverberations are predicted in the pulse response, as the
magnified view shows. These reverberations cause prominent
ripples in the spectrum below 3 MHz, which matches well
with the measurement. However, earlier reverberations which
occur at approx. 68 µs are not covered.
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Fig. 7. (a) Structural loss factors ηs(f) of the two materials derived with
the presented method. (b) Example of a ringdown of f = 2.5 MHz for both
materials in the time domain.

IV. DISCUSSION AND CONCLUSION

Comparing the measured USCT transducer responses with
the FEA results shows that complex vibration behavior of
transducers can be modeled by accurately considering material
loss properties. Though not all measured reverberations are
predictable, it still allows the identification and optimization
of some unwanted effects. To more accurately cover the
ringdown and earlier reverberation, the acoustic properties of
the matching material have to be investigated in more detail.

After first analysis, the reverberations can be mapped to
the multimodal vibration behavior of our transducers. The
lateral damping (filler material) shows to be insufficient,
especially for frequencies below 3 MHz, to fully counteract
this effect. Different polymers or polymer-composites can now
be evaluated systematically to further increase the damping.

The frequency- and thickness-dependent sound attenuation
α can be determined with high precision and accuracy with
the measurement setup used. In principle, only two samples
per material would be necessary, but more samples are rec-
ommended to make the derivation more robust.

Frequency-power law is suitable to model α of not only
polymers but also composite materials, which are widely used
for acoustic backing. Converting α to an equivalent loss factor
ηs enables the use of material loss properties in different
modeling environments. This allows for a more comprehensive
transducer design approach.
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Fig. 8. Model-to-measurement comparison of a single representative ultra-
sound transducer in the time and frequency domain.

To derive ηs from the acoustic attenuation, the effective
geometry of the damping material has to be assumed. Deriving
ηs directly from a material analysis with dynamic mechanic
excitation would therefore be more straightforward. However,
with the presented experiment also the material’s speed of
sound and acoustic attenuation can be obtained. Therefore,
the method gives a tool to derive multiple important material
properties simultaneously.

In summary, the presented method allows to derive and
model loss behavior of polymers and composites. Considering
this loss behavior in FEA allows more accurate modeling of
complex vibration behavior. In case of our USCT transducers,
it enabled the simulation of some of the reverberation. This
aids in optimizing our ultrasound transducer array design
towards better 3D ultrasound imaging.
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T. Krasnicki, M. Sasiadek, and J. Majewski, “Imaging results of multi-
modal ultrasound computerized tomography system designed for breast
diagnosis,” Computerized Medical Imaging and Graphics, vol. 46,
pp. 83–94, 2015.

[4] H. Gemmeke, L. Berger, T. Hopp, M. Zapf, W. Tan, R. Blanco, R. Leys,
I. Peric, and N. V. Ruiter, “The new generation of the KIT 3D USCT,”
in International Workshop on Medical Ultrasound Tomography, vol. 1,
pp. 271–281, KIT Scientific Publishing, 2018.

[5] N. V. Ruiter, M. Zapf, R. Dapp, T. Hopp, W. A. Kaiser, and H. Gem-
meke, “First results of a clinical study with 3D ultrasound computer
tomography,” in IEEE International Ultrasonics Symposium (IUS),
pp. 651–654, 2013.

[6] M. Zapf, K. Hohlfeld, N. V. Ruiter, P. Pfistner, K. W. A. van Dongen,
H. Gemmeke, A. Michaelis, and S. E. Gebhardt, “Development of
single-fiber piezocomposite transducers for 3D ultrasound computer
tomography,” Adv. Eng. Mater., vol. 20, p. 1800423, 2018.

[7] M. Angerer, M. Zapf, B. Leyrer, and N. V. Ruiter, “Semi-automated
packaging of transducer arrays for 3D ultrasound computer tomography,”
in IEEE Sensors, pp. 1–4, IEEE, 2020.

[8] M. K. Feldman, S. Katyal, and M. S. Blackwood, “US artifacts,”
RadioGraphics, vol. 29, no. 4, pp. 1179–1189, 2009.

[9] R. De Luca, M. Bassani, L. Francalanci, F. Bertocci, F. Gelli, P. Palchetti,
D. Coppini, and L. Bocchi in A Mathematical Model for Reverberations
in Biomedical Ultrasound Transducers: a case study, IEEE, 2018.

[10] M. Angerer, M. Zapf, S. Gebhardt, H. Neubert, and N. V. Ruiter,
“Enhanced KLM model for single-fibre piezocomposite transducers,”
in IEEE Ultrasonics, IEEE, 2020.

[11] E. L. Kinsler, Fundamentals of Acoustics. John Wiley and Sons, 4th ed.,
2000.
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