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Abstract—Considering the design of safety-critical embedded
systems for future mobility solutions, the XANDAR project em-
ploys the X-by-Construction paradigm to meet non-functional
requirements in an automated manner. This paper introduces
the pattern library concept developed as part of the project
and analyzes three state-of-the-art safety mechanisms for their
compatibility with the approach.
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I. INTRODUCTION

Embedded systems for technologies such as self-driving cars
need to combine a high computational performance with the
fulfillment of safety, security, and real-time requirements [1].
This turns the design of such systems into a complex task
and creates the need for systematic approaches to tackle the
associated challenges in a cost-efficient manner.

In the XANDAR project, a holistic toolchain providing
such approaches is developed [2]. The strategy employed
to achieve this is based on the X-by-Construction (XbC)
paradigm, i.e., a “step-wise refinement process from speci-
fication to code” [3] that results in systems with guaranteed
non-functional properties. The developed toolchain employs a
model-based methodology to cover functional correctness as
well as real-time, safety, and security requirements.

Focusing on multiprocessor system-on-chip (MPSoC) de-
vices, this work presents first results and future directions
of the XbC safety pattern concept in XANDAR. As part of
this work, we introduce three selected safety patterns that we
consider particularly interesting for the MPSoC-based design
of safety-critical systems.

II. PROCESS AND PATTERN LIBRARY

As shown in Fig. 1, the XANDAR development process
can be divided into two overall portions: the model-based
frontend and the XbC backend. In the frontend, users create
a high-level description of the envisaged embedded system.
During early development stages, the frontend is concerned
only with platform-independent aspects at the software level.
In this case, it allows the user to describe the intended software
architecture as a network of Software Components (SWCs)
interacting according to the Logical Execution Time (LET)
paradigm [4]. Provided with a software architecture model
and platform-independent code for each SWC, the toolchain
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Fig. 1. High-level overview of the XANDAR development process

is able to perform a deterministic model-in-the-loop simu-
lation (MiL) of the specified behavior. In later development
stages, platform-specific aspects can be incorporated into the
architecture model. Triggering the XbC backend initiates a
refinement procedure that attempts to generate implementation
artifacts with guaranteed runtime properties. If the backend is
unable to provide the expected guarantees, it requests the user
to revise the architecture model or the SWC code.

For the treatment of safety and security requirements, the
toolchain employs a pattern-based approach. As visualized
in Fig. 1, predefined XbC patterns are provided to the toolchain
user in the form of an extensible library. Each pattern captures
a specific safety or security mechanism, either known from the
state of the art or specifically developed by XANDAR. In any
case, a pattern consists of a verified design-time procedure and,
optionally, trusted building blocks to be deployed to the target
runtime. Note that some patterns (such as a pattern enforcing
that two SWCs are mapped to distinct hardware units) do not
generate active runtime entities. Such patterns do not trigger
artifact generation, but their design-time steps still contribute
to a safe and secure system architecture.

The toolchain user has the opportunity to annotate library
patterns to the created software architecture model. As shown
in Fig. 2, a software architecture contains an arbitrary number
of SWCs, each with its LET parameters and an arbitrary
number of input or output ports. Ports exhibit either sampling
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Fig. 2. Excerpt of the software architecture metamodel

or queuing behavior and can be connected to ports of opposite
direction via channel instances. From the perspective of the
toolchain itself, every pattern is provided as a class imple-
menting the PatternApplication interface. The application
of a pattern is therefore realized by the instantiation of the
respective class. Using its initialize() method, a pattern
has the opportunity to hook into the execution of both the
generation framework and the XbC backend.

III. SAFETY PATTERNS FOR MPSOCS

Having described the pattern library concept of XANDAR,
we now present ideas on how to integrate three selected safety
mechanisms from an MPSoC context into it.

a) Hypervisor-based on-chip redundancy: An important
target runtime of XANDAR are type-1 hypervisors. In such
scenarios, SWCs mapped to a hypervisor partition can be
replicated to implement fault masking based on spatial redun-
dancy. A pattern realizing this idea is a specific Triple Modu-
lar Redundancy (TMR) scheme in which SWC copies as well
as a voter are automatically generated and deployed to dedi-
cated partitions. The resulting implementation is comparable
to the “arbiter sandbox” approach presented in [5]. From a
modeling point of view, an application of this pattern needs to
reference only the SWC to protect. Since fault masking does
not affect the nominal functionality of the system, the pattern
has no impact on the simulation. Therefore, the XbC backend
alone is able to generate the required runtime artifacts.

b) Cost-efficient fault tolerance: In cases where on-chip
redundancy is not sufficient to obtain the necessary degree of
reliability, but a full replication of an MPSoC is prohibitively
expensive, the System-Level Simplex Architecture [6] is a
promising concept to achieve fault tolerance. It is based on
dynamic hardware redundancy and reacts to failures of one
platform with the transition to a degraded functionality on
another, more reliable platform. Due to the dynamic nature
of this mechanism, provisioning it as a safety pattern is more
challenging compared to the first case. An application of this
pattern must reference two SWCs: one delivering the nominal
and one delivering the degraded functionality. In addition,
the fault detection procedure needs to be implemented by
the user (as part of a SWC) and its result must be made
available to the component orchestrating the pattern during

runtime (via a SWC port). The behavioral aspect of this
pattern has to be handled by the generation framework to
make it visible in the simulation. The aforementioned runtime
component to orchestrate the dynamic behavior must be highly
dependable and generated by the XbC backend.

c) Hardware-enforced information flow control: To per-
form a logical isolation of physically connected on-chip com-
ponents, modern MPSoCs are often equipped with Access Pro-
tection Units (APUs) attached to their internal interconnects.
The work in [7] presents a model-based approach that uses
such APUs to enforce an end-to-end information flow policy in
a network of MPSoCs. This methodology is highly compatible
with the XANDAR process and can be packaged as a safety
pattern in a straightforward manner: A pattern application
must contain a specification of all accepted information flows
at SWC level, i.e., a list of ordered pairs where each pair
declares a flow from a source SWC to a sink SWC as
accepted. In the XbC backend, the pattern has to derive APU
configurations from specified channel instances and, given
these configurations, must ensure that all potentially feasible
information flows are in line with the list of accepted flows,
i.e., the desired information flow policy.

IV. CONCLUSION

In this work, we have given an overview of the XANDAR
design methodology and its XbC pattern library. We were able
to show that representative safety mechanisms from the state
of the art are compatible with the library concept. While the
software architecture metamodel is final, the pattern library
is currently under development and will be populated with
implementations of safety patterns such as the ones described
above over the remaining course of the project.
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