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Abstract—Tremendous progress in deep learning over the last
years has led towards a future with autonomous vehicles on our
roads. Nevertheless, the performance of their perception systems
is strongly dependent on the quality of the utilized training data.
As these usually only cover a fraction of all object classes an
autonomous driving system will face, such systems struggle with
handling the unexpected. In order to safely operate on public
roads, the identification of objects from unknown classes remains
a crucial task. In this paper, we propose a novel pipeline to detect
unknown objects. Instead of focusing on a single sensor modality,
we make use of lidar and camera data by combining state-of-the
art detection models in a sequential manner. We evaluate our
approach on the Waymo Open Perception Dataset and point out
current research gaps in anomaly detection.

Index Terms—autonomous driving, anomaly detection, corner
case, open-set perception, object detection

I. INTRODUCTION

In December 2021, Mercedes-Benz became the first auto-
motive company to meet the legal requirements for a SAE
level 3 system [1], [2]. However, a driver is still present
and must be ready to take over control. This is not the case
for level 4 and 5 systems, where the presence of a driver
is not required anymore. Due to significant progress over
the last years, multiple level 4 systems are already tested
on public roads [3]–[5]. In order for an autonomous vehicle
(AV) to appropriately act and react, reliable object detection
is crucial. State-of-the-art object detectors are based on Deep
Learning (DL) [6]. As these models rely on large training
datasets, they typically assume that all classes that are to be
detected have been present during training [7]. If the model
encounters instances that are outside the training distribution
of the network, also called anomalies or corner cases [8],
they tend to fail [6]. Even by defining an Operational Design
Domain (ODD), the full set of objects that can occur on roads
is not predictable. Thus, a model cannot be trained with all
the classes it could potentially face. Nevertheless, in order for
an AV to safely operate, the perception system should detect
both, known and unknown classes. This is also referred to as
the open-set setting [9]. A variety of different approaches for
that problem exist [6], [9], [11], [12]. While AVs consist of
a set of different sensors, such as lidars, radars, and cameras,
most of the existing work on anomaly detection focuses on one
sensor modality [13]. Hence, only few approaches make use of
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(a) Lidar point cloud (b) Camera image

Fig. 1: The scene [10] shows, how multimodal anomaly
detection is able to detect unknown objects as anomalies. Here,
a container is placed on the road. It is detected and classified
as unknown in the lidar data (red). Based on the rich semantic
information in the camera image, the classifier can infer that
it is not a known class and thus an anomaly.

the advantages of combining sensor modalities. While sensor
fusion models are popular for classic object detection, they
often lack the awareness necessary for anomaly detection. In
this work, we suggest a novel pipeline for detecting unknown
objects by exploiting the advantages of lidar and camera data.
As a definition for anomalies, we follow the definition of
object level corner cases by Breitenstein et al. [14], which
describe “instances that have not been seen before”. We limit
the problem by focusing on objects on roads, as unusual
objects on the sidewalk or in a large distance are less critical
for the driving task. We apply semantic segmentation on the
input image to derive the road area. We further apply clustering
and a 3D object detector on the lidar data. Objects that could
not be classified are transformed into the 2D image space and
an image classifier is applied. Only when the image classifier
is not able to classify the object, we define it as an anomaly.
Contrary to sensor fusion approaches, we do not perform
simultaneous detection on lidar and camera data. As there is
no public anomaly dataset available that consists of more than
one sensor modality [15], we use the Waymo Open Perception
Dataset [10] for evaluation. To this point, only qualitative
evaluation is possible, since we do not have ground truth data
available for classes other than vehicles, pedestrians, cyclists,
and signs [16]. Our pipeline can be used for offline evaluation
of datasets or active learning and has the potential for online
applications, such as the activation of remote assistance [17].
All code is available at https://url.fzi.de/unknown objects.
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II. RELATED WORK

Nowadays, existing efforts to detect anomalies in au-
tonomous driving (AD) settings focus mainly on single modal-
ity techniques. Especially camera based techniques experience
great progress [13], as images provide environmental informa-
tion with more semantic information compared to lidar and
radar. The most straightforward approaches to detect anoma-
lies in AD are confidence-based. They either utilize the given
confidence of the neural network, like the class-confidence, or
derive the uncertainty measurement by additional efforts [18]–
[23]. For instance, Kendall et al. [18] measure the uncertainty
of a semantic segmentation by Monte Carlo dropout sampling.
Other efforts focus on learning frameworks that calibrate the
network’s confidence. These comprise training objectives [23],
but especially shaping the decision boundary in a contrastive
manner [22], [24]. The latter synthesize outliers via sampling
a learned distribution in feature space [22] or learning to
generate outliers near the decision boundary end-to-end [24].
At the end, all the aforementioned approaches determine
anomalous objects by thresholding the model’s uncertainty.

On the other hand, reconstructive approaches are well-suited
for anomaly detection since they try to reproduce the normality
of the training data by design. Anomalous objects are then
identified by the difference between the real and re-synthesized
image. For instance, Ohgushi et al. [25] and Voijr et al. [26]
use an autoencoder to re-synthesize the input image where
the encoder is part of a semantic segmentation network. The
anomaly map is then based on the perceptual loss between
the encoder and decoder as well as the entropy loss of the
semantic segmentation [25]. Similarly, Di Biase et al. [6] refine
the image re-synthesis of Lis et al. [11] as they construct the
anomaly score by combining entropy, perceptual loss, and the
softmax distance. But in contrast to Ohgushi et al.’s procedure,
their re-synthesis network is based on the final segmentation
output. Other approaches utilize generative concepts, like gen-
erative adversarial networks (GAN) [12], [27] and normalizing
flow (NF) [24], [28], to synthesize anomalous patches or entire
driving scenes near the decision boundary between in- and
out-of-distribution samples during training. This procedure is
motivated to calibrate the model’s confidence.

Besides the surrounding camera system, also other sensor
modalities often equipped in AV can be applicable for anomaly
detection. For instance, lidar sensors are often used in AD
as they provide depth information about the environment.
The idea of an open-set detection, however, is only recently
adopted to 3D lidar data [9], [29]. Here, Wong et al.’s Open-Set
Instance Segmentation (OSIS) framework constitutes a base-
line for the detection of anomalous objects. The OSIS model
consists of two branches: a detection and an embedding head.
While the former detects the anchors of known classes, the
latter learns instance-aware point embeddings and prototypes
of the unknown classes. During inference, the prototypes first
rule out points under the closed-set condition. The unassigned
points are in a second stage clustered via Density-based
Spatial Clustering of Applications with Noise (DBSCAN) into

instances of unknown classes and represent the open-set con-
dition. But in most recent work of Cen et al. [29], the authors
show that their Metric learning with Unsupervised Clustering
(MLUC) significantly outperforms the OSIS framework. The
metric learning network first obtains classified bounding boxes
and their corresponding embeddings. Instances are then again
labeled as known in the embedding space whenever they fall
in the neighborhood of an embedded prototype. However,
in contrast to Wong et al., the authors utilize the euclidean
distance sum in order to to measure uncertainty instead of the
naive maximum softmax probability. The bounding boxes of
the remaining proposal regions of unknown objects are further
refined by an unsupervised clustering algorithm.

While the aforementioned anomaly detection approaches
excel in their individual modality setting, they oppose the
great potential for improvement by combining the several
modalities. Multimodal anomaly detection builds on the idea
of complementarity. The individual modalities’ advantages
compensate for the weaknesses of the others to end up with
a more reliable detection of anomalies. The idea of multi-
modal anomaly detection is adopted to anomaly detection by
Wang et al. [30]. The authors use multimodal transformers to
detect ”ghost targets”, i.e. radar reflections of vehicles, based
on the affinity of lidar and radar point cloud data. But the
technique is limited to the detection of the special case of
multipath reflections. Other line of work base their multimodal
anomaly detection on RGB-D data [31], [32]. While there are
camera and lidar fusion networks [33], current literature misses
anomaly detection across camera and lidar data. Furthermore,
in contrast to recent works on fusion approaches such as [34],
we focus on open-set scenarios [9]. Hence, we propose a state-
of-the-art road anomaly detection approach that propagates
initial corner case proposals through the two sensor modalities
and filters out known classes in 3D lidar as well as 2D camera
space.

III. METHOD

We suggest a novel pipeline for detecting unknown objects
by using lidar and camera data. In order to focus on the
relevant driving area, we apply semantic segmentation on
the input image. As a result, we derive a mask of the road
coordinates, which we map into the 3D lidar space. We
perform clustering, which we define as the source of truth that
some type of object is present. These are then compared with
detections from a 3D object detector. The points of clustered
objects that could not be detected are transformed into the 2D
image space, which has richer information. Here, we apply
an image classifier. Only if the image classifier is not able to
classify the object, we define it as an anomaly. Fig. 2 provides
an overview of our anomaly detection pipeline.

A. Road Segmentation

In order to focus primarily on objects on the road, we
applied a semantic segmentation model in the image domain
as a first step. By using camera data, we made use of the
higher information density through given shape and texture
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Fig. 2: The flowchart gives an overview of our anomaly detection pipeline. The main components are explained in more detail
in the Sections III-A-III-D. For each scene, we make use of camera (a) and lidar (b) data. Semantic segmentation is applied
to the camera image to identify the road, our area of interest (c). These road pixels are then projected into the lidar space (d).
The following corner case proposal generation is divided into several steps. First, the point cloud is cropped to only consider
the front view. Next, the projected road plane is re-estimated using Random Sample Consensus (RANSAC) to account for
inaccuracies. Alpha shape reconstruction of the plane is used to identify the points of objects that lay on the road. Those points
are then clustered via DBSCAN to generate corner case proposals. Next, CenterPoint object detection is applied, and cluster
without classifications are marked as anomalies, creating an intermediate anomaly proposal (e). The bounding boxes of those
possible anomalies are then mapped onto the 2D camera space (f). Based on a list of classes we deem normal, CLIP classifies
them as either an anomaly or one of the non-anomaly classes, producing the final anomaly detection (g).

properties compared to the sparse lidar point cloud [35]. As
the Waymo Open Dataset does not provide pixel-wise labeled
data, no semantic segmentation model is trained and tested
on this dataset. Therefore, we used a pre-trained model based
on the MSeg dataset [36]. MSeg is a dataset that combines
datasets with semantic segmentation groundtruth from multiple
domains, such as COCO [37], ADE20K [38], Mapillary [39],
IDD [40], BDD100K [41], Cityscapes [42], and SUN RGB-
D [43]. The model uses the HRNet-W48 [44] architecture
and results in a higher generalization to unseen datasets. It
is ranked first on the WildDash [45] leaderboard benchmark,
which allows ”for testing the robustness of models trained
on other datasets”. The model reaches an mIoU of 63.5 on
BDD100K and 76.3 on Cityscapes. After obtaining the road
pixels of each image, we transform these into the 3D lidar
space. This allows us to receive a road mask to determine
which objects are of interest.

B. Corner case proposal generation

As we solely focus on anomalies on the road, we further
processed the 3D road projection and raw lidar point cloud.
First of all, we cropped the 360°-lidar data to a front view
and excluded all information behind the ego-vehicle’s center.
While MSeg did show high performance and generalization to
unseen datasets, we further processed the road segmentation.
The transition between road segmentation and objects like
cars or other traffic participants is not always a clear-cut.
We fixed this inaccuracy to some degree by re-estimating the
plane of the projected road segmentation via RANSAC [46].
We sampled a random plane 500 times based on ten points.
We then considered the remaining points as outliers of the

sampled plane, whenever they exceeded the distance of 0.5 m.
Thereby, we filtered out most points that stick out of the road
plane in the direction of the z-axis due to inaccuracies of
the road segmentation at the bottom of objects. Besides the
re-estimation of the road plane, we also removed statistical
outliers which would otherwise deteriorate the subsequent road
surface estimation in the identified road points. Therefore, we
calculated the average and standard deviation of the distances
between points based on the 20 nearest neighbors. As lidar
data become sparser with distance from the lidar sensor origin,
we chose a considerably high standard deviation ratio of eight
to exclude points. This means road points were considered as
outliers whenever the standard deviation exceeded eight times
the average standard deviation of all points’ distances to their
neighbors.

In order to determine whether objects lay on the road or not,
we reconstructed the road surface based on the cleaned road
points. However, the estimation of concave hulls occupied by
a set of points is challenging. A simple and computationally
efficient algorithm for surface reconstruction is the alpha
shape estimation by Edelsbrunner et al. [47]. The parameter α
controls for the tightness of the polygon around the given road
points, where an α of zero corresponds to the set of points as
it is and an α towards infinity is the convex hull. As lidar data
are sparse and leave the space empty behind projected objects,
we found an α = 10 as a good trade-off value between a gap-
less, crude, and a fine reconstruction of the road. Next, we
set up the estimated road surface as a ray casting scene and
check whether the non-road points are standing vertically on
the road. Therefore, we flattened all points and reduced the
point cloud to two dimensions, i.e., setting the height to zero.



A point lies on the road if the number of intersections with
the scene of the estimated alpha shape is even, and thus the
flattened point lies within the surface.

After we identified the point cloud on the road, we generated
corner case proposals by clustering the points via DBSCAN
[48]. We chose an ε = 1 as a distance to neighbors in a cluster
and required that a cluster consists of at least 30 points. The
clustering into single objects makes our pipeline an open-set
detection, as clusters are initially considered unknown. How-
ever, we used state-of-the-art closed-set detection architectures
to rule out clusters as known objects.

C. 3D Lidar Detection

We first utilized CenterPoint++ [49] to label objects as
known in the 3D lidar space. CenterPoint++ ranked 2nd in the
Waymo Real-time 3D detection challenge [10], as it achieved
an mAPH of 72.8 and an inference speed of 57.1ms. Besides
the outstanding performance, we chose CenterPoint++ as the
model is only based on lidar data and its implementation
is open-sourced. To be more precise, we used the two-
staged model architecture with the VoxelNet [50] backbone.
Moreover, the model’s input is the multi-sweep aggregation
of the current and the last two-point cloud frames. Finally, we
labeled an object cluster as known whenever at least half of the
points fell into the bounding box detection of CenterPoint++.
The remaining, uncovered objects are marked as anomalies in
3D lidar data.

D. 2D camera detection

Clustered objects that were not classified by the 3D detector
are further processed in the 2D image space. Therefore, we
mapped the detected 3D bounding boxes onto the correspond-
ing position in the image space. Next, we constructed 2D
candidate bounding boxes from the area of each 3D box and
passed them to the 2D classifier for recognition. To decide
whether an object is classified as an anomaly, we used a simple
threshold of the softmax classifier probability of 0.25.

For the 2D classification, we used CLIP [51], a zero-shot
model that can be used for visual classification tasks by
providing the names of the visual categories to be recognized.
CLIP learns visual concepts from natural language supervision
by training an image encoder and a text encoder to predict,
for a given batch of image-text pairings, which images were
actually paired with which text snippets in the dataset. To do
so, CLIP trains the image and text encoders to maximize the
cosine similarity of the embeddings of the correct image-text
pairs and to minimize the similarity of the embeddings of
the incorrect pairs. A ResNet-50 [52] and Vision Transformer
(ViT) [53] are used for encoding the images, and a transformer
model for text encoding. CLIP is trained on 400 million image-
text pairs gathered from the internet. To use CLIP for zero-
shot classification, the feature embeddings of the image and
the potential text pairs, which are the classes of the dataset,
are computed by the encoders. Next, the cosine similarity
is calculated to find the closest image-text pair and softmax
normalization is applied to get the probability distribution.

When providing the labels, engineering a prompt such as ”A
photo of a label” and customizing it to the given task has
been shown to improve performance over using just the label.
CLIP’s zero-shot capability is competitive to fully supervised
models on several benchmarks and tasks without pre-training
on a specific dataset. For example, on ImageNet [54] zero-
shot, CLIP matches the accuracy of a pre-trained ResNet-
50. Since CLIP needs no pre-training for convincing zero-
shot accuracy and the labels can freely be chosen, we are not
restricted to a set of predetermined object categories. This fits
our aim of anomaly detection, since we can define classes of
objects that commonly appear in a driving setting as our non-
anomaly classes and are not restricted to labels of datasets like
Waymo, where only vehicles, pedestrians, cyclists, and signs
are used. We used the classes with the highest frequency in
the Waymo dataset as known classes. For that, we applied
the Detr [55] 2D detector, pre-trained on the COCO [56]
dataset, to detect objects in the 2D images. We took the
classes corresponding to the top 99% of the detected objects
and ended up with the following 13 classes as the classes
not considered anomalies for our approach: car, traffic light,
person, truck, bus, fire hydrant, bicycle, handbag, backpack,
parking meter, stop sign, umbrella, and motorcycle. We further
added the classes tree, pole, and bush, since these objects
appear frequently in the Waymo dataset, but are not part of the
COCO dataset labels. This list can be dynamically extended
as needed. One interesting direction might be the inclusion of
Cityscape classes [42], since these are often used in research
for detection approaches.

We used the prompt ”A photo of a label on a street“ which
is more adapted to our task.

Furthermore, CLIP is shown to be much more robust than
supervised ImageNet models with equivalent accuracy. DL
models trained on a specific dataset often learn correlations
of the specific data distribution they were trained on to
improve in-distribution performance. However, this dataset
specialized training often leads to worse performance on new
dataset. Since zero-shot models like CLIP cannot exploit such
correlations, they are more robust to distribution shifts. In our
case where objects are captured under challenging conditions
in which the scale of the object varies heavily, CLIP still
performs due to its generalization ability and robustness.

Using a threshold of the classifier’s prediction probability
to identify an anomaly can be problematic, since it has
been shown that the prediction probability from a softmax
distribution does not directly correspond to the confidence
of the model [57], [58]. Only for calibrated models, the
produced prediction score can directly be interpreted as the
confidence of the model. However, [59] discovered that the
prediction probability of out-of-distribution examples, in our
case the anomalies, is, in general, lower than for in-distribution
examples, the non-anomalies. Furthermore, CLIP has been
proven to be well-calibrated for in-and out-of-distribution
datasets [60]. Therefore, this threshold method can be used
as a valid baseline approach for anomaly detection.



IV. EVALUATION

Due to the lack of ground truth labels for anomalies
in public datasets so far, we cannot provide a quantitative
evaluation of our method and are restricted to qualitative
evaluation only. Our method faced several challenges, we
therefore define different typical scenarios that occurred and
present the respective output of each of our pipeline steps, see
Fig. 3.

a) All objects detected in lidar: The most common
scenario is when all clustered objects are already detected
by CenterPoint and there is no possible anomaly that the 2D
classification could detect, Fig. 3a provides an example.

b) True anomalies found on the road: In the second
category, our approach detects true anomalies on the road, as
shown in Fig. 3b. MSeg correctly identified the road shown
by the red area. The following step clusters the objects present
in the scene, however in the top left of the frame, also a
part of a tree is clustered. CenterPoint classified most of the
objects, except for the part of the tree and the dumpster in the
front. Since dumpsters are not part of the CLIP labels and are
thus anomalies, they should be classified as an anomaly. CLIP
indeed labels it as an anomaly, indicated by the red rectangle
around the object.

c) True anomalies found off the road: Fig. 3c shows a
scenario where an anomaly on the left side of the image,
probably a parking ticket machine, was correctly identified.
However, since the object is on the sidewalk and not on the
road, it should not have been clustered. To overcome this issue,
the alpha shape estimation should be further refined. This
scene also shows how a part of the sidewalk (bottom right) is
clustered and falsely identified as an anomaly by CLIP, since
it does not match with any of the known classes.

d) Anomaly in lidar, but not in camera space: Fig. 3d
is an example where an anomaly is found in the 3D lidar
space but not in the 2D camera space. In this case CenterPoint
detected the smoke in front of the vehicle and identified is as
an anomaly. However, CLIP did not recognize the smoke as an
anomaly since it is not visible in the camera image. This also
demonstrates the complementary capability of our pipeline and
the advantages of using the two modalities.

e) Failure due to over-clustering: A typically problem-
atic scenario is over-clustering in the lidar space. The parts
of the tree on the image in Fig. 3e that are reaching over the
road are not clustered as one tree object, but as several smaller
ones. CLIP then has problems classifying the objects with only
a small part of it, and thus identifies some parts of the tree
as anomalies in this case. Further, adjusting DBSCAN could
improve the cluster performance.

f) Failure due to under-clustering: The opposite of the
over-clustering problem is when several objects are clustered
as one and not individually, for example in Fig. 3f, where
several street cones and the fence are seen as one object.

g) Non-anomaly falsely identified as anomaly: Besides
true positive (TP) examples, there are also cases where a
non-anomaly is classified as an anomaly. In this case, 3g
a tree, producing a false positive (FP). This scene also shows

a problem with the alpha shape estimation. MSeg correctly
identified that there is a separation of the road in the middle
and thus does not label this part as road, but alpha shape takes
the whole ground as the area of interest and therefore the tree
is also clustered, even though it is not part of the road.

h) True anomaly not identified: The pipeline also pro-
duces false negatives (FN), i.e., objects that are anomalies are
not identified as such. Fig. 3h shows how some kind of big box
was correctly classified as anomaly in the lidar space but not
recognized as such by the 2d classifier. Instead CLIP classified
it as a truck.

The different scenarios show that our pipeline is able to
make use of the different modalities and combines them to
correctly identify anomalies. However, it also suffers from
limitations of the models used in the respective steps, which
can be addressed in future work. There are cases where the
road segmentation is inaccurate and the area of interest is
larger than the actual road. We have tried to mitigate this
aspect with a road lane detection approach, which did not
perform well in complex urban settings though. The alpha
shape reconstruction of the road surface in lidar space is not
always accurate, since parts of the sidewalk or the separation
areas between the lines are taken into account. To improve the
alpha shape estimation, one could fine tune the corresponding
hyperparameter α on a driving dataset suited for semantic
segmentation or consider multiple road surface within one
scene. Alternatively, this issue can completely be mitigated
with the utilization of map data. Furthermore, over-and under-
clustering of DBSCAN is problematic for the following 3D
detection and 2D classification. Single objects are either not
clustered individually, resulting in an area with several ob-
jects, or they are only clustered partly, making it difficult to
identify the object. Similarly to the road surface estimation,
one could further improve the clustering by fine-tuning the
parameters on a different dataset or replace DBSCAN by a
more complex algorithm [61]. When CenterPoint is unable
to detect all objects, in many cases CLIP can provide an
accurate classification, showing the complementary nature of
the pipeline. However, our 2D classification step suffers from
two limitations. Firstly, even though the CLIP model has a
good zero-shot performance and is robust to distribution shifts,
there are misclassifications due to the difficult conditions, such
as varying scale, the mentioned over-and under-clustering, and
environmental disturbances. Furthermore, the model some-
times provides inconsistent results, changing the classification
output for objects of different frames of the same scenario.
A more specialized prompt engineering could increase CLIP’s
performance. The second limitation is that we use a method
based on a confidence threshold for identifying an anomaly.
Although CLIP is well-calibrated, this approach should be
seen as a baseline method and can be outperformed by more
sophisticated anomaly detection methods, see Sec. II).

Overall, the results show a strong potential of the proposed
approach, as the semantic knowledge embedded in camera data
can greatly benefit the lidar based anomaly proposals.
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Fig. 3: Exemplary results from our pipeline: The Subfigures 3a-3h correspond to different types of detection cases or failures.
The four labeled columns visualize the intermediate results of the four pipeline components: Road segmentation (MSeg), corner
case proposal generation (clustering), 3D lidar detection (CenterPoint), and 2D camera detection (CLIP). The first column shows
the road segmentation of MSeg in red. The clustering column visualizes the alpha shape estimation in blue and the clustered
point cloud on the road (red). Next, the clusters covered by CenterPoint are colored in green. The last column outlines final
anomalies in red bounding boxes while representing lidar anomalies covered by CLIP in green.



V. CONCLUSION

Our presented anomaly detection pipeline successfully com-
bines camera and lidar modalities, utilizing their respective
advantages. We focused on the aspect of combining different
modalities and not on the model used for each domain. As
mentioned, our threshold based anomaly detection approach
can be seen as a strong baseline.

One major problem we faced during the development is the
lack of publicly available multimodal datasets for anomaly
detection. Without ground truth labels for anomalies in the
dataset, a quantitative evaluation is not possible, and we could
thus only provide an overview of typical scenarios we encoun-
tered. Just recently, Li et al. introduced CODA [62], a real-
world road corner case dataset consisting of different scenes
from major real-world object detection benchmarks [63]–[65],
containing at least one corner case that poses a safety risk
to self-driving vehicles or their surroundings. For each scene,
there is the camera and corresponding lidar data provided.
However, as of now, the full dataset has not yet been released.
Future work can use this dataset for quantitative evaluation of
anomaly detection.
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[14] J. Breitenstein, J.-A. Termöhlen, D. Lipinski, and T. Fingscheidt, “Sys-
tematization of corner cases for visual perception in automated driving,”
in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020.

[15] D. Bogdoll, F. Schreyer, and J. M. Zöllner, “ad-datasets: a meta-
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