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CHAPTER 1

INTRODUCTION

1.1 Motivation
Financial markets are constantly reshaped by ever-changing socio-economic, tech-

nological, and regulatory realities. In this context, financial markets around the globe
have changed significantly over the 21st century (Marszk and Lechman, 2021). These
changes have affected all pivotal market elements, consisting of the socio-economic
and legal environment, transaction object, market structure, agent behavior, and
market outcome (Weinhardt and Gimpel, 2007). As financial markets are ubiquitous
and constitute a major cornerstone of the global economic system, the transforma-
tion of financial markets is a highly relevant issue. Digitalization and the associated
technological evolution have been an important factor in the transformation of finan-
cial markets in recent decades. The technological evolution has, for instance, directly
affected asset values (Garleanu et al., 2012; Kogan and Papanikolaou, 2014), yielded
new types of financial assets (Krückeberg and Scholz, 2019; Bianchi, 2020), and en-
abled new methods of data processing to estimate asset risk premia and predict asset
prices (Fischer and Krauss, 2018; Gu et al., 2020).

With financial markets evolving continuously, financial research is also in con-
stant progression. In financial research, asset pricing and financial market predic-
tion constitute fundamental tasks. Despite the predominant notion of semi-strong
form market efficiency in most financial markets (Fama, 1970), researchers have
publicly identified hundreds of predictive signals for asset price movements over the
last decades (Green et al., 2012; Feng et al., 2020), some of which have lost their
predictive power over time (Zaremba et al., 2020). Over the last years, the num-
ber of potential predictive signals has drastically increased, since the digital age has

1



2 Introduction

yielded a large amount of new structured and unstructured financial data (Sagiroglu
and Sinanc, 2013; Obaid and Pukthuanthong, 2021; Goldstein et al., 2021). This
large amount of data render machine learning models renders complex models for
data analysis necessary. Among asset pricing and financial market prediction, ma-
chine learning models have proven to incorporate a large number of features and
flexibly learn high-dimensional functional relationships between features and targets
(e.g., see Bianchi et al. (2020); Karolyi and Van Nieuwerburgh (2020); Gu et al.
(2020, 2021)). However, open questions, for instance, regarding utilizing machine
learning to analyze market predictability for specific time horizons (Goldstein et al.,
2021), remain.

An example of how financial markets have changed in terms of the transaction
object is the newly emerging class of digital assets. Digital assets comprise a het-
erogeneous set of digital products directly or indirectly connected to the blockchain
(van der Merwe, 2021), which is considered an especially valuable financial tech-
nology innovation (Chen et al., 2019). The most relevant digital asset by market
capitalization is the peer-to-peer electronic cash system Bitcoin (Nakamoto, 2008),
which has first reached a market capitalization of more than a trillion USD in 2021.
Since its inception in 2008 (Nakamoto, 2008), Bitcoin has inspired various other
cryptocurrencies (Extance, 2015; Rauchs and Hileman, 2017) and gained massive
research attention (Aysan et al., 2021). Despite its intended use as a means of pay-
ment, Bitcoin is also predominantly used as an investment asset (Glaser et al., 2014;
Mattke et al., 2021). As Bitcoin is not backed by a central bank, has no physical
utility, and does not promise future cash flows, it exhibits no fundamental value
in the traditional sense. Consequently, researchers have developed unique economic
frameworks to analyze the price formation of Bitcoin (Schilling and Uhlig, 2019; Bolt
and Van Oordt, 2020; Biais et al., 2020). Regarding empirical Bitcoin pricing and
market prediction, many of the predictive signals identified for stock markets, for in-
stance, accounting-based signals, are not applicable. Furthermore, it remains unclear
to what extent the Bitcoin pricing process is similar to the pricing processes of other
financial assets and whether applicable signals, such as momentum-based signals
(Jegadeesh, 1990; Jegadeesh and Titman, 1993), are relevant for the Bitcoin market.
As academic research indicates that the Bitcoin market has become increasingly effi-
cient over time (Köchling et al., 2019; Kristoufek and Vosvrda, 2019), it is crucial to
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fill research gaps regarding the predictability of the more mature Bitcoin market. At
the same time, the flexibility of machine learning models may be especially valuable
for examining the predictability of Bitcoin and also other cryptocurrencies, as there
is limited evidence regarding the pricing process of these digital assets due to their
recent nature.

Besides research gaps regarding the pricing of new asset types, in light of the
financial market evolution, questions also arise regarding the pricing of traditional
financial assets, for instance, stocks. It is essential to understand whether previ-
ously identified market predictive signals stay relevant and whether new features
arise in the constantly evolving financial markets. This issue is especially relevant
in times of significant change in the socio-economic and legal environment. The
before-mentioned flexibility of machine learning models renders these models espe-
cially useful in these market conditions of increased uncertainty. An example of
such a significant shift in the socio-economic and legal environment is the ongoing
COVID-19 pandemic (Velavan and Meyer, 2020; Fauci et al., 2020), which has major
implications for societies and economies around the globe. On an economic level, the
COVID-19 pandemic comes with manifold supply and demand effects (Padhan and
Prabheesh, 2021) and has drastically increased investor uncertainty (Zhang et al.,
2020; Haroon and Rizvi, 2020). As the COVID-19 pandemic is unique in its na-
ture, one can draw only limited parallels with other global disaster events (Borio,
2020). Therefore, from an asset pricing perspective, a crucial task is to examine the
potential impact of COVID-19-related data on asset prices and financial markets.

Besides changes regarding transaction objects and socio-economic and legal envi-
ronment, we also have witnessed large shifts regarding agent behavior and market
structure in financial markets over the last decades. A major example is a shift from
active investment toward passive investment (Blitz, 2014; Fichtner et al., 2017). For
instance, the fraction of actively managed mutual funds and ETFs relative to the to-
tal fund market in the US has decreased from 81% in 2010 to 60% in 2020 (ICI, 2021).
Additionally, active shares and fees of active mutual funds have fallen (Cremers and
Petajisto, 2009; Stambaugh, 2014; ICI, 2020), resulting in active investment man-
agement becoming more similar to passive investment management. Due to higher
expense ratios of active management, passive investment management tends to out-
perform active investment management after fees (Carhart, 1997; Fama and French,
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2010). However, there is a need for active investment in financial markets since the
security analysis of active investors connects market prices to fundamental asset val-
ues and keeps financial markets efficient (Blitz, 2014; Pedersen, 2018). Therefore,
the shift from active to passive investment may reduce the information contained
in individual asset prices (Sushko and Turner, 2018) and lead to higher systematic
market risks (Anadu et al., 2019). As the shift from active to passive investment
constitutes a major trend for global financial markets, it is essential to examine it
further and analyze its implications.

Summarizing, the overarching objective of the thesis at hand is to develop a com-
prehensive understanding of relevant and current asset pricing challenges induced
by significant changes regarding pivotal market elements through multiple in-depth
quantitative analyses.

1.2 Research Agenda and Research Questions
This thesis sheds light on current asset pricing issues by raising five individual re-

search questions. The emergence of the cryptocurrency Bitcoin motivates the search
for new prediction models and predictive signals for the Bitcoin market. As the
Bitcoin market is relatively young, there only is limited evidence regarding its price
formation process. Hence, machine learning models, which enable the incorporation
of many potential features and do not require specific ex-ante modeling of the func-
tional form of how features enter into the target, might be well suited to address
this challenge. For the Bitcoin market, especially the short-term predictability of the
Bitcoin market remains under-researched Jaquart et al. (2020a). Hence, Research
Question 1 addresses the performance of machine learning models to create short-
term predictions of the Bitcoin market. Research Question 2 refers to which feature
types are relevant for such prediction models.

Research Question 1 What is the predictive power of machine learning models
predicting short-term movements of the Bitcoin market?

Research Question 2 What are the most relevant features for predicting short-
term movements of the Bitcoin market using different machine learning models?

While Bitcoin is the most relevant cryptocurrency by market capitalization, it has
inspired thousands of other cryptocurrencies (Extance, 2015; Rauchs and Hileman,
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2017), some of which have also reached massive valuations. For instance, as of May
2022, more than 50 cryptocurrencies exhibit a market capitalization of more than one
billion USD. Due to the recent inception of these cryptocurrencies, there still may
exist certain inefficiencies in the market which could be discovered and economically
exploited by utilizing complex machine learning models. Building on the answers to
the previous research questions, Research Question 3 refers to the economic potential
of applying well-suited and advanced machine learning methods to cryptocurrency
market prediction.

Research Question 3 What is the performance of machine learning models for
generating statistical arbitrage in the cryptocurrency market?

In shifting the focus from a new object of transaction in financial markets towards
a change in the socio-economic environment of financial markets, the next research
question addresses the impact of the COVID-19 pandemic on the pricing of stocks.
As the pandemic has ample effects on businesses (Padhan and Prabheesh, 2021) and
investor sentiment (Zhang et al., 2020), new pandemic-related risk factors or anoma-
lies might have emerged in the stock market. As there is limited evidence regarding
such new factors’ nature, machine learning may again be well suited to examine
potential factors due to their flexibility. Thus, Research Question 4 addresses the
existence of potentially new pandemic-related stock market predictive signals.

Research Question 4 What is the predictive power of machine learning models
predicting S&P 500 stock price movements during the COVID-19 pandemic?

Another development regarding pivotal market elements of financial markets,
namely market structure and agent behavior, is the global shift from active towards
passive investment (Fichtner et al., 2017). As the information collection and evalu-
ation conducted by active investors keeps market prices connected to fundamental
values (Pedersen, 2018), this shift may have considerable implications for the devi-
ation of market prices from fundamental values - fundamental price efficiency. In
addition to shifts between different types of investments, individual investment styles
are also evolving. In line with the findings that machine learning models can im-
prove financial market forecasts (Fischer and Krauss, 2018; Rasekhschaffe and Jones,
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2019; Gu et al., 2020), a large part of professional active investors have started ma-
chine learning models for trading and portfolio management (BarclayHedge, 2018;
Petropoulos et al., 2022). In light of this development, it is important to also evalu-
ate the impact of differences in the accuracy of active investors’s market forecasts on
fundamental market efficiency. Therefore, Research Question 5 addresses the shift
from active to passive investment and aims to shed light on its effect on fundamen-
tal price efficiency, while Research Question 6 refers to the implications of varying
accuracy levels of active investors’ market predictions.

Research Question 5 How do different levels of active and passive investment af-
fect fundamental price efficiency?

Research Question 6 How do different degrees of accuracy of active investors’
market forecasts affect fundamental market efficiency?

1.3 Thesis Structure
The structure of this thesis is illustrated in Figure 1.1. After this introduction,

Chapter 2 examines the application of machine learning models for the market pre-
diction of Bitcoin and other cryptocurrencies. Concretely, Chapter 2.1 provides a
structured literature overview of studies and existing gaps in the research field of
Bitcoin pricing. Chapter 2.2 incorporates these findings and presents a compre-
hensive study on short-term Bitcoin market prediction via various state-of-the-art
machine learning methods, including a thorough model-agnostic feature importance
analysis. Chapter 2.3 analyzes the potential of using advanced machine learning
models specialized in time-series forecasting to generate statistical arbitrage in the
cryptocurrency market.

After examining the pricing process of the new transaction objects in financial
markets, Chapter 3 sheds light on the pricing of traditional assets in an altered socio-
economic environment. It applies various machine learning models to analyze the
predictability of daily stock price movements in the S&P 500 during the COVID-
19 pandemic by utilizing a feature set comprising COVID-19-related features and
traditional risk factors.

Chapter 4 studies the implications of a major trend regarding agent behavior and
market structure in financial markets. It investigates the implications of the shift



Thesis Structure 7

Chapter 1: Introduction

Machine Learning for Financial Market Prediction –

Engineering Data-Driven Approaches for Major Developments

Chapter 2: Novel Object of Transaction: Bitcoin and Other Cryptocurrencies

2.1: Machine Learning for Bitcoin 

Pricing –

A Structured Literature Review  

2.2: Short-Term Bitcoin Market 

Prediction via Machine Learning

2.3: Machine Learning for 

Cryptocurrency Market Prediction 

and Trading

Chapter 3: Changed Socio-Economic and Legal Environment: COVID-19 Pandemic

3.1: Financial Market Prediction During the COVID-19 Pandemic Using Machine Learning

Chapter 4: Changed Agent Behavior and Market Structure: The Shift from Active Towards Passive Investment

4.1: The Impact of Active and Passive Investment on Fundamental Market Efficiency: A Simulation Study

Chapter 5: Finale

1 2 3

4

65

Figure 1.1.: Structure of this thesis. Circles map Research Questions 1 to 6 to Chapters 2
to 4.

from active to passive investment for fundamental price efficiency. The chapter in-
troduces a simulated financial market in which active, passive, and random investors
repeatedly issue orders to trade stocks. It thoroughly analyzes the impact of dif-
ferent investor compositions and other key market parameters on fundamental price
efficiency.

Finally, Chapter 5 concludes this thesis by summarizing the contributions and
discussing avenues for future research.

Chapters 2 to 4 are based on or contain published articles or working papers. I
clearly indicate this at the beginning of the respective chapter in every case. I refer
to the authors as "we" throughout these chapters because I collaborated with other
researchers for these articles.





CHAPTER 2

NOVEL OBJECT OF TRANSACTION: BITCOIN AND
OTHER CRYPTOCURRENCIES

2.1 Machine Learning for Bitcoin Pricing – A Struc-

tured Literature Review
This chapter sheds light on market prediction via machine learning regarding the

novel transaction object Bitcoin and cryptocurrency. To provide an adequate un-
derstanding of the application of machine learning to Bitcoin market prediction and
provide a foundation for the other studies of Chapter 2, the following section includes
a structured literature review on the research field. The literature review analyses
the existing body of literature and structures it according to four different concepts.
It derives guidelines for future publications in the field to ensure a sufficient level of
transparency and reproducibility. Furthermore, the review shows that research on
Bitcoin market prediction via machine learning is highly diverse and that the results
of several studies can only be compared to a limited extent.

This section, in large parts, comprises the published article: P. Jaquart, D. Dann,
C. Martin, Machine Learning for Bitcoin Pricing — A Structured Literature Review,
Proceedings of 15th International Conference on Business Information Systems En-
gineering, pages 174-188, 2020.

2.1.1 Introduction

Bitcoin is a digital peer-to-peer cash system introduced by Nakamoto in 2008
(Nakamoto, 2008). Its underlying technology blockchain is referred to as “trust ma-
chine” (The Economist, 2015) due to its three central properties: secure transfer of

9
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information through a cryptographic protocol, a distributed database, and a decen-
tralized consensus mechanism (Beck et al., 2017). Benefiting from the stated inno-
vative properties (cf., traditional currencies and payment systems), Bitcoin quickly
gained relevance in academic literature as well as for the global financial system
(Böhme et al., 2015). As of November 2019, Bitcoin has a market capitalization of
over 155 billion USD, which corresponds to more than 66 of the whole cryptocurrency
market (Coinmarketcap, 2020).

Researchers are investigating a variety of topics in connection with Bitcoin mar-
kets, for instance asset type, asset pricing, hedging, and market efficiency. Within
the research branch of Bitcoin pricing, there are several different smaller streams
of research. Some researchers (Bolt and Van Oordt, 2020; Pagnotta and Buraschi,
2018; Biais et al., 2020; Schilling and Uhlig, 2019) work on creating and validating
theoretical economic models, while other researchers concentrate on empirical asset
pricing. In this work, we analyze and structure the body of literature on empirical
Bitcoin pricing via machine learning. Thereby, we use the term “bitcoin pricing” for
the forecasting of target values based on the Bitcoin price (e.g., price, absolute price
change, or return). For empirical Bitcoin pricing, market predictive features might
consist of priced risk factors (which might be identified through reviewing theoreti-
cal economic models (Bolt and Van Oordt, 2020; Pagnotta and Buraschi, 2018; Biais
et al., 2020; Schilling and Uhlig, 2019)) or other factors based on possible market
inefficiencies. Empirical Bitcoin pricing is of explicit economic relevance, as accurate
prediction models enable the employment of profitable trading strategies. Advances
in computing technology, open-source implementation tools, and a skyrocketed Bit-
coin price, boosted the scientific community’s interest in the employment of machine
learning methods for Bitcoin pricing. Searching google scholar for the terms “bitcoin”
and “machine learning” yields over 8200 results.

Due to the novelty of the Bitcoin technology, the research on predictive features
for the Bitcoin price is still in its early stages, and findings of several researchers
indicate that Bitcoin might represent a new asset class (Glaser et al., 2014; Dyhrberg,
2016; Burniske and White, 2017). Therefore, classical market predictive signals
from other asset classes (e.g., stocks (Green et al., 2012)) are only partly applicable
to Bitcoin pricing. Most machine learning approaches demonstrate the ability to
flexibly incorporate a large number of features (e.g., (Cybenko, 1989; Hornik et al.,
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1989; Hammer, 2000; Cortes and Vapnik, 1995; Breiman, 2001)). Together with
the availability of large amounts of multidimensional data, this flexibility might
render machine learning methods suitable for Bitcoin pricing. This flexibility is
especially important, since the stream of research on Bitcoin pricing is still young
and there exists limited guidance in the scientific literature about the nature of the
Bitcoin price formation process. For the course of this work, we adopt the definition
of machine learning from Gu et al. (2020), who apply machine learning to predict
excess returns of stocks. They use the term machine learning “to describe (i) a diverse
collection of high-dimensional models for statistical prediction, combined with (ii)
so-called ‘regularization’ methods for model selection and mitigation of overfitting,
and (iii) efficient algorithms for searching among a vast number of potential model
specification” (Dyhrberg, 2016, pp. 2f). From the wide range of definitions, the
chosen one stands out due to its broad scope, which allows us to consider a large
variety of approaches (e.g., linear models). Since the spectrum of employed machine
learning methods and models used is rather broad, analyzing and comparing the
different approaches remains a challenging task.

Against this backdrop, we argue it is time to take a step back and evaluate the
current status quo. With our literature review, we provide an overview of current
research on Bitcoin pricing via machine learning. In so, we identify common methods,
types of analysis, and findings. To our best knowledge, there is no comprehensive
overview examining the diverse branch of research in the context of machine learning
for Bitcoin pricing. Therefore, we seize the opportunity to take this step back, assess
the current state of research in this field, and outline potentials for future research.

Doing so, our contribution is threefold. First, we provide researchers in this field an
overview of already existing work, identify recurring patterns and remaining niches
to be occupied. Second, we identify which methods appear promising for the Bitcoin
pricing problem based on the evaluated body of literature. Third, we develop report-
ing guidelines for future research to enhance transparency and accelerate scientific
progress.
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The remainder of this work is structured as follows. Section 2 introduces the
employed methodology for our structured literature review and provides summary
statistics. In Section 3, we analyze the existing body of literature. Section 4 discusses
prevalent shortcomings, theoretical and practical implications, and paves the way for
future research. Eventually, Section 5 concludes this work.

2.1.2 Methodology

Our literature search follows the suggestions by Webster and Watson (2002) and
Vom Brocke et al. (2009). We build our initial literature base by querying a broad
set of interdisciplinary research databases (i.e., ACM Digital Library, AIS eLibrary,
Business Source Premier, emerald insight, IEEE, ProQuest, SAGE Journals, Sci-
enceDirect/Scopus, Taylor & Francis Online, Web of Science). We query those
databases for matching our search term in title, abstract, or keywords (Vom Brocke
et al., 2009). We adopt the machine learning definition by Gu et al. (2020), which
is rather broad as it also includes linear models (e.g., linear regressions). By April
2019, this yields an initial set of 101 publications for further review. Analyzing each
publication’s title and abstract, we exclude 76 papers, which do not explicitly match
the scope of our literature review. This may be due to (i) papers, employing meth-
ods not matching the machine learning definition of Gu et al. (2020), (ii) papers not
focusing on the prediction of Bitcoin price/return (e.g., volatility), (iii) papers not
being available in English, or (iv) papers not employing a prediction task (e.g., not
using a time lag between predictive variables and target). Subsequent forward and
backward search with the remaining relevant papers yields additional eight articles
resulting in a total of 33 papers for in-depth review. Table 2.1 documents the number
of identified articles for each database.

Next, we derive key concepts for paper categorization. Therefore, we initially
screened a set of 10 papers consisting of the most recent peer-reviewed conference
proceedings and journal papers, as we assumed that recent papers incorporate find-
ings of previous works. Three researchers independently reviewed each of these
papers and developed an initial set of concepts for classification. Throughout the
entire paper screening process, we evaluated these initial concepts and adapted them
as required. Subsequent discussion and synthesis of all identified concepts led to a
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Table 2.1.: Machine learning on Bitcoin pricing research corpus
Data Base #Paper

ACM Digital Library 3
AIS eLibrary 1
Business Source Premier 2
emerald insight 0
IEEE 10
ProQuest 0
SAGE Journals 0
ScienceDirect/Scopus 8
Taylor & Francis Online 0
Web of Science 1
Forward / Backward Search 8
Total 33

final set of four distinct concepts:

- Method (i.e., multilayer perceptrons, recurrent neural networks, regression-
based models, support vector machines, tree-based models)

- Features (i.e., technical, blockchain-based, sentiment- and interest-based, asset-
based)

- Prediction Interval (i.e., second, minute, hour, day, week)

- Prediction Type (i.e., classification, regression)

The subsequent paper classification process to one or more of the identified con-
cepts followed a similar process — the classification was initially conducted inde-
pendently and discrepancies were discussed afterward. The categorization guidelines
for each researcher allowed a non-exclusive categorization (i.e., each article can be
assigned to multiple categories). Table 2.2 summarizes all reviewed papers and spec-
ifies the assigned concepts. All reviewed papers have been published within the last
5 years: 2019 (5), 2018 (17), 2017 (2), 2016 (4), 2015 (4), and 2014 (1).
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2.1.3 Machine Learning and Bitcoin in Research

Bitcoin, representing the most popular crypto asset (Coinmarketcap, 2020), has re-
ceived a considerable amount of research attention since its inception in 2009. We
use four different concepts to analyze and structure the literature, namely predictive
features, type of prediction problem, prediction intervals, and machine learning meth-
ods. These identified concepts are rather broad and are applicable to a multitude
of prediction tasks. However, some of the concept characteristics (e.g., blockchain-
based features) are specific to the Bitcoin pricing problem. Since the models analyze
different time horizons, have different parameter specifications, and are evaluated
using different evaluation metrics, it remains infeasible to compare them across dif-
ferent papers. Yet, comparing different machine learning models within the same
paper remains possible, since they, among other aspects, use the same data. How-
ever, even the comparison of models within the same paper remains only valid under
the assumptions that (i) all models are equally optimal tuned, and (ii) the selected
time window is representative of Bitcoin’s price formation process. Table 2.2 provides
an overview of the analysis of the different papers and concepts.

2.1.3.1 Machine Learning Methods

The analyzed body of literature leverages a multiplicity of different machine learning
methods. We group the literature into five categories based on the introduced models.
We differentiate multilayer perceptrons, recurrent neural networks, regression-based
models, support vector machines, and tree-based models.

Multilayer perceptrons represent a type of feedforward neural network and consist
of one input layer, one or more hidden layers, and one output layer (Cybenko, 1989;
Hornik et al., 1989). In feedforward networks, information only flows into one direc-
tion. multilayer perceptrons with a non-linear and differentiable activation function
can approximate any non-linear function, rendering them universal approximators
(Hornik, 1991). Eight of the reviewed papers use multilayer perceptrons.

Recurrent neural networks drop the requirement for acyclic graphs from multilayer
perceptrons, allowing for arbitrary feedback connections of the network (Rumelhart
et al., 1988). Hammer (2000) shows that recurrent neural networks with a sufficient
number of hidden nodes and non-linear activation function also satisfy the require-
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ments of a universal approximator. Ten papers use recurrent neural networks, and
they remain the best reported model in all papers that use benchmarked scenarios.

Regression-based models refer to models based on linear regressions (e.g., logistic
regressions, lasso regressions, and vector autoregressions). Sixteen papers employ
regression-based models, which often serve as a reference point for more sophisticated
machine learning methods.

The underlying idea of support vector machines consists of minimizing generaliza-
tion error through constructing a (set of) hyperplane(s) in a high-dimensional space
(Cortes and Vapnik, 1995; Vapnik, 1995; Drucker et al., 1997). Six of the reviewed
publications employ support vector machines.

Last, seven papers employ tree-based models. In these models, the outcomes are
cuboid regions with axis-aligned edges (Breiman et al., 1984). A frequently used
implementation of the methodology is the random forest, which constitutes an en-
semble of imperfectly correlated trees to reduce the variance of forecasts (Breiman,
2001).

Eleven papers employ methods that are part of none of the five major categories
(e.g., fuzzy-systems (Atsalakis and Valavanis, 2009)).

2.1.3.2 Market-predictive Features

Literature on Bitcoin pricing via machine learning uses a multiplicity of market
predictive signals. While, for instance, technical features (e.g., historical returns)
are used in the literature on pricing traditional financial assets (Jegadeesh, 1990;
Jegadeesh and Titman, 1993), blockchain-based features (e.g., mining difficulty) are
specifically related to cryptocurrencies — in particular Bitcoin. Unlike stocks, bonds
or other financial assets, Bitcoins exhibit no fundamental value in a typical sense as
they do not promise future cash flows, are not backed by a central bank, and cannot
be utilized physically. Due to these different characteristics of Bitcoin, it is not
possible to use the same feature categorizations as for other financial assets. Based
on the reviewed literature, we categorize market predictive features into technical,
blockchain-based, sentiment- and interest-based, and asset-based.

Technical features include past data of the Bitcoin market, for instance, historical
prices or trading volumes. Technical features are the most frequently used features
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in the reviewed literature (27 models).
Blockchain-based features refer to data from the Bitcoin blockchain, for instance,

mining difficulty or the number of transactions per block. Nine papers use blockchain-
based features.

Sentiment- and interest-based features relate to social media sentiment and inter-
net search volume, for instance, twitter sentiment or google trends data. Ten papers
employ this type of feature.

Asset-based features relate to prices and returns of commodities and financial assets
other than Bitcoin, for instance, oil or stock market prices. Asset-based features are
used in nine papers.

Features not covered by one of the presented categories are categorized as other
features. Among these, Demir et al. (2018) use economic policy uncertainty, Aysan
et al. (2019) use geopolitical risks, Hotz-Behofsits et al. (2018) use GPU prices from
Amazon’s bestseller lists. Phaladisailoed and Numnonda (2018), as well as Mal-
lqui and Fernandes (2019), use timestamps. Demir et al. (2018) and Aysan et al.
(2019) conclude that Bitcoin may serve as a hedge against policy uncertainty and
geopolitical risks, respectively.

2.1.3.3 Prediction Interval

The authors in the reviewed literature use different prediction intervals to price
Bitcoin. The term “prediction interval” thereby denotes the frequency at which a
model makes new predictions. The prediction intervals in the reviewed literature
range from 5 seconds up to 1 week. Based on the prediction intervals, we group the
models into five categories — second, minute, hour, day, and week.

Second includes models with prediction intervals of less than a minute (3 papers),
minute between a minute and less than an hour (5 papers), hour between 1 hour
and less than a day (3 papers), day between 1 day and less than 1 week (26 papers),
and week includes models with prediction intervals of 1 week or longer (1 paper).
Smuts Smuts (2019) tests multiple models with prediction intervals ranging from 1
hour to 1 week and finds that the model with the highest prediction accuracy for
Bitcoin prices has a prediction accuracy of 1 week. Madan et al. (2015) directly
compare prediction intervals of 10 seconds and 10 minutes and find a slightly higher
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prediction accuracy for the prediction interval of 10 minutes.

2.1.3.4 Prediction Types

There are several options to set up the prediction problem for Bitcoin pricing. First,
we distinguish between prediction problems formulated as a regression or classifi-
cation problem. Bitcoin prices and returns are numerical and continuous variables.
Hence, it is possible to formulate a regression model, which tries to predict the exact
values of these target variables. However, one can reduce the regression problem
into a classification problem by creating classes based on the target variable. In this
case, the prediction model attempts to predict class affiliations based. Second, we
distinguish the literature based on whether absolute Bitcoin price levels or relative
price changes are predicted. Traditional financial literature on other financial assets
(e.g., on stocks (Green et al., 2012)) usually analyzes relative price changes.

The reviewed literature formulates the Bitcoin pricing problem 14 times as a clas-
sification problem in and 21 times as a regression problem. Some scholars create
multiple models and set up the prediction problem as both a classification problem
and a regression problem (Mallqui and Fernandes, 2019; Greaves and Au, 2015).
For classification problems, nine of 14 cases formulate it as a binary classification
problem, predicting the sign (i.e., positive or negative) of the Bitcoin price change.
In contrast, three papers split the Bitcoin price change into three classes (i.e., posi-
tive, neutral, negative). Beyond that, Nakano et al. (2018) create four target classes
based on the price change quantiles, and Huang et al. (2019) create 21 classes based
on different Bitcoin return intervals. All papers that use classification models create
target classes based on relative price changes, while 17 of the 21 papers that use
regression models predict absolute Bitcoin price levels and only four of these papers
predict relative price changes.



18 Novel Object of Transaction: Bitcoin and Other Cryptocurrencies

2.1.4 Discussion

Overall, the research on Bitcoin pricing via machine learning is not at a mature state
yet. This may be due to the novelty of the protocol itself (Nakamoto, 2008), and that
machine learning techniques require a substantial amount of data to learn relation-
ships between features and target variables. An explicit limitation of the reviewed
work is that none of the papers is published in a top-rated finance or information
systems journal (VHV, 2019). Furthermore, a considerable amount of available lit-
erature barely meets academic standards in terms of transparent documentation of
applied method and results. This includes, for instance, studies reporting unlikely R2

values for four different methods within the range of .991 and .992 (Phaladisailoed
and Numnonda, 2018). An R2 of this magnitude is fairly unusual compared to the
rest of the reviewed literature and might indicate setup problems (e.g., the use of
unlagged features or a high similarity between features and target). In so, further
shortcomings in the documentation render it impossible to reproduce and verify the
empirical analyses at all. These include, not explicitly reporting the analyzed time
range (Atsalakis et al., 2019; Rahman et al., 2019), data split (Wu et al., 2019),
or machine learning setup (e.g., layer structure, activation function, loss function,
learning function) (Khaldi et al., 2018; Lahmiri and Bekiros, 2019; Karakoyun and
Cibikdiken, 2018). Furthermore, inconsistencies in the reporting prohibit reproduc-
ing the empirical tests. These inconsistencies can stem from reporting to optimize
the number of units in a hidden layer of a multilayer perceptron within a specific
range and using a number outside of that range in the final model (Almeida et al.,
2015) or setting up a regression problem, but using the accuracy metric for model
evaluation without further explanation (Pant et al., 2018).

Throughout the literature, the machine learning models are built and evaluated
on rather short time periods and small data samples. A choice of longer prediction
intervals, (e.g., weekly intervals (Smuts, 2019)) in combination with advanced ma-
chine learning models and a large number of features might result in an insufficient
number of data points in the sample (Arnott et al., 2019). Furthermore, test splits
of 3% or less, corresponding to 60 observations or less, limit the generalizability of
the reported results (Atsalakis et al., 2019; Karakoyun and Cibikdiken, 2018).
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2.1.4.1 Theoretical Implications

Researchers apply a wide variety of methods and underlying architectures with
alternating success, such as artificial neural networks, recurrent neural networks,
regressions-based models, tree-based methods, and support vector machines. Their
main objectives are accurately predicting the Bitcoin price (absolute or relative) us-
ing classification and regression approaches. The models embody a broad spectrum
of features, which relate to technical, blockchain-based, sentiment- and interest-based,
and assets-based aspects. Most researchers use technical features for their models.
Only few authors (Poyser, 2019; Ciaian et al., 2016; Georgoula et al., 2015) use fea-
tures from all four categories. Since 2017, scholars begin to consider features beyond
these main categories (e.g., economic policy uncertainty (Demir et al., 2018)).

Researchers formulate regression and classification problems equally often until
the end of 2017, while from 2018 onwards there is a slight shift towards a higher
share of regression problems. Consequently, researchers in the field mostly (i.e.,
60%) utilize regression-based methods in total.

The majority (i.e., 79%) of models are set up with daily prediction intervals. The
relative share of these daily models further increased after 2017. However, varying
time horizons and model specifications limited the comparability of methods across
different papers. Importantly, this resonates with limited options to validate any
trading strategies applied. To ensure a certain level of comparability (e.g., uniform
time horizons), we focus on comparisons of different methods within the same paper.
Nevertheless, as they are based on several assumptions (e.g., representative time
windows and equally optimal tuning states of different models), these comparisons
are limited. None of the authors have published their machine learning model,
which would allow future researchers to train the model on new data and compare
the performance to other methods. Additionally, there are no widely established
guidelines or best practices in this research stream for reporting machine learning
models.

Given these limitations, we find that recurrent neural networks, and in particular
long-short term memory neural networks, perform well in the Bitcoin pricing prob-
lem compared to other methods (Phaladisailoed and Numnonda, 2018; Mallqui and
Fernandes, 2019; Wu et al., 2019; Khaldi et al., 2018; Lahmiri and Bekiros, 2019;
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Karakoyun and Cibikdiken, 2018; McNally et al., 2018). Interestingly, even though
long short-term memory neural networks were published in 1997 already (Hochreiter
and Schmidhuber, 1997), the first paper (McNally et al., 2018) taking these into
account is from 2018.

2.1.4.2 Practical Implications

Based on the finding that complex network architectures such as recurrent neural
networks yield promising results (Phaladisailoed and Numnonda, 2018; Mallqui and
Fernandes, 2019; Wu et al., 2019; Khaldi et al., 2018; Lahmiri and Bekiros, 2019;
Karakoyun and Cibikdiken, 2018; McNally et al., 2018), future research should eval-
uate further sophisticated network architectures for this particular problem. This
may include assessing the effectiveness of ordinary convolutional neural networks Le-
Cun et al. (1995), as well as dilated convolutional neural networks (Yu and Koltun,
2016). The latter has proven to provide promising results in forecasting S&P 500
stock market index already (Borovykh et al., 2018). However, more sophisticated
models require more data (Arnott et al., 2019), which might be achieved, for instance,
by considering shorter prediction intervals.

Beyond identifying appropriate modeling architecture, the process of model re-
porting demands for refinement and harmonization. Contrasting research from
(bio)medical research (Luo et al., 2016) or psychology (Wilkinson, 1999), the an-
alyzed research follows no established guidelines for uniformly reporting machine
learning results. We recommend the following reporting standards for future re-
search in the field of Bitcoin pricing via machine learning and machine learning
projects in general. First, we propose that researchers are required to either publish
their model and data to an open research repository (e.g., CORE CORE (2019),
Open Research Library ANU Repository (2019)) reveal or to document the entire
model configuration (i.e., hyperparameters) and data collection process in a struc-
tured manner. This may include a distinct table providing information about the
number of a multilayer perceptron’s hidden layers, number of units per layer, activa-
tion/loss functions, or optimizers. Second, we propose that researchers who publish
new modeling approaches benchmark their models against other existing models
from the field on their utilized dataset. Currently, there is no established bench-
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marking dataset. However, researchers commonly use benchmarking datasets (e.g.,
MNIST for handwritten digits) in other machine learning fields. Overall, the guide-
lines were developed due to shortcomings in the existing Bitcoin pricing literature
and are therefore of particular importance in this specific field. However, they apply
to empirical machine learning studies of various domains.

2.1.4.3 Limitations

There are three main limitations of the presented analysis. First, machine learning
and Bitcoin pricing are two fast-evolving research disciplines. Therefore, our work
reflects a quick blink in time of the literature in this field, and future analysis may
yield different results. Moreover, the scope of our literature search is limited, as
there exists no unique and widespread acceptance of the term “machine learning.”
Additionally, this review suffers from the low quality (insufficient documentation
and data samples) from part of the Bitcoin pricing literature. Furthermore, we may
speculate about the existence of more accurate machine learning models, which are
exploited monetarily rather than contributed to the scientific body of literature.

2.1.4.4 Future Research

We encourage future researchers in the field to evaluate advanced machine learning
models (e.g., dilated convolutional neural networks (Yu and Koltun, 2016)) for time
series forecasting, which are not considered by contemporary research in this field.
Furthermore, researchers should shed light on aspects of Bitcoin pricing that have not
been sufficiently addressed in the existing literature (e.g., short-term Bitcoin market
prediction with prediction horizons of less than a day and feature importance analysis
on models utilizing a comprehensive feature set). Theoretical economic models for
Bitcoin prices (Bolt and Van Oordt, 2020; Pagnotta and Buraschi, 2018; Biais et al.,
2020; Schilling and Uhlig, 2019) might help to guide the search for further predictive
features. To enable and accelerate scientific progress in the field, we propose that
future researchers report all model configurations in a structured way and benchmark
new models against other reported models.
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2.1.5 Conclusion

Bitcoin has received a considerable amount of interest from researchers and investors
since its inception in 2008. The research on Bitcoin pricing via machine learning
constitutes a relevant and emerging topic. We review the existing body of literature
of this research branch based on the guidelines of Webster and Watson (2002) and
Vom Brocke et al. (2009). We structure and analyze the body of literature according
to four different concepts, namely method, feature, prediction interval, and prediction
type. A comparison of methods within the same paper indicates that recurrent
neural networks might be well suited for the prediction problem. Most researchers
use features from four categories, namely technical, blockchain-based, sentiment- and
interest-based, and asset-based. Across the reviewed literature, we find a lack of
transparency and comparability, limiting options to validate and reproduce model
results and eventually applied trading strategies.

Based on these issues we propose that future researchers reveal their data collection
process and all relevant model configurations in a structured way or benchmark their
model against other published models.
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Table 2.2.: Literature overview. Best method marked with bold cross (based on accuracy
or lowest error). For papers using classification and regression: A: best method
for the classification problem, B: best method for the regression problem. For
papers in which an ensemble consisting of multiple methods achieves the best
results: C: methods applied
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Table 2.2.: Literature overview. Best method marked with bold cross (based on accuracy
or lowest error). For papers using classification and regression: A: best method
for the classification problem, B: best method for the regression problem. For
papers in which an ensemble consisting of multiple methods achieves the best
results: C: methods applied
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Table 2.2.: Literature overview. Best method marked with bold cross (based on accuracy
or lowest error). For papers using classification and regression: A: best method
for the classification problem, B: best method for the regression problem. For
papers in which an ensemble consisting of multiple methods achieves the best
results: C: methods applied
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2.2 Short-Term Bitcoin Market Prediction via Ma-

chine Learning
With a general understanding of the current state of research in the field of Bitcoin

market prediction, this section addresses some of the previously identified research
gaps by shedding light on the short-term predictability of the Bitcoin market. In the
following study, various machine learning architectures are optimized and trained
to predict short-term movements of the Bitcoin market, utilizing a comprehensive
feature set consisting of technical, blockchain-based, sentiment-/interest-based, and
asset-based features. The presented results show that recurrent neural networks and
tree-based ensembles are especially well-suited for the examined prediction tasks.
A feature importance analysis reveals that technical features constitute the most
important feature type. An employed quantile-based long-short trading strategy
based on the prediction generates monthly returns of up to 39% before transaction
costs but does not compensate for incurred transaction costs due to the particularly
short holding periods.

This section, in large parts, comprises the published articles:

• P. Jaquart, D. Dann, C. Weinhardt, Short-Term Bitcoin Market Prediction via
Machine Learning, The Journal of Finance and Data Science 7, pages 45-66,
2021.

• P. Jaquart, D. Dann, C. Weinhardt, Using Machine Learning to Predict
Short-Term Movements of the Bitcoin Market, 2020 International Workshop
on Enterprise Applications, Markets and Services in the Finance Industry
(FinanceCom 2020), pages 21-40, 2020.

2.2.1 Introduction

Bitcoin is a digital currency, introduced in 2008 by Nakamoto (2008). It is enabled by
the blockchain technology and allows for peer-to-peer transactions secured by cryp-
tography (Beck et al., 2017). In this study, we analyze the short-term predictability
of the Bitcoin market. Therefore, we utilize a variety of machine learning methods
and consider a comprehensive set of potential market-predictive features.
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Empirical asset pricing is a major branch of financial research. Machine learn-
ing methods have been applied increasingly within this domain, due to the ability
to flexibly select amongst a potentially large number of features and to learn com-
plex, high-dimensional relationships between features and target (Gu et al., 2020).
Although a considerable body of research has examined the pricing of equities and
bonds, yielding in a substantial number of potentially market-predictive factors (Feng
et al., 2020), less attention has been paid to the novel stream of cryptocurrency pric-
ing. In particular, the short-term predictability of the Bitcoin market has not yet
been analyzed comprehensively. Furthermore, most studies have solely considered
technical features and have not analyzed the feature importance of the employed
machine learning models (Jaquart et al., 2020a). Against this backdrop, we tackle
this research gap by comparatively analyzing different machine learning models for
predicting market movements of the most relevant cryptocurrency—Bitcoin. With
a market capitalization of around 170 billion USD (September 2020), Bitcoin rep-
resents about 58% of the cryptocurrency market (Coinmarketcap, 2020). In this
context, our overarching research questions are:

Research Question 1 What is the predictive power of machine learning models
predicting short-term movements of the Bitcoin market?

Research Question 2 What are the most relevant features for predicting short-
term movements of the Bitcoin market using different machine learning models?

We answer these research questions by comparing six well-established machine
learning models trained on nine months of minutely Bitcoin-related data against
each other and performing a permutation feature importance analysis. The results
show that the trained models indeed significantly outperform random classification.
Our study provides two main contributions. First, we contribute to the literature
by systematically comparing the predictive capability of different prediction models
(e.g., recurrent neural networks, gradient boosting classifiers), feature sets (e.g., tech-
nical, blockchain-based), and prediction horizons (1-60 minutes). Thereby, our study
establishes a thorough benchmark for the predictive accuracy of short-term Bitcoin
market prediction models. The general picture emerging from the analysis is that
recurrent neural networks and gradient boosting classifiers appear well-suited for this
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prediction problem and technical features remain most-relevant. Also, an interesting
side finding is that, for longer prediction horizons, prediction accuracy tends to in-
crease and less recent features appear to be of particular importance. Second, despite
the models’ ability to create viable Bitcoin market predictions, our results do not
violate the efficient market hypothesis, as the employed quantile-based long-short
strategy yields returns that are not able to compensate for associated transaction
costs.

2.2.2 Related Work

Financial market prediction is a prominent branch of financial research and has
been studied extensively (Jaquart et al., 2020a). There is mixed evidence regarding
the predictability and efficiency of financial markets (Fama, 1970; Lo, 2004). An
established approach to analyze return-predictive signals is to conduct regression
analysis on possible signals to explain asset returns (Fama and MacBeth, 1973; Fama
and French, 2007). However, linear regressions are not able to flexibly incorporate
a large number of features and impose strong assumptions on the functional form
of how signals indicate market movements. In contrast, machine learning methods,
which often do not impose those restrictions, have been increasingly applied for
financial market prediction (Fischer and Krauss, 2018; Gu et al., 2020). Among
those, neural network-based methods may be expected to be particularly well-suited,
as they are already described to be the predominant method for predicting the
dynamics of financial markets (Krollner et al., 2010).

2.2.2.1 Market Efficiency and Financial Market Prediction

Theory on Market Efficiency

Within efficient financial markets, prices reflect all available information and are not
predictable in order to earn abnormal returns. To determine the degree of efficiency
of a market, Fama (1970) defines a formal three-level framework—weak, semi-strong,
and strong form market efficiency. In weak form efficient markets, prices reflect all
information about past prices, whereby in semi-strong form efficient markets, prices
reflect all publicly available information. In strong form efficient markets, prices ad-
ditionally reflect all private information. While regulators aim to prevent investors
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from profiting from private information, it is generally agreed upon that major fi-
nancial markets are semi-strong form efficient (Fama, 1997). On the other hand,
Grossman and Stiglitz (1980) argue that market efficiency may not constitute a con-
stant state of equilibrium over time. If information is costly and prices consistently
reflect all available information, informed traders will stop to acquire information,
which leads market prices to deviate from fundamental asset values. Besides, there
is evidence in the scientific financial literature for a large number of potential mar-
ket anomalies. Green et al. (2012), for instance, identify more than 330 different
empirically-found return-predictive signals for the US stock market that have been
published between 1970 and 2010. Similarly, Lo (2004) formulates the adaptive mar-
kets hypothesis, according to which markets may be temporarily inefficient. Thereby,
the duration of the temporal inefficiency is influenced by the degree of competition
within a market and limits to arbitrage (Shleifer and Vishny, 1995). Informed traders
exploit these inefficiencies so that prices reflect all available information again. Sum-
marizing, the question remains open, whether return-predictive signals constitute
market anomalies or represent reasonably-priced risk factors. Also, some of the
most prominent signals have disappeared after publication (Schwert, 2003), which
indicates that part of the published return-predictive signals either have only ex-
isted in the sample period or have been erased due to traders adopting strategies
for exploitation. Green et al. (2012) infer that a unified model of market efficiency
or inefficiency should account for persistent empirically identified return-predictive
signals.

Bitcoin Market Efficiency

Several findings in the financial literature (Glaser et al., 2014; Dyhrberg, 2016; Bur-
niske and White, 2017; Hu et al., 2019) indicate that Bitcoin may constitute a new
asset class. Therefore, findings regarding the weak form efficiency of other financial
markets may not hold for the Bitcoin market. Several researchers examine the de-
gree of market efficiency of the Bitcoin market using different time horizons. First,
Urquhart (2016) investigates the time series of daily Bitcoin prices (August 2010 to
July 2016). He finds that the Bitcoin market is not even weak form efficient. How-
ever, splitting the study period reveals that the Bitcoin market becomes increasingly
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efficient over time. Revisiting this data, Nadarajah and Chu (2017) find that a power
transformation of the used Bitcoin returns satisfies the weak form efficient market
hypothesis. Similarly, Bariviera (2017) examines daily Bitcoin prices (August 2011 to
February 2017), using the Hurst exponent (Hurst, 1951) and shows that the Bitcoin
market is not weak form efficient before 2014, but becomes weak form efficient after
2014. Vidal-Tomás and Ibañez approach the question of semi-strong form Bitcoin
market efficiency from an event study perspective (Vidal-Tomás and Ibañez, 2018).
With data on news related to monetary policy changes and Bitcoin (September 2011
to December 2017), they show that the Bitcoin market does not react to monetary
policy changes but becomes increasingly efficient concerning Bitcoin-related events.
Testing for the adaptive markets hypothesis, Khuntia and Pattanayak (2018) analyze
daily Bitcoin prices (July 2010 to December 2017), finding evidence for an evolving
degree of weak form market efficiency. They conclude that this finding constitutes
evidence that the adaptive market hypothesis holds for the Bitcoin market.

Summarizing, there is mixed evidence among scholars regarding the efficiency
of the Bitcoin market. However, most researchers find that the Bitcoin market has
become more efficient over the years. An increasing degree of market efficiency seems
intuitive, as the Bitcoin market has proliferated since its inception and, therefore,
has become increasingly competitive.

2.2.2.2 Bitcoin Market Prediction via Machine Learning

Conducting a literature review, Jaquart et al. (2020a) analyze the literature on
Bitcoin market prediction via machine learning published until April 2019. They
examine the body of literature with regards to applied machine learning methods,
return-predictive features, prediction horizons, and prediction types. The reviewed
body of literature utilizes both classification and regression models approximately
equally often, while regression models are used slightly more frequently. Due to
the use of different time horizons, targets and feature variables, parameter specifica-
tions, and evaluation metrics, the comparison of prediction models across different
papers often remains infeasible. On the other hand, comparisons within the same
paper often avoid these shortcomings, and remain especially relevant. Based on
the latter, Jaquart et al. (2020a) outline that especially recurrent neural networks
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yield promising results regarding Bitcoin market predictions (e.g., see Karakoyun
and Cibikdiken (2018); McNally et al. (2018)). Furthermore, they group the uti-
lized return-predictive features into four major categories—technical, blockchain-
based, sentiment-/interest-based, and asset-based features. Technical features de-
scribe features that are related to historical Bitcoin market data (e.g., Bitcoin re-
turns). Blockchain-based features denote features related to the Bitcoin blockchain
(e.g., number of Bitcoin transactions). Sentiment-/interest-based features describe
features that are related to sentiment and internet search volume of Bitcoin (e.g.,
Bitcoin Twitter sentiment). Asset-based features are features that are related to
financial markets other than the Bitcoin market (e.g., gold returns, returns of the
MSCI World index). More recently, Huang et al. (2019) utilize high-dimensional
technical indicators to predict daily Bitcoin returns via tree-based prediction models
(January 2012 to December 2017) and find that technical analysis can be useful in
markets of assets with hard-to-value fundamentals. Chen et al. (2020) utilize vari-
ous machine learning techniques to predict the direction of Bitcoin price movements.
Using data between February 2017 to February 2019, they find that rather simple
methods (e.g, logistic regressions) outperform more complex algorithms (e.g., recur-
rent neural networks). However, the use of a class split based on the directional
price movement is likely to create an imbalanced training set, which may cause bi-
ased results (Kubat et al., 1997). Especially for financial time series, which are
usually rather noisy (Gu et al., 2020), an imbalanced training set may cause clas-
sifiers to generally predict the majority class—regardless of input features. If the
utilized test set has a similar target class imbalance, biased classifiers may achieve
a high prediction accuracy without taking input feature values into account (Baran-
dela et al., 2004). Using blockchain-based features and data from April 2013 to
December 2019, Mudassir et al. (2020) compare feedforward neural networks, sup-
port vector machines and long-short term memory networks to predict Bitcoin price
movements with prediction horizons ranging between 1 and 90 days. They find that
the support vector machine model has the highest accuracy for the shorter predic-
tion horizons, while the long-short term memory network performs best on the long
term horizons. However, they also define target classes based on bi-directional price
movements—potentially creating an imbalanced training set. Dutta et al. (2020)
compare recurrent neural networks and feedforward networks to predict daily Bit-
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coin prices, using daily data from January 2010 to June 2019. They perform feature
selection based on the variance inflation factor and find that recurrent neural net-
works tend to outperform feedforward networks on this task. However, in the chosen
setting, the utilized feedforward networks do not receive similar temporal informa-
tion as the recurrent neural networks and therefore results are expected to be biased
towards a higher performance of the recurrent neural networks. In a first analysis,
Jaquart et al. (2020b) analyze the short-term predictability of the Bitcoin market.
Their results emphasize the potential of recurrent neural networks for predicting
the short-term Bitcoin market. However, questions regarding the robustness of the
results, theoretical foundations and descriptions of the research approach remain
unanswered.

So far, only few researchers (e.g., Dutta et al. (2020); Poyser (2019)) utilize fea-
tures of all established feature categories. Besides, the particular feature importance
across different models has received little academic attention so far. The vast ma-
jority of researchers construct their models using daily prediction horizons and only
few scholars (Madan et al., 2015; Smuts, 2019) benchmark different prediction hori-
zons against each other (Jaquart et al., 2020a). Consequently, the Bitcoin market
dynamics concerning prediction horizons of less than 1 hour are not fully understood
yet.

2.2.3 Methodology

To tackle the previously-outlined research gap, we systematically evaluate different
prediction models, features, and horizons. Thereby, we implement data gathering,
preprocessing, and model building using the Python programming language and the
libraries TensorFlow, scikit-learn, and XGBoost.

2.2.3.1 Data

We use data from Bloomberg, Twitter and Blockchain.com ranging from March 4,
2019 to December 10, 2019. Regarding Bloomberg, our data set includes minutely
price data for Bitcoin, gold, oil and minutely levels for the total return variants of the
indices MSCI World, S&P 500, and VIX. All prices and index levels are denoted in
USD. Furthermore, the data set includes minutely exchange rates relative to the USD
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for the currencies euro (EUR/USD), Chinese yuan (CNY/USD), and Japanese yen
(JPY/USD). Figure 2.1 shows the Bitcoin price development for the examined time
period. From Blockchain.com, the data set includes minutely data for the number
of Bitcoin transactions and growth of the mempool (i.e., storage of not-yet validated
Bitcoin transactions). Last, the data set includes sentiment data of all English
Twitter Tweets in the given period that include the hashtag Bitcoin (“#Bitcoin”,
case-insensitive).
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Figure 2.1.: Bitcoin price development between March 2019 and December 2019

2.2.3.2 Software and Hardware

Python 3.7 is used for all data processing and analysis, utilizing the packages pandas
(McKinney, 2010a) and numpy (van der Walt et al., 2011). We rely on the NLTK
library (Bird et al., 2009) for part of the Tweet preprocessing and use the Google
Natural Language API (Google, 2020) for sentiment analysis. We use the keras
library (Chollet, 2015) on top of the tensorflow backend (Abadi et al., 2016) to
build our feedforward, LSTM, and GRU networks. We build gradient boosting
classifiers with xgboost (Chen and Guestrin, 2016) and random forest as well as
logistic regression models using scikit-learn (Pedregosa et al., 2011). All neural
networks and the gradient boosting classifier utilize the GPU-based Nvidia CUDA
parallel computing platform (GeForce GTX 1080), while the random forest and
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logistic regression models are trained on CPU (Intel Core i7-7700, 3.60GHz).

2.2.3.3 Features

We employ features from all four major feature categories identified by Jaquart et al.
(2020a), as listed in Table 2.3. For all prediction models, we calculate minutely-
updated feature values. Depending on whether the prediction model has a memory
state, we further aggregate these feature values.
For the technical and asset-based features, returns are given by

rat,t−k =
pat
pat−k

− 1, (2.1)

where pat is defined as the price of asset a at time t and k represents the number
of periods over which the return is calculated. We obtain minutely-updated values
for the selected blockchain-based features. Sentiment-/interest-based features are
generated from the collected Tweets. We only keep Tweets that do not contain
pictures or URLs, since the use of textual sentiment analysis is not able to capture
all information contained in multimodal Tweets (Kumar and Garg, 2019). Following
the suggestions of Symeonidis et al. (2018), we apply various preprocessing techniques
to the collected Tweet texts. First, we remove usernames, non-English characters,
and additional whitespace. Second, we replace contractions (e.g., replace “isn’t” with
“is not”). Last, we apply lemmatization to the Tweet texts to replace inflected word
forms with respective word lemmas (e.g., replace “bought” with “buy”). Next, we
make use of the Google Natural Language API (Google, 2020) to generate sentiment
and estimates of strength of emotion for each Tweet. For every minutely instance, we
calculate three different features: First, the number of Bitcoin Tweets published in
last minute as a proxy for the overall interest in Bitcoin. Second, the sum of sentiment
scores of all Tweets published in the previous minute. Third, sum of sentiment scores
of all Tweets published in the previous minute, weighted by the strength of emotion
per Tweet. Features 2 and 3 depend on the sentiment expressed towards Bitcoin but
differ in the applied weighting scheme. While traditional prediction methods fail
more often when predictors are highly correlated, machine learning models appear
well-suited for these cases through the use of various variable selection methods (Gu
et al., 2020).
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Feature Set for Models with Memory Function

For the machine learning models with a memory function (i.e., LSTM and GRU),
we create time series for all features listed in Table 2.3. To facilitate model training,
all feature values are standardized based on the properties of the specific feature in
the training set (Goodfellow et al., 2016).

Following feature standardization, we create time series from the 120 most recent,
minutely feature values. For the employed technical and asset-based features, the
time series consist of the latest 1-minute returns. However, for Bitcoin, we create an
additional time series by also calculating the 1-week Bitcoin returns for each of the
most recent 120 minutes according to Equation 2.1 to give the models information
about the longer-term status of the Bitcoin market. Conclusively, the input for the
memory models consists of 15 different time series, whereby each of the time series
consists of 120 minutely time steps.

Feature Set for Models without Memory Function

The prediction models without memory function (i.e., feedforward networks, ran-
dom forests, gradient boosting classifiers, and logistic regressions), require input
in form of a one-dimensional vector with one observation per feature. Therefore,
we create additional features by aggregating the 120-minute history of the feature
classes to also give the employed no-memory models temporal information about
the feature values. In line with Takeuchi and Lee (2013) and Krauss et al. (2017),
we choose a more granular resolution for the most recent feature history. Specifi-
cally, we choose the following set of intervals, j, to aggregate the feature history:
j ∈ {( 0, 1] , ( 1, 2] , ( 2, 3] , ( 3, 4] , ( 4, 5] , ( 5, 10] , ( 10, 20] , ( 20, 40] , ( 40, 60] , ( 60, 80] ,
( 80, 100] , ( 100, 120]}, whereby these intervals describe the minutes before a predic-
tion is made. For the aggregation process, blockchain-based features, as well as
sentiment-/interest-based features are summed up across the respective intervals.
For the aggregated technical and asset-based features, we calculate multi-period re-
turns over the respective intervals (Equation 2.1). We build these intervals for all
features used for the feature sequences of the memory models, except for the 1-week
Bitcoin return, since this time series naturally exhibits low variation over 120 con-
secutive minutes. As for the memory models, we standardize all features based on
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the feature properties within the training set. Consequently, our feature set for the
prediction models without memory function consists of 14× 12 + 1 = 169 different
features.

Table 2.3.: Overview of the utilized features

Technical

Bitcoin returns

Asset-based

MSCI World returns Crude Oil WTI returns
SP 500 returns EUR/USD returns
VIX returns CNY/USD returns
Gold returns JPY/USD returns

Blockchain-based

Number of Bitcoin
Transactions

Mempool growth

Sentiment-/interest-based

Twitter sentiment Number of tweets
Twitter sentiment
weighted with
strength of emotion

2.2.3.4 Targets

We formulate a binary classification problem for four different prediction horizons.
For every observation, the target class cm is formed based on the return over the
next m minutes, with m ∈ {1, 5, 15, 60}.

We place observations, for which the return over the next m minutes is greater
than or equal to the median m-minute return of all training set observations, in Class
1 and all other observations in Class 0. With regard to Equation 2.1, the target class
at time t, ymt , is given by
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ymt =

1, if rBitcoin
t+m,t ≥ Median(rBitcoin

u+m,u )∀u ∈ {train}

0, otherwise
, (2.2)

where train denotes all time timestamps in the training set.
Creating classes directly from the training set ensures that the prediction models

are trained on equally balanced proportions and are not subject to a bias towards one
specific class. During prediction, a model returns the probability for an observation
to belong to a specific class. The training set median return is 7.5984E-6 for the
1-minute prediction horizon, 2.8491E-5 for the 5 minute prediction horizon, 7.7942E-
5 for the 15 minute prediction horizon and 2.7168E-4 for the 60 minute prediction
horizon.

2.2.3.5 Generation of Training, Validation and Test Sets

We convert all timestamps to Coordinated Universal Time (UTC) and create a data
set for each prediction problem by aggregating features and target variable. Most
Bitcoin trading venues allow for continuous trading of Bitcoin but for the minutely
Bloomberg Bitcoin price series, there is a gap in the time series on weekends, which
we exclude from our analysis. Since the utilized asset-based features are related
to assets that are mainly traded on weekdays, we consider this procedure to be
reasonable. Due to the 7-day Bitcoin return feature, we require 7 days of history
for every observation to calculate the complete feature set. Therefore, our final data
sample spans a time range of 9 months, namely from March 11, 2019 to December 10,
2019. We use the first five-ninths of the data (approximately 5 months) to generate
a training set. The subsequent one-ninth of the data (approximately 1 month) forms
a validation set for hyperparameter tuning, including regularization techniques, such
as early stopping (Finnoff et al., 1993; Prechelt, 2012). The remaining one-third of
data (approximately 3 months) is used to test our models and obtain a representative
out-of-sample prediction accuracy.

2.2.3.6 Prediction Models

With our set of models for Bitcoin market prediction, we benchmark neural networks
with and without memory components, tree-based models, regression models, and
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ensemble models against each other. Apart from the ensemble models, all these mod-
els have already been applied to the domain of Bitcoin market predictions (Jaquart
et al., 2020a). Besides the in the following described models, we make use of a logistic
regression model (LR) as a benchmark. Table 2.4 gives an overview of the evaluated
parameter grid for model tuning. Beyond the approach of Jaquart et al. (2020b), we
train the stochastic prediction models (i.e., neural networks and random forests) on
10 different random seeds to reduce the impact of randomness on the results. We
create the final class probabilities for these models by averaging the predicted class
probabilities per seed over all utilized random seeds.

Table 2.4.: Overview of parameter tuning grid for all models.
* denotes selected parameters based on validation set accuracy

Model Parameter Tuning Grid

GRU Number of memory blocks: {64, 128, 256*, 512}
LSTM Number of memory blocks: {64, 128, 256*, 512}

FNN
Hidden layer structure: {(512), (512-256), (512-256-128),
(512-256-128-64), (512-256-128-64-32)*, (512-256-128-64-32-16)}

LR -
GBC Maximum tree depth: {1*, 2, 6, 10, 15, 20, None}

RF
Minimum fraction of instances per leaf: {1%, 5%, 10%, 20%*,
30%}

Neural Networks

The structure and intended behavior of artificial neural networks is inspired by the
functionality of the human brain. In analogy to the structure of a brain, which
consists of billions of highly interconnected neurons, artificial neural networks consist
of various, highly connected nodes. Every node receives a certain amount of input
from other nodes and, dependent on the received input, each note generates output,
which is then passed to subsequent nodes. Hence, information is passed through the
network of nodes and transformed by every node on its path. Formally, the network
learns to approximate a function f(x), which maps a given input x to a given output
(category) y. All networks employed are trained with a batch size of 5000 and the
established Adam optimizer (Kingma and Ba, 2015) to minimize the binary cross-



Short-Term Bitcoin Market Prediction via Machine Learning 39

entropy loss. To further improve the level of generalization, the networks contain
individual dropout layers (Srivastava et al., 2014) and use the early-stopping method
with a patience value of 10 (Finnoff et al., 1993; Prechelt, 2012).

Feedforward Neural Network

Feedforward neural networks (FNN) are a basic type of neural networks. FNNs
represent a directed acyclic graph in which processed information flows exclusively
in one direction, information is so to say ’fed forward’. FNNs consist of three types
of layers: One input layer, capturing the input information, a variable number of
hidden layers, and one output layer, determining the network’s final classification.
The final classification is dependent on the activation of nodes in preceding layers.
The activation of each node in all layers is determined by a previously-assigned
activation function. This (commonly non-linear) activation function controls the
output of each node. Formally, the activation state of layer n is given by

a(n) = g(n)
(
W (n)⊤a(n−1) + b(n)

)
, (2.3)

where g(n) is the activation function, W (n) is the weight matrix for the connections
between layer n− 1 and layer n, and b(n) is the bias for layer n.

Summarizing, information is passed from the input layer, processed and trans-
formed in the different hidden layers, and finally classified in the output layer.
It can be shown, that FNNs with at least one hidden layer and a differentiable
and non-linear activation function are able to approximate any non-linear function,
which renders them a universal approximator (Hornik, 1991). However, this does
not imply that a FNN generalizes in such a way that it correctly classifies previously
unseen data. Choosing an appropriate network architecture and hyperparameteriza-
tion constitutes an essential step towards creating a generalized network for a given
task. Figure 2.2 (bottom) describes the architecture of the applied FNNs.



40 Novel Object of Transaction: Bitcoin and Other Cryptocurrencies

In
pu

t

O
ut

pu
t

Ba
tc

h 
N

or
m

al
iz

at
io

n

D
en

se
, 1

 N
eu

ro
n

Si
gm

oi
d

M
em

or
y 

C
el

l, 
25

6 
Bl

oc
ks

D
ro

po
ut

, 5
0%

Ba
tc

h 
N

or
m

al
iz

at
io

n

Ba
tc

h 
N

or
m

al
iz

at
io

n

Ba
tc

h 
N

or
m

al
iz

at
io

n

Ba
tc

h 
N

or
m

al
iz

at
io

n

D
en

se
, 1

28
 N

eu
ro

ns

D
en

se
, 6

4 
N

eu
ro

ns

D
en

se
, 3

2 
N

eu
ro

ns

D
en

se
, 1

 N
eu

ro
n

Si
gm

oi
d

D
en

se
, 5

12
 N

eu
ro

ns

D
ro

po
ut

, 2
5%

D
ro

po
ut

, 2
5%

D
ro

po
ut

, 2
5%

D
ro

po
ut

, 2
5%

D
ro

po
ut

, 2
5%

D
en

se
, 2

56
 N

eu
ro

ns

Ba
tc

h 
N

or
m

al
iz

at
io

n

In
pu

t

O
ut

pu
t

LSTM/GRU

Feedforward
Neural Network

Figure 2.2.: Architecture of applied feedforward neural networks (bottom) and recurrent
neural networks (top). Note: For the recurrent networks, the memory cell is
either an LSTM cell or a GRU cell

LSTM and GRU

Long short-term memory (LSTM) and gated recurrent unit (GRU) networks belong
to the category of gated recurrent neural networks (RNNs). RNNs drop FNN’s con-
dition of acyclic graphs. Relaxing this boundary allows for the existence of arbitrary
feedback connections and an overall cyclic structure of the network. Hammer (2000)
shows that RNNs with a sufficient number of hidden nodes and non-linear activation
function also satisfy the requirements of a universal approximator. Figure 2.3 de-
picts a basic recurrent neural network in both a folded and unfolded representation.
Hochreiter and Schmidhuber introduce the LSTM architecture in the late 1990’s
(Hochreiter and Schmidhuber, 1997) with a specific focus on long-term memoriza-
tion of information in sequential data. LSTMs have been used for a variety of tasks
in different domains. Among these are neural language processing and speech recog-
nition (Graves and Schmidhuber, 2005; Graves et al., 2006, 2013; Graves and Jaitly,
2014), handwriting recognition and handwriting generation (Graves, 2013; Liwicki
et al., 2007; Graves et al., 2008, 2009), music generation (Eck and Schmidhuber,
2002), analysis of financial data (Mäkinen et al., 2018), as well as more generic sce-
narios such as tasks that require to remember specific numbers along long sequences
(Gers et al., 2002; Hochreiter and Schmidhuber, 1997). Their architecture replaces
the nodes in the hidden layers with memory blocks. Each block usually consists of
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one memory cell and varying number of gates, which can manipulate the internal
values of the cell. All blocks are connected via the cell states c<t>, and the output
of the memory blocks a<t>. The gates enable the network to maintain the influence
of inputs along longer time sequences. The original LSTM has two different gates:
an input and an output gate. Each gate utilizes a sigmoid activation function. Gers
(1999) extend the original LSTM with an additional forget gate, which allows the
cell to reset itself. Formally, the output of the LSTM is given by:

ŷ<t> = g<t>(a<t>), (2.4)

whereby g<t> is the network’s activation function at t and

a<t> = o<t> ◦ tanh(c<t>) (2.5)

c<t> = i<t> ◦ c̃<t> + f<t> ◦ c<t−1> (2.6)

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (2.7)

i<t> = σ(Wi[a
<t−1>, x<t>] + bi) (2.8)

f<t> = σ(Wf [a
<t−1>, x<t>] + bf ) (2.9)

o<t> = σ(Wo[a
<t−1>, x<t>] + bo), (2.10)

where i<t>, f<t>, o<t> denote the state of the input, forget, and output gate with
their respective weight matrix W and bias b, c̃<t> is the candidate for updating the
current cell state c<t>. Figure 2.4 depicts the composition of an LSTM memory
block.

GRUs differ from the LSTMs insofar, as they use one unified gate unit to control
the forget and the update gate simultaneously. Although the number of learnable
parameters of GRUs is thereby smaller than that of LSTMs, their performance in
various domains is comparable (Chung et al., 2014). Figure 2.2 (top) outlines the
architecture of the applied RNNs.
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Figure 2.4.: LSTM memory block with input, forget, and output gate (based on Olah 2015)

Tree-based Models

Tree-based models use a decision tree to learn attribute-class relationships, which
are fast to train and well interpretable. However, unpruned, single decision trees are
prone to overfit to training data.

Random forest

Introduced by Ho (1995), random forests (RF) aim to overcome tree-based models’
tendency to overfit by means of an ensemble method. Here, multiple decision trees
are generated, and each of them is trained on different parts of the training data.
The output of the final model for overall classification is the average output of all
individual trees. The random forest applied is subject to the parameterization of
100 trees and a minimum number of instances per leaf of 20%. For all remaining
parameters, we use the default values of the Python scikit-learn library (Pedregosa
et al., 2011).
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Gradient Boosting Classifier

Similar to random forests, gradient boosting classifiers (GBC) leverage the input of
multiple decision trees (Friedman, 2001). In addition, boosting classifiers also train
individual weights for all included models. In this way, the output classification of the
better-adapted models is weighted more strongly in the model’s final classification
decision. In our analysis, we use the extreme gradient boosted (XGBoost) trees,
parameterized with a binary logistic objective function to build a gradient boosting
classifier, whereby individual trees have a max-depth of 1.

Ensemble Models

Similar to random forest and gradient boosting, ensemble models rely on the classi-
fication output of multiple models. However, in an ensemble, different model-types
(e.g., neural networks and tree-based models) can be combined into a meta-model.
The output of the meta-model constitutes the averaged predictive probability vec-
tor of all models included. In this way, method-specific misclassifications should be
“overruled” by the other models in the ensemble. We apply an meta-model consisting
of all individual models.

2.2.3.7 Evaluation

The prediction models are evaluated and analyzed regarding various aspects. First,
we compare the models on a prediction level. Second, we analyze and compare fea-
ture importance for each model and prediction target. Third, we examine economic
implications of our Bitcoin market predictions by employing a long-short portfolio
strategy.

Forecast Evaluation

We compare the forecasts of our prediction models based on the predictive accuracy
on the test set. Also, for our stochastic prediction models, we examine the impact of
using multiple random seeds on model accuracy and stability. Furthermore, similar
to Fischer and Krauss (2018), we compare the significance of the differences in model
predictions based on Diebold-Mariano tests (Diebold and Mariano, 1994) with the
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mean absolute error loss function. Additionally, we estimate the probability that the
models make predictions by chance. If the true accuracy of a binary classification
model is 50%, the number of correctly classified targets follows the distribution

X ∼ B(n = #test, p = 0.5, q = 0.5), (2.11)

where #test is the number of observations in the test sample (e.g., 94834 for the 1-
minute horizon). Based on this binomial distribution, we calculate the probabilities
that a prediction model has a true probability of 50%.

Feature Importance

The feature importance for all models is determined by the measure of permuta-
tion feature importance (Breiman, 2001). This ensures comparability between the
resulting importance scores across all models. We randomly permute every feature
vector with a random standard normally distributed vector and calculate the de-
crease in prediction accuracy, which we interpret as feature importance. A high
decrease in prediction accuracy implies that the model strongly relies on the feature
for its predictions. To decrease the impact of randomness on the results, we aver-
age the permutation feature importance across a set of 10 different random seeds,
s ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In the rare case that the random permutation increases
the prediction accuracy, we set this feature’s importance to zero. For our stochastic
prediction models, we calculate the feature importance for every model seed (i.e.,
based on 10 feature importance seeds per model seed) and average the results over all
model seeds. To enhance interpretability, we follow the recommendations of Gu et al.
(2020) and normalize the feature importances in a way that all feature importance
scores for a prediction model sum to one.

Trading Strategy

We analyze the economic implications of the Bitcoin market predictions by testing
a straightforward trading strategy. To approximate an ex ante trading strategy,
we calculate the 99%-quantiles of all the classes’ probabilities from the training set
predictions. If, for instance, the predicted probability in the test set for Class 1
is higher than the respective threshold probability, we take a long position. Vice
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versa, we take a short position, if a predicted class probability for Class 0 is above
the respective threshold probability. Table A.1 lists these threshold probabilities per
model and prediction horizon. At the end of the prediction horizon, the position is
closed. We calculate the return of this strategy before and after transaction costs.
Similar to Fischer et al. (2019), we assume round-trip transaction costs of 30 basis
points (bps).

2.2.4 Results

2.2.4.1 Predictive Accuracy

We compare the model predictions based on the accuracy scores, which are presented
in Table 2.5. We find that all tested models’ predictive accuracy is above the 50%
threshold. Furthermore, all models have a probability of less than 3.08E-09 for a true
accuracy of 50% (see Table 2.6). Thereby, the use of multiple random seeds increases
stability in the predictions of the stochastic prediction models. With regards to that,
Table A.2 lists the predictive accuracies for the individual random seeds. Second,
we find that the average prediction accuracy monotonically increases for longer pre-
diction horizons. Third, we find that RNNs or GBCs constitute the best-performing
methods across all prediction horizons. Specifically, the LSTM performs best on
the 1-minute prediction horizon. As shown in Table A.3, Diebold-Mariano tests
(Diebold and Mariano, 1994) reveal that LSTM predictions are more accurate than
the predictions of all other models, apart from the GRU (α: 5%). On the 5-minute
horizon, the GBC model shows the highest predictive accuracy, yielding significantly
more accurate forecasts than all remaining models. The ensemble model is the most
accurate method on the 15-minute prediction horizon, but does not produce signifi-
cantly more accurate predictions than the GRU and GBC models. The LSTM model
yields the most accurate predictions on the 60-minute horizon, which are significantly
more accurate than the predictions of all other models. Summarizing, we find that
the RNNs and tree-based ensembles, on average, provide more accurate predictions
for the Bitcoin market compared to the other models. Both RNNs show compara-
ble predictive accuracy. On the 1-minute and the 5-minute prediction horizon, the
predictive accuracy of the GRU and the LSTM does not differ significantly, while
the GRU yields more accurate predictions on the 15-minute horizon and the LSTM
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yields more accurate forecasts on the 60-minute horizon. Equivalently, the predictive
accuracy of the tree-based models (i.e., GBC and RF) does only significantly differ
on the 5-minute prediction horizon.

Table 2.5.: Predictive accuracy of the machine learning models for the different prediction
horizons

Accuracy

Model
1-minute
Predictions

5-minute
Predictions

15-minute
Predictions

60-minute
Predictions

GRU 0.518411 0.524562 0.536490 0.556653
LSTM 0.519286 0.524931 0.531967 0.560067
FNN 0.509438 0.521988 0.520820 0.529587
LR 0.511272 0.517926 0.519595 0.538552
GBC 0.511093 0.529268 0.537282 0.557026
RF 0.511947 0.526662 0.534641 0.556356
E (All) 0.514626 0.526092 0.537863 0.557579

Table 2.6.: Probability for the prediction models to have a true accuracy of 50%, derived
from the binomial distribution described in Equation 2.11

Probabilities

Model
1-Minute
Predictions

5-Minute
Predictions

15-Minute
Predictions

60-Minute
Predictions

GRU 4.18E-30 5.66E-52 6.19E-112 8.44E-265
LSTM 7.65E-33 1.75E-53 1.99E-86 2.28E-297
FNN 3.08E-09 4.64E-42 7.17E-38 7.02E-74
LR 1.92E-12 1.26E-28 8.99E-34 6.90E-124
GBC 4.18E-12 6.67E-73 9.47E-117 2.93E-268
RF 9.31E-14 7.30E-61 4.23E-101 4.75E-262
E (All) 1.05E-19 2.22E-58 2.40E-120 1.94E-273

2.2.4.2 Feature Importance

The predominant feature for both RNNs is the minutely Bitcoin return time series.
The relative importance of this feature decreases for longer prediction horizons from
about 80% (1-minute horizon) to less than 50% (60-minute horizon). It becomes
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apparent that, for longer time horizons, additional time series besides the minutely
Bitcoin returns are increasingly relevant for both RNNs. Among those are the num-
ber of transactions per second, the number of Tweets, the weekly Bitcoin returns,
and the weighted sentiment scores.

Subsequent analysis of the models without memory function provides further in-
sights into the temporal distribution of feature importance. While the most impor-
tant feature for the GBC and RF is consistently related to Bitcoin returns, for more
extended prediction horizons, less recent Bitcoin returns become more important.
On the 1-minute horizon, the most recent minutely return is most relevant, while
on the 5-minute horizon, the Bitcoin returns from the period 10 to 5 minutes before
the prediction point constitute the most important feature. Accordingly, for these
models, the Bitcoin returns from 20 to 10 minutes before prediction are most impor-
tant on the 15-minute horizon and the Bitcoin returns from 40 to 20 minutes before
prediction constitute the most important feature on the 60-minute horizons.

Similar to the finding for the RNNs, for longer prediction horizons, the relative
importance of the predominant feature drops for the GBC (60-minute horizon: 70%,
1-minute horizon: 30%) and the RF (60-minute horizon: 45%, 1-minute horizon:
30%). Besides technical features, mainly blockchain-based features (e.g., transactions
per second, mempool size growth), as well as sentiment-/interest-based features (e.g.,
number of Tweets) remain important for the tree-based models. Compared to the
GBC and RF, for the FNN and LR, feature importance is distributed along several
features, which may be explained by the rather shallow parameterization of the tree-
based models. We provide graphical representations of all feature importances in
the Appendix A.2.

2.2.4.3 Trading Strategy

Table 2.7 lists the results of our quantile-based trading strategy before transaction
costs. In comparison, a buy and hold strategy yields a return of -0.2958 during the
test set period. Since the threshold class probabilities are calculated on predictions
on the training set, the number of trades varies between methods and prediction
horizons. Table presents the exact threshold class probabilities for the different pre-
diction models and horizons. The results of the trading strategy yield three key
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insights. First, there is a rather large variance in trading results between the dif-
ferent prediction models. Higher predictive model accuracy does not necessarily
translate into better trading results. We explain this by the fact that we do not set
up our prediction problem to optimize trading performance, but rather to predict
directional market movements. Additionally, based on our trading strategy, only a
rather small proportion of observations is traded, which presumably increases vari-
ance. Trading returns based on the ensemble model are generally positive and near
the average of the trading returns of the individual models, which indicates that
combining predictions of individual prediction models may reduce the variance in
trading results. Second, the average return per trade tends to increase with longer
prediction horizons. Third, considering transaction costs of 30 bps per round-trip,
trading performance becomes negative for all methods. These negative returns may
be explained by the models’ short-term prediction horizons. Based on the transaction
costs, making 1000 trades would cause transaction costs of 300%.

Table 2.7.: Trading returns (TR) and number of trades (#trades) for the long-short 1%-
quantile strategy before transaction costs over the 3 months of testing data

1-minute
Predictions

5-minute
Predictions

Model TR #trades TR #trades

GRU -0.0933 557 -0.0816 586
LSTM 0.0281 584 -0.0869 701
FNN 0.0354 507 0.1089 583
LR 0.0599 664 0.3405 822
GBC 0.0637 1305 0.0097 1601
RF 0.0307 798 0.1881 574
E (All) 0.0203 582 0.1224 710
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15-minute
Predictions

60-minute
Predictions

Model TR #trades TR #trades

GRU 0.0632 2164 0.2087 2806
LSTM -0.2563 1268 1.1569 2582
FNN 0.0509 924 0.4699 661
LR 0.2059 881 -0.8732 929
GBC 0.4749 1971 0.3155 1602
RF 0.2909 385 0.5483 497
E (All) 0.2829 1421 0.4156 1244

2.2.5 Discussion

This study demonstrates that machine learning models are able to predict short-
term movements of the Bitcoin market. Clearly, the forecasting accuracy of slightly
over 50% indicates that the Bitcoin market predictability is somewhat limited. A
limited Bitcoin market predictability is comparable to findings related to the market
predictability of other financial assets, such as stocks (Fischer and Krauss, 2018;
Gu et al., 2020). This may be due to multiple reasons, for instance, an immediate
market reaction to the utilized features or a potentially large amount of information
beyond these features that influence the Bitcoin market. Furthermore, our results
are consistent with the findings that the Bitcoin market has become more efficient
over the last years (Urquhart, 2016; Vidal-Tomás and Ibañez, 2018; Khuntia and
Pattanayak, 2018).

Since trading results based on the market predictions are negative after transaction
costs, our work does not represent a challenge to Bitcoin market efficiency. However,
in this study, we analyze the predictability of the Bitcoin market movement and do
not train our models to maximize trading performance. Nevertheless, our results
indicate that empirical trading strategies should be implemented on the basis of
models with more extended prediction horizons. This would correspond to longer
holding periods, for which the relative impact of transaction costs is presumably
lower. Complementary, our finding that predictive accuracy increases for longer
prediction horizons paves the path for further research opportunities.
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Next, we find that RNN and GBC models are particularly well-suited for predict-
ing the short-term Bitcoin market. Yet, as the field of machine learning is evolving
constantly, we may speculate about future specialized machine learning models per-
forming even better on this task. The implemented RNN and GBC models clearly
distinguish in the weighting of features, mainly relying on a set of few features. For
these prediction models, technical features appear to be most influential, followed by
blockchain-based and sentiment-/interest-based features. However, the exact source
of predictive power for these features remains ambiguous. Possible sources of ex-
planations may be theoretical equilibrium models. For instance, Biais et al. (2020)
determine a quasi-fundamental value for Bitcoin based on, for instance, transac-
tional costs and benefits. Some of the used features (e.g., transactions per second)
may partially approximate these factors. Furthermore, Detzel et al. (2020) present
an equilibrium model showing how technical indicators are able to affect the prices
of assets with hard-to-value fundamental values. Subsequent studies may explore
whether market anomalies, such as the momentum effect (Jegadeesh, 1990), exist
within the Bitcoin market and test whether additional technical features, such as
Bitcoin trading volume, exhibit predictive power. Besides, future research may ex-
amine whether behavioral financial market biases (e.g., the disposition effect (Shefrin
and Statman, 1985)) are more pronounced for Bitcoin, as it does not exhibit a fun-
damental value in the traditional sense. Since financial markets are dynamic, future
research could also evaluate whether the identified Bitcoin market mechanisms re-
main in place or to what extent the Bitcoin market structure has changed.

2.2.6 Conclusion

In our empirical analysis, we analyze the short-term predictability of the Bitcoin
market, leveraging different machine learning models on four different prediction
horizons. We find that all tested models make statistically viable predictions. The
models are able to predict the binary market movement with accuracies ranging
from 50.9% to 56.0% whereby predictive accuracy tends to increase for longer fore-
cast horizons. We identify that especially recurrent neural networks, as well as tree-
based ensembles, are well-suited for this prediction task. Comparing feature groups
of technical, blockchain-based, sentiment-/interest-based, and asset-based features
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shows that, for most methods, technical features remain prevalently important. For
longer prediction horizons, the relative importance appears to spread across multi-
ple features (e.g., transactions per second, weighted sentiment), whereby less recent
technical features become increasingly relevant. A quantile-based trading strategy
based on the market predictions yields up to 116% return over 3 months before
transaction costs. However, due to the particularly short holding periods and corre-
spondingly frequent trading activities, these returns cannot compensate for incurring
transaction costs.
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2.3 Machine Learning for Cryptocurrency Market

Prediction and Trading
The previous study investigated the short-term market predictability of Bitcoin

via machine learning. The study highlighted the potential of recurrent neural net-
works and tree-based ensembles for Bitcoin market prediction and the importance
of technical features. However, a potential trading strategy based on the short-term
prediction could not compensate for incurred transaction costs due to the short
holding-periods. In the following study, different machine learning models are set
up to predict the relative daily performance of the 100 largest cryptocurrencies by
market capitalization is developed and evaluated. Subsequently, a trading strat-
egy based on these predictions is tested and evaluated. The results show that all
employed machine learning models make statistically viable predictions. The em-
ployed trading strategy exhibits a higher risk-adjusted performance than the market
benchmark after transaction costs.

This section, in large parts, comprises the unpublished article: P. Jaquart, S.
Köpke, C. Weinhardt, Machine Learning for Cryptocurrency Market Prediction and
Trading, Under Review, 2022.

2.3.1 Introduction

In 2008, Nakamoto Nakamoto (2008) has introduced the electronic peer-to-peer cash
system Bitcoin to the world. Since then, Bitcoin has inspired numerous other cryp-
tocurrencies with varying technical properties and use cases. Over the last decade,
the cryptocurrency market has grown tremendously, whereby individual cryptocur-
rency prices have exhibited large volatility (Coinmarketcap, 2022). There exists
mixed evidence with regards to the market efficiency of Bitcoin (Mnif and Jarboui,
2021; Noda, 2021; Vidal-Tomás, 2022) and other cryptocurrencies (Kristoufek and
Vosvrda, 2019; Le Tran and Leirvik, 2020; Kakinaka and Umeno, 2022). These
studies usually apply specific statistical tests that are in some form based on auto-
regressive approaches, whereby potential non-linear interactions, if considered, are
modeled explicitly. Machine learning methods can flexibly learn the functional form
between features and targets(Gu et al., 2020) and have been applied successfully
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to the domain of Bitcoin and cryptocurrency market prediction in the past (Huang
et al., 2019; Fischer et al., 2019; Jaquart et al., 2021). Therefore, these methods
may uncover and utilize high-dimensional non-linear feature interactions beyond the
interactions modeled in specific market efficiency tests. In this study, we shed light
on the potential of different machine learning models regarding market prediction
and trading. Hence, the overarching research question of this study is:

Research Question 3 What is the performance of machine learning models for
generating statistical arbitrage in the cryptocurrency market?

To answer this research question, we employ six machine learning classifiers to
predict the relative daily performance of the 100 largest cryptocurrencies by market
capitalization. Furthermore, we employ a long-short trading strategy based on the
out-of-sample predictions of each model and evaluate the resulting trading outcomes.
We analyze five heterogeneous study periods, with each spanning 800 days. This
study has two main contributions:

First, we highlight the potential of machine learning for cryptocurrency market
prediction, as all employed models make statistically viable predictions. In doing
that, we find that recurrent neural networks and tree-based ensembles are particu-
larly effective in classifying the relative daily performance of cryptocurrencies. Sec-
ond, we demonstrate the potential for statistical arbitrage in the cryptocurrency
market, as the employed long-short portfolio strategy outperforms the market bench-
mark on a risk-adjusted basis after transaction costs.

The remainder of this paper is structured as follows: Chapter 2.3.2 presents related
work, Chapter 2.3.3 describes our methodological approaches, and Chapter 2.3.4
presents the results of our analyses. 2.3.5 discusses the implications of these results
and Chapter 2.3.6 concludes this study.

2.3.2 Related Work

Fischer et al. (2019) examine the potential of machine learning predictions to gener-
ate statistical arbitrage in the cryptocurrency market utilizing a dataset from June
to September 2018. They train a random forest classifier and a logistic regression
model to predict the relative performance of the 40 largest cryptocurrencies over the
next 120 minutes based on the temporal distribution of past returns over the last
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day. As an out-of-sample long-short trading strategy based on these model predic-
tions yields daily returns of 7.1 bps per day, their findings indicate an impairment
of cryptocurrency market efficiency. Fil and Kristoufek (2020) apply pairs trading
to the cryptocurrency market, assuming a long-term stable state between different
cryptocurrency pairs. They use data from January 2018 to September 2019 and
compare 5-minute, hourly, and daily trading frequencies. Fil and Kristoufek (2020)
find that pairs-trading may perform well for shorter frequencies in the cryptocur-
rency market, whereby these results are highly dependent on the selected market
parameters (e.g., the magnitude of transaction cost).

Betancourt and Chen (2021) examine the potential of deep reinforcement learn-
ing for cryptocurrency trading based on a dataset ranging from August 2017 until
November 2020. In the presented approach, agents repeatedly analyze the 20-day
history of price, volume, and market capitalization of a specific cryptocurrency to
make one-day trading decisions. Betancourt and Chen (2021) find that their ap-
proach is promising for cryptocurrency trading. McNally et al. (2018) compare an
Elman recurrent neural network, a long short-term neural network, and an autore-
gressive integrated moving average approach to predict binary daily Bitcoin market
movements. They utilize data from August 2013 to July 2016 and find that the long
short-term neural network exhibits the highest predictive performance with a model
accuracy of 52.78%. Dutta et al. (2020) compare different neural network approaches
to predict daily Bitcoin prices based on a feature set consisting of various technical,
blockchain-based, asset-based, and interest-based features. They find that a gated
recurrent unit implementation with recurrent dropout yields the highest performance
on their dataset, which ranges from January 2010 until June 2019.

Chen et al. (2020) employ and compare various linear statistical methods and
machine learning approaches for 5-minute and daily Bitcoin market prediction on
data from February 2017 to February 2019. They document a higher predictive per-
formance of the employed statistical methods for the daily prediction horizon, while
the machine learning methods exhibit a higher performance on the 5-minute horizon.
Alessandretti et al. (2018) design different models based on gradient boosting clas-
sifiers and long short-term neural network approaches to predict the daily returns
of 1681 cryptocurrencies. They utilize data from November 2015 until April 2018
and show that portfolio strategies based on these predictions outperform a baseline
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approach. Lahmiri and Bekiros (2019) compare a long short-term memory neural
network and a generalized regression neural network approach to predict the prices
of Bitcoin, Digital Cash, and Ripple. They utilize data sets with different temporal
lower bounds that end in October 2018 and find that the employed long short-term
memory neural network yields better forecasts than the generalized regression neural
network.

2.3.3 Methodology

The study comprises four main steps and builds on the methodological approaches
of Fischer et al. (2019) and Fischer and Krauss (2018). In the first step, we obtain
the relevant data from various sources. We then generate features and targets from
the raw price data, which we use to model coin returns. The next step is to split the
complete data set into overlapping study periods with varying market constituents
and non-overlapping test folds for backtesting. The final step is to train and tune
the models used, individually for all study periods, and simulate trading based on
the model predictions.

2.3.3.1 Data

For this study, we use daily closing price and market capitalization data denoted in
U.S. Dollars (USD) over the period from February 8, 2018, to May 15, 2022, obtained
through CoinGecko’s (CG) API (CoinGecko, 2022).

Coin Market Capitalization Data

To avoid survivorship bias, the constituents of the investment universe are deter-
mined as the top 100 crypto assets by market capitalization on the first trading day
of the training set. This ensures that no look-ahead bias is introduced through to
the construction of the coin universe while providing a sufficient number of training
instances for each coin. Stablecoins pegged to the USD or any other fiat currency
are excluded from the list of eligible candidates, as their prices quoted in USD are
static by design or entirely dependent on currency exchange rates. We exclude a list
of ten other coins due to data issues such as missing data and erroneous values in
the data sources (full exclusion list in Appendix B.1).



56 Novel Object of Transaction: Bitcoin and Other Cryptocurrencies

Daily market capitalization data for the largest 1,750 crypto assets (as of June 8,
2022) is obtained through the CG API, which provides market capitalization data
denoted in USD calculated as the product of known available supply and the asset’s
price. For each study period, we rank all coins based on their market capitalization
on the first trading day of the training set and the top 100 cryptocurrencies are used
as the asset universe for creating the crypto asset portfolios.

Coin Price Data

We use aggregated market price data from the CoinGecko for the return calcula-
tions. CG provides aggregate prices based on the pairings (cryptocurrency vs. fiat
currency or cryptocurrency vs. cryptocurrency) available on all monitored exchanges
by applying a global volume-based weighting. Despite these prices being non-traded
aggregate prices, Vidal-Tomás (2022) shows that such artificially compounded prices
are a fair representation of the overall cryptocurrency market. The author finds that
aggregating different exchange platforms to compute a singular price does not affect
market efficiency for liquid cryptocurrencies. Since cryptocurrency exchanges are
open around the clock, we create artificial closing prices from the market price at
midnight (UTC). The CG API provides daily price data with a 00:00:00 UTC times-
tamp associated with the following day. Therefore, the retrieved time series of daily
quotes are shifted by one day to calculate the previous day’s returns. Thus, using
pct to denote the aggregate market price for coin c at the end of day t (measured at
00:00:00 UTC on day t+ 1), the m-period returns rm,c

t are calculated as follows:

rm,c
t =

pct
pct−m

− 1, (2.12)

where

rm,c
t Return for coin c on day t over the last m days
pct Aggregate closing price for coin c on day t.

For m = 1, we thus obtain the asset’s daily returns, while for m > 1, rm,c
t represents

the cumulative returns over the last m days.
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Risk-free Rate of Return

The U.S. treasury’s three-month Treasury Bill (T-bill) secondary market rate (Board
of Governors of the Federal Reserve System, 2022) is used as the risk-free rate to
calculate excess returns. The T-bill is a short-term debt obligation backed by the
Treasury Department of the United States government with a maturity of three
months. The annual interest rate is converted to daily returns by simple deannual-
ization to calculate daily excess returns for calculating risk-adjusted return metrics
such as the Sharpe ratio and the Sortino ratio. For most of the period under con-
sideration, the risk-free rate, as measured by the T-bill rate cited above, is close to
zero, ranging from 2.4× 10−7 to 2.8× 10−5 per day, with a mean value of 3.9× 10−6.

2.3.3.2 Software and Hardware

We use Python 3.9 for data acquisition, processing, and analysis throughout the
study. The numpy (Harris et al., 2020) and pandas (McKinney, 2010b) software
packages are used for data processing and feature creation. Deep learning models
are built using Keras (Chollet, 2015) with the TensorFlow backend (Mart́in Abadi
et al., 2015) and all other machine learning models are built and trained using the
scikit-learn (Pedregosa et al., 2011) library. All models are trained on a CPU (Intel
Core i5-8400, 2.8 GHz).

2.3.3.3 Data Split

The full study time frame is divided into five overlapping study periods (SPs), each
comprising 800 trading days, i.e., prediction targets. The range of dates used for
each SP includes the 90 days prior to the first trading day, as each prediction uses
data from a 3-month look-back period as model inputs. Each study period consists
of training (500 days), validation (150 days; for hyperparameter-tuning), and out-of-
sample test sets (150 days) in chronological order, as illustrated in Figure 2.5. Table
2.8 shows the exact split of each study period into the three respective data folds.

The training and validation splits together constitute the formation period, during
which the models are trained and the best hyperparameters for each model are
selected based on the validation performance. The test split of each study period is
used for out-of-sample testing and simulated trading. Study periods are shifted by
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the length of the test period to allow for five non-overlapping test sets for successive
evaluation. Using multiple study periods allows for periodic retraining of models
and thus captures the concept drift that occurs due to changing market phases.

800 trading days (2 years, 2 months, 11 days)

2018-07-16

2022-05-15

Validation Test

2020-04-26 2020-09-22 2021-12-17

62.5 %

Training

81.25 % ≅ 650 trading days 150 trading days

5 ✕SP 1

SP 2

SP 3

SP 4

SP 5

18.75 % 18.75 %

Figure 2.5.: Study period composition and train-validation-test split

Table 2.8.: Study periods and the respective date ranges for the training, validation, and
test sets

SP No Training Set Validation Set Test Set

1 2018-07-16 - 2019-11-27 2019-11-28 - 2020-04-25 2020-04-26 - 2020-09-22
2 2018-12-13 - 2020-04-25 2020-04-26 - 2020-09-22 2020-09-23 - 2021-02-19
3 2019-05-12 - 2020-09-22 2020-09-23 - 2021-02-19 2021-02-20 - 2021-07-19
4 2019-10-09 - 2021-02-19 2021-02-20 - 2021-07-19 2021-07-20 - 2021-12-16
5 2020-03-07 - 2021-07-19 2021-07-20 - 2021-12-16 2021-12-17 - 2022-05-15

2.3.3.4 Features

All models are trained on the binary classification problem of predicting whether a
single coin will outperform the cross-sectional median of returns on the subsequent
day, based on solely on price information of the previous 90 days. Thus, we derive
the features for all models from the individual coin returns three months prior to
trading.

Feature generation is performed separately for the two main types of classifiers
used in this study, namely models with a memory function and models without
memory. For the three deep-learning models with internal memory, the LSTM, the
GRU, and the TCN, standardized daily return sequences of length 90 are created.
The daily returns are standardized by subtracting the mean and dividing by the
standard deviation of the respective training set. The tree-based classifiers and the



Machine Learning for Cryptocurrency Market Prediction and Trading 59

LR use lagged returns as model inputs due to their lack of memory. Tuples of
input sequences and target labels are created successively by generating overlapping
sequences of length 90 that are iteratively shifted forward by one day. The procedure
for creating input sequences with corresponding target labels for the deep learning
methods is exemplified in Figure 2.6.

Since the memory-free models (i.e., GBC, RF, and LR) are not inherently capable
of using temporal input data, we create time-lagged features by aggregating returns
over different intervals of increasing length. Based on Takeuchi and Lee (2013), and
Krauss et al. (2017), we use multi-period returns with lags m ∈ {{1, 2, ..., 20} ∪
{30, 40, ..., 90}}, increasing the resolution to 10 days after using daily increments for
the first 20 days, resulting in a total of 27 features per sample. The multi-period
returns are calculated using Equation 2.12. The creation of the return features and
corresponding target labels for the tree-based methods and LR is illustrated in Figure
2.7. Per coin and study period (for all coins, respectively), both feature generation
methods yield 500 (60,000) training samples, 150 (15,000) validation samples, and
150 (15,000) test samples.

2.3.3.5 Targets

The binary prediction problem is to forecast whether an individual coin will out-
perform the cross-sectional median on the day after portfolio formation. Hence, for
each trading day, the daily returns for all coins are sorted in descending order, and
the class label 1 is assigned to all coins above or equal to the cross-sectional median
of returns and 0 otherwise. The target class for coin c at time t, yct is thus given by

yct =

1, if rct ≥ Median(rct ), ∀c ∈ C(t)

0, otherwise,
(2.13)

where

rct Daily return for coin c on day t

C(t) Set of coins that are part of the coin universe on day t.
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0.052 -0.245 … … 0.03 -0.125 1

-0.245 0.049 … … -0.125 0.022 1

0.049 0.002 … … 0.022 0.033 0

… … … … … … …

0.052 -0.245 … … -0.013 0.036 1

0.022 0.042 … … -0.036 0.009 0

-0.034 0.042 … … -0.036 0.009 1

… … … … … … …

0.052 -0.245 … … 0.03 -0.125 1 0.052 -0.245 … … -0.013 0.036 1

-0.245 0.049 … … -0.125 0.022 1 0.022 0.042 … … -0.036 0.009 0

0.049 0.002 … … 0.022 0.033 0 -0.034 0.042 … … -0.036 0.009 1

… … … … … … … … … … … … … …

Coin c1

Coin c2

…

Coin c1 Coin c2

t 1 2 … … 89 90 91 92 … t 1 2 … … 89 90 91 92 …

0.052 -0.245 … … 0.030 -0.125 0.022 0.033 … 0.052 -0.245 … … -0.013 0.036 0.009 0.023 …

0.012 0.018 … … 0.001 -0.014 0.005 0.028 … 0.012 0.018 … … 0.001 -0.014 0.005 0.028 …

1 0 … … 1 0 1 1 … 1 0 … … 0 1 1 0 …

Coin c1 Coin c2

t 2 3 … … 90 91 92 93 … t 2 3 … … 90 91 92 93 …

-0.245 0.049 … … -0.125 0.022 0.033 -0.027 … 0.022 0.042 … … -0.036 0.009 0.002 -0.027 …

0.018 0.024 … … -0.014 0.005 0.028 -0.023 … 0.018 0.024 … … -0.014 0.005 0.028 -0.023 …

0 1 … … 0 1 1 0 … 1 1 … … 0 1 0 0 …

Coin c1 Coin c2

t 3 4 … … 91 92 93 94 … t 3 4 … … 91 92 93 94 …

0.049 0.002 … … 0.022 0.033 -0.027 0.022 … -0.034 0.042 … … -0.036 0.009 0.023 -0.027 …

0.024 -0.007 … … 0.005 0.028 -0.023 0.005 … 0.024 -0.007 … … 0.005 0.028 -0.023 0.005 …

1 1 … … 1 1 0 1 … 0 1 … … 0 0 1 1 …
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Figure 2.6.: Creation of feature sequences and corresponding target labels for models with
memory

2.3.3.6 Models

We test and compare different types of predictive models, including recurrent neural
networks, convolutional neural networks, tree-based ensemble methods, and the lo-
gistic regression (LR) model as a simple and efficiently computed benchmark. Due
to the stochastic nature of their training process, we train all models except the
logistic regression with ten different random seeds and create ensemble models by
averaging the cross-sectional ranks resulting from the predicted probabilities. The
hyperparameters are optimized separately for each study period using the classifica-
tion accuracy of the respective validation fold for model selection. For the logistic
regression, we use the default parameters without optimization. Table 2.9 shows the
hyperparameter grid used for optimizing each model and the selected configuration
per study period.
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Coin c1 Coin c2

Lag (𝑚)

Lagged 

Returns 91 92 93 … Lag (𝑚)

Lagged 

Returns 91 92 93 …

1 0.002 0.001 -0.001 … 1 0.001 0.000 -0.003 …

2 0.004 0.005 0.004 … 2 0.003 0.001 -0.002 …

… … … … … … … … … … … …

19 0.052 0.053 0.052 … 19 0.050 0.053 0.049 …

20 0.055 0.056 0.055 … 20 0.052 0.050 0.051 …

30 0.140 0.142 0.141 … 30 0.138 0.052 0.124 …

40 0.182 0.184 0.181 … 40 0.174 0.138 0.137 …

… … … … … … … … … … … …

90 0.221 0.222 0.220 … 90 0.225 0.174 0.174 …

Target 0 1 1 0 … Target 1 1 0 0 …
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0.002 0.004 … 0.052 0.055 0.140 0.182 … 0.221 1

0.001 0.005 … 0.053 0.056 0.142 0.184 … 0.222 1

-0.001 0.004 … 0.052 0.055 0.141 0.181 … 0.220 0

… … … … … … … … … …

0.001 0.003 … 0.050 0.052 0.138 0.174 … 0.225 1

0.000 0.001 … 0.053 0.050 0.052 0.138 … 0.174 0

-0.003 -0.002 … 0.049 0.051 0.124 0.137 … 0.174 0

… … … … … … … … … …

…

Coin c1

Coin c2

Figure 2.7.: Creation of tree-based and logistic regression feature sets and corresponding
target labels

Table 2.9.: Parameter tuning space and selected configuration per study period based on
validation accuracy

Model Parameter Grid SP 1 SP 2 SP 3 SP 4 SP 5

GRU Number of memory cells: {5, 10, 15, 20} 10 10 15 20 5
LSTM Number of memory cells: {5, 10, 15, 20} 15 20 20 10 10
TCN Number of filters: {2, 4, 6} 6 6 6 4 4
GBC Max. tree depth: {1, 2, 3, 5, 10} 2 1 2 2 2

RF Max. tree depth: {1, 2, 3, 5, 10, 20, None} x
max. number of features per split: {1, 3, 5, 7, 10, None} (5, 3) (5, 3) (5, 1) (3, 5) (2, 3)

LR - - - - - -

Deep Neural Networks

We compare three different deep neural network architectures from two families:
recurrent neural networks (RNN) and convolutional neural networks (CNN). RNNs
maintain an internal state, or memory, and can therefore process input sequences of
variable length. Temporal convolutional networks (TCN) use a number of variations
of standard CNN architectures that allow them to also retain a long-term memory.
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All deep neural network models are trained for a maximum of 25 epochs with a
batch size of 1024 and a learning rate of 0.002 using the Adam (Kingma and Ba,
2015) optimizer for optimizing the binary cross-entropy loss. Early stopping with a
patience of 4 epochs at a threshold of 1× 10−4 with respect to the validation loss is
used to mitigate overfitting and thus improve generalization.

Long Short-Term Memory

Long short-term memory (LSTM) neural networks are a prominent member of the
class of recurrent neural networks commonly used for time series forecasting in var-
ious domains. They were first introduced by Hochreiter and Schmidhuber (1997)
for learning long-term dependencies in long series of data and remedy the exploding
vanishing and exploding gradient problems that vanilla RNNs suffer from. This is
achieved by making use of several gating mechanisms (input gate, output gate, and
forget gate). We use a simple architecture with a single LSTM layer containing a
varying number of memory blocks of nblocks ∈ {5, 10, 15, 20} and a dropout ratio of
0.1, followed by two dense layers. The first dense layer contains five neurons and uses
the rectified linear unit (ReLU) as the activation function, while the final layer con-
sists of a single neuron with a sigmoid activation function to produce a probability
output in the range between zero and one.

Gated Recurrent Unit

The gated recurrent unit (GRU) is an RNN closely related to the LSTM architecture,
but has fewer parameters as it lacks a dedicated output gate. This is achieved by
using one gate (the update gate) that controls both the forgetting and the output
simultaneously. We use the same architecture and learning parametrization as for
LSTM and only replace the single LSTM layer with a single GRU layer.

Temporal Convolutional Network

Temporal convolutional networks are a fairly recent type of convolutional neural
network with design characteristics that enable them to work well with long time
series. The TCN architecture is characterized by (1) the use of one-dimensional
causal convolutions (which ensure that the ordering of temporal data is preserved),
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(2) the ability to transform a sequence of arbitrary length into an output sequence of
the same length, and (3) the use of dilated convolutions to enable effective long-term
memory (Bai et al., 2018).

We use a TCN architecture consisting of a single TCN layer with a kernel size of
three and exponentially increasing dilation rates (d = [1, 2, 4, 8, 16]) for the dilated
causal convolutions. The number of filters is used as a tuning parameter (kf ∈
{2, 4, 6}). After the TCN layer, we use dropout of 0.25 followed by two dense layers.
The first dense layers consists of five neurons with a ReLU activation and the output
layer consists of a single unit and a sigmoid activation function.

Memory-Free Prediction Models

We use two different memory-free, tree-based ensemble methods for benchmarking
the deep learning models used: random forest classifiers (RF) and gradient boosting
classifiers (GBC). Both ensemble models use a collection of decision trees as base
learners to mitigate overfitting, a common problem when using single decision trees.
Logistic regression is used as a simple benchmark.

Random Forest

Random forests are based on randomized decision trees and work by creating and
combining a diverse set of weak learners, i.e., decision trees, whose individual predic-
tions are combined to an ensemble prediction by averaging their outputs. The used
RF implementation of the scikit-learn library combines the individual classifiers by
averaging their probability predictions. We implement the random forest with the
default setting of 100 base learners and tune both the maximum tree depth and the
maximum number of features used to split the decision trees.
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Gradient Boosting Classifier

Gradient boosting classifiers rely on the sequential construction of shallow decision-
trees based on the errors made in the previous iteration to reduce the bias of the
combined estimator. They are a generalization of the AdaBoost algorithm by Freund
and Schapire (1997) proposed in the seminal work of Friedman (2001). We use the
scikit-learn (Pedregosa et al., 2011) implementation with the default value of 100
estimators and use the maximum depth of each trees as a tuning parameter.

Logistic Regression

The logistic regression model serves as a simple and efficiently trainable benchmark
model against which the more complex models are compared. LR is the equivalent of
simple linear regression for binary response variables, as is the case with classification
problems, and models the probability of a binary event occurring based on a linear
combination of a set of predictors. Even though there is no closed-form solution as in
standard linear regression, the global optimum can be found efficiently by numerical
methods due to the convexity of the loss function. Note that the LR model is the
only model used for inference without creating an ensemble of individual models
trained with different seeds, since it has a unique solution and is not subject to a
stochastic optimization process.

Alternatively, the LR model can be represented by a simple single-layer neural
network with one neuron and a sigmoid activation function when using binary cross-
entropy as the loss function. We use the scikit-learn implementation of LR with
Newton-CG as the solver for the optimization problem and a maximum number of
iterations of 1000. For all other hyperparameters, we use the default values and do
not perform any tuning.

2.3.3.7 Prediction and Portfolio Formation

At the end of each day t in the trading period and for each model type, we predict the
probability of outperforming the market on day t+1, P̂c

t+1|t, independently for each
coin c ∈ C(t + 1), using only information available on day t. For all model types
except the LR, we make the probability predictions for all 10 individual models
(ensemble constituents) trained on different random seeds. To obtain the final class
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predictions per model type, coin, and day, these probability predictions are sorted
in descending order for each model and day and ranks are assigned accordingly. The
ten individual ranks of the constituent models per model type are then averaged to
obtain a final ranking for all coins per model type and day.

We opt to use the individual ensemble model constituents’ rank predictions instead
of the predicted probabilities for obtaining the ensemble predictions. In doing so,
we account for the fact that the probability predictions are only meaningful relative
to the predicted probabilities of all other assets for the same day. By averaging
the ranks instead of probabilities, we retain the information about predicted relative
performance that is included in the prediction of each constituent model. Based on
the averaged ranks for each day, the bottom half is assigned the label 0 and the top
half is assigned the label 1. In other words, we use the averaged predicted cross-
sectional ranks of coins to obtain a balanced set of predictions for the balanced set
of true class labels.

The averaged prediction ranks per model type and trading day are used for port-
folio formation by assigning the top k coins to the long leg and the bottom k coins
to the short leg for the following trading day. As a result, the created long-short
portfolios for each model contain 2k different coins from the available asset universe
of 100 coins representing the market. The final class predictions and rankings are
then used to calculate the predictive accuracy of the models for different portfolio
sizes by restricting the calculation to the cryptoassets selected for each portfolio.

2.3.3.8 Backtesting

We base our long-short trading strategy on the portfolio selection rule described
above, using the average ranks of the model predictions to form a balanced and
dollar-neutral long-short portfolio of size 2k for different values of k. The portfolio
positions are opened at the end of day t at the market closing prices and closed at
the end of day t + 1 after a holding period of one full day. Each time the portfolio
positions are opened and closed, they incur the assumed transaction costs of 15 bps
of the transaction volume. After closing of each position at the end of the holding
period, the resulting cash position is used to fund the next day’s trades. For each
model, we thus hold a long-short portfolio containing 2k coins at any given time,
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changing its composition once per day while incurring transaction costs for every
trade. The financial performance of this daily trading strategy is calculated using
the net asset value of investments, which includes all coin returns and incurred
trading costs.

Transaction Costs

When in comes to arbitrage on cryptocurrency markets, the transaction costs for
trading on various cryptocurrency exchanges must be taken into account. Transac-
tions costs consist of commission fees, market impact and, in the case of short-selling,
short-selling costs. For the calculation of daily returns, half-turn transaction costs of
15 bps are assumed, following similar work by Fischer et al. (2019). Additional short-
selling costs are not taken into account as short-selling of cryptoassets is not possible
for all considered coins as of the time of writing and an estimation of short-selling
related costs not feasible.

2.3.4 Results

In this section, we present the results of the compared prediction methods in terms
of predictive accuracy and financial performance achieved with the derived long-
short trading strategy. An equally-weighted buy-and-hold market portfolio (MKT)
is used as the benchmark for evaluating the portfolio performance. The choice to
use an equally-weighted market portfolio as the benchmark is motivated by the fact
that the trading strategy evaluated is based on daily equally-weighted long-short
portfolios.

First, we analyze the overall results across all five study periods for different port-
folio sizes (k ∈ {1, 2, 5, 10, 20, 50}), where each portfolio consists of 2k stocks. For
predictive accuracy, we then take a more granular look at the results for each study
period to see how the performance varies over time. We then focus our analysis on
the k = 5 portfolio, which contains a sufficient number of assets to diversify risk, but
not so many as to negate the effect of selecting coins with a relatively high degree
certainty.
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2.3.4.1 Model Accuracy

The employed models’ ability to accurately predict whether a coin will outperform
the cross-sectional median is the basis for forming a profitable long-short portfolio.
Thus, we first evaluate and compare the models in terms of their predictive accu-
racy. Following the approach of Fischer and Krauss (2018), we evaluate the models’
accuracy by calculating the probability of a random classifier achieving the same
accuracy or higher. To do this, we model the number of correctly classified coins in
the chosen portfolio of size k, Xk, as a binomial distribution under the assumption
of a true classification accuracy of 50%, Xk ∼ B(n = 15, 000 · 2k

100
, p = 0.5), and

calculate for each model the p-values for achieving the number of correctly classified
coins or better by chance alone.

Full Time Period

Using the method described above, the prediction accuracy for the entire time period
examined (i.e., all test sets of the five study periods combined) is significantly higher
than 50% for all surveyed prediction methods and all portfolio sizes (see Fig. 2.8).
For k = 50, (i.e., taking all 100 daily predictions into account), the RF performs best
with an accuracy of 54.2%, closely followed by the LSTM with 54.1%. The probabili-
ties of a random classifier scoring at least as good is 3.419×10−119 and 3.203×10−110,
respectively, indicating a clear advantage of the two recurrent neural networks over
a random classifier. The complete summary of p-values is given in B.2. Following
behind at a comparable accuracy level are the TCN and GBC (both 53.6%), and the
GRU (53.5%). All machine learning models thus considerably outperform the LR
benchmark (52.9%).

Note that the prediction accuracy for k = 50 corresponds to the models’ actual
(i.e., unrestricted) test set performances. For all k < 50, the accuracy scores are
those achieved on the corresponding subset of predictions. For different portfolio
sizes, the accuracy is monotonically increasing for smaller values of k for all models
(see Fig. 2.8).

For the restricted out-of-sample performances the pattern of model rankings re-
mains similar, with all models improving in accuracy as k decreases. The LR model
performs worst in terms of prediction accuracy regardless of the portfolio size, while
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the RF maintains its lead over all other models for k = 20 (57.2%) and k = 10

(58.3%). For k = 5, the GRU outscores the RF with a result of 59.5% compared
to 59.3% of the RF and also outperforms the LSTM model (59.1%). For the k = 2

portfolio, the GRU (61.0%) still performs best, closely followed by the GBC (60.8%),
and remains slightly better than the RF and LSTM models (both 60.6%). The TCN
is more than one percentage point behind the GRU with only 59.5%, while the LR
models is even further behind with 59.2%. When only one coin is selected for the
long side and one for the short side of the portfolio (i.e., k = 1), the two recurrent
neural networks have an advantage over all other models. The LSTM narrowly out-
performs the GRU with an accuracy of 61.73% compared to 61.67% of the GRU.
The tree-based ensemble models (GBC and RF) follow with 61.0% and the TCN
achieves 60.8%, performing only slightly better than the LR (60.6%).

When considering the individual class predictions, a divergence between the per-
formance of the long and short legs is evident for all k < 50. The accuracy within
the predicted classes corresponds to the respective class precision (positive and neg-
ative predictive value). Note that for k = 50, the long and short leg performances
are equal by construction. A slight deviation in the calculated accuracies is due to
numerical limitations. For all models, the respective precision for the short positions
is considerably higher than for the long positions (see Table 2.11). At the same
time, the monotonicity of higher class precision for a lower value of k presists with
the notable exception of the TCN model, which achieves a slightly lower long-only
precision for k = 10 at 55.59% than for k = 20 at 55.65%. On the short side, the
monotonicity holds up to the k = 2 and k = 1 portfolios, where precision decreases
for the GRU, RF, and LR models.

Table 2.10.: Prediction accuracy for long-short portfolio and different portfolio sizes

Portfolio Size k = 1 k = 2 k = 5 k = 10 k = 20 k = 50

GRU 0.617 0.610 0.595 0.579 0.561 0.535
LSTM 0.617 0.606 0.591 0.582 0.566 0.541
TCN 0.608 0.595 0.585 0.574 0.563 0.536
GBC 0.610 0.608 0.585 0.578 0.565 0.536
RF 0.610 0.606 0.593 0.583 0.572 0.542
LR 0.606 0.592 0.575 0.566 0.551 0.529
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Figure 2.8.: Prediction accuracy for long-short portfolio and different portfolio sizes

Table 2.11.: Prediction accuracy for long and short legs of the long-short portfolio for dif-
ferent portfolio sizes

Portfolio Size k = 1 k = 2 k = 5 k = 10 k = 20 k = 50

Portfolio Type Long Short Long Short Long Short Long Short Long Short Long Short

GRU 0.601 0.632 0.583 0.636 0.569 0.622 0.555 0.604 0.550 0.573 0.535 0.535
LSTM 0.604 0.631 0.585 0.627 0.569 0.612 0.566 0.598 0.560 0.571 0.541 0.541
TCN 0.579 0.637 0.572 0.617 0.561 0.609 0.556 0.592 0.557 0.570 0.536 0.536
GBC 0.585 0.635 0.583 0.633 0.567 0.603 0.564 0.591 0.556 0.573 0.535 0.536
RF 0.597 0.623 0.578 0.634 0.570 0.615 0.569 0.598 0.564 0.581 0.542 0.543
LR 0.591 0.621 0.561 0.623 0.549 0.601 0.544 0.588 0.540 0.563 0.529 0.529

Individual Study Periods

In this section, we analyze the models’ accuracy for the k = 5 portfolio over time.
Figure 2.9 depicts how the achieved accuracies vary across study periods. The rank-
ing between the models is not constant and does not follow a clear pattern, but all
accuracies for each period are significantly larger than 50% based on the binomial
test (see Appendix B.3 for an overview of all p-values).

The GRU performs best in the first study period with an accuracy of 60.8% (pri-
marily due to its high short-leg precision of 62.8%, which exceeds the TCN’s preci-
sion of 61.5%), followed by the GBC with 60.5%. Compared to the overall accuracies
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across all periods, the LR model’s individual period performance exhibits the largest
variability. The TCN, which performs worst among the three deep learning models
(GRU, LSTM, and TCN) overall for k = 5, achieves the highest long-short accuracy
in the second study period with 59.9%, compared to the 58.9% of the LSTM and
the GRU’s 58.3%. This is mainly due to its superior long-leg precision of 58.3% in
that period (see Tab. 2.12).

In the third study period, the GRU again achieves the highest long-short accu-
racy again with 60.9%, as its short-only precision of 62.1% is considerably higher
than that of all other models in this period (see 2.12). Interestingly, the LR model
(60.1%) has the second best performance of all models, with a slight edge over the
RF (60.0%). The TCN (58.7%) performs worse than the LSTM (59.2%), but man-
ages to outperform the GBC, which performs worst with 57.6%. The fourth study
period sees the TCN’s long-short accuracy drop to only 55.1%, as its long-leg perfor-
mance declines to a mere 48.5%. At the same time, it exhibits the highest short-leg
accuracy of all models and catches up again with the other models in study period
5, where all models score within a relatively narrow range between 58.0% (LR) and
59.9% (both LSTM and RF). while showing the highest short-leg accuracy among
all models, before it catches up again in study period 5 by achieving 59%, where
all models score within a relatively narrow margin between 58.0% (LR) and 59.9%
(both LSTM and RF).

In summary, the LR’s relative disadvantage with regard to overall accuracy is due
to its sub-par performance in period 1, while the overall best GRU model performs
competitively across all study periods and outperforms all other models in periods 1
and 3. The same is true for the second and third best overall models, the RF and the
LSTM, which also score competitively in all study periods and narrowly outperform
all other models in study period 5.

2.3.4.2 Trading Results

This section presents the financial performance results of the employed long-short
trading strategy as well as the long side of the strategy. The financial performance is
analyzed along the dimensions of return, risk, and risk-return metrics for the k = 5

portfolio, a diversified portfolio with five long and five short positions. We restrict
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Figure 2.9.: Accuracy of k = 5 long-short portfolio prediction by study period

Table 2.12.: Prediction accuracy for long and short legs of k = 5 portfolio for individual
study periods

Study Period 1 2 3 4 5

Portfolio Type Long Short Long Short Long Short Long Short Long Short

GRU 0.588 0.628 0.557 0.609 0.597 0.621 0.551 0.608 0.551 0.644
LSTM 0.575 0.609 0.553 0.624 0.591 0.593 0.567 0.597 0.561 0.636
TCN 0.583 0.615 0.583 0.616 0.581 0.593 0.485 0.616 0.575 0.605
GBC 0.605 0.604 0.576 0.579 0.545 0.607 0.553 0.604 0.555 0.621
RF 0.576 0.609 0.577 0.604 0.584 0.616 0.564 0.596 0.551 0.648
LR 0.483 0.581 0.565 0.583 0.597 0.604 0.575 0.597 0.523 0.637

the financial analysis to this portfolio, which includes 10% of the market constituents,
similar to Fischer et al. (2019), who include 15% of the respective market in their
portfolio.

The equally-weighted market portfolio (consisting of the 100 eligible coins that
constitute the asset universe for each study period) serves as the natural benchmark
for the tested trading strategies. Figure 2.10 shows the performance of the market
index over all study periods as well as the performance of Bitcoin over the same time
period and illustrates their high correlation.
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Daily Returns

For portfolio size k = 5, the two recurrent neural network architectures (LSTM and
GRU) achieve the highest daily returns (with 1.44% and 1.35%, respectively). Table
2.13 shows the daily return metrics for all models. Notably, the simplest model,
the logistic regression, outperforms the tree-based models (RF and GBC) with a
daily return of 1.18% (compared to 1.10% and 0.99%, respectively), and performs
only slightly worse than the LSTM and GRU models. The TCN performs worst
among all models, earning daily returns of only 0.31%, making it the only model to
underperform the general market (0.33%).

In terms of risk as measured by the returns’ standard deviation, all models exhibit
a considerably higher volatility than the overall market (0.0473). The the LSTM’s
strategy returns exhibit the largest standard deviation (0.0850), closely followed by
the the GRU (0.0825) and LR (0.0821). The TCN model (0.0783) as well as the RF
(0.0768) and GBC (0.0762) have a slightly lower volatility. When only taking into
account the downside risk of returns, measured by the downside standard deviation,
the GRU exhibits the highest risk at 0.8347, followed by the TCN (0.8138) and the
LSTM (0.7899). As is the case with the standard deviation, all three deep learning
models have slightly higher downside deviations than the tree-based ensemble models
(GBC: 0.7742, RF: 0.7696) and considerably higher values than the overall market
(0.5485).

Quantifying the financial risk in terms of the value-at-risk at 1%, the GRU
(-23.56%) and the GBC (-22.29%) perform slightly worse than the rest of the tested
models, which range between -20.45% (LSTM) and -19.23% (LR).

Considering only the long leg of the portfolio results in similarly profitable daily
returns for all models with the TCN model also lagging behind the other models
(see Table 2.14). Compared to the full long-short portfolio, the long leg returns are
slightly lower for the GRU and LSTM models, while the TCN and GBC have higher
mean returns. For the RF, the long leg of the portfolio generates the same mean
returns as when the short leg is included in the portfolio. This implies a positive
contribution of the short leg of the long-short portfolio for the GRU and LSTM and
a negative mean short-only returns for the TCN and GBC. Both the RF and the LR
have negligible positive contributions on the short side.
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With regard to the long leg’s return distribution, we observe a lower standard
deviation than for the long-short portfolio for all models, indicating a detrimental
contribution of the short leg in terms of added risk. The same is true when only
downside risk is considered. Here, the relative advantage of the long leg of the
portfolio is even more pronounced. The lower downside risk for the long leg is most
notable for the TCN, where the downside risk decreases from 0.8138 to 0.4477 when
the short leg is not included.

Table 2.13.: Daily return, risk, and annualized risk-return metrics for all models and the
market (MKT) for the k = 5 long-short portfolio

GRU LSTM TCN GBC RF LR MKT

Mean Return 0.01348 0.01436 0.00308 0.00991 0.01098 0.01176 0.00330
Return Stdv. 0.08254 0.08504 0.07830 0.07615 0.07683 0.08212 0.04729
Downside Risk 0.83468 0.78989 0.81382 0.77421 0.76958 0.76237 0.54851
VaR 1% -0.23565 -0.20450 -0.20177 -0.22286 -0.19656 -0.19230 -0.14187
VaR 5% -0.10640 -0.10520 -0.11342 -0.09984 -0.09976 -0.10364 -0.07389
CVaR 1% -0.32224 -0.30404 -0.28801 -0.28829 -0.28309 -0.28156 -0.19054
CVaR 5% -0.18979 -0.17214 -0.17799 -0.17402 -0.16961 -0.16893 -0.11744
Ann. Volatility 1.57702 1.62474 1.49593 1.45486 1.46775 1.56897 0.90338
Sharpe Ratio 3.12061 3.22663 0.75165 2.48733 2.73153 2.73590 1.33105
Sortino Ratio 4.89560 5.51085 1.14722 3.88098 4.32569 4.67511 1.82023
Excess Sharpe 0.10596 0.11276 -0.00213 0.07226 0.08315 0.08729 -

Table 2.14.: Daily return, risk, and annualized risk-return metrics for all models and the
market (MKT) for the long leg of the k = 5 portfolio

GRU LSTM TCN GBC RF LR MKT

Mean Return 0.01131 0.01371 0.00529 0.01108 0.01097 0.01163 0.00330
Return Stdv. 0.07259 0.07445 0.05621 0.06962 0.06851 0.07398 0.04729
Downside Risk 0.62922 0.57016 0.44772 0.59317 0.59060 0.64008 0.54851
VaR 1% -0.15797 -0.13844 -0.12434 -0.15598 -0.14938 -0.16315 -0.14187
VaR 5% -0.08319 -0.08026 -0.05743 -0.07369 -0.07086 -0.08074 -0.07389
CVaR 1% -0.23227 -0.19367 -0.17349 -0.22397 -0.22932 -0.23833 -0.19054
CVaR 5% -0.13600 -0.12351 -0.09442 -0.12579 -0.12429 -0.13877 -0.11744
Ann. Volatility 1.38691 1.42229 1.07397 1.33012 1.30886 1.41336 0.90338
Sharpe Ratio 2.97663 3.51991 1.79749 3.04240 3.05875 3.00373 1.33105
Sortino Ratio 5.44768 7.29051 3.58004 5.66458 5.62834 5.50700 1.82023
Excess Sharpe 0.14801 0.18077 0.04223 0.15336 0.14865 0.14177 -



74 Novel Object of Transaction: Bitcoin and Other Cryptocurrencies

Risk-Return Characteristics

Considering the realized excess returns in relation to the incurred risk, the ranking is
the same as for mean daily returns for the k = 5 long-short portfolio strategy, with
the LSTM and GRU performing best with annualized Sharpe ratios of 3.23 and 3.12,
respectively. Only the TCN (0.75) performs worse than the general market (1.33),
while all other models perform considerably better. The substantial advantage of the
RF over the LR in terms of accuracy (59.3% vs. 57.5%) notably does not translate
into a more favorable Sharpe ratio, as the LR has a slight edge over with a ratio of
2.736 compared to the RF’s 2.732.

The overall ranking in terms of risk-return performance remains unchanged when
using the Sortino ratio, which only considers downside deviation for quantifying
investment risk. The LSTM leads with a ratio of 5.51 ahead of the GRU with 4.90,
while the TCN falls behind all other models and the general market (1.82) with a
Sortino ratio of 1.15.

On the long-only side, all models except the GRU perform better in terms of the
Sharpe ratio compared with the long-short portfolio performance, whereas the GRU
drops from 3.12 to 2.98. The LSTM’s long side of the portfolio strategy performs
considerably better than all other models with a Sharpe ratio of 3.52. All other
models, except the TCN, exhibit Sharpe ratios close to 3. The RF performs slightly
better than GBC (3.04) at 3.06, while the GRU (2.98) underperforms the LR model
(3.00). The TCN lags far behind with a ratio of only 1.80, but still manages to
outperform the market (1.33).

As is the case for the full long-short portfolio, the LSTM achieves the highest
long-only Sortino ratio with a value of 7.29, well ahead of the next best models, the
GBC (5.66), RF (5.63), LR (5.51), and the GRU (5.45). However, all models have a
higher Sortino ratio for the long side of the portfolio compared to the portfolio as a
whole. Compared to the other models, the TCN model performs considerably worse
with only 3.58, but has the largest relative difference compared with the long-short
portfolio of more than 100%.
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Figure 2.10.: Cumulative market returns and Bitcoin (BTC) returns for the full test set
date range with starting value 1 at the beginning of the test set of study
period 1 (2020/04/26)

2.3.5 Discussion

This study demonstrates the potential of machine learning for cryptocurrency mar-
ket prediction, as all utilized models significantly outperform a random classifier.
Our analysis indicates that the employed recurrent neural networks, the temporal
convolutional network, and tree-based ensembles are particularly effective in cor-
rectly classifying the relative daily performance of cryptocurrencies. Comparing the
long- and short-leg predictions indicates that short legs are more predictable, as we
generally document a slightly higher accuracy for short-leg predictions.

In evaluating the economic implications of these predictions, we examine the per-
formance of long-short portfolios that trade 10% of all model constituents. The
higher overall portfolio risk of the resulting long-short portfolios may be driven by a
lower degree of portfolio diversification compared to the market portfolio. However,
as the portfolio returns of five of the six employed machine learning models yield
positive returns of at least three times the market portfolio return, the long-short
portfolios based on these models outperform the buy-and-hold market portfolio on
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a risk-adjusted basis. The temporal convolutional neural network is a noteworthy
exception, as its high relative accuracy does not directly translate into a high pre-
diction performance. This finding indicates that the temporal convolutional neural
network is most confident in classifying observations with lower corresponding abso-
lute returns than the other models. The GRU and LSTM models appear especially
well-suited for the employed trading strategy, as the long-short portfolios based on
these models’ predictions yield the highest risk-adjusted performance. Overall, these
results indicate a challenge to weak form cryptocurrency market efficiency (Fama,
1970), albeit the influence of certain limits to arbitrage cannot be entirely ruled out.

Furthermore, the risk-adjusted outperformance of the employed long-short strate-
gies may have been reduced by an inflation of the buy-and-hold market benchmark.
The potential inflation stems from the overall market upturn in the out-of-sample
periods, as the buy-and-hold market strategy is exposed to the long-side of the cryp-
tocurrency market. At the same time, the long-short portfolios exhibit zero net
exposure. Also, due to the overall market upturn, the positive performance of the
long-short portfolios is primarily driven by the long-side of the long-short portfolios,
despite the slightly higher short-leg classification accuracy. An exception is study
period five, characterized by an overall market downturn. In that specific period,
the short-leg of the portfolio is responsible for the overall outperformance of the
best-performing long-short portfolios.

The presented results are subject to several limitations and assumptions. First, we
assume to be able to, on average, buy and sell cryptocurrencies at mid-price. Second,
we assume to be able to short-sell the considered cryptocurrencies. Short-selling
generally induces additional costs and is not consistently possible for all included
cryptocurrencies. In this study, the risk-adjusted outperformance of the employed
portfolio strategy compared to the market benchmark is predominantly driven by the
long portfolio legs. Therefore, this limitation would be more pronounced in more
neutral market environments. Third, as with every empirical study, this study is
limited by its finite sample size. Finally, the external validity of the results may be
limited by the use of cryptocurrency price data aggregated over multiple exchanges.
Regarding the latter potential limitation, Vidal-Tomás (2022) finds that the use
of aggregated cryptocurrency exhibits the same processes as data from individual
exchanges. He infers that aggregated cryptocurrency data is appropriate to utilize
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in research.

2.3.6 Conclusion

In this study, we employ several machine learning models to predict the relative daily
market movements of the 100 largest cryptocurrencies by market capitalization. We
show that all employed models make statistically viable predictions, whereby the av-
erage accuracy values calculated on all cryptocurrencies range from 52.9% to 54.1%
for the different models. Accuracy values range from 57.7% to 59.5% when calcu-
lated on the subset of predictions with the 10% highest model confidences per class
per day. A long-short portfolio strategy based on the predictions of the employed
LSTM and GRU ensemble models yields an annualized out-of-sample Sharpe ratio
after transaction cost of 3.23 and 3.12, respectively. In comparison, the buy-and-
hold benchmark market portfolio strategy only yields a Sharpe ratio of 1.33. These
results indicate a challenge to weak form cryptocurrency market efficiency, albeit the
influence of certain limits to arbitrage cannot be entirely ruled out.





CHAPTER 3

CHANGED SOCIO-ECONOMIC AND LEGAL ENVIRON-
MENT: COVID-19 PANDEMIC

3.1 Financial Market Prediction During the

COVID-19 Pandemic Using Machine Learn-

ing
After developing an understanding of the application of machine learning to the

market prediction of the novel transaction object cryptocurrency, this chapter exam-
ines financial market prediction in light of the COVID-19 pandemic, which represents
a shift in the socio-economic environment of financial markets. The following study
examines predictability of S&P 500 stock movements during the COVID-19 pan-
demic using Machine Learning. The presented results show that the forecasts of a
random forest and a logistic regression are significantly more accurate when a feature
set including COVID-19 related data is utilized compared to a benchmark feature
set without COVID-19 related variables. A feature importance analysis of the most
accurate model reveals that the predictive power is not concentrated on a single
COVID-19-related feature type but spreads over multiple different features.

This Section, in large parts, comprises the unpublished article: P. Jaquart, F.
Furtwängler, C.-P. Wachter, M. Kirchenbauer, C. Weinhardt, Financial Market Pre-
diction During the COVID-19 Pandemic Using Machine Learning, Working Paper,
2022.
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3.1.1 Introduction

The COVID-19 pandemic, induced by the SARS-COV-2 virus (Fauci et al., 2020),
has major ongoing implications for societies (Mishra et al., 2020; Nicola et al., 2020)
and economies (James K. Jackson, 2021; Ozili and Arun, 2020) around the globe.
As with the whole economy, international financial markets have experienced vari-
ous effects of the pandemic. Amongst these effects are more pronounced behavioral
investment biases (Li et al., 2021), increased investor fear and panic (Haroon and
Rizvi, 2020) and an overall increased market volatility (Salisu and Vo, 2020; On-
ali, 2020). For the first months of the pandemic, researchers have documented a
robust negative relationship between COVID-19 case numbers and financial market
performance. These first months of the pandemic can be characterized by rapidly
rising global COVID-19 case numbers (Johns Hopkins University, 2022), increased
panic amongst investors (Haroon and Rizvi, 2020), and mostly negative stock mar-
ket developments around the globe. While these early pandemic months have been
examined by various researchers that focus on specific pandemic aspects (e.g., see
Ashraf (2021); Ciner (2021); Corbet et al. (2021)), there remain open questions re-
garding the utilization of COVID-19-related data for financial market prediction in a
later, more stable pandemic stage. Against this backdrop, we aim to tackle some of
these questions by examining the predictability of S&P 500 stock price movements
with COVID-19-related data. As many potential pandemic-related variables exist,
we apply flexible machine learning models to shed light on this prediction problem.
To summarize, our overarching research question is:

Research Question 4 What is the performance of machine learning models pre-
dicting stock price movements of the S&P 500 during the COVID-19 pandemic?

We answer this research question by applying different random forest models to
the task of predicting daily stock price movements of S&P 500 constituent stocks.
We select this machine learning method as random forests can incorporate a large
number of predictive variables and have been applied successfully to other financial
market prediction tasks in the past. We further make use of logistic regression models
to provide a predictive performance benchmark. Our analysis utilizes a comprehen-
sive feature set consisting of various COVID-19-related data and control variables.
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Subsequently, we analyze the feature importance of all utilized features. We further
evaluate the predictive power of COVID-19-related variables by comparing the out-
of-sample predictive performance of different models per method type, whereby one
of these models relies on the full feature set to make predictions. In contrast, the
other model only utilizes data unrelated to the COVID-19 pandemic.

3.1.2 Related Work

Due to the recent nature of the COVID-19 pandemic, there is limited evidence
regarding its impact on financial markets. As of the time of writing this paper,
most researchers have focused on the first months of the pandemic. For instance,
Salisu and Vo (2020) examine the impact of google search volume related to health
news on stock indices in the twenty countries with the most COVID-19 cases as
of March 30, 2020. Using daily data from the beginning of January to the end of
March 2020, they find that higher health news search volumes have a negative effect
on stock returns. Wang et al. (2021) analyze the impact of the COVID-19 pandemic
on stocks in the solar energy sector. They find that the intensity of the COVID-19
pandemic, approximated by the number of confirmed cases and government response
stringency, negatively affects solar energy stocks from December 31, 2019, to June
4, 2020. Ashraf (2021) sheds light on the moderating effect of national culture on
the impact of the COVID-19 pandemic on stock markets. He utilizes daily data
from January 22th until April 17 in 2020 and presents evidence for a higher negative
reaction of stock markets in countries with pronounced national-level uncertainty
aversion. Pham et al. (2021) examine the impact of COVID-19-related information
on stock returns at a US state level. Using data from January 22th to June 30,
they find that next-day stock returns in a state are negatively related to the number
of COVID-19 cases in that state. They show that this effect is smaller in states
with more governmental support and with better medical resources. Salisu et al.
(2020) investigate the effect of global fear on commodity returns up to five days
in the future on daily data between March 11 to May 18, 2020. They show that
commodity returns rise as fear related to COVID-19, approximated by the Global
Fear Index, increases. Onali (2020) studies the effect of reported cases and deaths
in different countries on the US stock market, using daily data from April 9, 2019,
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to April 9, 2020. Utilizing a GARCH model, he finds that only the COVID-19 cases
in China are negatively related to US stock returns. Further, he applies a vector
autoregression model, which also indicates that the reported deaths in France and
Italy negatively impact stock returns and positively impact the volatility index VIX.
Cepoi (2020) analyzes the relationship between news and stock market index returns
in the US and major European countries. He applies a panel quantile regression
framework to daily data from February 3, 2020, to April 17, 2020, and finds that stock
market indices and different pandemic-related news exhibit asymmetric relationships.
Corbet et al. (2021) investigate the impact of the COVID-19 pandemic on companies
whose brand is associated with the word “Corona.” They deploy a GARCH model
to analyze a dataset ranging from March 11, 2019, to March 10, 2020, and present
evidence for a negative knock-on effect of the pandemic on the stock performance
of these companies. Subramaniam and Chakraborty (2021) construct a COVID-
19 daily fear index based on Google search volume between March and August
2020. They find a robust negative relationship in-sample between fear and returns
of major stock market indices of various countries up to five days in the future. Ciner
(2021) examines US stock market predictability in the early stage of the COVID-19
pandemic. Applying a LASSO approach to a daily data set from January 2 to April
16, 2020, he finds that high yield and investment-grade corporate bonds exhibit
significant predictive power for the US stock market. Narayan et al. (2021) analyze
the impact of different governmental responses of G7 countries to the COVID-19
pandemic. Investigating daily data between July 1, 2019, and April 16, 2020, they
find that lockdowns travel bans, and stimulus packages positively affect stock returns
in the considered countries.

3.1.3 Methodology

3.1.3.1 Data

In this study, we utilize daily data ranging from the beginning of July 2020 until
the end of December 2021. Our asset universe consists of all stocks in the S&P 500,
whereby we use the index composition as of September 1, 2021 (the start date of
our test set) to prevent a survivorship bias in our data. For company-specific data,
we rely on the Compustat database (University of Pennsylvania, 2022), from which
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we acquire daily closing price, daily total return factor, and the S&P industry sector
code. Furthermore, we download the values for the factors small-minus-big, high-
minus-low, market, momentum and the daily risk-free rate from Kenneth French’s
data library (French, 2022). We obtain daily values for the number of PCR tests in
the US and the number of COVID-19 cases, deaths, and recoveries in all countries
from the COVID-19 data repository of the John Hopkins University (Johns Hopkins
University, 2022). From the Our World in Data repository (Ritchie et al., 2020) by
the Oxford University, we acquire the daily values for the number of hospitalized
COVID-19 patients placed in an intensive care unit, vaccinations against COVID-
19, the COVID-19 reproduction rate, and government stringency, for each country.
We obtain the daily values of the infectious disease equity market volatility index
based on the work of (Baker et al., 2019) from the website of the Economic Policy
Uncertainty research team (Economic Policy Uncertainty, 2022). Additionally, we
download the relative number of google search queries for the keyword ‘coronavirus’
from Google Trends and create a continuous trend time series by scaling the values
relative to the training period. Finally, acquire information about announcements
of governmental fiscal help related to the finance sector-related from the worldbank
homepage (Worldbank, 2022). We only include NYSE trading days into our data
set, remove days with missing observations and use the UTC timezone to aggregate
all data. For sources that do not provide the data in UTC, we shift the respective
daily timestamp by one day into the future to ensure that the feature set at a certain
point in time does not consist of future data.

3.1.3.2 Feature Engineering

To receive our final feature set, we transform the downloaded data as follows: We
calculate the daily total excess returns for each company by scaling the relative
change of the daily closing prices with the daily total return factor and subtracting
the daily risk-free return. We obtain the beta values for a specific day and company
by regressing the daily values of the four Carhart-factors (Carhart, 1997), three of
which are based on Fama and French (1993)), on the daily excess return of that
company for the last 250 trading days prior to the selected day. This procedure is
repeated for each day in our data set to receive daily beta values for every company
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in the data set. We construct additional features that represent the recent feature
history to enable the different models to utilize information about the feature de-
velopment over time. Concretely, we use the following set of intervals to aggregate
the feature history for a specific feature: (0, 1], (1, 5], (5, 10], ( 10, 20], ( 20, 30],
( 30, 40]. Every interval in the set denotes the days prior to the prediction point
over which a feature is aggregated. For return-based features, we calculate multi-
period excess returns over these intervals. We construct a binary dummy variable
for fiscal support announcements for each interval that indicates whether additional
fiscal support was announced over that time window. We calculate the absolute and
relative growth over the respective intervals for all other features that vary over time.
Finally, we create one-hot encoded dummy variables for the weekday and the S&P
industry sector. Table 3.1 gives a summary over the utilized feature types.

Table 3.1.: Overview of the utilized feature types
COVID-19-related Features Other Features

Number of active COVID-19 cases Weekday
Number of COVID-19 recoveries S&P industry sector code
Number of COVID-19 related deaths Beta small-minus-big
Number of officially conducted COVID-19 tests Beta high-minus-low
People vaccinated against COVID-19 Beta market
COVID-19 reproduction rate Beta momentum
Government response stringency Daily excess return
Google search trends
Infectious disease equity market volatility index
Announcements of goverment fiscal help
Number of intensive care unit COVID-19 patients
COVID-19 reproduction rate

3.1.3.3 Targets

We construct binary target variables based on the next-day excess returns of the
different companies. Concretely, we use the median return of the training set to
split the two different classes. Thereby, observations with a higher next-day excess
return than the training set median are grouped into Class 0, and observations with
a lower next-day excess return are grouped into Class 1. This procedure ensures a
balanced training set, which is especially important for noisy prediction problems,
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such as financial market prediction tasks. An imbalanced training set might cause
prediction models to learn to predict the majority class solely.

3.1.3.4 Training, Validation, and Test Set

The first 12 months of data, which incorporate 124,146 observations, constitute our
set for model training. We use the subsequent two months of data, consisting of
20,461 observations, as our validation set for model tuning. The final four months
of data, amounting to 40,811 observations, make up our test set used for an out-of-
sample evaluation of model performance and feature importance.

3.1.3.5 Models

Random Forest

Random forests are an ensemble learning method consisting of multiple, not perfectly
correlated decision trees (Breiman et al., 1984; Breiman, 2001). They can be used for
classification and regression problems and have been applied successfully to various
financial market prediction tasks (Krauss et al., 2017; Gu et al., 2020). Here, we use
random forest classifiers consisting of 100 individual decision trees. Furthermore,
we perform a grid search on the validation set to optimize the maximum individual
decision tree depth and the number of features considered at each split in a tree.
As our feature set utilizes a relatively high number of dummy variables, we also
test a relatively high numbers of maximum features randomly considered per split.
A higher number of features generally leads to more precise individual trees but a
higher correlation amongst the different trees in the random forest. Based on the
grid search on the validation set, we choose a parameterization with a tree depth of 5,
whereby 40% of all features are considered per split for our final model that includes
all features. For the model that is not trained on COVID-19-related features, the
final model has an individual tree depth of two and considers the root of the total
number of features at each split. The full parameter grid is depicted in Table 3.2.
For the other parameters of our random forests, we use the default parameter values
of the scikit-learn library (Defazio et al., 2014).
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Table 3.2.: Parameter tuning grid

Model Parameter Tuning Grid

Random Forest
Maximum depth: {1, 2, 3, 5, 10, 15, 20, None}
Maximum Features per Split: {sqrt, log2, 0.2, 0.4, 0.6, 0.8, 1}

Logistic Regression Penalty: {l2, l1, elasticnet, none}

Logistic Regression

We further utilize a logistic regression as a benchmark model, as logistic regression
models have become a standard for classification tasks over the last decades (Hosmer
Jr et al., 2013). Logistic regression models follow the same principles as linear
regression models, with the difference of a binary target variable. For the applied
logistic regression model, we tune the applied penalty term based on the validation
set accuracy as detailed in Table 3.2. Multiple penalty specifications yield the same
validation set accuracy for the logistic regression models trained on the complete
feature set. In this case, we apply an l2-penalty, which represents the default value of
the scikit-learn library (Pedregosa et al., 2011). For the logistic regression model only
using the features not directly related to COVID-19 uses, the l1-penalty yields the
highest validation set performance. We further train our logistic regression models
with the ’saga’ (Defazio et al., 2014) solver, as it trains fast on larger datasets and
supports all considered penalty values in our tuning grid.

3.1.3.6 Evaluation

We evaluate our predictive models using the accuracy measure. Additionally, we
utilize Diebold-Mariano tests (Diebold and Mariano, 1994) in combination with the
mean absolute error loss function to compare the accuracy of different model forecasts
pairwise, similar to Fischer and Krauss (2018). Since we train our models on a
balanced training set, we can further calculate the probability for a random classifier
with an accuracy of 50% to achieve a given model’s test set accuracy based on the
binomial distribution:

X ∼ B(n = #test, p = 0.5, q = 0.5), (3.1)
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where #test (=̂40, 811) denotes the number of test set observations. Additionally,
we calculate the precision and recall measures and the F1-score for every model and
target class to examine potential differences in the predictability of the two classes.
Also, we evaluate the feature importance of our random forest model using the
measure of permutation feature importance. We consecutively permute all features
randomly and calculate the overall decrease in model performance. We scale the
overall decreases in model performance so that the feature importance scores sum
up to one. If the decrease in model performance is higher for a given permuted
feature, the respective model relies more on that feature for correct predictions.

3.1.4 Results

3.1.4.1 Model Performance

Table 3.3 presents the predictive accuracy of the different prediction models. The
random forest utilizing COVID-19-related data achieves an out-of-sample predictive
accuracy of 53.84%, while the logistic regression benchmark model trained on the
same data set achieves a predictive accuracy of 52.74%. In comparison, the random
forest and logistic regression model, trained on the data set without COVID-19-
related data, only exhibit a test set accuracy of 50.87% and 50.56%, respectively.

Table 3.3.: Overview of the different model out-of-sample accuracy scores
Random Forest Logistic Regression

Full Feature Set No Covid-Related Features Full Feature Set No Covid-Related Features

Accuracy 0.538409 0.508711 0.527358 0.505574

Table 3.4 presents the results of the Diebold-Mariano tests (Diebold and Mariano,
1994), which show that the forecasts by the random forest model trained on the
full feature set are significantly more accurate than the forecasts of all other models
at a significance level of 1%. Additionally, the logistic regression model trained on
the full feature set yields significantly more accurate forecasts than the models only
trained on data unrelated to COVID-19.



88 Financial Market Prediction During the COVID-19 Pandemic

Table 3.4.: Diebold-Mariano test p-values to reject the null hypothesis towards the alterna-
tive hypothesis that the forecast of model i on the test sample is more accurate
than the forecast of model j

i
j

Random Forest Logistic Regression

Full Feature Set No Covid-Related Features Full Feature Set No Covid-Related Features

Random Forest
Full Feature Set - 0.000000 0.001792 0.000000
No Covid-Related Features 1.000000 - 1.000000 0.328625

Logistic Regression
Full Feature Set 0.998208 0.000000 - 0.000000
No Covid-Related Features 1.000000 0.671375 1.000000 -

As shown in Table 3.6, we find that all models make statistically viable predictions.
Our random forest and logistic regression model trained on the full features set have
respective probabilities of 1.7875E-55 and 1.1295e-29 for a true model accuracy of
50%. For the random forest and the logistic regression trained on the feature set
without COVID-19 data, these probabilities are 8.0668e-06 and 3.1262e-04. Table
3.5 presents precision, recall and F1-scores of the different models. It shows that the
predictions of the full-feature random forest model are mostly balanced over both
classes, as precision and recall are over 50% for Class 0 and Class 1. In comparison,
the best performing logistic regression model is more likely to correctly classify ob-
servations that belong in Class 0, as it exhibits a recall score of 77.92% for Class 0
and 25.76% for Class 1.

Table 3.5.: Overview of the different models’ precision, recall and F1-scores
Random Forest Logistic Regression

Full Feature Set No Covid-Related Features Full Feature Set No Covid-Related Features

Precision 0.555060 0.526326 0.529684 0.512789
Class 0 Recall 0.547812 0.513177 0.779276 0.907783

F1-Score 0.551412 0.519668 0.630684 0.655371

Precision 0.521000 0.490744 0.519914 0.426090
Class 1 Recall 0.528309 0.503913 0.256760 0.073541

F1-Score 0.524629 0.497242 0.343755 0.125433

Table 3.6.: Probabilities for the different prediction models to exhibit a true model accuracy
of 50%

Random Forest Logistic Regression

Full Feature Set No Covid-Related Features Full Feature Set No Covid-Related Features

Probability 1.787494E-55 8.066806e-06 1.129511e-29 3.126180e-04
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3.1.4.2 Feature Importance

Figure 3.1 presents the permutation feature importance scores of the 30 most relevant
features of the full-feature random forest model. It shows that the model generally
relies on numerous features to make predictions, as individual feature importance
scores do not exceed 2%. The most important features are the newspaper-based
infectious disease equity market volatility tracker and features that indicate the
state of the pandemic, such as the changes in COVID-19-related active cases and
deaths, the number of conducted COVID-19 tests and the number of COVID-19
patients in intensive care units. Regarding the regional distinction of features, we find
that features indicating the state of the pandemic in the US (11 features) are most
common among the 30 most important features, followed by features that indicate
the state of the pandemic in the EU (five features) and China (four features), as
well as an aggregated world-wide scope (four features). Furthermore, the remaining
features represent different temporal characteristics of the infectious disease equity
market volatility index, which is based on US newspapers.
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Figure 3.1.: Permutation feature importance scores for the most relevant features of the
full-feature random forest

3.1.5 Discussion

Our study demonstrates that COVID-19-related data exhibits predictive power for
next-day price movements of S&P 500 constituent stocks. While previous studies
have primarily examined the first months of the pandemic, a stage in the COVID-
19 pandemic that can be characterized by investor fear (Haroon and Rizvi, 2020)
and high market volatility (Salisu and Vo, 2020; Onali, 2020), we shed light on a
more extended, subsequent period. We document that the random forest model
yields more accurate and balanced forecasts than the logistic regression model when
training on the full feature set in our study. In combination with the finding that
our grid search optimization results in medium-sized individual trees, this indicates
that allowing for a limited number of high-dimensional feature interactions improves
predictions for the problem at hand. The feature importance analysis reveals that
the predictive power is not concentrated on a single COVID-19-related feature but
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is rather spread over multiple different feature types. The finding that US-based
pandemic data tends to be most relevant for making predictions might be explained
by the fact that S&P 500 companies generate most of their revenue domestically
(Silverblatt, 2019). An explicit limitation of this study stems from the dynamic evo-
lution of the COVID-19 pandemic, as different mutations of the SARS-Cov-2 virus
may become prevalent over time, and medical research will develop new methods
for treatment and vaccination. While we aim to reduce part of this limitation by
examining a relatively long period, our study still provides a snapshot in time, and
similar analyses should be repeated for future stages of the pandemic. Furthermore,
while we include well-established benchmark predictor variables (Gu et al., 2020)
such as the three Fama-French factors (Fama and MacBeth, 1973), we can not en-
tirely rule out a potential omitted variable bias. In this study, we evaluate market
predictability through a binary classification task to create an overall benchmark in
the academic literature in demonstrating the overall feasibility of financial market
prediction using COVID-19 data. Based on this finding, future researchers could ex-
amine classification models with more than two classes or regression models trained
to predict the exact excess returns of the different stocks. However, one has to keep in
mind that this would further increase the complexity of the prediction problem and
that one should generally expect relatively low predictability of developed financial
markets in light of financial market efficiency. Future research could also examine
the use of other machine learning methods and apply additional COVID-19-related
features to the problem. While we have aimed to create a comprehensive feature set,
new features might become available in the future due to new COVID-19-related
developments.

3.1.6 Conclusion

Our study examines the predictability of S&P 500 stock movements during the
COVID-19 pandemic utilizing COVID-19-related features. We find that a random
forest and a logistic regression model trained on a comprehensive feature set that
includes various COVID-19-related features yields more accurate predictions than
their counterparts trained only on the subset of features unrelated to the COVID-
19 pandemic. Concretely, the full-data random forest model exhibits a predictive
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out-of-sample accuracy of 53.84%, whereby the respective logistic regression model
exhibits a predictive out-of-sample accuracy of 52.74%. In comparison, the random
forest and logistic regression models that are trained on data not directly related to
COVID-19 exhibit a respective predictive accuracy of 50.87% and 50.56%. However,
we still find that all employed models significantly outperform a random classifier. A
feature importance analysis of the best model reveals that their predictive power is
not concentrated on a single COVID-19-related feature type but spreads over multi-
ple different features. Analyzing the regional differences, we find that features that
reflect the pandemic development in the US tend to be more relevant than interna-
tional developments, which may be explained by the fact that companies in the S&P
500 still generate a majority of their revenue domestically.



CHAPTER 4

CHANGED AGENT BEHAVIOR AND MARKET STRUC-
TURE: THE SHIFT FROM ACTIVE TOWARDS PASSIVE
INVESTMENT

After examining the utilization of machine learning models for market prediction in
light of developments in other central financial market elements, this chapter ana-
lyzes the implications of an important development regarding agent behavior and
market structure, namely the shift from active to passive investment. Furthermore,
it examines the implications of more accurate market forecasts of active investors
caused, for instance, by employing machine learning methods for trading purposes.
The following study presents a round-based simulated market framework in which ac-
tive, passive, and random investors repeatedly optimize their portfolio weights and
interact with each other through issuing orders. The presented results show that
higher fractions of active investment within a market lead to increased fundamental
market efficiency. The marginal increase in fundamental market efficiency per ad-
ditional active investor is lower in markets with higher levels of active investment.
Furthermore, the results indicate that large fractions of passive investors within a
market may facilitate technical price bubbles, leading to market failure. Regarding
changes in active investors’ prediction accuracy, the results show that more accurate
predictions of active investors increase fundamental market efficiency. This increase
is more pronounced in markets with a higher level of active investment.

This Section, in large parts, comprises the unpublished article: P. Jaquart, M.
Motz, L. Köhler, C. Weinhardt, The Impact of Active and Passive Investment on
Fundamental Market Efficiency: A Simulation Study, Under Review, 2022.
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4.1 The Impact of Active and Passive Investment on

Fundamental Market Efficiency: A Simulation

Study

4.1.1 Introduction

Passive investing has steadily grown relative to active investing over the last decades
(Blitz, 2014; Anadu et al., 2019) and is expected to overtake active investing by
2026 in the US equity market (Seyffart, 2021). In the US domestic equity-fund
market, passive vehicles have already overtaken active ones due to the large number
of passive funds tracking the S&P 500 index (Seyffart, 2021). Passive investors select
the portfolio weights of assets within the risky fraction of their portfolio based on
asset market capitalization (Sharpe, 1991). Therefore, passive investors only need
to decide about the fraction they want to invest in the risk-free asset and the risky
market portfolio for each period (Pedersen, 2018). In contrast to passive investors,
active investors usually trade based on the assessment of asset mispricings. As these
assessments tend to change frequently, active investors generally trade more often
than passive investors (Sharpe, 1991).

Against the backdrop of the rise of passive investment, it is crucial to understand
the implications of this significant trend for financial markets and their participants.
Therefore, financial researchers have begun to empirically examine different aspects
of the shift from active to passive investment. These empirical analyses suggest
that this shift may have reduced the information contained in individual asset prices
(Sushko and Turner, 2018) and led to higher systematic market risks (Anadu et al.,
2019). In this work, we want to shed more light on how different forms of investment
affect financial markets. Concretely, we address the research question:

Research Question 5 How do different levels of active and passive investment af-
fect fundamental price efficiency?

Besides shifts across investment types, specific investment forms are also evolving.
Consistent with findings that machine learning models can improve financial mar-
ket forecasting (Fischer and Krauss, 2018; Rasekhschaffe and Jones, 2019; Gu et al.,
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2020), a large proportion of professional active investors have adopted machine learn-
ing models for trading and portfolio management (BarclayHedge, 2018; Petropoulos
et al., 2022). Given this trend, it is important to also assess the impact of differences
in the accuracy of active investors’ market forecasts on underlying market efficiency.
Hence, our next research question states:

Research Question 6 How do different degrees of accuracy of active investors’
market forecasts affect fundamental market efficiency?

To answer these research questions, we create a simulated financial market and
closely examine the impact of different investor compositions and other market pa-
rameters, including the forecast accuracy of active investors, on fundamental market
efficiency. Different stylized investors interact with each other in a simulated market
through issuing orders, which are matched via common continuous double auctions.
Thereby, market prices are solely set by the investor behavior without external inter-
ventions. While there exist different interpretations and levels of market efficiency in
the literature (e.g., see (Fama, 1970, 1991)), in this paper, we focus on market effi-
ciency in terms of the deviation between market prices and fundamental asset values.
In this work, we denote this form of market efficiency with the term fundamental
market efficiency.

Our paper has two main contributions. First, we show how different investor
compositions affect fundamental market efficiency. In doing so, we find that larger
fractions of active investment and lower fractions of passive investment within a
market results in higher market efficiency. Thereby, the marginal increase in market
efficiency is lower for an additional active investor if there is a high level of active in-
vestment within a market. We find that large portions of passive investment within a
market may facilitate price bubbles and lead to market failure. Second, we evaluate
the impact of different market parameters, for instance market frictions and individ-
ual target price forecasting errors, on fundamental market efficiency to increase the
robustness of our results in the context of constantly evolving financial markets. We
find that market frictions in the form of higher transaction costs and stricter port-
folio constraints reduce fundamental market efficiency. Additionally, we find that
a lower level of risk aversion of individual investors, tends to increase fundamental
market efficiency. Lastly, we show that less volatile individual target price forecasts
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of active investors translate into higher fundamental efficiency of market prices.

4.1.2 Related Work

4.1.2.1 Implications of Active and Passive Investment

Anadu et al. (2019) empirically investigate the implications of the past shift from ac-
tive to passive investment strategies for financial stability. They find that this shift
may decrease liquidity transformation risks, but increase market volatility. Fur-
thermore, Anadu et al. (2019) present evidence indicating that passive investment
facilitates the co-movement of assets.

Pedersen (2018) challenges William Sharpe’s equality, which states that“before
costs, the return on the average actively managed dollar will equal the return on the
average passively managed dollar” (Sharpe, 1991). Pedersen (2018) argues that the
assumption of a never-changing market portfolio does not hold for real-world financial
markets and presents ways how active traders can generate profits. For instance,
adequately informed active traders could outperform non-informed active traders,
influenced by cognitive biases. Additionally, only active investors can identify and
participate in profitable IPOs. Furthermore, passive investors need to trade when the
composition of their respective benchmark index changes, which can be anticipated
and exploited by active investors. Pedersen (2018) concludes that there exists an
equilibrium level of active and passive investment that keeps the market close to but
not perfectly efficient.

Sushko and Turner (2018) examine the effect of the shift from active to passive
investing on securities markets. They find that active mutual funds are subject to
persistent outflows in stress periods, while the flows of passive mutual funds remain
relatively stable. Additionally, the authors find a positive relationship between the
weight of a company in the Bank of America Merrill Lynch Global Broad Mar-
ket Corporate Index and the company’s leverage factor. According to Sushko and
Turner (2018), a further expansion of the passive fund management industry may
have two main consequences: First, security-specific information could decrease in
prices because passive fund managers do not use this information for their valua-
tions. Second, security pricing can be influenced by an increasing number of passive
managers selling or buying the entire set of index constituents by tracking an index.
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These transactions could lead the prices of the assets in the index to be subject to
higher co-movement.

Schwert (2003) shows that market anomalies published in the academic financial
literature are integrated into trading strategies and hence disappear after publication.
Therefore, he states that research on market anomalies makes financial markets more
efficient.

Sullivan and Xiong (2012) analyze the effects of increased index trading. The
authors find that the rising fraction of passively managed equity indices leads to
an increased systematic risk of equity markets. The higher amount of passive in-
vesting amplifies the trading commonality of the index assets caused by interactions
between market participants. This commonality increases systematic fluctuations
in aggregate demand, which have a fundamental impact on markets and portfolio
compositions. Moreover, Sullivan and Xiong (2012) state that more equity index
trading leads to increasing stock return correlations. Additionally, the authors find
that equity betas have risen and converged between 1997 and 2010.

Appel et al. (2019) empirically analyze the effect of passive investors on investment
strategies and investment results of active investors. The authors find that if passive
mutual funds own the shares of a company to a more considerable degree, activists
are more likely to be represented on the company’s board. Moreover, they show that
a high fraction of passive traders owning a company’s stocks is positively related
to the number of proxy fights and settlements of a company. Finally, Appel et al.
(2019) concludes that free-rider problems are weakened by the increasing number of
passive institutional investors.

Qin and Singal (2015) examine the external effects of indexing on stock price’s
efficiency. By analyzing a sample of stocks, they find that a higher degree of indexing
is related to less efficient stock prices. Concretely, Qin and Singal (2015) find a higher
post-earnings-announcement drift and a more significant random walk deviation of
stock prices for higher degrees of indexing. Qin and Singal (2015) suggest that price
efficiency is decreased by indexing and passive trading, as passive investing lowers
the appeal of information collection and arbitrage.

In his work, Blitz (2014) addresses the shortcomings of passive investment strate-
gies. First, he outlines that passive investment constitutes free-riding, as passive
investors rely on active investors to keep markets efficient. Blitz (2014) states that
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the relationship between fundamentals and asset prices would be destroyed if there
were only passive investors. Moreover, he describes specific security characteristics
which have been shown to cause a weak asset performance. Passive investors can not
avoid investing in these securities when they are present in the respective passively
replicated index.

Belasco et al. (2012) examine how passive investing affects corporate valuations
by analyzing the relation between index fund money flow and company valuations.
They find that valuations of index constituents are positively correlated with index
fund money flow, whereas valuations of non-constituents are not. Moreover, they find
that this impact does not directly divert since money flow also impacts valuations
the following month after the flow. Belasco et al. (2012) conclude that mispricing
caused by index fund investing could reduce stock market efficiency and manipulate
how investors evaluate the performance of actively managed funds.

French (2008) analyzes the cost of active investing and finds that active investors
pay 0.67% of the total market value of a stock for search costs. Moreover, he shows
that society faces capitalized price discovery costs, which can amount to up to 10%
of a stock’s market capitalization. French (2008) finds that between the years 1980
to 2006, the average annual return of a typical active investor could have risen by
67 basis points if the investor switched from active to passive investing.

4.1.2.2 Financial Market Simulation

Ponta et al. (2011) simulate an artificial stock market that consists of zero-intelligence
traders and analyze the effect of dividend and external cash flows on the market out-
come. The traders randomly allocate a fraction of their wealth into different stocks,
whereby asset prices are determined by aggregating demand and supply. Despite
using zero-intelligence traders, the authors can reproduce several stylized facts (e.g.,
volatility clustering) in the resulting price series. The stylized facts reproduction
does not depend on dividend payments and external cash flows.

Cocco et al. (2017) simulate an artificial agent-based cryptocurrency market in
which heterogeneous agents trade bitcoins. The authors model several market
characteristics of the bitcoin market (e.g., bitcoin mining, investor distribution).
Cocco et al. (2017) examine whether their simulated market exhibits stylized facts
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known from real-world financial markets. They define two types of agents, namely
momentum-based technical traders and random traders, whose orders are matched
via limit order books. The authors find that the price series data of the artificial mar-
ket shows three stylized facts of real financial time series data: Unit-root property,
fat tails, and volatility clustering.

Bertella et al. (2014) use an agent-based artificial market to analyze the effect of
(over-)confidence (Kahneman and Riepe, 1998) on market outcomes. In their model,
agents can either be fundamental or technical traders. Fundamental traders estimate
future asset values using the Gordon dividend growth model, whereas the technical
traders use a moving average with different time horizons to estimate asset values.
Both stylized agent types aim to maximize a utility function based on constant
absolute risk aversion. Prices are calculated based on a market impact function based
on Farmer and Joshi (2002) for varying levels of the agents’ market confidence. The
authors find that higher confidence levels are positively correlated with investment
returns. However, market confidence also has negative effects, leading to increased
price volatility.

Benhammada et al. (2017) implement an artificial stock market based on contin-
uous double auctions to identify sources of bubbles and crashes in financial markets.
The modeled agents can be grouped into fundamental, noise, technical, and hybrid
traders. Noise traders issue orders randomly, which increases market liquidity. Fun-
damental traders issue orders based on a function to calculate the fundamental value,
while technical traders issue their orders based on the direction of the forecasted price
and the market liquidity. Hybrid traders change their stylized trading behavior be-
tween technical and fundamental trading based on the market state. Benhammada
et al. (2017) find that prices deviate from fundamental values if technical traders
dominate the artificial market. However, these markets lack characteristics of finan-
cial price bubbles in the real world. The price bubbles become more realistic when
hybrid traders are predominant within the market. The authors find no evidence for
the existence of market bubbles in the case that fundamental traders dominate the
market.

Goykhman (2017) implements a sentiment-driven artificial financial market and
examines how the wealth of different agents develops over time. In the market,
agents do not maximize a utility function but issue orders depending on three time
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series processes: buy/sell imbalance, jump volatility, and trading intensity. These
orders are matched via limit order books. The author finds that non-trivial volatility
sentiment processes result in large stock returns different from the log-normal distri-
bution. The use of non-trivial buy/sell sentiments leads to predictable price trends.
Furthermore, Goykhman (2017) finds that the results do not depend on the initial
wealth distribution amongst the agents, as the wealth is distributed very quickly
with a power-law Pareto tail amongst the agents in any case.

Katahira et al. (2019) create an agent-based artificial asset market and analyze
stylized market facts. They model agents as technical traders and calculate asset
prices for each period from the aggregated excess demand, assuming sufficient market
liquidity. They find several stylized facts in the time series data of resulting market
price returns (e.g., heavy tails and conditional heavy tails) but cannot reproduce the
gain/loss asymmetry.

Khashanah and Alsulaiman (2017) construct an agent-based artificial market in
which agents can trade a risk-free asset and a risky asset. They aim to identify
the causes of market instability depending on the information flow between the
agents. Agents are randomly selected to adopt four different strategies: random,
fundamental, momentum/technical, and adaptive trading (using neural networks
to predict asset prices). Thereby all but the technical traders optimize a utility
function based on Markowitz (1952). Asset prices are calculated based on the bid
and ask prices, but the underlying market mechanism does not utilize order books.
The authors simulate jump events that affect the market and test whether agents
can react appropriately to these jumps. They find that the outputs of the scenarios
depend on the market state regarding information awareness. In states of systematic
ignorance, mean volatility and the volatility index are lowest. The volatility index
and fear index increase for a larger number of hubs or hermits in a network.

Moiseev and Akhmadeev (2017) implement an agent-based artificial stock market
and examine resulting wealth distribution and price movements. In their simulation,
agents randomly issue orders, and the turnover maximization criterion determines
prices. The authors find that wealth distribution becomes increasingly positively
skewed over time. The behavior patterns of the agents influence the speed of in-
equality growth. Thereby, the inequality of the wealth distribution grows the fastest
in a setting in which most agents are issuing bid orders, followed by a setting in
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which most agents issue sell orders. The wealth inequality grows the slowest when
there is a balance between buy and sell orders in the market.

Ponta and Cincotti (2018) simulate an agent-based artificial stock market to exam-
ine the influence of agents’ networks on the structure of the market. Agents decide
about issuing orders based on their vision of the market trend and the average sen-
timent towards all assets. The resulting supply and demand curves are matched to
obtain market prices. The authors find an intrinsic structural resilience of the stock
market. Moreover, the inclusion of the network between agents leads to a higher
number of stylized facts reproduced in the artificial market.

Wu et al. (2018) implement an agent-based stock market in order to investigate
the stock price dynamics in agent networks. Agents are fundamental or technical
traders and aim to maximize their individual utility function, which is based on
constant absolute risk aversion. All agents are connected via networks, which allows
them to collect information from their neighbors. Orders are matched via continuous
double auctions. The authors find that small-world networks lead to a decreasing
kurtosis of returns. The return kurtosis is lower for a higher reconnection probability
between nodes. Wu et al. (2018) find that changing the network structures does not
affect the standard deviation of returns. Finally, the authors conclude that the level
of information efficiency has a manifold impact on the market outcomes for diverse
network structures.

Vanfossan et al. (2020) construct an artificial stock market to evaluate the success
of different trading strategies. They model agents as investors and mutual funds,
whereby investors have a lower buying power but are more frequent than mutual
funds. The agents are connected via media networks and social media. Based on
the network and their strategy, investors issue buy or sell orders, which are matched
through continuous double auctions. Finally, the authors calculate the mean returns
for each strategy for a 50-day period. They find that the strategy based on relative
asset strength constitutes the most successful strategy, whereby the strategy based
on market index acceleration is the least successful.

Mathieu and Brandouy (2010) introduce an API for artificial stock markets that
allows for a broad spectrum of configurations. Agents randomly place orders without
utilizing information from the market or other agents. These orders are matched via
order books. Mathieu and Brandouy (2010) highlight that the asset returns of the
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artificial market are similar to the ones of a real-world data sample and that stylized
facts can be reproduced successfully.

4.1.3 Methodology

We introduce a simulated financial market where different heterogeneous agents buy
and sell stocks based on their respective utility functions, following (Lebaron, 2001).
Relative to other financial market simulation frameworks our market model exhibits
a rather high degree of complexity, as we create a limit-order market in which het-
erogeneous agents conduct individual utility-based portfolio optimization and trade
multiple assets. We choose this relatively high model complexity, to increase the
external validity of our results. However, it still constitutes, like economic models in
general, a significant simplification of the real world. In this shapter, we present the
market framework and market parameters. We systematically modify central market
aspects (e.g., agent composition, agent target price forecasting errors) to increase the
robustness of our results with regards to different market situations and to analyze
the impact of these central market aspects on market outcomes. To further increase
the robustness of our results, we run every simulation setting on eight different ran-
dom seeds, whereby each individual simulation consists of 100 simulation rounds.
One simulation round is considered a quarter of a year in the real world. Agents
adjust their portfolio holdings once per simulation round based on their stylized
behavior and utility functions.

4.1.3.1 Assets

The agents’ portfolios consist of four different risky assets and risk-free cash holdings.
We choose a number of four risky assets to still enable a relative weighting between
the different risky assets, while ensuring a feasible computational complexity of the
portfolio optimization problem. Holding cash is equivalent to investing into a risk-
free asset with zero return, which is a commonly used economic models (Clarkson
et al., 1996; Ovtchinnikov and McConnell, 2009; Adam-Müller and Panaretou, 2009).
Stocks are traded on the simulated market and have an underlying fundamental value
and a publicly observable market value. At the time of inception, every artificial
stock is assigned a random real-world equivalent. For every random seed, real-world
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equivalent stocks are sampled randomly amongst the constituents of the S&P 500
index as of the start of 1996. We calculate these stocks’ quarterly total-return
time series using data from the CRSP/Compustat merged database and exclude
stocks that have not been traded publicly constantly between 1986 and 2020. We
further exclude other stocks that do not have complete and uninterrupted time series
during that time, which are necessary for our simulation setting where we need a
real-world total return for each round. We acknowledge that this exclusion induces
a survivorship bias in the remaining return series. However, we argue that this
survivorship bias should not significantly affect the critical results of our analysis of
the individual stocks, as the survivorship bias would only affect random seeds, in
which a company with an incomplete return series would be sampled into one of the
four risky stocks of a market. Even in these cases, the return forecasting process
of active agents is the same for different return levels. We use the first 10 years of
the resulting time series, namely the data from the beginning of 1986 until the end
of 1995, for parameter initialization (e.g., variance-covariance matrix) and use the
remaining data from the beginning of 1996 to the end of 2020 to run the simulation.
Specifically, at the end of each simulation round, the fundamental value for each
artificial stock is updated based on the total quarterly return of the respective real-
world stock. We denote the fundamental value of stock i at time t with ptrueit and
the total number of risky assets with I. While this fundamental price is not directly
observable for market participants, every stock also has a publicly observable market
price, pmarket

it , that gets updated continuously throughout the simulation rounds
and is exclusively determined by the trading activity in the simulated market. A
market capitalization-weighted combination of all risky assets constitutes the market
portfolio at a given point in time. At the beginning of the simulation, we initialize
all artificial stocks with a fundamental value and a market value of 100 USD.

4.1.3.2 Market Mechanism

We implement continuous double auctions to aggregate supply and demand in our
simulated market. We choose continuous double auctions over a simpler market
clearing mechanism, as continuous double auctions are used within most real-world
stock markets and therefore make the market setting more realistic (Lebaron, 2001).



104 Changed Agent Behavior and Market Structure

Over each simulation round, the traders gradually place their buy and sell orders
for the different stocks. Orders are matched (partially) with suitable orders in the
respective order book, if possible. Parts of orders that can not be executed directly
are added to the respective order book. At the beginning of each simulation round,
all order books are cleared.

4.1.3.3 Agents

In our simulated market setting, we distinguish between three different stylized agent
types: active investors, passive investors, and random investors. We choose a total
number of 500 agents for each simulated market setting, as we find that these pa-
rameter value leads to a stable convergence of market prices while ensuring compu-
tational feasibility. In every simulation round, each agent determines their target
portfolio weights once and issues limit buy or sell orders based on these target port-
folio weights. Active investors and passive investors both maximize the following
commonly used utility function (Bodie et al., 2018) based on the modern portfolio
theory (Markowitz, 1952):

Û = r̂ − 0.5γ σ̂2, (4.1)

where Û is the estimated utility, r̂ is the estimated portfolio return, σ̂2 is the esti-
mated portfolio return variance, γ is the risk aversion, which is randomly initialized
with a value between 2 and 6 at the beginning of the simulation, and 0.5 is a scal-
ing convention. While active investors and passive investors have the same utility
function, they differ in the way they generate their return estimates, as we describe
in detail in section 4.1.3.4 and section 4.1.3.5. For a given simulation round, the op-
timization and trading activities of all agents occur sequentially with a randomized
agent order. Specifically, the trading process for a simulation round is divided into
J segments, where J represents the total number of agents. At a given point in time
t, the jth randomly selected trader determines their target portfolio weights based
on their stylized agent behavior and issues limit buy or sell orders to obtain their
target portfolio composition. For a buy order, the limit buy price for stock i at time
t, pbit, is computed by:



The Impact of Active and Passive Investment 105

pbit = bit nit, (4.2)

where bit represents the highest bid price for stock i at time t and nit represents
a random draw from the Gaussian distribution N(1.005, 0.005). Conversely, the sell
price for asset i at time t, psit, is computed by:

psit = ait/nit, (4.3)

where ait denotes the lowest ask price for asset i at time t and nit represents
a random draw from the Gaussian distribution N(1.005, 0.005). This means that
agents who want to buy an asset marginally overbid the current best bid price on
average and agents who seek to sell an asset tend to marginally underbid the current
best ask price in the market, which is similar to the mechanism designs in Raberto
et al. (2003), Raberto and Cincotti (2005), and Ponta et al. (2011). Therefore, buy
(sell) orders with prices higher (lower) than the best ask (bid) price for an asset are
equivalent to market orders, given a sufficient market depth.

4.1.3.4 Active Investors

Our active investors estimate the fundamental values for the individual stocks and
optimize their individual portfolio weights based on these estimates. Mathematically,
at time t, agent j estimates the end-of-round fundamental value of asset i, ptrue eor

it

with:

p̂eorijt = ptrue eor
it + nfc

it , (4.4)

where nfc
it denotes the forecasting error, determined by a random draw from the

Gaussian distribution N(0, σfc
it ). Since there is limited evidence about target price

forecasting errors of financial analysts in academic research (Bonini et al., 2010)
and forecasting errors can vary strongly for different markets and countries (Bilinski
et al., 2013), we run the simulations with different values for σfc

it . Bilinski et al. (2013)
evaluate the 12-month target price forecasting errors of financial analysts, aTPE,
in different countries. We use the average analyst target price accuracy identified in
Bilinski et al. (2013) to calculate the starting value for σfc

it and scale it to a 3-month
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horizon under the assumption of unbiased and normally distributed forecast errors
and a Brownian motion forecast error development over time (see Appendix C.3).
This yields a starting value of 0.45 for aTPE and equivalently 0.2820 pmarket

it for σfc
it .

We consider this our baseline setting, but as it is based on a number of assumptions,
we run our simulation with different values for the individual target price forecasting
errors to ensure the validity of our results in different settings. This results in a final
value set for aTPE of aTPE ∈ {0.2250, 0.4500, 0.9000} and equivalently a final
value set for σfc

it of σfc
it ∈ {0.1410 pmarket

it , 0.2820 pmarket
it , 0.5640 pmarket

it }.
Utilizing their price estimate p̂eorijt for risky asset i for the end of the round, p̂eorij ,

agent j estimates the end-of-round return for asset i at time t, r̂eorijt , as follows:

r̂eorijt =
p̂eorijt

pmarket
it

− 1, (4.5)

where pit denotes the market price of asset i at time t.
Based on Equation 4.5 agent j generates return estimates for all risky assets,

which, combined with the risk-free return of zero, yield return estimate vector
r̂jt = {r̂eorijt , i = 1, ..., I + 1}. At time t, the fundamental agent j selects their de-
sired portfolio weights ŵjt = {ŵijt, i = 1, ..., I+1} by maximizing their utility based
on Equation 4.1. Thereby, the estimated portfolio return, r̂jt, is given by

r̂jt = ŵ⊺
jt r̂jt, (4.6)

with
ŵijt >= wmin ∀ i, j, t (4.7)

and
ŵijt <= wmax ∀ i, j, t, (4.8)

where wmin denotes the minimum individual portfolio weight, and wmax denotes
the maximum individual portfolio weight. For these portfolio optimization tasks, we
utilize the cvxpy package(Diamond and Boyd, 2016) in combination with the ecos
solver(Domahidi et al., 2013). Furthermore, the estimated portfolio variance of agent
j at time t, σ̂2

jt, is given by

σ̂2
jt = ŵ⊺

jt V̂t ŵjt, (4.9)
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where σ̂2
jt denotes the estimated portfolio variance of agent j, V̂t denotes the

estimated variance-covariance matrix ((I + 1)× (I + 1)) of all asset returns. All
agents estimate the variance-covariance matrix at a specific time from the 40 most
recent asset returns. The variance of the risk-free asset and its covariance with other
assets is zero per definition. We focus on active agent’s forecasts of prices and,
related to that, returns, as returns are the critical input parameter in mean-variance
portfolio optimisation (Best and Grauer, 1991). We choose the simplification of
a joint variance-covariance matrix, as, similar to individual target price forecasting
errors, modeling individual errors would be subjected to several assumptions. As this
assumptions already constitute Chopra and Ziemba (1993) compare the importance
of different input parameters on mean-variance portfolio optimization and show that
returns have about 11 times as much influence on the portfolio selection as portfolio
variances. Further, we restrict the individual portfolio weights to be non-negative
with an upper bound of wmax ∈ {0.33, 0.5, 1}, where wmax = 0.5 constitutes our base
case. We define these portfolio weight restrictions to increase the robustness of
portfolio optimization. In reality, short-selling usually comes with high costs and
certain types of investors are restricted to participate in short-selling. Imposing short
sale constraints is equivalent to shrinking larger elements of the covariance matrix
towards zero (Jagannathan and Ma, 2003). Jagannathan and Ma (2003) argue that
the most extreme covariance estimates are likely to be caused by downward-biased
or upward-biased estimation errors. Therefore, this shrinking may reduce the overall
estimation error. Furthermore, mean-variance optimization tends to lead to extreme
portfolio weight results and the introduction of an upper weight bound can ensure a
certain level of portfolio diversification and lower the risk of extreme events (Eichhorn
et al., 1998; Grauer and Shen, 2000; Jagannathan and Ma, 2003). Finally, the
difference between the desired portfolio weights ŵjt and actual portfolio weights wjt

determines the order vector ∆wjt for agent j at time t:

∆wjt = ŵjt −wjt. (4.10)

After determining their order vector, agent j issues orders with the corresponding
order quantities, where we round the exact number of shares to integer values.
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4.1.3.5 Passive Investors

The passive investors do not estimate stock values of individual securities but instead
combine the market with the risk-free asset to form their overall portfolio. All
risky assets are weighted based on their market capitalization within the market
portfolio. Thus, passive investors face a more simple portfolio optimization problem
than active investors, as they only determine which fraction of their wealth they
invest in the stock market and do not actively select the individual portfolio weights
of the risky assets. Specifically, at time t, passive agent j selects the portfolio weights
ŵpassive

jt = {ŵmarket
jt , ŵcash

jt } that maximize the utility function specified in Equation
4.1. The estimated portfolio return, r̂jt, is given by:

r̂jt = ŵpassive ⊺
jt r̂passivejt , (4.11)

with
ŵmarket

jt ≥ wmin ∀ j, t (4.12)

and
ŵcash

jt ≥ wmin ∀ j, t, (4.13)

where wmin denotes the minimum portfolio weight and r̂passivejt = {r̂market
t , 0} is a

vector of length 2 that includes the expected market return of passive investors, the
average return of the market portfolio over the last 40 observations, and the expected
return of cash, zero. The estimated portfolio variance σ̂2

jt is given by:

σ̂2
jt = ŵ⊺ passive

jt V̂passive
t ŵpassive

jt , (4.14)

where V̂passive
t denotes the estimated return variance-covariance matrix (2× 2) at

time t, whereby the market return variance is estimated over the last 40 simulation
rounds and the estimated covariance between the market portfolio return and cash,
as well as the variance of the risk-free return, is zero. Corresponding to Equation
4.10, the passive agent j issues orders with trading quantities based on the difference
between their desired portfolio weights and their actual portfolio weights. Again, the
exact number of shares is rounded to integer values.
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4.1.3.6 Random Investors

Our third stylized investor group consists of agents that have a completely ran-
domized behavior. These random behaviors can stabilize the trading system of a
simulated market and are often described in the academic literature as a thermal
bath to evaluate other stylized trading behavior (Raberto et al., 2003; Cincotti et al.,
2003; Cocco et al., 2017). Researchers have been able to reproduce various stylized
facts of real-world financial markets in simulated markets consisting of only random
investors (Mathieu and Brandouy, 2010; Ponta et al., 2011). In our study, random
investors may denote a multitude of different investor types who have in common
that their aggregated trading behavior is not related to fundamental asset values
and, hence, does not have a systematic directed impact on asset prices. Same as the
other types of investors, random investors rebalance their portfolio once per simu-
lation round. For the random agents, we loosely follow the agent design of Ponta
et al. (2011). At the time t, the desired risky portfolio weight for random agent j is
drawn from a uniform distribution between zero and one.

The buy and sell prices of these orders are given by Equations 4.2 and 4.3. The
desired market weight of random agent j at time t is given by:

ŵmarket
jt = ujt, (4.15)

where ujt denotes a random draw from the continuous uniform distribution U(0, 1).
Correspondingly, the desired weight of the portfolio cash fraction of random agent j
at time t is given by:

ŵcash
jt = 1− ŵmarket

jt . (4.16)

Furthermore, the desired weights of each individual risky asset within the risky
portion of the portfolio are each drawn from the continuous uniform distribution
U(0, 1). These draws are normalized to sum up to 1 and subsequently scaled by
the desired risky portfolio portion ŵmarket

jt . Combined with the desired cash weight,
this gives the desired portfolio weight vector of random agent j at time t, ŵrandom

jt .
Parallel to the other stylized investors, random agent j issues orders based on the
difference between actual and desired portfolio weights (see Equation 4.10), rounding
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the exact number of shares to integer values.

4.1.3.7 Parameter Overview and Sensitivity Analysis

Table 4.1 gives an overview over our parameter choices in the standard market set-
ting. However, as mentioned above, we aim to understand the impact of major
market parameters on market results and hence repeatedly run the simulation on
all random seeds with systematically altered simulation parameters. Concretely, we
repeat the simulation with the following, varying parameter specifications:

• Fraction of random agents relative to all market participants of 40% and 90%

• Individual active investors’ absolute target price forecasting errors (aTPE) of
0.225 and 0.9

• Individual risk aversion factors fixed at 2 and 6

• Transaction costs of 0.5%

• Active investors’ upper portfolio weight constraints of 0.33 and 1.

Table 4.1.: Parameter overview of the standard market setting

Parameter Notation Value

Total # of Risky Assets I 4

Risk-Free Rate rrf 0

Initial Asset Price 100$

Gamma Lower Bound γmin 2

Gamma Upper Bound γmax 6

Initial Wealth of Agents 100,000$

Portfolio Constraint Lower Bound wmin 0

Portfolio Constraint Upper Bound wmax 0.5

Absolute Target Price Forecasting Error aTPE 0.45

Transaction Cost 0

# Simulation Rounds 100

Total # of Agents J 500

Fraction of Random Agents 0.8
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4.1.3.8 Evaluation

To assess our simulated market’s quality and create comparability to a real-world
stock market, we use different established measures, i.e., price deviation, trading
volume, market depth, and quoted spread. These measures are calculated for each
market configuration by aggregating the results over all assets, simulation rounds,
and random seeds. Additionally, we test whether selected stylized facts of real-world
financial time series are reproduced in our baseline simulated market.

4.1.3.9 Fundamental Market Efficiency

We measure fundamental market efficiency by calculating the mean absolute de-
viation between the market price of the simulation, pmarket

it from the fundamental
market prices, ptrueit , at time t for each asset i:

PriceDevAbst =
1

I

I∑
i=1

∣∣pmarket
it − ptrueit

∣∣ . (4.17)

To receive relative price deviation as a percentage value, we divide the absolute value
in the above formula by ptrueit and multiply by 100:

PriceDevRelt = 100 ∗ 1

I

I∑
i=1

∣∣pmarket
it − ptrueit

∣∣
ptrueit

. (4.18)

4.1.3.10 Trading Volume

Another measure we use is the trading volume, which describes the number of shares
traded in each round multiplied by their corresponding prices. Trading volume gen-
erally indicates market activity and constitutes a basis for many liquidity measures
of financial markets (Sarr and Lybek, 2002).

4.1.3.11 Stylized Facts of Real-World Financial Markets

To further evaluate our simulation model, we investigate if our time series of returns
follow the same statistical patterns found in many financial time series, so-called styl-
ized facts of financial markets. We check whether the resulting market return series
of our simulated market elicits these stylized facts to evaluate the external validity
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of our results. Cont (2001) list 11 different stylized facts that have been observed
and studied repeatedly over the last decades. While these statistical properties are
typical for real-world data, Cont (2001) also describe that it is very challenging to
create a synthetic market model that can reproduce all stylized facts. Furthermore,
since stylized facts generalize and simplify, they are a more qualitative measure by
nature. This qualitative character of many stylized facts impedes the comparability
of different market scenarios based on these properties. Therefore, we focus on the
following selected stylized facts, as they allow for a certain level of quantitative anal-
ysis. Since the stylized facts are usually found in return time series with a higher
data frequency (Cont, 2001), we further split our simulation rounds into 90 equal
proportions, which then results in a resolution of daily returns. We test for the ex-
istence of each stylized fact on every random seed and every trader composition in
the baseline market setting.

• Heavy Tails: Real-world financial return time series tend to be heavy tailed
and non-Gaussian (Cont, 2001; Bradley and Taqqu, 2003). These series often
appear to exhibit a power-law tail with a tail index between 2 and 5 (Cont,
2001; Katahira et al., 2019). To test whether a return series follows a nor-
mal distribution, we calculate its excess kurtosis and conduct a Kolmogorov-
Smirnov test (Kolmogorov, 1933; Smirnov, 1948; Massey, 1951) to show that
it is non-Gaussian and heavy tailed. Following Katahira et al. (2019), we also
calculate the alphas (i.e., tail-indices) of the heavy tail power-law distributions
and calculate the log-likelihood ratio (Wilks, 1938) between a power-law and
an exponential distribution given our observed return distribution sample. In
total, we calculate the excess kurtosis and p-values of the Kolmogorov-Smirnov
test, the power-law alpha, as well as log-likelihood ratios including correspond-
ing p-values for a goodness of fit comparison between a power-law and an
exponential distribution.

• Conditional Heavy Tails: Real-world returns also often show so called condi-
tional heavy tails, these are given when a return series is corrected for volatility
clustering and still shows heavy tails (Cont, 2001). However, the excess kurtosis
of the corrected returns is smaller than the excess kurtosis for the unconditional
return distribution. Therefore, we calculate the excess kurtosis of the residuals
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gained from a GARCH (Bollerslev, 1986) model trained to account for volatil-
ity clustering. Again, we run the Kolmogorov-Smirnov test to calculate each
corresponding p-value. We consider the stylized fact as fulfilled if the calcu-
lated excess kurtosis is positive but lower than the kurtosis calculated for the
unconditional heavy tails and if the Kolmogorov-Smirnov test shows statistical
significance at the 95% confidence level.

• Gain Loss Asymmetry: Gain loss asymmetry is the difference in the upward and
downward movement of returns. In real-world financial markets, prices tend
to fall faster than they rise Cont (2001). To test for the fact in a quantifiable
way we mainly follow the procedure of Jensen et al. (2003). We set a positive
and a negative return level of 10% and minus 10% respectively and then count
the time steps needed (i.e., the investment horizons) until the asset reaches
this return level. This is done for each asset and at each time step. We then
calculate the two density functions of the negative and positive investment
horizons and determine their maxima to compare whether, in general, the
positive or the negative return level is reached more quickly. We consider the
stylized fact as fulfilled if the maximum of the density function for the negative
return level lies before the positive return level.

4.1.4 Results

In this section, we present the results of the different simulation runs described in
Section 4.1.3. Concretely, we analyze the effect of different market settings and
parameters on our key metric fundamental market efficiency and on market activity.
Furthermore, we evaluate our market model based on the quantifiable stylized facts
described in Section 4.1.3.11.

4.1.4.1 Standard Market Setting

Figure 4.1 shows the relative fundamental price deviation for varying fractions of
active and passive investors over all random seeds for our standard scenario (i.e., 80%
random investors). We find a lower relative fundamental price deviation for a higher
fraction of active investors. Specifically, market prices on average deviate by 55.17%
from fundamental prices in the market setting without active investors and 100 (i.e.,
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20%) passive investors and by 25.86% in the market setting with 100 (i.e., 20%)
active investors and zero passive investors. On average, the substitution of a passive
investor with an active investor increases fundamental market efficiency, as the fitted
cubic function is monotonously decreasing between x = 0 and x = 1. However, the
marginal increase in fundamental market efficiency for this substitution is lower for
higher levels of active investment in the market, as the second-order derivative of
the function is strictly positive in the area under consideration. Furthermore, as
detailed in Table 4.2, the mean trading volume increases for a larger fraction of
active investors, nearly doubling from the setting without active investors and the
setting with 100 (i.e., 20%) active investors.
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Table 4.2.: Fundamental price deviation and trading volume for different investor compo-
sitions in the standard setting averaged over all random seeds

# of Agents

Active/Passive/Random

Mean Price

Deviation Relative [%]

Mean Trading

Volume [$]

0/100/400 55.17 2,561,184

5/95/400 49.25 2,551,623

10/90/400 49.04 2,868,562

15/85/400 46.14 2,803,487

20/80/400 40.87 2,880,618

25/75/400 40.71 2,969,273

30/70/400 39.42 3,199,982

35/65/400 39.18 3,379,545

40/60/400 35.35 3,293,083

45/55/400 35.00 3,549,615

50/50/400 33.53 3,548,018

55/45/400 32.35 3,734,339

60/40/400 29.71 3,832,248

65/35/400 31.40 4,014,977

70/30/400 29.38 4,020,009

75/25/400 27.86 4,094,883

80/20/400 27.28 4,187,787

85/15/400 26.15 4,206,388

90/10/400 25.25 4,196,554

95/5/400 26.26 4,591,515

100/0/400 25.86 4,528,378
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Figure 4.1.: Fundamental price deviation by fraction of active investors (relative to all active
and passive investors) detailed over all random seeds in the standard setting

4.1.4.2 Sensitivity to Different Levels of Random Investment

Table 4.3 shows the relative fundamental price deviation and mean trading volume
for different fractions of random agents of the total number of market participants
(i.e., 40% and 90%). For each scenario, we run the simulation on multiple random
seeds, repeatedly altering the combinations of active and passive investors by five
percentage points. We find that a lower portion of random agents, which corresponds
to a higher combined fraction of passive and active investors, leads to a higher dis-
crepancy between the market composition without active investors and compositions
with a high share of active investors. Concretely, in the scenario with 40% random
agents, the mean relative fundamental price deviation starts at 74.42% with no ac-
tive investors in the market. It decreases to 19.10% for the setting with 300 (i.e.,
60%) active investors. In the scenario with a share of 90% random agents, the mean
relative fundamental price deviation starts at only 47.64% in the setting where all
non-random investors are passive investors. However, it decreases to just 31.53 for
the market composition in which all remaining investors are active investors.

Table C.1 and Figure C.2 present the corresponding results for a market compo-
sition with only 20% random investors. These results allow us to further examine
the effects of passive investment on fundamental market efficiency. For instance,
the average relative price deviation from fundamental prices is 65.24% in the mar-
ket with 100 active, 300 passive, and 100 random investors and amounts to 25.86%
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in the market with 100 active, zero passive, and 400 random investors (see Table
4.2). Combined with the in Section 4.1.4.1 presented findings, this indicates that a
large fraction of passive investors, contrary to a large fraction of active and random
investors, impairs fundamental market efficiency. While it is clear that the trading
behavior of active investors links market prices to fundamental values, it is notewor-
thy that this link is distinctly stronger in market environments with a lower amount
of passive investment. This finding may be driven by the similar trading patterns
and generally lower trading activity within the group of passive investors. Regard-
ing the latter, Table 4.4 shows that the average absolute weight change of all risky
assets per simulation round is distinctly higher for active investors than for passive
investors.

Table 4.3.: Fundamental price deviation and trading volume for different investor compo-
sitions in the market settings with a share of 40% and 90% random investment
averaged over all random seeds

# of Agents
Active/Passive/Random

(40% Random Investment)

Mean Price
Deviation

Relative [%]

Mean Trading
Volume [$]

0/300/200 74.42 1,104,871
15/285/200 128.99 1,512,533
30/270/200 57.40 1,670,072
45/255/200 52.29 1,999,648
60/240/200 57.53 2,284,938
75/225/200 100.57 2,783,213
90/210/200 106.12 3,221,095
105/195/200 51.26 3,381,901
120/180/200 92.91 4,002,829
135/165/200 47.03 4,106,699
150/150/200 56.59 4,567,460
165/135/200 47.00 4,928,309
180/120/200 36.70 5,233,076
195/105/200 42.26 5,785,707
210/90/200 32.63 6,077,184
225/75/200 30.53 6,516,738
240/60/200 26.17 6,878,131
255/45/200 22.99 7,259,559
270/30/200 22.04 7,782,640
285/15/200 20.02 8,183,754
300/0/200 19.10 8,663,756

# of Agents
Active/Passive/Random

(90% Random Investment)

Mean Price
Deviation

Relative [%]

Mean Trading
Volume [$]

0/50/450 47.64 3,033,663
2/47/450 45.72 2,968,380
5/45/450 44.38 3,061,623
7/42/450 44.89 3,396,441
10/40/450 43.70 3,297,070
12/37/450 40.82 3,131,807
15/35/450 40.76 3,298,982
17/32/450 40.31 3,305,112
20/30/450 38.28 3,387,004
22/27/450 38.33 3,358,055
25/25/450 37.95 3,366,321
27/22/450 37.49 3,628,239
30/20/450 36.73 3,596,709
32/17/450 35.87 3,608,822
35/15/450 34.47 3,615,557
37/12/450 34.39 3,700,074
40/10/450 33.11 3,688,612
42/7/450 33.58 3,764,347
45/5/450 32.75 3,727,598
47/2/450 33.96 3,973,665
50/0/450 31.53 3,882,438

Additionally, large fractions of passive investment may lead to price bubbles and
market failure. Table 4.3 shows that some compositions that have a high share of
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passive investment exhibit a particularly high price deviation from fundamental
values. This is driven by specific simulation runs, in which market values deviate
strongly from fundamental values. Figure 4.2, which details the results over the
different random seeds, shows that these large price bubbles do not occur in all
market settings with a high fraction of passive investment. However, these settings
enable price bubbles, as we do not observe bubbles of similar magnitude in settings
with a generally lower level of passive investment (see Figure 4.3). Figure C.1
illustrates the mechanism of a price bubble at the example of the simulation
run for random seed 1 and a market composition of 90 active, 210 passive, and
200 random investors. After a series of high market returns, passive investors
gradually increase their risky portfolio fractions. Simultaneously, active investors
realize that the market becomes overpriced and sell as many units of the risky
assets as they can, given their portfolio constraints. However, due to the large
share of passive investors, in these scenarios active investors cannot correct for the
overpricing and the link between market prices and fundamental values breaks down.
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Figure 4.2.: Relative fundamental price deviation by fraction of active investors (relative to
all active and passive investors) detailed over all random seeds in the market
setting with 40% random investment
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Figure 4.3.: Relative fundamental price deviation by fraction of active investors (relative to
all active and passive investors) detailed over all random seeds in the market
setting with 90% random investment

Table 4.4.: Mean absolute changes of portfolio weights between simulation rounds by agent
type and agent composition

# of Agents
Active/Passive/Random

(40% Random Investment)

Mean Absolute Changes
of Portfolio Weights

by Agent Type
Active Passive Random

0/300/200 - 0.03 0.33
15/285/200 0.47 0.04 0.33
30/270/200 0.52 0.04 0.34
45/255/200 0.57 0.04 0.34
60/240/200 0.59 0.05 0.34
75/225/200 0.62 0.05 0.34
90/210/200 0.62 0.06 0.34
105/195/200 0.65 0.06 0.34
120/180/200 0.66 0.07 0.34
135/165/200 0.67 0.07 0.35
150/150/200 0.67 0.07 0.35
165/135/200 0.68 0.08 0.35
180/120/200 0.69 0.08 0.35
195/105/200 0.69 0.08 0.35
210/90/200 0.7 0.08 0.35
225/75/200 0.7 0.08 0.35
240/60/200 0.71 0.08 0.35
255/45/200 0.72 0.08 0.35
270/30/200 0.73 0.08 0.35
285/15/200 0.73 0.08 0.35
300/0/200 0.73 - 0.35

# of Agents
Active/Passive/Random

(90% Random Investment)

Mean Absolute Changes
of Portfolio Weights

by Agent Type
Active Passive Random

0/50/450 - 0.07 0.34
2/47/450 0.42 0.07 0.34
5/45/450 0.44 0.07 0.34
7/42/450 0.44 0.08 0.34
10/40/450 0.46 0.07 0.34
12/37/450 0.47 0.08 0.34
15/35/450 0.47 0.08 0.34
17/32/450 0.48 0.08 0.34
20/30/450 0.49 0.08 0.34
22/27/450 0.5 0.08 0.34
25/25/450 0.5 0.08 0.34
27/22/450 0.52 0.08 0.34
30/20/450 0.52 0.09 0.34
32/17/450 0.53 0.08 0.34
35/15/450 0.53 0.09 0.35
37/12/450 0.53 0.09 0.35
40/10/450 0.54 0.09 0.35
42/7/450 0.54 0.08 0.35
45/5/450 0.55 0.09 0.35
47/2/450 0.55 0.09 0.35
50/0/450 0.56 - 0.35
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4.1.4.3 Sensitivity to Different Individual Target Price Forecasting Er-

rors of Active Investors

Table 4.5 und Figure 4.4 present the effect of varying individual target price fore-
casting errors of active investors on fundamental market efficiency. Generally, for
market compositions with active investors, we find that lower individual errors lead
to a higher level of fundamental market efficiency and vice versa. In our setting,
a bisection of individual target price forecasting errors compared to the standard
market setting reduces the mean fundamental price deviation by up to 4.56 percent-
age points, which occurs for the composition of 100 active, zero passive, and 400
random investors. Doubling the individual target price forecasting errors results in
an average increase in fundamental price deviation of up to 8.00 percentage points,
occurring for the market composition of 20 active, 80 passive, and 400 random in-
vestors. Furthermore, we find that a lower (higher) individual active forecasting
error results in a lower (higher) overall trading volume. For lower (higher) individ-
ual forecasting errors, the estimated fundamental prices of active investors become
more (less) similar and it is less (more) likely for active investors to trade with each
other and more (less) likely to compete for buying or selling the same stocks.



The Impact of Active and Passive Investment 121

Table 4.5.: Relative fundamental price deviation for different investor compositions in the
market settings with active investors’ individual absolute target price forecasting
errors (aTPE) of 0.225 and 0.9 averaged over all random seeds

# of Agents
Active/Passive/Random

Mean Price
Deviation Relative [%]

Mean Trading
Volume [$]

aTPE = 0.225 aTPE = 0.9 aTPE = 0.225 aTPE = 0.9

0/100/400 55.17 55.17 2,561,184 2,561,184
5/95/400 48.84 52.19 2,681,653 2,742,627
10/90/400 44.84 49.65 2,662,429 2,838,584
15/85/400 45.02 48.27 2,940,474 3,045,832
20/80/400 41.49 48.87 2,775,608 3,016,024
25/75/400 37.56 43.57 2,965,971 3,160,534
30/70/400 35.65 44.18 2,930,773 3,290,539
35/65/400 35.29 39.08 3,228,643 3,244,884
40/60/400 32.30 43.01 3,206,435 3,571,412
45/55/400 32.79 40.74 3,337,158 3,685,447
50/50/400 31.04 38.23 3,401,701 3,710,353
55/45/400 28.78 38.51 3,440,410 3,906,162
60/40/400 25.66 36.34 3,580,685 3,911,939
65/35/400 25.51 34.47 3,527,615 4,109,141
70/30/400 26.12 34.57 3,706,781 4,197,060
75/25/400 24.13 33.27 3,899,526 4,295,706
80/20/400 23.92 32.83 3,941,963 4,418,396
85/15/400 23.69 32.18 3,967,384 4,506,681
90/10/400 22.67 32.02 4,120,524 4,635,829
95/5/400 22.93 30.35 4,199,213 4,747,823
100/0/400 21.30 31.66 4,291,552 4,832,332
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Figure 4.4.: Fundamental price deviation by fraction of active investors (relative to all active
and passive investors) detailed over all random seeds in the market settings with
active investors’ individual absolute target price forecasting errors (aTPE) of
0.225 and 0.9

4.1.4.4 Sensitivity to Changes in Individual Risk Aversion

To analyze the influence of individual risk aversion on market outcomes, we formulate
two additional scenarios in which the risk aversion factor γ is fixed at values of
2 and 6, respectively. Table 4.6 and Figure 4.5 show that changes in individual
risk aversion only have a minor impact in markets with a higher share of active
investment. In market settings with a low share of active investment, we observe
that lower individual risk aversion increases mean fundamental price deviation. This
effect might be explained by the fact that lower risk aversion leads to more extreme
portfolio weights, which, in turn, may drive prices faster away from fundamental
values in markets that only have a weak link between fundamentals and market
prices (i.e., low share of active investors).
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Table 4.6.: Relative fundamental price deviation for different investor compositions in the
market settings with individual investors’ risk aversion of γ = 2 and γ = 6
averaged over all random seeds

# of Agents

Active/Passive/Random

Mean Price

Deviation Relative [%]

Mean Trading

Volume [$]

γ = 2 γ =6 γ =2 γ =6

0/100/400 61.12 46.17 2,675,948 2,554,114

5/95/400 56.60 48.74 2,699,050 2,593,278

10/90/400 51.49 44.07 2,725,954 2,770,256

15/85/400 48.91 43.45 2,892,430 2,844,814

20/80/400 46.99 41.01 3,042,139 2,794,737

25/75/400 43.60 37.94 3,111,944 3,011,106

30/70/400 40.31 37.40 3,113,275 3,076,410

35/65/400 39.31 35.77 3,168,636 3,119,941

40/60/400 35.21 36.07 3,297,038 3,321,216

45/55/400 36.65 35.24 3,519,634 3,466,496

50/50/400 33.80 33.18 3,453,610 3,362,015

55/45/400 33.03 30.62 3,788,077 3,694,802

60/40/400 31.73 30.74 3,888,638 3,819,000

65/35/400 30.10 28.49 3,917,745 3,800,704

70/30/400 28.92 28.25 3,960,200 3,913,296

75/25/400 28.32 27.71 4,187,611 3,883,864

80/20/400 28.17 26.23 4,216,768 4,138,441

85/15/400 27.46 26.38 4,300,281 4,246,452

90/10/400 27.13 25.69 4,743,153 4,278,943

95/5/400 26.06 25.01 4,450,700 4,438,806

100/0/400 25.21 24.56 4,519,973 4,615,691
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Figure 4.5.: Fundamental price deviation by fraction of active investors (relative to all active
and passive investors) detailed over all random seeds in the market setting with
individual investors’ risk aversion of γ = 2 and γ = 6

4.1.4.5 Sensitivity to Different Transaction Costs

Table 4.7 presents the results of a simulation scenario of a market that features
relative trading costs of 0.5%. Introducing transaction costs reduces fundamental
market efficiency in the market settings with a higher share of active investors.
Specifically, the mean fundamental market deviation increases for all tested agent
compositions with more than 50 active agents. Furthermore, it only decreases to
28.21% for the composition with 100 active, zero passive, and 400 random investors,
compared to 25.86% in the market setting without transaction costs (see Table 4.2).
Moreover, an increase in transaction costs leads to lower trading volumes, as investors
incorporate the expected trading costs into their utility functions and prefer smaller
portfolio changes.
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Table 4.7.: Fundamental price deviation and trading volume for different investor composi-
tions in the market setting with 0.5% transaction cost averaged over all random
seeds

# of Agents

Active/Passive/Random

Mean Price

Deviation Relative [%]

Mean Trading

Volume [$]

0/100/400 51.20 2,485,096

5/95/400 49.78 2,603,984

10/90/400 44.84 2,397,038

15/85/400 41.50 2,625,995

20/80/400 40.66 2,650,902

25/75/400 39.27 2,699,538

30/70/400 38.24 2,725,631

35/65/400 36.84 2,883,039

40/60/400 38.50 3,112,331

45/55/400 34.40 3,028,697

50/50/400 33.88 3,074,151

55/45/400 34.20 3,078,258

60/40/400 33.74 3,217,903

65/35/400 32.14 3,388,530

70/30/400 31.93 3,438,023

75/25/400 30.86 3,501,592

80/20/400 29.39 3,704,058

85/15/400 29.28 3,718,231

90/10/400 29.07 3,874,499

95/5/400 29.67 3,804,029

100/0/400 28.21 3,950,970
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Figure 4.6.: Fundamental price deviation by fraction of active investors (relative to all active
and passive investors) detailed over all random seeds in the market setting with
0.5% transaction costs

4.1.4.6 Sensitivity to Portfolio Weight Restraints

Table 4.8 and Figure 4.7 present the results for different upper bounds for the indi-
vidual portfolio weights of the different assets. We find that less restrictive individual
portfolio weights (i.e., wmax = 1) lead to higher fundamental market efficiency and
higher trading activity on average. In contrast, the opposite is true for more restric-
tive individual portfolio weights (i.e., wmax = 0.33). In our market setting with 100
active, zero passive, and 400 random investors, the less restrictive upper bound of
wmax = 1 results in a mean fundamental price deviation of 22.03%. For the same
market composition, the more restrictive bound of wmax = 0.33 leads to a mean
fundamental price deviation of 30.29%.
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Table 4.8.: Fundamental price deviation and trading volume for different investor composi-
tions in the market setting with individual investors’ upper portfolio constraints
of wmax = 0.33 and wmax = 1 averaged over all random seeds

# of Agents
Active/Passive/Random

Mean Price
Deviation Relative [%]

Mean Trading
Volume [$]

wmax=0.33 wmax=1 wmax=0.33 wmax=1

0/100/400 55.17 55.17 2,561,184 2,561,184
5/95/400 49.19 51.68 2,655,221 2,879,598
10/90/400 50.48 47.32 2,841,004 2,810,632
15/85/400 47.39 43.18 2,867,019 2,979,468
20/80/400 49.01 42.50 3,039,779 3,099,328
25/75/400 46.58 39.10 3,040,331 3,191,590
30/70/400 45.06 37.18 2,893,290 3,340,096
35/65/400 42.13 34.00 3,115,205 3,447,845
40/60/400 42.40 33.87 3,177,080 3,458,834
45/55/400 40.06 32.25 3,275,576 3,771,100
50/50/400 39.14 32.15 3,369,085 3,937,050
55/45/400 38.29 28.73 3,508,492 4,025,272
60/40/400 36.72 27.64 3,422,609 4,231,287
65/35/400 36.09 27.12 3,517,104 4,408,642
70/30/400 34.68 27.20 3,619,060 4,682,958
75/25/400 35.49 24.30 3,553,326 4,810,109
80/20/400 33.79 24.99 3,912,030 4,799,979
85/15/400 32.38 21.49 3,798,371 2,982,970
90/10/400 31.81 22.80 3,909,569 5,153,857
95/5/400 31.68 23.13 3,963,279 5,276,650
100/0/400 30.29 22.03 4,096,592 5,507,077
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Figure 4.7.: Fundamental price deviation by fraction of active investors (relative to all active
and passive investors) detailed over all random seeds in the market setting with
individual investors’ upper portfolio constraints of 0.33 and 1

4.1.4.7 Replication of Stylized Facts of Real-World Financial Markets

Table C.2 presents the results of our quantitative tests for the replication of stylized
facts of financial return time series detailed over all compositions and random seeds in
our standard market setting. We find that all return series exhibit an excess kurtosis
of at least 2 and the Kolmogorov-Smirnov tests (Kolmogorov, 1933; Smirnov, 1948;
Massey, 1951) show that all series are found to be non-Gaussian at a 95% confidence
level. The alpha of a fitted power-law distribution is in 71% of all simulated market
outcomes in the range between 2 and 5. Furthermore, the log-likelihood tests show
that in 81% of market outcomes, the observed distribution rather follows a power-law
distribution than an exponential distribution. While these tests are only in 17% of
these cases significant at the 95% confidence level, they never significantly indicate
that any of the observed return series rather follow an exponential distribution.
Additionally, we find that the created return times series exhibit conditional heavy
tails in 41% of all market outcomes. The stylized fact gain loss asymmetry is fulfilled
in 64% of all simulated market outcomes.

4.1.5 Discussion

This simulation study sheds light on the impact of two essential investor types,
namely active and passive investors, on fundamental market efficiency. It becomes
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apparent that high levels of passive investment within a market may foster price
bubbles and impair fundamental market efficiency. This finding has implications
for financial regulators, who should incorporate the level of passive investment and
existing market frictions when assessing risks to financial market stability. In the
light of an increase in passive investment due to the emergence of ETFs and robo-
advisory, this issue has become increasingly relevant. However, while it is possible to
approximate the level of passive investment through the volume of passively managed
funds, it is challenging to differentiate between various types of active investors
without conducting concrete interviews.

Additionally, the increase of fundamental market inefficiency for a higher fraction
of passive investment is influenced by active investors’ trading frictions and portfolio
restrictions. Thereby, markets with less restricted active investors may incorporate
a higher fraction of passive investors without creating large price bubbles, as less
restricted active investors can trade more and correct a higher level of mispricing.
This finding emphasizes the need for a careful situational assessment by regulators
when imposing measures that constrain trading.

The study further shows that the trading behavior of active investors, who indi-
vidually have imprecise but unbiased target price forecasts, links the market prices
of assets to their fundamental values. The marginal increase in fundamental market
efficiency for an additional fundamental investor entering the market decreases for
higher levels of existing fundamental investment. However, due to the imprecision
of individual forecasts, market prices generally may not exactly reflect fundamental
asset values at a certain point in time.

Regarding the second research question addressed in this study, our results show
that more accurate target price forecasts, as, for instance, caused by the proliferation
of machine learning in the asset management industry, lead to higher fundamental
efficiency of market prices. This increase in fundamental market efficiency is more
pronounced in markets with a higher level of active investment.

Generally, we find that our results are in line with related work (e.g., (Sullivan and
Xiong, 2012; Qin and Singal, 2015; Sushko and Turner, 2018; Anadu et al., 2019)),
which finds that a certain share of active investors is necessary for functioning and
efficient financial markets. Our simulation setting allows to provide further details
on the underlying mechanisms of this issue and evaluates the impact of different
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market environments.
An explicit limitation of this study is its simulation setting. While we generally

select simulation parameters carefully based on empirical evidence, it is unavoidable
to make certain assumptions during parameter selection. Furthermore, the simula-
tion setting significantly simplifies real-world financial markets. For instance, while
mean-variance utility functions are still commonly used in finance, they may overly
simplify the utility functions of investors. Hence, we aim to draw general conclusions
about financial markets’ functioning rather than narrow down on the exact magni-
tude of specific numeric results. We aim to reduce this limitation by testing whether
the return times series generated by our simulated market exhibit quantifiable styl-
ized facts that are often observed in real-world financial markets. We find that all
generated return series exhibit excess kurtoses and further tests suggest that most
of the generated time series exhibit heavy tails and a gain-loss asymmetry. However,
we only identify the stylized fact of conditional heavy tails in 42% of all generated
return series. Overall, these tests show that our simulated market exhibits some but
not all properties of real-world financial markets.

As this study focuses on the impact of fundamental and passive investment on fun-
damental market efficiency, future research could shed further light on the decision of
investors to invest based on fundamental analysis or to invest passively. As our study
shows, markets become increasingly fundamentally efficient with higher fractions of
active investors. However, in markets with higher shares of active investment, the
competition to trade mispriced assets also increases, leading to a lower utility of
individual active investors. Hence, researchers could investigate the existence of a
possible equilibrium level of active and passive investment in a financial market and
examine further influencing factors, such as the use of other utility functions that
have been shown to resemble the real world more realistically (e.g., prospect theory
(Kahneman and Tversky, 1979)).

4.1.6 Conclusion

In this simulation study, we analyze the effects of different levels of active and passive
investment on fundamental market efficiency. We examine various market settings
to understand the impact of other market parameters on our results. For the selected
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market settings, we generally find that larger fractions of active investment within a
market increase overall fundamental market efficiency. The marginal positive effect
on fundamental market efficiency per additional fundamental investor decreases for
larger fractions of fundamental investment. In addition, a less restrictive trading
environment for active investors in the form of relaxed portfolio constraints or lower
trading costs facilitates trading and increases fundamental market efficiency. Fur-
thermore, more accurate price forecasts of individual active investors, caused, for
instance, by the proliferation of machine learning approaches within the asset man-
agement industry, tend to increase fundamental market efficiency. We also find that
large fractions of passive investment within a financial market may lead to market
failure and facilitate technical price bubbles.





CHAPTER 5

FINALE

This thesis presents four quantitative studies on financial market prediction in light
of three major financial market developments. First, the market predictability of
the novel object of transaction cryptocurrency was examined from multiple perspec-
tives. A structured literature review established the state of research in the field
of Bitcoin market prediction via machine learning. Based on the identified research
gaps, a quantitative study applied various machine learning models to shed light on
the short-term predictability of the Bitcoin market. The next study analyzed the
potential for statistical arbitrage in the cryptocurrency market by applying machine
learning to predict market movements of the 50 largest cryptocurrencies by market
capitalization. Next, stock market predictability was investigated in light of the
COVID-19 pandemic, which constitutes a significant change in the socio-economic
and legal environment. A machine learning study examined the potential of finan-
cial market prediction utilizing COVID-19-related data. Last, the implications of
the shift from active to passive investment, which constitutes a change in agent be-
havior and market structure in financial markets, were analyzed. A simulation study
analyzed the relationship between the market share of active investors, who aim to
predict stock prices, and passive investors on fundamental market efficiency. This
final chapter summarizes the contributions of this thesis by answering the raised
research questions, highlighting existing limitations of the presented studies, and
elaborating on avenues for future research.
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5.1 Contributions and Answers to Research Ques-

tions
The thesis at hand provides an understanding of financial market prediction in

light of three major financial market developments. The concrete developments un-
der consideration cover all pivotal market elements of financial markets (Weinhardt
and Gimpel, 2007). This chapter summarizes the answers to the raised research
question and distill the main contributions of this thesis.

Research Question 1 What is the predictive power of machine learning models
predicting short-term movements of the Bitcoin market?

The first research question focuses on the predictability of the short-term Bitcoin
market and is addressed in the empirical study presented in Chapter 2.2. In the
study, various state-of-the-art machine learning models are trained on a comprehen-
sive feature set to predict binary movements of the Bitcoin market on the grounds
of four different prediction horizons ranging from 1 minute to 60 minutes. As the
models are trained on a balanced training set, the accuracy measure is utilized for
model evaluation.

The results show that the out-of-sample model accuracies range from 50.9% to
56.0%. While all utilized models statistically outperform a random classifier at a
significance level of 1%, the employed recurrent neural network ensembles (LSTM,
GRU), the tree-based ensemble models (gradient boosting classifier, random forest),
and an ensemble model consisting of all considered machine learning models, exhibit
higher predictive performance than the other employed methods. A comparison
of the four considered prediction horizons reveals that the average and the highest
model accuracy grow monotonously with increasing prediction horizons. In examin-
ing the economic implications of these predictions, a straightforward quantile-based
trading strategy based on the respective market predictions yields up to 116% return
over three months before transaction costs. While the trading performance based
on individual model forecasts remains relatively volatile, the average trading per-
formance over three months ranges from 3.97% (for the 1-minute holding periods)
to 51.92% (for the 60-minute holding periods), again monotonously increasing with
more extended periods. However, the achieved trading returns cannot compensate
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for incurring transaction costs due to the particularly short holding periods and
correspondingly frequent trading activities.

Research Question 2 What are the most relevant features for predicting short-
term movements of the Bitcoin market using different machine learning models?

In order to answer Research Question 2, the machine learning models described in
the empirical study presented in Chapter 2.2 are trained on a comprehensive feature
set consisting of various technical, blockchain-based, sentiment-/interest-based, and
asset-based features.

A permutation feature importance analysis reveals that the best-performing mod-
els, recurrent neural network ensembles and tree-based ensembles, prevalently rely
on technical features (i.e., Bitcoin returns) for making predictions. Regarding these
models, for longer prediction horizons, feature series besides the time series consist-
ing of Bitcoin returns become increasingly important, such as time series consisting
of Bitcoin transactions per second, weighted sentiment, and the number of tweets.
An examination of the tree-based ensemble models reveals that less recent returns
constitute the most important feature for longer prediction horizons. Concretely,
the last-minute Bitcoin returns are most relevant regarding the 1-minute prediction
horizon and the Bitcoin returns between 10 to 5 minutes before the prediction point
are most relevant regarding the 5-minute prediction horizon. The Bitcoin returns
between 10 to 20 minutes before the prediction time constitute the most relevant
feature for the 15-minute prediction horizon. The Bitcoin returns between 40 to
20 minutes before the prediction time constitute the most relevant feature for the
60-minute prediction horizon.

Research Question 3 What is the performance of machine learning models for
generating statistical arbitrage in the cryptocurrency market?

Research Question 3 concerns the performance of statistical arbitrage strategies
based on machine learning-based cryptocurrency market predictions and is addressed
in the study presented in Chapter 2.3. The study employs six different machine learn-
ing classifiers to predict the relative daily performance of the 100 largest cryptocur-
rencies by market capitalization. Subsequently, it evaluates the trading outcomes of
a long-short portfolio strategy based on the out-of-sample predictions of each model.
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The results demonstrate the potential of machine learning for cryptocurrency mar-
ket prediction, as all utilized models significantly outperform a random classifier.
The average accuracy values calculated on all cryptocurrencies range from 52.9% to
54.1% for the different models. These accuracy values lie between 57.7% and 59.5%
when calculated on the subset of predictions with the 10% highest model confidences
per class per day. A long-short portfolio strategy based on the predictions of the em-
ployed LSTM and GRU ensemble models yields the highest annualized out-of-sample
Sharpe ratio after transaction costs of 3.23 and 3.12, respectively. In comparison,
the buy-and-hold benchmark market portfolio strategy only yields a Sharpe ratio
of 1.33. These results indicate a challenge to weak form cryptocurrency market ef-
ficiency, albeit the influence of certain limits to arbitrage cannot be entirely ruled
out.

Research Question 4 What is the predictive power of machine learning models
predicting S&P 500 stock price movements during the COVID-19 pandemic?

The following research question focuses on stock market prediction in the socioe-
conomic environment altered by the Covid 19 pandemic. In the empirical study
presented in Chapter 3.1, random forest and benchmark logistic regression mod-
els are trained to predict next-day market movements of S&P 500 constituents.
Two versions for each model type are compared, whereby one version is trained on
COVID-19-related data and control variables, while the other is only trained on the
control variables.

The study has two main results. First, all models make statistically viable predic-
tions at a confidence level of 1%. Thereby, the random forest (53.84% accuracy) and
the logistic regression model (52.74% accuracy), trained on the complete feature set,
exhibit a higher predictive accuracy than their respective counterparts trained on
data not directly related to COVID-19 50.87% and 50.56% accuracy. This finding
suggests that COVID-19-related data exhibit predictive power in the period under
consideration. Second, the random forest performs better and makes more balanced
predictions than the logistic regression model. In combination with the finding that
the best performing random forest architecture grows medium-sized trees, non-linear
feature interactions with increased complexity may improve model forecasts. A per-
mutation feature importance analysis reveals that the best performing random forest
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relies on numerous features for making predictions, as individual feature importance
scores do not exceed 2%. The most important features are the newspaper-based in-
fectious disease equity market volatility tracker and features that indicate the state
of the pandemic, such as the changes in COVID-19-related cases, deaths, and the
number of conducted COVID-19 PCR tests. Regarding the regional distribution of
the latter, features that indicate the state of the pandemic in the US constitute the
largest share of the most important features.

Research Question 5 How do different levels of active and passive investment af-
fect fundamental price efficiency?

The next research question, addressed in Chapter 4.1, focuses on the impact of
different investor compositions on the deviation from observed market prices from
fundamental values. The presented study introduces a financial market simulation
framework and examines the impact of changes in the central market parameters on
market outcomes.

The study reveals that larger fractions of active investment within a market in-
crease overall fundamental market efficiency. The marginal positive effect on fun-
damental market efficiency per additional fundamental investor decreases for larger
fractions of fundamental investment within a market. The study further shows that
high levels of passive investment within a market may facilitate technical price bub-
bles and impair fundamental market efficiency. The study further examines the
sensitivity of these results towards central market parameters and finds that a less
restrictive trading environment for active investors in the form of relaxed portfolio
constraints or lower trading costs tends to facilitate trading and increase fundamen-
tal market efficiency. Furthermore, a lower risk aversion of all investors tends to
increase fundamental market efficiency.

Research Question 6 How do different degrees of accuracy of active investors’
market forecasts affect fundamental market efficiency?

The last research question addresses the impact of different accuracy degrees in
individual active investors’ market forecasts. In order to answer the final research
question, the individual target price errors of active investors in the simulation frame-
work presented in Chapter 4.1 are systematically altered, and the resulting level of
fundamental market efficiency is analyzed.
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The results show that more accurate target price forecasts, as, for instance, caused
by the proliferation of machine learning in the asset management industry, lead to
higher fundamental efficiency of market prices. Thereby, the increase in fundamental
market efficiency depends on the level of active investment and is more pronounced
in markets with a higher level of active investment.

5.2 Limitations
The presented results are subject to several individual limitations. First, all the

presented studies depend on the time frame under consideration. This limitation
applies especially to the empirical machine learning studies presented in Chapters 2
and 3, where the utilized datasets are naturally limited due to the recent and dynamic
nature of the examined asset pricing challenges. While stable and significant for
the respective periods, the results presented in these studies may not be valid for
future market environments. Financial markets are constantly evolving, and market
anomalies tend to disappear after publication (Zaremba et al., 2020). The time
dependence of the described results might be enhanced by the dynamic and recent
nature of the examined financial market developments, which naturally restricts the
amount of relevant data. An evaluation of whether the presented results are valid in
future market environments may reduce uncertainty regarding the temporal stability
of the results.

Second, to varying degrees, all of the presented studies exhibit limited external
validity. This limitation applies especially to the financial market simulation frame-
work presented in Chapter 4.1. As with nearly all economic models, the presented
framework simplifies the real world. Although the selected market parameter values
are based on empirical findings to the extent possible, they are subject to certain
assumptions. Additionally, the presented simulation setting is static, as investors
generally optimize their respective mean-variance utility functions and do not adapt
over time. With regards to the empirical studies presented in Chapters 2 and 3,
external validity is reduced due to certain limitations concerning the possibility of
cryptocurrency short positions and the assumption of consistent and fast data avail-
ability. A field study to evaluate the identified mechanisms of Chapter 4.1 may help
increase external validity.

Third, all studies are quantitative in nature. Qualitative studies, for instance,
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focusing on investor intention and behavior in the examined market environments,
may constitute a viable complement for the presented studies.

Last, the applied machine learning methods in Chapters 2 and 3 exhibit limitations
regarding transparency and interpretability. While examining feature importances
and model architectures aims to shed light on the applied models, the level of model
transparency remains modest due to the nature of the applied machine learning
algorithms. Current developments in the field of explainable artificial intelligence
may help increase machine learning models’ transparency.

5.3 Future Research
This chapter presents three possible pathways for future research based on the

studies presented in this thesis. These include (1) explainable artificial intelligence
for financial market prediction, (2) deep reinforcement learning for market simula-
tion, and (3) behavioral finance approaches to examine cryptocurrency investing.

Explainable artificial intelligence The studies presented in Chapters 2.2, 2.3
and 3.1 highlight the potential of complex machine learning architectures (e.g., re-
current neural network ensembles) in the considered market prediction contexts.
While these more complex models exhibit higher predictive power than traditional
linear models, they also come with limitations regarding model interpretability. In
an attempt to solve this trade-off between predictive power and model interpretabil-
ity (Montavon et al., 2018; Došilović et al., 2018), the research field of explainable
artificial intelligence has emerged over the last years (Arrieta et al., 2020; Berente
et al., 2021). Regarding explainable artificial intelligence, model-agnostic and model-
specific approaches can be differentiated (Samek et al., 2019). In this work, the model
agnostic approach of permutation feature importance (Breiman, 2001; Fisher et al.,
2019) is utilized, which only allows for modest model interpretability (Gu et al.,
2020). Generally, explainable artificial intelligence approaches may enable an im-
proved model evaluation (Lapuschkin et al., 2019), facilitate an increase in model
robustness (Arrieta et al., 2020), and help to develop a better understanding of pre-
diction problems and corresponding models (Siddiqui et al., 2019). With regards
to financial market prediction, these advantages may be particularly important, as
economically significant decisions can be based on these predictions. Against this
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backdrop, future research may examine emerging and profound explainable artificial
intelligence approaches for financial market prediction to improve model quality and
enhance the knowledge about underlying market mechanisms.

Behavioral finance The studies presented in Chapters 2.2 and 2.3 demonstrate
that technical signals constitute crucial features for the market prediction of Bitcoin
and other cryptocurrencies. Based on this finding, future research could conduct
experimental studies to determine the source of the predictive power of technical
features within these markets, as experimental finance approaches have successfully
generated insights into various asset pricing issues (Noussair and Tucker, 2013). A
potential source for the predictive power of technical features may be behavioral
investment biases. These biases could include overconfidence (Daniel et al., 1998),
anchoring (Tversky and Kahneman, 1974; Campbell and Sharpe, 2009), and the
disposition effect (Shefrin and Statman, 1985). For instance, investor overconfidence
may be induced by a lack of fundamental Bitcoin value in the traditional sense, as
individual investors might perceive a reduced informational edge of professional asset
managers in the Bitcoin market compared to other financial markets. Furthermore,
researchers could examine whether cryptocurrency investment induces excitement
or whether cryptocurrency investors constitute a subset of investors that is more
excitable generally, as excitement has shown to induce an increase in trading activity
and fuel market bubbles (Andrade et al., 2016).

Deep reinforcement learning The study presented in Chapter 4.1 introduces
a financial market simulation framework that incorporates different agents. These
agents exhibit stylized behavior that is defined by their nature. Future research may
examine more dynamic simulation frameworks incorporating multiple self-learning
agents that flexibly learn their behavior. A promising design approach for self-
learning agents may be deep reinforcement learning. Deep reinforcement learning
combines the fields of traditional reinforcement learning (Kaelbling et al., 1996) and
deep learning (Bengio et al., 2009; Schmidhuber, 2015). Deep reinforcement learn-
ing has shown the ability to solve various complex decision tasks (François-Lavet
et al., 2018). It has been applied successfully to a magnitude of different domains
over recent years, such as physics (Degrave et al., 2022), robotics (Ibarz et al., 2021),
communications (Luong et al., 2019), and finance (Hirchoua et al., 2021). With deep
reinforcement learning, single-agent and multi-agent models can be differentiated.
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While the more simple single-agent models have initially overshadowed multi-agent
models, the latter has risen rapidly in popularity in recent times (Gronauer and
Diepold, 2022). While early works have applied deep reinforcement learning within
the field of agent-based financial market simulation, these works are limited by ei-
ther an overly simplistic agent design (Spooner et al., 2018; Raman and Leidner,
2019) or by utilizing only a single deep reinforcement learning agent (Maeda et al.,
2020). In this context, employing multi-agent deep reinforcement learning to so-
phisticated agent-based financial market simulation frameworks represents a natural
next research step.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2.2

A.1 Supplemental Tables

Table A.1.: Overview of the class probability thresholds for trading. A buy (sell) trade
is initiated if the model’s predicted probability that a observation belongs to
Class 1 (Class 0) exceeds the listed probability threshold

1-Minute Predictions 5-Minute Predictions

Model Buy Sell Buy Sell

GRU 0.6021 0.6029 0.6103 0.5874
LSTM 0.6040 0.6108 0.5909 0.5755
FNN 0.5379 0.5498 0.5788 0.5730
LR 0.5804 0.5971 0.6354 0.6112
GBC 0.5727 0.5888 0.5973 0.5814
RF 0.5095 0.5113 0.5110 0.5111

15-Minute Predictions 60-Minute Predictions

Model Buy Sell Buy Sell

GRU 0.6136 0.5932 0.5999 0.5972
LSTM 0.6065 0.5899 0.6071 0.6043
FNN 0.5601 0.5608 0.5872 0.5858
LR 0.6633 0.6292 0.6962 0.6604
GBC 0.6216 0.5996 0.6645 0.6210
RF 0.5141 0.5147 0.5173 0.5182
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Accuracy 1-Minute Predictions

Model Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

GRU 0.5164 0.5159 0.5166 0.5193 0.5153
LSTM 0.5136 0.5169 0.5183 0.5205 0.5171
FNN 0.5166 0.5088 0.5151 0.5124 0.5049
RF 0.5170 0.5142 0.5182 0.5118 0.5110

Accuracy 1-Minute Predictions

Model Seed 5 Seed 6 Seed 7 Seed 8 Seed 9

GRU 0.5194 0.5204 0.5179 0.5174 0.5190
LSTM 0.5156 0.5172 0.5192 0.5194 0.5184
FNN 0.5033 0.5142 0.5103 0.4943 0.5094
RN 0.5134 0.5109 0.5113 0.5123 0.5102

Accuracy 5-Minute Predictions

Model Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

GRU 0.5228 0.5219 0.5260 0.5242 0.5267
LSTM 0.5241 0.5202 0.5223 0.5218 0.5228
FNN 0.5192 0.5190 0.5210 0.5207 0.5090
RF 0.5292 0.5231 0.5269 0.5258 0.5261

Accuracy 5-Minute Predictions

Model Seed 5 Seed 6 Seed 7 Seed 8 Seed 9

GRU 0.5221 0.5186 0.5212 0.5243 0.5244
LSTM 0.5218 0.5209 0.5210 0.5225 0.5235
FNN 0.5167 0.5203 0.5183 0.5140 0.5172
RN 0.5265 0.5265 0.5242 0.5270 0.5259
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Table A.2.: Overview of the predictive accuracies of all stochastic prediction models for the
individual random seeds

Accuracy 15-Minute Predictions

Model Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

GRU 0.5321 0.5349 0.5325 0.5385 0.5367
LSTM 0.5295 0.5313 0.5279 0.5284 0.5324
FNN 0.5189 0.5292 0.5146 0.5224 0.5040
RF 0.5361 0.5322 0.5341 0.5332 0.5350

Accuracy 15-Minute Predictions

Model Seed 5 Seed 6 Seed 7 Seed 8 Seed 9

GRU 0.5326 0.5344 0.5332 0.5313 0.5366
LSTM 0.5305 0.5309 0.5240 0.5338 0.5260
FNN 0.5111 0.5272 0.5194 0.5173 0.5172
RN 0.5357 0.5323 0.5342 0.5332 0.5325

Accuracy 60-Minute Predictions

Model Seed 0 Seed 1 Seed 2 Seed 3 Seed 4

GRU 0.5555 0.5403 0.5471 0.5569 0.5545
LSTM 0.5548 0.5502 0.5549 0.5505 0.5485
FNN 0.5466 0.5164 0.5474 0.5448 0.5085
RF 0.5528 0.5563 0.5535 0.5531 0.5598

Accuracy 60-Minute Predictions

Model Seed 5 Seed 6 Seed 7 Seed 8 Seed 9

GRU 0.5560 0.5579 0.5517 0.5374 0.5515
LSTM 0.5523 0.5526 0.5602 0.5453 0.5563
FNN 0.5318 0.5475 0.5115 0.5092 0.5061
RN 0.5565 0.5536 0.5549 0.5567 0.5540



148 Supplementary Material for Chapter 2.2



Supplemental Tables 149

Table A.3.: Diebold-Mariano test p-values to reject the null hypothesis towards the alterna-
tive hypothesis that the forecast of model i on the test sample is more accurate
than the forecast of model j

1-Minute Predictions

i
j

GRU LSTM FNN LR GBC RF E (All)

GRU - 0.8542 0.0000 0.0000 0.0000 0.0000 0.0001
LSTM 0.1458 - 0.0000 0.0000 0.0000 0.0000 0.0000
FNN 1.0000 1.0000 - 0.8890 0.8409 0.9456 0.9999
LR 1.0000 1.0000 0.1110 - 0.4610 0.6478 0.9809
GBC 1.0000 1.0000 0.1591 0.5390 - 0.8054 0.9994
RF 1.0000 1.0000 0.0544 0.3522 0.1946 - 0.9935
E (All) 0.9999 1.0000 0.0001 0.0191 0.0006 0.0065 -

5-Minute Predictions

i
j

GRU LSTM FNN LR GBC RF E (All)

GRU - 0.6373 0.0464 0.0000 0.9978 0.9110 0.9128
LSTM 0.3627 - 0.0246 0.0000 0.9945 0.8682 0.8425
FNN 0.9536 0.9754 - 0.0021 1.0000 0.9974 0.9995
LR 1.0000 1.0000 0.9979 - 1.0000 1.0000 1.0000
GBC 0.0022 0.0055 0.0000 0.0000 - 0.0412 0.0141
RF 0.0890 0.1318 0.0026 0.0000 0.9588 - 0.3476
E (All) 0.0872 0.1575 0.0005 0.0000 0.9859 0.6524 -

15-Minute Predictions

i
j

GRU LSTM FNN LR GBC RF E (All)

GRU - 0.0000 0.0000 0.0000 0.6756 0.1154 0.8878
LSTM 1.0000 - 0.0000 0.0000 0.9986 0.9599 1.0000
FNN 1.0000 1.0000 - 0.2029 1.0000 1.0000 1.0000
LR 1.0000 1.0000 0.7971 - 1.0000 1.0000 1.0000
GBC 0.3244 0.0014 0.0000 0.0000 - 0.0518 0.6491
RF 0.8846 0.0401 0.0000 0.0000 0.9482 - 0.9866
E (All) 0.1122 0.0000 0.0000 0.0000 0.3509 0.0134 -
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60-Minute Predictions

i
j

GRU LSTM FNN LR GBC RF E (All)

GRU - 0.9999 0.0000 0.0000 0.5792 0.4194 0.7790
LSTM 0.0000 - 0.0000 0.0000 0.0500 0.0052 0.0213
FNN 1.0000 1.0000 - 1.0000 1.0000 1.0000 1.0000
LR 1.0000 1.0000 0.0000 - 1.0000 1.0000 1.0000
GBC 0.4208 0.9500 0.0000 0.0000 - 0.3433 0.6387
RF 0.5806 0.9948 0.0000 0.0000 0.6567 - 0.8145
E (All) 0.2210 0.9787 0.0000 0.0000 0.3613 0.1855 -
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A.2 Supplemental Graphical Material
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Figure A.1.: Feature importance of the models with memory function on the 1-minute pre-
diction horizon
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Figure A.2.: Feature importance of the models with memory function on the 5-minute pre-
diction horizon
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Figure A.3.: Feature importance of the models with memory function on the 15-minute
prediction horizon
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Figure A.4.: Feature importance of the models with memory function on the 60-minute
prediction horizon
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Figure A.5.: Feature importance of the models without memory function on the 1-minute
prediction horizon
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Figure A.6.: Feature importance of the models without memory function on the 5-minute
prediction horizon
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Figure A.7.: Feature importance of the models without memory function on the 15-minute
prediction horizon
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Figure A.8.: Feature importance of the models without memory function on the 60-minute
prediction horizon
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SUPPLEMENTARY MATERIAL FOR CHAPTER 2.3

B.1 Supplemental Tables

No Coin Symbol Exclusion Reason

1 BLUNA Data issues
2 KNCL Data issues
3 CDAI Data issues
4 LN Data issues
5 SOLVE Data issues
6 VERI Data issues
7 VEE Data issues
8 JASMY Data issues
9 MSOL Data issues

10 MAID Data issues
11 BUSD Stablecoin
12 HUSD Stablecoin
13 SAI Stablecoin
14 DAI Stablecoin
15 TUSD Stablecoin
16 USDC Stablecoin
17 USDT Stablecoin
18 UST Stablecoin
19 FRAX Stablecoin
20 MIM Stablecoin
21 MUSD Stablecoin
22 SUSD Stablecoin
23 USDN Stablecoin

Table B.1.: Overview of coins excluded from the study and the reason for their exclusion
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Table B.2.: Complete p-values for the binomial test of achieving the respective model’s
accuracies for the combined test sets of all study periods with the null hypothesis
of each model having atrue predictive performance of 0.5 or below

Portfolio Size k = 1 k = 2 k = 5 k = 10 k = 20 k = 50

GRU 7.012528e-20 1.048364e-33 7.864622e-62 7.823276e-85 1.137218e-100 2.136124e-84
LSTM 4.334874e-20 1.334199e-31 4.308048e-56 8.736139e-90 9.042803e-115 3.202961e-110
TCN 2.829318e-17 1.483387e-25 9.661208e-50 8.459317e-74 3.218419e-106 3.765699e-88
GBC 7.385857e-18 1.505160e-32 1.925738e-49 5.630044e-81 1.079329e-111 1.047139e-84
RF 7.385857e-18 1.334199e-31 2.365775e-58 5.677780e-93 1.566451e-139 3.419382e-119
LR 1.057233e-16 3.115607e-24 1.693509e-38 5.755924e-59 4.059272e-71 6.528285e-56

Table B.3.: Complete p-values per study period for the binomial test of realizing the re-
spective prediction accuracy with the null hypothesis of each model having a
true predictive performance of 0.5 or below

Portfolio Size 1 2 5 10 20 50

Model Study Period

GRU 1 1.966113e-09 8.143005e-10 2.829318e-17 8.593063e-21 4.129621e-27 5.916977e-23
2 2.053107e-04 5.951555e-06 5.829624e-11 6.540142e-14 9.855201e-25 1.468607e-25
3 5.147597e-05 9.767993e-08 1.813239e-17 1.306882e-18 1.149283e-16 1.406433e-11
4 5.147597e-05 1.355567e-09 4.344051e-10 1.987192e-16 2.808584e-21 9.363543e-19
5 2.294356e-03 1.518496e-07 2.403512e-14 1.998324e-23 1.325015e-19 3.519168e-15

LSTM 1 1.273132e-06 2.496326e-08 5.388406e-13 3.441800e-18 3.811074e-26 8.770927e-26
2 2.053107e-04 1.793673e-05 3.445781e-12 2.301733e-17 3.811074e-26 1.414983e-36
3 5.147597e-05 9.767993e-08 5.388406e-13 9.309605e-20 2.131927e-18 2.449832e-13
4 5.147597e-05 8.143005e-10 1.610661e-10 1.466401e-16 2.353418e-27 2.909156e-25
5 1.914557e-05 2.344697e-07 1.074886e-14 4.629964e-26 3.368743e-25 1.966950e-20

TCN 1 7.103290e-07 3.679503e-09 1.074886e-14 6.873145e-25 1.140469e-34 1.860338e-27
2 3.160513e-05 2.759758e-06 7.158810e-15 6.864123e-15 4.259964e-29 1.040745e-28
3 3.908212e-07 1.518496e-07 7.102294e-12 3.353233e-13 4.073274e-15 3.161564e-10
4 2.156425e-02 1.233186e-02 4.772219e-05 9.130275e-10 3.453358e-12 1.125556e-11
5 3.280082e-03 3.960555e-08 1.653800e-12 6.080850e-21 7.581627e-28 2.945825e-22

GBC 1 7.103290e-07 9.016950e-14 2.511002e-16 9.616070e-27 3.234463e-37 1.994906e-29
2 3.171100e-04 7.123364e-05 1.143767e-09 1.955044e-13 1.286722e-24 1.546419e-26
3 2.294356e-03 1.246133e-06 2.940061e-09 1.215689e-14 1.074106e-18 2.375169e-14
4 2.250362e-06 2.241060e-09 6.014537e-10 1.987192e-16 5.379156e-19 3.092007e-15
5 7.274396e-04 2.759758e-06 4.953697e-12 6.806688e-19 2.980659e-22 1.369435e-10

RF 1 5.147597e-05 8.290170e-07 3.687780e-13 6.579187e-24 4.078689e-39 4.881953e-36
2 1.311896e-04 9.716225e-09 1.141086e-12 8.954819e-18 3.219094e-28 1.468607e-25
3 1.584634e-03 2.759758e-06 4.754797e-15 4.162588e-23 7.330139e-30 9.167393e-21
4 1.144208e-05 1.355567e-09 4.344051e-10 3.144490e-17 1.664621e-26 8.046203e-25
5 1.914557e-05 3.596098e-07 7.158810e-15 2.532673e-19 5.769668e-25 2.281399e-21

LR 1 7.274396e-04 1.233186e-02 7.072222e-03 3.693249e-05 9.511710e-05 3.971647e-06
2 1.080569e-03 1.246133e-06 7.378645e-09 1.618262e-11 1.714117e-21 9.816374e-24
3 7.103290e-07 2.496326e-08 3.149451e-15 1.816706e-19 2.852275e-24 3.783289e-11
4 6.745841e-06 3.679503e-09 1.448182e-11 5.845011e-17 8.535440e-19 1.837793e-15
5 3.280082e-03 1.249970e-05 4.344051e-10 3.634647e-16 7.494437e-15 2.085115e-10
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Table B.4.: Daily return and risk metrics and annualized risk-return metrics for all models
and the market (MKT) for the short leg of the k = 5 portfolio

GRU LSTM TCN GBC RF LR MKT

Mean Return 0.00217 0.00065 -0.00221 -0.00117 0.00002 0.00013 0.00330
Return Standard Deviation 0.07646 0.07612 0.07676 0.07285 0.07236 0.07025 0.04729
Downside Risk 0.90256 0.92223 0.93714 0.88138 0.85539 0.81862 0.54851
VaR 1% -0.22028 -0.22320 -0.22297 -0.21930 -0.20235 -0.19868 -0.14187
VaR 5% -0.13972 -0.13221 -0.13441 -0.12916 -0.12400 -0.11725 -0.07389
CVaR 1% -0.28448 -0.30545 -0.31089 -0.27844 -0.26553 -0.24951 -0.19054
CVaR 5% -0.19742 -0.19863 -0.19963 -0.18967 -0.18092 -0.17207 -0.11744
Annual. Volatility 1.46079 1.45425 1.46656 1.39176 1.38247 1.34212 0.90338
Sharpe Ratio 0.54182 0.16135 -0.55060 -0.30860 0.00309 0.03408 1.33105
Sortino Ratio 0.72814 0.21126 -0.71546 -0.40462 0.00414 0.04639 1.82023
Excess Sharpe -0.00993 -0.02357 -0.04824 -0.04013 -0.02977 -0.02910 -
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4.1

C.1 Supplemental Tables

Table C.1.: Fundamental price deviation and trading volume for different investor compo-
sitions in the market setting with a share of 20 percent random investment
averaged over all random seeds

# of Agents

Active/Passive/Random

Mean Price

Deviation Relative [%]

Mean Trading

Volume [$]

0/400/100 90.04 504,301

20/380/100 58.71 825,915

40/360/100 55.25 1,277,081

60/340/100 49.75 1,725,518

80/320/100 63.38 2,285,153

100/300/100 65.24 2,764,043

120/280/100 58.32 3,203,483

140/260/100 125.33 4,217,106

160/240/100 63.66 4,349,119

180/220/100 43.63 4,824,851

200/200/100 68.77 5,399,436

220/180/100 55.59 5,819,052

240/160/100 51.43 6,322,966

260/140/100 57.73 6,944,992

280/120/100 47.17 7,420,431

300/100/100 37.20 7,846,136

320/80/100 31.83 8,306,960

340/60/100 28.10 8,912,337

360/40/100 25.07 9,499,031

380/20/100 22.71 10,114,443

400/0/100 20.64 10,737,114
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Table C.2.: Overview of the tests for the different stylized facts detailed over all investor
compositions and random seeds. Bold values denote that the stylized fact is
fulfilled

Composition/
Seed

Excess Kurtosis/
KS Test Gaussian

p-Value

Power-Law Alpha/
Log-Likelihood-

Ratio Power-Law-
Exponential, p-Value

Excess Kurtosis
Residuals/

KS Test Gaussian,
p-Value

Position Maximum
Positive/Negative

0-100-400 /0 3.26 /< 0.001 4.77 /16.10, 0.122 2.960 /< 0.001 95.12 / 100.88
0-100-400 /1 3.27 /< 0.001 4.56 /26.60, 0.0585 2.734 /< 0.001 142.63 / 139.91
0-100-400 /2 3.76 /< 0.001 4.41 /49.6, < 0.001 2.980 /< 0.001 124.88 / 124.21
0-100-400 /3 3.17 /< 0.001 5.02 /0.152, 0.977 2.826 /< 0.001 109.82 / 111.49
0-100-400 /4 3.29 /< 0.001 4.58 /18.30, 0.0572 3.189 /< 0.001 151.68 / 149.10
0-100-400 /5 3.09 /< 0.001 5.64 /3.62, 0.328 3.292 /< 0.001 116.44 / 116.31
0-100-400 /6 3.38 /< 0.001 4.52 /19.50, 0.129 3.152 /< 0.001 135.21 / 134.11
0-100-400 /7 3.14 /< 0.001 4.76 /12.20, 0.173 2.972 /< 0.001 85.91 / 76.59
5-95-400 /0 3.42 /< 0.001 4.76 /26.0, 0.00938 3.173 /< 0.001 142.46 / 143.00
5-95-400 /1 3.37 /< 0.001 4.52 /34.1, 0.0114 2.000 /< 0.001 109.70 / 109.69
5-95-400 /2 3.04 /< 0.001 4.63 /6.45, 0.504 3.395 /< 0.001 151.79 / 150.93
5-95-400 /3 3.01 /< 0.001 4.80 /16.20, 0.0774 2.860 /< 0.001 96.08 / 96.06
5-95-400 /4 3.19 /< 0.001 4.59 /26.1, 0.0285 4.098 /< 0.001 108.20 / 89.22
5-95-400 /5 3.35 /< 0.001 4.78 /22.8, 0.0173 3.124 /< 0.001 116.92 / 114.83
5-95-400 /6 3.25 /< 0.001 4.88 /15.00, 0.177 2.832 /< 0.001 146.35 / 144.79
5-95-400 /7 3.17 /< 0.001 4.68 /25.0, 0.0289 2.407 /< 0.001 115.48 / 115.42
10-90-400 /0 3.59 /< 0.001 4.40 /20.90, 0.203 3.784 /< 0.001 115.71 / 115.60
10-90-400 /1 3.91 /< 0.001 4.66 /12.30, 0.225 6.474 /< 0.001 118.72 / 115.99
10-90-400 /2 3.95 /< 0.001 4.49 /12.80, 0.32 6.463 /< 0.001 131.55 / 130.78
10-90-400 /3 3.41 /< 0.001 4.77 /15.30, 0.0577 3.350 /< 0.001 99.56 / 98.04
10-90-400 /4 3.80 /< 0.001 4.44 /21.5, 0.0441 3.870 /< 0.001 120.09 / 118.21
10-90-400 /5 3.76 /< 0.001 4.69 /19.40, 0.0659 4.185 /< 0.001 145.43 / 142.83
10-90-400 /6 3.24 /< 0.001 4.86 /18.30, 0.0824 3.146 /< 0.001 133.10 / 105.53
10-90-400 /7 3.15 /< 0.001 4.59 /-3.52, 0.737 2.529 /< 0.001 135.06 / 133.85
15-85-400 /0 3.24 /< 0.001 4.94 /5.71, 0.517 2.663 /< 0.001 120.43 / 119.73
15-85-400 /1 3.05 /< 0.001 5.22 /6.33, 0.203 3.032 /< 0.001 104.30 / 104.70
15-85-400 /2 2.83 /< 0.001 5.17 /1.85, 0.685 3.051 /< 0.001 143.45 / 135.80
15-85-400 /3 3.25 /< 0.001 4.78 /8.16, 0.26 3.608 /< 0.001 121.33 / 118.91
15-85-400 /4 2.93 /< 0.001 4.61 /-5.0, 0.618 3.444 /< 0.001 93.81 / 90.89
15-85-400 /5 2.79 /< 0.001 4.80 /-1.89, 0.833 3.297 /< 0.001 125.38 / 125.04
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Composition/
Seed

Excess Kurtosis/
KS Test Gaussian

p-Value

Power-Law Alpha/
Log-Likelihood-Ratio

Power-Law -
Exponential, p-Value

Excess Kurtosis
Residuals /

KS Test Gaussian,
p-Value

Position Maximum
Positive/Negative

15-85-400 /6 3.13 /< 0.001 4.57 /12.60, 0.273 2.359 /< 0.001 114.97 / 114.18
15-85-400 /7 3.63 /< 0.001 4.83 /16.7, 0.0384 2.912 /< 0.001 147.23 / 142.60
20-80-400 /0 3.04 /< 0.001 4.79 /18.6, 0.0353 2.811 /< 0.001 112.57 / 110.44
20-80-400 /1 2.99 /< 0.001 4.79 /6.78, 0.425 3.479 /< 0.001 130.05 / 134.22
20-80-400 /2 3.56 /< 0.001 4.92 /6.54, 0.261 3.141 /< 0.001 95.36 / 92.36
20-80-400 /3 2.52 /< 0.001 5.22 /4.48, 0.492 1.908 /< 0.001 106.32 / 106.00
20-80-400 /4 3.30 /< 0.001 4.55 /26.8, 0.0195 4.308 /< 0.001 102.04 / 100.60
20-80-400 /5 2.81 /< 0.001 4.89 /6.64, 0.363 2.659 /< 0.001 127.47 / 126.26
20-80-400 /6 2.78 /< 0.001 4.87 /-3.57, 0.708 2.340 /< 0.001 118.50 / 118.58
20-80-400 /7 3.37 /< 0.001 4.62 /21.10, 0.0675 3.226 /< 0.001 134.79 / 138.75
25-75-400 /0 2.70 /< 0.001 5.37 /1.65, 0.716 2.696 /< 0.001 130.23 / 129.39
25-75-400 /1 3.20 /< 0.001 4.62 /-0.963, 0.918 2.850 /< 0.001 97.88 / 99.77
25-75-400 /2 2.90 /< 0.001 4.85 /7.61, 0.35 2.917 /< 0.001 125.87 / 124.38
25-75-400 /3 3.83 /< 0.001 4.75 /32.6, 0.00861 3.965 /< 0.001 127.03 / 129.06
25-75-400 /4 3.09 /< 0.001 5.33 /3.84, 0.367 3.053 /< 0.001 130.89 / 99.85
25-75-400 /5 3.75 /< 0.001 5.02 /8.28, 0.182 4.038 /< 0.001 127.41 / 124.51
25-75-400 /6 2.95 /< 0.001 4.93 /4.87, 0.468 2.898 /< 0.001 160.88 / 111.29
25-75-400 /7 3.59 /< 0.001 4.71 /13.70, 0.167 3.449 /< 0.001 110.94 / 82.17
30-70-400 /0 2.86 /< 0.001 4.81 /-0.409, 0.951 2.872 /< 0.001 127.01 / 124.41
30-70-400 /1 3.60 /< 0.001 4.65 /18.70, 0.124 2.697 /< 0.001 101.03 / 82.75
30-70-400 /2 3.16 /< 0.001 5.16 /9.68, 0.215 2.494 /< 0.001 112.42 / 113.16
30-70-400 /3 3.77 /< 0.001 4.70 /8.45, 0.35 4.222 /< 0.001 110.62 / 111.68
30-70-400 /4 3.42 /< 0.001 5.47 /0.319, 0.918 4.084 /< 0.001 115.57 / 112.32
30-70-400 /5 2.87 /< 0.001 4.92 /8.82, 0.251 2.512 /< 0.001 123.42 / 122.13
30-70-400 /6 3.39 /< 0.001 4.83 /21.2, 0.0275 3.448 /< 0.001 108.03 / 88.50
30-70-400 /7 3.01 /< 0.001 4.83 /-1.65, 0.811 3.401 /< 0.001 128.18 / 125.99
35-65-400 /0 2.82 /< 0.001 4.90 /24.6, 0.016 2.665 /< 0.001 94.97 / 91.14
35-65-400 /1 2.74 /< 0.001 5.00 /-5.39, 0.366 2.986 /< 0.001 128.00 / 126.79
35-65-400 /2 2.92 /< 0.001 4.64 /5.56, 0.625 2.991 /< 0.001 105.70 / 105.37
35-65-400 /3 3.04 /< 0.001 4.51 /23.8, 0.043 2.924 /< 0.001 131.61 / 129.89
35-65-400 /4 3.06 /< 0.001 4.91 /6.63, 0.317 3.419 /< 0.001 93.18 / 90.61
35-65-400 /5 2.91 /< 0.001 4.80 /17.2, 0.0472 2.608 /< 0.001 132.01 / 129.10
35-65-400 /6 2.72 /< 0.001 4.89 /3.05, 0.671 2.306 /< 0.001 104.82 / 90.17
35-65-400 /7 3.13 /< 0.001 4.51 /5.91, 0.542 2.972 /< 0.001 98.13 / 100.11
40-60-400 /0 2.78 /< 0.001 4.67 /8.65, 0.434 2.675 /< 0.001 106.26 / 106.61
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Composition/
Seed

Excess Kurtosis/
KS Test Gaussian

p-Value

Power-Law Alpha/
Log-Likelihood-Ratio

Power-Law -
Exponential, p-Value

Excess Kurtosis
Residuals /

KS Test Gaussian,
p-Value

Position Maximum
Positive/Negative

40-60-400 /1 2.78 /< 0.001 5.00 /-3.91, 0.525 2.765 /< 0.001 108.74 / 104.81
40-60-400 /2 2.89 /< 0.001 5.11 /2.19, 0.703 2.909 /< 0.001 126.60 / 111.38
40-60-400 /3 2.74 /< 0.001 5.07 /2.65, 0.693 2.489 /< 0.001 125.56 / 126.59
40-60-400 /4 3.56 /< 0.001 4.69 /12.20, 0.213 3.265 /< 0.001 100.15 / 99.87
40-60-400 /5 3.13 /< 0.001 5.54 /2.51, 0.473 4.815 /< 0.001 88.96 / 92.60
40-60-400 /6 3.48 /< 0.001 5.03 /19.2, 0.0157 4.647 /< 0.001 111.30 / 109.89
40-60-400 /7 3.01 /< 0.001 4.61 /0.597, 0.949 3.040 /< 0.001 103.05 / 110.28
45-55-400 /0 3.63 /< 0.001 5.85 /2.35, 0.308 4.644 /< 0.001 129.42 / 128.17
45-55-400 /1 3.23 /< 0.001 4.63 /14.50, 0.167 4.366 /< 0.001 102.29 / 100.71
45-55-400 /2 3.74 /< 0.001 4.88 /24.6, 0.0128 3.403 /< 0.001 108.21 / 110.33
45-55-400 /3 3.28 /< 0.001 4.79 /9.03, 0.259 4.784 /< 0.001 121.48 / 117.95
45-55-400 /4 2.47 /< 0.001 4.58 /3.93, 0.715 2.720 /< 0.001 100.16 / 95.21
45-55-400 /5 3.04 /< 0.001 4.78 /13.70, 0.0858 3.175 /< 0.001 116.51 / 115.33
45-55-400 /6 3.10 /< 0.001 4.52 /28.7, 0.0454 3.385 /< 0.001 97.79 / 93.62
45-55-400 /7 3.44 /< 0.001 4.55 /5.67, 0.587 3.117 /< 0.001 96.50 / 92.80
50-50-400 /0 2.60 /< 0.001 4.54 /6.40, 0.59 3.338 /< 0.001 146.78 / 105.45
50-50-400 /1 3.19 /< 0.001 4.70 /10.00, 0.365 3.100 /< 0.001 93.40 / 86.22
50-50-400 /2 2.96 /< 0.001 4.87 /10.40, 0.225 2.803 /< 0.001 127.45 / 126.86
50-50-400 /3 3.02 /< 0.001 4.92 /14.70, 0.133 3.082 /< 0.001 112.16 / 111.35
50-50-400 /4 3.38 /< 0.001 4.39 /11.50, 0.423 3.810 /< 0.001 108.81 / 106.69
50-50-400 /5 3.22 /< 0.001 4.85 /7.71, 0.383 4.450 /< 0.001 94.44 / 92.84
50-50-400 /6 3.09 /< 0.001 5.13 /6.23, 0.289 2.796 /< 0.001 119.24 / 117.96
50-50-400 /7 3.70 /< 0.001 4.52 /19.10, 0.14 3.067 /< 0.001 103.47 / 108.77
55-45-400 /0 2.80 /< 0.001 4.84 /5.04, 0.541 3.083 /< 0.001 102.58 / 103.25
55-45-400 /1 2.70 /< 0.001 4.97 /1.55, 0.828 2.948 /< 0.001 93.26 / 92.00
55-45-400 /2 2.67 /< 0.001 4.68 /11.90, 0.226 2.402 /< 0.001 114.04 / 113.68
55-45-400 /3 3.22 /< 0.001 4.85 /8.70, 0.259 3.523 /< 0.001 122.22 / 117.13
55-45-400 /4 3.03 /< 0.001 5.30 /-0.659, 0.88 3.216 /< 0.001 110.78 / 89.72
55-45-400 /5 3.75 /< 0.001 4.60 /41.3, 0.00235 4.188 /< 0.001 116.40 / 110.94
55-45-400 /6 3.39 /< 0.001 5.16 /3.90, 0.448 3.525 /< 0.001 120.52 / 120.22
55-45-400 /7 2.59 /< 0.001 4.89 /2.41, 0.783 2.555 /< 0.001 107.23 / 111.68
60-40-400 /0 2.79 /< 0.001 4.61 /8.30, 0.507 2.453 /< 0.001 123.33 / 119.91
60-40-400 /1 3.22 /< 0.001 4.36 /36.6, 0.0186 3.848 /< 0.001 104.83 / 91.07
60-40-400 /2 2.89 /< 0.001 5.03 /16.60, 0.0529 3.391 /< 0.001 132.97 / 133.52
60-40-400 /3 3.13 /< 0.001 5.02 /4.35, 0.569 3.388 /< 0.001 100.77 / 99.46
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Composition/
Seed

Excess Kurtosis/
KS Test Gaussian

p-Value

Power-Law Alpha/
Log-Likelihood-Ratio

Power-Law -
Exponential, p-Value

Excess Kurtosis
Residuals /

KS Test Gaussian,
p-Value

Position Maximum
Positive/Negative

60-40-400 /4 3.35 /< 0.001 6.25 /1.88, 0.383 3.198 /< 0.001 117.72 / 95.23
60-40-400 /5 3.47 /< 0.001 5.32 /6.23, 0.252 3.342 /< 0.001 97.88 / 97.51
60-40-400 /6 2.64 /< 0.001 4.86 /17.90, 0.0562 2.837 /< 0.001 97.12 / 95.92
60-40-400 /7 3.09 /< 0.001 4.46 /3.24, 0.763 3.332 /< 0.001 137.11 / 111.61
65-35-400 /0 3.08 /< 0.001 4.70 /3.90, 0.702 4.448 /< 0.001 133.22 / 130.82
65-35-400 /1 3.18 /< 0.001 5.03 /-0.265, 0.962 3.323 /< 0.001 108.57 / 101.03
65-35-400 /2 2.34 /< 0.001 4.93 /-1.4, 0.861 2.842 /< 0.001 90.22 / 86.79
65-35-400 /3 3.28 /< 0.001 4.92 /12.60, 0.176 3.677 /< 0.001 138.51 / 104.83
65-35-400 /4 3.79 /< 0.001 4.37 /31.80, 0.0508 2.641 /< 0.001 99.05 / 98.04
65-35-400 /5 3.38 /< 0.001 4.69 /18.80, 0.0659 4.698 /< 0.001 102.74 / 101.88
65-35-400 /6 2.94 /< 0.001 5.10 /5.21, 0.452 3.553 /< 0.001 101.39 / 98.94
65-35-400 /7 3.25 /< 0.001 4.75 /-4.03, 0.617 2.317 /< 0.001 116.04 / 112.30
70-30-400 /0 2.32 /< 0.001 4.96 /-2.42, 0.778 2.476 /< 0.001 141.95 / 141.89
70-30-400 /1 2.83 /< 0.001 4.79 /-2.11, 0.789 2.664 /< 0.001 113.35 / 108.81
70-30-400 /2 2.92 /< 0.001 4.97 /5.80, 0.443 2.707 /< 0.001 122.15 / 117.78
70-30-400 /3 3.21 /< 0.001 5.13 /0.19, 0.967 2.590 /< 0.001 112.82 / 112.85
70-30-400 /4 3.07 /< 0.001 5.65 /0.113, 0.975 2.700 /< 0.001 102.00 / 98.81
70-30-400 /5 2.99 /< 0.001 4.94 /14.00, 0.0975 3.019 /< 0.001 128.85 / 128.76
70-30-400 /6 3.02 /< 0.001 5.70 /1.62, 0.671 3.281 /< 0.001 119.23 / 118.43
70-30-400 /7 3.70 /< 0.001 4.39 /20.00, 0.101 3.018 /< 0.001 112.90 / 114.95
75-25-400 /0 2.62 /< 0.001 5.33 /2.12, 0.643 2.691 /< 0.001 140.09 / 138.12
75-25-400 /1 3.26 /< 0.001 4.32 /6.94, 0.63 2.685 /< 0.001 97.43 / 92.45
75-25-400 /2 2.32 /< 0.001 5.20 /0.414, 0.941 1.998 /< 0.001 116.94 / 116.56
75-25-400 /3 2.73 /< 0.001 4.69 /24.4, 0.0337 3.067 /< 0.001 108.87 / 109.08
75-25-400 /4 2.92 /< 0.001 5.09 /9.77, 0.213 2.889 /< 0.001 97.00 / 95.08
75-25-400 /5 2.60 /< 0.001 4.53 /-16.8, 0.0785 3.327 /< 0.001 119.62 / 118.16
75-25-400 /6 2.77 /< 0.001 5.22 /4.76, 0.436 2.705 /< 0.001 122.99 / 121.05
75-25-400 /7 3.47 /< 0.001 4.33 /-1.57, 0.908 2.509 /< 0.001 126.92 / 103.65
80-20-400 /0 2.69 /< 0.001 4.95 /1.82, 0.807 3.056 /< 0.001 138.04 / 134.54
80-20-400 /1 3.33 /< 0.001 5.13 /7.66, 0.315 4.201 /< 0.001 101.33 / 94.90
80-20-400 /2 2.23 /< 0.001 5.05 /-7.18, 0.271 2.207 /< 0.001 123.56 / 121.86
80-20-400 /3 3.04 /< 0.001 4.62 /11.40, 0.21 3.179 /< 0.001 115.33 / 116.58
80-20-400 /4 2.75 /< 0.001 4.85 /-5.03, 0.444 2.352 /< 0.001 127.97 / 100.58
80-20-400 /5 3.86 /< 0.001 4.84 /10.20, 0.364 2.557 /< 0.001 135.51 / 100.08
80-20-400 /6 3.04 /< 0.001 4.75 /-2.02, 0.825 2.423 /< 0.001 126.66 / 124.69
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Composition/
Seed

Excess Kurtosis/
KS Test Gaussian

p-Value

Power-Law Alpha/
Log-Likelihood-Ratio

Power-Law -
Exponential, p-Value

Excess Kurtosis
Residuals /

KS Test Gaussian,
p-Value

Position Maximum
Positive/Negative

80-20-400 /7 3.00 /< 0.001 4.61 /-0.266, 0.978 3.435 /< 0.001 111.29 / 111.39
85-15-400 /0 3.14 /< 0.001 5.04 /9.04, 0.16 3.053 /< 0.001 128.12 / 124.96
85-15-400 /1 2.98 /< 0.001 4.89 /4.64, 0.626 4.785 /< 0.001 104.41 / 105.91
85-15-400 /2 2.25 /< 0.001 5.40 /-4.72, 0.408 2.141 /< 0.001 123.23 / 123.12
85-15-400 /3 2.81 /< 0.001 5.25 /8.55, 0.134 2.492 /< 0.001 112.63 / 115.18
85-15-400 /4 2.84 /< 0.001 4.73 /1.48, 0.881 2.421 /< 0.001 102.04 / 97.56
85-15-400 /5 2.89 /< 0.001 4.92 /6.24, 0.382 3.636 /< 0.001 142.36 / 104.45
85-15-400 /6 2.45 /< 0.001 4.55 /-3.75, 0.772 2.094 /< 0.001 128.08 / 105.50
85-15-400 /7 3.24 /< 0.001 4.59 /13.60, 0.182 3.251 /< 0.001 126.15 / 104.07
90-10-400 /0 2.66 /< 0.001 4.51 /-4.95, 0.673 2.757 /< 0.001 130.26 / 130.54
90-10-400 /1 3.32 /< 0.001 5.08 /6.29, 0.383 5.077 /< 0.001 102.70 / 97.67
90-10-400 /2 2.43 /< 0.001 5.80 /-1.32, 0.647 2.098 /< 0.001 151.52 / 104.97
90-10-400 /3 3.03 /< 0.001 4.96 /13.70, 0.057 2.655 /< 0.001 121.08 / 117.51
90-10-400 /4 3.28 /< 0.001 4.69 /10.40, 0.273 2.559 /< 0.001 132.99 / 121.79
90-10-400 /5 3.02 /< 0.001 5.29 /5.47, 0.236 3.588 /< 0.001 104.25 / 106.55
90-10-400 /6 3.58 /< 0.001 5.10 /9.46, 0.106 2.715 /< 0.001 109.47 / 106.96
90-10-400 /7 2.82 /< 0.001 4.76 /-16.9, 0.0139 3.016 /< 0.001 133.07 / 132.36
95-5-400 /0 2.54 /< 0.001 4.73 /-5.87, 0.534 2.605 /< 0.001 149.77 / 140.66
95-5-400 /1 2.46 /< 0.001 5.06 /-7.24, 0.266 1.992 /< 0.001 104.22 / 101.29
95-5-400 /2 2.88 /< 0.001 5.04 /15.1, 0.0413 2.434 /< 0.001 138.42 / 137.68
95-5-400 /3 2.89 /< 0.001 5.16 /9.63, 0.0869 3.703 /< 0.001 113.32 / 116.54
95-5-400 /4 3.11 /< 0.001 4.70 /-1.52, 0.86 3.364 /< 0.001 108.03 / 105.12
95-5-400 /5 4.51 /< 0.001 4.86 /16.10, 0.122 7.940 /< 0.001 139.31 / 104.05
95-5-400 /6 2.71 /< 0.001 5.55 /3.67, 0.344 2.304 /< 0.001 107.34 / 108.53
95-5-400 /7 2.80 /< 0.001 5.81 /-0.501, 0.875 2.808 /< 0.001 131.88 / 114.75
100-0-400 /0 2.95 /< 0.001 5.38 /2.86, 0.61 2.136 /< 0.001 136.74 / 135.70
100-0-400 /1 2.95 /< 0.001 4.67 /-9.46, 0.251 2.929 /< 0.001 103.47 / 92.23
100-0-400 /2 2.41 /< 0.001 5.05 /0.483, 0.944 2.714 /< 0.001 142.56 / 141.30
100-0-400 /3 2.69 /< 0.001 4.80 /1.89, 0.824 2.715 /< 0.001 131.85 / 98.83
100-0-400 /4 2.65 /< 0.001 4.84 /-6.35, 0.425 2.293 /< 0.001 126.17 / 102.34
100-0-400 /5 3.18 /< 0.001 4.92 /11.30, 0.151 3.170 /< 0.001 140.87 / 102.43
100-0-400 /6 3.08 /< 0.001 5.17 /8.90, 0.167 3.406 /< 0.001 115.29 / 114.49
100-0-400 /7 3.22 /< 0.001 4.70 /4.13, 0.62 2.976 /< 0.001 119.23 / 119.19
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C.2 Supplemental Graphical Material

Figure C.1.: Development of portfolio weights of active and passive agents for the compo-
sition 90-210-200, as well as the fundamental price deviation by simulation
round.
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Figure C.2.: Relative fundamental price deviation by fraction of active investors (relative to
all active and passive investors) detailed over all random seeds in the market
setting with 20 percent random investors.

C.3 Supplemental Text

C.3.1 Derivation of the standard deviation of 3-month target price fore-

casting errors of active investors

Geary (1935) shows that the ratio of mean absolute deviation MAD and standard
deviation σ is equal to

√
2
π

under a normal distribution. Equivalently, the standard
deviation of a normal distribution can be described as:

σ =
MAD√

2
π

, (C.1)

with

MAD =
1

n

n∑
i=1

∣∣Xi − X̄
∣∣ , (C.2)

where Xi denotes the ith value in a set of n values and X̄ denotes the measure of
central tendency of that set. Following Bilinski et al. (2013), we define the absolute
target price forecasting error aTPE as follows:
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aTPE =
|TP − P12|

Ps

, (C.3)

where TP denotes the target price, P12 the actual stock price after 12 months and
Ps the stock price at the time of forecasting. By setting TP as the average of all J
agents’ forecasts for a given single stock the equation for the aTPE changes to the
following:

aTPE =
1

Ps

∗ 1

J

J∑
j=1

|TPj − P12| . (C.4)

As the individual forecasts in our setting are unbiased, the actual stock price after
12 months (P12) is equivalent to the measure of central tendency of the individual
forecasts. Therefore, inserting Equation C.2 in Equation C.4 gives:

aTPE =
1

Ps

∗MAD. (C.5)

aTPE is an exogenous factor in our model, therefore, Equation C.5 is rearranged
to

MAD = aTPE ∗ Ps. (C.6)

Inserting Equation C.6 into Equation C.1 gives:

σ =
aTPE ∗ Ps√

2
π

. (C.7)

Assuming a Brownian Motion allows us to calculate a 3-month equivalent of this
1-year standard deviation by dividing it by

√
4, which finally results in:

σ =
aTPE ∗ Ps√

2
π
∗
√
4

. (C.8)
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Arrieta, A. B., Díaz-Rodŕiguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
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