

Mechanical & chemical recycling of packaging plastics

2nd International Akademie Fresenius Conference, 12 Sept. 2022

Dieter Stapf

www.kit.edu

Plastics Production and Plastics Waste Generation

[million t / a]	EU 28+2* Germany**		
Plastics production	61.8	19.9	
Plastics consumption	51.2	12.6	
Plastic waste	29.1	6.2	
- Landfill	7.2	< 0.1	
- Energy recovery	12.4	3.2	
- Recycling	9.4 (export 1.8)	2.9 (export: 0.6)	

*) Lindner, C. et al.: Circular Economy of Plastics 2018 EU-28+2, Conversio Market & Strategy GmbH, Mainaschaff (2019) **) Lindner, C., Schmitt, J.: Stoffstrombild Kunststoffe in Deutschland 2017, Conversio Market & Strategy GmbH, Mainaschaff (2018)

Industry investments into plastics pyrolysis (excerpt):

- Recycling Technologies, UK
 RT7000 project, Perthshire, Scotland
- Plastic Energy, UK
 - Operations @ Almeria & Sevilla, ES
- Sabic

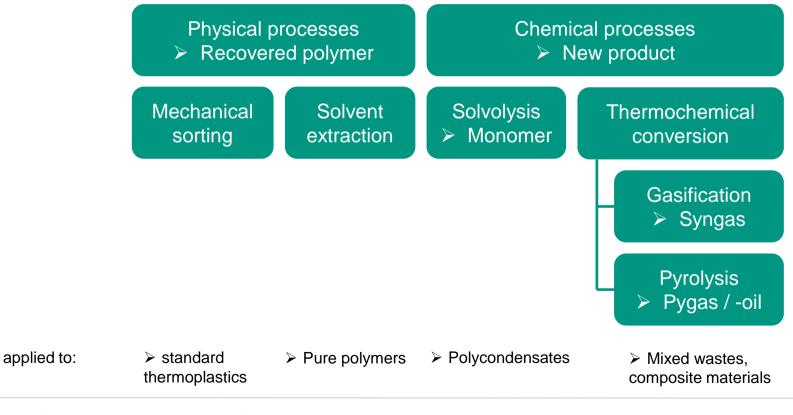
Cooperation with Plastic Energy, Geleen, NL

LyondellBasell

➡ MoReTec-Pilot plant, Ferrara, IT

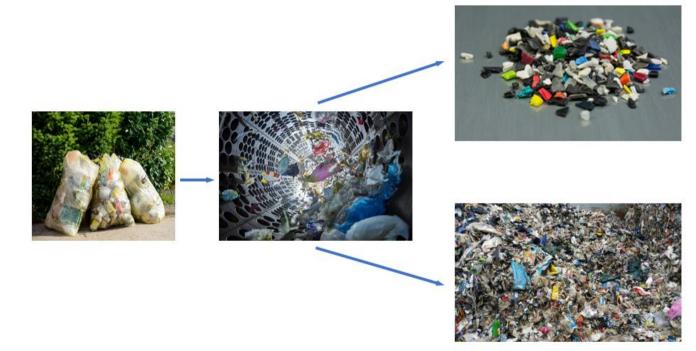
BASF

- Cooperation with Quantafuel, NOR
- Cooperation with Pyrum, GER
- Cooperation with Arcus Greencycling Technologies, GER



www.plasticenergy.com

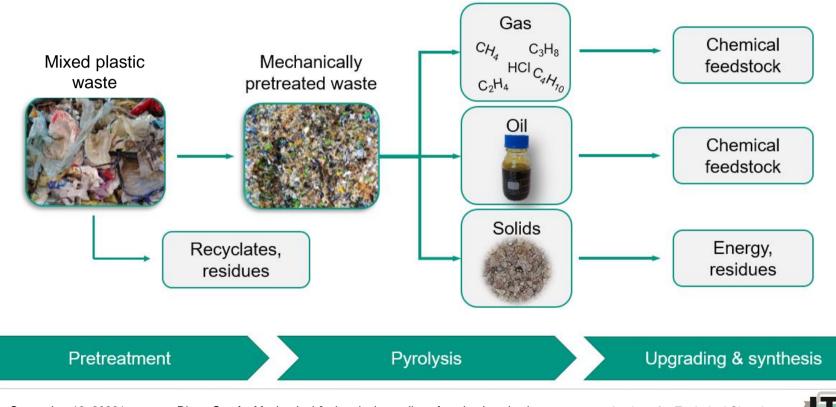
Recycling Processes for Mixed Plastic Waste and Key Products



4 September 12, 2022 Dieter Stapf – Mechanical & chemical recycling of packaging plastics

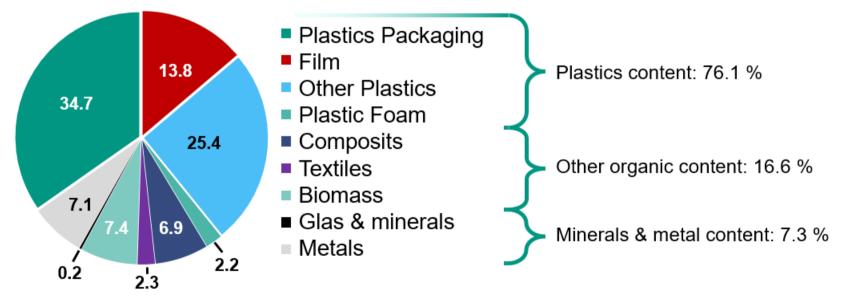
Institute for Technical Chemistry

Collection and Sorting of Lightweight Packaging Waste



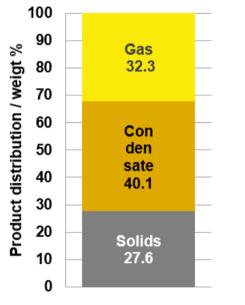
<u>Images: www.awg-info.de/index.php?id=65</u>, <u>www.erema.com/de/erema_news/IDobj=200</u>, ww.reclaygroup.com/de/images/Content/Presse/pressefotos/bilddatenbank/sortierung/161010_Sortieranlage_Reclay_by-ASP_DSF3429.jpg

Recycling of Collected Plastic Waste -The Pyrolysis Value Chain Example



Composition of LWP-SR as Pyrolysis Feedstock

- Mechanical treatment of leight weight packaging (LWP) collected
- Sorting residues (SR) resulting from separation of high value plastics & metals for recycling as well as coarse mineral fraction → energy recovery



Composition of a sorting plant random sample

Pyrolysis of Light weight packing (LWP) sorting residues

Process efficiency:

Carbon recovery in condensate: 51.1%

Energy demand*: 5.1% of feedstock higher heating value

*) for heating, melting, thermal degradation & evaporation

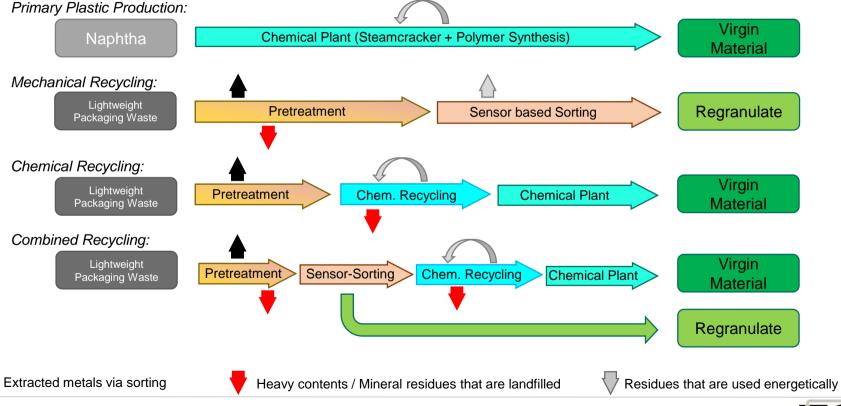
Zeller, M., et al.: Chemical recycling of mixed plastic wastes by pyrolysis. Chem. Ing. Tech. 2021, 93 (11), 1-9. <u>https://doi.org/10.1002/cite.202100102</u>

Institute for Technical Chemistry

ITC

Product distribution (pyrolysis of LWP sorting residues at 450 °C)

Mass Flow Diagram of LWP Waste Pyrolysis Route


9

Case Study: Recycling of Light Weight Packaging Waste

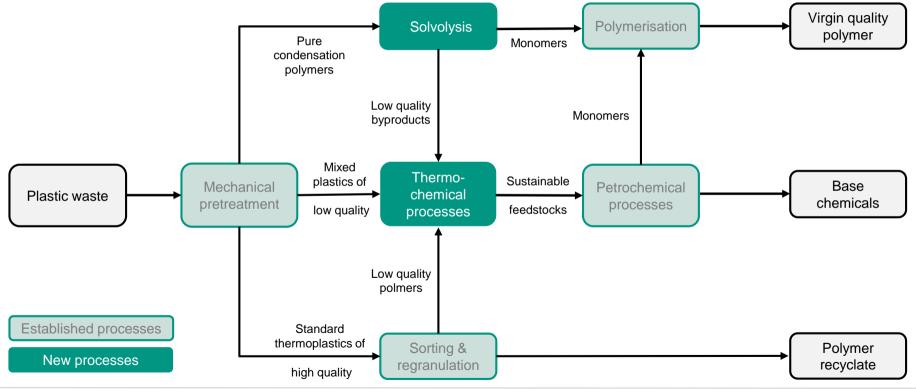
Comparison of Recovery Routes

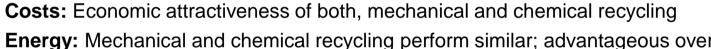
10

Karlsruhe Institute of Technology

LWP Waste Recycling Routes Compared to Primary Plastics Production of HDPE

Recycling scenario	Cost [€/kg _{Input}]	CED [MJ/kg _{Input}]	GWP [kgCO ₂ e/kg _{Input}]	Overall Carbon Recycled
Mechanical, 42% yield	-0.16	-18.1	0.2	42%
Mechanical, 22% yield	-0.08	-6.9	0.6	22%
Chemical recycling	-0.24	-15.9	0.3	59%
Combined recycling, mech. 42%	-0.29	-30.1	-0.2	74%
Combined recycling, mech. 22%	-0.25	-23.1	0.0	66%


Volk,R., et al.: Techno-economic Assessment and Comparison of Different Plastic Recycling Pathways - a German Case Study, Journal of Industrial Ecology, 2021, 1-20; https://doi.org/10.1111/jiec.13145



Technology infrastructure of a circular economy of plastics

Comparison of the production of plastics from fossil raw materials with the combined mechanical /

Energy: Mechanical and chemical recycling perform similar; advantageous over crude oil based products

- CO₂ emissions: Mechanical and chemical recycling perform similar; at high recycling rates advantegous over crude oil based products, today already
- High recycling rates can be achieved through a combination of mechanical and chemical recycling, only
- Chemical recycling technology readiness is insufficient: Reactor scale-up, product upgrading, process evaluation

Institute for Technical Chemistry

Conclusions

Technical assessment of combined mechanical and chemical recycling

chemical recycling of post-consumer waste, taking into account energy recovery

Acknowledgement

Waste feedstock samples supply by:

ARN B.V.

Pre Zero GmbH & Co. KG

Electrocycling GmbH

I.A.R. RWTH Aachen*

Project funding through:

*BMBF-project 033R214D KUBA: Nachhaltige Kunststoffwertschöpfungskette: Pilotfall Kunststoffe in Bauwirtschaft und Gebäuden

KIT/Conversio, 2019: "BKV-Studie" Thermal Processes for Feedstock Recycling of Plastics Waste, http://www.bkv-gmbh.de/infothek/studien.html

