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1 | INTRODUCTION

The goal of this work is to improve our understanding of the large-scale geometry of simply con-
nected nilpotent Lie groups and, more specifically, of an asymptotic invariant called the Dehn
function, which encodes fundamental geometric and algebraic information on the group. Given a
simply connected Lie group G equipped with a left-invariant Riemannian metric, the Dehn func-
tion & (r) is the smallest real number such that every rectifiable loop y of length < r in G admits a
filling by a Lipschitz disk of area < §5(r). An important feature of the Dehn function is the invari-
ance of its asymptotics under quasi-isometry (see Subsection 3.1). The study of filling functions
of nilpotent Lie groups is a very difficult subject that has been deeply explored by Gromov, who
initiated it [23, 24], and other authors (for example, [1, 21, 34, 40, 41, 43]). The main result of this
paper should be seen as a contribution to this important subject. However, one of its key applica-
tions and the choice of groups studied can be better appreciated in the wider context of the study
of the large-scale geometry of simply connected nilpotent groups. We will thus start by recalling
known facts and central open problems in this area. A reader who directly wants to proceed to
our results can go straight to Subsection 1.2.

1.1 | Background on the large-scale geometry of nilpotent groups

A motivation for focussing on simply connected Lie groups rather than discrete groups is that
every finitely generated nilpotent group maps with finite kernel onto a lattice in a unique simply
connected nilpotent Lie group (called its real Malcev completion) [27]. It follows that the quasi-
isometry classification of finitely generated nilpotent groups reduces to that of simply connected

5US017 SUOLULLIOD dAIIRID 3|qed! dde ay) Aq peusenob afe sajoiiie YO ‘8N JO SN 1oy Arig 1 auljUQ AB|IAA UO (SUONIPUOD-PUR-SWLB)W0Y" B[ 1M A Relq 1 BU I UO//SdNY) SUORIPUOD pUe SWB | 8Y)38S *[2202/2T/20] uo Ariqiauljuo 8| B160jouyds ] o 1su| Buynsie Aq 86T swd/ZTTT OT/I0p/L0d A3 | 1M Aeiq 1 pUlUO"90SYRLPUO|//:SdNL WOy papeo|umod ‘0 ‘XiZ0orT



CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS | 3

nilpotent Lie groups, which is conjectured to have the following very neat formulation (see [12,
Conjecture 19.114]).

Conjecture 1.1. Two simply connected nilpotent Lie groups are quasi-isometric if and only if they
are isomorphic.

Conjecture 1.1 is more commonly stated in the discrete case: two finitely generated torsion-free
nilpotent groups are quasi-isometric if and only if they have isomorphic real Malcev completions
(this is mentioned as an open question in [19]). It is tempting to ask whether a quasi-isometry
between two such groups implies that they are commensurable. This turns out to be false.
Indeed, for any ring R, let H;(R) denote the d-dimensional Heisenberg group over that ring. Then
I]-I]d(Z[\/E]) and H,(Z)? are both (uniform) lattices in H;(R)?, therefore they are quasi-isometric.
However, their rational Malcev completions are not isomorphic, which is equivalent to saying that
the groups are not commensurable [27].

The lowest dimensional example of a pair of simply connected nilpotent Lie groups for which
Conjecture 1.1 is still open occurs in dimension 5 (for a complete overview of the state of the art in
dimension < 6 we refer to [12]). This shows that we are still far from having a complete proof even
in low dimensions. On the other hand, there is ample evidence pointing towards the veracity of
Conjecture 1.1, with one of the first striking results being Pansu’s theorem. To state it precisely we
need to recall the notions of a Carnot graded Lie algebra (respectively, a Carnot graded nilpotent
Lie group).

We denote y,g = g, ¥;,19 = [g,7;4] the lower central series of the Lie algebra g (respectively,
7,G the lower central series of the group G). A Lie algebra g (respectively, group G) has step s if
s is the smallest integer such that y,, ;g = {0} (respectively, y,,,G = {1}). The lower central series
gives rise to a filtration of g in the sense that [y;g,7;4] C 7,;8.

A Lie algebra is called Carnot gradable if this filtration comes from a grading, that is, a decompo-
sition g = P, m; satisfying ;¢ = @, ; m; and [m;, m;] C m;,, ;; such a grading is called a Carnot
grading. It is always possible to associate a Carnot graded Lie algebra gr(g) to any nilpotent
Lie algebra g by letting gr(g) = ;. m; for m; = y,9/7,,1¢ and defining the Lie bracket in the
obvious way to make m; a grading (see Subsection 7.2 for more details). We denote gr(G) the
simply connected nilpotent Lie group whose Lie algebra is gr(g). The pair (gr(G), m;) is then
called a Carnot-graded group (some authors say stratified group). Observe that gr(g) has the same
dimension and step as g.

We say for convenience that two groups are cone equivalent if their asymptotic cones with
respect to any given non-principal ultrafilter are bi-Lipschitz®. It is easy to see that two groups
that are quasi-isometric are cone equivalent. Pansu’s fundamental theorem provides a complete
classification of simply connected nilpotent groups up to cone equivalence.

Theorem 1.2 [4, 30] and [31]. Let G be a simply connected nilpotent Lie group, equipped with a
left-invariant word metric d associated to some compact generating subset. Then (G, d /n) converges
in the Gromov-Hausdorff topology to gr(G) equipped with a left-invariant sub-Finsler metric d, as
n — 0. Moreover, if two simply connected nilpotent Lie groups G and G’ have bi-Lipschitz asymptotic
cones (for example, if they are quasi-isometric), then gr(G) and gr(G") are isomorphic.

Various terminologies exist in the literature: s-step nilpotent, s-nilpotent, or nilpotent of class s.

# Note that our notion of cone equivalence differs from Cornulier’s notion of cone equivalence between maps in [9].
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4 | LLOSA ISENRICH ET AL.

In particular, Theorem 1.2 shows that two simply connected nilpotent Lie groups G and G’ are
cone equivalent if and only if gr(G) and gr(G’) are isomorphic. Another beautiful piece of work
on this subject is due to Shalom. He shows that Betti numbers are invariant under quasi-isometry
among finitely generated nilpotent groups [37, Theorem 1.2]. This enabled Shalom to produce
the first examples of cone equivalent nilpotent groups that are not quasi-isometric. To close this
quick survey, we mention that Sauer [36] strengthened Shalom’s theorem by proving the quasi-
isometry invariance of the real cohomology algebra of such groups, thereby extending the class of
cone equivalent pairs that can be distinguished up to quasi-isometry.

These results show that for nilpotent groups, being cone equivalent is indeed weaker than being
quasi-isometric, thereby giving credit to Conjecture 1.1. Recently, Cornulier introduced the follow-
ing generalisation of quasi-isometries, which provides a quantitative version of cone equivalence
for nilpotent groups [11].

Definition 1.3 (Cornulier). A map between two metric spaces F : (X,dy) — (Y, dy) is called a
sublinear bi-Lipschitz equivalence (SBE) if there exists a non-decreasing map v : R, — R, that
is sublinear (thatis, lim,_,  v(¢)/t = 0)and x, € X,y, € Y,and M > 1,such that for all» > 0 and
x,x" € B(xy,1)

M~y (x,x") — v(r) < dy(F(x), F(x")) < Mdx(x, x") + v(r),
and for all y € B(y,, r) there exists x € X such that d(F(x),y) < v(r).

SBEs are designed to induce bi-Lipschitz homeomorphisms between asymptotic cones [9,
Proposition 2.13.]". In [9], Cornulier observes that Pansu’s theorem can be reformulated in
terms of the existence of a SBE between G and gr(G) (see Corollary 9.5). On the other hand,
quasi-isometries correspond to the special case of v being bounded. Hence, the study of sim-
ply connected nilpotent Lie groups up to SBE is a way to interpolate between the conjectural
quasi-isometric classification and Pansu’s theorem.

In this paper, we shall focus on a certain family of pairs of cone equivalent nilpotent groups. We
know by Shalom that these groups are not quasi-isometric. But proving that they have different
Dehn functions allows us to derive a much stronger statement: we obtain an explicit asymptotic
lower bound on the possible functions v such that these groups are v-SBE (see Subsection 1.4 for
precise statements).

We now proceed to a detailed description of our results.

1.2 | Central products and non-Carnot gradable nilpotent groups

Most examples of simply connected nilpotent Lie groups that one might readily think of are Carnot
graded. In particular, this is the case for all groups of dimension at most 5, with two exceptions,
and for all 2-nilpotent groups. However, this observation is rather misleading, as the predomi-
nance of Carnot gradable groups turns out to be a low-dimensional phenomenon. Indeed, in high
dimensions being Carnot gradable is a rather rare phenomenon and it even seems reasonable to
go as far as to say that a generic nilpotent Lie group will not be Carnot gradable. This emphasises

 Note that they were called ‘cone bi-Lipschitz equivalences’ in [9].
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the importance of understanding nilpotent Lie groups that are not Carnot gradable, even if the
tools at hand are much more limited.

One way of obtaining interesting examples of nilpotent Lie groups that are not Carnot gradable
is a general construction called a central product. Given two Lie algebras f and [, central subspaces
3 Cfand 3’ I, and an isomorphism 6 : 3 — 3/, we define the central product g = ¥ Xz [ to be
the quotient of the direct product £ X [ by the central ideal {(z, —0(2)); z € 3}.

Let k (respectively, 1) be the maximal integer such that 3 (respectively, 3’) is contained in the
kth (respectively, Ith) term of the lower central series of f (respectively, [). If k > [ > 2 and f and
[ are Carnot graded with 1-dimensional centres, it is easy to check that the Lie algebra g is not
Carnot gradable and that gr(g) is isomorphic to the direct product £ x (I/3/).

To introduce the explicit family of groups that will form our main object of study, we start by
recalling a classical class of Carnot graded Lie algebras.

Definition 1.4. The standard filiform p-nilpotent Lie algebra [, is the step (p — 1) nilpotent Lie
algebra of dimension p with basis {x;, x,, ..., x,} satisfying [x;,x;] = x;;; for2<i<p—1and
[xi,xj] =0forl<i<gj<gporif(i,j)=(Q@,p).

We denote by L, the corresponding simply connected Lie group. The semi-direct product A, =
zr1 Xy Z, with ¢(x)(x;) = ;41,2 <i< p—1,and qb(xl)(xp) = 0, defines a lattice in Ly, where
we denote by x, the generator of Z and by x,, ..., x, the generators of ZP~!, This provides us with
a natural presentation P(A p) of A, which we will use later."

If p > 3, the centre of [, is the 1-dimensional subalgebra spanned by z : = x,. For 3 < ¢ < pwe
define the Lie algebra g, , to be the central product (defined unambiguously) of I, and [,,. We let
G, 4 be the corresponding simply connected Lie group. G, ; admits a uniform lattice I', ; which
is simply the central product of A, and A;. As a concrete example, observe that G; ; and I'; ; are
the 5-dimensional Heisenberg group Hs(R) and its integer lattice Hs(Z), respectively.

The groups G, , and their corresponding Lie algebras g, , will form our main object of study in
this paper; in particular the cases when g = p — 1 or g = p. A key motivation for this is that the
Lie algebras g, , for g, p > 3 are Carnot gradable ifand only if g = p and thus that the correspond-
ing groups G, , are not isomorphic to their asymptotic cones if g # p. Indeed, for 2 < g < p, the
associated Carnot-graded Lie algebra gr(g), ;) is isomorphic to the direct product [, X [,_; (note
that [, = R?)and thus gr(Gp ) = L, X L,_;. Moreover, we observe that G, ; and thus gr(G, ;) are
max(p — 1, q — 1)-step nilpotent. We will now proceed to exploit the difference between G, ; and
L, X L,_, to reveal the first phenomenon from the abstract.

1.3 | A family of pairs of cone equivalent groups with different Dehn
functions

We shall use the following notation*: if f, g are functions defined on Z., we write f(n) < g(n)
if |f(n)| < Alg(An + A)| + A for some A >0, and f(n) < g(n) if f(n) < g(n) < f(n). Finally,
f(n) < g(n) means that f(n) < g(n) holds but f(n) < g(n) does not.

" Note that using the same notation for the generators of the lattice A, and the generators of the Lie algebra [, will not
cause any confusion, as it will always be clear from context which one of the two we are working with.

#We emphasise that in contrast to a common convention in the setting of Dehn functions we do not allow for a linear
term in the definition of <. This has two reasons: (i) we do not consider any Dehn functions of hyperbolic groups, and (ii)
we require this stronger form of equivalence in the context of SBE below.
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6 | LLOSA ISENRICH ET AL.

Our main result is a computation of the Dehn functions of the groups G, , and G,, , _;:
Theorem A. Forall p > 4, 5Gpp(n) = nP~1and 6Gp p_l(n) = nP1,

On the other hand, it follows from classical arguments that gr(G, ,_;) = L, X L,_, has Dehn
function < nP. Hence, we deduce from Pansu’s theorem the following corollary.

Corollary B. Foreveryr > 3, thereis a pair of finitely generated (or simply connected Lie) r-nilpotent
groups with bi-Lipschitz asymptotic cones but whose Dehn functions have different growth types.

Note that for p = 3 Theorem A does not hold in the p — 1 case: while the Dehn function of
G;3 = H5(R) is known to be quadratic [1, 28], the Dehn function of G; , = H;(R) X R is cubic. We
also emphasise that the fact that G; ; does have quadratic Dehn function will later form the basis
for our induction argument in the proof of the upper bounds in Theorem A.

It has been known since Gromov [23] that topological properties of asymptotic cones impose
restrictions on Dehn functions (for example, if the asymptotic cone is a real tree, respectively,
simply connected, then the Dehn function is linear, respectively, polynomially bounded). A con-
sequence of a theorem of Papasoglu is that if 5gr(G) < nd, then ds(n) S nd+ forevery e > 0[17, 2.7;
32]. Corollary B shows that there is no converse to this theorem, proving that the fine behaviour
of the Dehn function is not always captured by the asymptotic cone. The fact that central prod-
ucts can have a lower Dehn function than their factors has been noticed by Olshanskii and Sapir
[28], and by Young [43] for a large class of examples. However, in all situations studied by these
authors, the groups in question are actually step 2 nilpotent and therefore Carnot gradable.

The lowest dimensional occurrence of the phenomenon described by Corollary B is in dimen-
sion 6. Indeed, the group G, ; shares its asymptotic cone with two other 6-dimensional step 3
groups and the Dehn function of G, 5 is cubic, whereas for the two others it is quartic. We refer
to Section 10 for a detailed discussion of all 6-dimensional nilpotent Lie algebras and the Dehn
functions of their associated simply connected nilpotent Lie groups.

1.4 | Sublinear bi-Lipschitz equivalence

Considering the Dehn function of the group G, ; was suggested by Cornulier and triggered our
work [11, Question 6.20]. Cornulier’s motivation is coming from the study of SBEs between nilpo-
tent groups. He proves that for every pair (G, gr(G)) where G has step c one can choose v of the
form v(t) < t¢ withe =1 — 1/c [11, Theorem 1.21].

The Dehn function is well-known to be invariant under quasi-isometry and Cornulier observed
a weaker stability result for the Dehn function under SBE: having Dehn functions with different
exponents implies an asymptotic lower bound v > t¢ for some e > 0 on the possible functions v
such that there can exist an O(v)-SBE. With this in mind he suggested the pair (G, 3, Ly X Z2)
as a possible example satisfying such a lower bound [11, Example 6.19]. We confirm Cornulier’s
intuition and, more generally, prove the following result.

Theorem C. Let p>4.If0<e< ﬁ, then there is no SBE between Gp’p_1 and Lp X Lp_2 with
u(t) = O(t°).
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Actually the precise exponent in Theorem C is deduced from a slightly stronger version of The-

orem A, saying that the filling occurs in a ball of radius comparable to the length of the loop'.
p—2

This lower bound should be compared with the asymptotic upper bound of ¢ »-! following from
Cornulier’s general estimates. It would be interesting to understand the precise asymptotics of the
exponent as a function of p as p — +oo: in particular, does it tend to zero?

Remark 1.5. As already mentioned, the fact that the groups considered in Theorem C (or their
lattices) are not quasi-isometric is also a consequence of [37, Theorem 1.2]. Indeed we shall see
that by(A, X Ap_,) = by(T', ,_1) + €, Where ¢, is 1 or 2 according to whether p is even or odd
(see Lemma 7.12).

1.5 | Centralised and regular Dehn functions differ for nilpotent
groups

We now recall the algebraic definition of the Dehn function. Given a presentation (not necessarily
finite) (S | R) of a group G, one can define its Dehn function as follows: we call an element w of
the free group F generated by S null-homotopic (in G) if it represents the trivial element in G. For
every null-homotopic word w € F¢ we define Area(w) to be the minimal integer k such that

k
= -1,
w= ||y ruw,
i=1

where u; € Fg and r; € R*!. The Dehn function & g (n) is the (possibly infinite) infimum of
Area(w) over all null-homotopic words w € Fy of length at most n. If the group is finitely pre-
sented, then the Dehn function takes finite values and its asymptotic behaviour does not depend
on the choice of finite presentation. A similar statement holds for compactly presented groups
(see Section 3).

In [3], Baumslag, Miller and Short introduce the closely related notion of centralised Dehn
function of a presentation (S | R) of a group G, which they define as follows:

Definition 1.6. Denote R the normal subgroup of F generated by R. Given a null-homotopic
word w € Fg, we define its central area Area®(w) to be the minimal integer k such that

in R/[Fs, R], with r; € R*!. The centralised Dehn function 653", (n) is the (possibly infinite)

infimum of Area®"'(w) over all null-homotopic words w of length at most n.

As for the Dehn function, one can show that the asymptotic behaviour of the centralised Dehn
function of a finitely presented group does not depend on a specific choice of finite presentation,
so we simply denote it by 52?“. Note that we have Séem < & by definition. It turns out that Séem is

" Only using the Dehn function would provide us with the much weaker lower bound of # on the exponent.
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8 | LLOSA ISENRICH ET AL.

in general easier to estimate as it is closely related to the second cohomology group of G, or, equiv-
alently, to the central extensions of G. In particular, we have the following useful characterisation
of the centralised Dehn function for torsion-free nilpotent groups.

Proposition 1.7 (see Proposition 7.2). Let T be a torsion-free nilpotent group and let g be the Lie
algebra of its Malcev completion. Then 5§em(n) = n', wherer is the largest integer such that g admits
a central extension R — § — g whose kernel belongs to y, 8.

Such a central extension will be called r-central in the sequel. The centralised Dehn function
was used in [3] to obtain sharp lower bounds on the Dehn functions of certain nilpotent groups.
In [41], Young mentions that for nilpotent groups it is unknown whether 5;"“‘(11) =< 6p(n). Later
Wenger exhibited a 2-step nilpotent group whose Dehn function strictly lies between quadratic
and n’logn [40], therefore answering Young’s question negatively. Here we show that even the
growth exponents of the two functions can be different.

Theorem D. Let k be an integer > 2. We have

cent - scent o ,2k—1
arzk,zk—l(n) - 5F2k+l,2k (m)=n :

Hence, the Dehn function and the centralised Dehn function have different exponents for 'y 1 5.

1.6 | Structure of the paper

In Section 2, we give an overview of the proof of our main results. In Section 3, we introduce
basic notions and results regarding compact presentations, Dehn functions and filling diameters.
In Section 4, we prove the upper bound in Theorem A for p = 4 as a warm-up for the general
case. In Section 5, we set the stage for the proof of the upper bound in Theorem A for general
p, by deriving an explicit compact presentation for G, and then proving several preliminary
results satisfied by words in its generators. Section 6 contains the proof of the upper bound in
Theorem A. In Section 7, we explore the existence of central extensions of central products. In
Section 8, we derive the lower bounds in Theorem A for all p, showing that for odd p the lower
bounds on the Dehn function of G, ,_; provided by the centralised Dehn function are not optimal,
thus also completing the proof of Theorem D. Section 9 is concerned with applying our results in
the theory of SBEs, leading to a proof of Theorem C. In Section 10, we give an overview of the
Dehn functions of nilpotent groups of dimension less or equal to six. Finally, we list some open
questions and speculations arising from our work in Section 11.

1.7 | Conventions and notations
Groups and Lie algebras

When working with words w(X) in the generators of a group G with presentation P = (X | R) we
will be careful to distinguish equalities of words and equalities of their corresponding elements
in the group. To do so, for words w; (X) and w,(X) we will write w, (X) = w,(X) if they are equal
as words and w,(X) = w,(X) (with respect to P or G) if they represent the same element of the
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS | 9

group. Whenever this is not clear from context we will make sure to mention the presentation (or
group) explicitly when using =.

We will write [w] for the group element represented by a word w if we want to explicitly distin-
guish it from the word. We will denote by #(w) the word length of a word w(X) and for a group
element g € G by |g|x := Cay; x(1, g) the distance of g from the origin in the Cayley graph.

We call a word w(X) central if [w] is a central element of the group G.

Asymptotic comparisons

We shall use the notation A <, B to mean that there exists some C < oo only depending on a such
that A < CB. Similarly, we denote A ~, Bif A S, Band B 5, A. Sometimes we will also say A is
inO,(B)ifA $,Band A =0,(B)if A ~, B.

2 | OVERVIEW OF THE PROOF

To provide the reader with an intuition for the proofs in this paper we now briefly explain the
moral ideas behind why the groups G, ,_, satisfy the conclusions of Theorem A and Theorem D.

The proof of Theorem A and Theorem D has three fundamental parts, which make up most of
this paper.

(1) The proof of the upper bound of n”~! on the Dehn functions of Gp p—1 and G, ,. This will
make up by far the biggest part of this work and will be contained in Sections 4-6.

(2) The proof that Gpp—1 admits no (p — 1)-central extension when p is odd, which will be
contained in Section 7.

(3) The proof that the Dehn function of G, ,_; is nevertheless bounded below by nP=1,
irrespectively of the parity of p, which will be contained in Section 8.

Parts (2) and (3) turn out to be easier to explain in the setting of Lie algebras, while we postpone
most of the explanation of Part (1) to Subsection 2.2. So, we will adopt the Lie algebra point of
view here.

We recall the notation x, ..., x p=2Z for the standard generators of the Lie algebra [ p of L » and
we will denote by x, ..., Xp_1,Xp =Z, V15 Vq-1.Vqg = 2 the standard generators of the Lie alge-
bra gp’q"' of Gpq for p > g > 3. We denote its dual basis by &, ..., §p_1, §p =¢, 1, s Ngo15Mg =
¢. We will restrict to the case g = p — 1 for simplicity, even though parts of our subsequent
arguments extend directly to general g € {3,..., p — 1}

2.1 | The fundamental reason for why everything works

At the base of all three parts is the existence of the central element z which connects the two
factors of the central product via the identification z = 6(x,) = y,ing, , = [, Xg [, respectively,
its group theoretic analogue.

To avoid confusion, let us mention that when we work with the Lie group G p,g We will denote the generators of the L -
factor by V15 Vp—gt2s s Yp—1:Yp = Z, 88 this turns out to be more convenient, while for the Lie algebra setting the indices
chosen here turn out to be easier to work with. The Lie algebra approach and thus this choice of indices will only appear
in Section 7.
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10 | LLOSA ISENRICH ET AL.

From the Lie algebra point of view this comes into play as follows: the differential of { is d¢ =
=& A§pinly, and thusin [, x 1, , =gr(g, ,—1), butd{ ==& A, =1 Ay ing,,.

The computational consequence is that it will be more difficult for a form w € /\2 g;‘;,q to
have vanishing exterior derivative if it has terms with a non-trivial { contribution than is
the case in /\2 [*. Indeed, d{ being a linear combination of two basis elements means that
its differential ‘interacts non-trivially’ with more other basis elements than if it only had one
summand.

From the group theory point of view the relation z = x,, = y, will enable us to move central
words in the x; between factors, allowing us to commute them more easily with other words in
the x;.

We briefly expand on how these observations come into play in Parts (1)—-(3), thereby providing
the moral idea of why and how our proof works.

Part (1): Let us just mention at this point that the argument is by induction on p and ultimately
boils down to the idea that we can commute central words of length n in the x; with other words
of length n in the x; at cost n?~! rather than nP (as one might naively expect). We achieve this
by passing through the second factor of the central product via the subgroup G,_; ,_; <G, ,_1,
which has Dehn function nP~2 by induction. Actually proving this for general p will require
a chain of combinatorial results. However, a good intuition for the general ideas should be
attainable from the case p = 4, which we will sketch in Subsection 2.2 and prove in detail in
Section 4

Part (2): In the [ ,-factor of the Carnot Lie algebra [, X, _, = gr(g, ,_,) associated to g, ,_;
there is a 2-form v, with p' = [p/2], which defines a (2p’ — 1)-central extension of [ p and thus
of [, X1, ,. A precise definition of this form will be given in Subsection 7.4. Note that if p is
even 2p’ — 1) = p — 1, whereas if p is odd 2p’ — 1 = p. Interestingly, the form v,y only defines
a cocycle in Zz(gp,p_l, R) if p is even, that is, its exterior derivative does not vanish when p is
odd. In terms of linear algebra the non-vanishing of its exterior derivative precisely boils down
to the fact that d¢ has one summand more in g, , than in [, X [ ,_, due to the central product
structure.

Irrespectively of the parity of p there are no other forms defining r-central extensions for r >
p—1inZ%(g p»,p—1 R) and we deduce that g, ,_; admits a (p — 1)-central extension if and only if
p is even. In combination with Theorem A this proves Theorem D

Part (3): On first sight there is one more candidate for a cocycle defining a (p — 1)-central
extension of g, ,_;, namely §; A §,_;. But of course it is a non-candidate, because it is the 2-form
defining the ‘obvious’ (p — 2)-central extension [, X 1,_; — g, ,_;.

However, this ‘false candidate’ for a (p — 1)-central extension is precisely the reason why
the Dehn function of G for odd p is bigger than one might expect from the centralised
Dehn function.

Indeed, as we already mentioned, §; A § p—1 defines a cocycle in Z 2(g pp—1° R) and in a sense the
only problem is that the commutator [x;,x,_;] € ¥_18, ,—; on which it is non-trivial is equal to
z and in particular does not vanish ing, , ;.

We found a solution to overcome this issue and confirm our intuition that the Dehn function
of G, ,_, is bounded below by nP~1 also when p is odd. The idea is to exploit a ‘perturbation’ of
the2-form &, A & p—1 in order to show that the null-homotopic loops [x7, [x], ..., [x], x}] ... ] have
area bounded below by n?~!. We will explain the technique used for this approach in the first half
of Subsection 2.2.

p.p—1
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 11

2.2 | Sketch of proof of Theorem A

The proof of Theorem A will cover the largest part of this paper. It splits into two independent
parts: the proof of the lower bound, and the proof of the upper bound. The former will be contained
in Section 8, while the latter will span Sections 4-6. To make it more accessible, we will provide a
brief summary of the main ideas involved.

We start by discussing the proof of the lower bound. When p is even, then the lower bound is
simply given by Theorem D. The case when p is odd is much more involved and requires new
ideas. Our method is inspired by Thurston’s proof of the exponential lower bound on the Dehn
function of the real 3-dimensional SOL group [18]. Thurston proceeds as follows: he exhibits a
1-form « on G such that da is left-invariant, and a sequence of loops y,, of length n such that the
integral of a along y,, is > A" for some 4 > 1. A direct application of Stokes’ theorem then implies
that the area of any smooth embedded surface bounded by y,, must be bounded below by cA" for
some constant ¢ > 0 only depending on a and on a choice of left-invariant Riemannian metric
onG.

The first step in our argument consists of the observation that Thurston’s assumption that da is
invariant can be relaxed to the weaker assumption that it is ‘bounded’. To that purpose, we define
the space of bounded k-forms on G to be the space of forms a such that sup ¢ [(g.2),, Il < oo,

where || - || is a norm on /\k g* (note that the boundedness condition does not depend on a choice
of such a norm). It is quite immediate to see that Thurston’s approach works verbatim replacing
the condition that da is invariant by the condition that da is bounded. We note that a related
approach was developed by Gersten, who explains how #*-cocycles can be used to obtain lower
bounds on the Dehn function of a finitely presented group G [20, 2.7].

The second step and main innovation in our argument is the construction of a suitable bounded
2-form by ‘deforming’ a well-chosen invariant form. For this we exploit the central product struc-
ture of our groups. We start by observing that G, ,_, maps surjectively to L,_,. We shall consider
a 2-cocycle of L,_; associated to its central extension L, and consider an invariant 2-form § rep-
resenting it in de Rham cohomology. We will then consider a relation r of lengthninL,_; and a
primitive o of 8 whose integral along (a continuous path associated to) r has size < nP~!. Although
the word corresponding to r would not define a relation in Gp, p—15 its commutator [y, r] for a suit-
able word y will. The problem at this point is that the integral of « along [y, r] will be zero. So, we
shall perform a suitable ‘local perturbation’ of @, obtaining a 1-form a’ whose integral along [y, r]
is < nP~1, and such that da’ while not being invariant anymore will remain bounded. This will
show that the area of [y,r] in L,_, (and a fortiori in G, ,_,) is at least nP-1,

Actually when trying to implement the previous argument, we run into a regularity problem:
we have to deal with forms that are not smooth, preventing us from using Stokes’ theorem. A
solution would be to smoothen our forms so that the previous argument could be applied directly.
However, this would make our computations more cumbersome. We chose instead to privilege
an alternative approach, which better suits the study of Dehn functions associated to compact
presentations. The idea is to replace the condition that do is bounded by the fact that the integral
of o along any loop of bounded length is bounded. This condition is easy to work with and has the
nice advantage of making sense for continuous 1-forms. Moreover, it satisfies a discrete version of
Stokes’ theorem, inspired by [13, section 12.A].

We now turn to the proof of the upper bound in Theorem A that occupies the largest part of
the paper and is our main contribution to the subject. In Section 4, we start by proving the upper
bound 564,3(11) < n3. Indeed, while containing the main idea, this bound turns out to be consider-

5US017 SUOLULLIOD dAIIRID 3|qed! dde ay) Aq peusenob afe sajoiiie YO ‘8N JO SN 1oy Arig 1 auljUQ AB|IAA UO (SUONIPUOD-PUR-SWLB)W0Y" B[ 1M A Relq 1 BU I UO//SdNY) SUORIPUOD pUe SWB | 8Y)38S *[2202/2T/20] uo Ariqiauljuo 8| B160jouyds ] o 1su| Buynsie Aq 86T swd/ZTTT OT/I0p/L0d A3 | 1M Aeiq 1 pUlUO"90SYRLPUO|//:SdNL WOy papeo|umod ‘0 ‘XiZ0orT
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ably easier to obtain than the more general bound SGM_] (n) < nP~!. At the end of Section 4, we
shall explain the difficulties arising in the general case, and our strategy to overcome them. For
now, we shall focus on the special case p = 4 and further restrict to the discrete group I’ ;.

The key idea in the proof is to exploit the fact that there is a canonical embedding I'; 5 &
Hs(Z) < T3 of the 5-dimensional Heisenberg group which, as we mentioned before, has Dehn
function n?. We will explain the main steps of the proof and, in particular, where we use the
embedding of Hs(Z):

In a first step we reduce to considering null-homotopic words w = w(x;, x,) in the genera-
tors of the first factor A, < Iy 5 of the central product. The core of the argument, which we will
explain now, consists of transforming w(x,, x,) into a word that closely resembles the normal
form x? 3xf1x;2 xZ“. Since for a null-homotopic word we must have a; = a; = a, = a, = 0 we can
then conclude from there.

Given a word w(x,, x,) of length #(w) = n the idea is to push all x;’s to the left one-by-one,
starting with the leftmost one. Modulo y,(A,) this will eventually yield the word xfl x; 2. However,
whenever we commute a x; with a xg ) we produce an error term x?(”) which we then need to
move out of the way. We do this by pushing it to the very left of the word, at the cost of producing
a central word of the form [x?("), x?(")]. All steps up to this point require O(n?) relations and
repeating this O(n) times, once for each instance of x;, would provide us with the desired area
bound of O(#3).

However, the problem is that this is only true modulo y;(A,). Instead we also need to move the
word of the form [x?(”), xg(")] which we produced out of the way in every step. We want to do
this by moving it to the very right of the word. This involves commuting it with words of the form
xlo(”), which in the 3-Heisenberg group H;(Z) = A; = (x,, X;) requires O(n*) relations. After O(n)
repetitions we would thus end up with an upper area bound of O(n*) rather than O(n3). This is
the point at which we make fundamental use of the fact that the group (x,, x5) is the left factor of an
embedded 5-dimensional Heisenberg group obtained by taking the central product of A; with itself.
Indeed, this allows us to replace the central word [x?("), x?(")] in the left factor by a central word
v of the same length in the right factor of the central product I'; ; using O(n?) relations. We can

then commute v with xlo(”) using only O(n?) relations. After O(n) repetitions of the total process,
each of which has a total cost of O(n?) relations, we thus reach a word that closely resembles the
normal form x‘fx‘fl xgzxf:“. For this we required only O(n?) relations, rather than the expected
O(n*) relations, and we can conclude from there. Note that in fact in this last step we use that
H<(Z) has Dehn function n? once more to simplify a product of O(n) copies of central words of
the form [x?("), x?(n)] into the trivial word.

We will use various analogues of both of the kinds of above transformations coming from the
embedded copy of H5(Z) < T, ; for general p, by exploiting the embedded subgroup G,_; ,_; <
G, p—1- They will appear at many points of the proof and ultimately lead to two key technical
results: the Main commuting Lemma (Lemma 6.2) and the Cancelling Lemma (Lemma 6.9),
which in essence can be seen as our most general versions of the first and second application of
H5(Z) above. There will be various challenges to overcome for general p in comparison to p = 4.
The most obvious one is that the central series of A, has more than three non-trivial terms. This
means that there is not enough space to mimic the trick we used for p = 4, where we conveniently
left terms in y,(A,) in the middle, moved terms in y,(A,) to the left and finally moved terms in
75(A,) to the right, which provided us with a suitable normal form.

When computing the upper bounds for the Dehn functions of the G, ,_; we will use Dehn

functions of compact presentations rather than either geometric methods or Dehn functions of
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discrete groups. Indeed, while we do use a more geometric approach in our proof of the lower
bounds, we were not able to find an obvious geometric model for our groups that allows for the
‘easy’ computation of upper bounds on Dehn functions. On the other hand, they are too compli-
cated to pursue a discrete combinatorial approach. It is thus really the hybrid approach between
the two points of view provided by compact presentations of Lie groups that allows us to prove our
results. Indeed, it provides us with the ‘geometric’ flexibility of writing our words in a relatively
simple and thus manageable form on the combinatorial side, while at the same time allowing
us to use all of the classical tools and manipulations from discrete combinatorial group theory,
thereby not requiring the use of an intricate geometric model. We thus believe that this kind of
approach really merits attention, as it might also be instrumental in other problems in this area.
We emphasise that this has also been suggested in [14].

3 | DEHN FUNCTIONS, FILLING DIAMETERS AND FILLING PAIRS

In this section, we will introduce basic notions on Dehn functions, filling diameters and filling
pairs and collect some important well-known results on them.

3.1 | Dehn functions of compactly presented groups

Let G be a compactly generated locally compact group. For any compact generating set S let
K(G, S) be the kernel of the epimorphism Fg - G where F denotes the free group over S. Recall
that G is compactly presented with compact presentation P = (S | R) if K(G, S) is the normal
closure of R C K(G, S) such that R is bounded with respect to the word metric on Fg. Simply con-
nected Lie groups are known to be compactly presented (see, for instance, [38, Theorem 2.6]).
For simply connected nilpotent Lie groups such presentations can theoretically be obtained over
an arbitrary compact generating set from the knowledge of a Lie algebra presentation using the
Baker-Campbell-Hausdorff series (of which only finitely many terms actually appear). These
presentations are however unpractical to work with and in Subsection 5.1 we shall thus provide
explicit constructions of compact presentations for the groups L, and G, ,.

Let P = (S | R) be a compact presentation of a locally compact group G. Recall that a freely
reduced word w over S represents the identity in G if and only if it belongs to the normal closure of
R. Further recall that we call such a word null-homotopic, that we define Area(w) as the minimal
number of conjugates of relations r € R*! whose product is freely equal to w and that the Dehn
function &, of a compact presentation P is defined by

dp(n) = sup {Area(w) : w null-homotopic and freely reduced of length < n}.

Remark 3.1. Two remarks are in order here. First, it is easy to check that provided that it is finite,
the asymptotic behaviour of §,(n) does not depend on a choice of compact presentation. Second,
by definition any compactly presented locally compact group admits a presentation of the form
(S | R) where R = R consists of all null homotopic words in S of length at most k and for any
such presentation d5 is finite [8, Proposition 11.3].

It turns out that the Riemannian definition of the Dehn function that we gave in the introduc-
tion and the combinatorial definition have the same asymptotic behaviour. More generally, given
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a Riemannian manifold M define F(r) to be the supremum of areas needed to fill loops of length
at most 7 in M. The following result is due to Bridson when G is discrete [6, Section 5].

Proposition 3.2 [13, Proposition 2.C.1]. Let G be a locally compact group with a proper cocompact
isometric action on a simply connected Riemannian manifold X. Then G is compactly presented and
the Dehn function of G satisfies

8(r) < max {F(r),r}.

To complete the picture we mention that the asymptotic behaviour of the Dehn function is
invariant under quasi-isometry; this was proved for finitely presented groups in [2] and the proof
adapts without changes to compactly presented groups.

3.2 | Fillings in balls of controlled radius

We will be interested in constructing fillings where we simultaneously control the number of
relations and the diameter of the image of the corresponding van Kampen diagram. Geometrically
this amounts to filling a word in a ball of controlled radius. As in the previous section let P = (S |
R) be a compact presentation of a locally compact group G. We will say that a word w = w(S) has
(word) diameter < d in G if the associated path in the Cayley graph of G stays at distance < d from
the identity 1 € G. Equivalently, w has diameter < d if for any decomposition w = w; - w, into
two subwords we have distc,y (g )(1, [w;]) < d.

Definition 3.3. Given a null-homotopic word w(S), we say that a filling

k
w(S) = Hui_lrl-ul-
i=1

of area k has (filling) diameter d if u; has word diameter < d for 1 <i < k.

We will often drop the specification ‘word” and filling’ diameter when it is clear from the
context which one we mean.

We will say that two words w(S) and w’(S) are equivalent with area (or at cost) k and diameter
d if w’ - w™! is null-homotopic and admits a filling with area k and diameter d. In this case we
will also say that the identity w = w’ holds with area k and diameter d in G.

Remark 3.4. We emphasise that the definition of the diameter of the equivalence w = w’ involved
a choice: we chose to estimate the diameter of a filling of w’ - w™! rather than w’~! - w. While
both words have the same filling areas they differ by a conjugation by w’ and thus their filling
diameters can differ by #(w’). We shall stick to this choice throughout the paper.

We will frequently use the following simple observation:

Lemma3.5. Letw = w(S) be a word that decomposes as w(S) = w;(S) - w,(S) - w;(S) and let wg =
w;(S) be equivalent to w, mod ((R)) via a transformation with area k and diameter d.
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Then the identity w = w’ mod ((R)) for w’ = w;w’w; holds with area k and diameterd’ < d +r
in G, where r is the word diameter of w,. In particular, ifd < nandr < n, then d’ < 2n.

Proof. This follows easily from the definitions. O

We call a word w, (respectively, w;) as in Lemma 3.5 a prefix (respectively, suffix) word for the
transformation of w into w’.

Remark 3.6. The fact that only the prefix word w, plays a role in the estimate in Lemma 3.5 comes
from the choice we discussed in Remark 3.4.

3.3 | Filling pairs

Definition 3.7. Given two increasing unbounded functions f, g : R, — R, we say that a com-
pactly presented group admits a (f, g)-filling pair if every null-homotopic word w = w(S) of
length n has a filling of area in O(f(n)) and filling diameter in O(g(n)).

Filling pairs are quasi-isometry invariants of compactly presented groups up to equivalence <
(where for hyperbolic groups we allow for a linear term in the first entry). The proof is the same
as for Dehn functions and we refer to Lemma 9.7 for details, where we prove a more general result
for SBEs.

If G is a topological group, recall that H < G is a retract of G if it is a closed subgroup and
there is a surjective homomorphism p : G — H which restricts to the identity on H. The follow-
ing are well-known in the context of Dehn functions of finitely presented groups (see [3, Lemma
1], respectively, [5, Proposition 2.1]) and their proofs adapt easily to filling pairs of compactly
presented groups.

Lemma 3.8. Let G be a compactly presented locally compact group. If H is a retract of G, then H is
compactly presented and any filling pair for G is a filling pair for H.

Lemma 3.9. Let H, and H, be noncompact compactly presented locally compact groups. Let H =
H, X H, and let (f, ;) (respectively, (f,, g,)) be filling pairs for H, (respectively, H,). Then

(”2 + f1(0) + f2(n), n + g,(n) + g,(n))

is a filling pair for H.

4 | WARM UP — AN UPPER BOUND FOR THE DEHN FUNCTION OF
Gz

As a warm up for the general proof of the upper bound of n?~! on the Dehn function of Gpp
and G, ,_; we will discuss the special case when p = 4. This case will serve as base case for our
induction argument in Section 6. The case of general p is very subtle, requiring a careful chain
of technical lemmas. In contrast the case p = 4 captures much of the essence of how our general
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proof works, while avoiding almost all of the technical difficulties. In particular, we can work
hands on with the finitely presented lattice I, ;. We will conclude this section by explaining the
difficulties we will face when dealing with general values of p and how we will resolve them.

4.1 | Deriving a cubical upper bound for T, ;

As recalled in the previous section, the Dehn functions of Ty ; and of G, 5 are equivalent, and
it will be easier here to deal with T, ;. Some of the techniques and notation we will use in this
section are inspired by Olshanskii and Sapir’s combinatorial proof that the Dehn function of the 5-
dimensional Heisenberg group is quadratic [28]. However, our line of argument is rather different
from theirs. Indeed we will start by assuming that 5y (n) < n?, which is the main result of their
work, and deduce from it that 5r4,3(n) = nd.

We recall that we work with the presentation

Xy, Xy Xz, Xy |[[X9,%] =x4,2 <0 <3,

P(Ls3) ={ »1, Vi Ya | [V15¥3] = Vs [xi’yj] =1,
z | x4 =Yy, = zis central

for I'y;. Observe that it naturally contains the presentation P(I';;) of the 5-dimensional
Heisenberg group Hs(Z) = I'; ; given by

Xy, X3, Xy, | [X1, %3] = x4,

PTs3) =( Y1, Y3 Ya |1.¥3] =4 [xiayj'] =1,
z | x4 =Yy, = ziscentral

We state the following result:
Theorem 4.1 [1, 28]. T'; 3 admits (n?,n) as a filling pair.

The linear bound on the diameter is not stated in these references. However, it is easy to deduce
it from Allcock’s proof. Since he works with the Riemannian version of the Dehn function in the
real Heisenberg group, we postpone the presentation of his argument to Subsection 6.8.

The key observation that makes our proof work is that the natural embedding of H5(Z) in T'; 5
combined with Theorem 4.1 allows us to manipulate words of length n in the letters {x;, x5, y;, ¥3}
at cost < n? and in a ball of diameter < n. The following is a particularly important immediate
consequence, as it enables us to ‘change between factors’ and thus exploit the central product
structure of I'y 5.

Lemma 4.2. There is a constant C, > 0 such that every word w(x,, x3) of length n representing an
element of y3(Ty 3) is equivalent to the word w(y,, y;) with area < Con* and diameter < Con in Ty ;.

The most important class of central words w(x;, x3) € y5(I'y ;) will be words of the form

T =T(m,n,l) := [x", x]] [xi,x3],
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where m and n are integers and [ is an integer satisfying 0 < |I| < |m|. In a sense they are the dis-
crete prototype for the words Qi that we will introduce in Subsection 5.2 and then use throughout
the remainder of the paper. The following observation is straightforward.

Lemma 4.3. The equality T(m, n,1) = z™"*! holds in I'5 3. Conversely, for every integer k there are
integers m, n, | satisfying T(m, n,1) = z¥, |n| < |m| < 3|n|, 0 < |l| < |m| and sgn(mn) = sgn(l).

We record the following simple consequence of Lemmas 4.2 and 4.3:

Lemma 4.4. Thereis a constant C; > 0 such that for every twowords T; = T(m,,n;, ;) and T, =
T(m,, n,, 1,), their product T, - T, can be transformed into a word Ty = T(ms, ns, l3) with

@ my-ny+l=my-n+L+my-ny,+1y

(2) Imsl, |ns| < 34/|Im5 - n3 + 13]; and

(3) the identity T, - T, = T holds with area < C;(|m;| + |ny| + |m,| + |n,|)? and diameter <
Ci(Imy| + |ny | + Imy| + |ny]) in T3 5 (and thus in Ty 5).

From this innocuous observation we deduce the subsequent lemma, which is the second key
tool for our proof. We will use it in the case when I = N, in which it shows that a central null-
homotopic word w of the form Hle T; has area bounded by C,N?. In particular, up to constants,

3
its area is bounded by the function n — n2 in n = #(w), rather than by n — n?, as one might a
priori expect.

Lemma 4.5. Let N,I > 0and let T; = T(m;,n;,1;), 1 < i < I be words with |m; - n; + ;| < N? and
|m;|, |n;| < 3N. Assume that Hl.:1 T; is null- homotoplc. There is a constant C, > 0 such that the
identity

holds in T, 3 with area < C, - I - N* and diameter < C,(- (IN2)3 + N).

Proof. The proof is by induction on I, with the result for I = 1 being trivial. Assume that the
result holds for I > 1 and let HIJrl T; be null-homotopic. Since T; = z™"*h for 1 <i<I+11is
in the centre of I'5 5 it follows that Z”l m;n; + 1; = 0. In particular, there is some i, such that
Ty Ty1=2 k with

2
|k < max{ Imy -y + Ll Imy gm0 + li0+1|} <N-

By Lemma 4.4 there is a word T’ = T(mf n.’ U ) which satisfies the identity T.’O =T, Tiyn
with area < C; - 122N?, diameter < C1 12 N and such that, moreover, the word

Ty - - 'Tio—l .Ti’0 'Ti0+2 cee s T 4.1

satisfies the induction hypothesis for I. Choosing C, > 12? - C; thus completes the assertion on
the area.
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By Lemma 3.5 it suffices to show that the word diameter of the prefix word T, - --- - T; _; is

1
<(I-N?»3 +N)in I, ; to obtain the desired diameter bound. However, this follows by observing
that by assumption Hioz_ll T, = z' with |t| < (i — 1)N? < I - N? and that the subgroup (z) < T
1
is n3-distorted [29] (also see Lemma 5.13). O

We will now explain how to use Lemmas 4.2 and 4.5 to show the following.
Theorem 4.6. T, ; admits (n*, n) as a filling pair.

Claim 4.7. It suffices to prove that there is a constant C > 0 such that all null-homotopic words
w = w(x,;, X,) of length #(w) < n admit a filling of area < Cn® and diameter < Cn in Tys.

Proof. The subgroup generated by the x; intersects the subgroup generated by the y; in the central
subgroup (z). Thus, given a null-homotopic word u of length at most n in the generators x; and y;
of T, 3, we can use the commutation relations [x;, y j] = 1 and Lemma 4.2 to replace it by a word v
in the x; of the same length at cost < K; - n? and in a ball of diameter < K, n for a suitable constant
K, > 0. Using O(n) relations of the form [x;, x;] = x;,; we can now replace v by a null-homotopic
word w(x;, x,) of length bounded by K,n for a suitable constant K, > 0. O

Claim 4.8. There is a constant C > 0 such that for all n € Z, the null-homotopic word [x7, xl]xg
admits a filling of area < Cn? and diameter < Cn in T 5.

Proof. The proof is straightforward: consider x7 x; and move x; to the left, by commuting it with
the x,’s one by one, using the relation [x;, X,] = x5. Then move all x;’s produced in the process
to the right using the relation [x,, x;] = 1 (see also Proposition 5.5). O

So, let w(x;, x,) be a null-homotopic word of length #(w) < n

To obtain an upper bound on the area of w(x,, x,) we will iteratively move all instances of x; in
w to the left, starting with the left-most. After moving an x; to the left we move all x5’s created in
the process to the left. As a consequence, we will obtain a word of the form T; = T(m;, n;, 0) with
|m;|, |n;] < n, which we move to the right.

After the ith iteration of this process we may assume that we have a word of the form

i—1
ky ky k
X, X7 X7 +lv(xl,xz)l_[T

where |k,| + |k;| + 1+ £(v(x;,x,)) < nand k| <i-n.
Since the exponent sum of the x,’s and x,’s is zero, repeating this process I < n times will yield
a null-homotopic word

Since Hﬁ.;(l) T;_;isin the centre of I'y 5 it follows that it is null-homotopic and thus a = 0. We now
apply Lemma 4.5 with N := n to conclude that Hﬁ.;(l) —j admits a filling of area < C,1 - n?
C,n> and diameter<2-C, - n
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It remains to explain the i + 1th iteration of our procedure and to check that it has quadratically
bounded area and linearly bounded diameter. It is here where we will make fundamental use of
Lemma 4.2. We will discuss the case x;rl, the case Xy 1 being similar. The following identities hold
inTy;:

i—1

ky ko Kk
x31x12x23xlv(x1,x2)HTl-_j, (4.2)
=0
i—1
—x;{lxklex Xy v(xl,xz)HT (4.3)
ki _k ky_k ll
_ +1_—
=x,%7" X, sxzsv(xl,xZ)HTi_j, (4.4)
=0
ky —k k e
- +1
=T (e, 41, k3,0)x v(xl,xz)HT . (4.5)
j=0
ki—ksy _k k ky] k —
— k- 1 k41—
=x31 3x12 [ylz 'Y, 3]x23u(x1,x2)HTi_j, (4.6)
i
ki—k; _ k,+1 k k+1 —k
Ex31 *x 12 3v(x1,x2)[ ’ Vs 3]HT1-_]-, 4.7
=0
i—1
Ex;{l_k3xlf2+1 k3v(x1,x2)T(k2+1 k3,0)HT (4.8)
Jj=0

Setting T;,; = T(k, + 1, —k3,0) completes the i + 1th step. We remark that in the case x| L we

obtain new terms x3+ % and T(k,, ks, 0).
Using that |k, | + |k;| + 1 + £(v(xy, x,)) < n'we obtain that the number of relations required to
obtain consecutive lines of the equation is bounded as follows:

(4.3) Cn? (by Claim 4.8),

(4.4) n? (using the relation [x,, x;] = 1),
(4.6) and (4.8) Cyn? (by Lemma 4.2),

(4.7) 4n? (using the relations [x;, y il =1).

In particular, there is a constant C; > 0 such that the total cost of this transformation is < C;n?.
Since we repeat this process I < n times, this provides the desired area estimate in Theorem 4.6.

The subgroup (x3) < T,; is nz 2-distorted [29] (or Lemma 5.13), meaning that the prefix word
of all of our transformations has diameter in O(v/i - n + n) = O(n). Thus, by combining the lin-

ear diameter bounds in Lemma 4.2 and Claim 4.8 with Lemma 3.5, we obtain that all of our
transformations satisfy a linear diameter bound, completing the proof of Theorem 4.6.

4.2 | Developing a strategy for the proof for general p

In some sense what made our proof work for p = 4 is that this degree is low enough so that we
could conveniently shift powers of x; to the left, central words of the form T'(n, m, I) to the right
and keep the remainder of our word in x; and x, in the middle. This allowed us to elegantly
avoid and hide a key difficulty that makes any brute force attempt to generalise our approach to
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arbitrary values of p fail: the distortion of terms in y;(I', ,_;) being n% , the cost of ‘naively’ creating
and reordering powers of the x; will be much too high. On the other hand, the commuting trick
exploiting the second factor (generated by the y;’s) will only work for central words.

We overcome these difficulties through a sequence of results that on the surface seem like a long
list of technical lemmas, but really follow a concrete strategy designed to avoid the above obstacles.
Moreover, it will turn out to be of great use to switch to the setting of compact presentations and
work in the real Malcev completion G, ,_; rather than in the discrete group I’ ,_;. But for now let
us pretend we work inI'p ) ;. Fork > 1and n = (ny,..., 1) € 7*, we let Q;(n) be the following
word in x; and x,

Q(n) := [x;ll,...,x;lk’l,xgk].
We observe that Q; (n) corresponds to an element of the kth term of the lower central series of the
free group generated by x, and x,. In particular, for k = p it defines a relation in A, and therefore
inT', ,and T}, ,_,. The non-technical key steps of our proof for general p are as follows.

Step 0: Similar arguments as above allow us to reduce to words w(xy, x,).

Step 1: We use the results on efficient sets of words presented in Subsection 5.3 to argue that
we can reduce to null-homotopic words of the form

Ny xmk

n m
w(xy,xp) = X1 x, ' XX,

with |n;], |[m;| < n and k uniformly bounded by some constant C > 0.

Step 2: By shifting the x'fi ’s to the left in blocks, we transform the word w into a product of < C’
iterated commutators of the form Q. (n)*!, with2<k;<p—1landn, € RKi, and order them by
the size of the k; (for a suitable constant C’ > 0). This provides us with a word of length < n that
(at least morally) is very similar to a word in the Malcev normal form of Subsection 5.1.

Step 3: We consecutively merge all terms of the form Q(n,) for increasing k, starting with
k = 2. Using that w is null-homotopic this process will terminate in the trivial word. At any stage
we will make sure that the remaining word stays of length < n.

Note that for technical reasons the above steps do not appear in the precisely same order in Sec-
tion 6. However, keeping them in mind when reading the proof should be helpful in understanding
its structure.

The most difficult steps are Steps 2 and 3. Performing them essentially requires us to be able to
do two things at sufficiently low cost.

(1) Merge two words of the form Q,(n,) and Q,(n,) into a new word of a similar form and of
length < n.

(2) Commute certain types of words. In particular, we will have to commute words of the form
Q, (n,) with words of the form Q, (n,) atcost S nP~1,

The bulk of the technical work in Section 6 is concerned with resolving these two problems.
Concretely, (1) will be resolved by Lemma 6.9, which we will often refer to as the Cancelling
Lemma, while (2) will be resolved by Lemma 6.2, which we will often refer to as the Main com-
muting Lemma. Note that the Cancelling Lemma and the Main commuting Lemma are in some
sense beefed-up and considerably harder to prove versions of Lemma 4.5 and of the commutation
of terms enabled by Lemma 4.2.

In fact we will first prove the Main commuting Lemma and then the Cancelling Lemma, as
the former will be required in the proof of the latter. The proofs of both will be by a rather
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subtle double induction in p and k and will be divided into several auxiliary technical lemmas.
Throughout the proofs of these results we will rely heavily on applying the fact that, by induction,
et (n) < nP~2 to rewrite words in the generators of the canonically embedded subgroup

p.p—1° Similar to the use of Lemma 4.2 in Subsection 4.1, we will also make essen-
tial use of the fact that we can replace words of length n in x; and x5 that are contained in
Yp-1(T'p_1,p—1) by words in y; and y; at cost < nP~2, to enable us to commute them with words in
the x; at a low cost. In particular, we will use this to start the induction in some of the technical
Lemmas leading up to the Main commuting Lemma.

5 | PRELIMINARIES FOR THE GENERAL CASE

In this section, we set the stage for the proof of the upper bound on the Dehn functions of G, , and
G, p—1 for general p. In Subsection 5.1, we start by constructing explicit compact presentations.
In Subsection 5.3, we recall the notion of efficient words, which will allow us to restrict to certain
families of simpler words when proving upper bounds on the Dehn functions. We then explain
how to obtain such a set of efficient words with respect to our presentations. Finally, in Subsection
5.4, we prove some technical results that we will require in Section 6 to compute upper bounds
on diameters of fillings.

5.1 | Compact presentations of the groupsI', and G, ,

Recall from the introduction that A, denotes the model filiform group with presentation

z [xi,xj],i,j =2,..,p—1

[x1, x;]x i=2,...,p—2

P(Ap) ={ X1, X5 Xp_q,
[xl,xp_l]z_l, [x5,z],i=1,..,p—1

and L, denotes its real Malcev completion. The group I', , is defined as the central product of A,
with A, for 3 < g < p. We deduce the following finite presentation of T, ;:

[x1,xi]xl-_+11a D’b)’i]yi;ll,i =2,..,p—2

P, ) = X1, Xy, Xp_1, Z [xl-,yj],i,j =1,..,p—-1
p.q’ — _ _
yl’ yp—q+2"" yp—l’ [xlixp—l]z 1’[y1’yp—1]z !
z central

Observe that for I') ,_; we purposefully used the notation y;,y, i5,..,2z instead of
Y15 Y2, s ¥g—1 a8 it allows us to see I', ; as a subgroup of T, . Actually, it will be more conve-
nient to work with compact presentations of their respective Malcev completions G, ,. We describe
below a way to deduce a compact presentation of the group from a finite presentation of a lattice.

Let T be a finitely generated torsion-free nilpotent group. Then T is strongly polycyclic, that
is, admits a composition series I' = P°T' > P'T > --- > P"T" = {1} with PII'/P"*'T = Z. It can be
chosen to refine the lower central series, that is, there exist integers k; such that y;,I" = PKiT for all
i with suitable k;. Choosing representatives of the generators of the quotients P'T'/P**T, one can
build a generating set S = {y;, ..., ¥,,} such that [y;,y;] € (¥j41, .., 7,) Whenever i < j and every

y € I' uniquely writes as yf L. yi” with #; € Z. S is called a Malcev basis for I.
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Example 5.1. Note that S = {x;, x,} forms a generating subset of A, and that S= {1, xp}
is a Malcev basis. Similarly T = {x;, x5, y1,¥,_q42} is @ generating subset of T', ; and the set T=
{15 X595 wens Xp—15Zs Y15 Y p—gi2s - ,yp_l} is a Malcev basis.

With respect to the integer coordinates ¢; one can prove that the multiplication law is
polynomial, that is, that there are polynomials M;,...,M, € Z[X1, ... ,Xn,X{, ..,X! ] such that

¢ i il
(Vf 1 ...y’f ny. (71 Vn") = Ml( L) -ynM”(f"’f”) [7, 5.1]. An effective way of constructing the

Malcev completion of T is to extend this polynomial law (denote it %) from Z" to R". Let G be any
simply connected nilpotent Lie group containing I' as a lattice. Then the isomorphism I' — (Z", %)
extends to an isomorphism G — (R", x). This can be established independently of the existence
part of the Malcev theorem [35, Corollary 2, p. 34] by Zariski-density arguments.

We shall use the following notation throughout: for y €I’ and a € R we denote y? =
exp(alogy) and for all subsets S C G and A > 0 we define S, = {y? : a € [-A, A],y € S}. The
subsequent result explains how one can obtain a compact presentation for a simply connected
nilpotent Lie group G starting with a Malcev basis of a lattice I < G.

Proposition 5.2. Let T be a lattice in a simply connected nilpotent Lie group G and let A > 0. Let
S ={y1,..,¥,} be a Malcev basis of T.

(1) For1 <i < j < n there exist polynomials Pii,, Py € Z[X,Y] such that for all £,m € Z the
following equality holds in T':

(¢.m) P, (¢,
[y =y O,

P (11 . .
(2) The set of freely reduced words [y;,7;] .”1( ) sy Pn D) or 1 <i< j<n determines a
jYilV n J
presentation for T over the generating set S.

(3) The set of freely reduced words R, = {o;(a,b)} U {pi,j(a, b)} with

(a,b) b
oi(a,b) = yy?(y***) " and p; ;(a, b)=1[r}., ]V]fl‘a @

fori< j, a,b € [—A, A] determines a presentation for G over the generating set §A.

Proof. (1) is a direct consequence of the existence of the polynomials Mj, ..., M,, and the construc-
tion of S from a refinement of the lower central series. For (2) note that these relations allow us to
transform any word over S into its Malcev normal form yf] yi". Finally, we prove (3) in three
steps.

.S 4 isa generating set: This is clear from the isomorphism G — (R", x). Moreover, S 4 iscompact
as image of a compact set under the exponential map.
* The relations in R4 hold in G, that is, they lie in ker(FA — G): a — y® defines a group homo-

morphism by construction, so the o;(a, b) hold. To prove that the p; ;(a, b) hold, let ¢ be any
linear form on the Lie algebra g of G and define 7(a,b) := go(log[pl, J]G) (where [-]; denotes
the evaluation in G). Then (2) implies that ¢(a, b) = 0 for all (a, b) € Z>. On the other hand,
7 is a polynomial function by the Baker-Campbell-Hausdorff formula. We deduce that it is
identically 0 on R? and therefore that P, j(a, b) holds for all a, b.
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* Asin (2) the relations in R4 allow us to transform any product of powers of elements in S 4 into
its normal form yfl yZ". Hence, the normal subgroup of G generated by R, coincides with
ker(FA - G). O

Remark 5.3. Compact presentations offer a technical advantage over finite presentations when
manipulating words as they allow to reduce length. For instance, representing a central element
in H5(Z) by a short length word over S needs a product of two commutators due to divisibility
issues (compare [28] and Subsection 4.1) while a single one is sufficient over S A

Remark 5.4. For our purposes it will suffice to consider only the case A = 1 and we will restrict to
it in Section 6. However, producing a presentation for general A is no harder and might be useful
for future applications. Hence, we write our results in this general context in this section.

Convention. From now on we will omit the relations o;(a, b) from our compact presentations
to simplify notation, as they are rather self-explanatory.

To obtain an explicit compactA presentation for G,, we compute the polynomials P; ;
corresponding to the Malcev basis S.

Proposition 5.5. For a,b € R the following relation holds in L :

b] = x% x. ()b ()b . z(_l)pﬂﬂ(pafi)b.

[x X i+177i42 l+3 (5-1)

1 b
In particular, let S = {x;,x,} and S = {x,, .. Xp_1,2} Then for every A > 0 the set S, is a compact
generating subset of L, and the latter admits a compact presentation P (L) given by the generating

subset S, 4 and the relators

b] ab . ~(b_(Pb Z(—l)p+i+l(p:)b},

Ry =Alxf, %] = x1x, 507 x5

for2<i< p-—1landa,b € [—A, A]. Moreover, for a,b € R theidentity (5.1) admits a filling of area
Spa ab” l+1b2 and diameter 5, 4 |a| + |b| in P4(L,).

Proof of Proposition 5.5. 1t suffices to prove the formula and area estimate for i = 2 since (x;, x;) =
Apip i With x; = x; and x, — x; defines an isomorphism. The first step is to prove [x;, xg] = xg
for every b; this is obtained by induction on b (for b an integer) and we deduce the area and
diameter estimates O(b?) and O(b), respectively. We now assume the formula for (a, b), denoting
its area by Area(a, b), and consider x‘”rl b . In the following calculation we record the cost on the

right.

x‘f“xé’ = xlxlxg = xi‘xé’xlxé’ (Areab)
b (“b _)pH( @
—xlz’xfxgbx 9 () gtV (P—Z)bxlx;J (Area (a, b))
a+l b a+1 b ( ])P'H a+1 b 2
= gt L SER (areab2 372 (%)
= by +p (5D (IO ety ~2 fat1
= x)xItx ga ) X, 2xg? ez ) (Areabez (a;r )
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We provide some explanations for our transformations: on the third line the rightmost x; is
brought to the left which creates x;-terms for j > 4; they are gathered with the previous ones.
On the fourth line the rightmost xg’ is brought to the left and no new term is produced since x;
commutes with all the x j for j > 4.

We deduce from our estimates that

Area(a + 1,b) < Area(a,b) + b + Cb?a?~2 + C'b(a + 1)P72,

where C and C’ are positive constants, and thus that Area(a,b) = O b, 4(aP~1b?) by induction
on a. X
For the diameter bound observe that the ith term of the lower central series is ni -distorted [29]
(see also Lemma 5.13). Thus, all prefix words of transformations appearing above have diameter in
Op a(la| + |b|) and we conclude by Lemma 3.5 that our filling for (5.1) has diameter <, 4 |a| + |b].
Finally, the remaining properties follow from Example 5.1 and Proposition 5.2. [

Combining Proposition 5.5 and the fact that G, , is the central product of L, with L, we deduce
the following compact presentation of G, .

Corollary 5.6. For3 < q < p, a compact presentation of G, , is given for every A > 0 by P, (G

(To | Ra), where T ={Xy, X5, ., Xp_1, Xy Z, V1, Vp—gqi1s > Yp—1>Yp b and

pa) =

(D (“p _1)pHHL( @) X
1P

b1 _ -ab _(a)b (a)b (_1)p+i+1( aﬂ_)b
RA=<[yil’yl]_yia+1yi+22 Vigy 2 P, p
[x?’yﬂ =1,1<i,j<p

2% =x; =y}, a,b € [-A,A]

L J

[x¢ xb

1 i]zx

—-q+1<i<p,

We end this section by recalling the following well-known free equalities that hold in every
group and that we will require at many points throughout the remainder of this work.

Lemma5.7. Let G be a group and let u, v, w be words in some generating set for G. Then the following
free identities hold:

@D [u-v,w] =[u,w]’-[v,w];
2) [u,v-w]=[u,w]-[u,v]¥;

3) u¥ =ufu,w].

5.2 | A family of special words

We now introduce a family of words that will play a crucial role in the following sections. For
p>j>2k>1landn=(n,..,n) € RF welet Q (n) be the word

J e |m [
Qk(g) = [xl s XX

fork > 2 and le if k = 1. For j = 2, we shall simply denote it" by Q;(n).

A notation that we had already introduced in our sketch of proof in Subsection 4.2.
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‘We observe that although Qi(g) is a priori defined as a word in S, we can view it as an element
of Fg, by identifying xl.ni with a product of [|n;|/A] letters of the form xii with |¢;| < A. In what
follows such identifications will be made implicitly. Using that G, ,_; is (p — 1)-nilpotent and
Proposition 5.5, we easily deduce the following useful identities.

Lemma5.8. Forall2< j<p-landn=(ny,..,n, ;) € Rp—Jj+1
Qi_l(ﬂ) — ZM M
In particular, for alln € RP~! there exists m € R with |m| Sp Inl = |n| + - + n,_; |, such that

Q, (W) =5 (Inl,..., [n)™

5.3 | Reduction to products of efficient words

We build here on [14]. We let S be a finite alphabet and let F; denote the free group on S. Given a
subset F C Fg and an integer k > 1, we denote 7[k] the collection of concatenations of at most k
words in F.

Definition 5.9. Given an integer r > 1, a subset F C Fj is called r-efficient with respect to a
presentation (S | R) of a group G if there exists a constant C such that for every w € Fg there
exists w’ € F[r] such that w = w’ mod ((R)) and Z(w") < CZ(w).

Given a set F of words in S, we shall say that we have a filling pair (f, ¢) for G in restriction to
words in F if every relation of length n that lies in 7 admits a filling of area in O(f(n)) and filling
diameter in O(g(n)).

The following is based on an original observation of Gromov [23, S.Ag’ ].

Proposition 5.10 [14, Proposition 4.3]. Let s > 1. Assume that F is r-efficient for some r > 1 and
that (n®,n) is a filling pair for G in restriction to F[k] for all k > 1. Then (n®,n) is a filling pair
forG.

Proof. The statement of [14, Proposition 4.3] is that n® is an isoperimetric function for G. However,
it is easy to deduce from its proof that (n®, n) is a filling pair. Indeed, the proof consists of filling a
loop of length n using k loops of length in O(n/k) and a loop ¥’ in F[k] of length in O(n). While
the argument used in [14] to obtain the desired area bounds applies for very general functions, it
is not hard to check that using their methods one can actually produce a filling of area < n® by
iterating this procedure log; (n) times. In particular, this yields the existence of such a filling of y
of diameter in O}, n/k’) = O(n). O

We recall that S = {x;,x,} C A,. We define the subset ¥, C Fg, of all powers of elements
inSy:

Fy:={s"|seS,neN}L

The main result of this section is
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Proposition 5.11. For all p > 3 and A > 0 the subset T, is Op(1)-efficient with respect to the
compact presentation P, (L)) of L, provided by Proposition 5.5.

We immediately deduce the following corollary, which is the statement we shall need in our
proof of the upper bound of the Dehn function. Define

Ty = {x 5005050 Hagl lagl, las), lag < A} € G,
and
QA :={Sn|SETA,nEN}.

Corollary 5.12. Forall p > 4 and A > 0 the subset G, is O ,(1)-efficient with respect to the compact
presentation of G, ,_; provided by Corollary 5.6.

Cyclic subgroups of the ith term of the descending central series have distortion in n'/? ([29]).
The following lemmas provide related estimates that will be required in various places of our
proof.

Lemma 5.13. Letb € R and let 2 <i < p. Then xf’ = w mod ((Ry4)) for a word w € F4[0,(1)]
satisfying

1
£(w) = 0,(bi=1) + 0,(1).
In particular, S 4 is a generating subset of L,

Proof. The proof is by descending induction on i. By Lemma 5.8, we have
1 1
_1<bP—1,...,bP—1> = z” mod ((R,)), (5.2)

proving the case i = p.
1

Now assume that the result holds for i = iy + 1 and let 8 := bio-!. Observe that an iterated
application of Proposition 5.5, Lemma 5.7(2) and the fact that L,, is metabelian to the innermost
commutator yields the following identities in L, (that is, modulo R ,):

P ) '
QBB =[], <5,...,5,(_1)h+1 <J_ f3_2>5>
j 1

J1=3

Jj1+1 Jo—j1+1.. Jig—2—Jig—3+1 B
_ H x( Dit(-1) (-1 (J1 D (RIDE (110 R B
- ' Jig-2 ’
31 < <Jig—2<P
Because (]) is a polynomial of degree j in x, we deduce that for any choice of 3 < j; < -+ < jj 5 <

p the exponent of x Jiga is a polynomial of degree j; _, — 11in 8. Since there are only finitely many
terms for each index iy < Jig—2 S P, We deduce that there are polynomials g;(8) of degree j — 1 for
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iy < j < psuch that

P
Q16,8 = [ [«

J=lo

ip—2

Finally, an explicit evaluation shows that g; (8) = ([f )" - B =pB0"! and we deduce that

b —a®
Xp = Q1B B)- I x; 7 mod ((Ry))-

Jj=ig+1
The result now follows by applying the induction hypothesis to the xj_qj (ﬁ). O
my My | My . k
Lemma 5.14. Form,...,my,ny, ..., € Rletw = x, 'x;' - - x, “x “ andletl 1= Y~ (Im;| +

|n;1). There exist by, ..., b, € R, with |b;| = 0,() + 0,(1) and |b;| = 0,(I'"") + 0,(1) for 2 < i <
D, such that

w

xPU e x? mod (R ).

Proof. We will move all x;’s in w to the left to put the word in normal form. Setting n, = 0 and

introducing the notation #; := Z?:i n; we first observe that, by Proposition 5.5, the identity
~ o~ ~ n;
n_y . mp N _ N omp —Nim; (r;’)mi (_1)p(p_2)mi
X7 T =X X T X SRR

holds in L, for 1 < i < k. Thus, moving powers of x; to the left, starting with the rightmost one,
and [x;,x;] = 1fori, j > 2 imply that
mod ((Ry4)).

~ ~ kN _1)P YK 1 .
o Yem =y am X (Ghm (=DP ¥, (p_lz)ml
1 . 2 . x3 . x4 « see o xp

Set b, :=n; and b; := (-1)/ p (j’ziz)mi. Using that ();) is a polynomial of degree j in x and
that |77;| < I, it is now easy to deduce that |b;| = Op(li‘l) + Op(l). This completes the proof. []

We will now explain how to derive Proposition 5.11 from Lemmas 5.13 and 5.14.

Proof of Proposition 5.11. Since S, is a compact generating subset of L, it is enough to con-
sider words in S,. Let w = x;"lx'fl e x;""x;’k be a word in S, of length #(w). By Lemma 5.14
there exist by, ..., b, € R with |b;| = 0,(£(w)) + 0,(1) and |b;| = 0,(£(w) ') + 0,(1), 2 < i <
D, such that

xP 0P mod((Ry)).

w =X,

Lemma 5.13 implies that there exist words u; € F4[0,(1)] with

xfj = u; mod((Ry))
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.
and #(u;) = Op(b;_l) +0,(1) for 2 < j < p. Note, moreover, that u; = xfl € F, and 2(uy) =
0,(Z(w)) + 0,(1).

Observe that the word u :=uy - -u, satisfies w=umod ((R,)) and u € F4[0,(1)].
Moreover, a direct calculation shows that £(u) = Op(f(w)) + Op(l). This shows that F, is
O, (1)-efficient, ending the proof of the proposition. O

5.4 | Upper bounds on diameters

We conclude this section by recording a few results which we will require to show that all fillings
in Section 6 have linearly bounded diameter.

Lemma 5.15. LetI > 0, and let j < k be two integers in {2,...,p — 1}, and, for 1 <i < I, let u; =
u;(xy,x;) be a word of word length n; = £(u;) > 1 such that u; represents an element in y;(L,).
Then the element g € L, represented by the word w = Hle u; satisfies

1
p I S\ w1
< m—j+1
9ls, 55 2 | 2 :
i=1

m=k+1

. T —j+1y
Moreover, w has word diameter 5, Zﬁl:kﬂ(zizl n;" YR + maxgn;.

Proof. The subgroup of L, generated by x, and x; is isomorphictoL,_;,, and there is a canonical
embedding L,_;,, < L, induced by an embedding of presentations. Thus, by Lemma 5.14 for

L,_j,, thereare b, ; € R such that

beri  bpi
X, e x M mod ((Ry))

Ui k+1

m—j+1 < nm—j+1

withlbm’i|5p1+ni Sp ,fork+1<m< pand1<i<I. Wededuce that

b b
[]w=x%7 - x,” mod ((R,))
i=1

forb,, := Zle b, ;. In particular,

1

m—j+1

bl $p 2T
i=1

By Lemma 5.13 there is a word w = wy 44 - -+ - w, with

1
w = [Jw mod ((R,)),
i=1
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w,, = X2 mod ((R,)) and

1

I m—1
m—j+1
L

i=1

P P 1 L
£(w) < Z Z(wy,) Sp Z bl 1 Sp Z <

m=k+1 m=k+1 m=k+1
This completes the proof. O

Corollary 5.16. Assume that in Lemma 5.15, n is a positive integer such that n; < n for1 <i<1.
Then in the conclusion we obtain

P

)
9ls, Sp Y, (17T -n ).

m=k+1

In particular, for I < n and j = 3 we deduce that

lgls, Sp 1
and w has word diameter Sp e
In a second application of Lemma 5.15 we will require the following estimate.

Lemma5.17. Forn,k,B>1,p>k+1landl < j < [log,(n)] =: lthereisa constant C = C(p,B)
such that the following inequality holds:

P . m—2 J . m—2 -t
Z <2]k‘(%> +B-22(l_1)k<%> > <C-n

m=k+1 i=1

Proof. First observe that by definition of I:

P _ J _ -1
> 2fk-(i>m 2+B-Zz(i‘”k(ﬁ.>m ’
m=k+1 2 i=1 2!

1
2J(k—m+1) i(k—m+1)

p J m=1

Since k —m + 1 < 0and! > j we now deduce from the geometric series that

1

L j Jo 1 p
2J(k=m+1) oi(k—m+1) o
z < 2l—j _+B‘2—21_i < Z (1+2-B)m1<2-p-B.
1= m

m=k+1 =k+1

This completes the proof. O
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{ Results for p-1 1

{ Main Theorem for G),—1 p—1 and Cutting in half Lemma 6.10 for p—1 J

l

[ Fractal form Lemma 6.17 for p ]

Second commuting k-Lemma 6.5 for p First commuting k-Lemma 6.4
by descending induction on k for p by descending induction on k
Fourth commuting k-Lemma 6.7 for p ‘ Third commuting k-Lemma 6.6 for p

Reduction Lemma 6.8 for p ]
by induction on «

l

Main commuting Lemma 6.2 for p Cutting in half k-Lemma 6.10 for p
by descending induction on k by ascending induction on k

i

Cancelling k-Lemma 6.9 for p ]
by descending induction on k J

[ Main Theorem for G, ,—1 ]

l

Results for p 1

1T

Main Theorem for G, , and cutting in half Lemma 6.10 for p J

FIGURE 1 Main steps and structure of the proof of Theorem 6.1 (by induction on p)

6 | UPPER BOUNDS ON THE DEHN FUNCTIONS OF G, ,ANDG,, ,_,

In this section, we will derive upper bounds on the Dehn functions of G, , and G, ,_;. In Subsec-
tion 6.1, we state a sequence of auxiliary results and explain how they are used to prove the desired
upper bounds by induction on p. This will be visualised by Figure 1. In the remaining sections,
we then prove these results in the described order, finishing with the proof of the main result in
Subsection 6.8.
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6.1 | Main theorem and structure of the proof
The goal of this section is to prove the following key result of our paper.
Theorem 6.1 (Main Theorem). For p > 4, (nP~!, n) is a filling pair for both GppandG, , ;.

The proof proceeds by induction on p. We will see that for both groups we can reduce to null-
homotopic words of the form w(x,, x,), where x, and x, generate the first factor (see Subsection
6.8). In view of the canonical embedding G, ,_; < G/, ,, we deduce that it is enough to show that
5GP p_l(n) < nP~1 (see Lemma 6.31). The core of the proof consists in deducing from 5Gp_1 - (n) <
nP~2 that 6 p_l(n) < nP1,

We recall the following notation, for every A > 0:

Ty o= {x x5 gl |yl lasl, lag < A} and S, i= {x[",x3% | |a], |a,] < A},
and
Gy :={"|seTy,neN} and F, :={"|seS,,neN}L

We will fix A =1 once and for all and will omit the prefix A in all expressions, as one fixed
choice for A will suffice for the remainder of our proof (cf. Remark 5.4).

By Propositions 5.10 and Corollary 5.12, it suffices to prove that for every o > 1 we have
Og1q(n) < nP~1, where we recall that by definition the set G[a] (respectively, F[«]) is the set con-
sisting of all words obtained by concatenating at most @ words from the set G (respectively, from
F).

We now describe the structure of the proofvia a list of technical lemmas. In what follows, saying
that an identity between words in T holds in G, ,_; will be shorthand for saying that it holds in
P(Gp,p—1)- It is easy to deduce from its presentation that G, ,_, is a metabelian group. The first
important step is to prove that the commutation relations in G, ,_;, induced by its metabelian
structure, have area <, nP~1 and diameter < p 1. More generally we prove

Lemma 6.2 (Main commuting Lemma). Let p > 5, a,n > 1. Let w,, w, be either powers of x, or
words in F[a] representing elements of the derived subgroup, such that £(w, ), ¢(w,) < n. Then the
identity [wy, w,] = 1 holdsin G, ,_; with area <, , nP~! and diameter Sap M-

This result will be the consequence of four more specific lemmas. Before stating them we shall
recall and introduce some additional notation.

We will denote by n = (n,,...,ny) € R¥ a k-tuple of real numbers and In| := Zﬁ;l |n;| its £1-
norm. As before,for p —1 > k > 2and p > j > 2, we denote

Qi(ﬂ): [xnl ...,xn"‘l,x’.qk],

1 1 j
and

=j N Ng—1 . Mk
Qk(ﬂ) A |:y11,~-~5y1 15yj ]a

while for k = 1 we define Qi(g) = x;ll,ai(g) = y;ll. To simplify notation, when j = 2, we shall

simply write Q, (n) and 5k(g).
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‘We record the following key observation.

Lemma 6.3 (Substitution Lemma). Let p > 5. Forn € RP~2 the word 9130 ,(n)iscentralinG, ,_;.
In particular, the identity

~3
Q (=0, 1
. . _2 .
holdsin G, ,_, with area 5, |n|P~* and diameter 5, |n|.

Proof. Thisis a direct consequence of the fact that there is a canonical embedding of presentations
P(Gp_l,p_l) o P(Gp’p_l) such that the word Q;_z(ﬂ) . (52_2(2))_1 is contained in the image of
P(Gp_1,p—1) and the fact that null-homotopic words of length n in P(G,_; ,_;) admit a filling of
area 5, nP~2 and diameter < p - O

Despite being very basic, this result is the fundamental reason for why the Dehn functions of
G, pand G, ,_; are bounded by nP~1 rather than n?. Indeed, it allows us to ‘push’ words in the
first factor which represent central elements into the second factor at a cost that is bounded by
the Dehn function of G,_; ,_;. Using that the y; commute with the x; we can then commute
them with words in the x; at a lower cost than one might a priori expect. We use Lemma 6.3 at
various points and, in particular, in the proof of Lemma 6.5 to kick-start our induction step from
p—1top.

As mentioned above, the Main commuting Lemma 6.2 will result from four sublemmas, dealing
with specific commuting relations involving words of type Q{( These lemmas depend on a param-
eter k < p — 1. By k-lemma, we mean the statement of the corresponding lemma for a specific
value of k. '

The first one deals with commutators of words of type ij with words representing elements of
the derived subgroup.

Lemma 6.4 (First commuting k-Lemma). Let p> 5 n,a>1, j>3, 1<k<p—2 Let w=
w(x;, x,) be a word of length at most n in F[a] corresponding to an element of [Gp,p_l, Gp,p_l],
andletn € R¥ with [n| < n. Then the relation [Qi(g), w] =1 holds in Gpp—1 with area Spa nP—2
and diameter <, , n.

Our second lemma treats commutators of words of type ij with powers of x,.

Lemma 6.5 (Second commuting k-Lemma). Let p> 5 n>1, j>3,1<k<p—-2ne Rk and
m € Rwith |n| < n. Then the relation [Qi(g), x)'] =1 holds in G, ,_, with area S, |m| - nP=3 +
nP~% and diameter 5, n + |m|.

The following lemmas are versions of Lemmas 6.4 and 6.5 for Q, instead of Q]k

Lemma 6.6 (Third commuting k-Lemma). Let p > 5, n,a>1 and 2<k<p—-1 Let w=
w(xy, X,) be a word in Fla] of length at most n corresponding to an element of [G,, ,_1,G), ,_1],
and let n € R¥ with |n| < n. Then the relation [Q,(n),w] = 1 holds in G, p-1 With area 5, , nP~!

~p,a
and diameter S, , n.
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Lemma 6.7 (Fourth commuting k-Lemma). Let p > 211<k<p-1Lne RFand m € R
with |n| < n. Then the relation [Q (n), x'] = 1 holds in G _ywitharea 5, |m| - nP=2 + nP~land
diameter S, n + |m|.

To prove the Main commuting Lemma 6.2, we shall need a further reduction step, reducing to
words of bounded length in elements of type Q.

Lemma 6.8 (Reduction Lemma). Let p > 5, a > 1 and let w = w(x;, x,) be a word of length at

most n in F|a] corresponding to an element of[Gp’p_l, Gp)p_l]. Then there exists L = Omp(l) such
that the identity
L
w(xy, X)) = [] @, (mp*!
j=1
holdsin G, ,_, witharea S, , n ~! and diameter <, p 1 forsome Im;| Sqpnoand2<l;<p-—1.

The Main Theorem 6.1 will be a consequence of the Reduction Lemma 6.8 and the following
more subtle technical result, which deals with products of Q, -terms with different values of k.

Lemma 6.9 (Cancelling k-Lemma). Letp>5n>1,2<k<p-—1landforalll<j<p-—1,let
M; be a positive integer. Consider a word w(xy, x,) of the form

Mji1 My
w(xy, Xy) = <H Qk(_kl)+1)( H Qk+1("k+1l > H Q,_ 1("p 11 )

where n, . € R/ satisfies |n, ;| <n
If w is null-homotopic, then it admits a filling of area <, )y nP~ ! and diameter Spm ninG
where M = max; M.

p.p—1’

Finally, we record the following technical result which plays a key role at various stages of the
proof.

Lemma 6.10 (Cutting in half k-Lemma). For p > 4 consider the group G, ,_,. Letk > 2and n =
(ny, ..., ng) € RE. Identities of the form Q,(2n) = Qk(ﬂ)z -wy(n) and O, (2n) = w(n) - Qk(ﬂ)zk
holdin G, ,_;, where w, = H1L=1 Qli(ml.)il with L = Op(l), izk+1land|m| 5, |n|for1<i<
L. Moreover, these identities have area Sp |n|P~! and diameter SpInlinGp .

The way the Cutting in half k-Lemma is used throughout the proofiis a bit subtle: we will require
its version for p — 1 as part of the induction step when proving the commuting k-Lemmas for p.
On the other hand, its p-version will be obtained as a corollary of the Main commuting Lemma 6.2
that results from the four commuting k-lemmas. Finally, its p-version will be instrumental in the
proof of the Cancelling k-Lemma 6.9 for p.

In the proof of the Cutting in half k-Lemma we will use the following immediate consequence
of the Main commuting Lemma 6.2 for p > 5 (respectively, Theorem 4.6 for p = 4). We record
it here, as we will require its (p — 1)-version in the proof of the Third and Fourth commuting
k-Lemmas for p > 5
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Remark 6.11. Let p > 4 and let u and v be words in F[a] representing elements of G,, ,_; and

[G G ], respectively, with £(u), £(v) < n. Then the identity

p,p—1> = p,p—1

[u, v_l] = [u,v]™!

holds with area S, , n?~! and diameter <, , n. Indeed, we have the group identity [u,v"!] =

~a,p ~a,p
ulouv~! = [v,u]""". We deduce from the fact that Gpp1
[v, u]. For p > 5the Main commuting Lemma 6.2 for p then implies that the relation [v, u]’f1 [u,v]
hasarea < p nP~1 and diameter < p n.Forp=4 the same area and diameter estimates follow from
Theorem 4.6.

is metabelian that v commutes with

Regarding the proof of the diameter bounds we will adopt the following.

Convention. Throughout this section, the diameter bounds for our fillings will follow from
Lemma 3.5. In most cases this will be obvious, since the transformations used, as well as their
prefix words, will satisfy evident linear diameter bounds. To keep the proofs as simple as possible
we will only add detailed explanations for the diameter bounds where this is not the case.

Throughout the remainder of this section, we will assume that by induction 5Gp71 - (n) < nP—2

) admits a filling of area <

and that every null-homotopic word of length < n in P(G Sp-1

nP~? and diameter 5,_; n.

p—1,p-1

Initial step of the induction. As explained in Figure 1, the initial step (for p = 4) only needs to
be settled for the Main Theorem 6.1, and the Cutting in half Lemma 6.10. The former is provided
by Theorem 4.6 in the case of G, ;. We also observe that the area and diameter estimates of the
Cutting in half Lemma 6.10 follow from Theorem 4.6. Hence, in order to initiate the induction,
two facts need to be established.

(1) Show that the identities of Lemma 6.10 hold for k = 2,3 in G, ;.
(2) Prove the Main Theorem 6.1 for G, 4.

Let us start by checking (1). For k = 3 the 3-nilpotency of G, ; implies that Q;(2n) = (23(@23 for
all n = (n;,n,,n;) € R3. The case k = 2 requires a slightly longer argument. By Proposition 5.5
and since z is central for n = (n;, n,), the identities

92(22) — x:nlnzz_(Zgl )2n2 — (x;tlnzz_(nzl)nz)4z4(”21)nzz_(zgl)znz — (Qz(ﬂ))4zm

hold for some m € R with |m| S n®. By Lemma 5.8, we have z = Q;(m'/3,m!/3,m'/3). So,
writing n’ = m'/3 we deduce that

2 2
Q,(2n) = Qz(ﬂ)z 93(”1,, n',n') = 93(7’1,, n', 7’1,)92(2)2 )

where |n'| < n, so we are done.

We now turn to the proof of the Main Theorem 6.1 for G, 4. It is a direct consequence of Main
Theorem 6.1 for G, ; and Lemma 6.31. However, some explanation is required as the proof of
Lemma 6.31 itself relies on two statements: Lemma 6.3 and Corollary 6.24. Lemma 6.3 has a short
self-contained proof which has already been given. Corollary 6.24 asserts that the second identity
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of Lemma 5.8 holds in G, ; with area < |n |* and diameter < |n|, which is a consequences of the
Main Theorem 6.1 for G, ;.

Induction hypothesis: Throughout the remainder of this section, we will now assume that p > 5
and that the Main Theorem 6.1 and the Cutting in half Lemma 6.10 hold for p — 1. In particular,
by induction 5Gp—1,p—1(n) = nP~2 and every null-homotopic word of length < n in p(Gp—l,p—l)
admits a filling of area $,_; nP~2 and diameter < p—1 1. The way the induction procedure works
is explained in Figure 1.

6.2 | Preliminary results

We will now record a few simple preliminary results which we will require at different points in
the subsequent sections.

Lemma 6.12. The following identities hold in Gp’p and Gp’p_1 forall p>3, B,n,m R and
1Bl < 1:
) [x;,x}] = x} with area S, n* and diameter 5, |n|;

m N = A[+N m=17  [y+Mm—1 yn M Nl = [+M A=A +M+]L BT 1445 2
(@) [x7%,x5] = x5 [y, x ] - [x"7, x5 ] and [x]", x3] = [x]", x5 [ [x]"7, X3 ] with area S, n

and diameter <, |n| + |m|;

B _ JBn_t Ip—1_t . 5 .

(3) [x},x5] = x; x44 xpp_lz e for |t;| S, nwith area S, n* and diameter S, |n|.

Proof. Identities (1) and (3) are immediate consequences of Proposition 5.5. For the first identity
in (2) observe that by (1) x;"x; = x;xJx," with area S, n? and diameter < p Inl. Thus, we obtain

[x77, %0 = x"x) " xy X XD (6.1)
= x (M Dynynym=1yn (6.2)
=X 3% X X .
= x} [x], x{”_l] [x{"_l, x5 (6.3)

The second identity follows from the first one by replacing m by m + 1 and rearranging the
terms. O

We will also require the following:

t,_ . . .
Lemma6.13. Forn> 1,k > 3,andw = x;k . xpp_llz[P with |t;| < n'~! there are n €RLk-1<
i < p—1, with|n;| <, nsuch that the identity

p—1
w= H Qi(ﬂi)
i=k—1

holdsin G, ,_, (and in Gp’p).

Proof. This is a direct consequence of Lemma 5.13 and its proof. O
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As a consequence of Lemma 6.13 and the induction hypothesis for p — 1 we obtain:

Lemma 6.14. Letn,I > 1. Ifml, e, my € RP2 with |mi| < n, satisfy the identity

1
I Q) ,(m)i=1 (6.4)
i=1

in Gp_y p_y (and thus in G, ,_,) for ¢; € {*1}, then the corresponding relation admits a filling of

1
area Sp I - nP~2 and diameter Sp n+ 2223(1 - 2)m. In particular, if I < n, then the area is
<p nP~! and the filling diameter is < p I

Proof. By definition the Q3 (m.)% are central in G Thus, there are g; € R with
p—2 —i 3

p—1l,p-1-
1

QZ_Z(mi)Ei = z%. Since the distortion of (z) < G,_; ,_; is = n»~ we deduce that |g;| S, n?~2.
Since the right-hand side of (6.4) is trivial we must have Zle g; = 0. In particular, there is

iy such that i, + g4l < max{lqiol, lq;, +11}. Thus, Lemma 6.13 implies that there is || Sp
1

|gi, + i, +117~> Sp nsuch that
QZ—z(miO)Eio QZ—z(miOH)ei"H = Qz—z(ﬂ/)

in G,_; p_;. Since this is an identity of length 5, nin G
Sp 1. We can thus reduce to a null-homotopic product

p—1,p—1 it has area S p nP~2 and diameter

-1 I
<H Q;Z(mi)€i> : szz(m,)' < H Q;Z(mi)€i>
i=1

i=ig+2

of I — 1 terms such that every factor is of length <, n and equal to z" with |r| <, nP~2, Repeating
this argument a further I — 1 times shows that our initial word can be reduced to the trivial word
atcostS, I - nP~2, Noting that by Corollary 5.16 all prefix words of our transformations satisfy the

1
asserted diameter bound of n + Zf:q - n=2)m=1 completes the proof. O
We finish with two more technical results which we will require later.

Lemma 6.15. Letn>1,k > 2, andlet|ni|,|nk,j| <nforlgig<k—1and3< j< p. Denoteu =

n N p— . .
2 “P~1 ZM%p  The identity

x3 xp 1

holds in Gp_1,p—1 (and thus in Gp,p_l) with area Sp nP=2 and diameter Sp -

Proof. 1t follows readily from Lemma 5.7 that this identity holds in G,_; ,_; and we obtain the
area and diameter estimates using the induction hypothesis for G,_; ,_;. O
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This result will allow us to commute elements of the form

m M1 M3 Mep-1 _ny
[xl sy X9 X Tz
with words w(x,, x,) in the derived subgroup of G, ,_; using the First commuting k-Lemma 6.4

(see Subsection 6.3). We end this section with the following converse of Lemma 6.13.

Lemma 6.16. Let k > 1. For every n € RF there are t; € R with |t Sp |Q|i_1, k <i< p, which
satisfy the following identity in G

p.p—1
Qi () = xHxle Pt
k+1AZ) = 1 T2 p-1°""
Proof. This is an immediate consequence of Lemma 5.14. O
6.3 | First and Second commuting k-Lemmas

For simplicity of notation, we will assume that j = 3. The proof for j > 3 is the same. Recall that
we are proceeding by induction on p as shown in Figure 1, that is, the Main commuting Lemma 6.2
(which is a special case of the Main Theorem 6.1) and the Cutting in half Lemma 6.10 can be used
in the group G,_; ,_; with area 5, nP~2 and diameter S p 1. Note that formally the Cutting in
half Lemma 6.10 is stated in the subgroup G,_; ,_, < G,_; ,_;. However, the natural inclusion of
the corresponding presentations means that it also holdsin G,_; ,_;.

A crucial step in the proof of the First commuting Lemma 6.4 will be the following technical
result, allowing us to cut Qi(ﬂ) into pieces. We note that Qi(g) is a word in x; and x; which
therefore belongs to G,,_; ;.

Lemma 6.17 (Fractal form Lemma). Let1 <k < p—3andletn € R¥. In Gp p-1s
) and 207Dk ‘error terms’ wy, ; for 1 < j <

[logy(In])]. Each wy ; is a product of O,(1) commutators of the form (23(m)+1 with |m| 5, Zl

andk+1<1<p—2.1InGp_,, the area of this identity is Sp P 2 and its diameter is Sp Inl.
Moreover, the word diameter of w is <p Il

3 .
Qk(g) is equal

. . k
to a word w consisting of 5, |n|" copies of Q3 (2”%2('"m

Proof. Note that for k = 1 this is obvious and the error terms are trivial. The proof for k # 1 is in
[log,(n)] stages (see Figure 2). At the jth stage we will be left with 2/ k terms of the form Qi(ﬂ /27)
interlaced with 20—k

word is

error terms wy ; for 1 < i < j. By Lemmas 5.15 and 5.17 the diameter of this

1

o (e (12" LA
s Y (2 <2_J> +0,01)- Zz <2> Splnl (65
1

m=k+

for a constant O p(l) as in Lemma 6.10. The same reasoning shows that the word diameter of the
word obtained at every stage is S p Inl.

We apply the Cutting in half Lemma 6.10 for p — 1 to each of the words Qi (n/2)) starting with
the right-most one; it holds by induction hypothesis. As a consequence we obtain 20Dk words of
the form Q7 (n/2/*1) and 2/ error terms of the form wy_ ;. By the Cutting in half Lemma 6.10,
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Level Term Total number Valence 2%
0 Qk(n) 1
1 Q.(n/2) 2
n-1 Qk(ﬂ/zn—l) 2k(n—1)
n Qk (E/Qn) 2kn

FIGURE 2 Sketch of the n steps leading to the fractal form with n := [log,(|n|)] in Lemma 6.17. It omits
the error terms w ; for simplicity.

Lemma 3.5 and (6.5), the total area and diameter of the identities performed in the (j + 1)th
iterationare <, | % |[P=2and < p |nl, respectively. After [log,(|n|)] iterations we obtain the asserted
word of word diameter S p Inl.

The total area of all identities used in the proof is

[log(In)] e { ]\

S ; 20 (F)
2[log2(|ﬂlﬂ (-D(k—(p-2))

— |n|P— J=D(k—=(p=-

= In| 121 2

Sp InlP2,

where the last inequality follows since the sum is a convergent geometric series. Indeed, by
assumption, k < p — 3 and thus k — (p — 2) < 0. This completes the proof. O

Proof of the Second commuting k-Lemma 6.5. Observe that the Second commuting (p — 2)-Lemma
is an easy consequence of Lemma 6.3 and the fact that [x;, y;] = 1 Vi, j. We now assume that for
k < p — 3 we proved the Second commuting (k + 1)-Lemma by induction. We estimate the area
and diameter of the null-homotopic word [Qi(g), x7']. By the Fractal form Lemma 6.17 we have

Q; (n) = u(xy, x3), (6.6)

where u is a word that is a product of 5, | ﬂ|k terms of the form Qf(( )and, for 1 < j <

_r
2 [oga(InD]
[log,(|n)], 20U=Dk error terms wy ;; the terms are in no specific order and we will thus commute
them with xJ* one-by-one.

Note that, by the Fractal form Lemma 6.17, identity (6.6) has area <, |n |P~2 and diameter Sp
In|. Moreover, u has word diameter 5, |n| and thus the same holds for any of its prefix words.
Since all transformations used in the remainder of the proof will consist of commuting a piece of
the word u with xJ* and will have diameter <, |n| + [m|, the diameter bound of <, |n| + [m| in

the Second commuting k-Lemma will follow from Lemma 3.5.
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n . n
Observe that the word Q%m) has length in 0,,(1) so that the area of [Q%m) x4

for |¢] < 1isin O,(1). Thus, the total cost of commuting the |n|k terms of the form Q3 (m)

with x7" is <, |m|- |g|k < |m| - |n|P73, where for the last inequality we use that k < p—3
by assumption.
We now estimate the cost of commuting the error terms wy, ; with xJ*. For this we distinguish

thecasesk = p—3andk < p — 3, starting with the former. An error termw),_; ; consists of O ,(1)

words of the form 03 (l)+1 with |I] 5, 2 . To move it past x' we use the second factor of our

central product: by Lemma 6.3 the identity Q3 ,(O = Q) _,(D*! holds at cost S, |I|P~2, with
|n|

11l <p |2 2 Since Q (Dil is a word in the y;’s, we can commute it with x7" at cost <, |m]| -

Considering that there are 20-1(P=3) copies of Wwp_3; in u we thus obtain the followmg upper
bound for the total cost of commuting all of the error terms with x’"

[1°g2(|ﬂ|)1 |n| p—2 |n|
Area < 2U=1(p-3) . = L=
rea 5, Z Y + |m| >

j=1
[log,(1n)] [log,(In])]
=273 . fpP-2. 2 277+ 273 | \m| - |n| - Z 2(p—4)j
Jj=1 j=1

$p 2—(p-3) . (|ﬂ|p—2 2+ |m|-|n|- |ﬂ|p_4 . 2) <p |E|p—2 + |m| - |E|p—3’

where to obtain the first inequality in the last line we observe that

[log,(InD)] [log,(In)] -1
Z 2(p=-4)j — Z 2(p=4)-([logy(In)) ] =)
j=1 j=0
[log,(Inl)] -1
Sp In|P=*. Z 2719 < |p|P4,

j=0

This completes this step of the proof for k = p — 3.

To complete the same step of the proof for k < p — 3 we now assume that by induction the
Second commuting I-Lemma holds for p —3 > [ > k + 1. In this case an error term wy ; is equal
to a product ofOp(l)words of the form Q3( =)+ with |m| < Sp Inlandk +1 <1< p—2,and there
are 2U~DK error terms of the form wy ;.

By the Second commuting [-Lemma for [ > k + 1 the total cost of commuting the w; ; with x’"

is thus bounded by
(%))
+ | =
2J

. n
Area S, 20Dk, <|m| <| |>
2J

=2k, <|m| - n|P=3 . 2/k=(P=3) 4 |E|p—2zj(k—(p—2))>‘

We observe that the assumption k < p — 3 implies that j(k — (p — 3)) < j(k — (p — 2)) < 0. Using
the convergence of the geometric series we hence obtain the following bound on the total cost for
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commuting the wy ;, for 1 < j < [log,(|n])], with xJ'
[log,(In))]

Area S, 2k Z <| m| - |n|P=3 . 2J=(P=3) 4| ﬂ|p—22j(k—(p—2))>
J=1

S (Iml - |n|P~3 + |n|P72).

We have thus proved that the cost of commuting all of the wy ; in u with xé" is3, (m-|n|P=3 +
|n|P~2) irrespectively of whetherk = p —3ork < p — 3.
Summing up the total cost for all steps in this proof we obtain that

Area([Q} (), x']) S, InlP7 + |m| - [n|P7> + |n|P7% + |m] - |n|P>
Sp P72+ m| - P2
This completes the proof of the Second commuting k-Lemma. [

After estimating the cost of commuting Qi(g) with x7' we now need to estimate the cost of
commuting Qi(g) with a word in F[a].

Lemma6.18. Forl<k<p—-2n=ny,..,n) € RFandl < |n| the identity
Qm* - xi =xi-(Q rang,. ,nk))il Q) (!
holds with area 5, |n|P~ 2 and diameter Sp InlinG,
Proof. The identities
Q* - x =xl - Q) - [Q(n), x|
=x;Q(* - (QF, (Lny, .. ,nk));1

£l
= x| (Qf{“(l, Ny, m))’ - Qi(ﬂ)tl

hold in G,_; ,_; <G, ,_; and thus with area 5, |n|P~ ~2 and diameter < <p Inl by induction
hypothesis. O

Remark 6.19. For k = p — 2 we have Qk+1
diameter <, |n|. Thus, Lemma 6.18 reduces to [Q3 ,(n),x ] = 1in this case.

—1 ; -2
ny,..,m)=1inG,_, ,_, with area 5, |n|P~* and

Lemma 6.20. Let o >2 and 1 < k < p—2. Then for u = u(x,,x,) € Fla] with £(u) <n an
identity of the form

QR u=u- (H Qi@ﬂ“) Q*!

holdsin G, ,_, withv =0, ,(1),l; > k + 1, m; e RY, and |m | $p |n|. Moreover, this identity has
area S, o |n|P=2 and diameter Spe InlinGp
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Proof. We treat the case Qi(ﬂ)ﬂ, the case Qi(ﬂ)‘l being similar.

The proof is by descending induction on k. The case k = p — 2 is an easy consequence of the
identity Qz_z(g) = 5;_2(@ inG,_; ;. Thus, assume that k < p — 3 and assume that the lemma
holds for k + 1, ..., p — 2. Since u € F[a] we have

B Bu Yu

u(xy,x;) = x7'x, n e X1

for 2u < a and Zf=1(|:3i| +lyih<n
Applying each, the Second commuting k-Lemma 6.5 and Lemma 6.18, 1 times we obtain that
the identity

SHORELHOE Hxﬁl ;

"
E<fol Q. 6m) " )-Qi@
i=1

holds with area <, 2 - a - [n|P~% and diameter S, a - |n|.
In particular, we have produced u < a words Qf{ 1B n)~!. Applying the induction hypothesis
/x times (once to each Qkﬂ(ﬁ’i, n)~1, starting with the rightmost one), we obtain with area Spa

- |n|P~2 and diameter S

Spa @ |n| an identity of the form:

u

Qm-u=u-[] Hﬂi}m Q)BT Qi)
i=1

where L; = Oy (1), |(ml ,n)| < |n|and lij > k + 2. Hence, we are done. O
The First commuting k-Lemma 6.4 is now a straightforward consequence.

Proof of the First commuting k-Lemma 6.4. We apply Lemma 6.20 to w = w(x;,x,) € Fla]

with w € [G, ,_,G), ,_1] and £(w) < n, observing that under these assumptions the identity

[Qi(ﬂ), w]=1holdsinG, ;.

It follows that there is v = Oa’p(l) such that with area 5, , |n|P™ 2 and diameter <, p |l the
identity

G w=w- (]‘[ Qg(mgﬂ) Qi)
i=1

holds with [; > k + 1 and |m,| <p In and that, moreover,

v
H Qi(mi)il
i=1

isnull-homotopicin G,_; ,_;. However, the latter word has length <, , |n|. By induction hypoth-
esis for G,_; ,_; we deduce that this null-homotopic word has area <, , |n |P=2 and diameter
Sap |0l This completes the proof. O
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6.4 | Third and Fourth commuting k-Lemmas

Both lemmas will be easy consequences of the first two commuting k-lemmas and the following
result:

Proposition 6.21. Let2 <k < p—1,n € R*and B = n;,_, — |ny_,| Then, ifn,,_, > 0 theequality

[ng—1]-1 ) 1
Qi (n) = [x;l‘,...,xf,x;k] H <[x?l,...,x?“z,x{w,x;k] . [xfl,...,x;lk‘z,x;qk]> (6.7)
=0

holdsin G, ,_, at cost 5, |n|P~1 and with diameter Sp In| and if n,_; < 0 the equality
n n n Ny —j .n n ny_ n1—1
Q(n) = [xll,...,xf,xzk] H ([xll,...,xlk Z,xf j,x3k] [ X 2,x3"] ) (6.8)
j=1

holds in Gpp-1atcost S, |n|P~! and with diameter <p Inl.

Addendum 6.22. The words in (6.7) and (6.8) have word diameter < p Il

Proof. This is a direct consequence of the ‘in particular’ part of Corollary 5.16. O
The key step in the proof of Proposition 6.21 is summarised by the next result.

Lemma 6.23. Forp—2>k> 1,8 € R, n>1andwordsu = (23(11)+1 v= k+1(m) andw =
Q1 (DF with ||, |nl, |m|, |l| n, the identity

[xf,u-v-w] = [xf,w] . [xf,v] . [xf,u]
. _2 . .
holds with area Sp nP~= and diameter SpninGp,

Proof. Applying Lemma 5.7(2) twice, we deduce the free identities

PRI Y R I

=[] ] (] )

Since v =Q}, (M*' €[Gy_1 _1,Gp_1p1] and u € G,_ lp

hypothesis for p — 1 and the assumptions, that the identity [x ,ul* = [x ,u]holdsinG, ,_; with

area S, nP~ ~2 and diameter Sp 1 Since w € [G, 1, Gp’p_l] N Fla] for all a sufficiently large,
two applications of the First commuting k-Lemma 6.4 imply that the identity

e o] o = ] o] - [

holds in Gpp-1 with area Sp nP~2 and diameter Sp e This completes the proof. O

1 it follows from the induction
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Proof of Proposition 6.21. We will assume that n,_; > 0, the proof for n,_; < 0 being similar. The
proof is by induction on |nj_; |. The case ||n,_;|| = 0 is trivial, so assume that |n;_;| > 0. By
Lemma 6.12(2), the identity

Ny n n n Np_1—1 ne_1—1 _n -1
Lk = a0t [x3k,x1k ! ] [xlk ! ,xzk] =0;(n) - (B — Liny)) - Qy(my_y — L,my)

holds in Gpp-1 at cost 5, |n |? and with diameter < p Il Applying Lemma 6.23 and the
(p — 1)-version of Remark 6.11 a total of k — 2 < p — 3 times to Q; (n) we obtain the identities

Qi (n) = [xfl, oy X2 M1 x""]
- 3 -1.03
= (g, sy, My — L) - Qp (g, e oy — Lmg )™ - Qp (R, My, 1)

inGp, ,_, atcost 5, |n|P~2 and with diameter S <p In|. Note that a priori the three factors in the
last line of the equation may appear in a different order after applying Lemma 6.23. However,
since for all a sufficiently large Q (n;, ..., ny_p, 1 — 1,my) € [Gp ,_1,Gp, p_11 N Fla], the First
commuting k-Lemma 6.4 and the induction hypothesis for G,_; ,_, imply that we can reorder
the factors in the given order at cost S Sp |n|P~2 and with diameter S <p Inl.

Applying the induction hypothesis to the word Qi (n,, ..., n;_5, nj_; — 1, 1) concludes the
proof (the prefix word being trivial). O

Proof of the Third commuting k-Lemma 6.6. Let w = w(xy,x,) € [G,, ,_;, Gp’p_l] be a word with
w e Fla] and #/(w)<nandletn € R¥ with |n| < n. Assume that n;_; > 0, the case n;_; <0
being similar. By Proposition 6.21 the identity

[mye_1]-1 , 1
Qk(ﬂ)E[X?l,.. "k] H <[ f"‘z,x{w,x:"] ~[x;l1,...,x;lk‘2,xgk]> (6.9)

holdsin G, ,_; witharea 5, |n |P~1 and diameter Sp |n|, where | Bl < 1. Applying the First com-
muting k-Lemma 6.4 at most 2n times to commute the terms on the right side of the identity (6.9)
with w thus yields

. L] -1 5 1

_ n ny n Ny ]+ ny n nj_ ny

Q) -w= [xll,...,xl,x2 ] ‘w - I I <[x11,...,x1 2, x]F, X, ] [t x] 2, X, ])
Jj=0

inGpp_4 with area < p nin [P=2 + |n|P~! and diameter < <p Inl; for the diameter estimate we use
Addendum 6.22.

Lemma 6.12(3) and Lemma 6.15 imply that there are t; = Sn; and ¢; with [¢;| Spma<i<p
such that the identities

—

— ny Ng_2 IS p-1_t

= e p

= [xl O AT S - ]
p

— ny Ny L
= [xl,...,x1 ,xj]

Jj=3
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hold in G, , , with area <, |n|P~2 and diameter Sp Inl. Applying the First commuting
k-Lemma 6.4 p — 3 times yields that

p—1
i =1 . nm neo
Q- w=w II([x1 es X) ’ij
Jj=3

[Mpe—1]-1 "
ny Mgy N J+ ny N Mk
I I ([x1 B e ]-[xl s X2 X ])
j=0

in G, ,_, with area 5, n|n|P~2 + |n|P~! and diameter <, |n|. Finally, a further application of
Lemma 6.15, Lemma 6.12(3) and Proposition 6.21 to the right-hand side yields that

Q(n) - w=w- Q(n)
holdsin G, ,_, with area 5, n|n [P=2 + |n|P~! and diameter <p |In|. This completes the proof of

the Third commuting k-Lemma. [l

Proof of the Fourth commuting k-Lemma 6.7. Note that the same proof demonstrates the Fourth
commuting k-Lemma, except that in this case the area is 5, [m| - [n |P=2 + |n|P~! and the diam-
eteris S, [m| + |n|. Indeed for k = 1 the result is trivial and for k > 2 we simply replace w by x7"
everywhere in the above proof and use the Second commuting k-Lemma 6.5 instead of the First
commuting k-Lemma 6.4. [l

We also record the following useful consequence of the arguments presented in this section.
Corollary 6.24. For all n € RP™!, an identity of the form

Q1w = (0} (Inl, ., D))"

withm €R, |m| <, |n|, holdsin G, ,_, witharea 5, |n|P~! and diameter Sp |l

Proof. The identity itself follows from Lemma 5.8. On the other hand, for k = p — 1, Proposi-
tion 6.21, Proposition 5.5 and Lemma 6.15 yield n’,n”" € RP~* with |n/|, |n"’| <, |n| such that the
identity

0= 00 (2),0) "

holds in G, ,_; with area S, | n|P~! and diameter Sp In|. Combining these two identities for
Qp_l(g), we deduce the area and diameter estimates from Lemma 6.14. O

6.5 | Reduction and main commuting lemmas

Lemma 6.25. Forl >3, n€ R andm € R! with [n|, |m| < n the identities

1) Qp(g) =1;and
@) [xgnl,Ql_l(mz, wsmp] =1

. p—l : j
hold with area 5p n and diameter Sp nin Gp,p—l'
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Proof. Assertion (2) is an immediate consequence of the Fourth commuting k-Lemma 6.7. We
turn to the proof of (1). We focus on the case n,,_; > 0, the case n,_; < 0 being similar.
By Proposition 6.21 and Addendum 6.22 the identities

Q,(m) = [, 0, (0.1, )]

[np—] |-1

=|x",Q, ,(n,,....6,n,) - H (Q;_l(nz, sy, j+Bimy) 7t 92—1("1’ s np_z,np)>

j=0

hold at cost 5, |n|P~! and with diameter <p In|. In fact Addendum 6.22 shows that the last word
hasword dlameter Sp Inf. Wewill 1mp1101t1y use this in all further diameter estimates of this proof.

Using that Qp_l(nz, wsp o, J+B,np) =1in Gy at cost 5, |n|P™ ~2 and with diameter
Sp Inl, and applying Lemma 6.12(3), we obtam that

an—lj_l
= nl n2 np—z t3 eese t . 3
Qp(g) =[x [xl - [x1 X ez P” (Qp_l(nl, s np_z,np)>

Jj=0

atcost S, [n|P~! and diameter < |n|.

From Lemma 6.15 and the fact that Qi)_z(~) =1inG,_, p_, for j > 4 we can now deduce that

y@=[a ([T ] -] )t |

Jj=3
[7p-1]
— n 3 p
=[x11,Qp_2(n1,... Ny o, t3) - ( o 2(n2,...,np_3,np_2,np))
with cost 5, |n|P~ I and diameter < p In| (where we use the identification z = x,, to simplify

notation in the first line).
We apply Lemma 6.3 |n p— 1] + 1 times at cost S Sp |n|P~2 and diameter S Sp In| to obtain

[x'l11 Qe (ny, ..., np)]

n, =<3 ~3 an—lJ
=1x,",Q, (g, o, 1) - (Qp_z(nz,...,np_3,np_2,np)> ]

-1 ~p
area of all stepsis 5, [n|P~ 1 and the diameter is < <p Inl. O

Commuting the Qp , With x Patcost S Imy|-nf | S n? completes the proof, since the total

Lemma 6.26. Leta > 0, letw = w(x,, x,) € Fla]with¢(w) < n,andletk > 1,n € RF with In| <
n. Then there exists a positive integer L = O ,(1) such that the identity

L
Q(n)*! - w(xy, x,) = w(x;, X,) - H sz(mj)ef
j=1

holds in Gpp-1 with area <, N ! and diameter <, oM for suitable €; € {+1}, |m | Sap and
k<lij<p-1
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Proof. The proof proceeds by induction on «. The case o = 0 is trivially true for L =1 and
Q (m;) = Q(n). Assume that the result holds for some 2 - a > 0 and let

w(x, x,) = xflx;nl cees xf"x;n" € F[2(a + 1)]
be a word with #(w) < n. If ¥ < a, then the result holds by induction hypothesis. We may thus
assume x = « + 1. The following identities hold in G

p.p-1
Q) w(x;, xy) = Q) xx] e  x
= X1 () [ (), XX e x X
= X (3] Qe ]) g xR
(*1) ”le(n)“([x;“, Qk(ﬂ)])le;nl L _x?cx;nk
= x?Qk(ﬂ)ﬂ(Qk+1(”1’ﬂ))ﬂx}2ﬂl R A

x5 () [Q (), m](Qk+1(n1’ﬂ))$l[(Qk+1(n1’ﬂ))¢l’x;nl]

nz m2 o eee o nK mK
X1 %, X1 %,
(2) n m F1
= 1 1 +1 + ”2 my My | My
= x, "% Q) ( Qe (1, 1)) x 22 e xR X

where (x1) holds by applying the Third (or Fourth) commuting k-Lemma 6.6 to the right-hand
side of the identity [x [ L O™ = [Q(n)*!, x'fl]Qk(ﬂ):1 with area 5, nP~! and diameter S, n,
(*2) holds with area 5 » nP~! and diameter < p N by Lemma 6.25(2), and the remaining identities
are free. Note that if k = p — 1, then Q; ,(n;,n) = 1 with area Sp nP~1 and diameter Spn by
Lemma 6.25(1) and we can thus get rid of it in this case.

Applying the induction hypothesis first to (Q;_,(n;,n))™ (if k < p — 2) and then to Q,(n)*!
yields an identity of the form

2

1 K K — .

X ()= (Qeg (g, ) T x2x) e XX = w0 - | IQll (m, ) ] |le,j(ﬂz,j)52~f
j=1

withL,L, =0, ,(1),k <1y j,1, j < p—1and|m, | |m2j| Sap 10l + 10| Sg p nwitharea 5, ,

nP~1 and dlameter Sa,p 1- This completes the proof. O

‘We now turn to the proof of the Reduction Lemma 6.8.

Proof of the Reduction Lemma 6.8. The proofis by induction on 2 - «. The case a = 1is trivial, since
w(xy,x,) = x"lxm1 € [G, p_1,G, p—1] implies that n; = m; = 0. Thus, assume that by induction
the result holds for some 2 - ¢ > 1 and consider a word of length at most n

w(xy,x,) = xlnlx;n1 Ceees ;’k e Fl2(a +1)]
corresponding to an element of [G,, ,_;,G, ,_;]. By induction hypothesis we may assume that

k=a+1.
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The following identities hold:

w(xy,X,) = x?lxgnl Caee -x’f"x;""
= x}111+n2x£”1+M292(n2’ ml)_l [[X;nl, x;"z] , x;”z]x;% . x;’kx;"k
= x;l1+n2x;"1+n1292(n2’ ml)—lx;"S . x’lqu;”k’

where the last identity holds with area <, nP~! and diameter < p 1 by Lemma 6.25(2). We apply
Lemma 6.26 and obtain that

ny+n,  mp+m,
1 x2

L
—1.Nn3 n  my ny+ny, m;+m, nj ny  my +1
Qy(ny,my)~ x - o XX X X X7 XX HQlj(mj)
J=1

1 72 1 2 1

with L = Oa,p(l), |m}.| hS

~a,p
word v(xy,X,) = xf 1+"2x;" 1+m2x¥3 e xf"x;" * has the same exponent sums for x; and x, as
the word w and thus also corresponds to an element of [G,, ,_;, G, ,_;] of length < n. Moreover,
U € F[2- ] and hence we can apply the induction hypothesis for 2 - « to v. This completes the

proof. Ol

n,and 2 < lj < p — 1, with area Sa’p nP~1 and diameter Sa’p n. The

‘We are now in position to prove the Main commuting Lemma 6.2.

Proof of the Main commuting Lemma 6.2. The case where both w; and w, are powers of x, is
obvious. Else, we may assume that w, is in the derived subgroup. We then apply Lemma 6.8 to
rewrite it as a product of O, ,(1) many terms of type Q*! with k > 2, and we conclude thanks to
the Third commuting k-Lemma 6.6 if w, is in the derived subgroup and the Fourth commuting
k-Lemma 6.7 if w, is a power of x,. O

6.6 | Cuttingin half Lemma

The two identities of Lemma 6.10 are proved in the same way " so we focus on Q;(2n) = Qk(ﬂ)zk .
wy (n). The proof is by induction on k.

The case k =1 is trivial. We thus assume that Lemma 6.10 holds for some k > 1 and con-
sider the commutator Q,,(2n) = [xfnl,xfnz, ...,xfnk,xin"“]. We introduce the notation v;, =
Qi (ny, ..,y q) = [x?z, s x;lk , xZ"“]. By induction hypothesis the identity

2n; 2ny 2mq | _ [ 2np 2k
[xl sy XX = [x] LU wi

holds witharea 5, [n|P~! and diameter S, |n| for wy, = ]_[iL:1 Q, (m)*! withL = 0,(1),}; > k +1
and |m;| <, |n| for1 <i<L.

 Note that we can also deduce one from the other using the Main commuting Lemma that has already been established.
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Using Remark 6.11, Lemma 5.7 and the Main commuting Lemma 6.2 we observe that the
following identities hold with area <, [n|P~ 1 and diameter < Sp Inl:

2n; ok _ 2n, 2n; 2k
[xl SO Wi | =[x w| - XY

= (@[, x"])7 - 0 - [ w ] [ w]

@ Q" [ (n), x;ll] g [ ,wk]x;” [ w]

Here we wrote (A) whenever we applied the Main commuting Lemma 6.2 to words of length
<p Inl. Instep (*1) we iteratively applied Lemma 5.7 and (A) 2 - (2K — 1) times to words of length
Sp Infatcost S, 2- k-1). |n|P~. In step (+2) we apply (A) 2 - 2k . 2k times to terms of length
<p Inl, the cost of which is also 5, 22K+ P,

To complete the proof we need to write the error term

Q n 2k [yl X;ll [
[ k+1(ﬂ)’ Xy ] [x1 ’wk] [xl ’wk]

asaproduct of O,(1) commutators of the form Qu(m"* with |m/| S Sp Inland ' > k + 2atcost Sp
In|P~! and with diameter 5, |n|. To see this let w;, = M- L Q (M) € ¥y (G) with L = 0, (1),

iz k+1and|m| <, |n|for 1 <i< L and consider the followmg identities:
[ e ]
Do) lm_[ [ 0, (m, )*1] iy [}, 0 (m*!]
i=1 i=1
= [ oyw)] (ﬁ [ 0y (m)= |- [[ 0 (mp . ”1]> I [ @m0
i=1 i=1
2™ (o] o)) T o]
i=1 i=1

=! wy ().
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Observe that in (x1) we apply Lemma 5.7 and (A) < 20,,(1) times and that in (x2) we apply
Remark 6.11 < 4 - 0,,(1) times to words of length 5, |n|. It follows that these identities hold with
area S, |n| P~1 and diameter < p |n|. This completes the proof of the Cutting in half k-Lemma 6.10.

6.7 | Cancelling k-Lemma

The proof of the Cancelling k-Lemma is by descending induction on k. The Cancelling (p — 1)-
Lemma is a straightforward consequence of Lemma 6.14, Corollary 6.24 and Lemma 3.5. Thus,
assume that the Cancelling [-Lemma holds forallp—1 > 1> k + 1.

The induction step in the proof of the Cancelling k-Lemma is one of the most subtle parts of
our proof of Main Theorem 6.1. Our goal is to manoeuvre ourselves into a position where we can
use that for a word being null-homotopic implies that in its Malcev normal form in G, ,_; the
exponent sum of the x; must vanish. In particular, this requires extracting the x; from the word.
Pursuing a naive approach using the Fractal form Lemma 6.17 will lead to a word that consists
of powers of x; that cumulatively have word length n*~1, as well as many ‘error terms’ in the
form of short iterated commutators that cumulatively have non-linearly bounded word length.
Commuting them using our Main commuting Lemma to assemble the x; on the left and the
error terms on the right would be much too expensive. To circumvent this problem we perform
the extraction of powers of x; using a more intricate procedure which can be seen as beefed-up
version of the Fractal form Lemma: rather than producing a word in fractal form we merge error
terms whenever we create them and thereby keep their numbers low. We emphasise that it is only
at this point of the proof that we can do this, as it will require the p-versions of the Cutting in half
Lemma 6.10 and the Main commuting Lemma 6.2.

We will now perform the core part of the proof of the induction step from k + 1 to k, where we
overcome the aforementioned difficulties. This will provide us with the following technical result.

Lemma 6.27. Forp—2>k>2n>1landne€ Rk with |n| < n anidentity of the form
_ B
Qm* =x;, - Epi(n)

. . _1 . .
holds in G, ,_, with area S, nP~" and diameter <, n, where E,, ,(n) is a product of the form

p—1 1,7 k
]_[i:k+1 Q;(m)* with |m,| Sp - Moreover, |B| <, n*.

We shall focus here on the identity Q,(n) = fo - (E, x(n)), the other one (with Q™

having the same proof*.

Proof. The proof is by an inductive procedure in m := [log,(|n|)]. When m =1 the result is
an immediate consequence of Lemma 6.13 and our choice of relations, since for m = 1 we have
[n| < 1. The inductive step is encoded in the following claim.

Claim 6.28. There exists a constant C = C(p) such that if Lemma 6.27 holds for an elementn/2 e
RF satisfying [log,(|n/2])] = m with 8 = B,,, cost at most &,,, and diameter at most d,,,, then it

T Note that an iterated application of Proposition 5.5 shows that in fact 8 = +n; - ny for n = (ny, ..., ).

#The only difference lies in the fact that we would have to use the second identity of the Cutting in half Lemma instead
of the first one.
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also holds for the element n € R* satisfying [log,(|n|)] = m + 1 with
B=PBn1= zkﬁm,
cost at most
Spys < 288, + C2mP~D,
and diameter at most

dpi1 <d, +C2™.

Before proving the claim, let us see why it implies Lemma 6.27. We immediately deduce
that B,, <2K"8, = 0,(In|*) and d,, <d, +C Y, 27 =d; + C2™ = O,(|n). Letting v, =
27kms, . we obtain

Uppar S Uy + C27mHDkomp=1) yy g commhom(p=D) =y 4 c2mP=1k),

Using that k < p — 1 we deduce that v,, < v, + C Y1t ! 2{P~170) = 0 (2m(P~1-K)) and therefore
that §,, = 0,(2"?~V) = 0,(|n|P™"). So, Lemma 6.27 follows. O

Proof of Claim 6.28. Let n € R¥ with [log,(|n|)] = m + 1. By Lemma 6.10 for p, the identity

Q) = (94(n/2))” - we(n/2)

holds with area p |n|P~! and diameter < p» Inl, where w;(n/2) is a product of Op(l) iterated

commutators of the form Q;(m)*! with |m| Sp % andl >k + 1.

We apply the induction hypothesis for m to each of the Q; (n/2) successively, starting with the
left-most one and moving error terms to the right. After the ith application we obtain an identity
of the form

Qum) = X (04 (n/2))7 7 (Bpy(n/2))' - wi(n/2).

Since |5, Sp |Q|k, Lemma 5.13 implies that x}(f’f has word diameter <p Inl.

An (i + 1)th application of the induction hypothesis for m yields

Q) = P (B, (n/2)) - ((1/2)) 7 (Bpi(1/2))' - wien/2)

with area §,, and diameter d,,,.
By applying the Main commuting Lemma 6.2 < p - 2¥ times we can commute the terms making
up E p,k(g /2) with the (Q; (n/2)) and obtain the identity

Q) = XV (0 (n/2)) T (B (2/2) - w(n/2)

inG, ,_, witharea 5, |n|P~! and diameter at most d,,, + O,(|n|) (for the latter we use Lemma 3.5

and the fact that |x1(:11 Wm | Gppr <p Inl by the induction hypothesis for m and Lemma 5.13).

Putting all of the above steps together, we deduce that the identity

Q) =7 (Byi(n/2))” - wiln/2) (6.10)
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holdsin G, ,_, with area
258, +0,(In|P™),
and diameter at most d,,, + O, (|n|).
We now apply the Cancelling (k + 1)-Lemma 6.9 to prove:

Lemma 6.29. The word (Ep,k(g/z))zk wy(n/2) can be transformed in Gp,p—1 into an error term
of the form E,, ;. (n) at cost 5, |n|P~ L and with diameter <p Inl.

Proof. We need some preparation that merely involves identitiesin G, ,_,, without considerations
of cost. By Lemma 6.16 there are t; € R with |f;| <, |n|"=! such that the identity

1 42 lp-1_t
= . P
Qk(l’l) xk 1 xk 5 e X 1Z

holds in Gpp-1- Modding out by the (k + 1)th term of the central series, we deduce from (6.10)
that 2€8,, = .1, and so

(Epx (E/Z))Zk ‘wi(n/2) = xlt{k:; x;P__llztp.

Finally, by Lemma 6.13, we deduce the following identity

p—1
Zk
(Epi(n/2))” -win/2) = [ Qum)*!
i=k+1
in G, ,_,, with |m;| 5, |n|. Recall that both E, «(n/2) and w; (n/2) are products of Op(l) many
terms of the form Ql(m)+1 with |[m| S, |nl,and [ > k + 1. By the Cancelling (k + 1)-Lemma, this
identity holds with area <, |n|P~ 1 and diameter < <p Inl. O

We resume the proof of Claim 6.28. Recall that by definition, we have |n| < 2™. Choosing
Bims1 = 25B,,, we deduce from (6.10) and Lemma 6.29 that the identity

Q= =X B, (n)

holds with diameter bounded by d,,,; = d,, + 0,(2™) and area bounded by &, = 2ks,, +
0, (2m(r=1), thus ending the proof of Claim 6.28 (and therefore of Lemma 6.27). O
As a consequence of Lemma 6.27 we can complete the proof of the Cancelling k-Lemma.

Proof of the Cancelling k-Lemma 6.9. Recall that by induction hypothesis the Cancelling (k +
1)-Lemma holds. We fix M > 1. Let

My Mjeiq My
w(xy, xy) = HQk(ﬂki)tl H Qk+1(_k+1l T H Qp—](ﬂp_l,l‘)il .
i=1 i=1

be a null-homotopic word in G, ,_; with n i€ R/, |n
M; <M.

jll 1<l<Mj,k<l<p—1and
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We reduce to the Cancelling (k + 1)-Lemma by applying Lemma 6.27 iteratively to the terms
(), 1 <1< My, starting with the left-most one and then moving the error terms right. At the
beginning of the ipth step of this process we will have an identity of the form

ip—1 My fp—1
LU(xl,X2) E<H Xii> . (H Qk(ﬂk,i)i1> : (H Ep,k<ﬂk,i>>
i=1 i=i i=1

i=i,

My
H Qk"'l(—k+ll H QP 1(np 11 - ’

with |B;| S p nk=1.In particular, Lemma 5.13 implies that all prefix words of transformations will
have diameter < p 1.
‘We apply Lemma 6.27 to obtain

w(xq, X;) E<loﬁ xf‘) 'xiio 'Ep,k<ﬂk,i0) ) ( ﬁ Qk(nkl > (lol:[lEpk<_kz>>
i=1 i=i

=ip+1

Mk+1 Mpfl
. H Qk+1(ﬂk+1,i)ﬂ R H Qp—l(ﬂp—l,i)il

i=1

with area <, nP~1 and diameter <p -
Recall that the E, ,(n, ;) are products of < p terms of the form Q;(m)*! with |m| < Sp |nk | <
and! > k + 1. Wecan thus apply the Main commuting Lemma 6.2 a total of S, M), times to obtaln

w(xl,x2)5<illjxf">-( H Oy )* > (HEpk(_kl)>

i=ip+1

My MP 1
HQk+1(—k+lt ) H p— l(ﬂp—i,i)irl

i=1

with area < D nP~1 and diameter < p I
‘We obtain the identity

My My M
ot =T ) (Tne(o) ) (T ovemn® ) | T 00,00
i=1 i=1

in G, ,_; from the original null-homotopic word w(x;,x,) with total area <, M;nP~ I and
diameter <, M -

By definition of the E, i (ny ), after applying the Main commuting Lemma 6.2 at most p - M -
M(p — k) more times, we obtain

My

M
W) = (Hx£l> H Qk+1(”k+1z ’ H Qp- 1(np 11)
i=1
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witharea 5, MnP~! and diameter Sp M - n, for suitable n ;, where M, S SpMp+Mforl >k +1.

However, it now follows from the assumption that w is null- homotoplc that Zl | Bi = 0.Thus, we
have reduced to the cancelling (k + 1)-Lemma for some M s p M and, by induction hypothesis,
the null-homotopic word

M.,
H 'Q'k+1(nk+ll H QP 1(np 11)

i=1

admits a filling of area 5,y n?~ I and diameter < Sp.m 1. Thus, all words w satisfying the hypoth-
esis of the Cancelling k-Lemma have area 5, ; n?~ I and diameter Sp n. This completes the
proof. O

6.8 | Proof of the main theorem

We are now ready to complete the proof of the Main Theorem 6.1 for G, ,_; and G, ,

We start by treating the case p = 3, observing that G;; = Hs(R). The fact that H5(R) has
quadratic Dehn function was originally proved by Allcock using symplectic geometry. His proof
is short and elegant and actually proves a stronger statement: any smooth horizontal L-Lipschitz
map from S* to Hs(R) extends to a O(L)-Lipschitz map defined on the disk. Here, ‘horizontal’
has the following meaning: we consider a ‘horizontal’ distribution defined as orthogonal vector
complement m of the (I-dimensional) derived subalgebra of §s(R), and a path is horizontal if it
is tangent to m at every point.

Allcock’s proof can easily be adapted to show that any L-Lipschitz piecewise smooth and horizon-
tal map defined on S! extends to an O(L)-Lipschitz map on the disk. In particular, this applies to
‘relation loops’, that is, loops that are obtained by concatenation of paths of the form y(t) = y(0)u!,
where u is an element of the generating set

L= (x5 gy, sl las], lagl < 1)

of G5 5 (see Subsection 5.3). One easily deduces from the Lipschitz filling of such a loop that the
corresponding relation admits a Van Kampen diagram of linear diameter and quadratic area. This
shows that G 3 admits a (n?, n) -filling pair.

Remark 6.30. This also provides a proof of Theorem 4.1: indeed, H;(Z) being a uniform lattice in
H5(R), the two groups are quasi-isometric, so we can deduce, for instance, from Lemma 9.7 (with
e = 0and s = 1) that Hy(Z) admits a (n?, n) -filling pair.

We may thus now complete the induction step for p > 4. In particular, we may assume that
Gp_1,p—1 admits (nP~ 2, n) as a filling pair. In the previous sections, we have proved that under this
assumption all auxiliary results in Subsection 6.1 hold for p and it remains to put them together.
Indeed, as we shall now see, the Main Theorem 6.1 for p is a straightforward consequence of the
p-versions of the Reduction Lemma 6.8 and the Cancelling 2-Lemma 6.9.

Proof of the Main Theorem 6.1 for G,, ,_;. As explained at the beginning of this section, it suffices to

proofthat foralla > 1 every null- homotoplc word of length < nin §[a] admits afillingofarea 5, ,
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nP~! and diameter <, , n. Let w = w(xy, X,,¥;,y3) € Gla] be a null-homotopic word of length
¢(w) < n. Using that the x; and y; commute, there are words u(x,, x,) and v(y,, y;) such that the
identity w = u-vholdsin G, ,_; with area < n? and diameter < n. The word v(y,, y;) represents
a central element of length < nin G,_; ,_;. Thus, by induction hypothesis, u(x;, x,) - v(y1,y3) =
u(xy,x,) - v(xy,x3)in G, ,_; witharea 5, nP~2 and diameter Sa,p 1 Using again that v(xy, x3)
represents a central element of length < n, we deduce from Lemma 5.14 and Lemma 6.13 that
there is n € RP~2 with v(xy, x3) = 92_2(2) and |n| <, , n, and that this identity holds in G, ,_,

. -2 N
with area <, , nP~* and diameter 5, ,

n. Finally, Lemma 6.12(1) implies that the identities
v(x;,X;3) = Q;_z(g) =Q, (.., n, 31,1, )

holdin G, ,_, with area 5 , nP~2 and diameter Sa,p -
Observe that, on enlarging o (twice) if necessary, we may assume that

Qp_l(nl, s Mp_3, 1, np_z) € F|a] and thus that
u(xy, %) - Qp_1(ny, e, ny_3, 1,0, 5) € Flal.

It follows that we may assume that w = w(x;, x,) is a null-homotopic word in 7[«], at cost <, p

nP~2 and diameter Sa,p - We apply the Reduction Lemma 6.8 to obtain an identity of the form

L
w(xy, %) = [ [ @, (mp*!
=1

in G, ,_; with area S, , nP~! and diameter <, ,
the same holds for the right-hand side.
By applying the Main commuting Lemma 6.2 at most L? times we obtain that in G p.p—1

n,and L = O,. p(l). Since w is null-homotopic,

M,

M, M;
w(x17x2) = <H QZ(EZ,i)i1> : (H Q3(E3J)i1) e H Qp_l(ﬂp_l,i)il ’ (611)
i=1 i=1 i=1

with area <, , nP~! and diameter < p» 1, Where M; < L for L as above.

The right-hand side of (6.11) remains null-homotopic. The Cancelling 2-Lemma 6.9 thus implies
that the right-hand side of (6.11) has area <, » nP~1 and diameter Sap PinGy, .

Summing up the total area of all transformations we deduce that w is null-homotopic with area
Sa.p nP~! and diameter Sep ninG, ,_;.In particular, we have proved that every null-homotopic
word in G[a] of length < n admits a filling of area <, , nP~1 and filling diameter Sa,p - By
Proposition 5.10, this implies that G, ,_; admits (nP~1,n) as a filling pair. This completes the
proof. O

The Main Theorem 6.1 for G, , is a direct consequence of the Main Theorem for G, ,_, and the
following result.

Lemma 6.31. Let v(x;,X,,Y;,Y,) be a null-homotopic word in P(Gp’p) with £(v) < n.
Then there are null-homotopic words w(x;, x,) and w'(yy, y,) of length £(w), £ (w’) Sp 1, which
satisfy the identity v(xy, X,, y1,¥,) = w(xy, X)w'(y1,¥,) in G, , with area <), nP~1 and diameter

<
Sp e
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Proof. Using that the x; commute with the y;, we deduce that there are words w; (x;, x,) and
w,(¥1,,) such that the identity v = w; - w, holds with area < n? and diameter < n in Gpp-
Since w; - w, is null-homotopic and the intersection (x;, x,) N (¥;,¥,) is equal to the central sub-
group (z), we deduce that there is g € R such that w,(xy, x,) = z9 and w,(y;,y,) =z79in G .

Recall that the distortion of (z) in G, , is ~ nlﬁ. Since #(w;) < n it follows that |q| 5, nP~t,
Thus, by (5.2), thereism € Rl: L with |m| pSh such that z4 = Qp_l(m). In particular, the words
wy(x,x,) - (Qp_l(m))‘1 and Qp_l(m) - wy(y1, y,) are null-homotopic in G, .

_ On the other hand, we deduce from Lemma 6.3 and Corollary 6.24 that the identity Q,_,(m) =
Q,_1(m)holdsin G, , with area 5, nP~1 and diameter < p 1. We deduce that the identity

w1 (X1, %) - Wy (¥1,¥2) = wy (X, X5) - Qp_1(M)_15p_1(m) “wy(¥1,¥2)

holds in G, , with area 5, nP~1 and diameter <p 1. This completes the proof. O

7 | SECOND COHOMOLOGY AND CENTRALISED DEHN
FUNCTIONS

The centralised Dehn function of a discrete torsion-free nilpotent group can be computed by com-
puting the maximal distortion of a central extension. In Subsections 7.1-7.3, we will explain how
this characterisation of the centralised Dehn function can be rephrased algebraically in terms of
the existence of a second real cohomology class with certain properties. We then apply this alge-
braic characterisation in Subsection 7.4 to prove Theorem D and, more generally, to analyse the
existence of central extensions of central products of nilpotent groups.

7.1 | An algebraic characterisation of centralised Dehn functions of
nilpotent groups

Definition 7.1. Let g be a nilpotent Lie algebra, andletr > 1. Then0 - R 5 q Z g — Oiscalled
a r-central extension if ker(z) C Z(g) Ny, g and ker(7) ¢ Z(g) N y,,,g. One similarly defines r-
central extensions of nilpotent groups (discrete or Lie).

Being an r-central extension only depends on the equivalence class of the extension and we
now explain how it can be read off from H?(g, R).

Let g be a real nilpotent Lie algebra with Lie group G. Recall that to any w € Z%(g, R) one
associates a central extension of g defined over the vector space g X R by

VX,Y €¢,Vs,t €R,[(X,5),(Y,D)lg := (IX, Y]y, w(X,Y)). (7.1)

Denote H?(g, R)", respectively, H>(g, R)>" the cohomology classes yielding r-central exten-
sions, respectively, r’-central extension for some r’ > r

Definition 7.1 is motivated by the following proposition which relates the centralised Dehn
function with the existence of r-central extensions.
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Proposition 7.2 (Compare [42, Proposition 4]). Let T be a torsion-free finitely generated nilpotent
group. Let G be its real Malcev completion and g its Lie algebra. Then 5;‘*“‘(11) = n“ where a is the
maximum integer r > 1 such that one of the following equivalent statement holds.

(i) T admits a r-distorted central extension.
(i’) G admits a r-distorted central extension that is a simply connected Lie group.
(ii) T admits an r-central extension.

(ii’) G admits an r-central extension that is a simply connected Lie group.

(ii”) g admits an r-central extension.

(iii) H*(g,R)*" # 0.

Proof. We start by proving the equivalences between these statements. Note that in (i”) and (ii’)
we specify that the central extension is a connected Lie group, as ‘wild’ extensions that do not
correspond to extensions of the Lie algebra could potentially exist.

The equivalences between (i) and (ii), respectively, (i) and (ii’), are due to Osin’s computa-
tion of the distortion of subgroups of nilpotent groups [29]. The equivalence between (ii) and (ii’)
follows from Malcev’s correspondence. The equivalence between (ii’) and (ii”’) follows from the
correspondence between a simply connected nilpotent Lie group and its Lie algebra. Finally, the
equivalence with (iii) follows from the correspondence between central extensions and the second
real cohomology group.

For the remaining part of the statement first observe that the equivalence in the case when a < 2
orr < 2is easy to check. Indeed, this can only happen if all central extensions are by taking direct
products. Hence, we may assume that a > 2 (or conversely that there is an r-central extension
with r > 2).

Given a finite presentation (S | R) of T let T = Fg/[Fs, R], where R is the normal subgroup
spanned by R. Consider the central extension

1—>Z—>l:/—>l“—>1,

where Z = R /[Fy, R]. It follows that T is a finitely generated nilpotent group, and Z is gener-
ated by the finite subsg R (modulo [Fg,R]). Letn € Nand k = 51€em(n). This means that there
exists an element g € I' whose word length with respect to S is n and such that k is the minimal
integer such that ¢ can be written as a word of length k in the generating set R of Z. In other
words, 5§ent(n) is the distortion of Z in T. It is a classical fact that the central extension T of T is
universal in the sense that for any other central extension I there exists a morphism T - T that
extends to a morphism of extensions and induces a surjection between the derived subgroups
(see, for instance, [42, Lemma 5] for more details). Hence, a is indeed characterised by one of the
equivalent statements of the proposition. O

7.2 | Carnot gradings

We recall from the introduction that (i) a nilpotent Lie group G is said to be Carnot gradable if
its Lie algebra g admits a Lie algebra grading g = @;_, g; such that Liespan(g,) = g, and that (ii)
to any simply connected nilpotent Lie group G we can associate a Carnot-graded Lie group gr(G)
with Carnot graded Lie algebra

gr(a) = Pria/rins

i>1
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with brackets induced by those on g. In particular, H'(g,R) and H'(gr(g),R) = (g/[g,g])* are
naturally isomorphic.

G is isomorphic to gr(G) if and only if G is Carnot gradable, in which case the isomorphism
is given by the graded linear isomorphism @5 4 ) : D, a9; > Dvria/7i16 for any Carnot grading
(g;) on the Lie algebra.

Remark 7.3. Any pair of Carnot gradings {(G, g,), (G,g;)} on a given group G differs by the
automorphism @ ! G )Oq)(G,gl)' It induces the identity on H'(g, R).
We refer to [10, 3.2] for more on Carnot gradings.

Example 7.4. Let G, ; be the group defined in the introduction, with p > q. Denote by g, , its Lie
algebra. Then g, , has a basis {x,, ..., x,_1, 2, Y1, ..., ¥4_1} With the following nonzero brackets

[x), ] =x; for2<i<p—2, [y,yjl=yj for2<j<g—2and [x,x, ;] = [y, y;11 =2

To simplify notation we use the same letters for the elements of the Lie algebra and the Lie
group, even though they do not correspond under the exponential map. We emphasise that in this
section we will deviate from the remainder of the paper where we denote the generators of the sec-
ond factor by y,_q., -, ¥,—1, Z. This difference in notation is because it proves computationally
convenient in the respective parts of the paper.

‘We observe that with respect to our generators

SPang {Xiy 1 Xp15Vig1 > Vg1, 2f for2<i<q—2
Yi8p,q = | SPang {xiﬂ,...,xp_l,z} forg—1<i<p-2
Rz fori=p—2.

Identifying ¥,8,, 4/7i+18p,4 With Rx; @ Rx, ® Ry; @ Ry,, fori =1, Rx;,; @ Ry; ., for2<i<
q—2,Rx;  ,forg—1<i< p—2,andRz, fori = p — 1, we can define the brackets ofgp,q and of
gr(gp,4) on the same vector space. If p = g, then g, ; is Carnot-graded, otherwise all the brackets
are the same in g, ; and gr(g, ;) except that [y, y,_1] = zin g, ; while [y;,y,_1] = 0in gr(g, o).
We deduce that

G p=q
grGpg) =19 (7.2)
P4 {prLq_1 p#q.

7.3 | Tools for computing H?(g, R)>"

Rephrasing the construction of central extensions from cohomology classes, we state a criterion
to decide membership in H*(g, R)>":

Proposition 7.5. Letr > 2. The cocycle w € Z*(g, R) defines a cohomology class [w] € H*(g,R)*"
if and only if there exist s > 1 and a sequence of pairs (X;,Y;) € g X ¢, 1 <i < s, such that

X; €y, 8andY; €y, gwithr,; <ryandry; +ry; =, ay)
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N
2 Ixuyil=0, (4,)
i=1
N
wX;,Y;) =1. (43)

Proof. Assume (A,;), (A,) and (A;) and let 7 : 'g — g be the central extension associated to w;
decompose g as a product g X R. In accordance with the definition of r-central extension we must
prove that (0,1) € y, . By (éz) and (A;) we may represent this element as Zle[f i 17i] wEere
m(X;) = X;, respectively, 7(Y;) = Y;. Note that by (A;) we may assume that X; € yru@'and Y, e
7r2,§’ and, since r, ; + r,; = r for all i, we deduce that (0,1) = Zle[)?i, VARE

Conversely, assuming that § — g is r-central, one can write (0,1) = X;_,[(U;1,5;1), ..,
(Ui, si,)] with s;; €R. It is then sufficient to set X; =U;; and Y; = 7([(U;,,5;5), -,
W, 5,)])- O

Remark 7.6. Combined with the results of the previous section, Proposition 7.5 implies Pittet’s
lower bound on the Dehn function in [34, Theorem 3.1]. Indeed, Pittet’s criterion is equivalent
to checking conditions (A,), (A,), (A;) with s = 1, that is, with only one pair (X,Y) = (X, Y;).
To see this note that the elements X and Y then generate an abelian Lie subalgebra a of g, and
[34, Th 3.1] requires that the map ¢* : H%(g,R) — H?(a,R) associated to  : a — g be nonzero,
which amounts to asking for the existence of a cocycle w satisfying (A;). We note that Pittet’s
exponent d(I') nevertheless coincides with the growth exponent of the centralised Dehn function
up to dimension 6 included (see Section 10).

Remark 7.7. In the special case when r is greater than the nilpotency class c of g (that is, when
r = ¢ + 1) the condition (A,) is automatic given the assumptions on X and Y (asr; + r, > ¢) and
(c + 1)-central extensions are the central extensions of step ¢ + 1. For this reason ruling out the
existence of r-central extensions is a simpler task whenr = ¢ + 1.

When g is Carnot gradable we can go further into the description of cohomology classes yield-
ing r-central extensions. Let (g;) be the Carnot grading on g with g; representing y;4/v;,19.
Correspondingly, /\1 g* = g* can be graded in the following way: for i > 1 we set ( /\l %), =
7} Hom(g;, R) where 7; is the projection to g;.

The exterior square /\2 g* is then graded by

(Ne').= @ (Ne) A (No),

i+j=k J

Since (g;) is a Lie algebra grading on g, the differential d : A" ¢* — A" g* has degree 0 with
respect to these gradings. In particular, the cohomology group H?(g, R) is also graded and the
cohomology classes of weight r under this grading produce r-central extensions.

Example 7.8. The Dehn function of the model filiform group L, is at least of order n?. Indeed,
denote by Ip the Lie algebra with basis {x, ..., Xp_1s z}, where [x, x;] = x;,; for2 <i < p—2and
[x1,xp_1] = z.For &y, ..., §,_;, ¢ its dual basis, the cohomology class [§; A {] corresponding to the
tautological extension [, ; — [, has degree p under the associated grading on H 21 p R).
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We will compute the grading on H 2(Ip, R) below (see Remark 7.15). However, the groups g, ;
that we are considering are not Carnot gradable for p # g, p,q > 3. Thus, our main tool in this
section will be the criterion provided by Proposition 7.5.

7.4 | Central extensions of central products

We refer to the introduction for the definition of a central product £ X4 [ of Lie algebras £ and [
(respectively, K Xg L of groups K and L). Here we will be interested in understanding the existence
of central extensions of central products in general and, more specifically, in the context of the
central products g, ,. We start with two general results.

Lemma 7.9. Let k, ¢ be positive integers such that 2 < k, ¢. Let ¥ and | be nilpotent real Lie algebras
of step k and ¢, respectively, and with one-dimensional centre. Then for any isomorphism 6 : Z(f) -
Z(1), the extension ¥ X | — ¥ X4 [ is min(k, ¢)-central.

Proof. Without loss of generality, assume that k > . Since the centres of both factors are
1-dimensional, they are contained in the last nonzero term of the central series. Let z gen-
erate Z(f). Then the generator (z,6(z)) of ker(f XxI — £ x4 ) lies in y,(f xI), but not in
Ve (EXD). ]

Lemma 7.10. Let k, ¢ be positive integers such that 2 < k, £. Let ¥ and | be nilpotent real Lie algebras
of step k and ¢, respectively, and with 1-dimensional centre. Let g be the central product of ¥ and .
Then g has no r-central extension for r > max(k,?¢) + 1.

Proof. Assume k > £. Then g is k-nilpotent, meaning that y, ;g = 0. Identify £ and [ with their
images in g. Let x, ..., x; € £ be such that x; ¢ [£, f] and Liespan{x,, ..., x,} = £. Lety;,...,y;, € [
be such that y; & [[,[] and Liespan{y;, ..., y,} = [. Let g'sit in the central extension

0—><ZI>—>§i)g—)O, (7.3)

and let z € g be such that (7(z)) = Z(g). Fori = 1,...,sand j = 1,...,t letX; and y; be such that
n(xX;) = x;and 7(y;) = y;.

Note that [X;,y] € (z') for all i if 7(¥) € L, and that [y;,X] € (z’) for all j if 7(X) € ¥. Since
z' is central it follows that, for m > 3, m-fold commutators of 'J?j and ij vanish, unless they
only contain 'J?j’s (respectively, ')7j’s). Indeed, the only commutators where this is not triv-
ially true are the [3)'1-1,3?1-2, ,'ﬁm] (respectively, [3?1-1,371-2, ,'}7l-m]) and they vanish by the Jacobi
identity.

If g has step k+1 we may thus assume that there are i,.., iy €11,...,s} such

¥ =~ : =~ =~ -1 _ —_ -1 :
tEat z! = [xl-],...,xlb]]. Sglce [xiz,,...,xikH] en (y b)) = ,<z, z') = 7'[~ (yfI)~we ma;Lrew,nte
[X,, s X5, Jas e[y, ., Vi, [ + op2' forag, @, € R.Thus, 2" = ay[X; ,y; 5., ¥, 1+ a,[X; , 2] =
0, a contradiction. O

We now turn to the specific case of g, , for p > g > 3.

Proposition 7.11. Assume p > q > 3. Then, g, , admits a (p — 1)-central extension if and only if
p is even.
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Since it relies on a cohomology computation for g, ,, the proof will simultaneously provide the
following formulae for the Betti numbers of the lattices ', , < G, jand A, X Ay_; <L, XL,_; =

gr(Gp,q)'

Lemma 7.12 (Betti numbers). Let p > q > 3. Then

by = | 2]+ 3] +3 (7.4)
and
b, x Ay ) = | S ]+ ]3] +4 (7.5)

In particular, the Betti number discrepancy by(A, X Ag_;) — by(T', ;) is1if p iseven and 2 if p is odd.

Remark 7.13. For (p, q) = (4,3) and (5,3) the Betti numbers of T p,g Can be extracted from Magnin’s
comprehensive tables of cohomologies in dimension less or equal 7. Magnin denoted the cor-
responding Lie algebras Gs, and G, 3, respectively [26]. For (p,q) = (4,3) these were also
computed in [16, (25)-(26)] and [11, 6.19].

As before, we will perform our Betti number computations using Lie algebra cohomology. To
deduce Lemma 7.12 we will thus invoke the following result, that is due to Matsushima for k = 1, 2
and Nomizu for all k [35, Corollary 7.28]. It shows that the real cohomology of finitely generated
torsion-free nilpotent groups only depends on the real Malcev completion, an early manifestation
of Shalom’s theorem.

Lemma 7.14. Let T be a lattice in a simply connected nilpotent Lie group G with Lie algebra g. Then
H(G/T,R) = H*(g, R).

Before proving Proposition 7.11 and Lemma 7.12, we observe that they allow us to complete the
proof of Theorem D, modulo the lower bound from Section 8.

Proof of Theorem D. The first part is a direct consequence of Lemmas 7.9 and 7.10 and Propo-
sitions 7.11 and 7.2. The second part follows from Theorem A, whose proof will be completed in
Section 8. O

Proof of Proposition 7.11 and Lemma 7.12. Note that if a is a one-form on g, then da is the two-form
such that da(u,v) = —a([u, v]) forevery u, v € g. We will use this below without further mention
when computing differentials.

Let{&,, ..., fp_l, /T 77q—1} be the dual basis of the basis {x1, ..., Xpo1sZs Y1s e ,yq_l} of 3pg-
The restriction of the subset {{, ..., §,_;, ¢} to [, defines the basis of I; induced by the canonical
embedding [, & g, ;.

We first prove (7.5). For this we need to compute H?({ P R). Since this computation is well-
known (it is originally due to Vergne [39]), we only sketch it here and leave the details as an
exercise to the reader. We emphasise that this is an exercise well-worth doing to get acquainted
with Lie algebra cohomology computations.

We use abbreviations of the form §; ; := §; A §; (and similar for 3-fold wedge-products). Fur-
ther we denote §,, := {. Note that d§; = d§, = 0, while d§; = =, ;_; for 3 <i < p. We deduce
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that

Bz([p, R) = span{é’l,z, ceey gl,p—l}‘

Letnoww = ¥, i, @; ;& ; € A*(I,, R). We obtain the identities

p-1 p
Zd<§i’\ > al-,,f,-)
i=1

j=itl

dw

p—2 p—2
(=Qit1,j — ai,j+1)§1,i,j + Z(—ai,i+2)f1,i,i+1 + Z(_ai+1,p)§l,i,p'
2<i<j<p—1,j#i+1 i=2 i=2

Solving the linear system of equations obtained by imposing dw = 0 yields

Zz(Ip, R) = Span {51,2, ey gl,p—l’ gl,p’ V4, Vﬁ’ VS’ ey Vzpl },

where p’ = [%] and vy 1= &5y = E3pp + o = (=1 for2 <1< p.
It follows that the cohomology classes represented by {§; ,,7,,,..., v, } form a basis of
H?*(1,,R) and thus that

rank H*([,,R)=p' —1+1=p. (7.6)

We can now compute the second Betti number of [, X [,_;, and thus of all lattices in gr(G, ;) =
L, X L,_, and in particular of A, X A,_;. Indeed, using the Kiinneth formula and (7.6), the class
of the Poincaré polynomial of [, X [,_; in Z[t]/(t%) is

(142t +by(L))A + 2t + by(L,_)t?) = 1+ 4t + (4 + [p/2] + [(qg — 1)/2])¢*
=144t+ @+ [p/2] + |lg/2)t?

and we deduce that rank(H*((, x [,_;,R)) = [%’] + [%J + 4. This completes the proof of (7.5).
While we do not use it at this point we record the following observation; it is well-known to
experts.

Remark 7.15. The degree 2-cohomology of [, is graded as follows: H(L,, R)*~! = span[v,] for
2g<k<p,

H*([,,R)P = {sPan{[VZp’]’ [ A&} podd
p span{[£; A §'p]} p even,

and all other degrees vanish. In particular, v, represents a (2k — 1)-central extension.

This observation is interesting in itself and also in view of Section 10. However, most impor-
tantly comparing it to (7.21) provides some intuition for why g, , admits no (p — 1)-central
extension when p is odd. Indeed, we will see that for p odd the analogous cohomology class
[v,] vanishes in H 2(gp,q, R), while it survives when p is even. In fact, it is precisely the form
that induces the (p — 1)-central extension of g, , when p is even. This is also mirrored by the dis-
tinct Betti number discrepancies in Lemma 7.12. Computationally, this difference is reflected in
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the fact that in [,, we have d{ = —§; A §,_;, whilein g, , we have d{ = =&, A&, =11 A7y
This ultimately implies that the coefficient a, , of ENE » must be zero for every cocycle wing,
with p odd, while it can be non-zero for cocycles in [, or in g,, , when p is even.

We now move on to the computation of H*(g p.q» R)- We will again use abbreviations of the form
§ij =8 A&, mj=m Anj andsoon.

Note that d§; = d§, =dn, =dn, =0, d§; = —§,,_; and dn; = -, j_; for 3<i< p—1and
3<j<g-1,and thatd{ = ¢ ,_; — 7 ,_,. We can decompose € A*(g), 4, R) as

p— - -1 g-1
= Z ‘J§11+Z Z blﬂ?z}"’ chgk/\g'i' Zeﬂ?ﬂ\?'*' Z mengm/\nn
i=1 j=i+1 i=1 j=i+1 m=1n=
=w, +wp + o + 0, + Wy (7.7)
We deduce that
p-3 p=3
dw = Z (=@i41,j — @ j4)61, + Z(—ai,i+2)§1,i,i+1 + z(_ai+1,p—1 —¢)é1p-1
2<i<j<p—2.j#i+1 i=2 i=2
q-3 q-3
+ Z (=bip1,j = bijrInj + Z(_bi,i+2)771,i,i+1 + Z(_bi+1,q—1 —eNig—1
2<i<j<q—2,j#i+1 i=2 i=2
p—1qg-2
+(—cp2)§1p2p t chgk/th 1t zck+1§1k/\§+ 2 men+1§m/\771n
m=1n=
p—2q-1
+ (=M g2q-1+ Zeﬂ?w\ﬁp 1t zef+1771//\§+ 2 Z( Fms1)81m A
m=2n=1

Hence, dw = 0 if and only if

Qiq,j+ 04 =0 2Li<jsp—2,j#i+1, (7.8)
Qi =0 2<i<p-3, (7.9
bi1j+bijp1 =0 2<i<j<q-2j#i+1, (7.10)
bijj,=0 2<i<q-3 (7.11)
Qi p1+tc=0  2<i<p-3, (7.12)
=0 1<k<p-1, (7.13)
bi+1,q_1 +e¢ =0 2<i<q-3, (7.14)
e, =0 1<¢<q-1, (7.15)
fmn=0  max(m,n)>3. (7.16)

Equation (7.8) is equivalent to

(7.17)

N
A
.
VA
=
|
=

;= (—1)i_i,ai/,j/, fori+j=i"+j,2<i<j<p-1,2
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CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS 63

and Equation (7.10) is equivalent to
b ;= (—1)i—i’bi,,j,, fori+j=i"+j,2<i<j<q-1,2<i'<j <q-1 (7.18)
Combining (7.12) and (7.13) (respectively, (7.14) and (7.15)) yields
ap1=0 3ig<p-2, (7.19)

bip 1 =0 3<i<q—2. (7.20)

The q; ; (respectively, b; ;) with2 <i < j < p — 1 (respectively,2 < i < j < g — 1) are now com-
pletely determined by (7.9), (7.17) and (7.19) (respectively, (7.11), (7.18) and (7.20)). Indeed, for
2<i< j< p—1conditions (7.17) and (7.9) imply that the q; j with i + j > 6 vanish whenever
i+ j is even and conditions (7.17) and (7.19) imply that a; ; = 0 for i + j > p + 2. The only con-
straint on the remaining a; ; with 2 <i < j < p — 1 is that they satisfy condition (7.17). Similar
considerations apply for the b; ; with2 <i < j < g —1.Sincethea,;for2<i<p—1landtheb,;
for 2 < i < g — 1 are unconstrained, we conclude from the constraints (7.13), (7.15) and (7.16) on
the ¢;, ¢; and f, ,,, respectively, that

€1 2<i<p-1,

M 2gi<g-1, &1 2gigp-2,
Z%(g,,4R) = span{ v, 2<k<p”, BXg,,R) =spanqn; 2<i<q-2,

2 2gr<4q”, §1p-1 Mgt

ELAN, 1<mn<2,

(7.21)
where p” = L§J, q" = L%J’ Vo 1= Eanp1 = Esppa + o = (1) €y pp and Yoy i=1 50 —
M3p—p t o — (=17 N¢.¢+1- We refer to Figure 3 for a visual illustration of our computation for

(p.q) = (9,6).
A basis of H*(g,, ,, R) is thus given by

{[vasls e [v2-p”]7 2P [572~q”]! [771,q—1] = _[gl,p—l]f [&iAn]1<ij<2}.
We deduce that
rankHz(gp,q,R) =p"-D+@" -1D+1+4

=p"+q" +3.

This concludes the proof of (7.4)

We can now complete the proof of Proposition 7.11

If p is even, then 2p” = p and v,,(x,,x,_1) = 1, while [x,,x,_;] = 0. By Proposition 7.5, the
cohomology class represented by v, defines the desired (p — 1)-central extension.

Thus, assume that p is odd, and assume for a contradiction that there is a (p — 1)-central exten-
sion defined by a cocycle w. By Proposition 7.5 there are elements X;,Y; € g,, 4, 1 < i < s which
satisfy (A;), (4,), (A3). Up to reordering the pairs we can assume thatr,; =1fori=1,..,t <s
and ry; > 1fori > t. Decompose X; and Y; into

— / /
Xi=711% + - + Tp_1,iXp-1 T 032 + 0 + -+ Tg-1,Yq-1

’ /
Yi=Ayxp+ o+ Ay X, HZ+ A0+ + ’lq—l,iyq‘l

: !/ /
with Tj,i,Tj’l., O'i,/lj’i,/lj’l.,/xi € R.
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€1,p-1 +11,q-1 € B*(g,R) N

J e T T T NS (7.13) : we =0
P ~. O
e N7
pl - vwﬁ’\\ (7.15) : we =0
P o .
p-14+ el R -- Q- @---0  (T.19)° (7.16) + wg = fra&a Am + f2,182 Am
. +f1,261 An2 + f2,282 A2
71 [e] » \
< =, "
6 . - S .
/ ' M
, o <\>
51 |e ’ q-1+ e ©=--0 (7.19)
3 \ . \
3 , ,
41 m|® © BN 4+ © '
N\ {
% Z
3T ° ° N 3T °
%
B
21 |e > 2 1
o] )
Wa 1 2 3 4 5 6 7T g wh 1 2 3 p-1

FIGURE 3 Determination of Zz(gp,q, R) and Hz(gp,q, R) with (p, q) = (9, 6). The cocycle w is decomposed
asin (7.7). On the left, respectively, on the right, a o at (i, j) denotes a; ; = 0, respectively, b; ; = 0; plain edges
denote linear dependencies and vanishing.

Assume t < 5. Then, for i > ¢t we have r;; > 1 and r,; = p —ry; — 1. Since g, , is metabelian
[X;, Y;] = 0. Using that X;, Y; € y,g, , we deduce that (§,, A7,)(X;,Y;) = 0for 1 <m,n < 2and
(m1 Amg—1)(X;,Y;) = 0. Moreover, since p is odd we deduce that 2¢"” < 2p” < p—1.

Observing that v, |},r1 9paXVry g 0 if r; +r, > 2k —1 (respectively, v, |},rl 9paXVr8pa = 0
if r, +r,>2¢—1), we deduce that for 2 < k < p” (respectively, for 2 < # < ¢'") we have
v (X;, Y;) = v5,(X;,Y;) = 0. We conclude that w(X;,Y;) = 0.

Hence, we may assume that ¢ = s and therefore r;; = 1and r;, = p — 2 for all i. In particular,
Y; =2A,_1;%,-1 + u;z and (A,) implies that

S N
0= 2 (X, Y] = zfl,i/lp—l,iz'
i=

i=1

On the other hand, evaluating the sum of the w(X;, Y;) yields

S S N
1= 2 w(Xi’ Yl) = 2 C()(Xi,lp_l’ixp_l + ,ul'Z) = Z Tl,i/‘lp—l,iw(xl’ xp—l)’
i=1 i=1 i=1

where for the last identity we observe that the only pair of basis vectors of the form (,z)
and (x,x,_;) on which our basis of representatives of cohomology classes does not vanish is
(x1,x,_1). Comparing the two equalities gives a contradiction. This completes the proof of
Proposition 7.11. O

Remark 7.16. The cocyle v,, of the preceding proof was introduced by Vergne in her computation
of H?(L s R) [39]. When p > 5 is odd the central extension associated to the cocycle Vpiponly,
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/ /
[6 [8
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E1nE2 113 E1NE4 &1ns
R? I3 [4 [5 [, g — — —
§11Es §1nEr

FIGURE 4 Carnot graded filiform Lie algebras (; is the Lie algebra of the Heisenberg group, [ and I/, are
Zs 15 and Z ¢ in de Graaf’s list [15]). We use the same notation for the cocycles as in the proof of Proposition 7.11.

produces a filiform, but not model filiform, Carnot graded Lie algebra of dimension p. Vergne
proved its existence and uniqueness (see also Figure 4).

The lower bound of nP~! on the Dehn functions of G, p—1 foreven p > 4 (respectively, of G, ,
for all p > 4) that we obtain from central extensions is sharp by Theorem 6.1. In contrast, and
maybe at first rather unexpectedly, for odd p the lower bound of nP~2 on the Dehn function of
G, p—1 Obtained from central extensions is not sharp. In fact not even its exponent is sharp, pro-
viding the first example of a group with this property. We will prove this in the next section. There
is a moral reason for this discrepancy, which we will exploit in the next section; for an explanation
of this we refer to Section 2.

8 | LOWER BOUNDS ON THE DEHN FUNCTION FROM
INTEGRATION OF FORMS

In this section, we will explain how to obtain lower bounds on the Dehn functions of the G g
by integrating bounded forms on Lie groups. In Subsection 8.1, we state the main result of this
section and explain how it can be reduced to finding a suitable 1-form that satisfies a certain
boundedness condition; this boundedness condition can be thought of as a discretised version of
being a primitive of a bounded 2-form. In Subsection 8.2, we will provide a linear representation
of the filiform Lie group in all dimensions and construct an exact invariant 2-form from it. In
Subsection 8.3, we will show how to modify this 2-form to obtain a suitable exact bounded 2-form.
Finally, in Subsection 8.4, we will show that this bounded 2-form is the differential of a 1-form that
satisfies the boundedness condition from Subsection 8.1 and deduce the desired lower bounds on
the Dehn function of G, ,.

8.1 | Lower bounds from bounded forms
Theorem 8.1. For p > q > 1 the Dehn function of G, 1 g, is = nP.

Before going into the proof of Theorem 8.1, we summarise our approach for obtaining the
desired lower bound on 5Gp+1,q+1' It suffices to find a family of null-homotopic words w,,, , of
length ~ n and area ~ nP. A natural candidate for w,,, , is the word Q,,,(n) := Q,,,(n,...,n)
defined via the embedding of L, in the first factor of G 4,;. The reason for this is that its
image with respect to the projection G, 441 — L, is a product of the words x"Q p(n)‘lx’l" and
Q,(n), which both have area n? in L,,. One way of showing that these two words have the asserted
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area is by integrating them along a primitive of the 2-form §; A §,, from Section 7, defining the p-
central extension L,,; — L,. However, a naive attempt to use the same argument to show that
Q,,1(n) has area ~ nP fails, because one can show that /Qp+1(n) §1 A&, = 0. We overcome this

obstacle by replacing &; A & p» by a suitable ‘bounded’ deformation of itself and then showing that
integration over a primitive of this deformation now yields a non-trivial lower area bound which
is ~ nP~!, This allows us to prove Theorem 8.1 and confirms our intuition regarding the area of
the Q, ).

We now provide the details of our argument. Let us start by introducing some useful notation.
Let G be a connected Lie group equipped with a left-invariant Riemannian metric, and let S be
a compact generating subset of G. For a smooth path y : [a,b] — G we denote by L(y) its length
with respect to the chosen metric on G. We assign to every s € S a smooth choice of path y, from
1 to s such that the set {L(y,) | s € S} is bounded. This allows us to associate to every word w in
S, a path w. In what follows, such a path will be called a word-path.

We denote g * y the action of G by left translation on the set of paths in G. Let us denote w - w’
the concatenation of the words w and w’.

Proposition 8.2. We let (S | R) be a compact presentation of a connected Lie group G that we also

equip with a left-invariant Riemannian metric. Assume that there exists a continuous 1-form «, and
C < oo such that for every word-loop ¥ associated to a relator r € R and every g € G,

i
g*T

Area(w) >

< C. (8.1)

L4l

Proof. We make the following trivial but crucial observation: given two words w and w’ in the

alphabet S, we have
/_oc:/ _oc+/oc. (8.2)
w-w’ [w]*w’ w

In particular, if w and w’ are null-homotopic, that is, [w] = [w'] = 1, then

/moc=/ya+/woc. (8.3)

We also easily deduce from (8.2) that if w and w’ represent the same element of the free group,

then
/_oc = /_, a. (8.4)

Finally, if w is null-homotopic, that is, [w] = 15, and u is any word, then we get

/_oc:/ a, (8.5)
w’ [u]xw

Let w be null-homotopic, then

Ql-
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where w’ = u - w - u~!. Now let w be a word of size < n in S that freely equals a product of N
conjugates of relators. Then combining (8.4), (8.3), (8.5) and (8.1) in this order, we conclude that

so we are done. O

8.2 | Linear representations of filiform Lie groups

It is well-known and easy to check that a linear representation of the Lie algebra of L, is given by

(0 6, 0 ~ 0 1 \
tp
. 0 :
Ip :=L1e(Lp)=< o 1 1 ty,...t, ERp
0
0 0

with the commutator bracket [A, B] := AB — BA on matrices. Thus, we can obtain a linear rep-
resentation of L, by computing the image exp(l,). We will now make this explicit. For this we
introduce the notation

0 ¢t O 0
B, = 0 | e RP-DXx(p-D
0 0

and observe that for t = (¢4, ..., tp) and 4; € Ip we obtain

B
oA = en v
0 1

for a suitable v, € RP~1. Moreover, it is easy to derive by induction that

L2 (p—2)!

0 o
o=, . g
20

fy

0 eee 0 1

5US017 SUOLULLIOD dAIIRID 3|qed! dde ay) Aq peusenob afe sajoiiie YO ‘8N JO SN 1oy Arig 1 auljUQ AB|IAA UO (SUONIPUOD-PUR-SWLB)W0Y" B[ 1M A Relq 1 BU I UO//SdNY) SUORIPUOD pUe SWB | 8Y)38S *[2202/2T/20] uo Ariqiauljuo 8| B160jouyds ] o 1su| Buynsie Aq 86T swd/ZTTT OT/I0p/L0d A3 | 1M Aeiq 1 pUlUO"90SYRLPUO|//:SdNL WOy papeo|umod ‘0 ‘XiZ0orT



68 | LLOSA ISENRICH ET AL.

From this we deduce that

zt
t+Zp Lty

k-2
tk + En 1 nl' tk—}’l

ts +En 1 n.ts n
)

Finally, the change of coordinates u(t) := (ul(t),...,up(t)) with u,(t) =t; and u;(t) =¢t; +

Z; 21 nl' ti_p for 2 <i < p provides a diffeomorphism from R? to L, represented as the linear

subgroup

u=u,..,u, € RP} < Gl,(R).

For u € R? we will denote by 9,, ., ... au . the standard coordinate basis of T, R”. Note that the
model filiform group with presentation P(Ap) as in Subsection 1.2 embeds as a lattice via the
identifications x; = exp(d, o), X, = exp(d,, o) and x;,; =[x}, x;[for2<i<p—-1.

‘We will now use the linear representation to compute the left invariant vector fields correspond-
ing to the standard basis 9, , ..., aup,O of TyRP at the identity. We denote by S, , : TL, — TL, the
differential of the automorphism of L,, defined by left-multiplication by S,,.

Lemma 8.3. With respect to the coordinates u on L, a basis of left invariant vector fields is given
by

S0y 0 =0

up,u
and
piyn
Su,*aul—,o = Z Fau,ur,,,u'

n=0

Proof. The first identity is an immediate consequence of the following identities

0
0O 1 O 0
By, ' . , : d BM1 0
Syt i|u=0Su = ¢ ' 0 = .
* duy 0 1 0 |0
0 0
0 0|0
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To derive the identities for 2 < i < p denote by ¢; € RP~! the ith unit vector and observe that

Up
: . 0|ep—i+1 — 0|eBu1 “ep—it1
u, [ \of o of o '

. n
We deduce that in local coordinates we have S, .0, o = Y°_. 24, . This completes the
> i n=0 pn! UitnU

proof. O

It is now easy to check that the forms du; and du, corresponding to the first two coordinates
are left L p-invariant. Moreover, we obtain:

Lemma 8.4. The I-form a defined by
p—2 Ll.k
o, = Y (1)
k=0 :
is the unique left L ,-invariant form with oy = du,,.

Proof. By definition o, = du, and using Lemma 8.3 it is easy to check that «, (S, .9, o) = 6,
This completes the proof.

Finally, we observe that the form § defined by

p—2 uk+1
— _1\k 1
Bu = I;O< D L (8:6)
has left L p-invariant differential
dp =du; Aa.

In fact, df is an explicit realisation in the coordinates u; of the 2-form &§; A £ p from the proof of
Proposition 7.11. The reason we consider it is that it defines a p-central extension of L ,. However, as
we have seen we face the problem that this form does not survive in H 2(gp,q, R) for g < p. Thus,
we cannot use it directly to obtain a lower bound on 5GM(") by defining a p-central extension
and, as we have shown, there is actually not even a (p — 1)-central extension of G, , for p odd and
g < p. To overcome this problem and confirm our intuition that 5GM(”) = nP~1, we will now
pursue the approach sketched in Subsection 2.2 of constructing a suitable perturbation S, of 8
with bounded differential, which has integral ~ nP on certain (p + 1)-fold iterated commutators
in L,; they arise as images of null-homotopic words in G, 4., With respect to the canonical
projection. In view of Subsection 8.1 this will allow us to deduce the desired lower bounds on the
Dehn function.
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8.3 | Construction of a suitable exact bounded 2-form

To simplify notations, we shall denote for n € R, Q;(n) = Q,(n) whenn = (n,...,n) € R, where
Q (n) was defined in Subsection 5.2. Note that Q; (n) can be defined inductively by Q,(n) =
[x], x7]and Q1 (n) = [x], Qi (n)] for k > 2. We recall that Q p(n) defines a null-homotopic word
inL,.

p

Remark 8.5. One checks by induction on k that the exponent sum of x; in any prefix word of
Q, (n)*! lies in the interval [—(k — 1)n, 0], foralln € N.

We will show that the integral of the form §8 along the loop defined by Q,(n) in L, is n?. This
is one way to prove that the null-homotopic words Q,(n) are area maximising in L. It makes 8 a
good candidate for showing that Q,,(n) = [x], Q,(n)] also has area =~ n? in L,. However,

ALY O
x] Qp(n)*lx1 Qp(n)

and thus the integral of 8 along Q,, +1(n) vanishes (this is a direct consequence of (8.5) and the left
L,-invariance of df). This means that the form § would not allow us to obtain the desired lower
bounds on the Dehn function.

We will show that we can avoid this problem by replacing § by a continuous perturbation g,
with the property that the differential dg, exists for u; # 0 and coincides with dg for u; > 0 and
with —dp for u; < 0. Moreover, to simplify our calculations, we will consider the null-homotopic
word w4, = xip_l)"Qp(n)xl_(p_l)nQp(n)_1 instead of Q,,,(n). Its projection to L, consists of
two disjoint loops y* and y~, and a line connecting their basepoints. By Remark 8.5, the exponent
sum of x; in any prefix word of y* (respectively, y ) is positive (respectively, negative). In partic-
ular, the image of y, is contained in the set, where df, = d, while the image of y_ is contained
in the set, where df8, = —dg. Since d is the 2-form defining the central extension L,; — L,
one can deduce from this that pr+1 . Bo = nP. Below we provide the details of this argument and

calculate the precise value of |, " Bo-
P N

We start by defining j:
-2 k+1
k 1
Bou = sgn(u,) Z( 1) i du, .

A direct calculation shows

Gy = —df  ifu,; <0
T dB ifuy > 0.

To evaluate the integral of 8, along w ., , we need to evaluate it along each part of the loop.
For this we will use the following result:

Lemma 8.6. Fori=1,2ande = %1, lety;(t) =S, - exp(etd, ,) =S, - x;*, t €0,n] be a curve
in L, withy;(0) = S, and y;(n) = S,, - x;". Assume further that u; = L - n for some L € R. Then

) /yl Bo =0and ) = u; +enforu’ € RP with S, = y,(n);
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) f Po = enpsgn(L) 1), and u =u, foru’ € RP with S, = y,(n).

Proof. Assertion (1) follows from Lemma 8.3, the vanishing of 8, , ond,, , and

0 i
up,+e- t(p o

I B :
0f= Uz +€-tuy

We deduce that

and that the u;-coordinate is constant along y,(t). Thus,

n
Bo = / Boy, o (V2(1)dt
72 0
k+1 p—2—k

B n p—2 K ul 1
= /0 g-sgn(ul)%(—l) (k+1)| ’ (p—z—k)'

)
ulzL'}’l /)’l 14 k -1 Lp_l
= e-sgn(L-n) Y (-1)*n?
0o O F ,§) (+Di(p—2- k)

- ”pl)'e sgn(L) - LP~ 12( 1)’<< )

(i) np p— 1
= e( 1)'sgn(L)L

where in (1) we use the binomial formula 0 = (1 + (-1))?~! = Zp 1(—1)1‘ (p ;1) This completes
the proof. O
For a word w(xy, x,), we introduce the notation E, (w) for its x,-exponent sum. Lemma 8.6

shows that

(1) if a word w(x,, x,) represents the element S,, in L, for u € R then u, coincides with E, (w);
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(2) we can compute /wp+1,n B, by reading w,, , from left to right and adding a contribution for

every power of x, that we encounter. The contribution of such an x,-power will depend solely

on the x;-exponent sum of its prefix word and the numerical value of the exponent of this x,-

power. In particular, this essentially reduces the computation of /w 1 B, to a combinatorial
p+Lln

problem.

Lemma 8.7. For p > 2 the word Q,,(n) satisfies the following properties.

1) Q,(n) = j\] . xi’ 1nxz_ ”xij’znx” in freely reduced form for an integer N ,. In particular, the sign
of the x,-exponents alternates and the word starts with x;"x," and ends with x' x5

(2) For any decomposition of Q,(n) in freely reduced form as wl(xl, x)%5 " Wy (X4, xz) there is0 <
k<p—-1withE, (w,)=—k-n.

(3) For0 < k < p — 1 there are precisely ( ) ways of decomposing Q,,(n) in freely reduced form as
wy (X, X3)x5 " w, (x4, X,) with exponent sumE, (wy) =—k-n and € = 1, and, moreover, for
all of them ¢ = (—1)k.

(4) For0 < k < p — 1 there are precisely (p ;1) ways of decomposing Qp(n)_1 in freely reduced form
as wy(xy, x,)x5"w,(xy, x,) with exponent sum E, (w,) = —k - n and € = +1, and, moreover,
for all of them € = (—1)K+1,

Proof. The proof is by induction on p. For p = 2 we have Q,(n) = [x],x]] = x["x7"x]x} and
one checks readily that all assertions hold. Hence, assume that the result holds for some p > 2
and consider Q,,,(n) = [x],Q,(n)] = x]"(Q, (n))_lx”Q (n). The only new free reduction takes
place in the middle of the Word where we reduce xyxixix " x3;" to xJx]x3". In particular, it is
immediate from the fact that the exponent signs of the x> are alternatlng in Q,(n) that the same
holds for Q » +1(n) and it follows readily that (1) holds for Q, ).

Since we have E, (x7 ”(Qp(n))_lx’f) = 0 it suffices to count the exponent sums and signs for
the x ”(Qp(n))_lx;l-part of Q, +1(n) with those for the Qp(n)-part following from the induction
hypothesis for p.

To determine the result for the x;"(Q p(n))_lx;‘-part, let

Q,(n) ™" = w; (x, X,)x5" w,(x7, Xx,) (8.7)

be a decomposition of the freely reduced word represented by Q p(n)‘l. Its inverse writes Q,(n) =
w—l x—enw—l
-

Observe that B, (wy) = E. (wz_l), since E, (Qp(n)) = 0 and for any word v(x;, x,) we have
E, ™ H= —E, (v). It follows that the number of decompositions of (Qp(n))‘1 as in (8.7) with
E, (wy) = —k - n is identical with the number of such decompositions of Q,(n). However, the
exponent sign of the subsequent xi" is (=1)k*1. This implies (4) for p. Moreover, for 1 < k < p,
we deduce that the freely reduced form of x]"Q,(n)x] admits precisely ( ) distinct decompo-
sitions as in (2), (3) with x,-exponent sum —k - n and € = (—1)¥*2 = (— 1)" Thus, for 0< k< p
the total number of x5" with preceding x;-exponent sum —k - n is

p-1 " p—1\_(p

k-1 k k
and the corresponding ¢ is always (—1)X. Moreover, there are no decompositions with other k-
values. This completes the proof of (2) and (3) for p + 1. O
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Using Lemmas 8.6 and 8.7 we can now compute fw o Bo- To do so we first prove the following
D n

auxiliary lemma.

Lemma 8.8. For p > 2 we have

p-1
D (—Df(=k)P! (p . 1) =(p—1)!
k=0

Proof. Denote S = Zfz;(l)(—l)k(—k)l’_1 (f ;1) We consider the function h(x) = Z elkx (p 1)
Note that h(x) = a(x)?~!, where a(x) = 1 + ¢'*. We observe that

O = T -0 <p . 1) = (=)"'s. (85)
k=0
We check by induction on 0 < m < p — 1 that
h™(x) = (p— 1(p — 2) - (p — m)i"e ™ a(x)P~"!
is a multiple of a(x)P~". Since a(rr) = 0, we deduce that

WP=0(m) = (p = DIPTH(=1)P~! = (p — DI=DP,

which, combined with (8.8), implies the lemma. O
Proposition 8.9. The identity

By = 2n?

u"p+1,n

holds.

Proof. As a direct consequence of Lemmas 8.6, 8.7, and the definition of w p+1,n0 WE obtain

__nf £ k ifp—1 k —i(p—1
/ ﬁo—(p_l)!é<(—1) <p—1—k)P1< 5 )—(—1) +1(—k>P1< 5 ))

p+l,n

-1
nP B

_ Caveen 1 -1 P—1 _yp-l-kpp-1(P—1
‘(p—l)!é)(( Dip—1-kyF <p—1—k)+( DR < k ))
-1
=27 1)' Z( PR 1( k )

=2nP,

where the last equality follows from Lemma 8.8. O

Remark 8.10. Note that we can use similar methods to prove that the word Q, 4+1(n) has area

bounded below by a function > (p"TPD‘. To do so we use that the area of a word is invariant under
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conjugation and apply the above methods to the conjugate x7'Q,,;(n)x]" of Q,, ,;(n). The reason
this works it that the loop described by x'Q,, , ; (n)x] " attains values in both of the subsets {u; < 0}
and {u; > 0} of R".

8.4 | Integrating along loops of uniformly bounded length

We now fix a left-invariant Riemannian metric g on L, which we choose such thatd,, , ..., aup ols
an orthonormal basis of T,L, under the homeomorphic identification R? = L, with coordinates
u=(Up,..,u p) on RP? as before. In this section, we will prove the following result, which will allow
us to apply Proposition 8.2. Throughout this section, we will assume that all paths are piecewise
smooth.

Proposition 8.11. For M > 0 there exists a constant K = K(M) > 0 such that for every loop y :
[0,1] = L, of length L(y) < M we have

/yﬁo

We will deduce Proposition 8.11 from the fact that we can decompose R? into two sets on which
dp, is equal to the invariant forms dg (respectively, —df) and the subsequent lemma.

Lemma 8.12. Let M > 0 and let a be a 1-form on L, with invariant differential da. Then there is a
constant K = K(M, ) such that

forallloopsy : [0,1] — L, with L(y) < M.

Proof. Let f : D — L, be afilling disk for y. By Stokes’ theorem, we have

/yoc /Df*doc

where Area . (D) denotes the area of D with respect to the pullback metric f*g. The last inequal-

ity follows by comparing the invariant form da to the volume form on D induced by the invariant

Riemannian metric g on L,,. Here K, = K,(a) > 0 is a constant that only depends on a.
However, by choosing D to be (arbitrarily close to) a filling disk of minimal area for y, we deduce

that
/oc / da
4 D

<K, Areaf*g(D),

<K,- AreaLp .
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Since the area of loops of length L(y) < M in L, is uniformly bounded by a constant, it follows
that there is K = K(M, «) > 0 such that

/ycx

for all such loops. O

< KOAreaLp(y) <K

Proof of Proposition 8.11. Observe that with respect to the coordinates (uy, ..., u,) we have
dist;, ({u} xR {ul } xRPTY) >0 foruy #u!
and
distLp({ul} XRPL{ul } xRPT!) > 0 foru) — +oo.

In particular, there is a constant K, = K,(M) > 0 such that the image of any loop y with L(y) < M
which intersects the hypersurface {0} x RP~! non-trivially is contained in [-K,, K] X RP~1.
We distinguish the cases y([0,1]) n ({0} x RP~1) = @ and y([0, 1]) n ({0} x RP~1) 7é [25 starting

with the former. In this case we observe that 5, equals either the form Z ( k1 Dl ——du,_; in
all points of ¥([0, 1]) or its negative. Both forms extend to global forms on L W1th invariant differ-
ential df (respectively, —df3). Thus, Lemma 8.12 implies that there is a constant K, =K, M)>0
such that | fy Bol < K for all loops y satisfying the hypotheses.

Now assume that ([0, 1]) n ({0} x RP~1) # @. Then ¥([0, 1]) C [-K,, K] X RP~! In particular,
fory = (y1,...,7p) : [0,1] - RP we have that [y;(¢)| is uniformly bounded by K, := max({1, |Ky|}.

Assume now that y(t) is reparametrised by length, thatis, y : [0,L(y)] — L, with ||y||, = 1.In
view of our choice of metric ¢ and Lemma 8.3, this is equivalent to saying that we have functions
Agssdy 2 [0,L(y)] = Rsuch that ¥ 22 =1and

- &R @y
YO = D40 - Sy0,48u,0 = 2Dy i + D, A1) Y,
i=1 i=2 j=0

Uiy oy ()

In particular, we deduce that

5w gy @)
Boi(1)) = sgn(r, (1)) - ;220 D e O Spreiv:

where § denotes the Kronecker function.

p—k,i+j
Since |y;(t)| < K, and |4;(¢t)| < 1, it follows that |3,(7(¢))| < p? K . Hence, we obtain

/}/,30:

L(y)
S/ Bo(O)Ndt <L(y) - p’K3P <M - p*- K5F.
0

L(y)

Bo(y(1))dt

Choosing K(M) := max{K,;,M - p> - Kip } thus completes the proof. O
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Proof of Theorem 8.1. Consider the null-homotopic word w,,, ,, from Subsection 8.3 in the first
factor L, < G4 p- Its image in L, under the projection G, , = L, X L,_; — L, is the null-

homotopic word w,, ,, in L,,. Propositions 8.9, 8.11 and 8.2 imply that

AreaGpH,qH(wn) > AreaLp(wn) Zpm 1P,

where we choose M > 0 big enough such that L(r) < M for all word-loops r associated to relations
r € R for the compact presentation (S | R) := P(L,) of L. This completes the proof. O

Remark 8.13. Theorem 8.1 shows that for 2 < g < p we have nP~! < 8 (n) < nP.Moreover, fol-
lowing the same arguments as in the first part of the proof of Theorem 6.1 in Subsection 6.8, we
can actually show that 6Gp,q (n) < 6Gp’q, (n) for ¢’ < g, by reducing to null-homotopic words in x;
and x,. On the other hand, we currently only know the precise Dehn function forq € {2, p — 1, p}.
Curiously for ¢ = 2 the Dehn function is n?, since G, , = L, X R, whileforq = p — 1, piitis np~1
by our results. This naturally raises the question if the Dehn functions for increasing g interpolate
between n? and nP~! or if the case g = 2 is just a ‘borderline’ phenomenon.

9 | APPLICATION TO THE LARGE-SCALE GEOMETRY OF
NILPOTENT GROUPS

In this section, we will study SBEs in the context of our examples. In particular, we will prove
Theorem C by combining Main Theorem 6.1 from Section 6 with results on SBEs.

9.1 | SBE between nilpotent groups

SBEs were defined in the introduction. We refer the reader to Cornulier’s paper dedicated to the
notion [11] for a more extensive treatment of the subject. For our purposes it will be sufficient to
consider O(r¢)-SBEs, that is SBEs for which the function v in Definition 1.3 takes the form v(t) = ¢¢
with e € [0, 1).

We will need the following result from [11], which generalises a classical exercise on quasi-
isometries corresponding to the special case e = 0.

Lemma 9.1 (Cornulier [11, Proposition 2.4]). Let Y and Y’ be pointed metric spaces (for example,
groups with a left-invariant distance, based at the neutral element); denote | - | the distance to the
basepoint in both spaces. Let f : Y — Y’ bea O(r®)-SBE. Then thereexists g : Y' — Y such that for

yeYandy €Y', d(fog(y'),y") =0(y'|¢) and d(gof(y),y) = O(|y|°).

Lemma 9.1 is actually an explicit version of Cornulier’s original statement that O(r¢)-SBEs are
isomorphisms in the O(r¢)-category, which he defines in the obvious way [11]. The asymptotic
cone functors with fixed basepoints are well-defined on this category ([9, 11]) and, in analogy
to the case of quasi-isometries, SBEs induce bi-Lipschitz homeomorphisms between asymptotic
cones.
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Proposition 9.2 (Cornulier). Let Y and Y’ be homogeneous metric spaces. If there exists a O(r®)-
SBEY — Y/, then for any nonprincipal ultrafilter w and sequence of scaling factors (¢ ;) the metric
spaces Cone, (Y,o j) and Cone,(Y',o j) are bi-Lipschitz homeomorphic.

In particular, if a homogeneous space Y is O(r®)-SBE to a self-similar homogeneous space Y/,
then the latter is the asymptotic cone of Y up to bi-Lipschitz homeomorphism. Not all simply
connected nilpotent Lie groups admit left-invariant self-similar proper geodesic metrics, only the
Carnot gradable ones do.

Theorem 9.3 (Cornulier). Let G be a nilpotent simply connected Lie group. Let g = Lie(G). Let gr(G)
be the associated Carnot graded Lie group. Equip G and gr(G) with geodesically adapted distances.
Then there exists a computable ey € [0, 1) only depending on g such that G and gr(G) are O(r®)-SBE.

Remark 9.4. As explained in [11, Section 6], a version of Theorem 9.3 where gg=1-1 Jcif G is
c-step nilpotent can be derived by combining two results from the 1970s, namely an estimate from
Guivarc’h’s proof of the Bass-Guivarc’h dimension formula and Goodman’s observation that the
laws of G and gr(G) differ sublinearly on the large-scale when written as polynomial group laws
on gr(g) [22]. Cornulier’s input in [11] is in the improvement of e, in terms of finer invariants of
the structure of g. We will give low-dimensional examples in Table 4.

Corollary 9.5 (Pansu and Cornulier [9, 30, 31]). Let G and G’ be two simply connected nilpotent Lie
groups. The following are equivalent.

(i) There exists a nonprincipal ultrafilter w on N and a sequence of normalisation factors (0 ;) jen
such that the metric spaces Cone, (G, o j) and Cone,(G',o j) are bi-Lipschitz equivalent.
(ii) The groups gr(G) and gr(G') are isomorphic.
(iii) There exists e € [0, 1) such that G and G’ are O(r¢)-sublinear bi-Lipschitz equivalent.

Proof of Corollary 9.5. Assuming (i), we deduce (ii) from Theorem 1.2. (ii) implies (iii) by
Theorem 9.3. Finally, (iii) implies (i) by Proposition 9.2. O

Remark 9.6. Corollary 9.5 holds for locally compact groups with polynomial growth G, where the
construction of gr(G) requires additional steps. In particular, one first has to pass to a nilshadow
of the Lie shadow of G, see Breuillard [4].

Corollary 9.5 leaves the problem of evaluating the range of e such that a given pair of groups
with identical asymptotic cones can be O(r¢)-equivalent. The question was raised by Cornulier
[11, Question 6.20]. For the pair (L, X L,_,,G, ,_;), our Theorem C states that one must have
e > 1/(2p), which for the first case of interest p = 4 implies e > 1/8. These are the first examples
for which a positive lower bound is known. We will prove Theorem C at the end of this section.

9.2 | Large-scale fillings and SBE
Our main tool for proving Theorem C is the following technical lemma.

Lemma 9.7. Let G and G’ be two locally compact compactly presented groups admitting filling
pairs (n?, n*) and (n?, ns/), respectively. Let e € [0, 1). If there exists an O(r¢)-SBE between G and
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G/, then

(n(1+e)d’+e(1+e)s’d + n(1+e)2+e(d—1), n(1+e)s’ + ne(1+e)s’s>
is a filling pair for G.

Before starting the proof we fix some conventions and notations. We will fix Cayley graphs
of G and G’, and a loop in G will be a loop in the Cayley graph of G (not necessarily based at 1).
When we speak of maps to G (respectively, G') we will from now on mean maps to their respective
Cayley graphs.

A combinatorial disk A : = (X, ¢)filling a loop y is defined by the following data: a CW-complex
structure X on the closed 2-dimensional unit ball with N 2-cells A, ..., Ay and injective attaching
maps in all dimensions, and a continuous map ¢ : X() - G from the 1-skeleton of X to the Cayley
graph of G, such that y parametrises ¢|;, and ¢ maps vertices to vertices. We will denote y; :=
|54, the boundary loops of the 2-cells and say that A is a filling of y by loops 71, ..., ¥y

Retaining the above notation, one can check that G admits (n¢, n°) as a filling pair if and only
if there is a constant M, > 0 such that every loop of length < n based at the identity in G admits
a filling by a combinatorial disk such that N < n¢, ¢(X (M) is contained in a ball of diameter < n’
around the origin and y; parametrises a loop of length < M. This is straightforward and well-
known for Dehn functions and generalises readily to filling pairs.

Proof. By Lemma 9.1 there is a continuous map F : G’ - G such that FoF is O(r¢)-close to the
identity. Lety : S' — G be any loop of length n in G based at the identity. Then y’ := Foy defines
a loop 7’ of length < n'*¢ in G'. Fill ¥’ with a combinatorial disk A’ = (X, ¢) composed of <
n(1+94" Joops of bounded length and area. Note that ¢(X() is contained in a ball of diameter
< n(1+9s" around the origin.

Composing A’ with F yields a combinatorial disk A” := (X, Fo$) which is composed of <
n1+9d" Joops of length < n¢1+e%’ Note also that F(¢(X(1)) is still contained in a ball of diam-
eter < n(1+9%'_ The boundary loop "’ of A” has length < n0*9°. We can thus choose a set of
r < nltete points 0 = t, < t, < - < t, = 1 on S! such that L l4,,,,1) S 1. Note that we may
further assume that L(yl[ti,,m]) < 1 (after possibly adding n more points).

We define loops y; of length < n€ by concatenating y| [titiay ] @ geodesic segment [y(t;,1), ¥ (t)],
y" lit,.1,,,1 @nd a geodesic segment [y (t,), y(t)]; for the bound on the length we use that FoF is
O(r¢)-close to the identity.

Attaching the loops y; to the combinatorial disk A” defines a combinatorial disk A" with
boundary loop y. By construction, A" is composed of n1+9)4" Joops of length < n¢1+es" at dis-
tance < n(1+9%" from the origin, as well as n17¢+¢* loops of length < n¢ at distance < n'+¢ from
the origin. Using that (n?, n®) is a filling pair for G to fill these loops yields the filling pair

<n(1+e)d’ . ne(1+e)s’d + n1+e+ez . ned’ nl*e 4 nes 4 n(1+e)s’ + ne(1+e)s’s>

for G. Since s, 8’ > 1, we obtain the filling pair

<n(1+e)d’+e(1+e)s’d + n(1+e)2+e(d—1), n(1+e)s’ + ne(1+e)s’s>

for G. O

5US017 SUOLULLIOD dAIIRID 3|qed! dde ay) Aq peusenob afe sajoiiie YO ‘8N JO SN 1oy Arig 1 auljUQ AB|IAA UO (SUONIPUOD-PUR-SWLB)W0Y" B[ 1M A Relq 1 BU I UO//SdNY) SUORIPUOD pUe SWB | 8Y)38S *[2202/2T/20] uo Ariqiauljuo 8| B160jouyds ] o 1su| Buynsie Aq 86T swd/ZTTT OT/I0p/L0d A3 | 1M Aeiq 1 pUlUO"90SYRLPUO|//:SdNL WOy papeo|umod ‘0 ‘XiZ0orT



CONE-EQUIVALENT NILPOTENT GROUPS WITH DIFFERENT DEHN FUNCTIONS | 79

Proof of Theorem C. We apply Lemma 9.7 to the pair G = L, X L,,_, which admits a (n”, n) filling
pair by [33, Theorem 2.3], and G’ = G, p—1 Which admits a (nP~1, n) filling pair by Theorem 6.1.
We deduce that the Dehn function of G has to satisfy nP < n(1+(p-D+e(1+e)p 4 (1+e)*+e(p=1) Thig
yields the inequality

p<max {(1+e)(p(1+e)—1),(1+e)*+e(p—1)}.

A straightforward calculation shows that for e = % this inequality is not satisfied. Since both of

the terms on the right are increasing functions in e € [0, 1) the inequality cannot be satisfied for
anye € [0, ﬁ], yielding the desired lower bound. O

10 | OVERVIEW IN LOW DIMENSIONS

In this section, we provide a complete overview of the real nilpotent Lie algebras of dimension
less or equal to 6 together with the best estimates that we can find on their Dehn functions. By
the Dehn function (respectively, the centralised Dehn function) of a Lie algebra g, denoted §,(n)
respectively, 5§em(n), we mean the Dehn function (respectively, the centralised Dehn function)
of its associated simply connected nilpotent Lie group G (that is, Lie(G) = g). A complete classi-
fication of real nilpotent Lie algebras of dimension < 6 was given by de Graaf [15]. We will use his
notation’ fd, i where d is the dimension and j is an integer. Note that in dimension < 5 all Dehn
functions were computed by Pittet [34]. We still list them for the sake of completeness.

We list the nilpotent Lie algebras together with their structure, their homogeneous dimension
and the best-known estimates on their Dehn functions in Tables 1-4. Table 1 contains all nilpo-
tent Lie algebras of dimension at most 5 and Tables 2-4 those of dimension 6 ordered by their
nilpotency classes and homogeneous dimension hdim(g) := } (., sdimy,g/y,,,¢. The latter is a
quasi-isometry invariant, as it coincides with the exponent of growth of the corresponding group
[25, Theorem II.1].

We will now give some explanations regarding the contents of our tables. In dimension 6, we do
not list decomposable Lie algebras g (that is, Lie algebras that split as a direct product of lower
dimensional ones) except if their class of Lie algebras with the same Carnot graded algebra consists
of more than one element; this is to keep our tables as compact as possible. More generally, we
group Lie algebras by their associated Carnot graded algebras, starting with the unique one that
is Carnot. The nonzero brackets defining the structure of the respective Lie algebras are provided
in an abbreviated form: for instance, the notation 12 = 34 = 5 means that [x;, x,] = [X3, X4] = X5
and defines the 5-dimensional Heisenberg algebra.

In most cases, our estimates on 5g(n) are derived as follows.

(1) The upper bound is given by the universal upper bound of n°*! on the Dehn function of a
nilpotent group of nilpotency class c [21].

(2) Thelower bound is given by the centralised Dehn function 5;6“‘(1’1). Itis obtained by providing
a suitable central extension of maximal distortion.

For (2) we provide a maximally distorted central extension in abbreviated form in the table. Let
us illustrate this via the example of . 5. In this case we claim that a central extension of maximal

T Note that de Graaf’s precise notation is L, j rather than % ;.
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Ls.22(-1) Z6.3 Ls.25 & L6.23 L6153 Lo Ls,21(%1) Ls14 Ls.18
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R® Ls 4 Ls s L55 —y L5.3 L5

2 2 2 3 3 :

1 1 ; 1
R L2 L3
2
1 1 3
R? L3
\ /
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FIGURE 5 Nilpotent Lie algebras of dimension < 5 and how they are related. The notation g N b means
that § is a r-central extension of g by R (see Tables 1-4 for the explicit extensions) and g A h means that ) = gr(g).

distortion is given by z = 14 = 35. This is short-hand for the extension Rz — g — g, where z sat-
isfies z = [0(x,), 0(x4)] = [0(x3), 0(x5)] for any section o : g — g. Verifying the existence of this
extension is easy via the well-known identification of central extensions with second cohomology
classes given by Proposition 7.2. Indeed, in the case of .Z; 5 the extension z = 14 = 35 corresponds
to the 2-form w 1= & A&, + &3 A &5, where &, ..., &5 is a dual basis of the basis x, ..., x5. We
readily deduce from the structure of .% 5 that d§; = d§, = d{; =0, d&; = —=§; A§, and d§, =
—&, A&y — &5 A &5. Thus, we obtain that dw = 0 and that w defines a non-trivial cohomology class.

For the cases where there are either better estimates on the Dehn function than one can obtain
from the above method or where estimates are well-known we provide a reference to the literature
or previous sections. Finally, note that the Dehn functions of the decomposable algebras that we
did not list can easily be deduced from Lemma 3.9 and the Dehn functions of their factors.

Remark 10.1. We indicate all relations via central extensions between nilpotent Lie algebras g
of dimension < 5 in Figure 5; if g is 5-dimensional we also provide at least one 6-dimensional
central extension.

Note that there are a total of 5 cases for which we were not able to determine the precise Dehn
functions via any method. In particular, in these cases the bounds from (1) and (2) do not match.
We summarise the state of the art for these cases.

Lemma 10.2. Let g € L = {Z} 14, L4 16, L519(£1), L5 20} and let ¢ be its nilpotency class. Then g
admits a c-central extension, but no (c + 1)-central extension. In particular, the central and regular
Dehn functions of g satisfy the asymptotic inequalities

5;61“(11) =n < 8,(n) <t

Proof. For the existence of a c-central extensions we refer to the concrete c-central extensions
indicated in the tables with the arguments being the same as the ones given above.

The proof of the non-existence of a (¢ + 1)-central extension is by performing computations
similar to the ones in Subsection 7.4. Note that for the Carnot case the computations are more
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elegant than for the non-Carnot case, since the differential preserves the grading. The only
non-Carnot Lie algebra in L is % 1,; the corresponding computation is more cumbersome but
no harder.

Rather than giving details for all cases, we will restrict to the concrete example of the Carnot
Lie algebra .%; ,, and leave the remainder of the computations as an exercise to the reader. By
definition % , is 3-step nilpotent.

To show that there is no 4-central extension it suffices to prove that H?(g, R)* = 0. Recall that
L0 1s defined by the generating set {x,, ..., X} and the following nonzero relations

[Xl, x2] = X4, [xl, X3] = xS, [Xl, XS] = [Xz, X4] = x6.

We denote its dual basis {{1, ..., §s} and, as before, we use the notation &; j= ENE o and so on.
The first quotient of the lower central series of .Z ,, is generated by {x;, x,, x3}. Thus, we have

</\2 °§€6T20>4 = Span {51,6’ §26:E36 54,5}

in the associated grading on /\2 ,,2”6*20.
It follows that it suffices to check that any cocycle of the form w = a; (&1 6 + 6856 + a3 6836 +
a, 5§, 5 is trivial. We compute the differential

dw = —a, 6§ AdEg — ay6§5 AdEs — a3 683 A dE + aysd84 A Es — ay 56, AdEs

168124+ 268015+ a36(851 5+ 8304 +ass(8a13—6125)

a1 68124+ (@6 +a45)501 5+ a36(5315 +&324) +ay5807 3 (10.1)

which isindeed nonzerounlessa, ¢ = a, ¢ = as ¢ = a4 s = 0. This shows that % ,, does not admit
a 4-central extension. O

Finally, in the last column of Table 4 we list the best-known exponent e, such that G and gr(G)
are O(r°)-SBE (see Section 9 for details). We do not list eqin Tables 1, 2 and 3, since it is always 0
if G is Carnot gradable and 1 — ¢! if not, where c is the nilpotency step of g. For the computation
of €q when g = % 4, d € {12,17} see [11, 6C6].

TABLE 1 Nonabelian nilpotent Lie algebras of dim < 5 and their Dehn functions

Algebra Structure step hdim é(n)

Ly, =13 = heis; 12=3 2 4 n3

Ly =L, XR 12=3 2 5 n?

Lz =1, 12=3,13=4 3 7 n*

Loy = L35 XR2 12=3 2 6 nd,z =13

Zs4 = heids 12=34=5 2 6 n?[1, 28]

L 12=3,14=5 2 7 n,z=15

Lz =23 XR 12=3,13=4 3 8 n*z=14
Zss 12=3,13=25=4 n*z =14 =35
P 12=3,13=4,23=5 3 10 ntz=15=24
Ly =1 12=3,13=4,14=5 4 1 n’,z=15
L6 12=3,13=4,14=23=5 n’,z=25=143

5US017 SUOLULLIOD dAIIRID 3|qed! dde ay) Aq peusenob afe sajoiiie YO ‘8N JO SN 1oy Arig 1 auljUQ AB|IAA UO (SUONIPUOD-PUR-SWLB)W0Y" B[ 1M A Relq 1 BU I UO//SdNY) SUORIPUOD pUe SWB | 8Y)38S *[2202/2T/20] uo Ariqiauljuo 8| B160jouyds ] o 1su| Buynsie Aq 86T swd/ZTTT OT/I0p/L0d A3 | 1M Aeiq 1 pUlUO"90SYRLPUO|//:SdNL WOy papeo|umod ‘0 ‘XiZ0orT



82 LLOSA ISENRICH ET AL.
TABLE 2 Indecomposable 2-step nilpotent Lie algebras of dimension 6 and their Dehn functions
Name Structure hdim é(n)
Zyon(—1) = heisly 13=24=514=32=6 8 nd,z=16=52
Z42,(0) 13=24=5,14=6 8 n,z =16
L 26 (free rank. 3) 12=4,23=5,31=6 9 n? [3, Theorem 7]

TABLE 3 Three-step nilpotent Lie algebras of dimension 6 and their Dehn functions
Name Structure hdim é(n)
Ze20 12=4,13=5,15=24=6 10 n<8n)<ntz=14
Z410(0) 12=4,13=5,24=6 10 n*,z = 26
Z10(1) 12=4,13=5,35=24=6 10 n*<dén)<n*tz=15
Z10(=1) 12=4,13=5,53=24=6 10 n*<d(n)<n*z=15
Loz = Ly3 XR 12=3,13=4 9 n* (product)
Lys=LssXR 12=3,13=25=4 n* (product)
Lo10 =043 12=3,13=56=4 n3, Theorem A
L5 12=3,13=5,14=6 10 n*,z =15
Lon 12=3,13=24=5,14=6 n*,z=15=34
Lo =Ls9XR 12=13,13=4,23=5 il n* (product)
Lo 2u(1) 12=3,13=26=4,16=23=35 nz=15=24
Loa(=1) 12=3,13=26=4,61=23=5 n*z=15=24
Z,24(0) 12=3,13=26=4,23=5 n*z=15=24
TABLE 4 Nilpotent Lie algebras of dimension 6 and step > 4, and their Dehn functions
g Structure hdim & (n) e,
Leg =27 xR 12=3,13=4,14=5 12 n° (product) 0
Lo =LsgXR  12=3,13=4,14=23=5 n’ (product) 3/4
Zo12 12=13,13=4,14=26=5 nd,z=15=36 1/2
Lo 12=3,13=4,14=23=26=5 nd,z=15=24=36 3/4
L3 12=3,13=26=4,14=36=5 n,z=15=46 3/4
Lo (D) 12=3,13=4,23=5,14=6,25=6 14 n’,z=16=35 0
Zin(-1) 12=3,13=4,23=5,14=6,52=6 14 n,z=16=53 0
Z,1(0) 12=3,13=4,23=5,14=6 14 n’,z =16 0
Zo1s 12=13,13=4,14=5,15=6 16 n®,z =16 0
L 12=3,13=4,14=5,15=23=6 ntz=16=24 3/5
Li1s 12=3,13=4,14=23=5,15=24=6 nbz=16=25 4/5
Zne 12=3,13=4,14=5,25=43=6 16 n <6(n)<nbz=15 0
L2 12=3,13=4,14=23=5,25=43=6 n<8(m)<xn,z=15=24 4/5
11 | QUESTIONS AND SPECULATIONS

We start with a question whose answer would complete the computation of the Dehn functions
of all simply connected nilpotent Lie groups of dimension less or equal 6.

Question 11.1. What are the Dehn functions of the five simply connected nilpotent Lie groups
associated to the nilpotent Lie algebras in £ from Lemma 10.2?
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With the exception of % ;4 all groups corresponding to the Lie algebras in L are possible
candidates for a positive answer to the following question.

Question 11.2. Does there exist a Carnot gradable simply connected nilpotent Lie group such
that its Dehn function and its centralised Dehn function both grow like n?, but with different
exponents a?

More generally, we might expect a general picture for Dehn functions of central products. Let £
and I be nilpotent Lie algebras of step k, respectively, £, with k > £ > 2, and 1-dimensional centres
sand 3. Let 6 : 3 — 3/ be an isomorphism between their centres and let ¥ X, [ be their central
product. We denote by K, L and G := K Xy L the associated simply connected Lie groups.

Conjecture 11.3. The Dehn function of G satisfies n* < 8,(n) < n**1,

We explain the intuition behind this conjecture. First we observe that the fact that the centres
in consideration are 1-dimensional implies that there is still a cocycle w, defining the k-central
extension £ — £/3. As for our examples g, ,, this cocycle represents the ‘trivial’ central extension
f x 1 — £ X, L. It is thus #-central and, in particular, it will only be k-central if k = #. Moreover,
there is no r-central extension for r > k + 1 (see Lemmas 7.9 and 7.10). Hence, we can at best
hope for a lower bound of #* on the Dehn function of G by using central extensions. On the other
hand, we can in general not even hope for this, as for k > ¢ the form w does not provide such an
extension and our examples show that no other k-central extension might exist. However, it seems
reasonable to believe that perturbation arguments similar to the ones developed in Section 8 can
be used to show that the Dehn function of G is = n*. This explains our guess for the lower bound.

For the upper bound the key intuition is that it should still be possible to commute central
words w(X) in the generators X of K with arbitrary words v(X) at a lower cost than n**! by using
what we will now call the ‘central word trick’: one replaces w(X) by a suitable word w’(X’) in
the generators X’ of L at cost < n**! and then exploits that [X,X’] = 1 to commute it with v. For
the overall approach one should mimic the boot-strapping trick of using an inductive argument
on the nilpotency class k that we applied in Section 6 (also see its sketch in the second half of
Subsection 2.2).

The basic idea would be to first reduce the word w(X) to a word u(Y’), where the letters Y live in
asubgroup H < K of nilpotency class strictly lower than k (in our case, K = L,, while H = L,,_).
Such a u will presumably have length n?. We then assume that the conjecture holds by induction
for k — 1 and apply it in the central product H X4 L to commute w(X) with other words in X at cost
< n-nk = n**1, Aswe saw in Section 6 this simple trick, used in the right way, is the fundamental
reason why our argument works.

Once we inductively reduced to a 2-step nilpotent central product, we can invoke Olshanskii
and Sapir’s result that the Dehn function of such a group is bounded above by n?log(n) [28]. This
would allow us to conclude. We remark that while they do not say this explicitly, the reason why
Olshanskii and Sapir’s argument for 2-step nilpotent groups works ultimately also boils down to
the central word trick (and we are convinced that the authors were aware of this). However, as
we have seen in Section 6 it is far from obvious how to make such an argument work in higher
step. There are various reasons for this, for instance, to mention just one of them, making it work
requires the reduction step that turns words of length n in X into words of length n? in a suitable
alphabet Y at sufficiently low cost, a step that was not needed for 2-step nilpotent groups.
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The fact that already for the specific class of groups G, ,_;, whose structure is as simple as
one may hope for, the argument turns out to be highly technical, suggests that actually proving
Conjecture 11.3 in general will at the very least require the development of a refined version of our
methods and potentially even a completely different approach.

Finally, it is worth noting that it would even be interesting to prove Conjecture 11.3 for other
specific classes of examples. Indeed, well-chosen classes of examples might well produce new
groups that satisfy all the main conclusions of our results in the introduction. A first such class to
consider would be the general class of groups G, , for which so far we were only able to determine
the precise Dehn function for q € {2, p — 1, p} (see also Remark 8.13).

Question 11.4. What is the Dehn function of Gp,q for3<g<p-2?

Considering specific classes of examples seems particularly tempting, because, with some real
speculation involved, a well-chosen class of examples could potentially produce nilpotent groups
with Dehn functions strictly between n? and n4*! for all integers q > 3, generalising Wenger’s
examples [40], or, on an even more speculative note, even nilpotent groups whose Dehn functions
do not have integer exponents.
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