

He-II filled marionette suspension for the cryogenic payload of the ET-LF interferometer

Xhesika Koroveshi Steffen Grohmann Gravitational Wave Advanced Detector Workshop 23-27 May 2022

www.kit.edu

Sensitivity goal of ET-LF

ET-LF's goal for sensitivity at the detection frequency band (3 Hz ... 30 Hz)

Figure: ET Conceptual Design Study (2011)

Cryogenic optics at T~ 10..20 K

- Suspension thermal noise (STN) dominant at this frequency range
- Low-noise cooling methods required

ET Low-frequency Interferometer

ET-LF Payload basic design parameters

. . . .

ET-LF suspension design parameters (2011)

ET Conceptual Design Study (2011)

Crutial parameters for:

- Suspension thermal noise (STN)
- Cryostat tower dimensions
- Mechanical and thermal dimensioning

AdVirgo-like payload - M. Stamm (2021)

VIRGO-like payload - ET Design Report Update (2020)

OU Refrigeration and Cryogenics

Conclusions based on STN sensitivity analysis [1]

Lo

A general STN sensitivity analysis shows that in order to <u>achieve</u> the ET-D sensitivity goal [2]:

T_{marionette} has a crutial role in the relation: STN \leftrightarrow payload design

T_{marionette}@2 K \rightarrow Marionette suspension length of $L_0 < 2.0$ m possible

T_{marionette} @10 K \rightarrow Marionette suspension length of $L_0 = 2.0$ m

Crucial for ET-LF cryostat tower dimensions!

• Mirror suspension length <u>no less than</u> L = 2.0 m

Feasible solution to achieve a marionette temperature $T_{\text{marionette}} = 2 \text{ K}$?

Source: [1] Koroveshi X and Grohmann S. Feasibility of He-II suspensions based on thermal noise modelling (2021) – <u>TDS Link</u>. [2] ET Science Team. ET Conceptual Design Study (2011) – <u>TDS Link</u>

Helium-based cooling concept using He-II suspension tube

Payload heat extraction via He-II

 $T > T_{\lambda}$

 $T < T_{\lambda}$

Two liquid phases of ⁴He:

- He-I (classical liquid helium)
 - Behaviour: ~ideal gas
- He-II ("two fluid model" [1][2])
 - Normal component
 - Superfluid component
 - > Bose-Einstein condensate
 - He-II = Ultra-quiet, thermally efficient liquid phase!

 $T_{\lambda}(1 \text{ atm}) \approx 2.17 \text{ K}$ - - -

Sources: [1] Tisza, L. Transport Phenomena in Helium II. Nature 141, 913 (1938). [2] Landau, L. Theory of the Superfluidity of Helium II. Phys. Rev. 60, 356-358 (1941).

⁴He phase diagram:

He-II = Ultra-quiet, thermally efficient liquid phase! 10^{1} 2 [2] Landau, L. Theory of the Superfluidity of Helium II. Phys. Rev. 60, 356-358 (1941). [3] Liquid Helium II the superfluid (part 2 The transition to the superfluid state) - YouTube [3]

7

Courtesy of L.Busch (2021)

Payload heat extraction via He-II

ET-LF payload: Cooling via He-II suspension tube

He supply capillaries:

<u>L. Busch (KIT, 2021) – TDS Link</u>

Cryogenic supply box ↔ Payload (i.e. suspension tube) interface

• Length ~ $x \cdot 10 \text{ m} \rightarrow \text{cryogenic supply box remotely}$ placed from optics to minimize vibration input

He-II suspension tube: Thermal & mechanical dimensioning

Design of He-II suspension tube

Design parameters:

- T operational temperature @ 1.9 K,
- ΔT gradient along suspension capillary,
- d_i , d_o inner and outer diameter,
- \blacksquare s_i , s_o inner and outer wall thicknesses,
- $\blacksquare L_0$ suspension capillary length,
- $\dot{\mathbf{Q}}$ cooling capacity

Thermal and mechanical dimensioning

Cooling capacity via suspension tube

 $L_0, \Delta T$

Conclusions I

Cooling capacities up to 0.5 W, or even up to 1.0 W, are possible.

filled with He-II is thermally & mechanically feasible:

T_{marionette}@ 2 K and T_{mirror} @ 14 – 20 K, with $\Delta T \approx 50$ mK along suspension.

Cooling the marionette @ 2 K using a double-walled, suspension tube

Consistency with the STN analysis is shown in the next slides!

Suspension thermal noise (STN) modelling

Suspension thermal noise model

Suspension thermal noise modelling:

- Discrete FDT model [1] for inhomogeneous stage temperatures T @ Ma: 2 K Mi: 10 K
- Payload system as double pendulum
 - Marionette suspension \rightarrow rigid spring
 - Mirror suspensions \rightarrow elastic beams
- Energy dissipation via loss angle Φ
 included in complex k or E

[1] Concept based on Komori et al. Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions Phys. Rev. D 97, 102001 (2018).

Suspension thermal noise model

[1] Concept based on Komori et al. Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions Phys. Rev. D 97, 102001 (2018).

He-II suspension tube: Suspension thermal noise analysis

Suspension thermal noise (Suspension tube)

Suspension thermal noise (Suspension tube, $\neq \dot{Q}$)

Conclusions II

- Double-walled suspension tube filled with He-II for cooling marionette @ 2 K is feasible regarding thermal suspension noise:
 - The increase of STN is negligable @ f > 3 Hz, for both scenarios of cooling capacity @0.5 W and @1.0 W.

Thank you for your attention!

xhesika.koroveshi@kit.edu steffen.grohmann@kit.edu

