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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Growing competitive requirements in the industry and 
increasing quality expectations of customers demand 
innovative solutions that increase the value-added share in the 
production of high-precision products [1–3]. However, in high-
tech production, even when all geometrical specifications are 
maintained, the production of non-functional end products is 
possible due to unfavorable combinations of components [1,4–
6]. In addition, continuing cost pressure and sustainability 
requirements are demanding companies to efficiently utilize 
components that are produced close to the technological 
manufacturing limit. [1,5,6] 

To meet these challenges, quality control strategies such as 
selective assembly or adaptive manufacturing are used [1,5]. 
Quality control strategies enable the production of high-
precision products from less precise components by shifting 
technological complexity into production control [5]. To 

guarantee high product quality and to account for correlation 
and specification uncertainty, quality control strategies often 
aim at the product’s function directly instead of focussing on 
geometrical specifications [5,7,8]. They are therefore called 
function-oriented quality control strategies. In order to apply 
such a control strategy within production, a functional model is 
necessary that predicts the functional deviation of the end 
product based on measured features of the assembled 
components. [5,9,10]  

However, those quality control strategies are most often 
only used within factory boundaries, as no measurement data 
is usually being shared between partners of the supply chain 
[6,11]. Nevertheless, cross company quality control would be 
beneficial for all partners, since tolerances for the supplied 
components could be widened while improving the quality of 
the end product at the same time [6,11–13]. 

Therefore, the goal of this study is to develop a method to 
evaluate varying batches of high-precision components based 
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production of high-precision products [1–3]. However, in high-
tech production, even when all geometrical specifications are 
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requirements are demanding companies to efficiently utilize 
components that are produced close to the technological 
manufacturing limit. [1,5,6] 

To meet these challenges, quality control strategies such as 
selective assembly or adaptive manufacturing are used [1,5]. 
Quality control strategies enable the production of high-
precision products from less precise components by shifting 
technological complexity into production control [5]. To 

guarantee high product quality and to account for correlation 
and specification uncertainty, quality control strategies often 
aim at the product’s function directly instead of focussing on 
geometrical specifications [5,7,8]. They are therefore called 
function-oriented quality control strategies. In order to apply 
such a control strategy within production, a functional model is 
necessary that predicts the functional deviation of the end 
product based on measured features of the assembled 
components. [5,9,10]  

However, those quality control strategies are most often 
only used within factory boundaries, as no measurement data 
is usually being shared between partners of the supply chain 
[6,11]. Nevertheless, cross company quality control would be 
beneficial for all partners, since tolerances for the supplied 
components could be widened while improving the quality of 
the end product at the same time [6,11–13]. 

Therefore, the goal of this study is to develop a method to 
evaluate varying batches of high-precision components based 
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on their predicted impact on the end product’s functional 
deviation and the resulting predicted quality costs. By knowing 
the financial impact of a batch of supplied components, the 
method provides a willingness to pay for specific supplier 
batches to improve the overall quality. Based on this, incentives 
can be derived that enable a batch-specific definition of 
tolerances for supplier parts which paves the way towards a 
tolerance-free, function-oriented series production. 

The study is presented as follows: The next section presents 
foundations on function-oriented quality control and introduces 
the novel quality control strategy of batch-specific tolerance 
allocation. In section 3 the state of the art regarding the 
quantification of quality costs in quality control strategies and 
tolerancing is discussed. Afterwards, the pricing model for 
batch-specific tolerance allocation is introduced in section 4. 
Subsequently, the article is summarized and further research is 
discussed in the concluding section.  

2. Function-Oriented Quality Control Strategies and 
Batch-Specific Tolerance Allocation 

As stated before, function-oriented quality control strategies 
are a way to enable the production of high-precision products 
such as dental instruments, precision gear boxes, or injectors 
from lower precise components [1,3–5,14]. The most known 
control strategy is selective assembly. Here, components are 
sorted into classes (also called groups) based on their measured 
features or their influence on the functional deviation. The 
classes of compensating components are then allocated 
respectively to reduce functional deviation and quality costs of 
the resulting product. Additionally, many more different 
quality strategies exist (see Figure 1). [5,6,15] 

Figure 1 Overview of different function-oriented quality control strategies 
within factory borders illustrated as different quality control loops [4–6] 

In assembly, the pairing of components can also be done 
individually to find the best fitting counterpart based on the 
components’ measurement data (individual assembly). In the 
manufacturing of the components, parameters can be adapted 
either individually to produce the best fitting counterpart 
(individual manufacturing) or by shifting nominal values to 
produce compensating batches or reproduce specific classes for 
selective assembly (statistically adaptive manufacturing). By 
means of product co-design, even tolerances can be widened 
by implementing quality control strategies that are able to 
compensate for low precision components. A broad overview 
of the state of the art of function-oriented quality control 
strategies within factory borders is given in [4], [5], and [6]. 

Silbernagel et al. [6] introduce a novel logistical quality 
control strategy, called batch allocation, that can be combined 
with existing strategies. The idea is to match varying batches 

of the components to be joined before they enter assembly 
based on the components’ batch-specific distribution of 
functional deviations. So, the assembly is provided with the 
best distributions available to compensate opposing effects. 

Based on this strategy, batch-specific tolerance allocation 
will become possible. In the context of this work, batch-
specific tolerance allocation is defined as the individual 
definition of a component’s functional (and therefore 
geometrical) tolerances for a specific batch based on the 
distribution of the functional deviation of the counterpart’s 
corresponding batch (cf. [12,16]). In contrast to this, tolerance 
widening (or tolerance adaption) as introduced before by 
means of product co-design is understood as a general, long-
term definition of tolerances. 

So, batch-specific tolerance allocation is the real time batch-
specific definition of a component’s tolerances, given the 
batch-specific distribution of the functional deviation of a 
matching component. Although, this strategy is similar to 
statistically adaptive manufacturing, it doesn’t need to specify 
which nominal value has to be shifted and whether nominal 
values have to be shifted at all. It rather is just a definition of 
which components are to be accepted. This is particularly 
promising when being applied across company borders, since 
it is not possible to adapt nominal values at the supplier’s 
factory. However, for a supplier to accept such a scenario, 
financial incentives are needed to compensate for additional 
efforts. Therefore, it is necessary to be able to quantify the 
impact of a batch of component A (produced by the supplier) 
given a batch of component B (produced internally) on the end 
product’s function and resulting quality costs. Figure 2 shows 
a typical process chain for batch-specific tolerance allocation.  

Figure 2 Typical Process Chain for Batch-Specific Tolerance Allocation 

The following section presents the state of the art on 
quantifying quality costs based on functional deviations in 
quality control strategies and tolerancing to analyze to what 
extend methods are available to derive incentives for batch-
specific tolerance allocation. 

3. Quantifying Quality Costs in Function-Oriented 
Quality Control and Tolerancing 

In traditional quality engineering views, all products within 
the tolerance limits are considered to be of equal quality and 
free of defects. As long as products are within tolerance, there 
are no quality costs considered. Accordingly, a product with 
features outside the upper (USL) or lower specification limits 
(LSL) is defective and must either be reworked at a cost or 
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declared as scrap. The associated costs amount to a uniform 
value 𝐴𝐴0 for all products outside the tolerance limits. [17]  

Taguchi et al [18] offer a different view on product quality. 
They define quality losses as “the economic losses imparted by 
the product to society after being shipped to a customer” [18]. 
Therefore, losses occur for any deviation from the nominal 
value. Thus, any deviation, no matter how small, is seen as a 
defect that leads to quality degradation, causing losses and 
costs. The losses increase quadratically with deviation from the 
target value up to the tolerance limits (see Figure 3 and eq. (1)). 
For deviations that fall outside the tolerance limits, the loss 
does not increase further and maintains a uniform, fixed value. 
The loss function has its minimum at the nominal value. 
Accordingly, reaching the functional target is desirable for both 
quality and cost reasons. This popular phenomenon is therefore 
called Taguchi’s loss function. [17,18] 

Figure 3 Explanation of Taguchi's loss function opposed to the traditional 
view on product quality (following [17,18])  

𝐿𝐿(𝑦𝑦) = 𝑘𝑘(𝑦𝑦 − 𝑚𝑚)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑘𝑘 =  𝐴𝐴0

(∆spec )2 , 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿𝐿𝐿
2  

(1) 

Kannan et al. [15] use Taguchi’s loss function in a selective 
assembly scenario for the joining of a shaft into a bore. They 
implement a genetic algorithm (GA) to find the optimal group 
sizes and allocations for the selective assembly strategy. After 
assembly, the resulting components are grouped similar to the 
classes in the applied selective assembly strategy. Thus, the 
quality loss can be calculated and minimized using the group 
mean 𝑦𝑦𝑠𝑠  as shown in eq. (2) instead of computing the loss 
based on the real value of the resulted assembly clearance (see 
also Figure 4). [15]  

Figure 4 Taguchi’s loss function applied in selective assembly for grouped 
functional assembly variations (following [15]) 

𝐿𝐿(𝑦𝑦𝑠𝑠) = 𝑘𝑘(𝑦𝑦𝑠𝑠 − 𝑚𝑚)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑦𝑦𝑠𝑠 = 𝐶𝐶𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚+𝐶𝐶𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚

2 , ∀ 𝑠𝑠 ∈ 𝑆𝑆  
 

(2) 

Babu & Asha [19] investigate a selective assembly scenario 
for the joining of a shaft, similar to [15]. In order to accept 
resulting components in a nominal interval within the 
specification limit, instead of focusing on the mean value alone, 
they introduce a symmetric interval-based Taguchi (SIT) loss 
function. Hence, there is a target interval of desirable feature 
values with bounds 𝑚𝑚1 and 𝑚𝑚2. Within this target interval, the 
loss is 0. Outside the target interval, the loss function increases 
quadratically up to the tolerance limits. Afterwards, following 
[15] the quality loss is computed. [19]  

Matsuura [20] investigates the optimal group sizes for a 
selective assembly strategy to minimize assembly clearance. 
The industrial use case is demonstrated in the joining of pistons 
in engine production. The author provides a numerical solution 
for general convex loss functions to determine an optimal 
assembly class division instead of Taguchi’s loss function with 
squared error losses. In this case, 𝐴𝐴0 corresponds to the cost of 
reworking a defective component at the tolerance limits. [20] 

Wagner [21] uses Taguchi’s loss function to calculate the 
quality costs in a simulation-based valuation of strategies for 
function-oriented quality control. He introduces a methodology 
to compare all quality control strategies introduced in [5] based 
on a digital twin of production. Thus, quality control strategies 
can be investigated technologically and monetarily before 
implementation. However, although he uses a functional model 
within the quality control strategies, the loss is not predicted, 
but only calculated for the actual functional value in the 
functional test points. Furthermore, the approach doesn’t 
account for cross-company quality control and batch-specific 
information. [5,9,21]  

Muthu et al. [22], Hsieh [23], Choi et al. [24], Cheng & 
Maghsoodloo [25], and Peng et al. [26], among others, use the 
general Taguchi loss function to determine the total cost of a 
component, depending on the allowable deviation, with the 
goal of a minimum cost tolerance design. In these approaches, 
the total cost consists of the manufacturing cost and quality 
costs computed with Taguchi’s loss function. The 
manufacturing costs are further split into fixed costs and costs 
that are variable with the specification width (costs incurred to 
produce a single part to a specific tolerance). [22]  

To sum up, Taguchi’s loss function is often used in tolerance 
design and allocation for computing quality costs [22–26]. 
Furthermore, quality control strategies for high-precision 
products such as selective assembly and adaptive 
manufacturing are studied heavily [1,4,5] and some scholars 
also use Taguchi’s loss function to calculate the resulting 
quality costs to evaluate the outcome [15,19–21,27].  

However, there is no approach that predicts the functional 
deviation and the resulting quality costs of assembled high-
precision products based on varying component batches to 
compute the willingness to pay for a batch-specific tolerance 
allocation of the supplied components. To close this gap, the 
following chapter introduces a dynamic pricing model for 
batch-specific tolerance allocation. 
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on their predicted impact on the end product’s functional 
deviation and the resulting predicted quality costs. By knowing 
the financial impact of a batch of supplied components, the 
method provides a willingness to pay for specific supplier 
batches to improve the overall quality. Based on this, incentives 
can be derived that enable a batch-specific definition of 
tolerances for supplier parts which paves the way towards a 
tolerance-free, function-oriented series production. 

The study is presented as follows: The next section presents 
foundations on function-oriented quality control and introduces 
the novel quality control strategy of batch-specific tolerance 
allocation. In section 3 the state of the art regarding the 
quantification of quality costs in quality control strategies and 
tolerancing is discussed. Afterwards, the pricing model for 
batch-specific tolerance allocation is introduced in section 4. 
Subsequently, the article is summarized and further research is 
discussed in the concluding section.  

2. Function-Oriented Quality Control Strategies and 
Batch-Specific Tolerance Allocation 

As stated before, function-oriented quality control strategies 
are a way to enable the production of high-precision products 
such as dental instruments, precision gear boxes, or injectors 
from lower precise components [1,3–5,14]. The most known 
control strategy is selective assembly. Here, components are 
sorted into classes (also called groups) based on their measured 
features or their influence on the functional deviation. The 
classes of compensating components are then allocated 
respectively to reduce functional deviation and quality costs of 
the resulting product. Additionally, many more different 
quality strategies exist (see Figure 1). [5,6,15] 

Figure 1 Overview of different function-oriented quality control strategies 
within factory borders illustrated as different quality control loops [4–6] 

In assembly, the pairing of components can also be done 
individually to find the best fitting counterpart based on the 
components’ measurement data (individual assembly). In the 
manufacturing of the components, parameters can be adapted 
either individually to produce the best fitting counterpart 
(individual manufacturing) or by shifting nominal values to 
produce compensating batches or reproduce specific classes for 
selective assembly (statistically adaptive manufacturing). By 
means of product co-design, even tolerances can be widened 
by implementing quality control strategies that are able to 
compensate for low precision components. A broad overview 
of the state of the art of function-oriented quality control 
strategies within factory borders is given in [4], [5], and [6]. 

Silbernagel et al. [6] introduce a novel logistical quality 
control strategy, called batch allocation, that can be combined 
with existing strategies. The idea is to match varying batches 

of the components to be joined before they enter assembly 
based on the components’ batch-specific distribution of 
functional deviations. So, the assembly is provided with the 
best distributions available to compensate opposing effects. 

Based on this strategy, batch-specific tolerance allocation 
will become possible. In the context of this work, batch-
specific tolerance allocation is defined as the individual 
definition of a component’s functional (and therefore 
geometrical) tolerances for a specific batch based on the 
distribution of the functional deviation of the counterpart’s 
corresponding batch (cf. [12,16]). In contrast to this, tolerance 
widening (or tolerance adaption) as introduced before by 
means of product co-design is understood as a general, long-
term definition of tolerances. 

So, batch-specific tolerance allocation is the real time batch-
specific definition of a component’s tolerances, given the 
batch-specific distribution of the functional deviation of a 
matching component. Although, this strategy is similar to 
statistically adaptive manufacturing, it doesn’t need to specify 
which nominal value has to be shifted and whether nominal 
values have to be shifted at all. It rather is just a definition of 
which components are to be accepted. This is particularly 
promising when being applied across company borders, since 
it is not possible to adapt nominal values at the supplier’s 
factory. However, for a supplier to accept such a scenario, 
financial incentives are needed to compensate for additional 
efforts. Therefore, it is necessary to be able to quantify the 
impact of a batch of component A (produced by the supplier) 
given a batch of component B (produced internally) on the end 
product’s function and resulting quality costs. Figure 2 shows 
a typical process chain for batch-specific tolerance allocation.  

Figure 2 Typical Process Chain for Batch-Specific Tolerance Allocation 

The following section presents the state of the art on 
quantifying quality costs based on functional deviations in 
quality control strategies and tolerancing to analyze to what 
extend methods are available to derive incentives for batch-
specific tolerance allocation. 

3. Quantifying Quality Costs in Function-Oriented 
Quality Control and Tolerancing 

In traditional quality engineering views, all products within 
the tolerance limits are considered to be of equal quality and 
free of defects. As long as products are within tolerance, there 
are no quality costs considered. Accordingly, a product with 
features outside the upper (USL) or lower specification limits 
(LSL) is defective and must either be reworked at a cost or 
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declared as scrap. The associated costs amount to a uniform 
value 𝐴𝐴0 for all products outside the tolerance limits. [17]  

Taguchi et al [18] offer a different view on product quality. 
They define quality losses as “the economic losses imparted by 
the product to society after being shipped to a customer” [18]. 
Therefore, losses occur for any deviation from the nominal 
value. Thus, any deviation, no matter how small, is seen as a 
defect that leads to quality degradation, causing losses and 
costs. The losses increase quadratically with deviation from the 
target value up to the tolerance limits (see Figure 3 and eq. (1)). 
For deviations that fall outside the tolerance limits, the loss 
does not increase further and maintains a uniform, fixed value. 
The loss function has its minimum at the nominal value. 
Accordingly, reaching the functional target is desirable for both 
quality and cost reasons. This popular phenomenon is therefore 
called Taguchi’s loss function. [17,18] 

Figure 3 Explanation of Taguchi's loss function opposed to the traditional 
view on product quality (following [17,18])  

𝐿𝐿(𝑦𝑦) = 𝑘𝑘(𝑦𝑦 − 𝑚𝑚)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑘𝑘 =  𝐴𝐴0

(∆spec )2 , 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿𝐿𝐿
2  

(1) 

Kannan et al. [15] use Taguchi’s loss function in a selective 
assembly scenario for the joining of a shaft into a bore. They 
implement a genetic algorithm (GA) to find the optimal group 
sizes and allocations for the selective assembly strategy. After 
assembly, the resulting components are grouped similar to the 
classes in the applied selective assembly strategy. Thus, the 
quality loss can be calculated and minimized using the group 
mean 𝑦𝑦𝑠𝑠  as shown in eq. (2) instead of computing the loss 
based on the real value of the resulted assembly clearance (see 
also Figure 4). [15]  

Figure 4 Taguchi’s loss function applied in selective assembly for grouped 
functional assembly variations (following [15]) 

𝐿𝐿(𝑦𝑦𝑠𝑠) = 𝑘𝑘(𝑦𝑦𝑠𝑠 − 𝑚𝑚)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑦𝑦𝑠𝑠 = 𝐶𝐶𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚+𝐶𝐶𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚

2 , ∀ 𝑠𝑠 ∈ 𝑆𝑆  
 

(2) 

Babu & Asha [19] investigate a selective assembly scenario 
for the joining of a shaft, similar to [15]. In order to accept 
resulting components in a nominal interval within the 
specification limit, instead of focusing on the mean value alone, 
they introduce a symmetric interval-based Taguchi (SIT) loss 
function. Hence, there is a target interval of desirable feature 
values with bounds 𝑚𝑚1 and 𝑚𝑚2. Within this target interval, the 
loss is 0. Outside the target interval, the loss function increases 
quadratically up to the tolerance limits. Afterwards, following 
[15] the quality loss is computed. [19]  

Matsuura [20] investigates the optimal group sizes for a 
selective assembly strategy to minimize assembly clearance. 
The industrial use case is demonstrated in the joining of pistons 
in engine production. The author provides a numerical solution 
for general convex loss functions to determine an optimal 
assembly class division instead of Taguchi’s loss function with 
squared error losses. In this case, 𝐴𝐴0 corresponds to the cost of 
reworking a defective component at the tolerance limits. [20] 

Wagner [21] uses Taguchi’s loss function to calculate the 
quality costs in a simulation-based valuation of strategies for 
function-oriented quality control. He introduces a methodology 
to compare all quality control strategies introduced in [5] based 
on a digital twin of production. Thus, quality control strategies 
can be investigated technologically and monetarily before 
implementation. However, although he uses a functional model 
within the quality control strategies, the loss is not predicted, 
but only calculated for the actual functional value in the 
functional test points. Furthermore, the approach doesn’t 
account for cross-company quality control and batch-specific 
information. [5,9,21]  

Muthu et al. [22], Hsieh [23], Choi et al. [24], Cheng & 
Maghsoodloo [25], and Peng et al. [26], among others, use the 
general Taguchi loss function to determine the total cost of a 
component, depending on the allowable deviation, with the 
goal of a minimum cost tolerance design. In these approaches, 
the total cost consists of the manufacturing cost and quality 
costs computed with Taguchi’s loss function. The 
manufacturing costs are further split into fixed costs and costs 
that are variable with the specification width (costs incurred to 
produce a single part to a specific tolerance). [22]  

To sum up, Taguchi’s loss function is often used in tolerance 
design and allocation for computing quality costs [22–26]. 
Furthermore, quality control strategies for high-precision 
products such as selective assembly and adaptive 
manufacturing are studied heavily [1,4,5] and some scholars 
also use Taguchi’s loss function to calculate the resulting 
quality costs to evaluate the outcome [15,19–21,27].  

However, there is no approach that predicts the functional 
deviation and the resulting quality costs of assembled high-
precision products based on varying component batches to 
compute the willingness to pay for a batch-specific tolerance 
allocation of the supplied components. To close this gap, the 
following chapter introduces a dynamic pricing model for 
batch-specific tolerance allocation. 
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4. Dynamic Pricing Model for Batch-Specific Tolerance 
Allocation 

We propose a model to evaluate the impact of a batch of 
component A (produced by a supplier) given a batch of 
component B (produced internally) on the end product’s 
function and quality costs. Based on this, incentives can be 
derived to successfully implement batch-specific tolerance 
allocation in a supply chain scenario (see Figure 2). Both 
components have one or more quality critical features. Other 
costs than quality costs are considered fixed in this scenario.  

First, the model has to be able to predict and compare the 
functional deviations of different components’ batches based 
on the batch-specific data. For this, we follow [6] and [9]. The 
variables are explained in detail in the nomenclature at the end 
of this section. Based on a functional model (3), sub-models of 
the components can be derived (4). Afterwards, the functional 
deviation of the component can be predicted (5). [6,9]  

𝑦̃𝑦𝑞𝑞,𝑗𝑗 = 𝑓𝑓𝑞𝑞(𝒙𝒙𝑗𝑗) (3) 

𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) ≈ ∑ (𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑐𝑐𝑞𝑞,𝑖𝑖)
𝑖𝑖∈𝐾𝐾

 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 
𝑐𝑐𝑞𝑞,𝑖𝑖 =  

𝜕𝜕𝑓𝑓𝑞𝑞
𝜕𝜕𝑥𝑥𝑖𝑖

 

(4) 

∆̃𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) = 𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) − 𝜇𝜇𝐾𝐾,𝑞𝑞 = ∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾 
(5) 

                  ≈ ∑ ((𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑖𝑖) ∗ 𝑐𝑐𝑞𝑞,𝑖𝑖)
𝑖𝑖∈𝐾𝐾

 

Next, the distribution of the functional deviation after the 
assembly of batches of component A and B is derived. The 
distribution of a specific batch 𝐾𝐾𝑘𝑘 of component 𝐾𝐾 is given by 
its probability mass function (6) [6]. Of course, the distribution 
of the predicted functional deviations of the resulting 
combination 𝐶𝐶𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑐𝑐  is subject to the applied assembly 
strategy. If assembled randomly, the functional deviation can 
be computed as the convolution of the probability mass 
functions of 𝐴𝐴𝑎𝑎  and 𝐵𝐵𝑏𝑏  (7) [6]. In case of an individual 
assembly strategy, the functional deviation of the resulting 
batch can be estimated by an ascending-descending-heuristics. 
Therefore, the parts of batch 𝐴𝐴𝑎𝑎 are sorted in ascending order, 
while batch 𝐵𝐵𝑏𝑏  is sorted in descending order with regards to the 
functional deviation (8). For selective assembly strategies, the 
resulting functional deviation is given by the applied allocation 
heuristics like GA or AIS (see e.g. [15,27]).  

𝑝𝑝𝐾𝐾𝑡𝑡(∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) = 𝑃𝑃(𝐾𝐾𝑡𝑡 = ∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) (6) 

𝑝𝑝𝐶𝐶𝑐𝑐(∆̃𝑞𝑞,𝑗𝑗,𝐶𝐶) =  ∑ 𝑃𝑃(𝐴𝐴𝑎𝑎 = 𝑘𝑘)𝑃𝑃(𝐵𝐵𝑏𝑏 = ∆̃𝑞𝑞,𝑗𝑗,𝐶𝐶 − 𝑘𝑘)
∞

𝑘𝑘=−∞
 (7) 

𝐶𝐶𝑐𝑐⃗⃗  ⃗ =  𝐴𝐴𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐵𝐵𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (8) 

After having predicted the resulting functional deviation of 
assembling batch 𝐴𝐴𝑎𝑎  and 𝐵𝐵𝑏𝑏  based on the assembly strategy, 
the associated predicted quality loss can be computed inspired 
by [15] (see eq. (2) in section 0). Therefore, the resulting 
functional deviation is grouped into 𝑆𝑆 classes. We recommend 

to use an uneven number of classes to have a separate class for 
the functional target. |𝑆𝑆| − 2  classes should be within the 
tolerances of the functional test point, which leaves one class 
on each side binning the parts to be predicted out of 
specification. Thus, the partially defined loss function can be 
derived (9). Afterwards, by multiplying the number of parts 
nq,s with the associated quality loss 𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) for each class 𝑠𝑠 ∈
𝑆𝑆 the distribution of the resulting quality costs is determined 
(10) (see Figure 5). By summing up the resulting costs of all 
classes, the predicted quality costs in a functional test point are 
derived (11). In case of more than one test point, the costs can 
be weighted relative to the historic proportion of the product 
being rejected in the specific test point (12a) [6]. It could also 
be necessary to consider products outside the specification 
separately, since the product is rejected as soon as one test point 
is out of specification (12b). The resulting quality costs of 
assembling batch 𝐴𝐴𝑎𝑎 and 𝐵𝐵𝑏𝑏  is given by c̃Qu,Aa,Bb  (13).  

Figure 5 Deriving the distribution of the resulting quality loss based on the 
predicted functional deviation of assembling two component batches 

𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) = 𝑘𝑘𝑞𝑞(𝑦𝑦𝑠𝑠,𝑞𝑞 − μK,q)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑘𝑘𝑞𝑞 = 𝐴𝐴0

(∆spec,q )
2 

∆spec,q=
𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑞𝑞

2  

𝑦𝑦𝑠𝑠,𝑞𝑞 =
𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚

2 , ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑞𝑞 ∈ 𝑄𝑄 

(9) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠 = 𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) ∗ 𝑛𝑛𝑞𝑞,𝑠𝑠 (10) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞 = ∑ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠
𝑠𝑠∈𝑆𝑆

 (11) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 = ∑ (𝑤𝑤𝑞𝑞 ∗ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞)𝑞𝑞∈𝑄𝑄
 (12a) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 = ∑ (𝑤𝑤𝑞𝑞 ∑ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠
|𝑆𝑆|−1

2
)

𝑞𝑞∈𝑄𝑄
 

        + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞∈𝑄𝑄

(𝐴𝐴0 ∗ 𝑛𝑛𝑞𝑞,1)+ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞∈𝑄𝑄

(𝐴𝐴0 ∗ 𝑛𝑛𝑞𝑞,|𝑆𝑆|) 
(12b) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐴𝐴𝑎𝑎,𝐵𝐵𝑏𝑏 = 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 (13) 

Subsequently, by comparing different combinations of 
batches, the individual impacts of the component batches can 
be derived. The combinations are compared by subtracting 
their corresponding predicted quality costs. Therefore, it is 
necessary to define benchmark or standard batches 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 for the 
individual components. The standard batch could be either a 
normally distributed, central batch with a 𝑐𝑐𝑝𝑝 value of 1,33 (see 
[17]) or the long-term distribution of the component’s 
functional deviation derived by historical data. Either way, the 

Loss Function * =Number of Parts Resulting Quality Costs

 Author name / Procedia CIRP 00 (2019) 000–000  5 

assembly of 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠  and 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 should lead to the calculated, 
standard quality costs c̃Qu,Astd,Bstd.  

As demonstrated in Figure 6, several conclusions can be 
drawn by comparing different combinations 𝐶𝐶𝑐𝑐 , especially 
when taking standard batches into account. Furthermore, by 
keeping one of the component’s batch fixed, the impact on the 
quality costs of the other component’s batch is derived, e.g. 
with respect to its standard batch. From the focal enterprise’s 
perspective, now a willingness to pay (WTP) for a specific 
batch of the supplied component A given a specific batch 𝐵𝐵𝑏𝑏  
produced inhouse can be computed (𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑎𝑎|𝐵𝐵𝑏𝑏). In the example 
given in Figure 6, due to a poorly distributed batch 𝐵𝐵𝑏𝑏 (red 
curve), the decision-maker would have a very high WTP for 
𝐴𝐴𝑎𝑎, since the expected quality costs c̃Qu,Astd,Bb would be twice 
the calculated quality costs c̃Qu,Astd,Bstd. 

Figure 6 Deriving the willingness to pay for a specific batch of component A 
given a batch of component B 

Finally, based on the WTP for specific batches, financial 
incentives can be derived to motivate the supplier towards a 
batch-specific tolerance allocation by compensation his 
associated efforts. Therefore, for a given batch 𝐵𝐵𝑏𝑏 , an ideal 
counterpart batch 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏  can be derived subject to the 
applied assembly strategy. In case of an applied individual 
assembly strategy, this could e.g. be performed by mirroring 
the distribution of the functional deviations of 𝐵𝐵𝑏𝑏  on the y-axis. 
The WTP for 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏 serves as an upper limit of money to 
spend on incentives. Based on that, a proportion of the WTP to 
be kept could be defined and the incentive system can be 
designed in close collaboration with the supplier. The approach 
can also be applied internally to design a quality-cost-oriented 
transfer pricing scheme that accounts for additional efforts in 
previous processes which safe costs in assembly.  

Although the approach has been introduced for one batch of 
each component, it can be easily applied to a multiple batch 
scenario by performing batch allocation before computing the 

predicted quality loss. Afterwards, the tolerance-allocation 
could be performed for each batch individually or aggregated. 

Table 1 Nomenclature of the variables used. 

Nomenclature 
 
𝑓𝑓𝑞𝑞(𝐱𝐱𝑗𝑗) Functional model in a functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐱𝐱𝑗𝑗 Feature vector of the data 𝑥𝑥𝑖𝑖,𝑗𝑗 for an observation 𝑗𝑗 ∈ 𝐽𝐽 
𝑥𝑥𝑖𝑖,𝑗𝑗  Data the quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 for observation 𝑗𝑗 ∈ 𝐽𝐽  
𝑥𝑥𝑖𝑖  Quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 
𝑐𝑐𝑞𝑞,𝑖𝑖 Sensitivity coefficient of feature 𝑖𝑖 ∈ 𝐼𝐼 with regards to 

functional test point 𝑞𝑞 ∈ 𝑄𝑄 as partial derivative 
𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) Functional sub model of a component 𝐾𝐾 with more than 

one quality critical feature 
𝐱𝐱𝐾𝐾,𝑗𝑗 Feature vector of the data 𝑥𝑥𝑖𝑖,𝑗𝑗 of the component-specific 

quality critical features for observation 𝑗𝑗 ∈ 𝐽𝐽 
∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾 Functional deviation of an observed component 𝐱𝐱𝐾𝐾,𝑗𝑗  from 

an ideal component 
𝜇𝜇𝐾𝐾,𝑞𝑞  Target functional influence of a component 𝐾𝐾 on the 

functional test point 𝑞𝑞 ∈ 𝑄𝑄 
𝜇𝜇𝑖𝑖 Target value of a quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 

𝑝𝑝𝐾𝐾𝑘𝑘(∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) Probability mass function of given batch 𝐾𝐾𝑘𝑘 of component 
K interpreted as random variable 

𝐾𝐾𝑘𝑘 Given batch 𝑘𝑘 ∈ {1…𝑛𝑛} of component 𝐾𝐾 

𝐶𝐶𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑐𝑐 Resulting batch 𝑐𝑐 ∈ {1…𝑛𝑛} of the combination C of two 
components A and B. c gives the number of the object in 
the permutation. 𝐶𝐶𝑐𝑐 can also be interpreted as a batch 𝐾𝐾𝑘𝑘. 

𝑛𝑛 Number of observed batches for each component 

𝐾𝐾𝑘𝑘⃗⃗⃗⃗  Vector of predicted functional deviations of batch 𝐾𝐾𝑘𝑘 

𝐾𝐾𝑘𝑘,asc⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Vector of pred. funct. deviations of 𝐾𝐾𝑘𝑘 in ascending order 

𝐾𝐾𝑘𝑘,desc⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Vector of pred. funct. deviations of 𝐾𝐾𝑘𝑘 in descending order 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 Expected standard batch of component 𝐾𝐾 

𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) Quality loss of 𝑦𝑦𝑠𝑠,𝑞𝑞 by means of Taguchi’s loss function 

𝑦𝑦𝑠𝑠,𝑞𝑞 Mean value of class 𝑠𝑠 ∈ 𝑆𝑆 of distribution of functional 
deviation in test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑘𝑘𝑞𝑞 Quality loss coefficient for the specifications of 𝑞𝑞 ∈ 𝑄𝑄  

𝐴𝐴0 Inefficiency costs (e.g. scrap or rework) for parts outside 
the specification limits 

∆spec,q Range between specification limits of test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞  Upper Specification Limit of the functional deviation in 
functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐿𝐿𝐿𝐿𝐿𝐿𝑞𝑞  Lower Specification Limit of the functional deviation in 
functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑖𝑖𝑖𝑖 Lower limit of class of funct. deviation 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚 Upper limit of class of funct. deviation 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

nq,s Number of parts in class 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

c̃Qu,𝐾𝐾𝑘𝑘,q,s Predicted quality costs of batch 𝐾𝐾𝑘𝑘 in 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄  

c̃𝑄𝑄𝑄𝑄,𝐾𝐾𝑘𝑘,𝑞𝑞 Total predicted quality costs of batch 𝐾𝐾𝑘𝑘 for 𝑞𝑞 ∈ 𝑄𝑄  

c̃𝑄𝑄𝑄𝑄,𝐾𝐾𝑘𝑘 Total predicted quality costs of batch 𝐾𝐾𝑘𝑘  

c̃Qu,Aa,Bb Total pred. quality costs of assembling batches 𝐴𝐴𝑎𝑎 and 𝐵𝐵𝑏𝑏 

wq Weighting factor of test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑎𝑎|𝐵𝐵𝑏𝑏 Willingness to pay for batch 𝐴𝐴𝑎𝑎 given batch 𝐵𝐵𝑏𝑏 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏 Ideal counterpart batch 𝐴𝐴𝑎𝑎 given batch 𝐵𝐵𝑏𝑏 

𝑐𝑐𝑝𝑝 Process capability index 

𝐼𝐼 Set of quality critical features 

𝐽𝐽 Set of observations 

𝑄𝑄 Set of functional test points 

𝑆𝑆 Set of classes of functional deviation  

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL
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4. Dynamic Pricing Model for Batch-Specific Tolerance 
Allocation 

We propose a model to evaluate the impact of a batch of 
component A (produced by a supplier) given a batch of 
component B (produced internally) on the end product’s 
function and quality costs. Based on this, incentives can be 
derived to successfully implement batch-specific tolerance 
allocation in a supply chain scenario (see Figure 2). Both 
components have one or more quality critical features. Other 
costs than quality costs are considered fixed in this scenario.  

First, the model has to be able to predict and compare the 
functional deviations of different components’ batches based 
on the batch-specific data. For this, we follow [6] and [9]. The 
variables are explained in detail in the nomenclature at the end 
of this section. Based on a functional model (3), sub-models of 
the components can be derived (4). Afterwards, the functional 
deviation of the component can be predicted (5). [6,9]  

𝑦̃𝑦𝑞𝑞,𝑗𝑗 = 𝑓𝑓𝑞𝑞(𝒙𝒙𝑗𝑗) (3) 

𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) ≈ ∑ (𝑥𝑥𝑖𝑖,𝑗𝑗 ∗ 𝑐𝑐𝑞𝑞,𝑖𝑖)
𝑖𝑖∈𝐾𝐾

 
𝑤𝑤𝑤𝑤𝑤𝑤ℎ 
𝑐𝑐𝑞𝑞,𝑖𝑖 =  

𝜕𝜕𝑓𝑓𝑞𝑞
𝜕𝜕𝑥𝑥𝑖𝑖

 

(4) 

∆̃𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) = 𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) − 𝜇𝜇𝐾𝐾,𝑞𝑞 = ∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾 
(5) 

                  ≈ ∑ ((𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑖𝑖) ∗ 𝑐𝑐𝑞𝑞,𝑖𝑖)
𝑖𝑖∈𝐾𝐾

 

Next, the distribution of the functional deviation after the 
assembly of batches of component A and B is derived. The 
distribution of a specific batch 𝐾𝐾𝑘𝑘 of component 𝐾𝐾 is given by 
its probability mass function (6) [6]. Of course, the distribution 
of the predicted functional deviations of the resulting 
combination 𝐶𝐶𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑐𝑐  is subject to the applied assembly 
strategy. If assembled randomly, the functional deviation can 
be computed as the convolution of the probability mass 
functions of 𝐴𝐴𝑎𝑎  and 𝐵𝐵𝑏𝑏  (7) [6]. In case of an individual 
assembly strategy, the functional deviation of the resulting 
batch can be estimated by an ascending-descending-heuristics. 
Therefore, the parts of batch 𝐴𝐴𝑎𝑎 are sorted in ascending order, 
while batch 𝐵𝐵𝑏𝑏  is sorted in descending order with regards to the 
functional deviation (8). For selective assembly strategies, the 
resulting functional deviation is given by the applied allocation 
heuristics like GA or AIS (see e.g. [15,27]).  

𝑝𝑝𝐾𝐾𝑡𝑡(∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) = 𝑃𝑃(𝐾𝐾𝑡𝑡 = ∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) (6) 

𝑝𝑝𝐶𝐶𝑐𝑐(∆̃𝑞𝑞,𝑗𝑗,𝐶𝐶) =  ∑ 𝑃𝑃(𝐴𝐴𝑎𝑎 = 𝑘𝑘)𝑃𝑃(𝐵𝐵𝑏𝑏 = ∆̃𝑞𝑞,𝑗𝑗,𝐶𝐶 − 𝑘𝑘)
∞

𝑘𝑘=−∞
 (7) 

𝐶𝐶𝑐𝑐⃗⃗  ⃗ =  𝐴𝐴𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝐵𝐵𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (8) 

After having predicted the resulting functional deviation of 
assembling batch 𝐴𝐴𝑎𝑎  and 𝐵𝐵𝑏𝑏  based on the assembly strategy, 
the associated predicted quality loss can be computed inspired 
by [15] (see eq. (2) in section 0). Therefore, the resulting 
functional deviation is grouped into 𝑆𝑆 classes. We recommend 

to use an uneven number of classes to have a separate class for 
the functional target. |𝑆𝑆| − 2  classes should be within the 
tolerances of the functional test point, which leaves one class 
on each side binning the parts to be predicted out of 
specification. Thus, the partially defined loss function can be 
derived (9). Afterwards, by multiplying the number of parts 
nq,s with the associated quality loss 𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) for each class 𝑠𝑠 ∈
𝑆𝑆 the distribution of the resulting quality costs is determined 
(10) (see Figure 5). By summing up the resulting costs of all 
classes, the predicted quality costs in a functional test point are 
derived (11). In case of more than one test point, the costs can 
be weighted relative to the historic proportion of the product 
being rejected in the specific test point (12a) [6]. It could also 
be necessary to consider products outside the specification 
separately, since the product is rejected as soon as one test point 
is out of specification (12b). The resulting quality costs of 
assembling batch 𝐴𝐴𝑎𝑎 and 𝐵𝐵𝑏𝑏  is given by c̃Qu,Aa,Bb  (13).  

Figure 5 Deriving the distribution of the resulting quality loss based on the 
predicted functional deviation of assembling two component batches 

𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) = 𝑘𝑘𝑞𝑞(𝑦𝑦𝑠𝑠,𝑞𝑞 − μK,q)2  
𝑤𝑤𝑤𝑤𝑤𝑤ℎ:  
𝑘𝑘𝑞𝑞 = 𝐴𝐴0

(∆spec,q )
2 

∆spec,q=
𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑞𝑞

2  

𝑦𝑦𝑠𝑠,𝑞𝑞 =
𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚

2 , ∀ 𝑠𝑠 ∈ 𝑆𝑆, 𝑞𝑞 ∈ 𝑄𝑄 

(9) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠 = 𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) ∗ 𝑛𝑛𝑞𝑞,𝑠𝑠 (10) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞 = ∑ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠
𝑠𝑠∈𝑆𝑆

 (11) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 = ∑ (𝑤𝑤𝑞𝑞 ∗ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞)𝑞𝑞∈𝑄𝑄
 (12a) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 = ∑ (𝑤𝑤𝑞𝑞 ∑ 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐,𝑞𝑞,𝑠𝑠
|𝑆𝑆|−1

2
)

𝑞𝑞∈𝑄𝑄
 

        + 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞∈𝑄𝑄

(𝐴𝐴0 ∗ 𝑛𝑛𝑞𝑞,1)+ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞∈𝑄𝑄

(𝐴𝐴0 ∗ 𝑛𝑛𝑞𝑞,|𝑆𝑆|) 
(12b) 

𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐴𝐴𝑎𝑎,𝐵𝐵𝑏𝑏 = 𝑐̃𝑐𝑄𝑄𝑄𝑄,𝐶𝐶𝑐𝑐 (13) 

Subsequently, by comparing different combinations of 
batches, the individual impacts of the component batches can 
be derived. The combinations are compared by subtracting 
their corresponding predicted quality costs. Therefore, it is 
necessary to define benchmark or standard batches 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 for the 
individual components. The standard batch could be either a 
normally distributed, central batch with a 𝑐𝑐𝑝𝑝 value of 1,33 (see 
[17]) or the long-term distribution of the component’s 
functional deviation derived by historical data. Either way, the 

Loss Function * =Number of Parts Resulting Quality Costs
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assembly of 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠  and 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠 should lead to the calculated, 
standard quality costs c̃Qu,Astd,Bstd.  

As demonstrated in Figure 6, several conclusions can be 
drawn by comparing different combinations 𝐶𝐶𝑐𝑐 , especially 
when taking standard batches into account. Furthermore, by 
keeping one of the component’s batch fixed, the impact on the 
quality costs of the other component’s batch is derived, e.g. 
with respect to its standard batch. From the focal enterprise’s 
perspective, now a willingness to pay (WTP) for a specific 
batch of the supplied component A given a specific batch 𝐵𝐵𝑏𝑏  
produced inhouse can be computed (𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑎𝑎|𝐵𝐵𝑏𝑏). In the example 
given in Figure 6, due to a poorly distributed batch 𝐵𝐵𝑏𝑏 (red 
curve), the decision-maker would have a very high WTP for 
𝐴𝐴𝑎𝑎, since the expected quality costs c̃Qu,Astd,Bb would be twice 
the calculated quality costs c̃Qu,Astd,Bstd. 

Figure 6 Deriving the willingness to pay for a specific batch of component A 
given a batch of component B 

Finally, based on the WTP for specific batches, financial 
incentives can be derived to motivate the supplier towards a 
batch-specific tolerance allocation by compensation his 
associated efforts. Therefore, for a given batch 𝐵𝐵𝑏𝑏 , an ideal 
counterpart batch 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏  can be derived subject to the 
applied assembly strategy. In case of an applied individual 
assembly strategy, this could e.g. be performed by mirroring 
the distribution of the functional deviations of 𝐵𝐵𝑏𝑏  on the y-axis. 
The WTP for 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏 serves as an upper limit of money to 
spend on incentives. Based on that, a proportion of the WTP to 
be kept could be defined and the incentive system can be 
designed in close collaboration with the supplier. The approach 
can also be applied internally to design a quality-cost-oriented 
transfer pricing scheme that accounts for additional efforts in 
previous processes which safe costs in assembly.  

Although the approach has been introduced for one batch of 
each component, it can be easily applied to a multiple batch 
scenario by performing batch allocation before computing the 

predicted quality loss. Afterwards, the tolerance-allocation 
could be performed for each batch individually or aggregated. 

Table 1 Nomenclature of the variables used. 

Nomenclature 
 
𝑓𝑓𝑞𝑞(𝐱𝐱𝑗𝑗) Functional model in a functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐱𝐱𝑗𝑗 Feature vector of the data 𝑥𝑥𝑖𝑖,𝑗𝑗 for an observation 𝑗𝑗 ∈ 𝐽𝐽 
𝑥𝑥𝑖𝑖,𝑗𝑗  Data the quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 for observation 𝑗𝑗 ∈ 𝐽𝐽  
𝑥𝑥𝑖𝑖  Quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 
𝑐𝑐𝑞𝑞,𝑖𝑖 Sensitivity coefficient of feature 𝑖𝑖 ∈ 𝐼𝐼 with regards to 

functional test point 𝑞𝑞 ∈ 𝑄𝑄 as partial derivative 
𝑓𝑓𝑞𝑞(𝒙𝒙𝐾𝐾,𝑗𝑗) Functional sub model of a component 𝐾𝐾 with more than 

one quality critical feature 
𝐱𝐱𝐾𝐾,𝑗𝑗 Feature vector of the data 𝑥𝑥𝑖𝑖,𝑗𝑗 of the component-specific 

quality critical features for observation 𝑗𝑗 ∈ 𝐽𝐽 
∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾 Functional deviation of an observed component 𝐱𝐱𝐾𝐾,𝑗𝑗  from 

an ideal component 
𝜇𝜇𝐾𝐾,𝑞𝑞  Target functional influence of a component 𝐾𝐾 on the 

functional test point 𝑞𝑞 ∈ 𝑄𝑄 
𝜇𝜇𝑖𝑖 Target value of a quality critical feature 𝑖𝑖 ∈ 𝐼𝐼 

𝑝𝑝𝐾𝐾𝑘𝑘(∆̃𝑞𝑞,𝑗𝑗,𝐾𝐾) Probability mass function of given batch 𝐾𝐾𝑘𝑘 of component 
K interpreted as random variable 

𝐾𝐾𝑘𝑘 Given batch 𝑘𝑘 ∈ {1…𝑛𝑛} of component 𝐾𝐾 

𝐶𝐶𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑐𝑐 Resulting batch 𝑐𝑐 ∈ {1…𝑛𝑛} of the combination C of two 
components A and B. c gives the number of the object in 
the permutation. 𝐶𝐶𝑐𝑐 can also be interpreted as a batch 𝐾𝐾𝑘𝑘. 

𝑛𝑛 Number of observed batches for each component 

𝐾𝐾𝑘𝑘⃗⃗⃗⃗  Vector of predicted functional deviations of batch 𝐾𝐾𝑘𝑘 

𝐾𝐾𝑘𝑘,asc⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   Vector of pred. funct. deviations of 𝐾𝐾𝑘𝑘 in ascending order 

𝐾𝐾𝑘𝑘,desc⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ Vector of pred. funct. deviations of 𝐾𝐾𝑘𝑘 in descending order 

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 Expected standard batch of component 𝐾𝐾 

𝐿𝐿(𝑦𝑦𝑠𝑠,𝑞𝑞) Quality loss of 𝑦𝑦𝑠𝑠,𝑞𝑞 by means of Taguchi’s loss function 

𝑦𝑦𝑠𝑠,𝑞𝑞 Mean value of class 𝑠𝑠 ∈ 𝑆𝑆 of distribution of functional 
deviation in test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑘𝑘𝑞𝑞 Quality loss coefficient for the specifications of 𝑞𝑞 ∈ 𝑄𝑄  

𝐴𝐴0 Inefficiency costs (e.g. scrap or rework) for parts outside 
the specification limits 

∆spec,q Range between specification limits of test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞  Upper Specification Limit of the functional deviation in 
functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐿𝐿𝐿𝐿𝐿𝐿𝑞𝑞  Lower Specification Limit of the functional deviation in 
functional test point 𝑞𝑞 ∈ 𝑄𝑄 

𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑖𝑖𝑖𝑖 Lower limit of class of funct. deviation 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

𝐶𝐶𝑠𝑠,𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚 Upper limit of class of funct. deviation 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

nq,s Number of parts in class 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄 

c̃Qu,𝐾𝐾𝑘𝑘,q,s Predicted quality costs of batch 𝐾𝐾𝑘𝑘 in 𝑠𝑠 ∈ 𝑆𝑆 for 𝑞𝑞 ∈ 𝑄𝑄  

c̃𝑄𝑄𝑄𝑄,𝐾𝐾𝑘𝑘,𝑞𝑞 Total predicted quality costs of batch 𝐾𝐾𝑘𝑘 for 𝑞𝑞 ∈ 𝑄𝑄  

c̃𝑄𝑄𝑄𝑄,𝐾𝐾𝑘𝑘 Total predicted quality costs of batch 𝐾𝐾𝑘𝑘  

c̃Qu,Aa,Bb Total pred. quality costs of assembling batches 𝐴𝐴𝑎𝑎 and 𝐵𝐵𝑏𝑏 

wq Weighting factor of test point 𝑞𝑞 ∈ 𝑄𝑄 

𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑎𝑎|𝐵𝐵𝑏𝑏 Willingness to pay for batch 𝐴𝐴𝑎𝑎 given batch 𝐵𝐵𝑏𝑏 

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏 Ideal counterpart batch 𝐴𝐴𝑎𝑎 given batch 𝐵𝐵𝑏𝑏 

𝑐𝑐𝑝𝑝 Process capability index 

𝐼𝐼 Set of quality critical features 

𝐽𝐽 Set of observations 

𝑄𝑄 Set of functional test points 

𝑆𝑆 Set of classes of functional deviation  

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL

Functional Deviation

target USLLSL

0
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5. Summary and Outlook 

In this article, a novel pricing model for batch-specific 
tolerance allocation in the production of high-precision 
products has been introduced. The model evaluates batches of 
high-precision components based on the predicted distribution 
of their functional deviation after assembly by means of the 
resulting quality costs. Using the gained transparency on the 
contributions to quality costs of the varying batches of different 
components, incentives can be derived to motivate suppliers to 
initiate a cross-company, batch-specific tolerance allocation 
strategy. The successful implementation of function-oriented, 
batch-specific tolerance allocation in the supply chain is a 
decisive step towards the vision of a tolerance-free series 
production of high-precision products. 

In further studies, we aim at validating the approach in a real 
production environment by also taking measuring uncertainty 
and other data quality issues into account. A better data quality 
is leading to more precise predictions of the resulting functional 
deviation. Therefore, the associated function-oriented quality 
control strategies should perform even better. By computing 
the resulting quality costs, an ideal design of measuring 
equipment and data infrastructure could be calculated. Also, 
incentives that compensate suppliers for better data quality can 
be derived. Furthermore, the integration of supplier data is of 
utter importance for the functional model. Thus, the 
development of common ontologies to achieve interoperability 
of measuring data will be studied. Additionally, other 
tolerance-cost optimization approaches could be adapted for 
finding ideal batch-specific tolerances or 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝐵𝐵𝑏𝑏.  

The approach has been implemented as a proof of concept 
web service in Python and JavaScript and will be available on 
GitHub after closing of the associated research project [28]. 
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