
Probabilistic Goal-Directed Pedestrian Prediction

by Means of Artificial Neural Networks

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

DIPL.-ING. EIKE REHDER

aus Hamburg

Tag der mündlichen Prüfung: 11.02.2022
Hauptreferent: Prof. Dr.-Ing. Christoph Stiller
Korreferent: Prof. Dr.-Ing. Klaus Dietmayer

Vorwort
Die hier vorliegende Arbeit entstand während meiner Tätigkeit als wissen-
schaftlicher Mitarbeiter am Institut für Mess- und Regelungstechnik am
Karlsruher Institut für Technologie (KIT), teilweise in Zusammenarbeit
mit der BMW AG im Kontext des UR:BAN-Projekts. Zunächst möchte
ich mich bei Herrn Prof. Christoph Stiller für die Betreuung dieser Arbeit,
die wissenschaftlichen Anregungen und die Freiheiten in der Forschung
bedanken. Herrn Prof. Klaus Dietmayer danke ich für die Übernahme des
Korreferats.

Bei meinen Kolleginnen und Kollegen des MRT möchte ich mich für
die Zusammenarbeit, Anregungen in Diskussionen und Sommerseminaren,
aber auch darüber hinaus für gemeinsame Unternehmungen, Social Tues-
days, Skifahrten und vieles mehr bedanken. Dr. Martin Lauer danke ich
für die geduldige Unterstützung selbst bei den kleinsten Details. Besonde-
rer Dank gilt Marilena Kammerer für gestalterische Unterstützung. Wei-
terhin danke ich den Heerscharen von Lektoren, die zum Gelingen beige-
tragen haben (in Reihenfolge der Kapitel), Nick Schneider, Janina Rehder,
Maximilian Naumann, Nicolas Jourdan, Lukas Schneider, Martin Lauer,
Jan Bernlöhr, Niels Ole Salscheider und Niklas Hanselmann.

Horst Klöden und Nina Brouwer von BMW danke ich für die fruchtbare
Zusammenarbeit zu Anfang meiner Doktorandenzeit.

Dem Sekretariat des MRT danke ich für die organisatorische Unterstüt-
zung sowie den löwenhaften Einsatz für die Doktoranden im Angesicht
von Verwaltungschaos. Außerdem danke ich den Werkstätten und Werner
Paal für die technische Unterstützung. Der Karlsruhe School of Optics and
Photonics (KSOP) danke ich für finanzielle Förderung und den spannenden
Blick über den Tellerrand.

Außerdem danke ich dem gesamten Team von CV1, ohne deren Angebot
diese Arbeit wahrscheinlich vier Jahre früher abgegeben worden aber ohne
die sie danach auch niemals fertig geworden wäre.

Mein besonderer Dank gilt meinen Eltern für ihre gesamte Unterstüt-
zung. Ganz besonders danke ich meiner Frau Janina, für ihr Verständnis
und ihre stoische Ruhe, wenn neben einer vollen Arbeitswoche noch eine
Dissertation geschrieben wird.

Böblingen, im Juni 2021 Eike Rehder

Abstract
Perception and prediction of other traffic participants is crucial for safe and
efficient navigation of automated vehicles. In this context, pedestrians re-
quire special attention due to their great vulnerability and complex motion
patterns.

This thesis presents an end-to-end goal-directed prediction network for
pedestrian prediction. For this, a probabilistic formulation is proposed that
utilizes path planning techniques for prediction. The required goal is treated
as a latent variable in form of a short-term destination. Two different re-
alizations of goal-directed prediction are derived from this, one based on
Markov Decision Processes and one inspired by the Forward-Backward-
Algorithm. Using a grid representation, an efficient solution to the planning
task using recursive convolutions is shown.

The proposed system consists of two parts, the inference of destinations
and the planning towards them. Both components are implemented as neu-
ral networks. From time series of pedestrian observations, a recurrent mix-
ture density network predicts distributions of destinations. These serve as
the latent goals for the subsequent planning networks. Based on semantic
grid maps of the environment, these networks estimate the trajectory to-
wards the destinations in a probabilistic fashion. As all individual building
blocks are fully differentiable, they can be fused and trained as a single,
monolithic neural network from observed pedestrian behavior.

For training and evaluation, a naturalistic dataset consisting of video se-
quences is proposed. In these, pedestrians are annotated manually and en-
riched with trajectory information and local semantic grid maps. To assess
performance, metrics are selected that reflect both, precision and safety of
the prediction. With this at hand, a detailed analysis of the method’s de-
sign parameters is provided, also in comparison to established approaches
from literature. It is shown that the method performs best in all evaluated
domains.

Kurzfassung
Die Erkennung und Vorhersage anderer Verkehrsteilnehmer ist eine Grund-
voraussetzung für den erfolgreichen Betrieb automatischer Fahrzeuge. We-
gen ihrer komplexen Dynamik und Verletzungsgefahr muss hierbei beson-
deres Augenmerk auf Fußgänger gelegt werden.

In dieser Arbeit wird ein System zur Vorhersage von Fußgängerbewe-
gung auf Basis zielgerichteter Planung vorgestellt. Dieses integiert alle Be-
standteile in einem einzigen probabilistischen Modell. Die hierfür zunächst
notwendigen Ziele werden als latente Variable behandelt. Gegeben dieser
Ziele werden zwei Lösungsansätze für die Pfadplanung präsentiert, basie-
rend zum einen auf Markov-Entscheidungsprossen, zum anderen auf dem
Vorwärts-Rückwärts-Algorithmus. Eine Repräsentation durch Rasterkarten
erlaubt hierbei eine effiziente Berechnung mittels diskreter Faltungen.

Das vorgestellte System setzt sich aus zwei Einzelteilen zusammen, der
Inferenz möglicher Ziele und der Trajektorienplanung dorthin. Beide wer-
den jeweils als künstliche neuronale Netze formuliert. Die Vorhersage von
Zielen erfolgt mithilfe eines rekurrenten Netzes, welches die Parameter ei-
ner Mischverteilung aus Fußgängerbeobachtungen inferiert. Diese dienen
dann als Zielzustand für die jeweiligen Planungsnetzwerke. Auf Basis von
Merkmalskarten der Umgebung erzeugen sie Wahrscheinlichkeitsverteilun-
gen für die Zwischenzustände auf dem Weg zum Ziel. Da sowohl die Ziel-
prädiktion als auch Planung differenzierbar sind, können beide Einzelteile
als ein ganzheitliches neuronales Netz betrachtet und daher auch als solches
trainiert werden.

Zur Evaluation wird ein Datensatz bestehend aus realen Verkehrsszenen
vorgestellt. Hierfür werden zunächst Fußgänger in Videosequenzen manu-
ell annotiert. Mittels Stereo-Bildverarbeitung werden diese zusätzlich mit
Trajektorieninformation und semantischen Umfeldkarten angereichert. Um
Prädiktion quantifizieren zu können, werden Metriken vorgeschlagen, die
sowohl die Genauigkeit als auch die Sicherheit der Vorhersage widerspie-
geln. Auf dieser Basis werden zunächst die modellspezifischen Parameter
im Detail analysiert. Zuletzt werden etablierte Methoden aus der Literatur
zum Vergleich herangezogen. Das vorgestellten Verfahren überbietet diese
sowohl in Genauigkeit und Sicherheit.

Contents

1 Introduction . 1
1.1 Towards Automated Driving 1
1.2 Pedestrian Safety: A Challenge For Automated Driving . 2
1.3 Human Motion Is Decision Making 4
1.4 Thesis Outline . 5

2 Fundamentals . 7
2.1 Markov Decision Processes 7
2.2 Artificial Neural Networks 9

2.2.1 Artificial Neurons 10
2.2.2 Network Training 12
2.2.3 Conv. Neural Networks and Deep Learning . . . 13
2.2.4 Network Concepts 15

3 Related Work . 21
3.1 Features . 21

3.1.1 Pedestrian-Specific Features 22
3.1.2 Environment Features 22

3.2 Methods . 22
3.2.1 Physical Model 23
3.2.2 Pattern Recognition 23
3.2.3 Prediction by Planning 23

3.3 Reference Methods . 24
3.3.1 Naïve Baseline: Kalman Filter 24
3.3.2 Physical Model: Interacting Multiple Models . . 25
3.3.3 Pattern Recognition: Grid Prediction 25
3.3.4 Prediction by Planning: Activity Forecasting . . 26
3.3.5 Comparison and Discussion 28

4 Probabilistic Goal-Directed Prediction 31
4.1 Model Formulation . 31

Contents

4.2 Forward-Backward Prediction 35
4.3 Markov Decision Processes for Prediction 40

5 Pedestrian Position Prediction 43
5.1 Destination Prediction 44

5.1.1 Goal Distribution Parameterization 45
5.1.2 Parameter Estimation 47

5.2 Trajectory Prediction 50
5.2.1 Forward Backward Network 50
5.2.2 Markov Decision Process Network 53
5.2.3 Planning Network Training 55

5.3 Joint Destination and Planning Network 58
5.3.1 Destination Mixture Density Grids 58
5.3.2 Planning Map Topology 59
5.3.3 Prediction Network Augmentation and Training . 60

6 Dataset . 63
6.1 Prerequisites . 64

6.1.1 Stereo Setup 64
6.1.2 Disparity Computation 65
6.1.3 Vehicle Motion Estimation 66
6.1.4 Semantic Segmentation 68
6.1.5 Mapping . 68

6.2 Pedestrian Data . 69
6.2.1 Manual Annotations 69
6.2.2 Trajectory Estimation 70

6.3 Dataset Statistics . 73
6.4 Metrics . 74

6.4.1 Unified Representation for Evaluation 74
6.4.2 Probability Distribution Metrics 76
6.4.3 Classification Metrics 77

7 Experimental Validation 79
7.1 Destination Prediction 79

7.1.1 Experiment Setup 80
7.1.2 Loss . 80
7.1.3 Number of Mixtures 81
7.1.4 Dropout . 82
7.1.5 Prediction Horizon 83
7.1.6 Orientation Estimation 84
7.1.7 Visual Features 86

Contents

7.1.8 Qualitative Results 87
7.2 Goal-Directed Prediction 87

7.2.1 Regularizations 89
7.2.2 Number of Actions 90
7.2.3 Map Features 91
7.2.4 Qualitative Results 94

7.3 Joint Goal and Trajectory Prediction 96

8 Conclusion . 101
8.1 Summary . 101
8.2 Outlook . 104

A Artificial Neural Networks 105
A.1 Layers . 105
A.2 Non-Linearities . 109
A.3 Network Architectures 112

B Details on Experiments 115
B.1 Numerical Considerations 115
B.2 Reference Experiments 116
B.3 RMDN Experiments 117
B.4 Planning Network Experiments 120

Bibliography . 127

Notation and Symbols

Acronyms

ADAM Adaptive Momentum
AF Activity Forecasting
ANN Artificial Neural Network
AuPR Area under Precision-Recall-Curve
AuROC Area under Receiver Operator Characteristic
BEV Bird’s Eye View
Bwd Backward
CNN Convolutional Neural Network
DARPA Defense Advanced Research Projects Agency
DOGMa Dynamic Occupancy Grid Map
ELU Exponential Linear Unit
FC Fully Connected (Layer or Network)
FCN Fully Convolutional Network
Fwd Forward
Fwd-Bwd Forward-Backward
GPU Graphics Processing Unit
IL Imitation Learning
IMM Interacting Multiple Model (Filter)
IR Infra-Red
IRL Inverse Reinforcement Learning
KF Kalman Filter
Laser Light Amplification by Stimulated Emission of

Radiation
LRN Local Response Normalization
LSTM Long Short-Term Memory
MDN Mixture Density Network
MDP Markov Decision Process
mNLP Mean Negative Log Probability
mPP Mean Predicted Probability
PDF Probability Density Function

Notation and Symbols

PR Precision-Recall-(Curve)
ReLU Rectified Linear Unit
RL Reinforcement Learning
RMDN Recurrent Mixture Density Network
RNN Recurrent Neural Network
ROC Receiver Operator Characteristic
SGD Stochastic Gradient Descent
VGG Visual Geometry Group
VI Value Iteration
VIN Value Iteration Network
VRU Vulnerable Road User

General Notation

Scalars Regular (Greek) lower case 𝑎, 𝑏, 𝜎, 𝜆
Vectors Bold (Greek) lower case a, b,σ,λ
Matrices Bold (Greek) upper case A,B,Σ,Λ
Sets Calligraphic upper case 𝒜,ℬ

Generic Mathematical Symbols

𝜖 A small constant
∘ Arbitrary argument (of function or operator)
∘̂ An estimate
1 Selector, conditionally evaluates to 0 or 1
⊗ Convolution operator
⟨A,B⟩F Frobenius Product of A and B,

∑︀

i

∑︀

j 𝑎ij𝑏ij
𝐽(∘) Cost functional

Trajectories Representations

𝑠, s An agent’s state
𝑎 An action
𝒜 Set of all possible actions
𝑢,u Motion
𝜁 Trajectory
𝑁ζ Number or states in trajectory
𝑡 A discrete time step
𝑇 The last time step of a trajectory segment
𝑠0, s0 Current starting point of trajectory segment
𝑠T , sT Current destination of trajectory segment

Neural Networks

𝑥,x,X Input data
𝑦, ŷ, Ŷ A network’s output
𝑦,y Target values (labels)
�̂�, ŵ, Ŵ Trainable parameters
c Cell state of an RNN
L Loss function
𝜂 Learning rate
𝜆 Weighting factor
𝒟 Dataset
ℬ Batch of training examples

Representation of Predictions

Θ Feature map of the environment
Φ Grid map of predicted probability distribution
𝑅(∘) Reward function in Value Iteration
𝑉 (∘) Value function in Value Iteration
𝜋(∘) Policy in an MDP

Dataset Generation

T Pose in 𝑆𝐸(3)
R Rotation matrix
K Camera projection matrix
𝑢, 𝑣 Image coordinates
𝑓 Camera’s focal length
𝑐u, 𝑐v Camera’s projection center in image
𝑏 Stereo camera baseline
𝑑 Disparity
𝜋(∘) Projection function
x 3D point in the world
p 2D point in image
𝑒, ê Residual
ℒ Set of landmarks
𝒯 Set of poses
𝑙, 𝑟, 𝜓 Arc, radius and angle of curve
𝑘 Height of a person
𝑤, ℎ Dimensions of bounding box
𝑜 Binary label of occlusion
𝑔 Binary label of validity of disparity

Color Schemes

Throughout this work, consistent color schemes are used to visualize infor-
mation. They can be grouped into three categories, namely color schemes
to distinguish entities, color representation of semantic classes, and finally
sequential colormaps for qualitative display of values.

Semantic classes are displayed according to a modified CityScapes color
mapping [37]. The classes and their respective colors are displayed below.

Road Sidewalk Building Pole Traffic Light Traffic Sign

Vegetation Terrain Sky Person Rider Car

Motorcycle Bike Obstacle Curb

Colormap for semantic classes built upon CityScapes color mapping [37].

This work makes extensive use of artificial neural networks. These net-
works are constructed of recurring building blocks. Each of these blocks
is used for distinct characteristics in processing. For description of the un-
derlying concepts, refer to Appendix A. Due to the complexity of some of
the models used in this work, the following color scheme is employed for
simple visualization of building blocks.

Input Convolution Pooling Matrix Multiply

Concatenation Deconvolution Elem.-wise Op. Other

Color map to visualize network components. Color palette taken from [59].

Color Schemes

Real-valued results are visualized using sequential colormaps. The ac-
tual range of the mapped values varies depending on context. However,
they are only meant for qualitative depictions of results.

Low High Low High

Sequential colormaps for qualitative visualization. Color palette taken from [59].

Note that some of these colormaps are consistently but not exclusively
attributed to visualize classes of methods throughout this thesis. Oranges
are used for reference experiments, blues for RMDN and MDP, and finally,
greens denote Fwd-Bwd results.

In some cases, it is necessary to identify zeros in visualization, e.g. for
cost maps. For this, the following diverging colormap is used. For better vi-
sualization, positive and negative values may be scaled differently to make
use of the whole color spectrum.

Low 0 High

Diverging colormap for qualitative visu-
alization with distinct zero color value.
Color palette taken from [59].

Chapter 1
Introduction

Automated driving is considered one of the key technologies of future mo-
bility. If it were possible to transfer the task of driving from the human to
the vehicle itself, many challenges of future mobility could be addressed.

Automation of driving tasks can increase the quality of life in many as-
pects. It will help to reduce and mitigate traffic accidents. It will provide
mobility for those that cannot or dare not safely operate a vehicle, such as
the elderly or impaired. Furthermore, automation can ease tedious driving
tasks, such as daily commute or congested traffic, providing more quality
time for the driver. Lastly, it can help to optimize traffic flow for more
efficient and eco friendly transport [7, 106].

1.1. Towards Automated Driving

The vision of automated driving is almost as old as the automobile it-
self. First ideas of driverless cars date back as early as the 1920s [115,
116]. With technological progress, automation quickly evolved from tele-
operation towards in-vehicle sensing, processing and control [40, 81]. The
two great challenges hosted by the Defense Advanced Research Program
Agency (DARPA), the Grand Challenge and the Urban Challenge, intro-
duced the field to a larger community [27, 28]. Since then, almost all vehi-
cle manufacturers as well as soft- and hardware suppliers have established
their own research programs.

As a first realization, advanced driver assistance systems have been in-
troduced to production line vehicles successfully. Systems like adaptive
cruise control or active lane assist support the driver in structured traffic.

1

1. Introduction

(a) MERCEDES-BENZ S500
INTELLIGENT DRIVE [184]. Source:
Mercedes-Benz

(b) WAYMO Driverless Car [118].
Source: Waymo

Figure 1.1.: Examples of successful automated vehicles in urban environments.

Meanwhile, the task of urban transport remains challenging. An automated
vehicle that is to navigate through all urban scenarios has to fulfill the same
tasks as a human driver. That is, it has to monitor the entire environment,
obey to all traffic rules, detect other traffic participants and negotiate for
interactions.

Recently, some works have started to approach automation in urban traf-
fic, some examples shown in Fig. 1.1. However, due to the unstructured
nature of the problem, these systems were only applied in limited scope
[118, 184]. This is mainly due to the diversity of road scenes as well as
the sometimes chaotic interactions between a great variety of traffic par-
ticipants. These pose a severe challenge since the road must be shared not
only with other automobiles but also with motorbikes, cyclists, pedestrians,
wheelchairs, animals and many more.

1.2. Pedestrian Safety: A Challenge For Automated Driving

Among all the different traffic participants in cities, the safety of vulnera-

ble road users (VRUs, i.e. cyclists, pedestrians and the like) should be of
special concern as collisions may have severe, even fatal, consequences.

This becomes apparent from the accident statistics. In Fig. 1.2, we see
the evolution of all fatalities in traffic accidents in Germany as well as that
of pedestrians. In the past decades, the number of fatalities in traffic has
steadily declined. This is a consequence of both, safety systems as well as
stricter law enforcement.

2

1.2. Pedestrian Safety: A Challenge For Automated Driving

1970 1990 2010
0

10

20

Year

Fa
ta

li
ti

es
(a

ll
)

/1
00

0

Number of Traffic Fatalities

0

1

2

Fa
ta

li
ti

es
(P

ed
es

tr
ia

ns
)

/1
00

0
Figure 1.2.: Numbers of fatalities p.a. in
traffic over time.

Driv
ers

Ped
es

tri
an

s0

0.5

1

1.5

R
at

io
/%

Ratio of Fatalities

Figure 1.3.: Ratio of fatalities per ac-
cident and kind of traffic participation
(2019).

If we analyze these accidents, the ratios of fatalities in Fig. 1.3 give a
better insight. Of all pedestrians involved in traffic accidents, consequences
were fatal for almost 1.3%. This number is three times as high as that for
drivers. In total, even though pedestrians make up for only one tenth of ac-
cident participants, they account for one sixth of the fatalities. This, again,
justifies the term of vulnerable road users since accidents often result in
serious injuries or even death. All in all, it shows the demand for measures
that directly address pedestrian safety.

Increased safety can be achieved through active systems. For this, vehi-
cles are equipped with sensors that perceive the environment. These allow
to detect VRUs and track them over time. A prediction of the VRU’s be-
havior then serves as an input for vehicle motion planning, e.g. braking or
evasive maneuvers. While detection and tracking has received considerable
attention in research, prediction still lags behind. In order to fill this gap,
this work focuses on the prediction with special focus on pedestrians.

Current prediction systems can be separated into three categories: those
that reason based on object dynamics, those that employ planning methods
and, finally, pattern recognition models. All come in great variety of forms
and features, e.g. incorporation of additional knowledge such as body pose
or previously observed scenarios. However, the same way that prediction
approaches can be assigned to one of the three classes, they also exhibit
one of three shortcomings. Either, they only apply for short time horizons
of less than a second, they require previously observed, static scenes, or
they a not physically founded.

3

1. Introduction

Figure 1.4.: Pedestrian at the curb: A multitude of factors influences prediction.

In the context of automated driving however, none of those drawbacks is
acceptable. In order to navigate successfully a vehicle has to predict other
traffic participants’ actions for the range of seconds. Also, the constraint
of static or previously observed scenes cannot be satisfied as vehicles move
through dynamically changing environments. Finally, only dynamically
feasible trajectories can be considered valid predictions.

1.3. Human Motion Is Decision Making

For time horizons of multiple seconds, pedestrian motion is no longer
purely reactive, but tactical instead. Humans plan their motion in order
to reach a specific goal. Mostly, this goal is to reach a certain destina-
tion. At the same time, the human is subject to extrinsic and intrinsic con-
straints. Extrinsic constraints cover all factors that influence motion from
the outside, such as obstacles along the way, traffic regulations or the risk
of collision. Intrinsic constraints stem from the human’s limited dynamics,
e.g. limits on pace or acceleration.

Figure 1.4 visualizes these three factors. The pedestrian at the curb faces
a common urban scene with cars parked along a sidewalk. If we aim to
predict his future motion, we first have to determine his intention. If he
was headed along the sidewalk, his actions would be less likely to interfere
with a vehicle on the road. If, however, he aimed to cross the road, a pass-
ing vehicle would have to take special care. For both cases, however, the
pedestrian is subject to the constraints of the scene geometry. He cannot
pass through the parked cars and will prefer to stay on the sidewalk.

4

1.4. Thesis Outline

Even though we cannot reason about his dynamics from a single image,
we may assume from his posture that he is facing the curb stone, indicating
a future trajectory closer to, or even on, the road. This simple example
demonstrates the reasoning about pedestrian behavior that human drivers
do and, consequently, an automated vehicle should be capable of as well.

Accordingly, automated prediction should reason about intentions and
the consequent motion to fulfill them. As the intention may only be inferred
from a VRU’s behavior, a system should incorporate VRU-specific infor-
mation such as past motion or visual cues. Especially for long-term pre-
diction, the most likely future motion can be deduced from this intention.
Naturally, this is also impacted by the layout of the scene. Consequently,
a prediction system should incorporate all these features into its reasoning.
Unfortunately, it is infeasible to model all relationships between features
and a VRU’s behavior explicitly. Instead, a prediction method should be
able to infer these from past observations. As all predictions inherently are
subject to uncertainty they need to be approached in a probabilistic fashion.

1.4. Thesis Outline

This work proposes to model prediction by means of probabilistic goal-
directed planning. As seen in the previous example, the intention is of par-
ticular importance. Therefore, it is inferred from observations in form of
short-term destinations. With such destinations given, planning techniques
are employed to reason about future trajectories. Here, also knowledge
about the environment is incorporated. The entire method is formulated as
an artificial neural network which allows to learn the prediction from ob-
served trajectories. For both, learning and evaluation, a naturalistic pedes-
trian dataset is created, using a stereo camera as only sensor. With this real
world data, the impact of the method’s design parameters is analyzed and
finally, it is compared against established methods from literature.

In the following, the method for prediction is explained in detail. After
this introduction, a brief review relevant fundamentals and related literature
follows in Chapter 2 and Chapter 3, respectively. The informed reader may
like to skip the two and continue with the generic statement of the goal-
directed prediction framework in Chapter 4. The application to pedestrian
trajectory prediction for automated vehicles is presented in Chapter 5. The
system is evaluated on real world data captured by an experimental vehi-
cle, described in Chapter 6. The results of this evaluation are explained in
Chapter 7. The work is concluded in Chapter 8.

5

Chapter 2
Fundamentals

Forecasting of future actions is inherently subject to uncertainties. Conse-
quently, a probabilistic prediction model should be constructed. To make
the most from observations it should incorporate features for both, a pedes-
trian and the environment. If we try to build such a model directly from
expert knowledge, we quickly encounter difficulties in parameterizations
of all relevant factors. With an increasing number of features and interde-
pendencies it becomes infeasible to explicitly program a suitable predictor.
In this case, machine learning is an attractive alternative. With powerful
tools of machine intelligence at hand, the probabilistic model can be ob-
tained by learning. For this, a machine should infer a prediction model
from previously observed trajectories.

This chapter briefly discusses the fundamentals of probabilistic planning
and machine learning used in this work. For probabilistic modeling of mo-
tion, Markov Decision Processes (MDPs) are explained briefly. As the ma-
chine learning backbone for the prediction model, artificial neural networks
are employed. Since only a basic understanding is required, only the most
general concepts are introduced. The interested reader is referred to Good-
fellow et al. [56] and the list of network components in Appendix A.

2.1. Markov Decision Processes

An agent’s navigation can be considered as selection of actions from a set
of choices. This process can be modeled as a graph in which every state is
represented as a node and every action is an edge in the graph.

7

2. Fundamentals

(a) Vehicle maneuvering as determinis-
tic decision graph.

(b) Due to uncertainty, e.g. unkown
road friction, steering becomes a
Markov Decision Process.

Figure 2.1.: Vehicle steering as a decision process, either deterministic or stochastic.

Let us first consider a simple example of a moving vehicle. We may
model selected discrete positions as possible states. The action alternatives
now represent the transitions between the states, e.g driving straight, taking

a left turn, and so on, as displayed in Fig. 2.1a. In this formulation, the
vehicle’s motion can be seen as a simple decision graph. If a certain state
should be reached, the actions leading to that state can be selected and
executed deterministically.

This very simple model becomes more complicated when the outcome is
not deterministic. This might be the case if the vehicle moves over terrain
with varying friction, e.g. on gravel roads. Now, the wheel slip and thus
the action outcome may be subject to the random nature of the ground, as
illustrated in Fig. 2.1b. This has to be accounted for in transition selection.

For that, the selection of an action depends on the distribution of possible
outcomes. The problem of decision graphs with uncertain transitions has
been studied as Markov Decision Processes (MDPs). An MDP consists of
a set of states 𝒮 and a set of actions 𝒜. To every state 𝑠∈𝒮 , a transition
probability distribution is associated to end up in a new state 𝑠′∈𝒮 when
taking an action 𝑎∈𝒜 as

𝑃a(𝑠, 𝑠
′) = 𝑃 (𝑠k+1 = 𝑠′|𝑠k = 𝑠, 𝑎k = 𝑎). (2.1)

Now, a reward 𝑅a(𝑠, 𝑠
′) is defined for taking action 𝑎 in 𝑠 that ends up in

state 𝑠′. The goal then is to find a policy per state 𝜋(𝑠) in order to maximize
the expected reward.

8

2.2. Artificial Neural Networks

One solution to find a policy for an MDP is Value Iteration (VI). A value
function 𝑉 (𝑠) is defined as the current expected reward per state when fol-
lowing the current optimal policy. In an iterative fashion, the value of every
state 𝑉 (𝑠) is updated with the maximum expected reward

𝑉k+1(𝑠) := max
a

∑︁

s′

𝑃a(𝑠, 𝑠
′) (𝑅a(𝑠, 𝑠

′) + 𝛾𝑉k(𝑠
′)) , (2.2)

where 𝛾 is a discounting factor to favor early rewards. Here, again, ev-
ery action 𝑎 is associated with a state transition probability distribution as
defined in Eq. (2.1).

In the expanded product of Eq. (2.2), the term 𝑃a(𝑠, 𝑠
′)𝑅a(𝑠, 𝑠

′) reflects
the expected reward for a single action. The term 𝑃a(𝑠, 𝑠

′)𝑉k(𝑠
′) includes

the previous result 𝑉k(𝑠′) and with that, resembles rewards that can later be
obtained from future states 𝑠′. The final policy function is the argmax of
the value function at convergence 𝑉 (𝑠)

𝜋(𝑠) = argmax
a

∑︁

s′

𝑃a(𝑠, 𝑠
′) (𝑅a(𝑠, 𝑠

′) + 𝛾𝑉 (𝑠′)) . (2.3)

Since these rewards reinforce a certain behavior policy that is learned iter-
atively, this task is called reinforcement learning (RL) [160].

In many cases the reward function𝑅a(𝑠, 𝑠
′) is defined by an external ob-

server. Unfortunately, this reward function is not always known. If, how-
ever, policies or action outcomes of others solving the same problem can be
observed, we may try to infer the underlying reward function. This concept
is studied as Imitation Learning (IL) or Inverse Reinforcement Learning
(IRL). For IL, the aim is to imitate demonstrated actions [132]. In IRL, we
observe a series of action outcomes and from this, infer the reward function
[99].

2.2. Artificial Neural Networks

The field of machine learning deals with the task of artificially gaining
knowledge from experience. Especially in computer science, this task is
of great relevance as it lets a computer perform tasks without being explic-
itly programmed to do so [21].

9

2. Fundamentals

In most current implementations of machine learning, this is done by
modeling a function that maps an input x to a desired output ŷ using a set
of parameters ŵ [21]

𝑓 (x, ŵ) ↦→ ŷ. (2.4)

In this context, the function 𝑓(∘) and the parameters ŵ represent a ma-
chine’s knowledge, whereas the input x is the data to be reasoned upon.

Analogous to human learning, machine knowledge is built up from expe-
rience, i.e. some kind of feedback. In human learning this might be rewards
or penalties given by some authority like parents or teachers, but also the
experience of success or failure. In machine learning, it has to be modeled
by a feedback function

𝐽 (𝑓 (x, ŵ) ,y) (2.5)

that compares the machine’s output ŷ to a desired value y. These so-called
target values may be fed to the machine by a human user in supervised

learning. This is analogous to a human being taught. If the target values
can be computed by the machine itself, it learns in an unsupervised fashion,
just like a human does from experience.

One way or the other, the function 𝐽(ŷ,y) will compute a feedback value
that is used to update the parameters ŵ to improve the prediction for the
given data. This process, called training, requires a pair of input vector and
desired output (x,y). The input is fed to the function 𝑓(x, ŵ) and produce
an output ŷ. With the desired output y, the function 𝐽(ŷ,y) can be evalu-
ated and finally the parameters ŵ are changed to improve the outcome.

The output of function 𝐽(∘) can be seen as either reward or loss for
the machine under training. For loss functions, small values are desirable.
The machine learning problem is defined as a minimization task w.r.t. the
parameters ŵ, so that

ŵ
* = argmin

ŵ

𝐽 (𝑓 (x, ŵ) ,y) . (2.6)

The use of a reward function only differs in equation Eq. (2.6) such that
𝐽(∘) is maximized instead.

2.2.1. Artificial Neurons

Artificial Neural Networks (ANN) are a special class of learning algo-
rithms that were designed to mimic biological information processing [5].
In animate beings, information is processed and transmitted via neurons.

10

2.2. Artificial Neural Networks

Input 𝑥1

Input 𝑥2

Input 𝑥3

Output 𝑦1

Output 𝑦2

Hidden
layer

Input
layer

Output
layer

Figure 2.2.: An artificial neural network with three input nodes, one hidden layer
with four neurons and two outputs.

These neurons are electrically excitable cells that connect to other cells via
synapses [2]. In artificial neurons, this prototype is emulated by multivari-
ate non-linear functions. This work makes use of the multilayer perceptron
and variants thereof. The perceptron computes a weighted sum of a mul-
titude of inputs to model the stimuli of a biological neuron. A non-linear
activation function is applied to the result of this weighted sum of inputs to
compute the excitation of the artificial neuron

𝑓(ŵ⊤
x) = 𝑦, (2.7)

where ŵ is a weighting vector for the input x and 𝑓(∘) is some non-linear
function. The output 𝑦 is called activation of a neuron.

To construct a network from artificial neurons, they are interconnected
both in series as well as in parallel. For parallel processing, one simply
exchanges the weight vector ŵ⊤ in Eq. (2.7) by a weighting matrix

𝑓(Ŵx) = ŷ, (2.8)

where Ŵ ∈ IRM×N, with 𝑁 is the number of input vector entries and 𝑀
the number of output neurons. This concept is called a layer. Multiple lay-
ers can be stacked by using the output of one layer as the input of another.
The final output layer of an ANN is the predicted value of an ANN given
the input data x. The first layer that represents the input data points is called
input layer, the last layer that outputs the predicted values output layer, all
remaining layers are hidden layers as their activations are only used within
the network’s processing and remain hidden from the user. An exemplary
network is shown in Fig. 2.2.

11

2. Fundamentals

x 𝑓

ŵ1

𝑔

ŵ2

𝐽
x 𝑓(x) 𝑔(𝑓(x))

ŵ1 ŵ2

∇f𝐽 ∇g𝐽

∇ŵ1
𝐽 ∇ŵ2

𝐽

Figure 2.3.: Data flow in a artificial neural network training. In the forward pass,
input data x is processed by all layers to produce output g and its loss J . For
parameter update, the loss gradient is propagated back to layers and their weights.

Such models are so-called fully connected (FC) networks. The name
stems from the fact that for a given layer, there exist weights that couple
every output neuron from the previous layer to every neuron in the given
layer, thus fully connecting all neurons. This of course is only true if matrix
Ŵ is densely populated.

The number of layers in ANNs is called its depth. Early ANNs mostly
were shallow networks with only two or three layers. Today, networks with
hundreds of layers have successfully been trained [62].

2.2.2. Network Training

Given a neural network architecture, only its parameters Eq. (2.4) govern
the mapping from in- to output. These parameters are found using mini-
mization of a loss function according to Eq. (2.6). For this training process,
non-linear optimization is used to find the parameters ŵ that best fit the
desired output in terms of loss.

The most common optimization technique for neural networks is gra-
dient descent. In gradient descent, parameters are iteratively updated to
decrease the loss function’s value. Given the current parameters ŵk, we
compute the gradient of the loss function 𝐽 w.r.t. the parameters ŵ, ∇ŵ𝐽 .
The parameters are then updated in opposing direction of the gradient,

ŵk+1 = ŵk − 𝜂∇ŵ𝐽 |ŵk
, (2.9)

where the parameter 𝜂, called learning rate, controls the scale of parameters
updates per iteration.

For training, the gradient ∇ŵ𝐽 needs to be computed for all pairs of input
data and desired output, (x,y). This is done efficiently when treating the

12

2.2. Artificial Neural Networks

neural network as a computation graph. An example is shown in Fig. 2.3.
Every layer in the network is represented as a node in the graph.

In training, data is passed forward along the edges and processed in the
nodes. The final node evaluates the loss of the network. Then, the gradient
of the loss w.r.t. the network’s output is fed back to the network. In every
layer, it is split into the gradient w.r.t. the layer’s parameters and its input.
The gradient w.r.t. the parameters is used as update in Eq. (2.9) while the
one w.r.t. the inputs is propagated back along the graph. Therefore, this
algorithm is called back propagation [145]. It requires all operations to be
differentiable w.r.t. their inputs and parameters.

Every parameter update according to Eq. (2.9) requires processing of all
examples in the dataset 𝒟. Since a single training might require millions of
iterations and datasets can consist of millions of individual data points, this
may become impractical. Instead, the gradient can be evaluated on small
subsets ℬ of the full dataset 𝒟. For every iteration, a subset ℬ, called batch,
is drawn from 𝒟 and the update is computed as

ŵk+1 = ŵk − 𝜂
1

|ℬ|

∑︁

x,y∈ℬ

∇ŵ𝐽(x,y)|ŵk
. (2.10)

Due to the random composition of ℬ, Eq. (2.10) is called Stochastic Gradi-
ent Descent (SGD). The number of elements |ℬ|, the batch size, becomes a
training hyper-parameter that reflects a trade-off between computational de-
mand and convergence speed per iteration [24]. To further improve robust-
ness and convergence, variants of SGD have been proposed. For example,
parameter updates can be done with a weighted sum of the current gradi-
ent and the previous update. This so-called momentum alters the update
towards the predominant direction of recent gradients [145]. The adaptive
momentum (ADAM) adjusts the weighting of the sum depending on first
and second moments of the gradient [85].

2.2.3. Convolutional Neural Networks and Deep Learning

Especially in the context of image processing where the input data possibly
consists of millions of pixels, fully connected networks become infeasible.
This is due to the fact that for each layer with input size 𝑁 and output
size 𝑀 , a set of 𝑁×𝑀 parameters is required. For large values of 𝑀 and
𝑁 or very deep architectures, the complexity quickly explodes and thus,
training becomes increasingly difficult. Moreover, FC networks use the
naive assumption that every neuron should draw information from every
preceding one individually.

13

2. Fundamentals

(a) A convolutional neuron
draws its activation from a lo-
cal neighborhood.

(b) Examplary filters from first convolutional layer
of the Inception network for image classification
[157, 161].

Figure 2.4.: Convolutional neurons to detect local patterns. For images, early filters
reflect edges or color blobs. Later stages combine them to abstract concepts, e.g.
eyes or wheels, that eventually let the network identify objects.

In structured data such as images, however, local patterns are often
highly correlated and translated arbitrarily. Thus, identification of such
patterns together with fully connected networks can greatly improve net-
work performance.

This train of thought gave rise to the concept of Convolutional Neural
Networks (CNNs) [90, 94]. In these networks, instead of fully connecting
one layer to the next, the response of a layer is computed from convolutions
of an image X with trainable filter masks Ŵ c

Ŷ c = 𝑓(Ŵ c ⊗X), (2.11)

where the subscript 𝑐 ∈ 1, . . . , 𝐶 denotes the output channel of the convo-
lution. The result is a new image Ŷ with 𝐶 channels.

In convolutional layers, every artificial neuron draws information only
from a limited area. An example is shown in Fig. 2.4a. Every neuron com-
putes its activation using the same weights but a different neighborhood.
The area of influence that is used to compute a neuron’s activation is called
receptive field, in analogy to biological sensing [73]. Since every filter re-
sponds to a particular local pattern, the channels represent different such
patterns. Some example filters from the first layer of the Inception network
for image classification are shown in Fig. 2.4b [157, 161]. During training,
they developed detectors for edges, corners or color blobs.

14

2.2. Artificial Neural Networks

· · ·

µ1

σ1

π1

µ0

σ0

π0

Input

Network

Outputs

Figure 2.5.: Mixture Density Network: groups of three output nodes represent the
two parameters of a Gaussian Distribution and the corresponding mixing coefficient
(blue and red). Together, they can be interpreted as a Mixture of Gaussians (green).

2.2.4. Network Concepts

The decrease of variable parameters as well as the availability of sufficient
training data and computational capacities now facilitate the use of very
deep architectures. While early ANNs featured only few layers, today, net-
works with hundreds of layers have been trained successfully. This devel-
opment, now called Deep Learning, resembles a set of functions, architec-
tures and tools that enable training and deployment of deep neural networks
in a multitude of applications.

In this work, numerous deep learning techniques have been applied.
While the list of all would exceed the scope of this chapter, the most impor-
tant ones will be explained here briefly. For a complete overview over the
methods used in this work, see Appendix A. Due to the modular structure
of ANNs, most techniques can be combined in a single network.

Mixture Density Networks ANNs can be used to estimate parameters
of conditional probability density functions (PDFs) [20, 78]. Through ap-
propriate activation functions applied to the output nodes individually, con-
straints imposed by PDFs can be met. For a univariate Normal Distribution,
for example, two output neurons can predict the two parameters, namely
mean and variance. Since there is no restriction on the mean value, a linear
activation function can be used. The constraint of a strictly positive variance
can be met by an exponential function as activation of the second neuron.
With multiple of such outputs, mixture density functions can be modeled,
as shown in Fig. 2.5. Apart from all parameters of the base distributions, the
mixing coefficients have to be predicted by the network, which is achieved
with the softmax (cf. Section A.2.4) as activation function [175].

15

2. Fundamentals

Figure 2.6.: Fully convolutional architecture for pixel-wise prediction: an input im-
age (gray) is fed through an encoder consisting of multiple convolution and pooling
stages (blue). For the output image, low scale predictions are successively upsam-
pled (green) and combined with predictions from higher scale feature maps (arrows)
by a simple sum (orange).

Pretraining For many tasks, well established architectures exist. Thus, in
application of CNNs, researchers may want to use a given architecture for
a new problem. Since CNN training is demanding in both, computational
effort and data, optimization of all parameters from scratch is rarely an
option. However, since ANNs in general are extremely modular, the stump
of a network can be repurposed. For that, the architecture and weights of
an existing network are copied into a new one. Then, only the top layers
have to be exchanged for the new purpose. The newly augmented network
is then trained with the relevant data and small learning rates. Depending
on the perspective, this is called pretraining or finetuning [42].

Fully Convolutional Networks CNNs are commonly employed for clas-
sification or regression of few output variables. However, sometimes it may
be desired to reason about every pixel within an image. Fully Convolutional

Networks (FCNs) have been applied to solve this task [101]. For this, pre-
dictions are computed as convolutions rather than matrix multiplications.

Since most architectures feature sub-sampling, fully convolutional net-
works have to invert their effect in order to predict at full input resolution.
For this, either trainable transposed convolutions can be employed or fea-
ture layers are upscaled bi-linearly. Higher resolution features can be added
for final predictions by bypassing the sub-sampling.

Fig. 2.6 shows an example architecture as proposed by Long et al. [101].
The network encodes features from the image, including multiple subsam-
pling stages (blue). The final predictions are upsampled in steps (green).

16

2.2. Artificial Neural Networks

xt

ct

ŷt

(a) Neural network with
recurrent element,

c0 c1 c2 c3 · · ·

x1 x2 x3

ŷ1 ŷ2 ŷ3

(b) Recurrent element unrolled in time,

Figure 2.7.: Recurrent neural networks for time series processing

For every step, the upsampled results are combined with predictions
based on the same resolution encoder layer (arrows) as an addition (red).
Networks like this have been applied to tasks like sliding window object de-
tection, semantic segmentation, optical flow computation, and many more
[44, 100, 101].

Recurrent Neural Networks Classical neural networks feature a static
shape and, thus, can only deal with fixed input dimensions. Due to this
limitations, they are not suitable for application to data of variable length.
Unfortunately, for sequential data, variable length is a key aspect, e.g. in
speech recognition or stock market prediction. To overcome the limitations
of static neural networks, an internal memory can be introduced.

An ANN that can remember past inputs is inherently able to deal with
variable sequence lengths. Since for this, the memory of a network couples
back to its own output and memory, these networks are called recurrent

neural networks (RNNs) [67, 70].
Unfortunately, RNNs are significantly harder to construct for gradient

propagation. This is due to the recoupling of the network into its own state
as shown by cyclic data flow in Fig. 2.7a. To cope with this challenge,
back propagation through time or time unrollment has been proposed. In
training, the recurrent stage of an RNN is replicated as many times as there
are entries in the input sequences. Fig. 2.7b shows the unrolled network
that now only exhibits non-cyclic connections. The neuron weights are
shared between all replicas. This way, an RNN can be trained in standard
backpropagation but still incorporate knowledge gained over time [67].

17

2. Fundamentals

ct−1

ŷt−1

xt

×

𝜎

×

+

𝜎 tanh

𝜎

tanh

×

ct

ŷt

Figure 2.8.: Long Short-Term Memory cell [67]. Four layers process past output
ŷ
t−1

and current input xt to update the cell state from ct−1 to ct and produce out-
put ŷ

t
. Layers are shown rectangular, element-wise operations rounded, σ denotes

sigmoidal activations. See text for more information.

Long Short Term Memory The central component of an RNN is its mem-
ory cell. One special case of such memory cells is the Long Short Term
Memory (LSTM) [67]. Its central design concept is gating of information
from past state, current update and the output.

Fig. 2.8 shows the structure of an LSTM cell. A new data input at time
𝑡, xt, is concatenated with the past output ŷt−1 to update the cell’s state
ct−1. First, a layer with sigmoidal activation serves as the so-called forget
gate. Its output is multiplied with the last state ct−1 to only retain relevant
information. Next, the cell’s state update is computed from a layer with
tanh activation. It is added to the current state, again gated by a sigmoidal
layer, the input gate. Finally, the cell’s output is the tanh of the new cell
state ct with an output gate applied to it. Variants of the LSTM exist, e.g.
peepholes in which the gates have access to the cell state [53, 149] or even
merging gates and states [34].

Regularization Neural networks with large numbers of parameters are
prone to memorizing training data rather than generalizing to the underly-
ing concept. This is especially true for very deep architectures with millions
of parameters. This phenomenon is known as overfit in machine learning.

Overfitting can be explained with the simple example of polynomial fit-
ting. Let us consider a set of 𝑁 𝑥-coordinates 𝑥i, 𝑖=1, . . . , 𝑁 , each associ-
ated with a 𝑦-coordinate.

18

2.2. Artificial Neural Networks

Regularization for Curve Fit

GT

Data

MSE

Reg.

Figure 2.9.: Effect of regularization on polynomial fits. A sigmoidal function
(dashed black line) was used to generate noisy data (black dots). Fitting a poly-
nomial of order 11 (orange line) leads to perfect prediction of points but poor ap-
proximation of the underlying function. Regularization can mitigate this (blue line)
to yield better generalization.

Figure 2.9 illustrates this problem. For this, data was generated from a
ground truth function (black dashed line) with additive random noise (black
dots). With these as input, a polynomial of order 𝑀

𝑦 =

M∑︁

j=0

�̂�j𝑥
j (2.12)

is fitted to the data to predict 𝑦-values from 𝑥-values by minimizing the
mean squared error between estimate 𝑦 and ground truth 𝑦,

ŵ
* = argmin

ŵ

1

𝑁

N∑︁

i=1

‖𝑦i − 𝑦i‖
2
2 , (2.13)

where ŵ represents the parameter vector (�̂�0, �̂�1, . . .)
⊤. Every data point

imposes one constraint on the fit. As long as 𝑀 is smaller than 𝑁−1, we
can never satisfy the constraints of all data points. However, as soon as 𝑀
equals 𝑁−1, the polynomial will perfectly match every data point. In the
presence of noisy training data, this leads to poor prediction results. This
can be seen from the orange line in the example in Fig. 2.9 that oscillates
around the desired result.

A countermeasure to overfitting is to reduce the parameter count. In very
deep neural networks, however, this may not be an option. Instead, a trait
present in most overfits can be used: to perfectly match all data points,
parameters will have to take large values.

19

2. Fundamentals

Large parameter values can be inhibited by adding their squared sum as
a regularization term to the optimization function

ŵ
* = argmin

ŵ

[︃

1

𝑁

N∑︁

i=1

‖𝑦i − 𝑦i‖
2
2 + 𝜆ŵ⊤

ŵ

]︃

, (2.14)

where 𝜆>0 is a weighting factor [50]. This way, large parameter sets can be
used while still training a model that generalizes well. The same function
that produced the orange line in Fig. 2.9 can now approximate the black
line much smoother (blue). In deep neural networks, those trained without
regularization may not even converge at all [90].

Regularization with the squared sum of parameters (𝐿2-Regularization)
is not the only way to control the optimization process. Many other regular-
ization schemes exists, mostly designed for specific optimization problems,
e.g. activation regularization [107] or random dropping of neurons [65].

20

Chapter 3
Related Work

Prediction of pedestrians has been addressed from various perspectives in
both, applications and algorithms. Following the taxonomy of Rudenko et

al. [143], categorization can be done from two different points of view.
Once w.r.t. the prediction model and once w.r.t. the type of input features
those models use. This allows to separate the actual prediction algorithm
from the information available to it. This may seem counter-intuitive since
algorithms clearly depend on their input. However, many methods can be
applied to different sources of information and vice versa.

The overview of the relevant literature will begin with the most com-
monly used input features. Then, the different paradigms of how predic-
tions are generated are presented. At this point, no assessment of their
benefits or shortcomings is provided. Instead, representative methods are
selected that will be reviewed in detail. They will later serve as a baseline
for the experiments in Chapter 7. For a deeper insight into the state of the
art, the reader is referred to existing surveys [26, 33, 66, 91, 93, 96, 110,
112, 136, 143].

3.1. Features

Prediction of the future is always based on current observations. Schmidt et

al. showed that humans, for their own forecasts, rely on person-specific
observations such as head orientation, pose or gate, but also on environment
information like traffic situation and road layout [150, 151]. Accordingly,
computational predictions rely on similar input features that cover both,
observations of the agent and the situation.

21

3. Related Work

3.1.1. Pedestrian-Specific Features

In order to predict a person’s motion, past behavior of that person has to
be observed. As forecasting of motion is the goal, position information is
the most obvious feature. In processing of time series, this can manifest in
sequential observations of just positions [86, 129, 130, 133, 137, 182] or
positions together with velocities [23, 88, 89, 152].

Beyond pure motion, many prediction works utilize estimates of a per-
son’s head orientation [12, 60, 88, 89, 129, 130, 131, 140, 154, 167]. Fur-
thermore, body posture provides valuable information. Thus, body orienta-
tion [23, 137] or even full joint configuration are used [108, 125]. Not only
posture, but also semantic attributes can aid prediction, e.g. age or gender
[14, 104]. Of course, the most information can be drawn from raw sensor
measurements [87, 103, 133].

3.1.2. Environment Features

Motion of an agent is closely tied to its surrounding. Therefore, not only
the agent but also the environment itself plays a fundamental role in these
interactions. As such, it can be integrated as a source of information in
prediction methods. Many works have utilized maps of free space [64, 69,
74, 122, 123, 139, 141, 169, 182], semantic properties of the environment
[38, 82, 86, 129, 130, 133, 134, 135, 156, 162, 168] and relations to scene
attributes, e.g. distance to curbs [23, 86, 89, 182]. Not only static sur-
rounding contributes to behavior, but also other dynamic agents, including
interactions between them [6, 47, 63, 69, 89, 102, 121, 165, 170]. Finally,
points of interest can indicate predictable motion patterns, e.g. cross-walks
[17, 82, 86, 123, 141, 182].

3.2. Methods

Regardless of the contextual information at hand, a variety of actual pre-
diction algorithms has been proposed. These can roughly be clustered into
three groups, namely approaches that try to model the physical processes
of motion, pattern recognition methods that employ statistical learning, and
planning-based techniques that aim to reason about the underlying deci-
sions of navigation [143].

22

3.2. Methods

3.2.1. Physical Model

Since motion is bound to the laws of physics, it is justified to model pre-
diction by studying these physical processes. In most approaches, motion
is understood as a dynamical model where the model’s parameters are es-
timated from observations. For prediction, the dynamics are then extrapo-
lated into the future.

Probably the largest group of such methods are Recursive Bayesian Fil-
ters. Amongst these, the Kalman Filter (KF) and Extended Kalman Fil-
ter are the most commonly used. Their application varies in the motion
model, e.g. constant velocity or constant turn, as well as observations
[10, 11, 16, 19, 48, 83, 109, 152]. Also, multiple filters have been used
in interaction to cope with rapidly changing behavior [83, 89, 92, 154].
The selection of filters can also be based on other observations beyond pure
motion [54, 89, 88]. Apart from KFs, particle filters are another common
prediction concept [18, 29, 57].

3.2.2. Pattern Recognition

In contrast to physical models, pattern recognition methods aim to solve the
prediction task by means of statistical learning. Different machine learning
algorithms have been used to regress trajectories from observations, e.g.
clustering [13, 32, 178], Gaussian Process Dynamical Models [108, 125],
or neural networks [6, 41, 69, 133, 137].

In some cases, not trajectories but discrete behavior patterns may be of
interest, e.g. will someone cross the street? This gives rise to classification-
based prediction [23, 83, 87].

3.2.3. Prediction by Planning

Especially for long term forecasting, the goal-directed nature of human mo-
tion can be incorporated in prediction models. Prediction then no longer is
solved by extrapolation of observations but as path planning comparable to
that in robot navigation.

Path planning is typically solved as an optimization task in which a path
of minimum cost is to be found. To apply this to prediction, a person’s opti-
mization function needs to be inferred. Some methods use static cost func-
tions for all pedestrians [130, 169, 179] while others infer them from ob-
servations of the scene and human behavior [71, 86, 104, 133, 182]. Also,
motion of other agents in the scene can be incorporated [142, 144, 168].

23

3. Related Work

3.3. Reference Methods

The previously presented body of literature provides the context of this
work. As representative reference algorithms, a set of methods is selected
to study the individual paradigms and their implications in more detail.

Embodiments for all of the three concepts are studied in detail, i.e. phys-
ical models, pattern recognition, and prediction by planning. To put the
more elaborate algorithms into perspective, the Kalman Filter (KF) serves
as a naïve baseline [16, 19]. The interacting multiple model filter (IMM)
is reported to improve upon pure KF prediction [152]. Thus, it serves as
the representative physical prediction model. With the recent success of
Convolutional Neural Networks (CNNs), it makes sense to employ them
to prediction. We choose direct learning of future occupancy grids as ex-
emplary architecture [69]. Finally, inverse reinforcement learning in the
form of Activity Forecasting can be seen as the basis of all planning-based
prediction techniques and, hence, is included in the study [86].

In the following, we will dive into each of these algorithms in more de-
tail. Their basic principles of operation are explained as well as implemen-
tation considerations. Finally, an experimental evaluation and comparison
of the four methods is provided.

3.3.1. Naïve Baseline: Kalman Filter

One of the most widely used prediction schemes is recursive Bayesian
filtering. The Kalman Filter (KF) is one specialization of such systems
that is well-established for state estimation [22, 79]. The KF serves as
naïve baseline. A constant velocity model is employed, i.e. with state
s = (𝑥, 𝑦, �̇�, �̇�)⊤, random noise vt and the state transition as

(︂
𝑥t
𝑦t

)︂

=

(︂
𝑥t−1

𝑦t−1

)︂

+∆𝑡

(︂
�̇�t−1

�̇�t−1

)︂

+ vt,

(︂
�̇�t
�̇�t

)︂

=

(︂
�̇�t−1

�̇�t−1

)︂

. (3.1)

The ground truth positions of pedestrians are used as observations in the
filter’s update step.

The variable parameters of the KF are the covariance matrices of initial
state, process noise, and measurement noise. To achieve best prediction,
they are optimized for extrapolation results. Given ground truth pedestrian
tracks, the KF is run as tracking. At every time instance, it is used to predict
the state into the future for a fixed time horizon. Then, the negative log-
likelihood of the ground truth future position w.r.t. the filter’s parameters is
minimized.

24

3.3. Reference Methods

3.3.2. Physical Model: Interacting Multiple Models

The Kalman Filter can only represent unimodal distributions. To pay re-
spect to multimodalities, a set of KFs can be applied simultaneously for
different motion hypotheses. Mixing coefficients reflect in which motion
state the agent is believed to be in. Following [152], an interacting multiple
model filter (IMM) is employed with two separate motion models. Driven
by the Kalman Filter experiments, the constant velocity (cv) model as in-
troduced in Chapter 3.3.1 is selected as the first, constant position (cp) as
the second motion model, i.e. standing, with 𝑥t=𝑥t−1, 𝑦t=𝑦t−1, �̇�t=�̇�t=0.

The variable parameters include those of two filters, their initial covari-
ance matrices and their process noise. Only a single measurement covari-
ance matrix is needed as observations are independent of the dynamical
model. Finally, an initial estimate of the two motion state mixing variables
𝜋cv, 𝜋cp is required, where 0≤ 𝜋cv, 𝜋cp and 𝜋cv+𝜋cp = 1 and the model
transition function

(︂
𝜋cv,t
𝜋cp,t

)︂

=

[︂
𝑝cv→cv 𝑝cp→cv

𝑝cv→cp 𝑝cp→cp

]︂(︂
𝜋cv,t−1

𝜋cp,t−1

)︂

, (3.2)

where 𝑝{cv,cp}→{cv,cp} are the transition probabilities that a person changes
from one motion state to the other. The prediction step includes mixing of
the individual filter states. Parameter tuning is done the same way as for
the Kalman Filter to optimize for best possible prediction by minimizing
negative log-likelihood.

3.3.3. Pattern Recognition: Dynamic Occupancy Grid
Prediction

Pattern recognition systems rely on learning prediction from observed data.
The work of Hörmann et al. realizes this as a CNN that predicts future oc-
cupancy grid states from a dynamic occupancy grid map (DOGMa) [69].
The map used in this work contains four features per grid cell, namely occu-
pancy with static and dynamic objects together with north- and eastbound
velocities [120]. Static occupancy provides information about accessible
areas and obstructions while dynamic cells can be used to infer motion and
even interactions between agents.

For evaluation, the DOGMa from [69] is replicated. The static occu-
pancy grid maps are generated from stereo imaging. For details, the reader
is referred to Chapter 6.1.5. The dynamic part of the map is simulated from
ground truth: at every ground truth pedestrian’s position, dynamic occu-
pancy and velocities are inserted, covering a circular area of 0.15m2 [174].

25

3. Related Work

4 32
64

128
256

256 256
256

128
64

32 41

Figure 3.1.: Network architecture for learned grid prediction with a CNN [69]. The
decoder uses learned deconvolutions (green) in the upsampling path [119]. The con-
figuration of channel count and skip connections was found through hyperparameter
search.

The CNN architecture is an encoder-decoder scheme [119] with adjust-
ments as stated in [69]. It uses a mirrored architecture where every down-
sampling stage in the encoder network has a same-sized counterpart in the
upsampling part. As in [69], bypass connections are added that directly
connect same-resolution layers from down- to upsampling. The bypasses
are added to the upsampled features according to [97]. The complete archi-
tecture is depicted in Fig. 3.1.

As output, the network produces one layer of dynamic occupancy for ev-
ery predicted time step together with one layer for static occupancy. Thanks
to sigmoidal activation, each output can be interpreted as a cell-wise occu-
pancy probability. In training, the mean squared error between ground truth
and predicted maps is used as loss. Weightings are applied to compen-
sate the class imbalance between static and dynamic predictions. Since the
original publication is not specific about the exact architecture and training
details, hyperparameter search is run for all relevant parameters. This also
includes variations of the network architecture to achieve the best possible
performance for fair comparison.

3.3.4. Prediction by Planning: Activity Forecasting

Any moving person can be seen as an intelligent decision maker planning
its actions to reach a goal. Thus, prediction can be interpreted not only as
a problem of extrapolation into the future but as a planning task instead.
Activity Forecasting (AF) of Kitani et al. [86], building up on Ziebart et

al. [182], learns to infer behavior policies from scene observations. Predic-
tion is then done by simulating these policies.

The prediction framework operates on top views of static scenes that are
discretized into a regular grid of small cells. Using semantic segmentation
[111], a vector of features f(𝑠) is generated per grid cell 𝑠.

26

3.3. Reference Methods

Obstacles Sidewalk Curb

Figure 3.2.: Feature maps and an exemplary exponential distance map, as used in
[86]. For details on feature mapping, see Section 6.1.5.

These features are combined linearly to predict a reward𝑅 as a weighted
sum 𝑅(𝑠, ŵ)=ŵ

⊤
f(𝑠) with weight vector ŵ. For every pedestrian, a

Value Iteration-like algorithm is executed on these reward maps to gen-
erate policy maps for a Markov Decision Process (MDP). This policy map
encodes probabilities of transition between neighboring cells.

The outcome of the planning algorithm is governed by the weighting vec-
tor ŵ. It is found through maximum entropy inverse reinforcement learning
[183]. Given a set of observed trajectories 𝒟, the statistics of features f̄ of
all cells 𝑠 visited by trajectories is estimated. Next, given an initial guess
for ŵ, the MDP is simulated for the combinations of start and destination
for all trajectories in 𝒟. From the resulting policies, again, statistics f̂

ŵ
for

the features of all visited cells are computed. Then, the parameters are up-
dated to match observed statistics f̄ and those generated from simulations,
f̂
ŵ

. The intuition behind this is to not learn from trajectories directly, but
rather try to replicate location-dependent behavior patterns.

The use of semantic feature maps allows to incorporate arbitrary envi-
ronment traits. In this work, a subset of the features of the original work is
used, namely road, sidewalk, curb and obstacles. Since distances to features
also play a major role, exponential distance maps were computed for dif-
ferent decay parameters. Exemplary feature maps are depicted in Fig. 3.2.

Since planning-based prediction requires some goal to plan for, distribu-
tions of goal locations are extracted from the training data. At inference
time, planning is executed to all of these goals. As time proceeds, it is
possible to recursively estimate the probability of every goal to be correct.
This is done by comparing the observed actions to the simulated policies.

27

3. Related Work

Intuitively, if the observed actions consecutively align with the simulations
for a specific goal, this goal is more likely to be correct.

For evaluation, the weight vector ŵ is first trained given start and goal
of ground truth trajectories as stated in [86]. Evaluation is then run using
inferred goal locations. The required distribution of possible goals is esti-
mated using a static mixture of Gaussian Distributions (cf. Section 5.1.1)
for which here, only the mixing coefficients are updated.

3.3.5. Comparison and Discussion

The four selected reference methods were optimized and evaluated on the
same datasets. They are assessed with respect to three use cases, namely
prediction of full trajectories in time and space, time-independent path fore-
casting, and inference of destinations. For detailed explanation of data and
evaluation, see Section 6.

The same way the use cases vary, different properties of prediction are
assessed with different metrics. The average exactness of an algorithm is
reflected by the mean of predicted probabilities evaluated in ground truth
positions, mPP. This, however, under-represents cases where prediction is
completely off, i.e. the prediction’s safety. The mean negative log proba-
bility, mNLP, pays more respect to erroneous results, i.e. where predicted
probabilities approach zero, the NLP goes to infinity. Prediction in grid
maps can also be interpreted as decision whether a cell is occupied or
not. For such classification tasks, the area under the precision-recall curve
(AuPR) is commonly used. The metrics and their selection are discussed in
detail in Section 6.4.

To ensure comparability, the parameters of all experiments are set iden-
tical where applicable. The evaluated prediction time horizon for all exper-
iments is four seconds in steps of 0.1s. The prediction is evaluated starting
at all individual observations in a trajectory. The Kalman Filter and IMM
incorporate all observations in the state. Thus, full trajectories up to the
current time instance are fed to the filters. For the CNN, the tracking state
is integrated in the DOGMa. Therefore, prediction can be run on individual
grids. For Activity Forecasting, the observations impact the goal identifi-
cation only. Experiments show that after 0.5s of observations, they may
become non-informative if the observed behavior does not match any of
the predicted trajectories. Consequently, only the last 0.5s of the recorded
track are used for goal inference. Furthermore, to decouple evaluation of
planning from goal prediction, both, the pure maximum entropy reinforce-
ment learning with known goals as well as the full inference as presented
in [86] are assessed.

28

3.3. Reference Methods

Method
Trajectory Path Destination

mPP/% mNLP AuPR mPP/% mNLP
Kalman Filter [19] 32.0 3.0 43.8 2.7 6.9
IMM [152] 27.2 3.0 45.0 3.6 6.5

DOGMa [69] 16.2 6.0 28.6 5.2 10.6
AF+known dest. [86] 16.7 14.8 27.2 - -
AF [86] 9.1 9.8 12.0 5.4 10.4

Table 3.1.: Evaluation of reference algorithms for prediction of trajectory, path and
destination. For mean predicted probabilities (mPP) and area under precision recall
(AuPR), high values are better, for mean negative log probability (mNLP), low
values are better.

The evaluation results of all methods are listed in Table 3.1 and also visu-
alized in Fig. 3.3. They show that, on average, the Kalman Filter prediction
performs impressively well even compared to more sophisticated solutions.
It achieves best results in trajectory prediction, only closely followed by the
interacting multiple model filter. The latter manages well to predict a path
as it can represent categories of motion patterns in individual models and
does not have to account for them in process uncertainty. Unfortunately,
switching between these models introduces some latency that leads to de-
graded trajectory prediction.

For destination prediction, the IMM and Kalman Filter are good in safety,
as reflected by mNLP. Since their uncertainty ellipses grows over time, the
true destination will most likely be included in it. Sharper localization,
however, is achieved by CNN and Activity Forecasting that identify motion
patterns rather than mere physical feasibility.

Surprisingly, the planning-based solution does not live up to expectations
in trajectory prediction. Even with destinations given, it does not perform
better than other models. Adding the uncertainty of destinations improves
the algorithm’s prediction in terms of mNLP but, of course, deteriorates
the sharpness of prediction. The reason for these shortcomings lie in both,
the design of the algorithm and its input data. Firstly, maximum reinforce-
ment learning is known to be overconfident in its predictions [75]. This
explains poor values in mNLP. Furthermore, with overconfident trajectory
predictions, the inference of goals fails easily, leading to poor mNLP in
destination prediction.

29

3. Related Work

0 10 20 30
0

10

20

30

mNLP

m
P

P
/%

Trajectory Prediction

KF

IMM

DOGMa

AF

(a) Trajectory prediction.

0 5 10
0

5

10

mNLP

m
P

P
/%

Destination Prediction

KF

IMM

DOGMa

AF

(b) Destination prediction.

Figure 3.3.: Result maps of prediction tasks. The plots show the mean negative
log probability (mNLP), representing safety, vs. the mean predicted probability
(mPP) of the ground truth, i.e. exactness. The further to the top left, the better the
prediction.

Last, regression of the reward as a linear feature combination per cell
cannot deal with unobservable regions and context. It can, thus, only be
applied in fully observed environments. This, however, is impossible to
realize from a moving vehicle in traffic.

Several conclusions can be drawn from this experimental comparison.
Most obviously, the physical model of the Kalman Filter delivers impres-
sive performance, a fact that has also been recognized in literature [153].
However, for long-term prediction, its indefinitely growing uncertainty can-
not compete with recognition of behavior patterns in terms of precise local-
ization. While the planning-based algorithm promises the most natural ex-
planation for motion, its current realization cannot fulfill this promise from
on-board vehicle sensing. To overcome the drawbacks of the individual
approaches, a solution is desired that can combine physical motion mod-
els with the explanatory capabilities of planning within the boundaries of
statistical plausibility.

30

Chapter 4
Probabilistic Goal-Directed
Prediction

As we have seen before, prediction of motion is always subject to uncer-
tainties. These stem from two different sources: firstly, the underlying in-
tentions that drive all motion cannot be known from the outside. Secondly,
even if the intention was known, its actual execution can still vary and is
therefore subject to process noise.

In the proposed prediction framework, respect should be paid to both of
these sources of uncertainty. Both can be addressed jointly by probabilistic
goal-directed prediction. In this, uncertainty about goals is used to reflect
unknown intentions. Given these goals, probabilistic prediction towards
them is used to incorporate the uncertainty about motion. In this chapter,
we introduce the foundations for the model as well as two possible takes to
goal-directed motion prediction, also published in [129, 130, 133].

4.1. Model Formulation

In general, a trajectory describes the evolution of an agent’s state variables
over time. In the case of object motion, it is customary that the state repre-
sents the agent’s position with respect to some reference coordinate frame.
Due to their continuous nature of both time and space, a real world trajec-
tory is always defined in continuous domain.

31

4. Probabilistic Goal-Directed Prediction

Intelligent systems usually deal with time-discrete sampling, often due
to fixed sensor measurement rates. Consequently, in this work, trajectories
are represented as a sequence of discrete-time states

𝜁 =
(︀
s0, s1, . . . , sNζ

)︀
, (4.1)

where the subscripts in the sequence of states denote the time instances. For
the actual prediction task, only of trajectories of length 𝑇+1 are considered.
Also, w.l.o.g., th start time of such a piece is referred to as 𝑡=0 and the end
time as 𝑡=𝑇 .

For a predicted trajectory 𝜁, the states s0 and sT are of special relevance:
the one at time 𝑡=0 denotes the starting point of a trajectory. The other
at time 𝑡=𝑇 is the end point which may be considered as the short term
goal of an agent’s motion. This goal is substantial in trajectory planning.
All actions in the time span 0≤𝑡<𝑇 will be executed with the purpose of
reaching the destination sT .

In addition to the destination, the environment also shapes the layout of a
trajectory. As introduced in Chapter 1.3, the surrounding of a moving agent
greatly affects its motion. A comprehensible example might be an obstacle
blocking the direct path towards the goal. Accordingly, a representation
of the surrounding Θ is incorporated. It represents the spacial layout of
different properties of the environment that might be relevant for decisions
in motion planning.

In prediction, none of the above properties is known with absolute cer-
tainty. Instead, probabilities have to be incorporated into the sequence of
states that form the trajectory. Thus, the prediction task can be understood
as estimating the probability distribution of a trajectory 𝜁, given the obser-
vations 𝑧t, 𝑡≤0 up to the current time instance 𝑡=0

𝑝(𝜁|𝑧0, 𝑧−1, . . .). (4.2)

As a first assumption, the observations 𝑧0, 𝑧−1, . . . are split into those that
stem from the environment and those that are specific for the agent in ques-
tion. It is assumed that all previous observations of the environment can
be incorporated into single map Θ0, while those of the agent itself are con-
densed into 𝑥0, 𝑝(𝜁|Θ0, 𝑥0).

32

4.1. Model Formulation

As mentioned above, the state at the end time 𝑇 , sT , plays a major role
as this specific state represents the goal of the current trajectory. All in-
termediate states within the time horizon 0<𝑡<𝑇 are traversed in order to
reach this goal state. This means that all transition states can be expressed
as dependent on environment, agent-specific observations and goal state

𝑝(𝜁|Θ0, 𝑥0, sT). (4.3)

Since an agent’s current goal cannot be known from the outside, this
again is subject to uncertainty. Thus, the goal state may be treated as a
latent variable. If a distribution of the goal states can be estimated from
observations, 𝑝(sT |Θ0, 𝑥0), we may marginalize over all possible values to
obtain the distribution of all transition states given only the observations

𝑝(𝜁|Θ0, 𝑥0) =

∫︁

𝑝(𝜁|Θ0, 𝑥0, s
′
T)𝑝(s

′
T |Θ0, 𝑥0)𝑑s

′
T . (4.4)

Equation (4.4) describes a generic model for probabilistic goal-directed
prediction. In practice, however, the probability distribution of a specific
trajectory 𝑝(𝜁|Θ0, 𝑥0) are of little interest. Instead, an autonomous systems
needs to assess its risk of colliding with another agent at a certain position
and time. This information is embedded in the marginal distributions of
𝑝(𝜁|Θ0, 𝑥0) for the individual time steps, 𝑝(st|Θ0, 𝑥0), ∀𝑡 ∈ [0, 𝑇]. Thus,
instead of estimating Eq. (4.4), we limit ourself to the marginal distributions

𝑝(st|Θ0, 𝑥0)=

∫︁

𝑝(st|Θ0, 𝑥0, s
′
T)𝑝(s

′
T |Θ0, 𝑥0)𝑑s

′
T , ∀𝑡 ∈ [0, 𝑇]. (4.5)

This formulation now allows for a time step-wise estimate of the distri-
butions. Accordingly, in order to solve this problem, a parameterization of
the distributions has to be found and the parameters estimated.

The prediction of uncertainties from the time instance 𝑡 to another time
𝑡+1 requires a model to transform the distribution 𝑝(st) into 𝑝(st+1). In-
dependent of the specific motion model of an agent, we may consider it
as a control input at time 𝑡, ut, that is added to the current state vector to
generate the next state

st+1 = st + ut. (4.6)

33

4. Probabilistic Goal-Directed Prediction

⊗ =

Figure 4.1.: Convolution of an initial distribution with a distribution of motion to-
gether and resulting distribution.

Both the state st and the motion input ut in Eq. (4.6) are subject to
uncertainty, i.e.

st ∼ 𝑝st , (4.7)

ut ∼ 𝑝ut . (4.8)

If we wish to construct the distribution of st+1, we can use the fact that we
can solve Eq. (4.6) for ut and thus set

𝑝st+1
(st+1|st) = 𝑝ut

(st+1 − st). (4.9)

Marginalization over all possible preceding states 𝑠t yields

𝑝st+1
(st+1) =

∫︁

𝑝ut
(st+1 − st)𝑝st

(st)𝑑st, (4.10)

which is nothing else but the convolution of 𝑝ut
with 𝑝st

[68]

𝑝st+1
= 𝑝ut ⊗ 𝑝st . (4.11)

The same also holds for the inverse problem, i.e. finding the distribution
of a preceding state given that of the current state. This will be necessary
to step back in time from an estimate of a goal state sT . For this, Eq. (4.6)
simply is solved for the preceding state st,

st = st+1 − ut. (4.12)

34

4.2. Forward-Backward Prediction

For the stepping back, Eq. (4.11) still applies, with only a modification
such that 𝑝ut

is flipped in the convolution, thus resulting in a correlation
with the original distribution,

𝑝st
= 𝑝-ut

⊗ 𝑝st+1
. (4.13)

Eq. (4.13) represents a backward-directed prediction.
Depending on the individual distributions, one may find more or less

compact solutions to Eq. (4.11), e.g. the prediction step in the Kalman Fil-
ter [22]. In this work, however, the aim is to model arbitrary distributions
with a great variety of shapes and modalities. Due to these requirements, all
distributions are approximated by a grid discretization if not stated other-
wise. Accordingly, all state vectors s turn into discrete states 𝑠, all integrals
get replaced by sums and convolutions are implemented as discrete convo-
lutions. Fig. 4.1 visualizes the computation of Eq. (4.11) as a discrete con-
volution. With the use of discretized distributions and thus computations
executed in grids, all available optimizations designed for image process-
ing and convolutional neural networks can be utilized, e.g. [1, 77].

4.2. Forward-Backward Prediction

The goal-directed prediction problem can be solved by evaluating the prob-
ability of taking every possible path from start to destination. This can be
reformulated as the problem of computing the probability to traverse from
start to destination via any given intermediate state. In Markov Chains, the
Forward-Backward-Algorithm is used to compute these intermediate prob-
abilities [21, 39].

In a first step, the goal-directed prediction is modeled given a known start
and goal state. For the sake of legibility, the influence of the environment
and the agent-specific observations are neglected . For now, let us examine
only the term

𝑝(𝑠t|𝑠0, 𝑠T). (4.14)

In the following, the conditional independence of a previous state 𝑠- and
a future state 𝑠+ given an intermediate state 𝑠0 is used,

𝑝(𝑠-, 𝑠+|𝑠0) = 𝑝(𝑠-|𝑠0)𝑝(𝑠+|𝑠0). (4.15)

35

4. Probabilistic Goal-Directed Prediction

With this, it can be derived that

𝑝(𝑠t|𝑠0, 𝑠T) =
𝑝(𝑠0, 𝑠T |𝑠t)𝑝(𝑠t)

𝑝(𝑠0, 𝑠T)

=
𝑝(𝑠0|𝑠t)𝑝(𝑠t)𝑝(𝑠T |𝑠t)

𝑝(𝑠0, 𝑠T)
. (4.16)

Equation (4.16) shows that the prediction can be separated into parts that
reflect the impact of the start and of the destination, respectively. In the
following, let us analyze them individually. For this, they are separated
according to

𝑝(𝑠t|𝑠0, 𝑠T) =

α(st)
⏞ ⏟

𝑝(𝑠0|𝑠t)𝑝(𝑠t)

β(st)
⏞ ⏟

𝑝(𝑠T |𝑠t)

𝑝(𝑠0, 𝑠T)
⏟ ⏞

Z

, (4.17)

where the denominator 𝑍 can be understood as a normalization.
The first term under consideration is 𝛼(𝑠t), the one that incorporates the

starting state 𝑠0. Making use of the definition of the conditional probability
and Eq. (4.15) yields

𝛼(𝑠t) = 𝑝(𝑠0|𝑠t)𝑝(𝑠t) = 𝑝(𝑠0, 𝑠t)

=
∑︁

st−1

𝑝(𝑠0, 𝑠t|𝑠t−1)𝑝(𝑠t−1)

=
∑︁

st−1

𝑝(𝑠t|𝑠t−1)𝑝(𝑠0|𝑠t−1)𝑝(𝑠t−1)

=
∑︁

st−1

𝑝(𝑠t|𝑠t−1)𝛼(𝑠t−1). (4.18)

By introduction of the previous state 𝑠t−1 as a latent variable, it can be seen
that 𝛼(𝑠t) can actually be computed recursively from the previous result
𝛼(𝑠t−1) and the state transition model 𝑝(𝑠t|𝑠t−1).

As we have seen in Eq. (4.11), the state transition can be computed as a
convolution of an input distribution 𝛼(𝑠t) with a motion model 𝑝ut

𝛼(𝑠t) = 𝛼(𝑠t−1)⊗ 𝑝ut−1
. (4.19)

36

4.2. Forward-Backward Prediction

The same procedure can be applied to the term depending on the goal
state, 𝛽(𝑠t), to obtain

𝛽(𝑠t) = 𝑝(𝑠T |𝑠t)

=
∑︁

st+1

𝑝(𝑠T |𝑠t+1, 𝑠t)𝑝(𝑠t+1|𝑠t)

=
∑︁

st+1

𝑝(𝑠T |𝑠t+1)𝑝(𝑠t+1|𝑠t)

=
∑︁

st+1

𝛽(𝑠t+1)𝑝(𝑠t+1|𝑠t). (4.20)

Again, we see that 𝛽(𝑠t) follows recursion, but this time, it is computed
from the subsequent state, 𝛽(𝑠t+1).

In analogy to Eq. (4.13), the backward-directed prediction is

𝛽(𝑠t) = 𝛽(𝑠t+1)⊗ 𝑝-ut . (4.21)

Finally, the normalization term𝑍 is computed from 𝑝(𝑠0, 𝑠T). As 𝑝(𝑠t|𝑠0, 𝑠T)
has to sum to one, we can see that

𝑝(𝑠0, 𝑠T) = 𝑍 =
∑︁

st

𝛼(𝑠t)𝛽(𝑠t). (4.22)

The results from Eq. (4.19) to Eq. (4.22) are substituted into Eq. (4.17).
The goal-directed prediction problem is therefore solved from two sets of
recursive convolutions: the first starting at 𝑝s0 up to 𝑝st and the second
starting at 𝑝sT and going backward to 𝑝st ,

𝑝(𝑠t) =
1

𝑍
(𝑝s0 ⊗ 𝑝u0

⊗ · · · ⊗ 𝑝ut-1)

· (𝑝sT ⊗ 𝑝-uT -1 ⊗ · · · ⊗ 𝑝-ut
) . (4.23)

A toy example of this forward-backward prediction scheme is displayed
in Fig. 4.2. In the top row, Fig. 4.2a, the forward and backward expansion
of the probability distributions are shown in cyan and magenta, respec-
tively. As time passes, the forward prediction expands away from the start
in the top left while the backward prediction contracts towards the goal in
the bottom right. Their joint distribution in Fig. 4.2b forms blob-shaped
distributions for the transition steps.

A moving agent will select its dynamic behavior also based on the sur-
rounding. A pedestrian, for example, will behave differently when crossing

37

4. Probabilistic Goal-Directed Prediction

(a) Forward (cyan) and backward (magenta) expansion of probability distribu-
tions over time in recursive prediction.

(b) Joint distribution that represents the state transition estimate over time as mul-
tiplication of fwd- and bwd-pass from above.

Figure 4.2.: Prediction as a multiplication of one forward and one backward oriented
recursive convolution. The prediction starts at the top left corner and ends at the
bottom right.

a road than when walking on the sidewalk. This impact of the environment
on an agent’s motion has to be accounted for in prediction. So far, our
prediction system incorporates only dynamics and goal states.

To incorporate selective behavior, it is assumed that a set of different
actions 𝒜 exist. Every action 𝑎∈𝒜 defines a state transition probability

𝑝(𝑠t+1|𝑠t, 𝑎). (4.24)

The introduction of actions allows modeling location-specific behavior.
For that, actions are selected dependent on the static layout of the environ-
ment, i.e. the currently observed map Θ, but not time 𝑡,

𝑝(𝑎|𝑠t,Θ). (4.25)

38

4.2. Forward-Backward Prediction

(a) Forward (cyan) and backward (magenta) expansion of probability distribu-
tions influenced by obstacles (black).

(b) Joint distribution results in a multimodal trajectory prediction that avoids the
obstacles.

Figure 4.3.: Prediction with environment influence. As in Fig. 4.2, the trajectory
starts at the top left and ends at the bottom right.

Under these assumptions, the environment-aware prediction is obtained
by marginalization over all actions

𝑝(𝑠t+1|𝑠t,Θ) =
∑︁

a∈𝒜

𝑝(𝑠t+1|𝑠t, 𝑎)𝑝(𝑎|𝑠t,Θ). (4.26)

Note that this can be implemented as a convolution similar to Eq. (4.11).
However, now, the input features one additional dimension, namely that for
the selected action,

𝑝(𝑠t+1|Θ) = 𝑝(𝑎|𝑠t,Θ)𝑝(𝑠t|Θ)⊗ 𝑝a,ut . (4.27)

Substituting this prediction scheme into Eq. (4.19) and Eq. (4.21) yields

𝑝(𝑠t|Θ) =
1

𝑍
(𝑝s0𝑝(𝑎|Θ)⊗ 𝑝a,u0

𝑝(𝑎|Θ)⊗ · · · ⊗ 𝑝a,ut-1))

· (𝑝sT 𝑝(𝑎|Θ)⊗ 𝑝a,-uT -1𝑝(𝑎|Θ)⊗ · · · ⊗ 𝑝a,-ut) . (4.28)

39

4. Probabilistic Goal-Directed Prediction

Fig. 4.3 shows the same toy example as above. But now, obstacles have
been introduced to the prediction grid (shown in black). These are modeled
as a binary distribution 𝑝(𝑎|𝑠t,Θ) that is zero for actions that transition
into an obstacle and uniform everywhere else. Accordingly, the forward
and backward predictions will be blocked by the obstacles as shown in
Fig. 4.3a. The joint distribution results in a bi-modal trajectory prediction,
passing either above or below the obstructions (Fig. 4.3b).

4.3. Markov Decision Processes for Prediction

The concept of moving through a state space can also be considered execu-
tion of a chain of decision. Since this is subject to uncertainty, they can be
modeled as a Markov Decision Process [86, 182].

Let us reconsider Eq. (2.2) for Value Iteration

𝑉k+1(𝑠) := max
a

∑︁

s′

𝑃a(𝑠, 𝑠
′)(𝑅a(𝑠, 𝑠

′) + 𝛾𝑉k(𝑠
′)).

This equation can be expanded into two parts

𝑉k+1(𝑠) := max
a

[︃
∑︁

s′

𝑃a(𝑠, 𝑠
′)𝑅a(𝑠, 𝑠

′)

⏟ ⏞

Expected reward of current action

+𝛾
∑︁

s′

𝑃a(𝑠, 𝑠
′)𝑉k(𝑠

′)

⏟ ⏞

Expected reward of later actions

]︃

.

(4.29)

The first part,
∑︀

s′ 𝑃a(𝑠, 𝑠
′)𝑅a(𝑠, 𝑠

′), models the reward that an agent will
gain from taking an action starting in 𝑠 and ending up in 𝑠′. This reward is
weighted with the probability of this event to happen.

The second part,
∑︀

s′ 𝑃a(𝑠, 𝑠
′)𝑉k(𝑠

′), propagates expected rewards of
later actions onto the current state 𝑠. It is weighted by a discount factor 𝛾
to favor early rewards.

The distribution 𝑃a(𝑠, 𝑠
′) describes the probability of ending up in state

𝑠′ when taking an action 𝑎 in state 𝑠. In this context, different actions 𝑎
may be considered as control inputs just as 𝑢 in Eq. (4.6).

Consequently, the probability of traversing from 𝑠 to 𝑠′ is distributed
according to 𝑝u(𝑠′−𝑠). Then, the transition probability 𝑃a(𝑠, 𝑠

′) becomes

𝑃a(𝑠, 𝑠
′) = 𝑝u(𝑠

′ − 𝑠) = 𝑝-u(𝑠− 𝑠′), (4.30)

where the last equality uses the fact that 𝑠−𝑠′=-𝑢.

40

4.3. Markov Decision Processes for Prediction

Substituting Eq. (4.30) into Eq. (4.29) yields

𝑉k+1(𝑠) := max
a

[︃
∑︁

s′

𝑝-u(𝑠− 𝑠′)𝑅a(𝑠, 𝑠
′) + 𝛾

∑︁

s′

𝑝-u(𝑠− 𝑠′)𝑉k(𝑠
′)

]︃

.

(4.31)

The second term in Eq. (4.31) denotes a discrete convolution

∑︁

s′

𝑝-u(𝑠− 𝑠′)𝑉k(𝑠
′) = 𝑝-u(𝑠)⊗ 𝑉k(𝑠) (4.32)

of the value function 𝑉k(𝑠) with the flipped distribution of the motion vec-
tor, 𝑝-u, so that in the following 𝑝-u(𝑠)=𝑝a(𝑠). For the first part, we can
see that there is a unique reward per possible action 𝑎 that is a function of
both start and end states, 𝑠 and 𝑠′. For further simplification, rewards are
demanded to only depend on their target state,

𝑅a(𝑠, 𝑠
′) := 𝑅a(𝑠), (4.33)

similar to the assumption made in𝑄-learning [173]. Substituting Eq. (4.32)
and Eq. (4.33) into Eq. (4.31) yields

𝑉k+1(𝑠) := max
a

[𝛾(𝑝a(𝑠)⊗ 𝑉k(𝑠)) +𝑅a(𝑠)] . (4.34)

This finding is fundamental as it allows to formulate the Value Iteration
Algorithm as recursive convolutions of the value function 𝑉k(𝑠) with tran-
sition PDFs 𝑝s(𝑠) for all possible motion patterns [155, 163].

The Value Iteration Algorithm from Eq. (4.34) can be parameterized by
two design choices, namely the transition PDFs 𝑝s(𝑠, 𝑠′) and the reward
function 𝑅a(𝑠). The transition probability distributions represent different
motion patterns that can be selected by an agent on its way to the goal,
including their uncertainty.

The reward function on the other hand determines the location dependent
planning characteristics within the MDP. Thus, it has to incorporate the goal
to be planned for as well as the influence of the environment on the motion
behavior.

In that sense, while the transition function only depends on the agent un-
der examination, the reward function 𝑅a(𝑠) also depends on the goal state
𝑠T and the environment Θ. Following the insights from Section 4.2, the re-
ward function is modeled as 𝑅a(𝑠, 𝑠T ,Θ0). The Value Iteration Algorithm
then computes the maximum reward to be collected in each state.

41

4. Probabilistic Goal-Directed Prediction

(a) Expansion of the value function in Value Iteration. High rewards (red) expand
away from the destination while obstacels introduce high penalties (blue) .

(b) Simulation of the policy derived from value function. High penalties for ob-
stacle collision lead to multimodal trajectory prediction.

Figure 4.4.: Position prediction with Value Iteration. Just as in Fig. 4.3, the trajec-
tory starts at the top left and ends at the bottom right.

Running the argmax instead of the maximum at convergence of 𝑉 (𝑠)
will output the optimal policy

𝜋a(𝑠) := argmax
a

[𝛾(𝑝a(𝑠)⊗ 𝑉 (𝑠)) +𝑅a(𝑠)] . (4.35)

For prediction, this policy then has to be tracked from the starting state until
the goal state is reached.

Figure 4.4 depicts the trajectory prediction using an MDP. The same
setup that was used to generate Fig. 4.3, is now used to simulate the MDP.
For this, the reward function Eq. (4.33) is defined so that the goal state is
rewarded while hitting obstacles is penalized. Then, Eq. (4.34) is run to
generate Fig. 4.4a. Once Eq. (4.34) has converged, Eq. (4.35) is applied to
generate the optimal policy that is then simulated for Fig. 4.4b. Again, the
result is a bi-modal distribution that successfully avoids the obstacles.

42

Chapter 5
Pedestrian Position
Prediction

While prediction of other moving agents in general is a crucial task in au-
tonomous navigation, this becomes even more important if these agents are
humans. Due to the risk of injury, an autonomous agent should avoid col-
lision with a human in any case [9]. This is especially true for automated
vehicles in real world traffic since collisions often have fatal consequences
[117]. Thus, accurate prediction is a prerequisite for autonomous driving.
Chapter 4 introduced a generic scheme for goal-directed prediction in arbi-
trary scenarios. This chapter looks at this from the perspective of automated
driving where the moving agent in question is a pedestrian walking in the
streets.

Pedestrian navigation in traffic can be considered as that of an intelli-
gent agent planning a trajectory towards a predefined goal. With this as-
sumption, all findings from Chapter 4 can be used for pedestrian predic-
tion. Specifically, goal-directed prediction can be employed under the as-
sumption of a latent destination as presented in Chapter 4.1. The two major
challenges in this context are the estimation of the destination as well as the
(possibly position-dependent) motion model. Since the system should be
applied for automated driving, these need to be inferred from observations
from a vehicle in traffic.

In order to apply the proposed goal-directed prediction Eq. (4.5), we
need to find a model to infer the relevant parameters from observations.
As a prerequisite, this begins with the estimation of possible destinations.

43

5. Pedestrian Position Prediction

Once these are available, prediction can be run using a suitable parame-
terization of the Forward-Backward Algorithm Eq. (4.28) or Value Itera-
tion Eq. (4.34). With the sheer quantity of traffic scenarios, however, it
is infeasible to manually tune the parameters of the algorithms. Instead,
the optimal parameterization needs to be learned from previously observed
pedestrian behavior.

Of all the machine learning techniques, Convolutional Neural Networks
(CNNs) and Deep Learning have proven the most versatile [56]. With its
recent development, a backbone of toolboxes, methods and network archi-
tectures exists to facilitate model parameterization [1, 15, 36, 77]. Through
the formulation of prediction as a recursive convolution in either Eq. (4.28)
or Eq. (4.34) and appropriate constraints, the prediction problem can be in-
terpreted as a recurrent CNN. Furthermore, all data-driven probability dis-
tributions can be inferred from sensor readings by artificial neural networks
(ANNs), e.g. for destinations or transition probabilities.

In this chapter, the goal-directed prediction of pedestrians in traffic is
implemented by means of ANNs, also partly published in [133]. For this,
the estimation of possible goals is the prerequisite. Consequently, first, a
network architecture is introduced to infer probability density functions of
possible destinations from observations. Secondly, two different recurrent
CNNs are proposed, namely one to solve the forward-backward prediction
presented in Chapter 4.2 and one for the MDP from Chapter 4.3. Finally,
goal and trajectory prediction are combined together in one monolithic net-
work that is fully differentiable. Accordingly, it is shown how network can
consistently be trained end to end.

5.1. Destination Prediction

Goal-directed planning for prediction can only be applied if knowledge of
a pedestrian’s goal is available. In this work, the goal of planning is for a
pedestrian to reach a certain destination at a specific time. However, since
one cannot know a pedestrian’s destination from the outside, it has to be
inferred from observations. Due to the probabilistic nature of this task, the
aim is to estimate a PDF 𝑝(𝑠T |𝑥0) of the pedestrian’s current destination
𝑠T at a future time 𝑇 , given past observations 𝑥0.

Human motion is usually driven by some intention, i.e. reaching some
destination. Observed from the outside, a pedestrian’s intention will not be
obvious. Instead, a set of possible intentions has to be considered of which
only one will turn out to be correct. For the example in Fig. 5.1, one may
have to consider the options of the pedestrians crossing the road versus
stopping at the curb.

44

5.1. Destination Prediction

Figure 5.1.: Even from a single image, the pedestrians’ intention to cross the road
is still obvious to the human driver.

Now, one possible destination can be associated with both of these op-
tions, namely the sidewalk on the other side of the road or the curb on this
side. However, even if these two destinations can be identified, they still
are subject to uncertainty since their exact location cannot be predicted.
From this, we can see that prediction of destinations consists of two distinct
sources of uncertainty: first, the intention is obscure to us. It can be con-
sidered as a categorical distribution of different possible intentions, where
a probability can be associated with any of them. Second, the outcome may
vary when an intention is carried out.

From the perspective of autonomous driving, we are not necessarily in-
terested in the semantic nature of an intention. It is not relevant to know
whether a destination represents crossing the road or stopping at the curb

as long as this enables correct prediction and, consequently, collision risk
assessment. Thus, the destination is modeled as a mixture density function.
Every mixture component can be interpreted as a categorical intention to-
gether with its intrinsic uncertainty. The mixture coefficients lastly estimate
the probability of each intention to be true.

5.1.1. Goal Distribution Parameterization

As we have seen, the multitude of possible intentions of a person can be
expressed as a mixture density function. The individual components of this
function are designed to represent one possible destination each. Naturally,
these components should express a probability in terms of the position of
the goal (𝑥T , 𝑦T). Also, for this use case, the pedestrian’s orientation in
the goal state, 𝜓T , provides valuable information. This orientation helps
to identify the direction of motion, even for the goal state. It may, for ex-
ample, tell apart pedestrians facing the road or walking along the sidewalk.
Consequently, the goal state is defined as sT=(𝑥T , 𝑦T , 𝜓T)

⊤.

45

5. Pedestrian Position Prediction

To incorporate both, position and orientation, into the destination PDF,
it is factorized into two parts. One part is dependent solely on the position
and the other on the orientation of the goal state,

𝑝i(sT) = 𝑝i(𝑥T , 𝑦T , 𝜓T) = 𝑞i(𝑥T , 𝑦T)𝑣i(𝜓T), (5.1)

where the subscript 𝑖 denotes the 𝑖th mixture component.
The PDF 𝑞i(𝑥T , 𝑦T) represents the uncertainty of the goal’s position.

It is parameterized as a general bivariate Normal Distribution with mean
(�̄�i, 𝑦i) and covariance matrix Σi [68],

𝑞i(𝑥T , 𝑦T) =
1

√︀

det(2𝜋Σi)
exp

(︃

-
1

2

(︂
𝑥T -�̄�i
𝑦T -𝑦i

)︂⊤

Σ
−1
i

(︂
𝑥T -�̄�i
𝑦T -𝑦i

)︂)︃

= 𝒩 (𝑥T , 𝑦T |�̄�i, 𝑦i,Σi) (5.2)

The uncertainty of orientation is modeled by a von-Mises Distribution with
mean angle 𝜓i and concentration parameter 𝜅i [105],

𝑣i(𝜓T) =
1

2𝜋𝐼0(𝜅i)
exp(𝜅i cos(𝜓−𝜓i)),

= ℳ(𝜓T |𝜓i, 𝜅i), (5.3)

where 𝐼0(𝜅i) is the modified Bessel Function of the first kind which is
required as normalization of the PDF.

Every component according to Eq. (5.1) represents a single destination.
Since multiple independent goals should be modeled, different goals are
mixed together in one distribution. The final estimate of the multi-modal
PDF for destinations is a weighted sum of 𝑁 individual possible destina-
tions, each of them weighted with a mixing coefficient 𝜋i as

𝑝(sT) =

N∑︁

i=1

𝜋i𝑝i(𝑥T , 𝑦T , 𝜓T |�̄�i, 𝑦i, 𝜓i,Σi, 𝜅i), (5.4)

where 0 ≤ 𝜋i, ∀𝜋i and
N∑︁

i=1

𝜋i = 1.

The two factors Eq. (5.2) and Eq. (5.3), are conditioned on a set of pa-
rameters, namely the shape parameters of the individual distributions. Also,
each mixing coefficient also introduces a parameter 𝜋i.

46

5.1. Destination Prediction

For the sake of legibility, the set of parameters per mixture component
is abbreviated as vi = (�̄�i, 𝑦i, 𝜓i,Σi, 𝜅i, 𝜋i), where 𝑖 = 1, . . . , 𝑁 for 𝑁
mixture components. With vN = v1, . . . ,vN , the final conditional is

𝑝(𝑥T , 𝑦T , 𝜓T |v
N). (5.5)

The parameter set vN fully describes the distribution of possible desti-
nations. Thus, to predict destinations in form of such a distribution, said
parameter set have to be estimated from observations x. In order to do so,
a function

vN = 𝑓(x, ŵ) (5.6)

is employed where ŵ is the parameter set governing the function 𝑓 .
The function 𝑓 with given observations x and function parameters ŵ

can readily be substituted into Eq. (5.5). As a consequence, the distribution
is no longer conditioned on its parameters but instead, on the parameters
ŵ and the observations x. Generally, the parameters and observations are
design choices of the system where prediction is to be applied. In practice,
however, the realizations of observations are restricted by the sensor setup
in use. In system design, a setup should be selected that optimally captures
the information relevant for prediction. The choice of the function 𝑓 should
then be able to make the most use of this sensor data.

5.1.2. Parameter Estimation

Previous works have shown that pedestrians’ intentions can be inferred
from a multitude of features [23, 83]. Studies with human participants,
however, showed that motion and visual information pose the strongest
cues for prediction [150, 151]. A sensor that can inherently capture these
is a video camera. While still images already contain valuable informa-
tion such as posture and scene layout, subsequent frames also contain their
evolution over time.

In video processing, Deep Neural Networks have, as already mentioned,
achieved state of the art performance, even for time sequence understanding
[43, 171, 180]. The prediction model introduced in Section 5.1.1 proposed
to model the goal of a pedestrian as a mixture density function. As de-
fined in Eq. (5.4), a function 𝑓(x, ŵ) is required to estimate the mixture
parameters from observations. Exactly this property is reflected in Mixture
Density Networks (MDN) [20, 21]. In these, outputs of a neural network
are adjusted with suitable activation functions to satisfy the constraints of a
given probability distribution.

47

5. Pedestrian Position Prediction

For application, the parameters of Eq. (5.4) are estimated using an MDN.
The mixture itself is parameterized by eight parameters per component.
These originate from the two factors in Eq. (5.1) as well as one mixing co-
efficient per component. Consequently, a neural network is designed with a
final output of the type {𝑚x,𝑚y, 𝑑x, 𝑑y, 𝑟, 𝑝, 𝑘, 𝑔}i, where 𝑖∈1, . . . , 𝑁 for
𝑁 mixture components.

The Gaussian part of the factorization, Eq. (5.2), can be reflected by the
two-dimensional mean vector (�̄�i, 𝑦i)⊤ as well as the covariance matrix

Σi=

[︂
𝜎2
x,i 𝜌i𝜎x,i𝜎y,i

𝜌i𝜎x,i𝜎y,i 𝜎2
y,i

]︂

, (5.7)

with variances 𝜎2
x,i, 𝜎

2
y,i and Pearson Coefficient 𝜌i.

For the mean vector, linear activation is applied to the neuron outputs,

�̄�i = 𝑚x,i, (5.8)

𝑦i = 𝑚y,i, (5.9)

since the position of the goal can take arbitrary real values in the world.
The variances, on the other hand, have to be strictly positive. This can be

achieved with exponential activations

𝜎x,i = exp(𝑑x,i), (5.10)

𝜎y,i = exp(𝑑y,i). (5.11)

Since the Pearson Coefficient must satisfy −1≤𝜌i≤1, a hyperbolic tangent
is used as activation,

𝜌i = tanh(𝑟i). (5.12)

With this, the general covariance matrix Eq. (5.7) can be constructed from
the network outputs.

The second factor of Eq. (5.1), the von-Mises Distribution in Eq. (5.3) is
parameterized by two parameters. These can also be estimated with fitting
activations. The parameters, mean and concentration, of the distribution are
computed as

𝜓i = 𝑔i, and (5.13)

𝜅i = exp(𝑘i). (5.14)

48

5.1. Destination Prediction

Image

CNN

Position LSTM
MDN

Figure 5.2.: Recurrent Mixture Density Network for destination prediction: a CNN
embeds features of the image that are concatenated with the pedestrians position.
This is fed to an LSTM cell to process sequential data. The LSTM’s output serves
as an input to an MDN that predicts the final location distribution.

Finally, to generate a valid mixture, the mixing coefficients predicted by
the network need to satisfy

𝜋i ≥ 0 ∀𝑖 ∈ 1, . . . , 𝑁, (5.15)
N∑︁

i=1

𝜋i = 1. (5.16)

A function that fulfills these requirements is the softmax over all corre-
sponding network outputs

𝜋i=
exp(𝑝i)

∑︀N
j=1 exp(𝑝j)

. (5.17)

These activation functions enforce that at any time, the output of the neu-
ral network will satisfy the constraints imposed by the mixture’s probability
density function.

The MDN as defined by Eq. (5.4) can be built upon arbitrary underlying
networks. The only prerequisite is the dimensionality of the output as eight
parameters per mixture. However, with the informative features from video
sequences, there is demand for a network that can make use of image fea-
tures as well as time sequence information. To satisfy these requirements
a network is constructed from a CNN part for image processing and a re-
current part for time series understanding. The full network is depicted in
Fig. 5.2. In the first part, image crops of the pedestrian of interest are passed
through a standard CNN architecture. The resulting feature embedding is
then concatenated with the pedestrian’s current position for joint processing
in the subsequent network.

49

5. Pedestrian Position Prediction

The concatenated feature vector is fed to a Long Short-Term Memory
(LSTM) recurrent network cell [67, 149]. Finally, the LSTM’s output is
processed by a fully connected (FC) network to generate the output accord-
ing to Eq. (5.4).

Once trained, the final network can perform mixture density destination
prediction from time series of image and trajectory data. With this as an
input, all following planning techniques can rely on destination predictions.
Moreover, even multiple possible destinations can be tracked, including
their uncertainty.

5.2. Trajectory Prediction

Chapter 4 argued that planning algorithms can be used as a predictor when
knowledge about a destination is available. The previous section introduced
a learning architecture to predict such destinations. With this, now, plan-
ning algorithms can be applied for probabilistic prediction.

Most planning algorithms are parameterized by two design elements,
namely the motion model and a cost functional to be optimized for. How-
ever, modeling human planning behavior proves difficult: humans are usu-
ally unaware of their actual dynamical model and rarely consciously opti-
mize a cost functional to plan their own motion. To navigate through the
world, they make decisions based on experience. Consequently, it is plain
infeasible to model the human planning explicitly. Instead, just like a hu-
man, in this work, a planning algorithm is built from experience. For this,
the planning is reformulated as a machine learning task. From previously
observed pedestrians, the model learns a planning algorithm to imitate hu-
man behavior. With the obvious benefits of deep learning in mind, this sec-
tion explains how the planning schemes from Chapter 4 can be formulated
by means of Artificial Neural Networks and how to train them.

5.2.1. Forward Backward Network

The first trajectory prediction under consideration is the Forward Back-
ward Algorithm as introduced in Chapter 4.2. As we have already seen in
Eq. (4.28), prediction can be modeled as a product of recursive convolu-
tions. This formulation enables the use of CNN architectures for prediction
learning.

As a first prerequisite, all distributions are represented as discrete state
grids. For this, the state space is discretized into equidistant cells of a fixed
size. Also, the prediction time is evaluated in steps of a fixed interval. For
every time step up to the prediction horizon, one state grid is created.

50

5.2. Trajectory Prediction

𝑝(𝑠t)

·

𝑝(𝑎|Θ) 𝑝(𝑠t, 𝑎|Θ)

⊗

𝑝a

𝑝(𝑠t+1)

Figure 5.3.: Recurrent stage for forward prediction with map-dependent probability
of actions.

The cells of these grids will later reflect the probability of finding a
pedestrian in a certain area at a certain time. Similarly, the distributions
of state transitions are discretized into grids of state differences. The pair
of these two grids can model Eq. (4.11) as a convolutional layer in a CNN.
The input of the layer is the distribution of possible positions of a pedes-
trian, the filter masks represent the state transition distributions. For this,
they are required to be valid probability distributions. To achieve this, a
suitable activation is applied to the filter weights according to

𝑝(𝑥, 𝑦, 𝑎) =
exp(�̂�(𝑥, 𝑦, 𝑎))

∑︀W
x̃=1

∑︀H
ỹ=1 exp(�̂�(�̃�, 𝑦, 𝑎))

, (5.18)

where 𝑊 and 𝐻 are the spatial extent of the filter and, again, 𝑎 the action.
Note that Eq. (5.18) is closely related to the softmax function that is used
to generate categorical distributions. But instead, here, normalization is
carried out over individual filters to create valid transition distributions.

As shown in Eq. (4.19), repeated convolutions can be used to propa-
gate probability distributions into the future. The prediction for two time
steps ahead can be obtained from the prediction for one time step ahead.
Hence, Eq. (4.19) can be implemented as a recurrent convolutional network
in which the output of a layer is directly fed back to its input as shown in
Fig. 5.3. At every recursion of the network, a prediction for the next time
step can be extracted. As initial state of the network, a distribution grid may
be obtained from tracking information.

A convolutional layer alone will only perform the dynamics-based pre-
diction but is unconscious of the environment. To introduce the impact of
the scene layout on pedestrian motion, the factorization of Eq. (4.28) can
be used. Again, this requires a discretized grid.

51

5. Pedestrian Position Prediction

p(s1) p(s2)

· · ·

p(sT−2) p(sT−1)

p(sT)

· · ·
····p(s0)

· · ·

Figure 5.4.: Forward-Backward-Architecture. The forward pass models motion
from start to every state in the grid, the backward pass models motion from every
state towards the destination. Every block resembles the architecture from Fig. 5.3.
The product of the two represents the PDF of the pedestrian’s position at different
time steps.

For the scene layout, the grid represents the probability of a pedestrian
using a specific transition action in that grid cell. This is incorporated into
the recurrent network by multiplication of the state grids with the grid for
the probability of actions.

Equivalently to the forward prediction, the same can be done for the
backward recursion as in Eq. (4.21). For the backward propagation, the
initial grid should represent the probability of possible destinations. Fur-
thermore, the filter masks have to be flipped in order to represent motion
towards the destination rather than away from it.

Finally, the complete prediction of transition from start to destination has
to be computed. For this, the results of both, forward and backward pass,
are multiplied according to Eq. (4.28). For every time step within the pre-
diction horizon, the corresponding grids are multiplied element-wise. The
result are the unnormalized joint distributions of the prediction away from
the start and towards the destination. Figure 5.4 visualizes this process: be-
ginning with a start distribution grid for 𝑝(𝑠0) and one for the destination
𝑝(𝑠T), the forward and backward predictions can be computed recursively.
When the recurrent layers are unrolled in time (Fig. 5.4), joint distributions
per time step can be computed. Finally, each joint grid can be normalized
to sum to one to yield a valid probability distribution.

The entire Forward-Backward Network is constructed exclusively of
fully differentiable functions. Consequently, the entire network itself can
be trained in a standard backpropagation framework. The set of variable
parameters are the transition filter masks and what the definition of the map
of 𝑝(𝑎|Θ) requires. Hence, given start and destination, these two parameter
sets fully define the prediction.

52

5.2. Trajectory Prediction

5.2.2. Markov Decision Process Network

As we have seen before, prediction can be modeled as Markov Decision
Process (MDP). Furthermore, Value Iteration (VI) was introduced as a pos-
sible solution for MDPs. Section 4.3 showed that VI can be reformulated
using recurrent convolutions. This property enables the use of CNNs for
this task.

The application of MDPs for prediction consists of two parts, namely the
VI part to generate the optimal policy and a simulation part that plays out
the optimal policy to generate actual predicted trajectories. Note that, while
the trajectory is a function in time, the policy is static as it only resembles
what action to take per state. To model this MDP as a CNN, each of the
two parts has to be modeled as a separate neural network.

The structure of the Value Iteration Network can directly be derived from
Eq. (4.35) [155, 163]. An initial grid is generated that represents the value
function 𝑉0(𝑠). Next, a set of actions 𝒜 is defined, where each action 𝑎∈𝒜
represents a characteristic motion pattern. Each of these actions can be as-
sociated with a transition probability distribution 𝑝a(𝑠, 𝑠′) of reaching state
𝑠′ when taking action 𝑎 in state 𝑠. When the value grid 𝑉0(𝑠) is convolved
with one of these filters, it computes the new expected reward per state
when taking action 𝑎, 𝑉1,a(𝑠). This process is repeated for every possible
action in 𝒜. This generates |𝒜| grids, all with the same extent as 𝑉0(𝑠).
Each of these grids per action 𝑎 holds the expected reward for every cell
when taking the respective action.

For every action and state, a reward of taking that action in that specific
state is associated, again reflected by |𝒜| grids. These rewards 𝑅a(𝑠) are
added to the corresponding value maps 𝑉1,a(𝑠). These two operations to-
gether form the argument of the max of Eq. (4.34). The full value function
update Eq. (4.34) is computed as the cell-wise maximum of the sum of
maps 𝑉1,a(𝑠) +𝑅a(𝑠), taken along the action dimension.

In the context of convolutional neural networks, the propagation of re-
wards for different actions can be modeled as a convolutional layer with
a single input and |𝒜| output channels and thus, filter masks. As before,
Eq. (5.18) satisfies the PDF’s constraints by exponentials together with
layer-wise normalization. The reward per cell and action can be consid-
ered as an additive bias layer. Finally, the maximum expected reward per
cell is obtained from maximum pooling in the channel direction as these
reflect the different actions. The result of this pooling operation then is the
updated value function 𝑉k+1(𝑠). Figure 5.5 visualizes this architecture.

53

5. Pedestrian Position Prediction

𝑉k pad

⊗

𝑝a

𝑉a(𝑠)

+

𝑅a(𝑠)

max
pool

𝑉k+1

Figure 5.5.: Recurrent stage of Value Iteration Network. The current value grid is
convolved with action filters to propagate the expected reward. Note that padding
is explicit since implicit padding might falsely introduce rewards in border regions.
Then, the newly obtained reward per state and action is added. The max-pooling
extracts the maximally achievable reward per state.

The VI Network has to be run until convergence, i.e.

𝑉 (𝑠) := 𝑉k+1(𝑠) ≈ 𝑉k(𝑠). (5.19)

In CNN accelerators, it is more efficient to run the VI network for a fixed
amount of steps. These have to be sufficient so that convergence is approx-
imated. This is in contrast to the forward backward network in which we
have to run both forward and backward pass only for as many steps as we
would like to predict time steps into the future.

The value iteration algorithm generates a policy for optimal action selec-
tion along the path. For this, the VI network is run one last time up to the
maximum pooling stage. Instead of running pooling now, the action index
of the maximum in channel direction is extracted. This yields the action
per state that leads to the maximum expected reward in that state and, thus,
the optimal policy 𝜋(𝑠).

Once the optimal policy is generated, it is simulated to obtain the actual
prediction PDFs. In order to incorporate the optimal policy 𝜋(𝑠), it is rep-
resented as a grid in one-hot representation. For each cell in the grid, |𝒜|
channels are defined, where all entries in channel direction are filled with
zeros except the one corresponding to the optimal action for that state. This
entry is set to one. For brevity, this grid is referred to as 𝜋a(𝑠).

Simulation of the policy is again done using a recurrent CNN, which
is shown in Fig. 5.6. Initially, a grid 𝑝(𝑠0) is created that represents the
PDF for the current pedestrian’s position. However, for simplicity let us
assume that we perfectly know the exact cell of the grid that the pedestrian
is currently located in.

54

5.2. Trajectory Prediction

𝑝(𝑠t)

·

𝜋a(𝑠) 𝑝(𝑠t, 𝑎)

⊗

𝑝a

𝑝(𝑠t+1)

Figure 5.6.: Network to simulate the policy generated by the VI net. The policy
grid is multiplied with the current state grid to select actions per state. These are
convolved with the corresponding action filters. The result is the updated state grid.

In that case, we can initialize a grid that is all zero except in that one
cell where it is set to one. This means we know what state the pedestrian
is in and now have to select the optimal action for that state according to
𝜋(𝑠). The one-hot grid 𝜋a(𝑠) represents exactly this selection. Thus, every
channel of 𝜋a(𝑠) is multiplied with the state grid 𝑝(𝑠0). The outcome now
has |𝒜| channels, but only features a single one in the entire grid, namely
the one selecting the optimal action for the current state 𝑠0. To execute
this action, this grid is convolved with the transition filter masks that have
already been used for the VI network. However, in this case, not the sum
over future rewards per action is of interest but the future states for the
action taken. Thus, the transition filter masks have to be flipped in spatial
directions and exchange the input and output dimensions. This way, the
product of 𝑝(𝑠0) and 𝜋a(𝑠) gets reduced from channel count |𝒜| back to a
channel count of one. This result can readily be interpreted as 𝑝(𝑠1). To
obtain the next prediction step, this result is fed back to the network and
propagate probabilities through the space according to 𝜋(𝑠).

5.2.3. Planning Network Training

The prediction scheme as a neural network can be trained from observed ex-
amples. For this, the backpropagation algorithm needs to be applied, which
in turn requires gradient computation for all operations. While the two in-
dividual parts of the MDP network are fully differentiable, the complete
network is not. This is due to the two operations of creating the policy map
𝜋(𝑠) and 𝜋a(𝑠) as argmax and one-hot operations are not differentiable.
Thus, to train the MDP network in backpropagation, these operations have
to be circumvented. Taking the softmax over the channel direction is a
simple and established solution to this problem [155, 163].

55

5. Pedestrian Position Prediction

𝑉k

⊗ +𝑅 pool

𝑉k+1 𝑝(𝑠t)

·𝜋a ⊗

𝑝(𝑠t+1)

softmax

Figure 5.7.: MDP-Network. The left part performs Value Iteration to find the policy,
the right part simulates it. The softmax function is used to connect the two in a
differentiable fashion. This way, the VI network can be trained from loss computed
for the simulation results. Details on the two parts can be found in Fig. 5.5 and
Fig. 5.6.

By use of the softmax, the entire setup is fully differentiable. The inter-
connection between VIN and policy simulation in Fig. 5.7 now allows for
unhindered gradient flow.

In training of the full MDP net, the policy changes depending on the
shape of the transition PDFs which in turn are optimized depending on
the selected policy. This is a classical chicken-and-egg problem since one
would need to know the policy to train the transition filters but need transi-
tion filters to obtain the policy. Other works avoid this problem by defining
transition PDFs by hand or manually annotating policies [155, 163]. In a
setting where neither action PDFs nor policies can be observed, e.g. traffic,
this is not an option. To overcome this problem, the optimization needs to
be guided towards enforcing convergence of valid action PDFs and policies.

Guidance for optimization can be derived from introspection into the na-
ture of the problem itself. As we have seen, the actions 𝒜 should represent
characteristic motion patterns such as moving left or standing. These inter-
pretations are characteristic as their motion directions feature a predomi-
nant direction. For defining a transition PDF per action, this consideration
can be taken into account at initialization. Still, the learning potential of
CNNs should be exploited by training the filters. Therefore, they require
random initialization.

Plenty of works on neural networks have shown the significance of a
good initialization for convergence [55, 61]. According to the considera-
tions from above, the aim is to initialize transition filter masks that define a
predominant direction of motion but still allow for randomness.

56

5.2. Trajectory Prediction

(a) Xavier [55] (b) Smoothed

-1 0 1
-1

0

1

(c) Expected shift (pixels)

Figure 5.8.: Initialization for filter masks: Xavier initialization [55] (blue) generates
zero-mean masks (blue dot in (c)), smoothing (green) leads to directional charac-
teristics (green arrows). Color maps only differ for association between filters and
expected shift.

To achieve this, filter weights are initialized randomly from a wide-
spread Normal Distribution to get great parameter variations within one sin-
gle filter. Next, the weights are smoothed by convolution with a blur kernel.
This way, weights become spatially correlated. When they are converted to
a transition PDF according to Eq. (5.18), this results in locally focused cen-
ters of probability mass in the individual filter masks. Thus, this procedure
generates random transition PDF filters with emphasized directional char-
acteristics. As an example, Fig. 5.8 shows the difference between purely
random initialization and that with smoothing. Filters generated according
to [55] display a noise pattern where the center of mass lies in the filter’s
center. After smoothing, filter values have pronounced imbalances in space
and, thus, feature strong directional properties. Consequently, policies are
more meaningful even in the beginning of the training.

Not only the initialization but also regularization can promote directional
filters. One particular property of directed filters is low spatial variance. For
every filter 𝑝u as defined in Eq. (5.18), the variance can be computed in 𝑥-
and 𝑦-direction as 𝜎2

a,x and 𝜎2
a,y , respectively. Then a regularization loss is

introduced to favor smaller variances as

Lvar =
∑︁

a∈𝒜

(︀
𝜎2
a,x + 𝜎2

a,y

)︀
. (5.20)

This way, the training is guided towards condensed transition filters.

57

5. Pedestrian Position Prediction

5.3. Joint Destination and Planning Network

Goal-directed prediction is a joint task of goal estimation and planning
towards that goal. Chapter 4 introduced a framework for general goal-
directed prediction together with two different planning models that solve
this problem. The previous Section 5.1 proposed a neural network archi-
tecture to predict pedestrian destinations. Also, it was shown how to imple-
ment planning methods as neural networks in Section 5.2. Now, the entire
goal-directed prediction task for pedestrian trajectories can be augmented
as one monolithic neural network. For this to work, the destination predic-
tion network is used as input for either of the planning networks.

5.3.1. Destination Mixture Density Grids

The destination prediction network presented in Section 5.1 outputs a mix-
ture density function for possible destinations. All planning networks, how-
ever, operate on bird’s eye view grid maps. Thus, in a first step, the contin-
uous, parameterized output of the MDN needs to be converted into a grid
map. Here, we note that the grid maps for planning represent the same
domain as the output of the MDN, namely the space (and possibly orien-
tation) the pedestrian occupies. Every cell within the planning grids rep-
resents a discrete space element of which we can identify the extent in the
continuous-valued domain of the MDN output. Therefore, the PDF output
of the MDN can be mapped to grid cells.

The grid cells themselves are agnostic of their own location, they only
map to metric space through an appropriate conversion function. This is
done by a coordinate transform of the grid cells’ row and column indices,
including scaling. The resulting mapping from grid cell indices to spaces
can be used to efficiently map the output of the MDP to the grid domain.
For this, the center position and orientation (𝑥, 𝑦, 𝜓) of all cells in space is
computed. Next, the argument of the exponentials is expanded in Eq. (5.2)
and Eq. (5.3) into parts depending on 𝑥, 𝑦 and 𝜓, comparable to a radial
basis function network [25],

𝛽i(𝑥, 𝑦, 𝜓) = −
(𝑥− �̄�i)

2

2𝜎2
x,i(1− 𝜌2i)

−
(𝑦 − 𝑦i)

2

2𝜎2
y,i(1− 𝜌2i)

+
𝜌i(𝑥− �̄�i)(𝑦 − 𝑦i)

𝜎x,i𝜎y,i(1− 𝜌2i)

+ 𝜅i cos(𝜓 − 𝜓i) (5.21)

with the indices 𝑖 for the 𝑖th mixture component.

58

5.3. Joint Destination and Planning Network

The (𝑥, 𝑦, 𝜓)-location of every single grid cell is now substituted as the
arguments of 𝛽i(𝑥, 𝑦, 𝜓). This way, a grid is filled cell-wise with the argu-
ment of the exponential function of Eq. (5.1). After taking the exponential
of every grid cell, the grid is normalized so that all cells sum to one to ob-
tain a valid PDF. The actual normalization of Eq. (5.1) is avoided due to
the limited grid extent. For the mixture density grid map, one such grid
is computed per mixture component and then summed, weighted with the
corresponding mixing coefficients. This result can be substituted as the
destination PDF map of any planning algorithm.

Note that the only newly introduced operations are the substitutions of
the constant positions (𝑥, 𝑦, 𝜓) to construct the grid. This way, the mapping
from a continuous mixture density function to a discrete mixture density
grid remains fully differentiable. Again, this allows backpropagation for
parameter training.

5.3.2. Planning Map Topology

Planning is executed on bird’s eye view grid maps that reflect properties
of the environment. For that, a map is required that provides information
on topological properties of the world that are relevant for motion. These
properties may be the presence of obstacles, the location of the sidewalk,
but also, even more obvious, the location of the destination. In the plan-
ning framework, maps of these given features need to be converted into a
representation that is understood by the planning stage. In the case of the
Forward-Backward Network, this is the location-dependent probability of
actions 𝑝(𝑎|Θ) in Eq. (4.28). For the MDP Network, location information
is introduced by the reward term 𝑅a(𝑠) needed in Eq. (4.34).

Regardless of the planning algorithm, however, these topological prop-
erties have to be estimated for prediction. Specifically, a concept is re-
quired to predict a predefined domain of values per grid cell given features
of that cell. This is a classical use case of Fully Convolutional Networks
(FCNs) where one prediction is made per input pixel of an image [101].
Thus, topology maps are computed, either 𝑝(𝑎|Θ) or 𝑅a(𝑠), using an FCN
operating on feature grid maps of the environment. For the sake of com-
pleteness, the destination PDF grid from Section 5.3.1 is also included as
an additional layer. Since relevant features are the same between Forward-
Backward-Net and MDP net, the same FCN architecture can be used for
both planning models. All that has to be exchanged is the final activation
function. Since the Forward-Backward-Net expects probabilities of actions,
the activation function is softmax. For the MDP, linear activation is applied
to obtain rewards.

59

5. Pedestrian Position Prediction

Destination Prediction Network

s

Topology Network Planing Network

Figure 5.9.: The full network is augmented from the three individual architectures,
one for the destination prediction, one that generates the topology map for planning
and the final network that executes the prediction in this map given the destinations.
The intermediate results are passed between the networks and all connections are
differentiable.

5.3.3. Prediction Network Augmentation and Training

While the prediction algorithm can be separated into the tasks of destination
inference, topology mapping and planning, they are all integral parts of one
complete system. With that, they should also be considered as a joint task.
The formulation of the three individual parts as neural networks allows for
their integration into one single prediction setup. For this, the output of the
destination inference is connected to the input of the topology network and
in the end, feed the resulting topology to the planning stage. As the final
output of the complete system, individual grid maps are obtained, each
representing a PDF for the pedestrian’s position at a future time step.

Figure 5.9 visualizes this complete structure. From observations of a
pedestrian, a grid of possible destinations are computed. This is concate-
nated with features of the environment. An FCN infers a topology map
for planning from this input. The FCN’s output is used as the input for
the planning network. Since all of these individual parts are fully differ-
entiable, flow of information can be realized in both directions: forward
for inference and backwards for network training. Consequently, when the
entire prediction pipeline can be seen as one single network, it can also be
trained as such.

60

5.3. Joint Destination and Planning Network

Training of neural networks requires a loss function to be minimized
w.r.t. the network’s parameters as explained in Section 2.2. This loss func-
tion will punish the network for wrong predictions. Through minimization
of this punishment, the parameters are updated to improve the final out-
put. Previously recorded pedestrian trajectories serve as supervision. In
that sense, the training is an imitation learning setup as the network aims to
imitate observed behavior of humans.

From observed ground truth pedestrian trajectories, the desired output
of the network can be constructed. In an ideal case, the prediction would
perfectly predict a pedestrian’s future position. In the grid representation,
this corresponds to a state grid that is all zeros except for a single one in the
cell the pedestrian occupies at a specific time step. For every time step, one
such grid can be generated to reflect the ground truth. From the prediction
network, comparable grids can be computed, however, now, they resemble
the predicted PDF of the pedestrian’s future states. With these, the ground
truth grid can be compared with the predicted PDF grid from the network.

Let 𝑠t denote the ground truth state of a pedestrian at time instance 𝑡.
For the current prediction, all input data is provided to the neural network,
namely an image of the pedestrian, the pedestrian’s current position and
a feature map of the environment, condensed in 𝑥. With the parameters
of RMDN, topology and planning network, condensed in ŵ, the method
outputs a PDF 𝑝(𝑠t|𝑥, ŵ) per predicted time step 𝑡.

In this case, 𝑝(𝑠t|𝑥, ŵ) is the grid map that stores the probability of the
pedestrian occupying every possible cell. On the other hand, the ground
truth state grid 𝑞(𝑠t) is a binary grid, where all cells are zero except for the
single state that the pedestrian actually occupies.

In the context of neural networks, this can also be understood as a bi-
nary classification: either the pedestrian occupies a certain grid cell in the
future or not. Accordingly, well-established loss functions from classifica-
tion tasks can be employed.

One common loss function in classification is the cross entropy [56]

Lpos =− 𝑞(𝑠t) log(𝑝(𝑠t|𝑥, ŵ))

− (1− 𝑞(𝑠t)) log(1− 𝑝(𝑠t|𝑥, ŵ)). (5.22)

The complete network can readily be trained from the cross entropy pre-
diction loss. However, convergence may fail for large prediction horizons.
This is due to the required destination estimation. It may not converge be-
cause the initialization is too uncertain for large prediction horizons.

61

5. Pedestrian Position Prediction

To overcome this problem, a second loss term is introduced, specifically
to guide the RMDN’s convergence. The loss is the negative log-likelihood
of the predicted PDF evaluated in the ground truth position [21]

Ldest = − log(𝑝(𝑠T |𝑥, ŵ)). (5.23)

The introduction of this additional loss term is in compliance with many
previous publications that introduced additional loss functions to overcome
the vanishing gradient problem or even only make the network more ver-
satile through multi-task training [45, 84, 161]. The benefit of this loss is
the bypassing of the subsequent network in back-propagation. This way,
even early stages of the network produce the correct features for the subse-
quent architecture. Additionally, introduce further loss functions could be
introduced to the RMDN, e.g. to predict occlusions, gaze or orientations,
to improve CNN training [45, 84].

Especially deep network architectures with millions of parameters are
prone to overfitting during training. Parameter regularization mitigates this
problem and is thus crucial in training. Reportedly, some CNN architec-
tures do not even converge without regularization [90]. Consequently, pa-
rameter regularization as introduced in Section 2.2.4 is applied in all net-
works as the sum of squares of all network parameters

Lreg = ŵ
⊤
ŵ (5.24)

The final loss function for the full network in training is augmented from
the individual parts. These are the prediction loss Lpos, the destination loss
Ldest, parameter regularization Lreg, and the filter variance constraint from
Section 5.2.3, Lvar. The full function which is to be minimized then is the
weighted sum of losses

L = Lpos + 𝜆destLdest + 𝜆regLreg + 𝜆varLvar, (5.25)

where the parameters 𝜆dest, 𝜆reg, 𝜆var, 𝜆proxy > 0 weight the individual loss
function parts w.r.t. the prediction cross entropy loss.

The augmentation of a single prediction network and the definition of a
joint loss allows for optimal adaption of the individual tasks. Any single
network can be trained to only fulfill its own prediction task. However,
through the joint loss function in Eq. (5.25), the individual tasks can adopt
their behavior to optimally serve the subsequent pipeline. This way, all
parts are best fit for the ultimate goal of position prediction.

62

Chapter 6
Dataset

While many datasets exist for evaluation of recognition systems, they are
comparably scarce for pedestrian prediction. In the past, sensor process-
ing already posed such a significant challenge that algorithms in the down-
stream of the processing chain were rarely evaluated in isolation. Thus,
many datasets focus on the evaluation of low-level sensing tasks such as
detection and tracking [8, 49, 52, 72]. Only few have been proposed to
evaluate pedestrian prediction methods [89, 152]. These, however, mostly
feature a limited amount of data or staged scenes. Consequently, there is
the need for a suitable dataset in order to train and evaluate the proposed
prediction method.

A dataset to assess prediction algorithms requires both, data as well as
a benchmarking methodology. The data used in this thesis consists of
recorded video sequences of pedestrians. For every pedestrian, ground
truth trajectories are generated that are used for both, training and evalu-
ation. Additionally, observations of the environment are extracted in form
of semantic grid maps. For benchmarking, an algorithm’s expected cor-
rectness should be quantified by suitable metrics. But beyond that, these
metrics should also reflect the expected safety since a single missed predic-
tion might lead to disastrous results

This chapter presents the dataset for evaluation of prediction. First, a
detailed overview is given on how the training and evaluation data was cre-
ated. Then, metrics are presented that allow to assess prediction algorithms
in terms of both, accuracy and safety. The dataset and subsets of the metrics
were also used for evaluation in [133].

63

6. Dataset

Figure 6.1.: Experimental vehicles of the Institute of Measurement and Control Sys-
tems. AnnieWay (left) used in the DARPA Urban Challenge [80] and BerthaOne
(right) used in preparation of the Bertha Benz Memorial Drive [184].

6.1. Prerequisites

In order to establish a meaningful dataset, a system setup is desired that can
provide all information required for prediction. In research, the common
approach is to equip an experimental vehicle with the most accurate sensors
available to record ground truth data. Yet, with recent advances, automated
vehicles are expected to reach a state of production within the next decade
[51]. Consequently, a transition from large and costly sensors towards a
smaller and cheaper setup is desired, as seen in the experimental vehicles
shown in Fig. 6.1.

This work pays tribute to both paradigms, the high-precision and high-
cost sensors for ground truth as well as the potential implementation in pro-
duction line vehicles. As a sensor setup, a stereo camera system is selected,
similar to the ones introduced to mass production. However, due to de-
mands on precision, high-resolution cameras are deployed with industrial-
grade lenses shown in Fig. 6.2.

The stereo camera was selected since it provides rich information for
both, self and scene perception. Not only does it provide visible light imag-
ing but also means to compute scene depth from two camera images as well
as motion estimation from successive image frames. Thus, a stereo cam-
era alone can fulfill all requirements of this work. Consequently, no other
sensor is employed for evaluation.

6.1.1. Stereo Setup

The stereo setup is made up from one GENIE TS-C4096 with Bayer Pat-
tern and one monochromatic GENIE TS-M4096. As lenses for the sys-
tem, industrial-grade ZEISS DISTAGON T* 2.8/15 ZF-I lenses were cho-

64

6.1. Prerequisites

Parameter Left Right
Chroma Color Mono
Resolution 1536×4092 768×2048

Focal Length 15mm 15mm
Frame Rate 10Hz 10Hz
Baseline - 50cm

Table 6.1.: Parameters of the stereo camera
setup.

Figure 6.2.: The cameras used in
this work.

Figure 6.3.: Camera image and corresponding disparity image obtained with [126].

sen with a horizontal field of view of roughly 80∘, equipped with IR-cut
filters. The parameters of the system are summarized in Table 6.1.

Due to bandwidth limitations, the right camera is recorded at a quarter
of the resolution of the left camera. To further reduce the amount of data,
a person detector was run during recording and only scenes were captured
where pedestrians were present. This scheme reduced the time of recorded
video to a third of the total time of driving.

6.1.2. Disparity Computation

A stereo camera allows the perception of scene depth per pixel. For this,
the horizontal displacement of a point between left and right image, the
disparity, is computed. With known camera calibration, the distance of the
point can be triangulated.

The cameras have been calibrated prior to data recording by use of coded
checkerboard targets [159]. For disparity computation, the left camera im-
age is resized to the size of the right and convert it to grayscale. This also
mitigates the impact of the left camera’s color pattern on stereo matching.
Disparity images are obtained through slanted plane stereo matching [126].
Exemplary results are shown in Fig. 6.3.

65

6. Dataset

0 200 400 600

−200

0

200

x / m

y
/m

Example Vehicle Trajectory

GT
Vis. O.
Optim.

Figure 6.4.: Vehicle trajectory before and after optimization, generated for an ex-
emplary KITTI odometry sequence [52].

6.1.3. Vehicle Motion Estimation

Estimation of pedestrian trajectories in the world requires knowledge of
the vehicle’s motion. From stereo vision, the ego motion is estimated from
image sequences via bundle adjustment [4, 166].

With a sequence of camera images of the same scene, bundle adjustment
aims to optimize the camera poses and observed 3D structure jointly. For
this, the reprojection error of 3D point features into the camera image is
minimized. This requires 3D point features x, also called landmarks, the
camera pose T ∈ 𝑆𝐸(3) and the camera’s projection matrix K. Then, the
projection function 𝜋 that projects x to an image point p is defined as

𝜋(T−1x) :=
1

𝑧
KT−1x, (6.1)

where 𝑧 is a normalization to convert T−1x to homogeneous coordinates.
The reprojection error ê is the difference between an observed point p and
the estimated point projection p̂

ê = p̂− p = 𝜋(T̂
−1

x̂)− p, (6.2)

where now both, the camera’s pose T̂ and the landmark’s 3D position x̂ are
subject to optimization.

66

6.1. Prerequisites

For bundle adjustment, a set of landmarks ℒ̂ = {x̂0, x̂1, . . . , x̂N} and
poses 𝒯 = {T̂ 0, T̂ 1, . . . T̂M} is optimized to minimize the reprojection
error of all landmarks

𝐽(𝒯 , ℒ̂) =
M∑︁

i=0

N∑︁

j=0

1v · (‖𝜋(T̂
−1

i x̂j)− pi,j‖
2), (6.3)

where 1v∈{0, 1} is the indicator function that only evaluates to 1 if land-
mark 𝑗 was observed from the 𝑖-th camera pose and pi,j is that observation
in the corresponding video frame.

Vehicle poses are obtained by minimizing Eq. (6.3) w.r.t. suitable param-
eters. For this purposes, the vehicle is assumed to move on a planar surface
and motion is constrained by the kinematic single track [138].

The pose increment ∆T̂ i can be parameterized in traveled distance �̂� and
curve radius 𝑟 with

∆T̂ i =

⎡

⎢
⎢
⎣

cos𝜓 − sin𝜓 0 𝑟 sin𝜓

sin𝜓 cos𝜓 0 𝑟(1− cos𝜓)
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦
, (6.4)

where 𝜓 is the curve angle defined as l̂/r̂.
Planar motion according to Eq. (6.4) is not sufficient to describe the full

camera motion. Furthermore, pitch and roll movements need to be ac-
counted for. Therefore, an additional two-angle bearing of the vehicle R̂i is
estimated for every time step. This is combined with the camera’s extrinsic
pose T c to explain its full motion in-between time steps. The final absolute
camera pose T̂ i at every time step 𝑖 is a conjunction of all individual poses

T̂ i = T cR̂i∆T̂ i∆T̂ i−1 · · ·∆T̂ 0. (6.5)

In the final optimization, the pose from Eq. (6.5) is substituted for every
observation in Eq. (6.3) and the loss function is minimized w.r.t. all pa-
rameters of Eq. (6.4) as well as R̂i. The mounting position T c and the
projection matrix K can be obtained from calibration [159].

In Fig. 6.4, an exemplary result from a sequence from [52] is shown.
While incremental visual odometry drifts away from the ground truth tra-
jectory, the result after bundle adjustment stays relatively close to the
ground truth. Note that no loop closure detection was employed.

67

6. Dataset

Figure 6.5.: Semantic segmentation of images predicted with an FCN.

6.1.4. Semantic Segmentation

As motivated in Section 1.3, the layout of the environment is one of the key
features for prediction. Therefore, it is desired to obtain a deeper under-
standing of the scene’s properties for prediction. This is done via semantic

segmentation of images, where a semantic class is assigned to every pixel
[31, 172, 181]. With this information, parts of the scene can be recognized
that are accessible for a pedestrian or even identify customary behavior de-
pending on traffic scene layouts.

In this work, a Fully Convolutional Network (FCN) is employed for se-
mantic segmentation [101] with a GoogleNet feature extractor [161]. The
network is initialized with weights for ImageNet classification [146] and
trained on the Cityscapes dataset to perform segmentation [37]. Examples
are shown in Fig. 6.5

6.1.5. Mapping

The planning networks introduced in Section 5.2 operate on grid structures.
To incorporate information on the environment into these grids, occupancy
grid mapping [46, 58, 127] is used. For this type of mapping, the vehicle’s
surrounding is discretized into equally sized cells. Every cell reflects the
probability that the cell features a certain property (cf. Fig. 6.6).

Similar to [76], a multi-layered map is generated in which each layer
represents one specific property of the environment. One such property is
the presence of obstacles. Additionally, one layer is added for the bird’s
eye view (BEV) of the scene and one for every semantic feature from the
segmentation of Section 6.1.4. The update strategy of map cells follows

68

6.2. Pedestrian Data

Figure 6.6.: Camera images and multi-layer map of the corresponding scene. The
vehicle faces right the maps.

[46]. For the BEV, an exponential average filter is used to track the color
value 𝑠t of every cell,

𝑠t = 𝛼𝑠t−1 + (1− 𝛼)𝑧t, (6.6)

where 𝑧t is the currently observed color value. Here, 𝛼∈(0, 1) is a damping
parameter that governs the filter’s response [76]. Upon initial update of a
cell, 𝑠0 is set to the first measurement 𝑧0.

6.2. Pedestrian Data

Evaluation of pedestrian prediction necessitates ground truth pedestrian tra-
jectories. For this purpose, all pedestrians were annotated in video se-
quences and enriched with further meta information in post-processing.

6.2.1. Manual Annotations

The first step towards ground truth pedestrian trajectories is manual anno-
tation of video sequences. All pedestrian appearances are annotated with
enclosing 2D bounding boxes. Individual persons are assigned consistent
identification numbers (IDs) over time so that re-identification is possible.
Some exemplary annotations are visualized in Fig. 6.7.

As pedestrians might be occluded in the course of a single sequence, we
also introduce occlusion tags per bounding box. This allows to explicitly
handle it in later stages.

69

6. Dataset

Figure 6.7.: Pedestrians annotations in images. Information includes the enclosing
bounding box, position w.r.t. the vehicle and occlusion.

6.2.2. Trajectory Estimation

A full ground truth trajectory is computed from optimization over all indi-
vidual sightings of the pedestrian. A trajectory is defined as a sequence of
𝑁 states 𝜁=(ŝ1, ŝ2 . . . , ŝN), where each state consists of a three-dimensional
vector ŝt=(�̂�t, 𝑦t, 𝑧t)

⊤, representing the center of mass of the pedestrian.
Also, the derivatives w.r.t. time are computed, ˆ̇st=(ˆ̇𝑥t, ˆ̇𝑦t, ˆ̇𝑧t)

⊤ to obtain
velocity. Additionally, the constant height of the pedestrian 𝑘 is estimated.
Note that all trajectory states ŝt are given in the same reference coordinate
frame. The pose 𝑇t from Eq. (6.5) is used to obtain the state vector in
camera coordinates s̃t=(�̃�t, 𝑦t, 𝑧t)

⊤

s̃t = T−1
t ŝt. (6.7)

The annotated bounding boxes provide the input information for opti-
mization. For every time step 𝑡 of a trajectory, they consist of the 𝑢- and
𝑣-position of the box, its width 𝑤 and height ℎ in the image together with a
binary occlusion label 𝑜t∈{0, 1}. For every pixel (𝑢, 𝑣) within a box, dis-
parity information 𝑑t(𝑢, 𝑣) is obtained from stereo matching. From these
observations, a set of residuals is constructed per annotation which is then
minimized w.r.t. the parameters of the trajectory 𝜁. The individual residuals
as well as the optimization are explained in the following.

70

6.2. Pedestrian Data

Bounding Box The first residual is the displacement between the repro-
jection of the center of mass from the center of the bounding box

êc,t =

(︃

𝑓 x̃t

z̃t
+ 𝑐u

𝑓 ỹt

z̃t
+ 𝑐v

)︃

−

(︂
𝑢t +

wt

2

𝑣t +
ht

2

)︂

, (6.8)

where 𝑓 is the camera’s focal length and (𝑐u, 𝑐v)
⊤ is the center of projec-

tion, both in pixels.
Secondly, the deviation between the projection of the pedestrian’s height

and the height of the bounding box is used as residual,

𝑒h,t = 𝑓
𝑘

𝑧t
− ℎt. (6.9)

Disparity For disparities, a boolean validity flag is obtained per pixel
(𝑢, 𝑣), 𝑔t(𝑢, 𝑣)∈{0, 1}, where 𝑔t(𝑢, 𝑣)=1 means that disparity computa-
tion for this pixel was successful. The residual in disparity is

𝑒d,t(𝑢, 𝑣) = 1o ·

(︂

𝑔t(𝑢, 𝑣) ·

(︂
𝑓𝑏

𝑧t
− 𝑑t(𝑢, 𝑣)

)︂)︂

, (6.10)

where 1o∈{0, 1} denotes a selector function that only evaluates to 1 if the
pedestrian is not occluded.

Constant Velocity The velocity estimation yields two different residuals.
For once, a residual is computed between the position at 𝑡+ 1 as predicted
from position and velocity of 𝑡,

êp,t =

⎛

⎝

�̂�t
𝑦t
𝑧t

⎞

⎠+∆𝑡

⎛

⎝

ˆ̇𝑥t
ˆ̇𝑦t
ˆ̇𝑧t

⎞

⎠−

⎛

⎝

�̂�t+1

𝑦t+1

𝑧t+1

⎞

⎠ . (6.11)

Secondly, another residual is introduced for constant velocity as

êv,t =

⎛

⎝

ˆ̇𝑥t
ˆ̇𝑦t
ˆ̇𝑧t

⎞

⎠−

⎛

⎝

ˆ̇𝑥t+1

ˆ̇𝑦t+1

ˆ̇𝑧t+1

⎞

⎠ . (6.12)

Both residuals can be computed for every observation except the last.

71

6. Dataset

Figure 6.8.: Trajectory optimization: from labels in images (left), initial position
estimates are created (right, triangles). These are then optimized for ground-truth-
like trajectories (right, solid lines). Note: the gray blobs at the lower end of the
optimized trajectories are measurements of the two pedestrians accumulated in the
grid.

Final Optimization All residuals are incorporated into one single cost
function as the sum of squared residuals from Eqs. (6.8) to (6.12). Since
everything else is annotated manually, the disparity measures are the only
possible source of outliers. To reduce their impact, the Cauchy Loss func-
tion is applied to the disparity residual 𝑒d,t(𝑢, 𝑣).

The final cost function is

𝐽(𝜁, �̂�) =

N∑︁

t=1

[︀
‖êc,t‖

2 + ‖𝑒h,t‖
2
]︀

⏟ ⏞

Projection of bounding box

+

N∑︁

t=1

∑︁

(u,v)∈bt

log(1 + ‖𝑒d,t(𝑢, 𝑣)‖
2)

⏟ ⏞

Disparity

+
N−1∑︁

t=1

[︀
‖êp,t‖

2 + ‖êv,t‖
2
]︀

⏟ ⏞

Constant velocity

. (6.13)

Eq. (6.13) is minimized w.r.t. all states within the trajectory 𝜁 together with
the person’s height 𝑘. The optimization is solved using the Levenberg-
Marquardt Algorithm [3].

72

6.3. Dataset Statistics

All positions are initialized from median disparity if a person is not oc-
cluded. From this, an initial estimate for the person’s height can be derived
and, conclusively, all positions can be initialized from the bounding box
size and position, even through occlusions. If a person is partially occluded
for every sighting, an initial guess of 1.8m is used as height and initialize
from this.

An example for optimized trajectories is depicted in Fig. 6.8. The noisy
stereo measurements are used as initialization. After optimization, smooth
trajectories have been generated that resemble the pedestrians’ actual mo-
tion in the scene.

6.3. Dataset Statistics

For the dataset, we recorded and annotated 40 minutes of video in total.
Of this, 72 individual sequences were selected from urban, commercial and
residential Karlsruhe and on campus. The sequences account for almost
9,000 video frames with over 400 annotated pedestrians in them. For in-
dependence in evaluation, the data is split into training and test set. The
dataset statistics are summarized in Table 6.2.

The distribution of track lengths gives an insight into the expected input
data for prediction algorithms. Fig. 6.9 displays their frequency. Depend-
ing on the desired prediction horizon, these determine the amount of data
available for training. If, for example, we would like to predict trajectories
for a time span of four seconds, we can only use tracks that are longer than
that. However, of course, longer sequences can be cut into possibly many
shorter segments.

Training Set Test Set
Number of Sequences 45 27
Total Duration 653.4s 233.9s
Pedestrian Tracks 330 77
Cumulative Track Length 2154s 414s
Avg. Track Length 6.5s 5.4s

Table 6.2.: Overview over dataset statistics.

73

6. Dataset

2 4 6 8 10 12 14 16 18
0

10

20

30

Track Length / s

F
re

qu
en

cy
/%

Distribution of Track Length

train
test

Figure 6.9.: Histogram of track lengths in bins of 2s for both, training and test data.

6.4. Metrics

Throughout this work, it was argued that prediction has to be treated as
a probabilistic problem and dealt with in terms of uncertainties. Conse-
quently, metrics to evaluate prediction should pay respect to this. Also, we
need to be able to compare parametric models, such as Gaussian Distribu-
tions, and non-parametric models.

In order to compare algorithms, a unified representation is required for
predictions, regardless of their original parameterization. Grid mapping
presents as such a representation. After that, evaluation of predictions will
be explained using these grid maps.

6.4.1. Unified Representation for Evaluation

While it may be difficult to obtain a parametric representation from a dis-
cretized distribution grid, it is comparably easy to map a parametric distri-
bution to a grid.

For all evaluations, regardless of the approach, the predicted probability
distributions at time 𝑡 is mapped to a grid, Φt, of size 𝑊×𝐻 . This grid
consists of fixed size cells 𝑠i,j , where the indices 𝑖, 𝑗 correspond to the
locations within the grid. We then demand

0 ≤ 𝑠i,j , ∀ 𝑖∈1, 2, . . . , 𝐻, 𝑗∈1, 2, . . . ,𝑊, (6.14)
H∑︁

i=1

W∑︁

j=1

𝑠i,j = 1. (6.15)

For the sake of legibility, the indices 𝑖, 𝑗 are omitted in the following.

74

6.4. Metrics

-3 0 3
-3

0

3

x / m

y
/m

Example Predictions

Pred. A
Pred. B
GT
Area

Figure 6.10.: Toy examples of predicted probability density functions (cyan, ma-
genta) with ground truth pedestrian position (black). The green circle approximates
the area covered by a standing adult.

Figure 6.10 shows such a mapping. For the magenta ellipse, a single bi-
variate Gaussian Distribution was mapped onto the grid. The cyan-colored
ellipses are a mixture of two such Gaussians.

In contrast to the trajectory, a predicted path is concerned only with the
question where a pedestrian will be but not when. This is represented as a
grid without time dependency, ΦPath. It represents the estimated probabil-
ity that a pedestrian will ever occupy a specific cell,

𝑠Path = 1−
∏︁

t

(1− 𝑠t). (6.16)

The same way predictions are mapped to a grid, the ground truth has to
be represented as such. Given a pedestrian’s position 𝑠GT=(𝑥GT , 𝑦GT)

⊤,
the distance to every cell 𝑠’s center position 𝑠s=(𝑥s, 𝑦s)

⊤ is computed ac-
cording to

𝑑s = ‖𝑠s − 𝑠GT ‖2. (6.17)

With this, a binary grid ΦGT is created that encodes whether a cell is occu-
pied by a pedestrian or not,

𝑠 =

{︂
1, if 𝑑s ≤ 𝑟
0, otherwise,

(6.18)

75

6. Dataset

mPP[%] mNLP Mode Dist. [m]
Pred. A 5.76 2.85 2.92
Pred. B. 0.00 12.71 1.93

Mean 2.88 7.78 2.42

Table 6.3.: Different metrics evaluated for the example prediction from Fig. 6.10.
For mean predicted probability (mPP), better predictions show higher values, per-
fect score is 100%. For mean log predicted probability (mNLP) and mode distance,
good prediction is reflected by lower values, perfect score is zero.

where 𝑟 is a radius around the pedestrian’s position 𝑠GT within which the
area is considered occupied.

The radius 𝑟 is selected such that the area covered by ground truth totals
to 0.15m2, which is approximately the space covered by the average stand-
ing adult [174]. In Fig. 6.10, this area is shown as the green circle around
the ground truth position (black dot).

6.4.2. Probability Distribution Metrics

For evaluation of predicted probability distributions, it is necessary to quan-
tify how well they align with the actual ground truth. Throughout litera-
ture, no universal metrics have yet been agreed upon [124, 143, 176]. It
is, for example, customary to measure the distance between the maximum
mode of a distribution and ground truth [88, 152]. However, this does not
incorporate possible multi-modalities. Let us consider the example from
Fig. 6.10. Even though Prediction B assigns little probability mass to the
actual ground truth, its maximum mode’s distance is smaller than Predic-
tion A’s (cf. Table 6.3).

To overcome this problem, instead, the probability mass that falls into
the area covered by the pedestrian is evaluated [133]. Since the ground
truth grid ΦGT is binary, the probability mass of the predicted map ΦPred

that coincides with the ground truth is the Frobenius Product of the two.
Given a dataset 𝒟, the mean predicted probability (mPP) of the ground
truth positions is computed as

𝑚𝑃𝑃 =
1

|𝒟|

∑︁

ζ∈𝒟

1

𝑁ζ

∑︁

ΦPred,GT∈ζ

⟨ΦPred,ΦGT ⟩F , (6.19)

where 𝑁ζ denotes the number of individual observations in a single tra-
jectory. This averaging is done to avoid a bias towards long trajectories in

76

6.4. Metrics

evaluation. Note that this metric is only comparable if maps are normalized
according to Eq. (6.15).

The metric defined in Eq. (6.19) can be seen as a measure for average
correctness of predictions. Unfortunately, it does not give insights about
failure cases. Table 6.3 shows the results for the example in Fig. 6.10.
While Prediction A performs well, Prediction B is completely off. In the
mean of the two, however, this can’t be distinguished from the case where
both predictions had included the ground truth with 2.88%, which arguably
would be the safer prediction.

As a metric for safety, measure should heavily penalizes erroneous pre-
dictions. For this, the mean of the negative log probability (mNLP) is em-
ployed [183, 86],

𝑚𝑁𝐿𝑃 = −
1

|𝒟|

∑︁

ζ∈𝒟

1

𝑁ζ

∑︁

ΦPred,GT∈ζ

log (⟨ΦPred,ΦGT ⟩F) . (6.20)

As the predicted probability approaches zero, the negative log probability
approaches infinity. It therefore reflects the prediction’s safety. This can
also be seen in Table 6.3: suppose we compared an Algorithm 1, produc-
ing Prediction A, to Algorithm 2, returning both, A and B. We therefore
compare the value of Prediction A to the mean in Table 6.3. While Algo-
rithm 2 seems to be still half as good as Algorithm 1 in mPP, the mNLP has
increased by almost the threefold through the misplaced Prediction B. A
comprehensive visualization is presented in Fig. 6.11, where mPP is plot-
ted over mNLP. The further to the top left, the better the prediction.

6.4.3. Classification Metrics

The probability metrics require normalized distributions per grid to be
meaningful. In path prediction, however, the grid maps resemble a prob-
ability distribution only per cell, but not per grid. Thus, neither the previ-
ously presented predicted probability nor log probability are applicable for
evaluation of path prediction.

Luckily, the prediction within a grid map can also be considered as a
classification problem. The probabilities from Eq. (6.16) can be thresh-
olded to make a decision is the cell part of the path or not? With the
decision made, classification evaluation concepts can be utilized, such as
receiver-operating characteristics (ROC) [69] or Precision-Recall-Curves
(PR-Curves) [75]. Both curves can be reduced to a single value by comput-
ing the area under curve (AuC), AuROC and AuPR respectively.

77

6. Dataset

0 5 10
0

5

10

Neg. Log. Prob.

P
re

d.
P

ro
b.

/%

Trajectory Prediction

Pred. A

Pred. B

Mean

Figure 6.11.: Map of prediction results from example predictions of Fig. 6.10. The
further to the top left, the better the prediction performance.

When we consider prediction as classification, we face a severe class
imbalance: only few grid cells are part of the path while the vast majority
is not. AuROC is known to perform poorly in such conditions [148]. This
can also be seen in Table 6.4. Even though Prediction B is far from the
correct location, it still has a higher AuROC. This problem is overcome for
AuPR. Therefore, only AuPR will be reported in the experiments.

AuROC [%] AuPR [%]
Pred. A 0.12 1.03

Pred. B 1.24 0.20
Combined 0.55 0.69

Table 6.4.: Areas under ROC-Curve and PR-Curve for the example prediction from
Fig. 6.10. Higher is better for both metrics, perfect prediction corresponds to 100%.

78

Chapter 7
Experimental Validation

Previously, a theoretical model for a goal-directed prediction system was
proposed. It consists of two individual parts, namely the estimation of pos-
sible destinations and a goal-directed prediction towards them. Section 5.1
introduced a recurrent mixture density network (RMDN) for destination
prediction. To predict trajectories to these, two different neural networks
were presented, one based on the forward-backward (Fwd-Bwd) algorithm
in Section 5.2.1 and one based on Markov Decision Processes (MDP) in
Section 5.2.2. In this chapter, the proposed methods are validated experi-
mentally. Each of the three aforementioned networks features unique de-
sign parameters specific to the respective architecture. In the following,
first, the architectures and their parameters are studied in isolation. Finally,
the joint network is evaluated in terms of full trajectory prediction perfor-
mance. For all experiments, the dataset and metrics from Chapter 6 are
used. The methods from Section 3.3 serve as a reference. For clarity of
presentation, results are only shown visually. Also, details on implementa-
tion, generic parameters, and architectures are omitted here. The interested
reader is referred to Appendix B for such details. This chapter significantly
extends the evaluation published in [133].

7.1. Destination Prediction

The correct inference of destinations is the foundation of planning-based
prediction. Thus, the Recurrent Mixture Density Network (RMDN) intro-
duced in Section 5.1 is the first building block to evaluate.

79

7. Experimental Validation

Here, the impact of model parameters as well as different training tech-
niques on performance is investigated. For comparison, the Interacting
Multiple Model (IMM) Filter [152] and the DOGMa-CNN [69] are se-
lected from Section 3.3. As presented in Table 3.1, the IMM marks the
best mNLP, while for best mPP, the DOGMa-CNN and Activity Forecast-
ing [86] perform comparably. Of these, the DOGMa-CNN is chosen as a
representative learned method.

7.1.1. Experiment Setup

In a first set of experiments, architecture-specific parameters and how they
impact performance are evaluated. For every experiment, individual pa-
rameters are varied while all others remain fixed. For the default parame-
terization, see Section B.3.1. Note that the following experiments do not
employ image features unless stated otherwise.

The training data 𝒟 is taken from the dataset presented in Chapter 6. We
train on all trajectories, 𝜁∈𝒟, where the length of the trajectory𝑁ζ is longer
than the desired prediction horizon 𝑇 , 𝑁ζ>𝑇 . As input x for training, we
shift all trajectories by their current state,

xt = st − st−1, ∀𝑡 ∈ 1, . . . , 𝑁ζ − 𝑇. (7.1)

As target outputs y, the difference between the current state st and the state
at prediction horizon 𝑇 in the future is used,

yt = st+T − st, ∀𝑡 ∈ 1, . . . , 𝑁ζ − 𝑇. (7.2)

7.1.2. Loss

Training of the neural network requires an adequate loss to minimize. The
objective is to find the neural network’s parameters ŵ

* that minimize the
loss L over the dataset 𝒟,

ŵ
* = argmin

ŵ

L(𝒟, ŵ). (7.3)

The minimum is found using Adam as iterative numerical solver [85]. For
this, the parameter updates are not computed on the full dataset 𝒟, but on
small samples ℬ of it, so-called mini batches.

80

7.1. Destination Prediction

The network described in Section 5.1 predicts a probability distribution
of the future states ŷi, given the current input xi and the network’s param-
eters ŵ, which is abbreviated as 𝑝 for sake of legibility,

𝑝 := 𝑝(ŷi|xi, ŵ). (7.4)

To optimize probability distributions, it is customary to use the mean
negative log likelihood as a loss function [20],

LMean(ℬ, ŵ) = −
1

|ℬ|

∑︁

yi,xi∈ℬ

log 𝑝. (7.5)

However, for prediction, it is desired to pay special attention to rare events,
as these can be the most dangerous in traffic. In previous works, it was
shown that hard example mining can improve performance [133]. For this,
only the worst 𝑘 samples are selected from every training batch to form a
new batch ℬk. The loss of Eq. (7.5) is adjusted accordingly so that still the
mean negative log likelihood is calculated, but now only for the hardest 𝑘
samples.

Another way of emphasizing the difficult examples in training is focal
loss [98]. In this loss, predictions are reweighted according to how well the
network performs on them already. This is done by multiplication with the
complementary of the predicted probability,

LFocal(ℬ, ŵ, 𝛾) = −
1

|ℬ|

∑︁

yi,xi∈ℬ

(1− 𝑝)
γ
log 𝑝, (7.6)

where the exponent 𝛾 is a hyper parameter that governs the impact of well-
predicted samples on the total loss.

The results in Fig. 7.1 indeed show that focus on hard examples can im-
prove mNLP. However, this comes at the expense of significantly decreased
mPP. Consequently, Eq. (7.5) is utilized in all following experiments.

7.1.3. Number of Mixtures

The number of mixture components in the network determines the maxi-
mum number of possible motion hypotheses it can predict. Therefore, it
is a crucial design parameter. Generally it is expected that more mixture
components lead to better performance. If not all are needed to explain the
data’s variance, they might either collapse during training or be trained as
redundant predictors, e.g. through help of dropout.

81

7. Experimental Validation

0 5 10 15
0

5

10

15

mNLP

m
P

P
/%

Impact of Worst-k-Loss

k=|ℬ|

Worst k

IMM

DOGMa

(a) Worst-k-Loss, from k=1 (bright)
to k=8 (dark). k=|B| is the loss from
Eq. (7.5).

0 5 10 15
0

5

10

15

mNLP

m
P

P
/%

Impact of Focal Loss

γ=0

Focal

IMM

DOGMa

(b) Focal Loss, with γ∈{1, 2, 4}
(bright to dark). γ=0 is the loss from
Eq. (7.5).

Figure 7.1.: Prediction performance for networks trained with and without emphasis
on hard examples.

At the same time, however, their count increases computational demands,
training efforts as well as the risk of overfit. Therefore, the minimum pos-
sible number of components should be found that delivers acceptable per-
formance.

To evaluate the number of mixtures needed, mixture density networks
are trained with component counts from one to sixteen. Of course, an
MDN with just one component is no longer a mixture but simply predicts
a single Gaussian. For training of this single Gaussian, no dropout is ap-
plied (cf. Section 7.1.4). The performance of all networks is visualized in
Fig. 7.2. While mPP is comparable for all experiments, larger variance is
seen in mNLP. The network with only a single Gaussian significantly falls
behind any MDN, even compared to a mixture with only two components.
Adding more components improves mNLP further until it reaches satura-
tion for more than eight. This shows that tracking more hypotheses aids
neither exactness nor robustness.

7.1.4. Dropout

A common problem of mixture density networks are vanishing compo-
nents. When single components of the mixture explain most of the variance,
they get preferred in training, which in turn leads to better explanatory ca-
pabilities in these. Unfortunately, this hinders the prediction of multiple

82

7.1. Destination Prediction

0 5 10 15
0

5

10

15

mNLP

m
P

P
/%

Impact of Mixture Components

Mixture Count

IMM

DOGMa

Figure 7.2.: Destination prediction per-
formance for different numbers of mix-
ture components from 1 (bright) to 16
(dark).

0 5 10 15
0

5

10

15

mNLP

m
P

P
/%

Impact of Dropout

Dropout

IMM

DOGMa

Figure 7.3.: Destination prediction per-
formance for different dropout rates
from r=0.0 (bright) to r=0.5 (dark).

modes in the distribution. To overcome this, a portion of the mixture com-
ponents is dropped randomly in training [65], leading to more diverse up-
dates on the mixture. As another positive effect, the network learns to not
rely on individual components too much, but instead, train multiple redun-
dant predictors. The dropout is performed randomly per component with a
probability of 𝑟.

The impact of dropout on prediction is evaluated by varying the dropout
rate 𝑟. Experiments are run for dropout rates from 𝑟=0% to 𝑟=50% in steps
of 10%. The results are depicted in Fig. 7.3. While the dropout rate has
little effect on the mPP, it significantly impacts the mNLP. Both, small and
large rates lead to deterioration in performance. This is expected as with
no dropout, many components collapse while at large rates, the network
cannot develop meaningful individual components. As a good compromise
between mPP and mNLP, in the following, 𝑟=30% is used.

7.1.5. Prediction Horizon

Performance of destination prediction greatly depends on how far into the
future a forecast is desired. For short prediction horizons, motion is domi-
nated mostly by dynamics while decisions and intention only play a minor
role. However, arguably, they become the primary cue for prediction for
longer lookahead times. To validate this, destination prediction is evalu-
ated for different time horizons.

83

7. Experimental Validation

1.0 2.0 3.0 4.0
1

10

100

Time / s

m
P

P
/%

Destination Prediction

RMDN

KF

DOGMa

(a) Predicted probability of destina-
tions. Higher is better.

1.0 2.0 3.0 4.0
0

6

12

Time / s

m
N

L
P

Destination Prediction

(b) Neg. Log. Predicted probability of
destinations. Lower is better.

Figure 7.4.: Destination prediction performance for different time horizons.

Figure 7.4 shows mPP and mNLP for destination prediction. For ref-
erence, KF and DOGMa are included in the evaluation as explained in
Section 3.3. As expected, the dynamics-based KF performs well for short
prediction times. From roughly 2.0s on, however, the pattern recognition
algorithms in form of DOGMa-CNN and RMDN show their potential. As
their uncertainty is selected depending on data, they can provide informa-
tive predictions even for long prediction horizons.

For mNLP, the covariance estimate of both KF and RMDN gives them a
benefit in safety. The DOGMa-CNN on the other hand is trained to predict
occupancies of limited extent. If these miss the ground truth, mNLP is
greatly increased. As a result, the DOGMa-CNN falls far behind RMDN
and KF in safety.

In conclusion, the RMDN delivers the best performance for both mea-
sures jointly, i.e. accuracy in terms of mPP as well as safety measured by
mNLP.

7.1.6. Orientation Estimation

A pedestrian’s heading provides valuable information about future direc-
tions of motion. Eq. (5.1) defined the mixture density prediction of the
RMDN to also predict a distribution of pedestrian orientations in the des-
tination. After previously having evaluated the destination location predic-
tion, let us now also take a look at heading prediction. In analogy to the

84

7.1. Destination Prediction

−180 −90 0 90
0

25

50

75

100

Deviation from GT / ∘

m
P

P
/%

Orientation Prediction Distr.

KF

RMDN

(a) Distribution of orientation predic-
tion centered around GT.

0 1 2
57

58

59

mNLP

m
P

P
/%

Orientation Pred. Results

RMDN

KF

(b) Average orientation prediction
performance.

Figure 7.5.: Evaluation of orientation prediction.

prediction grids from Section 6.4.1, the heading is discretized into equally-
sized bins for evaluation.

Unfortunately, none of the reference methods from Section 3.3 directly
provides heading information. However, the Kalman Filter’s velocity esti-
mate can be utilized to obtain comparable predictions. For this, the distri-
bution of velocities is mapped onto a grid, similar to Fig. 4.1.

Then, for every orientation bin, the probabilities of all grid cells in the
corresponding angular sector are summed. The result is a categorical dis-
tribution of predicted heading angle ranges. For the RMDN, the von-Mises
part of the distribution from Eq. (5.3) can directly be evaluated in the indi-
vidual bins.

In analogy to the experiments for destination prediction, the predicted
probability distributions are evaluated relatively to the ground truth orienta-
tion. The corresponding histogram is displayed in Fig. 7.5a. The bars show
the average probability with which deviations from the ground truth ori-
entation were predicted. Compared to the KF, the RMDN shows a slightly
better concentration of predictions around the zero-centered bin with higher
values in the tails. As a result, it scores better in both, mPP and mNLP than
the KF as shown in Fig. 7.5b.

85

7. Experimental Validation

0 5 10 15 20
0

5

10

15

20

mNLP

m
P

P
/%

Impact of Image Features

No CNN

CNN ReLU

CNN tanh

IMM

DOGMa

Figure 7.6.: Destination prediction performance with image features as additional
input. The CNN architectures only differ in the activation of the final layer.

7.1.7. Visual Features

Pedestrian’s intentions are often visible in posture, gait and gaze direction.
All these clues can be observed from visual features. In the previous exper-
iments, the only feature used for prediction was the past trajectory.

As explained in Section 5.3.2, the architecture allows for the use of ar-
bitrary input modalities. In the following, the benefit of video input to
prediction is evaluated. For this, a CNN architecture inspired by VGG-16
is employed as a feature extractor [158]. The visual feature embeddings are
then concatenated with the current position as input to the RMDN. The full
architecture can be found in Appendix B.3.1.

Image processing helps to improve the mPP over pure trajectory features
as shown in Fig. 7.6. However, this comes at the cost of increased mNLP.
The reason lies in the CNN’s inclination towards overfit. Measures can
be taken to avoid this, e.g. stronger regularization, augmentations or net-
work design towards less overfit. As an example, the impact of the feature
activation is demonstrated with ReLU and tanh functions in Fig. 7.6. Us-
ing tanh results in the highest mPP, while the mNLP is deteriorated. The
ReLU, on the other hand, comes at slightly worse mPP while still scor-
ing significantly better in mNLP. These results show that the model is well
able to learn meaningful image interpretation. However, due to the com-
parably small dataset, it is prone to overfit and therefore not integrated in
subsequent experiments.

86

7.2. Goal-Directed Prediction

7.1.8. Qualitative Results

An impression of prediction performance can be given through qualitative
examples. Fig. 7.7 shows frames of video sequences together with corre-
sponding predictions in different situations. For all examples, results of
Kalman Filter and of the RMDN are shown as heat maps.

The first example shows the standard case in traffic: a pedestrian walking
straight. We see that the RMDN correctly identifies the situation from the
second observation on and outputs narrow predicted probability densities.
In contrast to this, the linearly growing covariance of the KF results in
predictions that are spread out much more.

The second case shows a person with constant velocity that changes di-
rection in the course of the sequence. Both, the RMDN and KF approxi-
mate this behavior in their prediction but underestimate the turn. The KF
again accounts for this with a larger uncertainty ellipse in all directions.
The RMDN, on the other hand, predicts a rotated covariance that better
reflects constant velocity but uncertainty about the heading.

Finally, the third example is that of a person hesitating before eventually
crossing the street. Both RMDN and KF cannot predict the correct cross-
ing velocity as the person reaches the curb. However, since the RMDN
can adapt to the situation, it outputs two modes, one for smaller and one
for larger speed of the pedestrian. As time passes, the modes move to-
wards the true velocity but retain a higher uncertainty than the KF. These
results demonstrate the benefit of a data-driven estimate of uncertainty as
compared to the rigid model of the KF.

7.2. Goal-Directed Prediction

If a persons destination is known, prediction breaks down to inferring the
way towards it. Chapter 4 introduced neural networks for this task in form
of a Forward-Backward-Net (Fwd-Bwd) as well as one for Markov Deci-
sion Processes (MDP). First, the potential of the two planning-based pre-
diction techniques is studied in isolation. Thus, initially, ground truth des-
tinations are provided to identify optimal parameters for both architectures
as well as their training.

In the experiments, the focus lies on those parameters that are unique to
goal-directed architectures. Firstly, the regularization techniques from Sec-
tion 5.2.3 will be studied, as standard weight decay does not apply (cf. Sec-
tion 2.2.4). Since the planning-based algorithms infer a series of actions,
they are evaluated in detail. Finally, the influence of different environment
traits on prediction is analyzed.

87

7. Experimental Validation

t=0.0s t=0.1s t=2.0s

t=0.0s t=5.5s t=6.5s

t=3.0s t=3.7s t=4.2s

Figure 7.7.: Qualitative examples of destination prediction with RMDN (blue),
Kalman Filter [19] (orange). Past trajectories shown as green lines, ground truth
destinations as green circles. All top views are 16m×16m in size. The displayed
times show to the time of observation, all predictions are 4.0s into the future.

88

7.2. Goal-Directed Prediction

2 3 4

30

40

50

mNLP

m
P

P
/%

Filter Variance Regularization

MDP

MDP+Reg.

KF

(a) Impact of filter variance regulariza-
tion on MDP performance.

2 3 4

30

40

50

mNLP

m
P

P
/%

Filter Variance Regularization

Fwd-Bwd

Fwd-Bwd+Reg.

KF

(b) Impact of filter variance regulariza-
tion on Fwd-Bwd performance.

Figure 7.8.: Impact of filter variance regularization with different weighting from
10-8 (dark) to 10-4 (light). The higher the regularization, the more condensed filters
are preferred. While regularization helps the MDP, it harms Fwd-Bwd performance.

As it is the best reference method from Table 3.1, the simple Kalman
Filter [19] is selected for all upcoming experiments.

7.2.1. Regularizations

Regularization techniques are a key ingredient for successful neural net-
work training. Depending on the network’s application, these regulariza-
tions are tailored to avoid overfitting and stabilize training [56]. For stan-
dard CNN architectures, weight decay and dropout have proven effective
[65, 90]. However, they do not translate well to decision processes.

Instead, as explained in Section 5.2.3, regularizations are designed specif-
ically to improve learning of action patterns. Therefore, it was proposed to
minimize the filter variance Eq. (5.20) as regularization to penalize multi-
ple motion patterns within a single action. The variance is added to the full
training loss weighted by the factor 𝜆var.

Figure 7.8 shows how the performance changes with different regular-
ization weights 𝜆var. While moderate regularization helps improve perfor-
mance for the MDP (left, light circles), predictions degrades for higher
weights (dark circles). In these cases, the regularization becomes too strict
of a constraint . In contrast to that, regularization does not improve Fwd-
Bwd performance as the method inherently is goal-driven and does not ben-
efit from additional guidance.

89

7. Experimental Validation

1.5 2.5 3.5

30

40

50

mNLP

m
P

P
/%

MDP Action Count

Num. Actions

KF

(a) Impact of action count on MDP
performance.

1.5 2.5 3.5

30

40

50

mNLP

m
P

P
/%

Fwd-Bwd Action Count

Num. Actions

KF

(b) Impact of action count on Fwd-
Bwd performance.

Figure 7.9.: Prediction performance depending on number of individual actions
from 5 (light) to 21 (dark). For both methods, the benefit of more action saturates
at 13.

7.2.2. Number of Actions

Planning-based prediction infers actions that an agent is most likely to take
in the future. In the network architectures, these actions are reflected by
trainable convolutional filter kernels. Each kernel represents a probability
distribution of transitioning between grid cells. Consequently, the num-
ber of these kernels is a design parameter to be specified prior to training.
Intuitively, it defines the set of possible decisions for which an individual
probability distribution is learned.

The number of actions is varied to evaluate its impact on prediction per-
formance. Since it is expected that the actions correspond to different mo-
tion vectors, their number is selected to reflect major directions and ve-
locities. With five actions, the space can be divided into the center point
and four cardinal directions. Adding four more allows for diagonal motion.
Consequently, every additional step in the hyperparameter analysis would
allow for more precise classification of motion patterns.

The results of the evaluation of both, MDP- and Fwd-Bwd-Net are shown
in Fig. 7.9. As expected, we see that adding more possible actions improves
performance for both networks. While this effect saturates for the MDP-
Network (left, blue), the performance of the Fwd-Bwd-Network degrades
from more than thirteen actions on (right, green). Note that, similar to the
regularization results, even the worst Fwd-Bwd prediction outperforms the
best MDP predictions.

90

7.2. Goal-Directed Prediction

(a) State transition filters learned by MDP-Network

(b) State transition filters learned by Fwd-Bwd-Network

Figure 7.10.: Action transition filters learned in actual prediction networks. Every
image corresponds to a different action where the pixels’ brightness values represent
the probability of transition from the middle to a neighboring state. Each filter
learned a major direction of motion as well as the uncertainty about it. Note that
these filters were not predefined but emerged automatically in training.

The validity of learned transition models can be verified when looking at
the trained filters in Fig. 7.10. Each filter represents a 0.5m×0.5m grid of
0.1m resolution around the pedestrian’s current position. The values of the
cells reflect the probability where a pedestrian will end up when executing
the corresponding action. The results impressively demonstrate the success
of the training: every filter covers a part of the neighborhood and, thus,
reflects a major direction of motion.

7.2.3. Map Features

The environment plays a vital role in behavior of traffic participants. Our
planning-based prediction therefore is designed to reason about future tra-
jectories also based on the layout of the environment (cf. Section 4). As a
representation, grid maps are used that are converted into topology maps
for a planning network, as shown in Fig. 5.9. The input to the topology
network is given as the layers of the multi-layer grid mapping from Sec-
tion 6.1.5.

Different features have impact on pedestrian motion. From intuition, we
can identify the locations of obstacles, road, sidewalk, and curb as relevant
traits of a scene. While these can be extracted from stereo vision and se-
mantic segmentation, this information can also be extracted directly from
the bird’s eye view (BEV), which is another layer in the grid map.

91

7. Experimental Validation

Curb Obst. BEV Road Sidew. All
−5

0

5

10

15
R

el
.

m
P

P
/%

Prediction Improvement Based on Environment Features

MDP

Fwd. Bwd.

Figure 7.11.: Improvement of prediction results based on different environment fea-
tures. All results are relative to the performance achieved when no information on
the environment is used for prediction.

With the features at hand, it is of interest which of these is the most ben-
eficial for the prediction architecture. In order to analyze the impact of the
individual features, train both, the MDP- and the Fwd-Bwd-Net, are trained
with only single feature maps as input. All trainings, however, have access
to the current pedestrian’s position as well as destination and distances to
both since these can be obtained independent of the environment grid map.

The benefit of different features is compared against prediction networks
that had no access to the environment grid. For this, the prediction was
trained solely with start and destination information as input. This allows
to assess the impact of features compared to a common baseline. The rel-
ative change in prediction performance is displayed in Fig. 7.11. Since in
the previous experiments the mNLP only varied slightly, now, mPP is re-
ported exclusively. Also note that the zero line in Fig. 7.11 reflects different
starting points for MDP and Fwd-Bwd as the latter performs better even in
the environment-agnostic case.

The benefit of scene layout information depends on both, the prediction
algorithm as well as the kind and quality of features. Firstly, both MDP
and Fwd-Bwd can improve with knowledge about individual environment
traits. The least improvement (or even degradation for MDP) is observed
for curb and obstacle features. This is due to the fact that these two features
are the most noisy in mapping and, therefore, may even perturb the net-
work. Instead, the more stable road, sidewalk and BEV features improve

92

7.2. Goal-Directed Prediction

(a) Map with GT
(green)

(b) Goal-indepen-
dent topology

(c) VI Policy (d) Prediction with
GT (green)

Figure 7.12.: Planning in MDP. The colors of topology and policy display the pre-
dominant predicted direction of motion, indicated by the color wheel. White areas
mean all orientations are favored equally. When no destination is presented to the
network, only the tendency towards walking alongside the sidewalk is predicted (b).
Given a pedestrian’s destination, a policy is generated where all directions point to-
wards it (c). The resulting prediction correctly models the curvature of the trajectory
(d). The green box indicates the start of the trajectory.

prediction the most. Interestingly, the Fwd-Bwd-Network cannot benefit
from access to all features as much. This can, again, be attributed to the
network’s limited learning capacity in the presence of noisy observations.

In order to better understand how features contribute to the policy in the
MDP, the process is visualized in Fig. 7.12. The MDP’s action cost topol-
ogy is computed via an FCN (cf. Appendix B.4.1) for a map of sidewalk
features. This map is shown in Fig. 7.12a together with the ground truth
path of a pedestrian crossing the street.

If all trajectory-related features are omitted, i.e. start and end position
and the respective distances, common motion directions independent of the
current pedestrian can be retrieved as displayed in Fig. 7.12b. The map
only imposes a slight bias on preferred directions, like walking along the
sidewalk, while for most regions exhibit no distinct directional bias. If now,
pedestrian features are incorporated and Value Iteration is run, the policy
shown in Fig. 7.12c is obtained. As this policy introduces the goal-directed
nature in the MDP, it now shows clear directed motion towards the trajec-
tory’s endpoint. Also, it incorporates slight nuances on motion patterns
depending on local features of the map. Therefore, the final prediction in
Fig. 7.12d not only shows the actual curved motion, but also accounts for
the possibility of a more straight path towards the destination.

The selection of actions in the Fwd-Bwd-Network is fundamentally dif-
ferent to the policy of the MDP. The same situation as before is visualized
in Fig. 7.13. In the Fwd-Bwd-Net, the drive towards the goal does not come
from the action topology itself, but from the backward pass.

93

7. Experimental Validation

(a) Map with GT
(green)

(b) Goal-directed
topology

(c) Prediction with
GT (green)

Figure 7.13.: Planning map in Forward-Backward Network. Again, colors display
the predominant motion direction, indicated by the color wheel. All motion leads
away from the starting point of the trajectory (green box), but includes local varia-
tions. The drive to the goal is induced through the backward pass.

Therefore, the topology does not have to incorporate any goal informa-
tion, but instead only reflects variations in propagation away from the start
of the trajectory as shown Fig. 7.13b. In contrast to the discrete decisions
of the MDP, the Fwd-Bwd-Net embeds the uncertainty about the future into
a wider distribution in prediction Fig. 7.13c.

7.2.4. Qualitative Results

The implications of planning-based prediction can be studied from illustra-
tions of trajectory forecasts. Destinations were given as ground truth. For
clarity of presentation, paths are shown rather than trajectories in Fig. 7.14.
The left column displays the feature map (cf. Section 6.1.5). The middle
column shows predictions generated with the MDP-Net, the right column
those of the Fwd-Bwd-Net. All are overlayed with the ground truth path
(green), the starting point marked with a small square.

In the first row, we see the prediction of a trajectory with laterally dis-
placed goal. While the MDP predicts a straight connection together with
larger uncertainty in the middle, the Fwd-Bwd-Net outputs a sigmoidal
transition. Both models, however, account for the actual trajectory within
their uncertainty.

The trajectory of the second row stems from a pedestrian that walked on
the road, yet close to the sidewalk. As the destination is known, the MDP
predicts the direct route from start to end, staying on the road at all times.
The Fwd-Bwd-Net, however, shows two possible outcomes, namely the
direct connection as well as one that pays tribute to pedestrians’ preference
of walking on the sidewalk.

94

7.2. Goal-Directed Prediction

(a) Semantic maps. (b) MDP predictions. (c) Fwd-Bwd predictions.

Figure 7.14.: Qualitative examples of predictions given known destinations (blue)
together with the ground truth path (green). All maps are 8m×8m of size. The
green box marks the start of the trajectory. For their forecasts, environment knowl-
edge from semantic maps is incorporated both, the MDP- and Fwd-Bwd-Network.
This allows reasoning such as that static obstacles should be avoided or sidewalk is
preferred.

95

7. Experimental Validation

The final two rows show interesting cases in which obstacles obstructed
the pedestrians’ direct path to the destination. In both cases, the MDP de-
cides for only one of the homotopic classes of trajectories. In contrast,
the Fwd-Bwd-Net outputs the correct option in the third row and predicts
two modes in the fourth. These examples demonstrate overconfidence as a
shortcoming of the MDP.

7.3. Joint Goal and Trajectory Prediction

The goal-directed prediction system infers goals and the path to them at the
same time. For both, neural networks are employed. So far, only those two
parts were evaluated in isolation. It was shown that accurate destination
prediction can be achieved from observations through an RMDN. Further-
more, both planning algorithms, the MDP- and the Fwd-Bwd-Network,
performed well in predicting reasonable trajectories towards a given des-
tination. The ultimate goal, however, is to integrate the two networks into
one so that the RMDN predicts the goal as a latent variable for the planning-
based prediction systems.

The two stages, the destination prediction and planning are conjoined
in a single, monolithic network (cf. Fig. 5.9). As they work together to
generate predictions, they should also be trained as such. The modeling
of the two tasks as fully differentiable networks allows for gradient flow
between them. Therefore, the destination prediction can be trained to adopt
to the needs of the subsequent goal-directed prediction network.

In the previous sections, the optimal design parameters for the individ-
ual components were identified. When destination prediction and planning
networks are trained jointly, these findings are used and only the respective
best networks are evaluated together. Road, sidewalk and obstacle maps
serve as features of the environment.

Figure 7.15 shows the evaluation of the full goal-directed prediction for
both of the presented planning networks. To verify the benefit of joint train-
ing, the two stages were also evaluated trained together, but with the gradi-
ent flow from trajectory to destination prediction prohibited. This way, the
planning stage may adopt to the predictions of the goals but cannot pass on
corrective information to the RMDN. As can be seen, both, the MDP- and
Fwd-Bwd-Net’s mPP performance drop by roughly ten percentage points
as compared to the case with known goal. While the Fwd-Bwd-Net still
outperforms the KF reference by far, this no longer is the case for the MDP.
It now performs comparably to the KF in mPP, yet slightly better in mNLP.
Also, the networks with backpropagation to destination prediction enabled
are compared to those without it. As the MDP’s goal-direction results from

96

7.3. Joint Goal and Trajectory Prediction

2 3 4

30

40

50

mNLP

m
P

P
/%

Joint RMDN-MDP

Jointly

Individual

KF

(a) Joint RMDN-MDP results.

2 3 4

30

40

50

mNLP

m
P

P
/%

Joint RMDN-Fwd-Bwd

Jointly

Individual

KF

(b) Joint RMDN-Fwd-Bwd results.

Figure 7.15.: Results of joint destination prediction and planning networks. The
networks are either trained individually without gradient flow between them, or
jointly with gradient flow from the planning to destination prediction stage.

the cost map rather than the actual goal localization, its general perfor-
mance does not change significantly. The Fwd-Bwd-Network, on the other
hand, improves in both, mPP and mNLP.

Prediction of trajectories also involves a time component. Therefore, we
evaluate the prediction for every time step up to the time to goal 𝑇 . Sec-
tion 7.1.5 showed that the RMDN can outperform the reference methods
for destination prediction for various lookahead times. Naturally, these
intermediate destinations could be treated as way points along a trajec-
tory. Therefore, Fig. 7.16 shows the corresponding results compared to the
RMDN instead of the reference models from Chapter 3.3. As in Fig. 7.15,
the MDP-Net performs worst of the three in mPP. It comes out on top only
at the long range of the prediction horizon. This means that on the one hand,
goal localization has improved as compared to the RMDN alone. However,
the underlying planning algorithm cannot benefit from this since its predic-
tion is less accurate in the early time steps. The Fwd-Bwd-Net, however,
performs best over most of the prediction range. Only for the final desti-
nation, the mPP drops. This suggests that a slightly widened destination
estimate is beneficial for trajectory prediction. Finally, it may be noted that
in terms of mNLP, the planning methods perform same or better than the
RMDN except for very short prediction horizons. These results show that
planning-based prediction can outperform pure prediction of way points as
it reasons about decisions, also with regards to properties of the environ-
ment.

97

7. Experimental Validation

1.0 2.0 3.0 4.0
1

10

100

Time / s

m
P

P
/%

Trajectory Prediction

Fwd-Bwd

MDP

RMDN

(a) Predicted probability of destina-
tions. Higher is better.

1.0 2.0 3.0 4.0
0

3

6

Time / s

m
N

L
P

Trajectory Prediction

(b) Neg. Log. Predicted probability
of destinations. Lower is better.

Figure 7.16.: Trajectory prediction performance evaluated for all time steps within
prediction horizon.

Finally, we look at the absolute numbers in comparison to the reference
methods from Section 3.3 shown in Table 7.1. As expected from the pre-
vious results, the reference algorithms are outperformed in all evaluated
metrics by at least one of the goal-directed prediction methods. While the
MDP-Net with RMDN performs best for destination forecasting, the Fwd-
Bwd counterpart ranks top for trajectory prediction. Both, however, are
well suited to correctly predict a pedestrian’s path. It should be noted that
the proposed methods perform competitively in all evaluated metrics si-

multaneously. As a dynamics-based, yet learned model of the underlying
decision process, the proposed model can combine the strengths of all ref-
erence algorithms without inheriting their weaknesses.

Finally, the combination of destination prediction and goal-directed plan-
ning are demonstrated with qualitative examples. In analogy to Section 7.2.4,
path forecasts are displayed that were generated from inferred destinations
in Fig. 7.17. The left column again shows the input maps together with the
ground truth path, the middle and right columns show the corresponding
results from MDP and Fwd-Bwd, respectively. Compared to Fig. 7.14, we
study the same situations except for the straight trajectory as it is trivial
and therefore less interesting. All examples in Fig. 7.17 stem from curved
trajectories to showcase the strength of planning-based prediction.

98

7.3. Joint Goal and Trajectory Prediction

Method
Trajectory Path Destination

mNLP mPP/% AuPR mNLP mPP/%
Kalman Filter [19] 3.0 32.0 43.8 6.9 2.7
IMM [152] 3.0 27.2 45.0 6.5 3.6
DOGMa-CNN [69] 6.0 16.2 28.6 10.6 5.2
Activity Forec. [86] 9.8 9.1 12.0 10.4 5.4

RMDN + MDP 2.6 29.8 53.6 5.9 8.2

RMDN + Fwd-Bwd 2.7 41.0 52.6 5.8 5.3

Table 7.1.: Comparison of goal-directed prediction networks with reference meth-
ods. The proposed method performs competitively in all metrics simultaneously.

In the first two rows, we see cases in which the ground truth deviates from
the expectation of both algorithms but is still contained within the predicted
distributions. While the MDP’s estimate covers this case with broader des-
tination and path uncertainty, the Fwd-Bwd realization addresses this with
multiple goal hypotheses and, thus, trajectories.

The benefit of map knowledge is indicated in the second and third row.
While barely visible, the planning methods take obstacles into account and
predict the majority of the probability mass around them. However, this
effect is not extremely pronounced. The reason lies in time-varying oc-
cupancy in the dataset. The network has learned that, while obstacles are
mostly avoided, the possibility exists that these are actually moving objects
and, therefore, could be traversed at a future time. This effect could be
mitigated if occupancy was classified as static or dynamic, e.g. through
filtering [120] or semantic information.

Finally, the last row shows an especially challenging case in which the
pedestrian’s state of motion changes from standing to walking. At this time,
the network has just picked up the hint of acceleration. Consequently, the
predicted destinations are still close to the current position and, therefore,
the predicted path too short. However, the direction and impact of the en-
vironment is anticipated correctly.

99

7. Experimental Validation

(a) Semantic maps. (b) MDP predictions. (c) Fwd-Bwd predictions.

Figure 7.17.: Qualitative examples of predictions including destination inference
(blue) together with ground truth trajectories (green). The green box marks the start
of the trajectory. All maps are 8m×8m of size.

100

Chapter 8
Conclusion

For an autonomous vehicle sharing the space with humans, it is crucial
to predict their motion to plan its own actions. While humans perform
predictions of even highly complex situations seemingly effortlessly, it is
still challenging for machines. In this context, the work at hand aimed to
contribute towards cautious yet precise prediction of pedestrians in traffic.

8.1. Summary

Whenever a human navigates through traffic, it is to fulfill some intention.
Most commonly, this intention is to reach a specific destination. In the
course of doing so, a human’s motion is affected by internal and external
factors. It is constrained by both, limits of dynamics and scene geometry.
At the same time, collisions with other traffic participants and infrastruc-
ture should be avoided. Furthermore, other factors such as traffic rules and
habits influence a person’s behavior. This great variety of factors makes hu-
man motion tremendously hard to model explicitly. Moreover, it can never
be predicted with absolute certainty. Instead, it has to be approached in a
probabilistic manner.

Previous works have only considered some of the aspects of prediction
mentioned above. Early works understand the problem as mere extrap-
olation of observed dynamics [152]. This, however, neglects the impact
of both, intentions and the world around it. For this, planning-based tech-
niques have been proposed [86, 182]. These reason about destinations from
how well observations align with preassumptions.

101

8. Conclusion

Unfortunately, these cannot be used in dynamically changing environ-
ments such as traffic where the goal depends on both, the situation and the
person in question. Due to the complex nature of the problem, prediction
has recently been addressed with end-to-end learning [69, 147]. Albeit the
most promising, these methods discard all prior knowledge on the under-
lying processes. Instead, the hope is to automatically deduce them from
data. Therefore, even simple relationships, e.g. dynamic limits, need to be
learned by increasingly complex implicit models.

In this context, a solution was proposed that pays respect to all paradigms.
Consequently, prediction is modeled as a learnable probabilistic goal-di-
rected planning problem. In this sense, a pedestrian’s intention is modeled
as a set of possible destinations that are inferred from observations. These
destinations are treated as a latent variable for a goal-directed planning
stage. Consequently, prediction is interpreted as planning possible trajecto-
ries towards the latent destinations. Two separate methods were prosed in
this thesis, both of which originate in probabilistic modeling of the physical
process of motion. As it still remains infeasible to explicitly parameterize,
the entire model is realized as an artificial neural network that can be trained
end-to-end. As a result, the proposed method can incorporate features such
as video images of the pedestrians or top view maps of the environment to
produce the prediction. The model thus combines the benefits of intention-
based reasoning with a physical model in a fully learned system.

The inference of destinations is the prerequisite of goal-directed predic-
tion. Since the destination is used as a latent variable, it needs to be repre-
sented in form of a probability distribution. To this end, the parameters of
a mixture density function are estimated with a neural network. By utiliz-
ing a mixture density function, multi-modalities such as different intentions
can be captured by the model. As the destination should be predicted from
a time series of observations, a recurrent network is employed as a back-
bone architecture. As input, sequences of positions and visual features are
used. From these, the model accurately infers a pedestrian’s most likely
destination from observations.

Given the destinations, prediction is interpreted as a probabilistic plan-
ning problem. Two different approaches are proposed, namely the use of
the forward-backward (Fwd-Bwd) algorithm and of Markov Decision Pro-
cesses (MDPs). In Fwd-Bwd, the model computes the joint probability of
traveling from start to a specific location and from that to the destination. In
contrast, the MDP aims to find actions that maximize an expected reward,
e.g. by reaching the destination. Both methods are formulated as recur-
rent convolutional neural networks. Through this, the respective networks

102

8.1. Summary

are fully differentiable w.r.t. motion models and the topology the planning
operates on.

Therefore, they can be learned to imitate observed human behavior and,
thus, serve as prediction model. Finally, as both, the goal-directed planning
and the goal inference are modeled as neural networks, they can easily be
combined and optimized jointly.

For optimization and evaluation, a dataset of real-world driving situa-
tions was created. As sensor input, only a stereo camera setup was used.
Using depth imaging together with semantic segmentation, semantic top
view maps of the environment were created. These are then used as input
for the planning method. All pedestrians in the scenes were obtained from
manual annotation. Finally, in order to meaningfully evaluate probabilis-
tic prediction, the use of two metrics was proposed. The mean predicted
probability of a pedestrian’s future position reflects how precise pedestrian
motion can be anticipated. The mean negative logarithm of it, on the other
hand, pays more respect to coverage than precision. Both measures are
used jointly to assess algorithm performance.

Using the proposed dataset and metrics, the proposed approaches were
analyzed in detail. First, the impact of design parameters unique to the pro-
posed architectures were studied. Finally, the full goal-directed prediction
was evaluated with representative methods from literature as reference. The
results show that the proposed approach outperforms the references in all
evaluated metrics.

Both, the MDP and Fwd-Bwd networks have their unique advantages.
While both methods perform comparably in safety, the MDP is more accu-
rate in the destination forecast and path layouts. The Fwd-Bwd network,
on the other hand, produces more precise trajectory predictions.

Verified by the evaluations, the proposed method combines the strengths
of a physics-based probabilistic model with those of a learning system with-
out inheriting their weaknesses. By integration of the destination as a latent
variable, a pedestrian’s intention is detected implicitly. Instead of relying
on pure dynamics, the subsequent planning architecture successfully mim-
ics the decision process underlying human motion. These two components
allow to incorporate a great variety of features of both, the pedestrian in
question and the surrounding. In contrast to other learned end-to-end pre-
diction systems, ours explicitly models the physics of motion together with
their uncertainty. Consequently, it results in dynamically feasible as well
as explainable predictions that pay respect to the environment’s constraints
and the pedestrian’s intention.

103

8. Conclusion

8.2. Outlook

In vehicle automation, prediction is no end in itself. Instead, it forms the
link between the pure perception, i.e. what currently can be observed, and
the planning of future actions. When the behavior of others can be foreseen,
an automated vehicle can plan accordingly. Thus, it helps prevent collisions
and enable safer, more comfortable traffic flow.

The prediction system proposed in this work contributes towards this
goal. It is particularly suited for long-term forecasts of multiple seconds
ahead. With its accurate yet safe predictions, it can provide valuable infor-
mation for anticipatory motion planning. As a result, it can find its applica-
tions in systems such as advanced driver assistance, automated vehicles, or
even robotics.

In the past, the handling of rare events posed a severe challenge for pre-
diction algorithms. However, as the proposed method learns from observed
situations, this can be addressed with a greater database. For the work at
hand, only a comparably small dataset was created by manual annotation.
As an alternative, datasets could be created automatically, leveraging to-
day’s impressive object detection performance [164]. Such automatic data
mining can quickly generate large amounts of data [30]. With enough sam-
ples, even the noise introduced through inexact perception could be toler-
ated as long as no consistent bias exists.

When training data can be generated automatically, a learning system
could even improve while in operation. If the proposed method was de-
ployed in an automated vehicle, it could compare the actual course of a
trajectory with its own predictions in hindsight. This comparison can be
used as a lifelong training supervision to ever improve the system. This
process could greatly reduce the effort in preparation and deployment of
such a system and allow it to adopt to new conditions. In fact, as shown
in the experiments, not even a semantic understanding of a scene is nec-
essary as meaningful predictions can already be generated purely from a
synthetic bird’s eye view. Even the required stereo camera setup can learn
its calibration in situ [128]. Thus, the full stereo camera-based prediction
system could be implemented with no prior knowledge included other than
a detection and tracking algorithm. Instead, the proposed algorithm would
develop itself in deployment.

104

Appendix A
Artificial Neural Networks

In this work, artificial neural networks were trained to perform pedestrian
prediction. While the foundations of these were presented in Section 2.2,
the in-depth details were omitted there for sake of conciseness. In the fol-
lowing, the key operations are explained together with reference network
architectures that form the blueprint of the presented implementations.

A.1. Layers

Artificial neural networks are composed of atomic building blocks, so-
called layers. The following section will give a brief overview of the most
relevant layers.

A.1.1. Full Connection

In a fully connected layer, every output neuron computes a weighted sum
of all input neurons and adds a bias [21]. Mathematically, this is realized
as a multiplication of an 𝑁 -dimensional input vector x with an 𝑀×𝑁 -
dimensional weight matrix Ŵ plus an 𝑀 -dimensional bias vector b̂, re-
sulting in an 𝑀 -dimensional output vector ŷ to which a final activation
function 𝑓(∘) is applied

ŷ = 𝑓(Ŵx+ b̂). (A.1)

105

A. Artificial Neural Networks

fc, 𝑀

Figure A.1.: Visualization used to represent a fully connected layer of output neuron
count M .

In this work, this is visualized as a purple box, possibly including naming
and output neuron count as shown in Fig. A.1. The input neuron count is
given by the input layer and, thus, not shown.

A.1.2. Convolutional Layer

A convolutional layer operates on rasterized inputs, e.g. images. It uses
convolutions with weight kernels to compute the activations of each neuron
[94]. Every neuron corresponds to both, a spatial position and a convolution
kernel. Given an input image or feature map X with channel count 𝐶 and
a set of 𝑁 kernels Ŵ c, 𝑐 ∈ 1, .., 𝑁 of size 𝑊×𝐻×𝐶, the output neuron at
position (𝑢, 𝑣, 𝑐) in the image is computed as

Ŷ (𝑢, 𝑣, 𝑐) = 𝑓

(︃
W∑︁

ũ=1

H∑︁

ṽ=1

C∑︁

c̃=1

X(𝑢′ + �̃�, 𝑣′ + 𝑣, 𝑐)Ŵ c(�̃�, 𝑣, 𝑐)

)︃

. (A.2)

Here, 𝑢′ = 𝑢− w−1
2 and 𝑣′ = 𝑣− h−1

2 are used to center the filter at (𝑢, 𝑣)
and 𝑓(∘) again is a non-linearity. Convolutional layers are visualized as a
blue box with filter size𝑊×𝐻 and output channel count𝑁 . Possibly, these
filters are not computed for every pixel but in a so-called strided fashion,
where only every 𝑘-th location is evaluated in both, 𝑢- and 𝑣-directions.
The graphical representation is shown in Fig. A.2.

𝑊×𝐻 conv, 𝑁 , /𝑘

Figure A.2.: Visualization used to represent a convolutional layer with kernel size
W×H , N output channels and stride k.

106

A.1. Layers

A.1.3. Pooling

Generally speaking, pooling operations are meant to reduce the number of
neurons that convey relevant information [90, 95]. In most cases, this is
also used to realize invariance towards configurations in feature space, e.g.
exact localization of parts of an object.

One example is max-pooling where a feature map is partitioned into
𝑀×𝑀 -sized blocks per channel of neurons. Of these, only the maximum
feature response is retained. Equivalent to strides in convolutions, these
blocks are evaluated centered around every 𝑘-th pixel in both 𝑢- and 𝑣-
directions. As a result, the number of neurons decreases by a factor of 𝑘2.
The channel count remains constant in this example. The layer is visual-
ized as a red box with size of the pooling blocks and their stride, shown in
Fig. A.3.

𝑊×𝐻 pool, /𝑘

Figure A.3.: Visualization used to represent a pooling layer with kernel size W×H

and stride k.

A.1.4. Transposed Convolutional Layer

Transposed convolutions (sometimes called inverse convolutions or decon-

volutions) are the opposite of convolution operations. As realization, these
layers flip the forward and backward pass of a convolution layer. If they
are used in a strided fashion, the resulting image resolution is increased by
a factor of the stride. As a special usecase, they can be used to compute
bilinear upsampling through suitable kernel values [101]. In this work, we
use them either as such or as trainable transposed convolutions with kernel
size equal to the stride. The symbol is a green box that displays either of
the two cases and the stride as shown in Fig. A.4.

Upsample, ×𝑘

Figure A.4.: Visualization used to represent a transposed convolution layer used for
upsampling by a factor of k.

107

A. Artificial Neural Networks

A.1.5. Local Response Normalization

For various reasons, input features may vary in magnitude. To compen-
sate for this, neuron activations can be normalized in a local neighborhood
[90]. Local Response Normalization (LRN) is a technique where neuron
activations are normalized according to

𝑦i =
𝑥i

(𝑘 + 𝛼
∑︀

j 𝑥
2
j)

β
(A.3)

where 𝑘>0, 𝛼>0, 𝛽>0 and the sum over 𝑗 includes neighbors of the cur-
rent neuron, either in spatial or in channel direction. In all experiments, a
neighborhood of ±5 is used in channel direction, 𝑘=1, 𝛼 = 1 and 𝛽=0.5.
As it is rarely used, LRN is depicted as a function layer as in Fig. A.7.

A.1.6. Group Normalization

Another technique to limit neuron activations is the so-called Group Nor-
malization [177]. For this particular scheme, mean and variance of a layer’s
activations are computed for the entire layer, but in groups of channels.
Then, all neuron activations within a group are shifted by their mean and
divided by their variance. This way, the activation’s statistics can be used
even for single inputs, as opposed to batch normalization that requires mul-
tiple examples [177]. Due to their rare use and direct attachment to con-
volution operations, group normalization are not explicitly visualized but
stated where it was used.

A.1.7. Others

Some layers are straight forward in their operations but should still be men-
tioned. To combine two inputs, element-wise operations are used. These
might be addition, division, etc., shown as orange boxes labeled with their
respective operation as shown in Fig. A.5.

Add

Figure A.5.: Visualization used to represent an element-wise operation of two in-
puts, here addition as an example.

108

A.2. Non-Linearities

Joining multiple inputs into one can be done by concatenation. In such
layers, the data of all inputs is appended in one dimension. This is reflected
as an aquamarine box as shown in Fig. A.6.

Concat.

Figure A.6.: Visualization used to represent concatenation of inputs.

Finally, other layers exist that are specialized in their design and rarely
used. These are symbolized with a light green box that states the type of
layer and may even represent a combination of layers for clarity of presen-
tation. The box displays the represented function as depicted in Fig. A.7.

𝑓

Figure A.7.: Visualization for other layers.

A.2. Non-Linearities

A crucial ingredient in network design is the use of suitable non-linear ac-
tivations that are applied to individual neurons. These activations may be
selected to satisfy constraints imposed on outputs, e.g. those of a proba-
bility distribution. Furthermore, they control the descriptive capabilities of
a network and impact its convergence properties [35, 61]. Theoretically,
all piecewise differentiable non-linear functions can be used as activations.
Some, however, have been established as de-facto standard in neural net-
works. These are presented in the following.

A.2.1. Rectified Linear Units, ReLU

Rectified linear units are used as a common non-linearity that is applied
to neuron outputs. It has a linear activation for positive inputs while for
negative inputs, it defaults to zero,

𝑦 = max (0, 𝑥) . (A.4)

109

A. Artificial Neural Networks

ReLUs have the advantage of simple and stable gradients for positive acti-
vations [113]. However, for negative inputs, the gradient is zero. The ReLU
function is shown in Fig. A.8.

−1 0 1
−1

0

1

Rectified Linear Unit

Figure A.8.: Activation of Rectified Linear Unit.

A.2.2. Exponential Linear Units, ELU

Exponential linear units [35] are similar to Rectified Linear Units. The
only difference is that they output an exponential function shifted by one
for negative inputs,

𝑦 =

{︃

𝑥, if 0 < 𝑥

𝑒x − 1, otherwise
(A.5)

which leads to non-zero gradients for negative inputs and continuous dif-
ferentials. The ELU function is shown in Fig. A.9.

−3 0 3
−3

−1
0

3

Exponential Linear Unit

Figure A.9.: Activation of Exponential Linear Unit.

110

A.2. Non-Linearities

A.2.3. Sigmoid

Sigmoid functions model a soft binary decision [21]. One of the most com-
monly used sigmoid functions is the function

𝑦 =
1

1 + 𝑒-x
. (A.6)

For 𝑥→-∞, it asymptotically approaches zero while for 𝑥→∞, 𝑦 goes to
1. The function is shown in Fig. A.10.

−5 0 5

0

1

Sigmoid Function

Figure A.10.: Sigmoid Activation.

A.2.4. Softmax

The softmax is an extension of the sigmoid function to multiple inputs,

𝑦i =
exp(𝑥i)

∑︀

j exp(𝑥j)
, (A.7)

which can be used to represent a one-of-many decision [21]. The name soft-

max points to another interpretation: it provides a differentiable maximum
selection of its input.

A.2.5. Dropout

Different appearances of objects result in the need for a multitude of pos-
sible features. In network training, however, few dominant features may
overrule the optimization of others. To avoid this, a percentage of neu-
rons can be set to zero at random during training time [65]. At test time,
this so-called dropout is typically disabled to make full use of all possible
features.

111

A. Artificial Neural Networks

A.3. Network Architectures

Ongoing research deals with the design of ever-better network architectures
for specific tasks. In this work, networks known from literature have been
adopted to solve the tasks required for prediction. In the following, archi-
tectures used as a basis in any of the previous sections are presented. Note
that this is only a very small subset of existing networks.

A.3.1. LeNet-5

LeNet-5, originally designed for handwritten digit recognition, still serves
as a blueprint for many convolutional network architectures today [94]. The
reason lies in its simplicity. Two pairs of convolution and pooling layers
quickly compress information until their output is fed into a classifier stage
that consists of three fully connected layers (cf. Fig. A.11). While the orig-
inal network used the hyperbolic tangent as activation, today most variants
employ ReLUs.

In
pu

t

5
×

5
co

nv
,6

2
×

2
po

ol
,/

2

5
×

5
co

nv
,1

6

2
×

2
po

ol
,/

2

fc
,1

20

fc
,8

6

fc
,1

0

Figure A.11.: LeNet-5 Architecture.

A.3.2. VGG-16

For more challenging problems such as the ImageNet recognition challenge
[146], deeper architectures have been proposed. The network designed by
Simonyan et al. of the Visual Geometry Group (VGG) still features the
same building blocks as LeNet-5 [158]. The network consists of six stages,
five convolutional and one fully connected stage. The first two stages con-
sist of two subsequent convolutional layers followed by 2×2 max pooling,
the later of three convolutions plus max pooling. All convolutions use 3×3-
sized filters, the number of channels per convolution is doubled for every
stage. Finally, the fully connected layers use two times 4096 channels be-
fore the final classifier, which comprises 1000 outputs corresponding to the
classes of ImageNet. The architectures is visualized in Fig. A.12.

112

A.3. Network Architectures

In
pu

t

5
×

5
co

nv
,6

4

5
×

5
co

nv
,6

4

2
×

2
po

ol
,/

2

5
×

5
co

nv
,1

28

5
×

5
co

nv
,1

28

2
×

2
po

ol
,/

2

5
×

5
co

nv
,2

56

5
×

5
co

nv
,2

56

5
×

5
co

nv
,2

56

2
×

2
po

ol
,/

2

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

2
×

2
po

ol
,/

2

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

2
×

2
po

ol
,/

2

fc
,4

09
6

fc
,4

09
6

fc
,1

00
0

Figure A.12.: VGG-16 Architecture.

A.3.3. Inception

Very deep architectures suffer from slow convergence and high compu-
tational demands [62]. The Inception Network aims to overcome these
issues through smaller building blocks [161]. These so-called Inception

Blocks, shown in Fig. A.13a, consist of four parallel paths. They all em-
ploy one convolutional layer with kernel size of 1×1 for reduced computa-
tional complexity. Additionally, two of the paths use larger convolutional
filters while the fourth draws local information from pooling. Finally, the
results are concatenated and fed to the next stage. The Inception network
(cf. Fig. A.13b) uses nine such blocks, all with different numbers of chan-
nels in the individual layers.

Prev. Layer

3×3 pool

1×1 conv

1×1 conv

5×5 conv

1×1 conv

3×3 conv1×1 conv

Concat

(a) Inception Block. Every block features six convolua-
tional layers of which the channel count is a hyperparam-
eter.

In
pu

t

7
×

7
co

nv
,6

4
,/

2

3
×

3
po

ol
,/

2

L
R

N

1
×

1
co

nv
,6

4

3
×

3
co

nv
,1

9
2

L
R

N

3
×

3
po

ol
,/

2

In
c.

,2
5
6

In
c.

,4
8
0

3
×

3
po

ol
,/

2

In
c.

,5
1
2

In
c.

,5
1
2

In
c.

,5
1
2

In
c.

,5
2
8

In
c.

,8
3
2

3
×

3
po

ol
,/

2

In
c.

,8
3
2

In
c.

,1
0
2
4

7
×

7
po

ol
,/

7

fc
,1

0
0
0

(b) Full Inception Network. For clarity, only the channel count after concate-
nation is reported here.

Figure A.13.: Inception Architecture: the network consists of so-called Inception

Blocks that combine parallel branches of convolutions and pooling.

113

A. Artificial Neural Networks

A.3.4. Fully Convolutional Network (FCN)

All previously presented architectures were designed for image classifica-
tion, i.e. they predict a single class probability vector per image. For pixel-
wise classification, Fully Convolutional Networks were proposed [101]. In
these networks, the final fully-connected stage is exchanged for a convolu-
tional layer with 1×1 kernels. With this, predictions can be made per pixel
using any backbone architecture. However, since most backbones feature
downsampling throughout the network, it has to be inverted by upsampling.
This is done by transposed convolutions that act as bilinear interpolation.
Upsampling is applied stepwise so that predictions for different resolutions
can be combined. For this, so-called skip connections are used. These
1×1 convolutions skip some of the downsampling part of the network and
directly contribute to the prediction at the corresponding scale. The archi-
tecture can be seen in Fig. A.14.

In
pu

t

5
×

5
co

nv
,6

4

5
×

5
co

nv
,6

4

2
×

2
po

ol
,/

2

5
×

5
co

nv
,1

28

5
×

5
co

nv
,1

28

2
×

2
po

ol
,/

2

5
×

5
co

nv
,2

56

5
×

5
co

nv
,2

56

5
×

5
co

nv
,2

56

2
×

2
po

ol
,/

2

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

2
×

2
po

ol
,/

2

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

5
×

5
co

nv
,5

12

2
×

2
po

ol
,/

2

1
×

1
co

nv
,4

09
6

1
×

1
co

nv
,2

1

U
ps

am
pl

e,
×

2

1
×

1
co

nv
,2

1
A

dd

U
ps

am
pl

e,
×

2

1
×

1
co

nv
,2

1
A

dd

U
ps

am
pl

e,
×

8

Figure A.14.: Fully Convolutional Network with VGG-16 backbone. The 1×1 con-
volutions act as skip to incorporate fine grained knowledge into upsampling.

114

Appendix B
Details on Experiments

The experiments presented in Section 3 and Section 7 include design de-
cisions and hyperparameters that are not the scope of the individual chap-
ters. Therefore, details on implementations, architectures and parameters
are summarized in the following.

B.1. Numerical Considerations

In this work, numerical optimization is employed. Therefore, different
measures have been taken to ensure numerical stability.

Normalization of probability distributions, e.g. for Eq. (6.15), is com-
puted as a sum of all elements clipped at zero and with an additional small
constant 𝜖 to avoid division by zero, so that

𝑠i =
max (0, 𝑠i) + 𝜖

∑︀

s̃j∈Φ̃ [max (0, 𝑠j) + 𝜖]
, (B.1)

where the tilde ∘̃ denotes unnormalized values. The constant 𝜖=10-30 is
chosen close to the numerical limit of the precision. Thus, in practice, it
only impacts computation in cases close to that.

Limits in logarithms are clipped to some numerical limit,

𝑦 = log(max(𝜖, 𝑥)), (B.2)

where 𝑥 is the value the logarithm is applied to and 𝜖=10-30 again a small
constant close to the precision’s numerical limits.

115

B. Details on Experiments

For log-likelihood loss functions, numerically stable versions are used,
i.e. log-sum-exp operations for Eq. (5.23) [114] and cross entropy in log
space.

The normalization of the Von-Mises-Distribution Eq. (5.3) requires the
modified Bessel function 𝐼0(𝜅). Since this needs to be differentiated w.r.t.
𝜅, it is implemented as a Taylor approximation of degree 18. To avoid
large deviations between the actual modified Bessel function and its Taylor
approximation, 𝜅 is clipped for values above 20 .

Since grids are normalized numerically according to Eq. (B.1), the fil-
ters for state propagation can be normalized to arbitrary values. To avoid
vanishing probabilities, this normalization is chosen per experiment as the
highest possible stable value, mostly in [1, 3].

B.2. Reference Experiments

The methods of Section 3 are presented in literature and were implemented
as close to the original publications as possible. The Kalman Filter [19]
allows for no freedom of choice other than the parameters of initial, process
and measurement covariance. For the inverse reinforcement learning, we
used available code from the publication [86]. Only the CNN architecture
used for Dynamic Occupancy Grid Map (DOGMa) prediction was not fully
specified in the publication [69]. Therefore, it was implemented to the
according to the referred models [97, 119] including architecture search.
The final network is displayed in Fig. B.1.

In
pu

t

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

3
×

3
co

nv
,6

4

3
×

3
co

nv
,6

4

2
×

2
po

ol
,/

2

3
×

3
co

nv
,1

28

3
×

3
co

nv
,1

28

3
×

3
co

nv
,1

28

2
×

2
po

ol
,/

2

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

2
×

2
po

ol
,/

2

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

2
×

2
po

ol
,/

2
U

ps
am

pl
e,
×

2

A
dd

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

T
ra

ns
.

C
on

v.
,×

2

A
dd

3
×

3
co

nv
,2

56

3
×

3
co

nv
,2

56

3
×

3
co

nv
,1

28

T
ra

ns
.

C
on

v.
,×

2

3
×

3
co

nv
,1

28

3
×

3
co

nv
,1

28

3
×

3
co

nv
,6

4

T
ra

ns
.

C
on

v.
,×

2

3
×

3
co

nv
,6

4

3
×

3
co

nv
,3

2

T
ra

ns
.

C
on

v.
,×

2

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

3
×

3
co

nv
,4

1

Figure B.1.: The network architecture used for DOGMa-CNN experiments [69].
All convolution and transposed convolution layers use ReLU activations, the final
activation is sigmoidal.

116

B.3. RMDN Experiments

B.3. RMDN Experiments

In Section 5.1, a Recurrent Mixture Density Network (RMDN) was pre-
sented to predict pedestrian destinations. In the RMDN’s evaluation in Sec-
tion 7.1, design parameters specific to the architecture are assessed. In the
following, the default parameters, network design and value tables corre-
sponding to the figures shown in Section 7.1 are presented.

B.3.1. Default Parameters

For the RMDN, architecture and hyperparameter tuning was conducted for
all experiments. The parameters found for the network training are listed in
Table B.1.

Parameter Value

Loss Mean
Optimizer Adam
Dropout Rate 30%

Base Learning Rate 0.001

Max. Iterations imax 500, 000

Learning Rate Scaling for Iteration i
√︁

imax−i

imax

Weight Decay 10−6

Mixture Components 8

LSTM Cell Size 16

Fully-Connecetd Neurons 64

CNN ✘

Prediction Horizon 4.0s

Table B.1.: Default parameters used in Section 7.1 for parameter search.

The network architecture for all experiments in Section 7.1 is shown in
Fig. B.2. Note that the CNN path is only present in experiments if explicitly
stated.

B.3.2. Result Tables

For clarity of presentation, the results of RMDN experiments were shown
as plots in Section 7.1. For the sake of completeness, the numeric results of
all experiments are listed in tables below.

117

B. Details on Experiments

Parameter mNLP mPP / %

Mean 7.1 7.0

Worst 1 8.3 1.9
Worst 2 6.5 3.1
Worst 4 7.8 3.8
Worst 6 8.6 3.9
Worst 8 7.0 4.8
Focal γ=1 6.6 4.7
Focal γ=2 6.4 4.0
Focal γ=4 7.8 3.4

Table B.2.: Results of RMDN with different loss functions explained in Sec-
tion 7.1.2.

Parameter mNLP mPP / %

NMix=1 11.9 5.9
NMix=2 12.9 6.4
NMix=4 7.6 6.5
NMix=8 7.1 7.0

NMix=10 5.9 5.9
NMix=12 6.3 5.1
NMix=16 6.5 5.2

Table B.3.: Results of RMDN with different mixture component counts explained
in Section 7.1.3.

Parameter mNLP mPP / %

r=0.0 8.3 6.0
r=0.1 7.1 6.4
r=0.2 5.7 6.5
r=0.3 7.1 7.0

r=0.4 6.6 5.9
r=0.5 8.7 6.5

Table B.4.: Results of RMDN with different mixture component dropout rates ex-
plained in Section 7.1.4.

118

B.3. RMDN Experiments

Im
ag

e

3
×

3
co

nv
,1

6

3
×

3
co

nv
,1

6

2
×

2
po

ol
,/

2

3
×

3
co

nv
,2

4

3
×

3
co

nv
,2

4

2
×

2
po

ol
,/

2

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

3
×

3
co

nv
,4

8

3
×

3
co

nv
,4

8

3
×

3
co

nv
,4

8

fc
,4

P
os

it
io

n

C
on

ca
t.

L
S

T
M

,1
6

fc
,6

4

M
D

N
,8

×
N

M
ix

Optional CNN Branch

Figure B.2.: Default RMDN architecture used in experiments. All convolution lay-
ers feature ELU activations followed by Group Normalization with G=4. For ex-
periments without CNN, the top branch is omitted.

T
mNLP mPP / %

KF DOGMa RMDN KF DOGMa RMDN

0.1s 1.1 0.8 0.0 79.6 68.0 98.7

0.5s 0.5 4.1 0.1 85.1 46.7 95.8

1.0s 1.2 7.6 0.5 59.3 30.7 75.4

1.5s 2.0 8.5 2.0 35.3 20.2 40.2

2.0s 2.9 9.0 2.7 19.4 15.6 27.4

2.5s 3.7 9.1 3.6 10.8 10.4 16.4

3.0s 4.4 11.3 4.3 6.4 9.2 11.0

3.5s 4.9 11.6 5.0 4.0 8.1 8.0
4.0s 6.9 10.3 7.1 2.6 6.7 6.6

Table B.5.: Destination prediction results for different time horizons T explained in
Section 7.1.5.

119

B. Details on Experiments

B.4. Planning Network Experiments

Section 5.2 presented two different takes to goal-directed prediction using
neural networks, namely one for Markov-Decision-Processes (MDP) and
one for forward-backward propagation (Fwd-Bwd). In the respective eval-
uation in Section 7.2, design parameters specific to the architectures were
analyzed. In the following, the default parameters, network design and
value tables corresponding to the figures shown in Section 7.2 and Sec-
tion 7.3 are presented.

120

B.4. Planning Network Experiments

B.4.1. Topology Network

The planning-based prediction networks introduced in this thesis depend on
inference of most likely actions given a map of the environment. Regardless
of the planning-based prediction method used, the same network architec-
ture is used to predict these actions for all experiments in Section 7.2 and
Section 7.3. This allows for fair comparison between the two methods. The
corresponding architecture is shown in Fig. B.3.

In
pu

t

7
×

7
co

nv
,3

2

L
R

N

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

L
R

N

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

L
R

N

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

L
R

N

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2

2
×

2
po

ol
,/

2

L
R

N

3
×

3
co

nv
,3

2

3
×

3
co

nv
,3

2
1
×

1
co

nv
,|
𝒜

|

1
×

1
co

nv
,|
𝒜

|

1
×

1
co

nv
,|
𝒜

|

1
×

1
co

nv
,|
𝒜

|

1
×

1
co

nv
,|
𝒜

|

U
ps

am
pl

e,
×

2

U
ps

am
pl

e,
×

2

U
ps

am
pl

e,
×

2

U
ps

am
pl

e,
×

2

A
dd

A
dd

A
dd

A
dd

A
ct

iv
at

io
n

F
n.

Figure B.3.: Default topology network architecture used in all planning network
experiments. The output channel count is the number of possible actions |A|. As
activations, ReLU is used in the encoder part, no nonlinearity for skip connections
and a final activation depending on the subsequent planning network.

B.4.2. Default Parameters

For both, the Fwd-Bwd- and MDP-Network, hyperparameter tuning for all
experiments was conducted. The parameters found for training are listed in
Table B.6 and Table B.7. The network architecture is imposed by the re-
spective prediction method and therefore not described here but Section 5.2.

B.4.2.1. Result Tables

For clarity of presentation, the results of the trajectory experiments were
shown as plots in Section 7.2 and Section 7.3. For the sake of completeness,
the numeric values of the results are listed in the following tables.

121

B. Details on Experiments

Parameter Value
Loss Mean
Optimizer Adam
Base Learning Rate 0.001

Max. Iterations imax 500, 000

Learning Rate Scaling for Iteration i
√︁

imax−i

imax

Weight Decay 10−6

Prediction Horizon 4.0s

Map Features Obstacles, road, sidewalk, destination,
start, distance to destination,

distance to start
Map Size 16m×16m
Cell Size 0.1m×0.1m
Filter Size 0.5m×0.5m
Action Count 13

Table B.6.: Default parameters of Fwd-Bwd network used in Section 7.2 and Sec-
tion 7.3 for parameter search.

122

B.4. Planning Network Experiments

Parameter Value
Loss Mean
Optimizer Adam
Base Learning Rate 0.002

Max. Iterations imax 500, 000

Learning Rate Scaling for Iteration i
√︁

imax−i

imax

Weight Decay 10−8

Prediction Horizon 4.0s

Map Features Obstacles, road, sidewalk, destination,
start, distance to destination

Map Size 16m×16m
Cell Size 0.1m×0.1m
Filter Size 0.9m×0.9m
Action Count 13
Filter Variance Regularization 10−6

Discount Factor γ 0.99
Value Iteration Steps 80

Table B.7.: Default parameters of MDP network used in Section 7.2 and Section 7.3
for parameter search.

Parameter mNLP mPP / %

λvar=0 2.2 36.3
λvar=10−8 2.1 38.7
λvar=10−7 1.8 36.4
λvar=10−6 1.6 39.3

λvar=10−5 1.7 34.9

Table B.8.: Performance of MDP depending on the regularization weight of the filter
variance explained in Section 7.2.1.

123

B. Details on Experiments

Parameter mNLP mPP / %

λvar=0 1.8 52.2

λvar=10−8 2.2 50.4
λvar=10−6 2.1 50.3
λvar=10−5 2.3 49.2
λvar=10−4 2.2 49.9

Table B.9.: Performance of Fwd-Bwd depending on the regularization weight of the
filter variance explained in Section 7.2.1.

Parameter
mNLP mPP / %

MDP Fwd-Bwd MDP Fwd-Bwd

|A|=5 2.1 2.3 25.5 46.4
|A|=9 1.8 2.2 38.1 46.6
|A|=13 2.0 2.1 41.9 50.3

|A|=21 1.8 2.2 41.3 48.2

Table B.10.: Performance of prediction depending on the number of possible actions
explained in Section 7.2.2.

Features
mNLP mPP / %

MDP Fwd-Bwd MDP Fwd-Bwd

Curb 2.1 2.0 38.5 51.3
Obstacle 2.2 1.8 38.7 51.7
Topview 2.0 2.2 41.6 52.9
Road 1.7 2.2 42.0 52.3
Sidewalk 2.0 2.1 44.6 54.6

All 2.0 2.1 41.9 50.3
None 1.9 2.1 39.2 50.0

Table B.11.: Performance of prediction depending on the input features of the map
explained in Section 7.2.3.

124

B.4. Planning Network Experiments

Setup
mNLP mPP / %

MDP Fwd-Bwd MDP Fwd-Bwd

Separate Training 2.7 2.8 30.9 37.0
Joint Training 2.6 2.7 29.8 41.0

Table B.12.: Performance of joint prediction of destinations and trajectory explained
in Section 7.3.

T
mNLP mPP / %

RMDN MDP
Fwd-
Bwd

RMDN MDP
Fwd-
Bwd

0.1s 0.0 0.0 0.0 98.7 96.6 99.6

0.5s 0.1 0.8 0.4 95.8 61.8 80.9
1.0s 0.5 1.4 0.9 75.4 40.8 68.1
1.5s 2.0 1.9 1.6 40.2 30.7 50.2

2.0s 2.7 2.5 2.5 27.4 23.5 33.4

2.5s 3.6 3.1 3.5 16.4 16.6 22.0

3.0s 4.3 3.7 4.3 11.0 11.9 16.0

3.5s 5.0 4.3 5.1 8.0 9.6 12.4

4.0s 7.1 6.0 5.9 6.6 7.7 5.7

Table B.13.: Performance of joint prediction for different time horizons T explained
in Section 7.3.

125

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin
et al. (2016, March) TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. arXiv:1603.04467. https:
//arxiv.org/abs/1603.04467 [Online. Accessed: 2020-07-25]

[2] L. F. Abbott, “Lapicque’s Introduction of the Integrate-and-Fire
Model Neuron (1907),” Brain Research Bulletin, vol. 50, no. 5-6,
pp. 303–304, 1999.

[3] S. Agarwal, K. Mierle, and Others. (2018) Ceres solver.
http://ceres-solver.org [Online. Accessed: 2020-07-26]

[4] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building Rome in a Day,” in IEEE International Conference on

Computer Vision (ICCV), Kyoto, Japan, September 2009, pp. 72–
79.

[5] C. C. Aggarwal, Data Classification: Algorithms and Applications.
Boca Raton, FL, USA: CRC Press, 2014.

[6] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,
and S. Savarese, “Social LSTM: Human Trajectory Prediction in
Crowded Spaces,” in IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp. 961–
971.

[7] J. M. Anderson, K. Nidhi, K. D. Stanley, P. Sorensen, C. Samaras,
and O. A. Oluwatola, Autonomous Vehicle Technology: A Guide for

Policymakers. Santa Monica, CA, USA: Rand Corporation, 2014.

[8] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3D Pose Estima-
tion and Tracking by Detection,” in IEEE Conference on Computer

127

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://ceres-solver.org

Bibliography

Vision and Pattern Recognition (CVPR), San Francisco, CA, USA,
June 2010, pp. 623–630.

[9] I. Asimov, I, Robot. New York City, NY, USA: Gnome Press, 1950,
vol. 1.

[10] A. Barth and U. Franke, “Where Will the Oncoming Vehicle be the
Next Second?” in IEEE Intelligent Vehicles Symposium (IV), Eind-
hoven, Netherlands, June 2008, pp. 1068–1073.

[11] T. Batz, K. Watson, and J. Beyerer, “Recognition of Dangerous Situ-
ations Within a Cooperative Group of Vehicles,” in IEEE Intelligent

Vehicles Symposium (IV), Xi’an, China, June 2009, pp. 907–912.

[12] B. Benfold and I. Reid, “Guiding Visual Surveillance by Tracking
Human Attention,” in British Machine Vision Conference (BMVC),
London, UK, September 2009, pp. 14.1–14.11.

[13] M. Bennewitz, W. Burgard, and S. Thrun, “Using EM to Learn Mo-
tion Behaviors of Persons With Mobile Robots,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS),
vol. 1, Lausanne, Switzerland, September 2002, pp. 502–507.

[14] A. Bera, T. Randhavane, and D. Manocha, “Aggressive, Tense or
Shy? Identifying Personality Traits from Crowd Videos.” in Interna-

tional Joint Conference on Artificial Intelligence, Melbourne, Aus-
tralia, August 2017, pp. 112–118.

[15] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. De-
lalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Berg-
eron et al., “Theano: Deep Learning on GPUs With Python,” in
Advances in Neural Information Processing (NeurIPS) Workshop,
vol. 3, Granada, Spain, December 2011, pp. 1–48.

[16] M. Bertozzi, A. Broggi, A. Fascioli, A. Tibaldi, R. Chapuis, and
F. Chausse, “Pedestrian Localization and Tracking System With
Kalman Filtering,” in IEEE Intelligent Vehicles Symposium (IV),
Parma, Italy, June 2004, pp. 584–589.

[17] G. Best and R. Fitch, “Bayesian Intention Inference for Trajectory
Prediction With an Unknown Goal Destination,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS),
Hamburg, Germany, October 2015, pp. 5817–5823.

128

[18] R. A. Best and J. Norton, “A New Model and Efficient Tracker for a
Target With Curvilinear Motion,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 33, no. 3, pp. 1030–1037, 1997.

[19] E. Binelli, A. Broggi, A. Fascioli, S. Ghidoni, P. Grisleri, T. Graf, and
M. Meinecke, “A Modular Tracking System for Far Infrared Pedes-
trian Recognition,” in IEEE Intelligent Vehicles Symposium (IV), Las
Vegas, NV, USA, June 2005, pp. 759–764.

[20] C. M. Bishop, “Mixture Density Networks,” Department of Com-
puter Science and Applied Mathematics, Aston University, Tech.
Rep., February 1994.

[21] C. M. Bishop, Machine Learning and Pattern Recognition. Heidel-
berg, Germany: Springer, 2006.

[22] G. Bishop and G. Welch, “An Introduction to the Kalman Filter,” in
Proceedings of SIGGRAPH, vol. 8, no. 27599-23175, Los Angeles,
CA, USA, August 2001, p. 41.

[23] S. Bonnin, T. H. Weisswange, F. Kummert, and J. Schmued-
derich, “Pedestrian Crossing Prediction Using Multiple Context-
Based Models,” in IEEE International Conference on Intelligent

Transportation Systems (ITSC), Qingdao, China, October 2014, pp.
378–385.

[24] L. Bottou and O. Bousquet, “The Tradeoffs of Large Scale
Learning,” in Advances in Neural Information Processing Systems

(NeurIPS), Vancouver, Canada, December 2008, pp. 161–168.

[25] D. S. Broomhead and D. Lowe, “Radial Basis Functions, Multi-
Variable Functional Interpolation and Adaptive Networks,” Royal
Signals and Radar Establishment Malvern (United Kingdom),
Malvern, England, Tech. Rep., July 1988.

[26] N. Brouwer, H. Kloeden, and C. Stiller, “Comparison and Evalua-
tion of Pedestrian Motion Models for Vehicle Safety Systems,” in
IEEE International Conference on Intelligent Transportation Sys-

tems (ITSC), Rio de Janeiro, Brazil, October 2016, pp. 2207–2212.

[27] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA Grand

Challenge: The Great Robot Race. Heidelberg, Germany: Springer,
2007, vol. 36.

129

Bibliography

[28] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Chal-

lenge: Autonomous Vehicles in City Traffic. Heidelberg, Germany:
Springer, 2009, vol. 56.

[29] Y. Cai, N. de Freitas, and J. J. Little, “Robust Visual Tracking
for Multiple Targets,” in European Conference on Computer Vision

(ECCV), Graz, Austria, May 2006, pp. 107–118.

[30] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3D
Tracking and Forecasting with Rich Maps,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 2019, pp. 8748–8757.

[31] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic Image Segmentation With Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 4, pp. 834–848, 2018.

[32] Z. Chen, D. C. Ngai, and N. Yung, “Pedestrian Behavior Prediction
Based on Motion Patterns for Vehicle-to-Pedestrian Collision Avoid-
ance,” in IEEE International Conference on Intelligent Transporta-

tion Systems (ITSC), Beijing, China, October 2008, pp. 316–321.

[33] S. Chik, C. Yeong, E. Su, T. Lim, Y. Subramaniam, and P. Chin, “A
Review of Social-Aware Navigation Frameworks for Service Robot
in Dynamic Human Environments,” Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), vol. 8, no. 11, pp.
41–50, 2016.

[34] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. (2014, June) Learning
Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation. arXiv:1406.1078. https://arxiv.org/abs/1406.
1078 [Online. Accessed: 2020-07-25]

[35] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. (2015, November)
Fast and Accurate Deep Network Learning by Exponential Linear
Units (ELUs). arXiv:1511.07289. https://arxiv.org/abs/1511.07289
[Online. Accessed: 2020-07-25]

[36] R. Collobert, C. Farabet, K. Kavukcuoglu et al., “Torch,” in Ad-

vances in Neural Information Processing (NeurIPS) Workshop, vol.
113, Vancouver, Canada, December 2008.

130

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1511.07289

[37] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset
for Semantic Urban Scene Understanding,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, June 2016, pp. 3213–3223.

[38] P. Coscia, F. Castaldo, F. A. Palmieri, A. Alahi, S. Savarese, and
L. Ballan, “Long-Term Path Prediction in Urban Scenarios Using
Circular Distributions,” Image and Vision Computing, vol. 69, pp.
81–91, 2018.

[39] P. A. Devijver, “Baum’s Forward-Backward Algorithm Revisited,”
Pattern Recognition Letters, vol. 3, no. 6, pp. 369–373, 1985.

[40] E.-D. Dickmanns, “Vehicle Guidance by Computer Vision,” in High

Precision Navigation. Heidelberg, Germany: Springer, 1989, pp.
86–96.

[41] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-
H. Lin, N. Singh, and J. Schneider, “Uncertainty-Aware Short-
Term Motion Prediction of Traffic Actors for Autonomous Driv-
ing,” in IEEE Winter Conference on Applications of Computer Vi-

sion (WACV), Snowmass Village, CO, USA, March 2020, pp. 2095–
2104.

[42] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A Deep Convolutional Activation Feature for
Generic Visual Recognition,” in International Conference on Ma-

chine Learning (ICML), Beijing, China, June 2014, pp. 647–655.

[43] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-Term Recurrent
Convolutional Networks for Visual Recognition and Description,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Boston, MA, USA, June 2015, pp. 2625–2634.

[44] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning
Optical Flow With Convolutional Networks,” in IEEE International

Conference on Computer Vision (ICCV), Santiago, Chile, December
2015, pp. 2758–2766.

[45] D. Eigen and R. Fergus, “Predicting Depth, Surface Normals and Se-
mantic Labels With a Common Multi-Scale Convolutional Architec-

131

Bibliography

ture,” in IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, December 2015, pp. 2650–2658.

[46] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[47] J. Elfring, R. Van De Molengraft, and M. Steinbuch, “Learning In-
tentions for Improved Human Motion Prediction,” Robotics and Au-

tonomous Systems, vol. 62, no. 4, pp. 591–602, 2014.

[48] A. Elnagar, “Prediction of Moving Objects in Dynamic Environ-
ments Using Kalman Filters,” in IEEE International Symposium

on Computational Intelligence in Robotics and Automation (CIRA).
Banff, Canada: IEEE, July 2001, pp. 414–419.

[49] A. Ess, B. Leibe, K. Schindler, , and L. van Gool, “A Mobile Vision
System for Robust Multi-Person Tracking,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Anchorage, AL,
USA, June 2008, pp. 1–8.

[50] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical

Learning. New York, NY, USA: Springer, 2001, vol. 1, no. 10.

[51] P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz, H. Grimmett,
P. Mühlfellner, S. Wonneberger, J. Timpner, S. Rottmann, B. Li
et al., “Toward Automated Driving in Cities Using Close-to-Market
Sensors: An Overview of the V-Charge Project,” in IEEE Intelli-

gent Vehicles Symposium (IV), Gold Coast, Australia, June 2013, pp.
809–816.

[52] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Providence,
RI, USA, June 2012, pp. 3354–3361.

[53] F. A. Gers and J. Schmidhuber, “Recurrent Nets That Time and
Count,” in IEEE-INNS-ENNS International Joint Conference on

Neural Networks (IJNN), vol. 3, Como, Italy, July 2000, pp. 189–
194.

[54] T. Gindele, S. Brechtel, and R. Dillmann, “A Probabilistic Model
for Estimating Driver Behaviors and Vehicle Trajectories in Traf-
fic Environments,” in IEEE International Conference on Intelligent

Transportation Systems, Madeira Island, Portugal, September 2010,
pp. 1625–1631.

132

[55] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training
Deep Feedforward Neural Networks,” in International Conference

on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy,
May 2010, pp. 249–256.

[56] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learn-

ing. Cambridge, MA, USA: MIT Press, 2016, vol. 1.

[57] Y. Gu, Y. Hashimoto, L.-T. Hsu, and S. Kamijo, “Motion Planning
Based on Learning Models of Pedestrian and Driver Behaviors,” in
IEEE International Conference on Intelligent Transportation Sys-

tems (ITSC), Rio de Janeiro, Brazil, October 2016, pp. 808–813.

[58] H. Harms, E. Rehder, and M. Lauer, “Grid Map Based Free Space
Estimation Using Stereo Vision,” in IEEE Intelligent Vehicles Sym-

posium (IV) Workshop, Seoul, Korea, June 2015.

[59] M. Harrower and C. A. Brewer, “ColorBrewer.org: An Online Tool
for Selecting Colour Schemes for Maps,” The Cartographic Journal,
vol. 40, no. 1, pp. 27–37, 2003.

[60] I. Hasan, F. Setti, T. Tsesmelis, A. Del Bue, F. Galasso, and
M. Cristani, “MX-LSTM: Mixing Tracklets and Vislets to Jointly
Forecast Trajectories and Head Poses,” in IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Salt Lake City, UT,
USA, June 2018, pp. 6067–6076.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep Into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification,”
in IEEE International Conference on Computer Vision (ICCV), San-
tiago, Chile, December 2015, pp. 1026–1034.

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp.
770–778.

[63] D. Helbing and P. Molnar, “Social Force Model for Pedestrian Dy-
namics,” Physical Review E, vol. 51, no. 5, p. 4282, 1995.

[64] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to Navigate
Through Crowded Environments,” in IEEE International Confer-

ence on Robotics and Automation (ICRA), Anchorage, AK, USA,
May 2010, pp. 981–986.

133

Bibliography

[65] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. (2012, July) Improving Neural Networks by
Preventing Co-Adaptation of Feature Detectors. arXiv:1207.0580.
https://arxiv.org/abs/1207.0580 [Online. Accessed: 2020-07-25]

[66] T. Hirakawa, T. Yamashita, T. Tamaki, and H. Fujiyoshi, “Survey
on Vision-Based Path Prediction,” in International Conference on

Distributed, Ambient, and Pervasive Interactions, Las Vegas, NV,
USA, July 2018, pp. 48–64.

[67] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[68] P. G. Hoel, Introduction to Mathematical Statistics. Hoboken, NJ,
USA & London, UK: John Wiley & Sons, Inc., & Chapman & Hall,
Ltd., 1984, no. 5th Ed.

[69] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic Occupancy
Grid Prediction for Urban Autonomous Driving: A Deep Learn-
ing Approach With Fully Automatic Labeling,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Brisbane,
Australia, May 2018, pp. 2056–2063.

[70] J. J. Hopfield, “Neural Networks and Physical Systems With Emer-
gent Collective Computational Abilities,” Proceedings of the Na-

tional Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[71] S. Huang, X. Li, Z. Zhang, Z. He, F. Wu, W. Liu, J. Tang, and
Y. Zhuang, “Deep Learning Driven Visual Path Prediction From a
Single Image,” IEEE Transactions on Image Processing, vol. 25,
no. 12, pp. 5892–5904, 2016.

[72] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin,
and R. Yang, “The Apolloscape Dataset for Autonomous Driving,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshop, Salt Lake City, UT, USA, June 2018, pp. 954–
960.

[73] D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Inter-
action and Functional Architecture in the Cat’s Visual Cortex,” The

Journal of physiology, vol. 160, no. 1, pp. 106–154, 1962.

[74] T. Ikeda, Y. Chigodo, D. Rea, F. Zanlungo, M. Shiomi, and T. Kanda,
“Modeling and Prediction of Pedestrian Behavior Based on the Sub-
Goal Concept,” Robotics, vol. 10, pp. 137–144, 2013.

134

https://arxiv.org/abs/1207.0580

[75] H. O. Jacobs, O. K. Hughes, M. Johnson-Roberson, and R. Va-
sudevan, “Real-Time Certified Probabilistic Pedestrian Forecasting,”
IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2064–2071,
2017.

[76] H. Jaspers, M. Himmelsbach, and H.-J. Wuensche, “Multi-Modal
Local Terrain Maps From Vision and LiDAR,” in IEEE Intelligent

Vehicles Symposium (IV), Redondo Beach, CA, USA, June 2017,
pp. 1119–1125.

[77] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture
for Fast Feature Embedding,” in ACM International Conference on

Multimedia (MM), Orlando, FL, USA, November 2014, pp. 675–
678.

[78] N. Jourdan, E. Rehder, and U. Franke, “Identification of Uncertainty
in Artificial Neural Networks,” in Workshop Fahrerassistenzsysteme,
Walting, Germany, 2020, pp. 1–6.

[79] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, pp. 35–45, 1960.

[80] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
J. Schöder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink,
C. Frese, and C. Stiller, Team AnnieWAY’s Autonomous System

for the DARPA Urban Challenge 2007. Heidelberg, Germany:
Springer, 2009, vol. 56.

[81] T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous Land Ve-
hicle Project at CMU,” in ACM Conference on Computer Science

(CSC), Cincinnati, OH, USA, Feburary 1986, pp. 71–80.

[82] V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-Aware
Long-Term Prediction of Pedestrian Motion,” in IEEE International

Conference on Robotics and Automation (ICRA), Stockholm, Swe-
den, May 2016, pp. 2543–2549.

[83] C. Keller and D. Gavrila, “Will the Pedestrian Cross? A Study on
Pedestrian Path Prediction,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 15, no. 2, pp. 494–506, April 2013.

135

Bibliography

[84] A. Kendall, Y. Gal, and R. Cipolla, “Multi-Task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Salt Lake City, UT, USA, June 2018, pp. 7482–7491.

[85] D. P. Kingma and J. Ba. (2014, December) Adam: A
Method for Stochastic Optimization. arXiv:1412.6980. https:
//arxiv.org/abs/1412.6980 [Online. Accessed: 2020-07-25]

[86] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
Forecasting,” in European Conference on Computer Vision (ECCV),
Florence, Italy, October 2012, pp. 201–214.

[87] S. Köhler, M. Goldhammer, S. Bauer, K. Doll, U. Brunsmann, and
K. Dietmayer, “Early Detection of the Pedestrian’s Intention to Cross
the Street,” in IEEE International Conference on Intelligent Trans-

portation Systems (ITSC), Anchorage, AK, USA, September 2012,
pp. 1759–1764.

[88] J. F. P. Kooij, F. Flohr, E. A. I. Pool, and D. M. Gavrila, “Context-
based path prediction for targets with switching dynamics,” Inter-

national Journal of Computer Vision, vol. 127, no. 3, pp. 239–262,
March 2019.

[89] J. F. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila, “Context-
Based Pedestrian Path Prediction,” in European Conference on Com-

puter Vision (ECCV), Zurich, Switzerland, September 2014, pp.
618–633.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classifi-
cation With Deep Convolutional Neural Networks,” in Advances in

Neural Information Processing Systems (NeurIPS), Lake Tahoe, NV,
USA, December 2012, pp. 1097–1105.

[91] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-Aware
Robot Navigation: A Survey,” Robotics and Autonomous Systems,
vol. 61, no. 12, pp. 1726–1743, 2013.

[92] F. Kuhnt, R. Kohlhaas, T. Schamm, and J. M. Zöllner, “Towards
a Unified Traffic Situation Estimation Model-Street-Dependent Be-
haviour and Motion Models,” in International Conference on In-

formation Fusion (Fusion), Washington, DC, USA, July 2015, pp.
1223–1229.

136

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

[93] P. A. Lasota, T. Fong, J. A. Shah et al., “A Survey of Methods
for Safe Human-Robot Interaction,” Foundations and Trends® in

Robotics, vol. 5, no. 4, pp. 261–349, 2017.

[94] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the

IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[95] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional Net-
works and Applications in Vision,” in IEEE International Sympo-

sium on Circuits and Systems (ISCAS), Paris, France, May 2010, pp.
253–256.

[96] S. Lefèvre, D. Vasquez, and C. Laugier, “A Survey on Motion Pre-
diction and Risk Assessment for Intelligent Vehicles,” ROBOMECH

journal, vol. 1, no. 1, pp. 1–14, 2014.

[97] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Be-
longie, “Feature Pyramid Networks for Object Detection,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, July 2017, pp. 2117–2125.

[98] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss
for Dense Object Detection,” in IEEE International Conference on

Computer Vision (ICCV), Venice, Italy, October 2017, pp. 2980–
2988.

[99] M. L. Littman, “Value-Function Reinforcement Learning in Markov
Games,” Cognitive Systems Research, vol. 2, no. 1, pp. 55–66, 2001.

[100] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot Multibox Detector,” in European

Conference on Computer Vision (ECCV), Amsterdam, Netherlands,
October 2016, pp. 21–37.

[101] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Net-
works for Semantic Segmentation,” in IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Boston, MA, USA,
June 2015, pp. 3431–3440.

[102] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People Track-
ing With Human Motion Predictions From Social Forces,” in IEEE

International Conference on Robotics and Automation (ICRA), An-
chorage, AK, USA, May 2010, pp. 464–469.

137

Bibliography

[103] W. Luo, B. Yang, and R. Urtasun, “Fast and Furious: Real Time
End-to-End 3D Detection, Tracking and Motion Forecasting With a
Single Convolutional Net,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Salt Lake City, UT, USA, June
2018, pp. 3569–3577.

[104] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani, “Forecasting
Interactive Dynamics of Pedestrians With Fictitious Play,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, July 2017, pp. 774–782.

[105] K. V. Mardia and P. E. Jupp, Directional Statistics. Hoboken, NJ,
USA: John Wiley & Sons, 2009, vol. 494.

[106] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Eds., Autonomous

Driving. Heidelberg, Germany: Springer, 2016.

[107] S. Merity, B. McCann, and R. Socher. (2017, August) Revisiting
Activation Regularization for Language RNNs. arXiv:1708.01009.
https://arxiv.org/abs/1708.01009 [Online. Accessed: 2020-07-25]

[108] R. Q. Mínguez, I. P. Alonso, D. Fernández-Llorca, and M. Á. Sotelo,
“Pedestrian Path, Pose, and Intention Prediction Through Gaussian
Process Dynamical Models and Pedestrian Activity Recognition,”
IEEE Transactions on Intelligent Transportation Systems, vol. 20,
no. 5, pp. 1803–1814, 2018.

[109] A. Møgelmose, M. M. Trivedi, and T. B. Moeslund, “Trajectory
Analysis and Prediction for Improved Pedestrian Safety: Integrated
Framework and Evaluations,” in IEEE Intelligent Vehicles Sympo-

sium (IV), Seoul, Korea, June 2015, pp. 330–335.

[110] B. T. Morris and M. M. Trivedi, “A Survey of Vision-Based Tra-
jectory Learning and Analysis for Surveillance,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 18, no. 8, pp.
1114–1127, 2008.

[111] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked Hierarchical La-
beling,” in European Conference on Computer Vision (ECCV), Her-
aklion, Crete, Greece, September 2010, pp. 57–70.

[112] V. Murino, M. Cristani, S. Shah, and S. Savarese, Group and Crowd

Behavior for Computer Vision. Cambridge, MA, USA: Academic
Press, 2017.

138

https://arxiv.org/abs/1708.01009

[113] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Re-
stricted Boltzmann Machines,” in International Conference on Ma-

chine Learning (ICML), Haifa, Israel, June 2010, pp. 807–814.

[114] F. Nielsen and K. Sun, “Guaranteed Bounds on the Kullback–Leibler
Divergence of Univariate Mixtures,” IEEE Signal Processing Let-

ters, vol. 23, no. 11, pp. 1543–1546, 2016.

[115] N.N., “"Phantom-Auto" Will Tour City,” The Milwaukee Sentinel,
December 1925.

[116] N.N., “Science: Radio auto,” Time Magazine, vol. 6, no. 6, August
1925.

[117] N.N., Verkehrsunfälle 2020. Wiesbaden, Germany: Statistisches
Bundesamt, July 2020, vol. 8, no. 7.

[118] N.N. (2020) Waymo. Mountain View, CA, USA. http://waymo.com
[Online. Accessed: 2020-07-26]

[119] H. Noh, S. Hong, and B. Han, “Learning Deconvolution Network for
Semantic Segmentation,” in IEEE International Conference on Com-

puter Vision (ICCV), Santiago, Chile, December 2015, pp. 1520–
1528.

[120] D. Nuß, “A Random Finite Set Approach for Dynamic Occupancy
Grid Maps,” Doctoral thesis, Universität Ulm, Ulm, Germany, 2017.

[121] S. Pellegrini, A. Ess, and L. Van Gool, “Improving Data Association
by Joint Modeling of Pedestrian Trajectories and Groupings,” in Eu-

ropean Conference on Computer Vision (ECCV), Heraklion, Crete,
Greece, September 2010, pp. 452–465.

[122] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Sieg-
wart, “Predicting Actions to Act Predictably: Cooperative Partial
Motion Planning with Maximum Entropy Models,” in IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, October 2016, pp. 2096–2101.

[123] F. Previtali, A. Bordallo, L. Iocchi, and S. Ramamoorthy, “Predicting
Future Agent Motions for Dynamic Environments,” in IEEE Interna-

tional Conference on Machine Learning and Applications (ICMLA),
Anaheim, CA, USA, December 2016, pp. 94–99.

139

http://waymo.com

Bibliography

[124] J. Quehl, H. Hu, Ö. S. Tas, E. Rehder, and M. Lauer, “How Good
is My Prediction? Finding a Similarity Measure for Trajectory Pre-
diction Evaluation,” in IEEE International Conference on Intelligent

Transportation Systems (ITSC), Yokohama, Japan, October 2017,
pp. 1–6.

[125] R. Quintero, J. Almeida, D. F. Llorca, and M. Sotelo, “Pedestrian
Path Prediction Using Body Language Traits,” in IEEE Intelligent

Vehicles Symposium (IV), Dearborn, MI, USA, June 2014, pp. 317–
323.

[126] B. Ranft and T. Strauß, “Modeling Arbitrarily Oriented Slanted
Planes for Efficient Stereo Vision Based on Block Matching,” in
IEEE International Conference on Intelligent Transportation Sys-

tems (ITSC), Qingdao, China, October 2014, pp. 1941–1947.

[127] E. Rehder and A. Albrecht, “Submap-Based SLAM for Road Mark-
ings,” in IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea,
June 2015, pp. 1393–1398.

[128] E. Rehder, C. Kinzig, P. Bender, and M. Lauer, “Online Stereo Cam-
era Calibration From Scratch,” in IEEE Intelligent Vehicles Sympo-

sium (IV), Redondo Beach, CA, USA, June 2017, pp. 1694–1699.

[129] E. Rehder, H. Klöden, and C. Stiller, “Planungsbasierte Fußgänger-
prädiktion,” in Workshop Fahrerassistenzsysteme, Walting, Ger-
many, 2015, p. 129.

[130] E. Rehder and H. Kloeden, “Goal-directed pedestrian prediction,” in
IEEE International Conference on Computer Vision (ICCV) Work-

shop, Santiago, Chile, December 2015, pp. 50–58.

[131] E. Rehder, H. Kloeden, and C. Stiller, “Head Detection and Ori-
entation Estimation for Pedestrian Safety,” in IEEE International

Conference on Intelligent Transportation Systems (ITSC), Qingdao,
China, October 2014, pp. 2292–2297.

[132] E. Rehder, J. Quehl, and C. Stiller, “Driving Like a Human: Imi-
tation Learning for Path Planning Using Convolutional Neural Net-
works,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS) Workshop, Vancouver, Canada, September
2017.

140

[133] E. Rehder, F. Wirth, M. Lauer, and C. Stiller, “Pedestrian Predic-
tion by Planning using Deep Neural Networks,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Brisbane,
Australia, May 2018, pp. 1–5.

[134] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2P2: A Reparameter-
ized Pushforward Policy for Diverse, Precise Generative Path Fore-
casting,” in European Conference on Computer Vision (ECCV), Mu-
nich, Germany, September 2018, pp. 772–788.

[135] N. Rhinehart, R. McAllister, and S. Levine. (2018, October)
Deep Imitative Models for Flexible Inference, Planning, and Con-
trol. arXiv:1810.06544. https://arxiv.org/abs/1810.06544 [Online.
Accessed: 2020-07-25]

[136] D. Ridel, E. Rehder, M. Lauer, C. Stiller, and D. Wolf, “A Literature
Review on the Prediction of Pedestrian Behavior in Urban Scenar-
ios,” in IEEE International Conference on Intelligent Transportation

Systems (ITSC), Maui, HI, USA, November 2018, pp. 3105–3112.

[137] D. A. Ridel, N. Deo, D. Wolf, and M. Trivedi, “Understanding
Pedestrian-Vehicle Interactions with Vehicle Mounted Vision: An
LSTM Model and Empirical Analysis,” in IEEE Intelligent Vehicles

Symposium (IV), Paris, France, June 2019, pp. 913–918.

[138] P. Riekert and T.-E. Schunck, “Zur Fahrmechanik des Gum-
mibereiften Kraftfahrzeugs,” Ingenieur-Archiv, vol. 11, no. 3, pp.
210–224, 1940.

[139] C. Rösmann, M. Oeljeklaus, F. Hoffmann, and T. Bertram, “Online
Trajectory Prediction and Planning for Social Robot Navigation,” in
IEEE International Conference on Advanced Intelligent Mechatron-

ics (AIM), Munich, Germany, July 2017, pp. 1255–1260.

[140] M. Roth, F. Flohr, and D. M. Gavrila, “Driver and Pedestrian
Awareness-Based Collision Risk Analysis,” in IEEE Intelligent Vehi-

cles Symposium (IV), Gotenburg, Sweden, June 2016, pp. 454–459.

[141] A. Rudenko, L. Palmieri, and K. O. Arras, “Predictive Planning for a
Mobile Robot in Human Environments,” in IEEE International Con-

ference on Robotics and Automation (ICRA), Workshop on PlanRob,
Singapore, May 2017.

141

https://arxiv.org/abs/1810.06544

Bibliography

[142] A. Rudenko, L. Palmieri, and K. O. Arras, “Joint Long-Term Pre-
diction of Human Motion Using a Planning-Based Social Force Ap-
proach,” in IEEE International Conference on Robotics and Automa-

tion (ICRA), Brisbane, Australia, May 2018, pp. 1–7.

[143] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human Motion Trajectory Prediction: A Survey,”
The International Journal of Robotics Research, vol. 39, no. 8, pp.
895–935, 2020.

[144] A. Rudenko, L. Palmieri, A. J. Lilienthal, and K. O. Arras, “Hu-
man Motion Prediction Under Social Grouping Constraints,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), Madrid, Spain, October 2018, pp. 3358–3364.

[145] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Repre-
sentations by Back-Propagating Errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[146] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of

Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[147] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan, and R. Urtasun,
“Perceive, Predict, and Plan: Safe Motion Planning Through In-
terpretable Semantic Representations,” in European Conference on

Computer Vision (ECCV), Virtual Conference, 2020, pp. 414–430.

[148] T. Saito and M. Rehmsmeier, “The Precision-Recall Plot is More
Informative Than the ROC Plot When Evaluating Binary Classifiers
on Imbalanced Datasets,” PloS one, vol. 10, no. 3, pp. 1–21, 2015.

[149] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory
Recurrent Neural Network Architectures for Large Scale Acous-
tic Modeling,” in Fifteenth Annual Conference of the International

Speech Communication Association (INTERSPEECH), Singapore,
September 2014, pp. 338–342.

[150] S. Schmidt, B. Färber, and A. Pérez Grassi, “Geht er oder geht er
nicht?–Ein FAS zur Vorhersage von Fußgängerabsichten,” in Work-

shop Fahrerassistenzsysteme, Walting, Germany, 2008, pp. 2–4.

142

[151] S. Schmidt and B. Färber, “Pedestrians at the Kerb–Recognising
the Action Intentions of Humans,” Transportation Research Part F:

Traffic Psychology and Behaviour, vol. 12, no. 4, pp. 300–310, 2009.

[152] N. Schneider and D. M. Gavrila, “Pedestrian Path Prediction with
Recursive Bayesian Filters: A Comparative Study,” in German Con-

ference on Pattern Recognition (GCPR), Saarbrücken, Germany,
September 2013, pp. 174–183.

[153] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the Con-
stant Velocity Model can Teach us About Pedestrian Motion Pre-
diction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
1696–1703, 2020.

[154] A. T. Schulz and R. Stiefelhagen, “A Controlled Interactive Multi-
ple Model Filter for Combined Pedestrian Intention Recognition and
Path Prediction,” in IEEE International Conference on Intelligent

Transportation Systems (ITSC), Las Palmas, Gran Canaria, Spain,
September 2015, pp. 173–178.

[155] T. Shankar, S. K. Dwivedy, and P. Guha, “Reinforcement Learn-
ing via Recurrent Convolutional Neural Networks,” in International

Conference on Pattern Recognition (ICPR), Cancún, Mexico, De-
cember 2016, pp. 2592–2597.

[156] M. Shen, G. Habibi, and J. P. How, “Transferable Pedestrian Motion
Prediction Models at Intersections,” in IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), Madrid, Spain,
October 2018, pp. 4547–4553.

[157] N. Silberman and S. Guadarrama. (2016) TensorFlow-Slim Image
Classification Model Library. https://github.com/tensorflow/models/
tree/master/research/slim [Online. Accessed: 2020-07-25]

[158] K. Simonyan and A. Zisserman. (2014, September) Very
Deep Convolutional Networks for Large-Scale Image Recog-
nition. arXiv:1409.1556. https://arxiv.org/abs/1409.1556 [Online.
Accessed: 2020-07-25]

[159] T. Strauß, J. Ziegler, and J. Beck, “Calibrating Multiple Cameras
With Non-Overlapping Views Using Coded Checkerboard Targets,”
in IEEE International Conference on Intelligent Transportation Sys-

tems (ITSC), Qingdao, China, October 2014, pp. 2623–2628.

143

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://arxiv.org/abs/1409.1556

Bibliography

[160] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learn-

ing. Cambridge, MA, USA: MIT Press, 1998, vol. 135.

[161] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going Deeper With
Convolutions,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Boston, MA, USA, June 2015, pp. 1–9.

[162] S. Tadokoro, Y. Ishikawa, T. Takebe, and T. Takamori, “Stochastic
Prediction of Human Motion and Control of Robots in the Service of
Human,” in IEEE Systems, Man and Cybernetics Conference (SMC),
vol. 1, Le Touquet, France, October 1993, pp. 503–508.

[163] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value It-
eration Networks,” in Advances in Neural Information Processing

Systems (NeurIPS), Barcelona, Spain, December 2016, pp. 2154–
2162.

[164] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient
Object Detection,” in IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2020, pp. 10 781–10 790.

[165] P. Trautman and A. Krause, “Unfreezing the Robot: Navigation in
Dense, Interacting Crowds,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October
2010, pp. 797–803.

[166] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle Adjustment-A Modern Synthesis,” in IEEE International

Conference on Computer Vision (ICCV) Workshop, Corfu, Greece,
September 1999, pp. 298–372.

[167] V. V. Unhelkar, C. Pérez-D’Arpino, L. Stirling, and J. A. Shah,
“Human-Robot Co-Navigation Using Anticipatory Indicators of
Human Walking Motion,” in IEEE International Conference on

Robotics and Automation (ICRA), Seattle, WA, USA, May 2015, pp.
6183–6190.

[168] P. Vasishta, D. Vaufreydaz, and A. Spalanzani, “Natural Vision
Based Method for Predicting Pedestrian Behaviour in Urban Envi-
ronments,” in IEEE International Conference on Intelligent Trans-

portation Systems (ITSC), Yokohama, Japan, October 2017, pp. 1–6.

144

[169] D. Vasquez, “Novel Panning-Based Algorithms for Human Motion
Prediction,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), Stockholm, Sweden, May 2016, pp. 3317–3322.

[170] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative naviga-
tion in dense human crowds,” in IEEE International Conference on

Robotics and Automation (ICRA), Singapore, May 2017, pp. 1685–
1692.

[171] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell,
and K. Saenko, “Sequence to Sequence-Video to Text,” in IEEE In-

ternational Conference on Computer Vision (ICCV), Santiago, Chile,
December 2015, pp. 4534–4542.

[172] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and
G. Cottrell, “Understanding Convolution for Semantic Segmenta-
tion,” in IEEE Winter Conference on Applications of Computer Vi-

sion (WACV), Lake Tahoe, NV, USA, March 2018, pp. 1451–1460.

[173] C. J. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[174] U. Weidmann, “Transporttechnik der Fußgänger: Transporttech-
nische Eigenschaften des Fußgängerverkehrs, Literaturauswertung,”
IVT Schriftenreihe, vol. 90, 1993.

[175] P. M. Williams, “Using Neural Networks to Model Conditional Mul-
tivariate Densities,” Neural Computation, vol. 8, no. 4, pp. 843–854,
1996.

[176] F. Wirth, S. Krane, M. Loos, E. Rehder, and C. Fernandez, “What
Does a Good Prediction Look Like?” in IEEE Intelligent Trans-

portation Systems Conference (ITSC), Auckland, New Zealand, Oc-
tober 2019, pp. 1594–1599.

[177] Y. Wu and K. He, “Group Normalization,” in European Conference

on Computer Vision (ECCV), Munich, Germany, September 2018,
pp. 3–19.

[178] S. Xiao, Z. Wang, and J. Folkesson, “Unsupervised Robot Learn-
ing to Predict Person Motion,” in IEEE International Conference on

Robotics and Automation (ICRA), Seattle, WA, USA, May 2015, pp.
691–696.

145

Bibliography

[179] S. Yi, H. Li, and X. Wang, “Pedestrian Behavior Modeling From Sta-
tionary Crowds With Applications to Intelligent Surveillance,” IEEE

Transactions on Image Processing, vol. 25, no. 9, pp. 4354–4368,
2016.

[180] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu, “Video Para-
graph Captioning Using Hierarchical Recurrent Neural Networks,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, USA, June 2016, pp. 4584–4593.

[181] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Pars-
ing Network,” in IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, July 2017, pp. 2881–2890.

[182] B. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. Bag-
nell, M. Hebert, A. Dey, and S. Srinivasa, “Planning-Based Predic-
tion for Pedestrians,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), St. Louis, MO, USA, October
2009, pp. 3931–3936.

[183] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
Entropy Inverse Reinforcement Learning,” in AAAI Conference on

Artificial Intelligence (AAAI), vol. 8, Chicago, IL, USA, July 2008,
pp. 1433–1438.

[184] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss,
C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller et al.,
“Making Bertha Drive-An Autonomous Journey on a Historic
Route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, pp. 8–20, 2014.

146

	Vorwort
	Abstract
	Kurzfassung
	1 Introduction
	1.1 Towards Automated Driving
	1.2 Pedestrian Safety: A Challenge For Automated Driving
	1.3 Human Motion Is Decision Making
	1.4 Thesis Outline

	2 Fundamentals
	2.1 Markov Decision Processes
	2.2 Artificial Neural Networks

	3 Related Work
	3.1 Features
	3.2 Methods
	3.3 Reference Methods

	4 Probabilistic Goal-Directed Prediction
	4.1 Model Formulation
	4.2 Forward-Backward Prediction
	4.3 Markov Decision Processes for Prediction

	5 Pedestrian Position Prediction
	5.1 Destination Prediction
	5.2 Trajectory Prediction
	5.3 Joint Destination and Planning Network

	6 Dataset
	6.1 Prerequisites
	6.2 Pedestrian Data
	6.3 Dataset Statistics
	6.4 Metrics

	7 Experimental Validation
	7.1 Destination Prediction
	7.2 Goal-Directed Prediction
	7.3 Joint Goal and Trajectory Prediction

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	A Artificial Neural Networks
	A.1 Layers
	A.2 Non-Linearities
	A.3 Network Architectures

	B Details on Experiments
	B.1 Numerical Considerations
	B.2 Reference Experiments
	B.3 RMDN Experiments
	B.4 Planning Network Experiments

	Bibliography

