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Abstract: This paper presents a new method for parameter identification based on the modulating
function method for commensurable fractional-order models. The novelty of the method lies in the
automatic determination of a specific modulating function by controlling a model-based auxiliary
system, instead of applying and parameterizing a generic modulating function. The input signal of
the model-based auxiliary system used to determine the modulating function is designed such that a
separate identification of each individual parameter of the fractional-order model is enabled. This
eliminates the shortcomings of the common modulating function method in which a modulating
function must be adapted to the investigated system heuristically.
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1. Introduction

Fractional calculus is derived from the field of mathematics and the research on this
field is still ongoing [1,2]. In recent years, fractional calculus is being used more and
more in the engineering field. Complex physical, chemical e.g., Lithium-ion batteries [3],
or biological systems e.g., blood alcohol model [4] are increasingly being described by
fractional-order models. Fractional differential equations are also used to describe parts
of electrical circuits or refine the description of friction equations in mechanical systems.
An overview of technical areas is provided by [5]. Due to the non-locality and memory
of fractional integration and differentiation, these models approximate partial differen-
tial equations more accurately than classic integer-order models [6]. Over the last years,
identification methods considering fractional-order models based on the modulating func-
tion method (see e.g., [7–14]) have become more prevalent. A benefit of the modulating
function method is that a system of algebraic equations may be solved for the parameter
identification instead of a set of differential equations and the measured signal need not
be differentiated [15]. In current approaches, a generic modulating function is chosen and
parameterized heuristically. This procedure constitutes time-consuming educated guessing
which does not generalize or provide clues for new applications, especially in the fractional
order case. Thus, parameterizing the modulating function is a significant shortcoming
of this method. For parameter identification, the algebraic equations are collected in a
linear system which has to be solved. Because the modulating function is chosen and
parameterized a-priori, linear dependencies between the individual algebraic equations
can occur, depending on the measured signal. In this case, the parameter identification
cannot be performed, which constitutes is a significant shortcoming of this method.
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In this paper, we propose a systematic procedure for parameter identification using an
implicit determination of a modulating function considering the current measurements.
This procedure allows for direct parameter identification, without requiring the explicit
calculation of modulating function. To the best of the authors’ knowledge, it is the first
time that a method that automatically determines a modulating function for the parameter
identification of a fractional-order model is presented. While this idea has been described
for integer-order models [16], this result does not easily generalize to the non-integer
order case.

The paper is structured as follows: In Section 2, the basics of fractional calculus are
provided. In Section 3, the modulating function method is recapped and an additional
property for the modulating function method, enabling the separate identification of the
parameters, are given. Afterward, the model-based auxiliary system, which is central in
determining a modulating function automatically, is derived in Section 4. The model-based
auxiliary system is used to transfer the heuristic determination of a modulating function
into a control problem which allows an automatic determination of the parameter-specific
modulating function. A solution to the control problem is provided in Section 5, which
leads to the parameter identification and represents the main contribution of this paper.
Additionally, the error occurs due to superposed noise on the input and output signal is
analyzed. A numerical example in Section 6 demonstrating the efficacy of the proposed
algorithm concludes the paper.

2. Preliminaries
2.1. Fundamentals of Fractional Calculus

Throughout this paper, consider the smooth functions f : (−∞, t] → R and h :
[t, ∞) → R with the properties f (t) = 0, ∀t ≤ t0 and h(t) = 0, ∀t ≥ te. Let α ∈ R>0 and
t0 ≤ t1 < t < t2 ≤ te hold. Furthermore, b·c describes the floor function and denotes the
biggest integer smaller or equal to the argument and is used to state a modified ceiling-
function d·e := b·c+ 1. The functions f and h are assumed to be Lebesgue integrable on
the integration interval defined by [t0, te] (see [17]). In addition, the assumption is made
that f and h are dαe-times absolutely continuous on the derivation interval [t0, te], where α
is the derivation order (see [17]).

Remark 1. With regard to the parameter identification, the time variables t0, t1, t2, te, and t are
interpreted as follows. While t0 describes the point of time before the system is at rest, te describes the
point of time after the system is at rest. The time variable t1 marks the beginning of the identification,
t2 notes the end of the identification, and t is the independent integration variable.

The uninitialized as well as initialized fractional operators are described in [18] and
are given in the following definition. The initialized fractional operators consist of the
uninitialized fractional operator and time-variant initialization functions η : R5 → R
or ψ : R5 → R, which have been proven to be necessary in order to describe fractional
differential equations (FDEs) correctly. Differing from the notation used in [18], in this paper,
an additional operator index on the top left of the fractional operator is used (see [19]). This
index indicates that the function is integrated or differentiated w.r.t. the named variable.
The index on the bottom left represents the lower bound of the fractional integral and the
index on the bottom right is the upper bound. The order of the integration or derivative
is given by the top right index. The calculus of two-variable functions can be directly
extended from the fractional operators for functions depending on one variable (see [20]).

In the following definition, the uninitialized and the initialized fractional integration
along with the Riemann-Liouville (RL) and the Caputo (C) fractional derivatives according
to [21] are summarized.

Definition 1. (Fractional Operators.)
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• Uninitialized Fractional Integral

iτ α
t0 t f (τ) :=

1
Γ(α)

∫ t

t0

f (ν)
(t− ν)(1−α)

dν (1)

• Initialized Fractional Integral

Iτ α
t1 t f (τ) := it α

t1 t f (t) + η( f , α, t0, t1, t) (2)

• Uninitialized Riemann-Liouville Fractional Derivative

dRLτ α
t0 t f (τ) :=

(
d
dt

)dαe[
iτ dαe−α

t0 t f (τ)
]

(3)

• Uninitialized Caputo Fractional Derivative

dCτ α
t0 t f (τ) := iτ dαe−α

t0 t

[(
d

dτ

)dαe
f (τ)

]
(4)

• Initialized Fractional Derivative

Dτ α
t1 t f (τ) := dτ α

t1 t f (τ) + ψ( f , α, t0, t1, t) (5)

where Γ is the Gamma function (see [22] (pp. 1–6)).

Remark 2. The definition of the Riemann-Liouville (3) and the Caputo (4) fractional derivative are
connected by

dRLτ α
t0 t f (τ) = dCτ α

t0 t f (τ) +
bαc

∑
k=0

dRLτ α
t0 t

f (k)(τ)
k!

∣∣∣∣∣
τ=t0

(t− t0)
k (6)

which is given in [17].

Remark 3. In (2) and in (5), the application of the initialization function η or ψ necessitates
knowledge of the function f in the interval t ∈ [t0, t1] (see [18]). To ensure that a system is at
rest, the initialization function implies that f has to be known from t0 → −∞ according to [18].
Therefore, an exact initialization is not possible in practical applications.

Remark 4. In (5), the specific operator depends on the utilized uninitialized operator (3) or (4).
Thus, Dt α

t1 t f (t) may be described by either DRLt α
t1 t or DCt α

t1 t and must correspond to the uninitial-
ized operator (see [18]). According to the uninitialized operator, the related initialization function
has to be employed (see [18]).

In addition to the left-sided definitions, the equivalent right-sided definitions of the
integrations (1) and (2) and derivatives (3)–(5) exist.

Definition 2. (Uninitialized Right-Sided Fractional Integral.)

iτ α
t te h(τ) :=

1
Γ(α)

∫ te

t

h(ν)
(ν− t)(1−α)

dν. (7)

The other definitions follow directly by inserting (7) instead of (1) into the definitions (2)–(5).
These are explicitly given in Appendix A. The left- and right-sided fractional operators are
connected by a reflection operator Q.
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Definition 3. (Reflection Operator.)
The reflection operator Q maps a left-sided function f onto a right-sided one f̃ (see [23]):

Q f (t) := f (t1 + t2 − t) = f̃ (t). (8)

2.2. Fractional-Order Models

We define the commensurable fractional-order model using the initialized Caputo
fractional derivative (5)

DCt nα
t t2

ỹo(t) +
n−1

∑
i=0

ai DCt iα
t t2

ỹo(t) =
m

∑
j=0

bj DCt jα
t t2

ũo(t) (9)

where ai, bj ∈ R are unknown parameters. The number of parameters n, m ∈ N≥0 can
either be determined by white-box modeling or be specified for black-box modeling. We
thus assume n and m are known. The fractional order α ∈ R>0 is usually unknown and
has to be identified as well.

The input ũo and output signal ỹo in (9) are a noisy observation of the undisturbed
input u

ũo(t) = ũ(t) + ũe(t) (10)

and of the undisturbed output y

ỹo(t) = ỹ(t) + ỹe(t), (11)

to which the reflection operator (8) has been applied. The measurement disturbances are
represented by ũe and ỹe.

Remark 5. The reflected signals are used instead of the original signals since this allows a left-sided
auxiliary system to be derived (see Section 4).

Regarding the input signal ũ, we assume that the system is persistently excited, which
is a necessary condition for parameter identification [24] (p. 250). In Appendix C, we show
that the condition of persistent excitation collapses into a necessary condition on the signal
ũ (see Lemma A3).

Assumption 1. (Known Fractional Order.)
In this paper, it is assumed that the order is provided by another method like in [25,26]. From this
assumption, it directly follows that the fractional orders are known for parameter identification.
Furthermore, we consider stable systems and, because of the extended Matignon’s theorem (see [26]),
α ∈ (0, 2) is assumed.

Despite the restrictions placed by Assumption 1, we note that the derivations are not
limited solely to this case.

3. Parameter-Specific Identification Using Modulating Function Method

The modulating function method is a well-known method for the parameter identifi-
cation of fractional-order models (see e.g., [7–12]). The modulating function method was
derived in [27] for the integer-order case and has been transferred to the fractional-order
case (see e.g., [7–12]). In Section 3.1, we shortly recap the modulating function approach
to introduce the necessary notation. Based on the recap, a parameter-specific modulating
function is defined in Section 3.2. The properties of such a parameter-specific modulating
function are used to transfer the identification problem into a control problem in Section 5.

3.1. Fractional Modulating Function Method

Suppose, a modulating function ϕ exists which fulfills Assumption 2.
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Assumption 2. (Properties of Modulating Functions.)
Suppose J := { i ∈ N>0|i ≤ n} and K := { k ∈ N>0|∃i ∈ J : k ≤ biαc}. The modulating
function ϕ : R→ R fulfills the properties:

(P1) : ϕ(t) ∈ Cnα([t1, t2]),

(P2) :
(

d
dt

)k(
it diαe−iα

t1 t ϕ(t)
)∣∣∣∣∣

t=t1

=

(
d
dt

)k(
it diαe−iα

t1 t ϕ(t2)
)∣∣∣∣∣

t=t1

= 0 and

(P3) : dRLt iα
t1 t ϕ(t) = 0

where C indicates the class of continuously differentiable functions, i ∈ J , and k ∈ K.

The property (P3) ensures that the influence of the initialization function ψ in (9) is
eliminated. Multiplying (9) with a modulating function ϕ and integrating the resulting
equation by parts results in

n

∑
i=0

ai

t2∫
t1

ỹo(t) dRLt iα
t1 t ϕ(t)dt =

m

∑
j=0

bj

t2∫
t1

ũo(t) dRLt jα
t1 t ϕ(t)dt. (12)

without loss of generality we assume an = 1. This results in the well-known lemma for the
identification of the unknown parameters (see [12]). Note, the mathematical operations
changes the Caputo initialized fractional derivative used in (9) into uninitialized Riemann-
Liouville fractional derivative (3) in (12).

Lemma 1. (Parameter Identification Applying Modulating Function Method.)
Suppose t, t1 ∈ R, T∆, TI ∈ R>0, the modulating-function ϕ has property (P3), the system

DCt nα
t t2

ỹo(t) +
n−1

∑
i=0

ai DCt iα
t t2

ỹo(t) =
m

∑
j=0

bj DCt jα
t t2

ũo(t), (13)

h ∈ N≥0, h ≥ n + m + 1, L := { l ∈ N≥0|l ≤ h}, l ∈ L, tl = t1 + lT∆, and
p := [a0 . . . an−1 b0 . . . bm]

>. Furthermore, suppose M := [m0 . . . ml . . . mh]
>, where

ml is given by

m>l :=

−tl+TI∫
tl

y(t)ϕ(t)dt · · · −
tl+TI∫
tl

y(t) dRLt (n−1)α
tl t ϕ(t)dt

tl+TI∫
tl

u(t)ϕ(t)dt · · ·
tl+TI∫
tl

u(t) dRLt mα
tl t ϕ(t)dt

.

(14)

Is M regular, we get the parameters out of

z = M p (15)

where z := [z0 . . . zl . . . zh]
> and

zl :=

tl+TI∫
tl

y(t) dRLt nα
tl t ϕ(t)dt. (16)
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Proof. The proof can be found in [12].

We note that, depending on the a-priori chosen modulating functions and their pa-
rameterization, the equations of system (14) can be linearly dependent, which presents an
obstacle for the identification of parameters.

3.2. Parameter-Specific Modulating Function

Sometimes, it is favorable to identify just one parameter at a time. Therefore, we
introduce a parameter-specific modulation function approach. Suppose mo(t2) = es holds
true for each parameter ps, where ps represents the s-th element of the parameter vector
p := [a0 . . . an−1 b0 . . . bm]

>. Call ϕs parameter-specific modulating. In summary, in line
with the assumption (P1)–(P3) we define:

Definition 4. (Parameter-Specific Modulating Function Set.)
Suppose J := { i ∈ N>0|i ≤ n} and K := { k ∈ N>0|∃i ∈ J : k ≤ biαc}. The parameter-
specific setWs is defined as follows:

Ws :=W1 ∩W2 ∩W s
3 (17)

W1 :=
{

ϕs : R→ R|ϕs(t) = 0 ∀t ≤ t1
}

(18)

W2 :=
{

ϕs : R→ R|∀i ∈ J ∧ ∀k ∈ K : dRLt iα+k−diαe
t1 t ϕs(t)

∣∣∣
t=t2

= 0
}

(19)

W s
3 :=

{
ϕs : R→ R|mo(t2) = es

}
(20)

where the fractional derivative is given in (3), mo is given by

m>o (t2) :=

− t2∫
t1

ỹo(t)ϕs(t)dt · · · −
t2∫

t1

ỹo(t) dRLt (n−1)α
t1 t ϕs(t)dt

t2∫
t1

ũo(t)ϕs(t)dt · · ·
t2∫

t1

ũo(t) dRLt mα
t1 t ϕs(t)dt

.

(21)

In (20), es ∈ R(n+m+1)×1 consists of the elements

{es}j =

{
1 for j = s
0 else

(22)

and {·}j describes the j-th element of a vector, j ∈ S and S := { s ∈ N>0|s ≤ n + m + 1}.

Theorem 1. (Parameter-Specific Identification.)
Suppose S := { s ∈ N>0|s ≤ n + m + 1}, ϕs ∈ Ws, the fractional derivative (3) and ps :=

{
p>
}

s
where {·}s describes the s-th element of a the parameter vector p := [a0 . . . an−1 b0 . . . bm]

>.
The s-th parameter of (12) is calculated using a parameter-specific modulating function ϕs as follows:

t2∫
t1

ỹo(t) dRLt nα
t1 t ϕs(t)dt = ps. (23)

4. Model-Based Auxiliary System

Previous approaches using the modulating function method require such a function
to be known a-priori. As motivated in the introduction and in Section 3, finding a function
that meets (P1)–(P3) is often a tedious task, especially for fractional systems.

In the following two sections, we, therefore, present our main result which allows
parameter identification without requiring an explicit a-priori modulating function. Instead,
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we propose in this section the use of an auxiliary system that implicitly contains the
requirements of a modulating function. In the sequel, we then demonstrate how applying
an appropriate control to this dynamical system can be used to automatically retrieve a
valid modulating function and achieve parameter identification at the same time.

In Section 4.1, we introduce notation for the compact representation of an auxiliary
system. The auxiliary system used for parameter identification is formally introduced in
Section 4.2.

4.1. Notations for the Model-Based Auxiliary System

Before defining the model-based auxiliary system, we here introduce notations that
allow for a more compact description of the requirements needed for such a system.
Afterward, we introduce additional notations regarding the dimensions of subsystems
contained in the model-based auxiliary system and we define normalization parameters.

The main idea behind the model-based auxiliary system is that every expression
of the modulating function can be represented as a combination of the nα-th derivative

dRLt nα
t1 t ϕ(t) and a fractional integration with corresponding order. For example, (19),
considering i ∈ J , results in

dRLt iα+k−diαe
t1 t ϕs(t) = it λα+d(n−λ)αe−k

t1 t dRLt nα
t1 t ϕ(t) (24)

where the fractional derivative is given in (3), λ = 1, 2, . . . , n, and k = 0, 1, . . . , b(n− λ)αc.
To enable a compact definition of the model-based auxiliary system, a vector collecting all
possible derivative orders of (19) is given first.

Definition 5. (Vector of Boundary Term Orders.)

γ :=
[
β>1 β>2 . . . β>n

]
(25)

for the derivative orders

β>k :=
[
d(n− k)αe+ kα b(n− k)αc+ kα b(n− k)αc − 1 + kα ... 1 + kα

]
. (26)

Furthermore, suppose the two normalization parameters w := min
{

k ∈ N>0
∣∣ α

k ≤ 1
}

and r := min
{

k ∈ N>0

∣∣∣max{γ}
k ≤ 1

}
, where γ is defined by (25). This normalization

parameters ensure that all derivative orders of the model-based auxiliary system fulfill the
requirement α ∈ (0, 1] for fractional state spaces (see [28]). Additionally, κ := n + m + 1,

C :=
n
∑

k=1
d(n− k)αe, and z := rC are defined for a more compact representation of the

subsystem dimensions.

4.2. Model-Based Auxiliary System

Equipped with the notations introduced in the previous section, we now define
the model-based auxiliary system. The model-based auxiliary system is constructed by
interconnecting the derivatives of the modulating function dRLt iα

t1 t ϕ(t) and dRLt jα
t1 t ϕ(t)

(see (12)), the identification equation of the modulating function method (12), and the result-
ing boundary terms (P1)–(P3). In this subsection, we start by defining the states associated
with each of these parts and proceed with describing their respective state dynamics.

Remark 6. We denote the four interconnected parts of the model-based auxiliary system as its
constitutive subsystems and assign each a specific identifier. Subsystem ◦ describes the equation
resulting of the modulating function method (12), subsystem � maps the connection between the
derivatives of the modulating function in (12). Finally, subsystems M and ♦ take the derivatives in
(P2) into account.
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Definition 6. (Fractional State Vectors.)
Suppose x◦ : R→ Rκ×1, x� : R→ Rnw×1, xM : R→ Rdnαe×1, the fractional derivative (3), and
x♦ : R→ Rz×1.

x(t) =


x◦(t)
x�(t)
xM(t)
x♦(t)

 (27)

where

x◦(t) := m>o (t) (28)

x�(t) :=

 x�0 (t)
...

x�n−1(t)

, x�k (t) :=


dRLt kα

t1 t ϕ(t)

dRLt α
w +kα

t1 t ϕ(t)
...

dRLt (w−1)α
w +kα

t1 t ϕ(t)

 (29)

xM(t) :=


dRLt nα−dnαe

t1 t ϕ(t)

dRLt nα+1−dnαe
t1 t ϕ(t)

...
dRLt nα−1

t1 t ϕ(t)

 (30)

x♦(t) :=

x♦1(t)
...

x♦C(t)

, x♦k(t) :=


{xγ}k

dRLt {γ}k
r

t1 t {xγ}k
...

dRLt (r−1){γ}k
r

t1 t {xγ}k

 (31)

and

xγ(t) := dRLt γ
t1 t ϕ(t). (32)

In Definition 6, the states ◦ represent the derivatives of the modulating function which
occur in the basic equation of the modulating function method (12). Hence, the fractional
state equations for the subsystem ◦ are as given in the following Lemma 2.

Lemma 2. (Subsystem ◦.)
Suppose A◦ : R → Rκ×nw and ν = n or ν = m + 1, depending on whether the output or input
signal is considered. The subsystem ◦ is described using the state vector of subsystem �:

ẋ◦(t) :=
[
−ỹ(t) · Hn×nw

ũ(t) · H(m+1)×nw

]
x�(t) (33)

= A◦(t)x�(t) (34)

where

H :=

h>1
...

h>ν

, {hk}l =

{
1 if l = (k− 1)w + 1
0 else

. (35)

Proof. Using the definition (21), it follows directly that

ẋ◦(t) =
[
−ỹo(t)ϕs(t) . . . ũo(t) dRLt mα

t1 t ϕs(t)
]>

. (36)
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The expressions related to the modulating function are equivalent to the 1(st) , (w + 1)(th),
. . . , ((ν− 1)w + 1)(th) elements of x�(t) which is selected by (35).

The connection between the derivatives of the modulating function in (12) are mapped
by subsystem � considering that all derivatives are represented as a combination of the
nα-th derivative dRLt nα

t1 t ϕ(t) and a fractional integration with corresponding order.

Lemma 3. (Subsystem �.)
Suppose A� ∈ Rnw×nw and b� ∈ Rnw×1. Then,

dRLt α
w

t1 t x�(t) := Jnw×nwx�(t) +
[

0nw−1×1
1

]
u∗(t) (37)

= A�x�(t) + b�u∗(t) (38)

where J is a Jordan matrix with dimensions nw× nw which only has eigenvalues of 0.

Proof. The connection of the derivatives of the modulating function is a chain of integrators
for the input u∗(t) = dRLt nα

t1 t ϕ(t), whereby each integrator is of order α
w . This chain can

then be written as a system with a Jordan matrix where all eigenvalues are zero.

While subsystem M takes the boundary terms (19) for i = n into account, subsystem ♦
represents the boundary terms for i = 0, 1 . . . , n− 1.

Lemma 4. (Subsystem M.)
Suppose AM ∈ Rdnαe×dnαe and bM ∈ Rdnαe×1. Then,

ẋM(t) := Jdnαe×dnαex
M(t) +

[
0bnαc×1

1

]
u∗(t) (39)

= AMxM(t) + bMu∗(t) (40)

where J is a Jordan matrix with dimensions dnαe × dnαe and has only eigenvalues of 0.

Proof. The proof is analogous to the proof of Lemma 3 with the difference that the order of
each integrator is 1.

Lemma 5. (Subsystem ♦.)
Suppose A♦k ∈ Rr×r, b♦k ∈ Rr×1, A♦ ∈ Rz×z and b♦ ∈ Rz×1. The subsystem ♦ can be subdivided
into C subsystems of dimensions r× r:

dRLt {γ}k
r

t1 t x♦k (t) := Jr×rx♦k (t) +
[

0(r−1)×1
1

]
u∗(t) (41)

= A♦k x♦k (t) + b♦k u∗(t) (42)

where J is a Jordan matrix with dimensions r× r which only has eigenvalues of 0. Connecting all
subsystems results in

dRL
t γ

r
t1 t x♦(t) :=

 A♦1 . . . 0r×r
...

. . .
...

0r×r . . . A♦C

x♦(t)+

b♦1
...

b♦C

u∗(t) (43)

= A♦x♦(t) + b♦u∗(t) (44)

Proof. The proof is analogous to the proof of Lemma 3, where the order of each integrator
is {γ}k

w .
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Finally, using the defined states and their dynamics comprising the model-based
auxiliary system, we can now construct a full system description. We achieve this by simply
combining all matrices and vectors of the respective subsystems into the time-variant
system matrix

A(t) :=


0κ×κ A◦(t) 0κ×dnαe 0κ×z

0nw×κ A� 0nw×dnαe 0nw×z
0dnαe×κ 0dnαe×nw AM 0dnαe×z

0z×κ 0z×nw 0z×dnαe A♦

 (45)

and the input vector of the model-based auxiliary system

b :=


0κ×1
b�

bM

b♦

 (46)

with the input signal
u∗(t) := dRLt nα

t1 t ϕ(t). (47)

Remark 7. The model-based auxiliary system is derived without any restrictions on the fractional
order. Hence, the system must be also valid for the integer-order case. Considering α = 1, the
fractional states of subsystem M and subsystem ♦ are equivalent to the fractional states of subsystem
� and the model-based auxiliary system reduces to the subsystem ◦ and subsystem �. This result is
in line with the results in [16].

5. Implicit Determination of the Modulating Function

In this section, it is shown that the model-based auxiliary system can be used to deter-
mine a parameter-specific modulating function ϕs. For this, in Section 5.1 it is shown that
the model-based auxiliary system represents the parameter-specific modulating function
set given by Definition 4. Due to this connection, the determination of a parameter-specific
modulating function ϕs is transferred into a control problem. In Section 5.2, the identifica-
tion error resulting from a noisy observation of the input and output signals is analyzed.

5.1. Control-Based Identification

The connection between the parameter-specific modulating function set and the model-
based auxiliary system (45)–(47) is given in the following theorem.

Theorem 2. (Representation of the Parameter-Specific Modulating Function Set.)
If a model-based auxiliary system as stated in Section 4.2 exists and if a control input u∗ can be
calculated such that the uninitialized model-based auxiliary system

−x◦(t)δ(t− t1)
ψ
(
x�, α

w , t0, t1, t
)

−xM(t)δ(t− t1)
ψ
(
x♦, γ

r , t0, t1, t
)
 =


0κ×1

0nw×1
0dnαe×1

0z×1

 (48)

can be transferred into the final state
x◦(t2)
x�(t2)
xM(t2)
x♦(t2)

 =


es

0nw×1
0dnαe×1

0z×1

, (49)

then the final state (49) represents the parameter-specific modulating function setWs.
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Proof. Due to (48),
−x◦(t)δ(t− t1)

ψ
(
x�, α

w , t0, t1, t
)

−xM(t)δ(t− t1)
ψ
(

x♦, γ
r , t0, t1, t

)
 =


0κ×1

0nw×1
0dnαe×1

0z×1

⇒ ϕs(t̃) = 0 ∀t̃ ≤ t1 (50)

holds and fulfills (18). The final state (49) fulfills the terminal property (19):

xM(t2) = 0dnαe×1 ⇒ dRLt nα+k−dnαe
t1 t ϕs(t)

∣∣∣
t=t2

= 0 (51)

where k = 0, 1, . . . , bnαc and

x♦(t2) = 0z×1 ⇒ dRLt iα+k−diαe
t1 t ϕs(t)

∣∣∣
t=t2

= 0 (52)

where k = 0, 1, . . . , bnαc and i = 0, 1, . . . , n− 1.
In addition to Definition 4, the final state also ensures that all derivatives of the

modulated functions which arise due to the normalization fulfill the terminal property (19)

x�(t2) = 0nw×1 ⇒ dRLt k α
w

t1 t ϕs(t)
∣∣∣
t=t2

= 0 (53)

where k = 0, 1, . . . , nw− 1. Also, resulting from the final state (49)

x◦(t2) = es ⇒ m>o (t2) = es. (54)

Hence, (20) is fulfilled as well.

Following Theorem 2, the heuristic determination of a parameter-specific modulating
function ϕs can be considered as a control problem. It is sufficient to find an input signal
u∗ that steers the auxiliary system from the uninitialized state (48) into the final state (49).
Such an input signal

u∗s (t) := dRLt nα
t1 t ϕs(t) (55)

is called a parameter-specific control input and marked with the lower index s. This
enables the replacement of the parameter-specific modulating function dRLt nα

t1 t ϕs(t) by the
parameter-specific control input u∗s in the parameter-specific identification (23).

Lemma 6. (Control-Based Identification.)
Suppose u∗s (t) = dRLt nα

t1 t ϕs(t). The parameter-specific identification (23) is equivalent to

t2∫
t1

ỹo(t)u∗s (t)dt = ps. (56)

Proof. By inserting (55) into (23), (56) follows directly.

Remark 8. The parameter-specific modulating function can be derived from (55) by nα-times
integration:

ϕs(t) = it nα
t1 t u∗s (t). (57)

Because the identification problem is transferred into a control problem and to attain a
final state (49), the model-based auxiliary system has to be controllable. The controllability
is investigated in Appendix C.
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5.2. Analysis of the Identification Error

In the following, the identification error, which occurs if the input and the output
signal are superposed by noise (10) and (11), is calculated. It is also shown that the energy-
optimal control stated in Appendix B minimizes the upper bound of the identification
error. For this, it is assumed that a parameter-specific input signal u∗s exists and, hence, the
identification Equation (56) holds true. The remaining derivatives of the parameter-specific
modulating function are provided by the model-based auxiliary system.

Lemma 7. (Identification Error.)
Suppose a parameter-specific control input u∗s and the parameter-specific identification Equation (23).
Further, the notation p̂s indicates the parameter estimate for noisy observations of the output signal.
The identification error between the estimated parameter p̂s and the original parameter ps of the
fractional-order model is

∆ps := p̂s − ps (58)

∆ps =

t2∫
t1

ỹe(t)u∗s (t)dt−m>e (t2)p (59)

where me is given by

m>e (t2) :=

− t2∫
t1

ỹe(t)ϕs(t)dt · · · −
t2∫

t1

ỹe(t) dRLt (n−1)α
t1 t ϕs(t)dt

t2∫
t1

ũe(t)ϕs(t)dt · · ·
t2∫

t1

ũe(t) dRLt mα
t1 t ϕs(t)dt

.

(60)

Proof. Due to the assumption that a parameter-specific control input u∗s exists, the control
input u∗s may be used instead of the parameter specific modulating function ϕs in (23).
Assuming the observation of the input and output signals are superposed by additive noise
as in (10) and (11), (59) can be separated into a summand which depends on the measured
signal and a summand which depends on the disturbance. This leads to

t2∫
t1

ỹo(t)u∗s (t)dt−
t2∫

t1

ỹe(t)u∗s (t)dt =
(

m>o (t2)−m>e (t2)
)

p (61)

where mo is given by (21). Considering W s
3 for the measured data ỹo(t) and ũo(t), (61)

results in

p̂s −
t2∫

t1

ỹe(t)u∗s (t)dt = ps −m>e (t2)p. (62)

Rearranging (62) with regard to (58) completes the proof.

The identification error (59) depends on the input signal u∗s of the model-based auxil-
iary system. Therefore, the choice of the input signal influences the identification quality.

Lemma 8. (Minimal Bound of Identification Error.)
Suppose the identification error ∆ps (59) and a parameter-specific control input u∗s . Using the
energy-optimal control (A5) to determine the parameter-specific control input u∗s leads to a minimal
upper bound of the identification error

|∆ps| ≤ P(t1, t2, p, ỹe, ũe) ·
√

2
Γ(2ς)

it 2−2ς
t1 t2

J(u∗s , t1, t2) (63)
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where P(t1, t2, p, ỹe, ũe) is given by

P(t1, t2, p, ỹe, ũe) =

(
1 +

n

∑
i=1

(t2 − t1)
2i

Γ(i)(2i− 1)2i
∣∣{p}n−i+1

∣∣)
√√√√√ t2∫

t1

|ỹe(t)|2+

(
n

∑
j=n−m

(t2 − t1)
2j

Γ(j)(2j− 1)2j

∣∣∣{p}2n−j+1

∣∣∣)
√√√√√ t2∫

t1

|ũe(t)|2

(64)

and ς := min
{

α
w , γ

r
}

.

Proof. For the sake of clarity, the proof of Lemma 8 is given in Appendix B.

In summary, if a modulating function ϕ belongs to the parameter-specific set Ws,
each parameter of a fractional-order model (9) can be identified separately. The automatic
determination of such a parameter-specific modulating function ϕs is transferred into a
control problem by formulating a model-based auxiliary system (45)–(47). Notethat the
parameter identification can directly be performed using the control input (55) and that
no explicit calculation of the modulating function is necessary. The model-based auxiliary
system interconnects the derivatives of the modulating function, the identification equation
of the modulating function method (12), and the resulting boundary terms. For a parameter-
specific identification to take place, the model-based auxiliary system must be steered to
the final state (49) in Theorem 2. The modulating function, and thus the parameters,
automatically adjusts to new measurements since the control input continually adjusts to
ensure the final state (49) is achieved. Furthermore, applying an energy-optimal control to
the model-based auxiliary system reaches the final state while minimizing the upper bound
of the parameter identification error in the presence of noisy input and output signals.

6. Numerical Example

The parameter identification based on implicit modulating functions is illustrated in
the following. For this purpose, we consider the system

DCt α
t t2

ỹo(t) + a0ỹo(t) = b0ũo(t) (65)

where n = 1, m = 0, and α = 0.35 are assumed to be known, and a0 = 2 as well as
b0 = 1 are unknown. The simulation is started at t0 = 0 s and the identification at t1 = 5 s.
The duration of simulation is 15 s with a sampling time of Ts = 0.01 s and the duration
of identification is 5 s. A mean-free, pseudo-random binary sequence with an amplitude
of 1 is used as an input signal u(t) [24] (p. 165). The input, output and noisy output
(SNR = 34.7 dB) signals are shown in Figure 1. A green dotted line marks the starting time
of the identification.
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Figure 1. Input and output signals for parameter identification.

To state the model-based auxiliary system, the fractional orders of the boundary terms
must first be calculated. Evaluating (25) yields γ = 1.35 and r = 2. Because dnαe = 1, the
following fractional pseudo state space yields:


ẋ◦(t)

dRLt α
t1 t x�(t)

ẋM(t)

dRLt γ
r

t1 t x♦(t)

 =



0 0 −ỹ(t) 0 0 0
0 0 ũ(t) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




x◦(t)
x�(t)
xM(t)
x♦(t)

+



0
0
1
1
0
1

u∗(t). (66)

Depending on the requested parameter, the final pseudo state for a0 is

x(t2) =
[
1 0 0 0 0 0

]> (67)

and for b0

x(t2) =
[
0 1 0 0 0 0

]>. (68)

The parameter is identified by evaluating (23) and (56) respectively. To calculate the
parameter-specific control input, (A32) has to be evaluated. Therefore, the matrix approach
of [29] is used.

Because one measurement of the input and output signals can be used to identify all
parameters, the parameter-specific control input as well as the trajectories of the parameter
estimates for a0 and b0 are illustrated in Figure 2 for the noise-free case and in Figure 3
for the case with a noisy observation of the output signal. The final estimations â0 = 2
and b̂0 = 1 in the absence of noise and â0 = 2.005 and b̂0 = 0.999 in the case with a noisy
observation of the output signal can be read at the final time of the identification t2 = 10 s.
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Figure 2. Parameter-specific control input and course of unknown parameter in the noise-free case.

−20

0

20

40

in
pu

tu
∗ s,

i(
t)

0 2 4 6 8 10 12 14
−2

0

2

time (s)

pa
ra

m
et

er

reference parameter a0 reference parameter b0
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Figure 3. Parameter-specific control input and course of unknown parameter in the case of a noisy
observation of the output signal.

The results are compared to the parameter identification using a heuristically adapted
modulating function. Because the system is not at rest when the identification is started,
the spline-type modulating function has to be used (see [12]). For the approach which is
described in this paper, only the starting time and the duration of the identification may
be chosen freely. In addition to the start and end times, the use of spline-type modulating
functions requires that the number of splines and the order of the modulating function is
chosen. It should be noted that the maximum order of the modulating function depends on
the number of splines and the minimum order depends on the fractional order of the system
(see [12]). All the parameters of the spline-type modulating function have to be fixed a-
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priori. This is not necessary using the newly proposed method based on implicit modulating
functions, from which the modulating function can be determined automatically.

In this example, the method described in [12] is applied using a spline-type modulating
function with 20 splines and of order 5 for the comparison. The starting time t1 = 5 s and
the identification horizon 5 s are chosen as for the parameter-specific identification method.
To derive the independent equations for the linear system (15), the identification horizon
has to be shifted. The shifting time is an additional parameter for the identification which
is set to 1 s in this example. Using the same input ũo and output signal ỹo illustrated in
Figure 1, the parameters are identified to â0 = 1.903 and b̂0 = 0.969. Regarding the number
of shifts, each shift leads to a new independent equation. The linear system (15) consits
of n + m + 1 equations which means that at least n + m shifts are necessary to state the
linear system (15). In this example, one shift is sufficient because of n = 1 and m = 0
(see (65)). The shifting of the identification horizon makes longer measurements necessary.
Considering fractional systems with more parameters, the extension of the measurement
duration can be significant. Because of the extension of the measurement duration, more
data are considered for parameter identification. Nonetheless, the error of the identified
parameters is with 4–5% for the method described in [12] significant greater than the error
(approx. 0.3%) made with the parameter-specific approach which is described in this paper.

7. Conclusions

The main contribution of this paper covers the automatic generation of modulating
functions by transferring the parameter identification into a control problem, as is provided
in Definition (6). For this purpose, a model-based auxiliary system, which connects the
fractional-order model, the modulating function as well as the boundary terms resulting
from the application of the modulating function method, is defined in this paper. Instead
of adjusting a generic modulating function for each parameter individually, it is sufficient
to calculate an input signal which steers the model-based auxiliary system from the unini-
tialized state into the final state (49) corresponding to the parameter to be identified. If the
input signal for the steering process is designed as an energy-optimal control, the upper
bound of the identification error is minimized in the presence of noisy observations of the
input and output signal.

Regarding the practical applicability, the controllability of the model-based auxiliary
system is also investigated in this paper and depends on the orders of the fractional-order
model and the chosen input signal ũe of system (9).
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Appendix A. Right-Sided Definitions of Fundamentals

In the following, the right-sided definitions of the initialized integration and deriva-
tives of Section 2.1 are given using the notation of [19].

Definition A1. (Right-Sided Fractional Operators.)
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• Initialized Right-Sided Fractional Integral

Iτ α
t t2

h(τ) := iτ α
t t2

h(τ) + ηrs(h, α, t2, te, t) (A1)

• Uninitialized Right-Sided Riemann-Liouville Fractional Derivative

dRLτ α
t te h(τ) := (−1)dαe

(
d
dt

)dαe[
it dαe−α

t te
h(t)

]
(A2)

• Uninitialized Right-Sided Caputo Fractional Derivative

dCτ α
t te h(τ) := (−1)dαe it dαe−α

t te

[(
d
dt

)dαe
h(t)

]
(A3)

• Initialized Right-Sided Fractional Derivative

Dτ α
t t2

h(τ) := dτ α
t t2

h(τ) + ψrs(h, α, t2, te, t) (A4)

where Γ is the Gamma function (see [22] (pp. 1–6)).

Appendix B. Error Minimization with Energy-Optimal Control

In this section, the proof of Lemma 8 is given. Lemma 8 states that a parameter-specific
input signal u∗s calculated as an energy-optimal control leads to a minimal upper bound of
the identification error (59) which occurs due to the presence of a noisy observation for the
input and output. With the definition of the R-Matrix (see [28]), the prerequisite is given to
define the energy-optimal control, which was originally introduced in [28].

Definition A2. (Energy-Optimal Control.)
Suppose a fractional state space as given in [28], l ∈ N>0, K := { k ∈ N>0|k ≤ l}, α ∈ Rl×1,
{α}k ∈ (0, 1] and ς = min{α}. The energy-optimal control is defined by

u(t) = (t2 − t)2−2ςB>(t)Rα,rs

(
t, t2, A>

)
K−1(t1, t2)·x(t2) +

t2∫
t1

Rα

(
τ, t, A>

)
ψ(x, α, t0, t1, τ)dτ

 (A5)

where

K(t1, t2) =

t2∫
t1

(t2 − τ)2−2ςRα(τ, t2, A)B(τ) · B>(τ)Rα,rs

(
τ, t2, A>

)
dτ, (A6)

k ∈ K, Rα is the left-sided R-Matrix, and Rα,rs the right-sided R-Matrix of the fractional state
space (see [28]). Then, (A5) steers the fractional state space from an initialization function vector ψ
to any given final state vector x(t2) and minimizes the specific performance index regarding the
control energy

J(u, t1, t2) =
1
2

t2∫
t1

(t2 − τ)2ς−2u>(τ)u(τ)dτ. (A7)

Lemma 8 states that an upper bound for the identification error exists and that a
parameter-specific control input u∗s calculated as an energy-optimal control (A5) minimizes
this upper bound. This is shown in the following proof of Lemma 8.
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Proof. Starting from the identification error (59) and inserting the parameter-specific con-
trol input (55) yields

∆ps =

t2∫
t1

ỹe(t) dRLt nα
t1 t ϕ(t)dtdt−m>e (t2)p. (A8)

To calculate an upper bound of (A8), the triangle inequality is applied

|∆ps| ≤

∣∣∣∣∣∣
t2∫

t1

ỹe(t) dRLt nα
t1 t ϕ(t)dt

∣∣∣∣∣∣+
∣∣∣m>e (t2)p

∣∣∣. (A9)

Further, applying the Cauchy-Schwarz inequality results in

|∆ps| ≤
n

∑
i=1

√√√√√ t2∫
t1

|ỹe(t)|2

√√√√√ t2∫
t1

∣∣∣ dRLt (i−1)α
t1 t ϕs(t)

∣∣∣2 · |{p}i|+

m

∑
j=0

√√√√√ t2∫
t1

|ũe(t)|2

√√√√√ t2∫
t1

∣∣∣ dRLt jα
t1 t ϕs(t)

∣∣∣2 · ∣∣∣{p}n+j+1

∣∣∣+
√√√√√ t2∫

t1

|ỹe(t)|2

√√√√√ t2∫
t1

|u∗s (t)|
2.

(A10)

Next, an upper bound is calculated for the integrals which depends on the parameter-
specific modulating function in (A10). First, the fractional derivative is separated into a
fractional integration of order kα and a fractional derivative of order nα

t2∫
t1

∣∣∣ dRLt (n−k)α
t1 t ϕs(t)

∣∣∣2dt =
t2∫

t1

∣∣∣ it kα
t1 t dRLt nα

t1 t ϕs(t)
∣∣∣2dt. (A11)

Second, the absolute value is taken under the fractional integral and the order of integration
is shifted

t2∫
t1

∣∣∣ dRLt (n−k)α
t1 t ϕs(t)

∣∣∣2dt ≤ it kα
t1 t

t2∫
t1

|u∗s (t)|
2dt. (A12)

Third, the integrals are evaluated for α = 1, considering the mean value theorem [30]

t2∫
t1

∣∣∣ dRLt (n−k)α
t1 t ϕs(t)

∣∣∣2dt≤ (t2 − t1)
2k

Γ(k)(2k− 1)2k

t2∫
t1

|u∗s (t)|
2dt. (A13)

Inserting this into (A10) yields

|∆ps| ≤ P(t1, t2, p, ỹe, ũe)

√√√√√ t2∫
t1

|u∗s (t)|
2 (A14)

where P(t1, t2, p, ỹe, ũe) is given in (64).
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The integral of the parameter-specific control input u∗s is rewritten using fractional
integrals

t2∫
t1

|u∗s (t)|
2 =

2
Γ(2ς)

it 2−2ς
t1 t2

it 2ς
t1 t

Γ(2ς)

2
|u∗s (t)|

2

(t2 − t)
(A15)

=
2

Γ(2ς)
it 2−2ς

t1 t2
J(u∗s , t1, t) (A16)

where ς = min
{

α
w , γ

r
}

. Because the integrand of J(u∗s , t1, t) is positive on [t1, t2] and, hence,
J(u∗s , t1, t) increases with increasing time, the maximum is reached at t = t2, i.e.,

t2∫
t1

|u∗s (t)|
2 ≤ 2

Γ(2ς)
it 2−2ς

t1 t2
J(u∗s , t1, t2) (A17)

and, therefore, the identification error is bounded by

|∆ps| ≤ P(t1, t2, p, ỹe, u∗s ) ·
√

2
Γ(2ς)

it 2−2ς
t1 t2

J(u∗s , t1, t2). (A18)

Comparing J(u∗s , t1, t2) in (A18) and (A7) completes the proof.

Appendix C. Controllability of the Model-Based Auxiliary System

Because the determination of a parameter-specific modulating function is transferred
into a control problem of a fractional state space, the controllability of the model-based
auxiliary system has to be analyzed. For this, the Gramian, which in turn is based on
the R-Matrix, (see [28]) is needed. Hence, the R-Matrix of the model-based auxiliary
system is stated first and the corresponding Gramian is given thereafter. Finally, using the
calculated Gramian, the controllability of the model-based auxiliary system is determined.

Throughout this section, suppose w := min
{

k ∈ N>0
∣∣ α

k ≤ 1
}

, C :=
n
∑

k=1
d(n− k)αe, and

r := min
{

k ∈ N>0

∣∣∣max{γ}
k ≤ 1

}
, where γ is defined in (25).

First, the R-Matrix of the model-based auxiliary system is evaluated.

Lemma A1. (R-Matrix of the Model-Based Auxiliary System.)
Suppose κ := n + m + 1, z = r · C, ϑ := κ + nw + dnαe+ z, P◦ỹ : R → Rn×nw, P◦ũ : R →
R(m+1)×nw, P� : R→ Rnw×nw, PM : R→ Rdnαe×dnαe, P♦ : R→ Rz×z, and Rα : R→ Rϑ×ϑ.
Then the R-Matrix of the model-based auxiliary system with the system matrix (45) results in

Rα(t, t2, A) =


In×n 0n×(m+1) P◦ỹ (t) 0n×dnαe 0n×z

0(m+1)×n I(m+1)×(m+1) P◦ũ (t) 0(m+1)×dnαe 0(m+1)×z
0nw×n 0nw×(m+1) P�(t) 0nw×dnαe 0nw×z

0dnαe×n 0dnαe×(m+1) 0dnαe×nw PM(t) 0dnαe×z
0z×n 0z×(m+1) 0z×nw 0z×dnαe P♦(t)

 (A19)

where

P◦ỹ (t) = −Hn×nw

(
nw−1

∑
k=0

it (k+1) α
w

t t2
ỹo(t)Jk

nw×nw

)
, (A20)

P◦ũ (t) = H(m+1)×nw

(
nw−1

∑
k=0

it (k+1) α
w

t t2
ũo(t)Jk

nw×nw

)
, (A21)
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P�(t) =
nw−1

∑
k=0

(t2 − t)(k+1) α
w−1

Γ
(
(k + 1) α

w
) Jk

nw×nw, (A22)

PM(t) =
dnαe−1

∑
k=0

(t2 − t)k Jk
dnαe×dnαe, (A23)

P♦(τ) =

P♦1 (t) . . . 0r×r
...

. . .
...

0r×r . . . P♦C (t)

, P♦j (t) =
r−1

∑
k=0

(t2 − t)(k+1)
{γ}j

r −1

Γ
(
(k + 1)

{γ}j
r

) Jk
r×r (A24)

and J represents a Jordan matrix with the corresponding dimensions and which only has eigenvalues
of 0.

Proof. Because the system matrix (45) is nilpotent, the fractional Peano-Baker series
(see [28]) and, hence, the sum in the R-Matrix is finite. The matrices P�, PM and P♦

can be derived separately because of the structure of (45). For this purpose, each matrix of
the subsystems is inserted into the fractional Peano-Baker series and the sum is evaluated.
For subsystem �,

F�α
w
(t) =

nw−1

∑
k=0

(t2 − t)k α
w

Γ
(
k α

w + 1
) Jk

nw×nw (A25)

results. Using an interim result of the composition with the fractional derivatives in [22]
(pp. 59–60)

dRLt 1−α
τ t (τ − t)β =

Γ(β + 1)
Γ(β + α)

(τ − t)β−1+α (A26)

leads directly to the matrices P�, PM and P♦.
To calculate P◦ỹ and P◦ũ , the results of subsystem� (A25) have to be taken into account

which leads to (A27)–(A29) for the output signal:

P◦ỹ (t) = −Hn×nw

(
nw−1

∑
k=0

∫ t2

t
ỹ(τ)

(τ − t)k α
w

Γ
(
k α

w + 1
)dτJk

nw×nw

)
(A27)

= −Hn×nw

(
nw−1

∑
k=0

1
Γ
(
k α

w + 1
) ∫ t2

t

ỹ(τ)

(τ − t)1−(k α
w +1)

dτJk
nw×nw

)
(A28)

= −Hn×nw

(
nw−1

∑
k=0

it k α
w +1

t t2
ỹ(t)Jk

nw×nw

)
(A29)

where H is given in (35).
Determining P◦ũ is equivalent to the steps before.

Lemma A2. (Gramian of the Model-Based Auxiliary System.)
The Gramian of the model-based auxiliary system with the input vector (46) and the R-Matrix (A19)
results in

G(t1, t2) =

t2∫
t1

Rα(τ, t2, A)b b>R>α (τ, t2, A)dτ (A30)

=

t2∫
t1

$(τ, t2, A)$>
(

τ, t2, A>
)

dτ (A31)
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where $ is given by

$>
(

t, t2, A>
)
=

[
− it nα

t t2
ỹo(t),− it (n−1)α

t t2
ỹo(t), . . . ,− it α

t t2
ỹo(t),

it nα
t t2

ũo(t), it (n−1)α
t t2

ũo(t), . . . , it (n−m)α
t t2

ũo(t),

(t2 − t)nα−1

Γ(nα)
,
(t2 − t)

(nw−1)α
w −1

Γ
(
(nw−1)α

w

) ,. . . ,
(t2 − t)

α
w−1

Γ
(

α
w
) ,

(t2 − t)dnαe−1

Γ(dnαe) ,
(t2 − t)dnαe−2

Γ(dnαe − 1)
,. . . ,1,

(t2 − t){γ}1−1

Γ({γ}1)
,
(t2 − t)

(r−1){γ}1
r −1

Γ
(
(r−1){γ}1

r

) ,. . . ,
(t2 − t)

{γ}1
r −1

Γ
(
{γ}1

r

) ,. . . ,
(t2 − t){γ}C−1

Γ({γ}C)
,

(t2 − t)
(r−1){γ}C

r −1

Γ
(
(r−1){γ}C

r

) ,. . . ,
(t2 − t)

{γ}C
r −1

Γ
(
{γ}C

r

) ]

(A32)

and (
$>
(

t, t2, A>
))>

= $(t, t2, A). (A33)

Proof. The proof is given in [28].

Finally, the controllability of the model-based auxiliary system can be analyzed. Re-
garding the input signal ũo we assume a non-vanishing input signal.

Assumption 3. (Non-Vanishing Input Signal.)
Unless every coefficient bj ∈ R vanishes, we assume

m

∑
j=0

bj DCt jα
t t2

ũo(t) 6= 0. (A34)

To ensure that the model-based auxiliary system is fully controllable, two requirements
have to be fulfilled. The first one is related to the fractional orders and the second one
concerns the input signal.

Definition A3. (Sets of Fractional Orders.)
Suppose J := { i ∈ N≥0|i ≤ n− 1}, K1 := { k1 ∈ N>0|k1 ≤ nw},
K2 := { k2 ∈ N>0|k2 ≤ dnαe}, K3 := { k3 ∈ N>0|k3 ≤ r} and
K4,i := { k4 ∈ N≥0|k4 ≤ bkαc}. The fractional orders of subsystem � are described by

M1 :=
{

m1 ∈ R
∣∣∣∃k1 ∈ K1 : m1 = k1

α

w
− 1

}
, (A35)

of subsystem M by

M2 := {m2 ∈ N≥0|∃k2 ∈ K2 : m2 = dnαe − k2 }, (A36)

of subsystem ♦ by

M3 :=M3,0 ∩ · · · ∩M3,n−1, (A37)

M3,i :=
{

m3 ∈ R|∃k3 ∈ K3 ∧ ∃k4 ∈ K4,i : m3 = k3
diαe − k4 + (n− i)α

r
− 1
}

. (A38)
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To analyze if all fractional orders are different and if the input signal excite the system
persistently, a special function is defined.

Definition A4. (Q-Function.)

Q(t) :=
nw

∑
k=1

qnw−k+1
(t2 − t)k α

w−1

Γ
(
k α

w
) +

bnαc

∑
k=0

qnw+κ+dnαe−k+2(t2 − t)k+

n−1

∑
i=0

bjαc

∑
k=0

r

∑
l=1

qi,k,l
(t2 − t)l diαe−k+(n−i)α

r −1

Γ
(

l diαe−k+(n−i)α
r

) .

(A39)

Lemma A3. (Controllability of the Model-Based Auxiliary System.)
The model-based auxiliary system is completely controllable if the intersection of the setsM1,M2
andM3 depending on fractional order α and the system order n is empty

M1 ∩M2 ∩M3 = ∅ (A40)

and if the input signal ũ(t) of the fractional-order model (9) is chosen, such that

dt
nw−1

w α+1
t t2

Q(t) +
m

∑
j=0

qnw+n+j+1 dt jα
t t2

ũ(t) ≡ 0 (A41)

is only fulfilled for the trivial solution. In (A41), the fractional derivative operator is equilvalent to
the definition of the fractional derivatives of the investigated system (see (5), (9) and Rem. 3).

Proof. If the Gramian (A30) of the model-based auxiliary system is regular or the time
functions of $>

(
t, t2, A>

)
are linearly independent, the model-based auxiliary system will

be complete controllable (see [31]).
Thus, it has to be shown that $>

(
t, t2, A>

)
q ≡ 0 holds true only for q = 0. In

the following, q 6= 0 is assumed. Thereby, the entries in (A32) without input or output
signals are equivalent to the first term of the sum in (A41). Because they are of polynomial
nature, single terms can eliminate each other if and only if the exponents are equal. When
considering non-vanishing coefficients, Q(t) ≡ 0 can never occur ifM1 ∩M2 ∩M3 = ∅
holds true.

Assuming that all elements of {q}k = 0 for the polynomial type elements of (A32),
the second term of the sum in (A41) can be transformed into the form (9) by a right-sided
differentiation of order nα

− qnw+1ỹ(t)− · · · − qnw+n DCt (n−1)α
t t2

ỹ(t) + qnw+n+1ũ(t) + · · ·+ qnw+κ DCt mα
t t2

ũ(t) ≡ 0 (A42)

which is a FDE of order (n− 1)α. It is assumed that (9) is explicitly given and ỹ(t) and ũ(t)
can only solve FDEs of order nα. Thus, ỹ(t) can only vanish if ũ(t) is a homogeneous FDE

qnw+n+1ũ(t) + · · ·+ qnw+κ DCt mα
t t2

ũ(t) ≡ 0 (A43)

which is excluded by Assumption 3.
Therefore, if the input signal is chosen according to (A41) and the intersection of

the sets (A35)–(A37) depending on fractional order α and system order n is empty, the
model-based auxiliary system is fully controllable.

Remark A1. For the integer order case with α = 1, the sets M2 and M3 belonging to the
subsystem M and subsystem ♦ are empty, because the model-based auxiliary system only consists of
the subsystem ◦ and subsystem �. Thus, the controllability of the model-based auxiliary system
only depends on the input signal ũ(t) according to (A41). This result is in line with the results
in [16].
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