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a b s t r a c t 

Background and objectives: Multiple sclerosis (MS) is a progressive inflammatory and neurodegenerative 

disease of the central nervous system affecting over 2.5 million people globally. In-clinic six-minute walk 

test (6MWT) is a widely used objective measure to evaluate the progression of MS. Yet, it has limitations 

such as the need for a clinical visit and a proper walkway. The widespread use of wearable devices ca- 

pable of depicting patients’ activity profiles has the potential to assess the level of MS-induced disability 

in free-living conditions. 

Methods: In this work, we extracted 96 features in different temporal granularities (from minute-level to 

day-level) from wearable data and explored their utility in estimating 6MWT scores in a European (Italy, 

Spain, and Denmark) MS cohort of 337 participants over an average of 10 months’ duration. We com- 

bined these features with participants’ demographics using three regression models including elastic net, 

gradient boosted trees and random forest. In addition, we quantified the individual feature’s contribution 

using feature importance in these regression models, linear mixed-effects models, generalized estimating 

equations, and correlation-based feature selection (CFS). 

Results: The results showed promising estimation performance with R 2 of 0.30, which was derived using 

random forest after CFS. This model was able to distinguish the participants with low disability from 
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. Introduction 

Multiple sclerosis (MS) is a progressive inflammatory and neu- 

odegenerative disease of the central nervous system affecting over 

.5 million people globally, and it remains a leading cause of neu- 

ological disability in young adults in developed countries [ 1 , 2 ]. 

To evaluate the progression of MS in terms of functional, par- 

icularly ambulatory, impairments, a number of assessment cri- 

eria have been employed. Among them, the Expanded Disabil- 

ty Status Scale (EDSS) is the most widely used metric to quan- 

ify MS disability in neurological assessments and clinical trials 

 3 , 4 ]. At the lower end of the scale (0–3.5), the EDSS aims to cap-

ure MS-induced impairment in eight functional systems. At the 

iddle range (4.0–7.5), the EDSS focuses on impairments to walk- 

ng. At the upper end of the scale (8.0–9.5), the EDSS is depen- 

ent upon activities of daily living. Despite its widespread appli- 

ations, EDSS has been criticised for being reliant on raters’ sub- 

ective examination [5] . In addition, it is unable to provide a re- 

ned granular evaluation of physical capabilities at each disability 

evel [6] . 

Performance-based objective measures have emerged to alle- 

iate the drawbacks of the EDSS [7] . The six-minute walk test 

6MWT) is one of the most commonly used measures to evaluate 

alking speed as well as endurance and motor fatigue [ 8 , 9 ]. Par-

icipants are instructed to walk back and forth in a hallway for six 

inutes and are allowed to rest when needed. The total distance 

s then measured as the 6MW T result. The 6MW T has been shown

o correlate significantly with physical disability measured by EDSS 

8] . Furthermore, the 6MWT has shown stronger correlations with 

ther subjective measures of ambulation and physical fatigue than 

he EDSS [8] . Although the 6MWT is believed to be a reliable mea-

ure, limitations include the need for a clinical visit and a walkway 

ith a sufficient length to allow patients to perform the test while 

inimizing turns [10] and patients with severe symptoms such as 

alking difficulty may find this test rather challenging and are un- 

ble to finish it [11] . In addition to the 6MWT, other performance- 

ased measures have also been applied such as the 2-minute walk 

est (2MWT) and the timed 25 feet walk test (T25FT). The 2MWT, 

 shorter alternative to 6MWT, measures the distance one can walk 

ithin 2 minutes, and T25FT measures the time needed to walk 25 

eet. These two tests are known to have flooring effect limitations, 

aking them less sensitive to detect differences among patients 

ith mild disabilities [ 10 , 12 ]. 

The increasing availability of smartphones and wearable devices 

rovides the opportunity to estimate the performance-based mea- 

ures in free-living conditions rather than constrained clinic envi- 

onments. Data from these devices could augment clinical visits, 

roviding data with greater temporal resolution to help us to un- 

erstand longitudinal disease progression, variability (particularly 

n relapsing-remitting MS) and execute timely interventions when 

eeded. For instance, clinic assessments are subject to time-of-day 

nfluences such as fatigue or other activities during the day [ 13 , 14 ].

requent evaluations of MS ambulatory impairments, which can be 

asily done in free-living conditions, also provide valuable informa- 
2 
thermore, we observed that the minute-level ( ≤ 8 minutes) step count,

 upper end of the step count distribution, had a stronger association with

d was indicative of ambulatory function measured through 6MWT. 

strates the utility of wearables devices in assessing ambulatory impair-

ee-living conditions and provides a basis for future investigation into the

© 2022 The Authors. Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

ion for the assessment of new treatments of MS in clinical trials 

7] . 

Existing works have compared parameters derived from wear- 

ble devices with clinical and non-clinical measures including 

MWT [15] , T25FT [ 16 , 17 ], and time-up-and-go [16] as well as

DSS [18] and self-reported fatigue severity scale (FSS) [19] . Yet, 

ery little work in the literature has compared 6MWT with wear- 

ble data [20] . In addition, the existing works collected and anal- 

sed clinical outcome measures at maximum twice at the base- 

ine and/or at the end of the study; they did not investigate how 

earable-derived parameters tracked or estimated the measures 

ver the course of the study. In addition, they either only anal- 

sed data collected in the clinic or only extracted and compared 

aily step count in free-living conditions with the clinical outcome 

easures. As such, they did not fully explore the richness of the 

ne-granularity data in non-clinical settings. 

In this work, we focused on and exploited the utility of 

earable-derived data by extracting small epoch parameters (hour 

y hour or minute by minute) in free-living conditions. Further- 

ore, we undertook comparisons using regression models between 

hese parameters and the 6MWT over long durations with fre- 

uently repeated measurements in a large multi-country cohort. 

inally, we quantified the importance of these parameters in the 

egression models. 

. Methods and materials 

This study is part of the IMI2 RADAR-CNS major programme 

radar-cns.org), which aims to evaluate remote monitoring in a 

ange of central nervous system diseases [Major Depressive Dis- 

rder (MDD), epilepsy and Multiple Sclerosis (MS)] [ 21 , 22 ]. This 

tudy was co-developed with service users in our Patient Advisory 

oard. They were involved in the choice of measures, the timing 

nd issues of engagement and have also been involved in devel- 

ping the analysis plan. From July 2018 to Jan 2020, 337 partici- 

ants were recruited at three sites: Ospedale San Raffaele (OSR) in 

ilan, Italy, Centre d’Esclerosi Múltiple de Catalunya (Cemcat) at 

he Vall d’Hebron Institut de Recerca (VHIR) in Barcelona, Spain, 

nd Danish Multiple Sclerosis Center (DMSC), Copenhagen Univer- 

ity Hospital, Rigshospitalet, in Copenhagen, Denmark. These par- 

icipants were all previously diagnosed with MS. Participant char- 

cteristics are described in Table 1 . Out of these 337 participants, 

27 had relapsing-remitting MS with subacute episodes of neuro- 

ogical symptoms that subside spontaneously to apparently normal 

aseline function, while the remaining 110 had secondary progres- 

ive MS which is inexorably progressive neurodegeneration typi- 

ally developed after 15–25 years with the relapses [1] . Note that 

ody mass index and MS history are missing for more than 20% 

nd 10% of the total participants, respectively. The enroled partic- 

pants had been monitored for between 6 and 24 months. Pas- 

ive data was collected using smartphones and Fitbit Charge 2/3 

evices, including activity, sleep and phone usage [24] . This pas- 

ive collection required no participant intervention and was imple- 

ented continuously on a 24/7 basis. To improve participant’s Fit- 

it device wearing time, the study coordinators helped to fix tech- 

http://creativecommons.org/licenses/by/4.0/
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Table 1 

Participant characteristics. 

OSR 1 VHIR 2 DMSC 3 All 

Number of participants 111 142 84 337 

Age when enroled [years] 46.2 ± 9.0 4 46.9 ± 9.6 45.2 ± 10.8 46.3 ± 9.7 

Gender (Male: Female) 24: 87 45: 97 25: 59 94: 243 

Body mass index [kg/m ²] 23.7 ± 4.5 4 24.5 ± 6.0 25.9 ± 5.0 24.5 ± 5.2 

MS phenotype (Secondary progressive: relapsing-remitting) 37:57 33:106 30:54 100:217 

MS history 5 [years] 14.8 ± 8.0 4 14.2 ± 7.8 12.8 ± 7.1 13.9 ± 7.6 

EDSS when enroled 3.4 ± 1.3 4 3.4 ± 1.4 3.5 ± 1.3 3.4 ± 1.3 

Duration since enroled [months] 9.9 ± 3.5 4 12.7 ± 3.9 7.7 ± 3.8 10.5 ± 4.2 

1 Ospedale San Raffaele (OSR) in Milan, Italy. 
2 Vall d’Hebron Institut de Recerca (VHIR) in Barcelona, Spain. 
3 Danish Multiple Sclerosis Center (DMSC) in Copenhagen, Denmark. 
4 Mean ± standard deviation. 
5 MS history since first diagnosis. 

Table 2 

Data streams used in this study. 

Collection manner Source Data stream Sampling duration 

Passive Fitbit Step count 1 minute 

Fitbit Heart rate 5 seconds 

Fitbit Sleep stages 30 seconds 

Active REDCap 6MWT 3 months 

n

w

c

c

c

e

w

t

d

t

c

[

m

a

A  

i

2

i

r

fi

T

d

v  

T

d

t

s  

u

n

m

T

m

d

F

p

a

w

c

e

t

a

t

t

t

c

f

t

v

f

t

t

6

e

l

a

t

t

6

p

t

m

f

g

g

a

s  

t

T

i

s

(

f

w

4

p

i

I

i

t

t

n

t

s

s

r

ical issues such as synchronization with the app and other issues 

ith Fitbit such as allergies or broken straps before and during the 

linical visits. The study coordinators also manually and sporadi- 

ally checked data completion on the SFTP server where the data 

ame in and were stored. They would alert participants if nec- 

ssary. In addition to the passive data, active data was collected 

hich required clinicians and/or participants to enter data. The ac- 

ive data included clinician- and self-completed reports and stan- 

ard walk tests, most of which were managed using Research Elec- 

ronic Data Capture (REDCap) [23] . The overall open-source data 

ollection platform (radar-base.org) has been described previously 

24] , and enables data to be collected, uploaded, and stored. As 

entioned, we focused on how well the 6MWT reflects day-to-day 

ctivity of the study participants, as measured through wearables. 

 full list of the data streams collected in this study can be found

n Table 2 . Note that we only included data collected before Jan 22, 

020, as the pandemic induced considerable behavioural changes 

n the recruited participants [25] . 

In order to test for association with 6MWT, we extracted pa- 

ameters from the data collected through the Fitbit devices. We 

rst calculated intermediate parameters capturing daily activity. 

hen, we derived features using the statistics of these intermediate 

aily parameters in the 60-day time window around the clinical 

isit. A full list of the Fitbit-derived parameters is given in Table 3 .

he extraction details are given below. 

The available Fitbit step count data has by default a sampling 

uration of 1 minute. In order to capture participants’ mobility pat- 

erns at different levels of granularity, we calculated the step count 

um in epochs of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 30, 60} min-

tes. The calculation was done every 1 minute, with overlapping 

-1 minutes for n-minute step count sum. For example, the 10- 

inute step count sum was calculated with 9 minutes overlapping. 

hen, the maximum of each of these step count sums was deter- 

ined daily starting from 6a.m. on the day until 6a.m. the next 

ay. We also computed the daily total step count sum. 

Additionally, we quantified walking intensity and endurance. 

or this, we computed the daily moderate walking duration where 

articipants walked more than 82 steps in each minute [26] . We 

lso calculated the daily maximum non-stop duration and steps 

here participants had consecutive minute-level non-zero step 

ounts. These features were designed to approximate the maximal 
3 
ffort and endurance in the real world. Furthermore, we calculated 

he daily proportion of time spent in each of the four Fitbit-defined 

ctivity levels (sedentary, lightly active, fairly active, and very ac- 

ive) [27] . Finally, we calculated the daily mean heart rate and to- 

al sleep duration to reflect the impact of participants’ activity on 

heir physiological parameters. 

When calculating these intermediate daily parameters, we only 

onsidered the data from valid days where at least 128 steps were 

ound [16] . We studied the statistics of these daily parameters in 

he time window of 30 days before and 30 days after each clinical 

isit (excluding the visit date). The time windows were discarded 

or analysis if less than 6 days were valid. The statistics included 

he maximum, 90th percentile, median, and interquartile range of 

he daily-resolution parameters. These statistics generated in the 

0-day time window were used as features in the regression mod- 

ls and feature importance quantification as discussed in the fol- 

owing sections. Demographic information of age, gender, need for 

 walking aid, and MS phenotype was also included as features in 

he analysis. Other demographic information was not included due 

o missingness. 

We explored the utility of Fitbit-derived features in estimating 

MWT in free-living conditions. Three regression models were em- 

loyed, namely random forest, gradient boosted trees, and elas- 

ic net. We chose these three models due to their robustness to 

ultilinearity in the features, which may degrade the model per- 

ormance. Random forest is a tree-based regressor, which reduces 

eneralisation errors by adding randomisation in each split and ag- 

regating multiple trees [28] . The gradient boosted trees produce 

 predictive model from an ensemble of weak predictive regres- 

ion trees [29] . In each stage, a regression tree is fit on the nega-

ive gradient of the given loss function (in this work least squares). 

he contribution of the fitted tree to the overall regression model 

s shrunk with a learning rate. Elastic net is a regularized regres- 

ion model striking a balance between Lasso (L1 penalty) and ridge 

L2 penalty) [30] . The hyperparameters in Table 4 were tuned be- 

ore using the three regression models on the test data, the split of 

hich is given below. 

To assess the performance of the regression models, we used 

-fold cross validation in which the data was split at the partici- 

ant level. Before splitting, we shuffled participants after aggregat- 

ng them. This was to ensure folds were participant independent. 

n each round, data from 3/4 of the participants was used for train- 

ng, and 1/4 for evaluation or testing. In doing this, we ensured 

hat the trained model saw no data from the participants held for 

esting. We tuned the hyperparameters on the training data using 

ested 4-fold cross validation, which was again split at the par- 

icipant level. The cross validation was repeated 5 times (different 

eeds when splitting participants) to capture variance in the re- 

ult. Performance in the 20 rounds (4-fold repeated 5 times) was 

eported using root mean square error (RMSE), median absolute er- 
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Table 3 

Fitbit-derived intermediate parameters on a daily basis. The statistics (maximum, median, 90th percentile, and interquartile range) of these daily parameters were calculated 

over a 60-day period around the clinical assessment and used in the regression models and feature importance assessment. 

Feature name Data stream Elaboration 

Epoch (1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 11, 12, 30 and 60 minutes) 

Fitbit step count The step count sum was calculated for each epoch duration (n) every 1 minute (overlapping n-1 minutes). 

The maximum step count sum was calculated on a daily basis. 

Daily sum Fitbit step count The step count sum was calculated on a daily basis. 

Moderate walking duration Fitbit step count The duration in which participants walked 82 steps per minute was calculated. 

Maximum non-stop duration Fitbit step count The duration was calculated in which participants walked non-stop (non-zero step count in a single 

minute). 

Maximum non-stop step count Fitbit step count The step count sum was calculated in which participants walked non-stop (non-zero step count in a single 

minute). 

Activity level Fitbit calories The proportion of time spent in each of the four activity levels defined by Fitbit 

Heart rate Fitbit heart rate The daily mean heart rate 

Sleep duration Fitbit sleep 

stages 

The daily sleep duration 

Table 4 

Hyperparameters to be considered in the regression models. 

Hyperparameters Considered values 

Random forest 

Whether bootstrap samples are used when building trees True, False 

The maximum depth of the tree 5, 10, 20, 30, 40 

The number of features to consider when looking for the best split a square root, 20%, 40% of the number of features 

The minimum number of samples required to be at a leaf node 2, 4 

The minimum number of samples required to split an internal node 5, 10 

The number of trees in the forest 50, 100, 200, 400 

Gradient boosted trees 

The number of features to consider when looking for the best split a square root, 20%, 40%, 50% of the number of features 

The maximum number of terminal nodes or leaves in a tree. 4, 6, 8 

The fraction of samples to be used for fitting an individual tree. 0.5, 1.0 

The number of sequential trees 100, 200, 400 

Learning rate 0.005, 0.01, 0.05, 0.1 

Elastic net 

Alpha (Constant that multiplies the penalty terms) 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 

l1_ratiofloat (The ElasticNet mixing parameter) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
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or (MAE) and R 

2 . RMSE is the standard deviation of the estimation 

rrors, penalising large errors. MAE on the other hand penalises 

qually the errors. R 

2 reflects the estimation error with regard to 

nherent variance within the data and is used to show the reduc- 

ion of variance that can be explained by the use of the regressor. 

hen tuning the hyperparameters in the training phase, we chose 

AE alone as the metric for its robustness over large errors which 

ight arise from outliers. In evaluating the testing performance, 

e compared R 

2 , MAE, and RMSE with Friedman tests, respectively 

 31 , 32 ]. The three Friedman tests were corrected for multiple test- 

ng using the Benjamini–Hochberg procedure [33] . When a signifi- 

ant difference was detected, Nemenyi post hoc tests were applied 

or pair-wise comparisons [31] . To compare the model with full 

eatures and the model with demographic factors only, we used 

ilcoxon rank-sum test. A P < 0.05 was deemed statistically signif- 

cant. 

In order to evaluate the relevance of the extracted features, we 

ssessed their importance or contribution in each of the three re- 

ression models. In the random forest and gradient boosted trees, 

e used the built-in feature importance functionality [ 28 , 29 ]. In 

he elastic net, we first normalised the features on the training 

ata, and applied the calculated mean and standard deviation to 

he testing data. The absolute coefficient associated with each in- 

ependent variable (feature) in the trained model was used as 

he feature importance. In addition, we employed linear mixed- 

ffects models (LMEM) and generalized estimating equations (GEE) 

o further study feature importance. In addition to modelling cross- 

ectional variations, both methods are capable of handling correla- 

ions arising from repeated measurements within each participant. 

MEM incorporates random components in order to adjust for the 

nfluence of a wide variety of different correlation structures exist- 
4

ng in the repeated measures within an individual [34] . GEE allows 

he correlation of measures within an individual to be estimated 

nd taken into appropriate account in the formula which gener- 

tes the regression coefficients and their standard errors [34] . The 

elevance of features was quantified based on the test statistics (t- 

alue) in LMEM and GEE. We reported the overall ranking of fea- 

ures by taking the median of the rankings derived from test statis- 

ics and feature importance. To understand the correlation struc- 

ure between features with high rankings, we calculated Pearson 

orrelation coefficients. 

We also applied a filter-based feature selection method to un- 

erstand the performance of the model with a subset of features. 

n particular, we chose correlation-based feature selection (CFS), 

hich maximises the correlation between features and target vari- 

bles and minimises the correlation between features [35] . In this 

ork, features were selected based on the training data in each 

ound of cross-validation and the features that were selected over 

0% of the cases were reported in the Results section. The model 

ith CFS-selected features was compared with that with the full 

eatures using Wilcoxon rank-sum test. 

To investigate the ability of the model in distinguishing high 

nd low 6MWT scores in a cross-sectional manner, we compared 

he upper 25% and lower 25% of the scores (ground truth) and 

heir corresponding estimations utilising different models. Specif- 

cally, we selected the maximum 6MWT score (ground truth) in 

ach participant and its corresponding estimation. The overall up- 

er and lower 25% of the selected scores and corresponding esti- 

ations were used. The comparison was done by using Wilcoxon 

ank-sum test, corrected for multiple testing using Benjamini–

ochberg procedure [33] . In order to quantify the model perfor- 

ance in classifying upper and lower scores, we calculated area 
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Fig. 1. Histogram of 6MWT. (a) Scores, (b) Number of tests and (c) Range (maximum - minimum) by site OSR, VHIR, and DMSC. 
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nder the receiver operating characteristics curve (AUC). This work 

as implemented in Python 3.7.4. 

. Results 

.1. Visualisation 

Fig. 1 presents the distribution of 6MWT scores, number of 

ests and range of scores per participant in the three clinical sites. 

he median number of tests and median and range of 6MWT 

cores for each participant is 3, 400, and 40, respectively. In to- 

al, 1222 6MWT scores with valid activity (Fitbit) data were in- 

luded for analysis. The completion rate for Fitbit step count data 

as 93.2%, which was calculated as the number of days having 

ata over the number of days since enroled. Fig. 2 gives two ex- 

mples of minute-level step counts on the 7th day before the clin- 

cal visits for two participants. Compared to the participant with 

 6WMT score of 135, the participant with a higher 6MWT score 

f 573 took more steps during the day and walked faster partic- 

larly between 9a.m. and 10a.m., and between 4p.m. and 5p.m. 
5

ig. 3 shows three scatter plots between 6WMT and a represen- 

ative example feature (3-minute 90th percentile) for OSR, VHIR, 

nd DMSC, respectively. At OSR, no obvious intra-subject (longitu- 

inal) correlation can be observed for most participants (there was 

ittle variation in scores for many participants over time), while 

n inter-subject (cross-sectional) correlation was visible. At VHIR, 

imilar to OSR, the intra-participant variations in the test scores 

ere not large and longitudinal correlation was not evident. The 

ross-sectional relationship between 6MWT and the feature in the 

HIR was weaker than OSR. At DMSC, as a result of later partici- 

ant recruitment, only four participants were found to have more 

han four test scores. Fig. 4 further shows the temporal changes 

n 6MWT and 3-minute 90th percentile for three example partici- 

ants with different disability levels, as seen in the different ranges 

f their respective 6MWT, and with relatively large variations in 

MWT. In Fig. 4 (a)–(c), we saw a general agreement in the trend 

een in 6MWT and 3-minute 90th percentile, although the tim- 

ng and magnitude of changes differed. For illustrative purposes, 

e also presented the scatter plots and temporal changes for four 

ther representative features (selected after CFS) in the Appendix. 
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Fig. 2. Minute-level step counts on the 7th day before a clinical visit for 2 randomly selected participants. (a) 6MWT = 135 at the clinical site of OSR. (b) 6MWT = 573 at 

the clinical site of VHIR. The horizontal axis corresponds to minutes and the vertical hours. Each plot covers 6a.m. to 11p.m. 

Fig. 3. Scatter plots of 3-minute 90th percentile and 6MWT for participants with > = 5 6MWT scores. (a): OSR. (b): VHIR. (c) DMSC. The markers in the same shape and 

colour represent the same participant. 

Fig. 4. Temporal changes over > 1 year for one Fitbit-derived feature (3-minute 90th percentile; blue) and 6MWT (red) in 3 (a, b, c) participants with different disability 

levels. 
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Table 5 

Estimation performance (median of pooled cross-validation results). 

Elastic net Gradient boosted trees Random forest 

R 2 0.27 0.28 0.25 

RMSE [m] 78.7 77.3 76.7 

MAE [m] 51.5 52.0 51.5 
.2. Regression analysis 

Table 5 and Fig. 5 show the estimation performance (MAE, 

MSE and R 

2 ) of 6MWT. These three performance indicators 

howed consistent results. It should be noted that the variability in 

he estimation performance was large across different folds in the 

ross-validation. We also calculated the model performance with 
6 
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Fig. 5. Estimation performance of 6-minute walk test (6MWT) scores using elastic net, gradient boosted trees, and random forest. Left: R 2 , Centre: Root mean square errors 

(RMSE). Right: Median absolute error (MAE). Horizontal lines: median. Edges of boxes: 25th and 75th percentiles. Whiskers: maxima and minima. Red: The models built 

with the full features. Orange: The models built with the demographic factors only. The models with the full features had significantly lower RMSE and higher R 2 than those 

with the demographic factors only. 

Table 6 

Top 20 Features by model contribution/importance. 

Features 

Median 

rank 

EN 

rank 

EN 

coef 

GB 

rank 

GB 

importance 

RF 

rank 

RF 

importance 

LME 

rank 

LME 

t-value 

LME 

p-value 

GEE 

rank 

GEE 

t-value 

GEE 

p-value 

walking_aid 1 1 −9.86 1 0.09 4 0.04 1 −7.62 0.00 27 −5.21 0.00 

3-minute 90th pctl 2 2 3.52 2 0.06 2 0.04 7 6.78 0.00 16 6.51 0.00 

7-minute max 3 3 3.17 30 0.01 23 0.01 3 6.98 0.00 2 8.00 0.00 

1-minute median 5 5 1.97 3 0.06 3 0.04 10 6.67 0.00 22 5.49 0.00 

age 8 6 −1.90 5 0.03 8 0.02 61 −2.81 0.00 67 −2.88 0.00 

5-minute 90th pctl 8 13 1.40 8 0.03 6 0.03 8 6.75 0.00 11 6.67 0.00 

2-minute 90th pctl 9 9 1.72 4 0.06 1 0.05 23 5.64 0.00 24 5.43 0.00 

4-minute 90th pctl 10 14 1.32 11 0.02 10 0.02 5 6.88 0.00 8 6.72 0.00 

6-minute max 12 12 1.40 19 0.01 31 0.01 11 6.61 0.00 4 7.63 0.00 

8-minute 90th pctl 13 30 0.75 13 0.02 13 0.02 18 6.47 0.00 12 6.67 0.00 

6-minute 90th pctl 13 25 0.88 12 0.02 5 0.03 20 6.43 0.00 13 6.62 0.00 

5-minute max 14 15 1.22 24 0.01 11 0.02 14 6.51 0.00 6 7.22 0.00 

7-minute 90th pctl 16 18 1.01 16 0.01 9 0.02 17 6.48 0.00 10 6.67 0.00 

act-ratio-0 iqr 16 11 1.56 6 0.03 16 0.01 49 3.71 0.00 50 4.10 0.00 

8-minute max 16 16 1.16 28 0.01 20 0.01 2 7.12 0.00 1 8.18 0.00 

30-minute max 19 7 1.83 9 0.02 19 0.01 26 5.33 0.00 25 5.41 0.00 

2-minute median 21 10 1.64 25 0.01 12 0.02 21 6.20 0.00 21 5.57 0.00 

4-minute max 22 27 0.78 22 0.01 18 0.01 22 5.97 0.00 17 6.47 0.00 

3-minute max 23 36 0.55 21 0.01 15 0.01 28 5.21 0.00 23 5.48 0.00 

3-minute median 24 24 0.91 14 0.02 17 0.01 24 5.53 0.00 33 4.91 0.00 
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nly demographic factors included (age, gender, need for a walk- 

ng aid, and MS phenotype). The models with the full features had 

ignificantly lower RMSE and higher R 

2 than those with the demo- 

raphic factors only. 

Table 6 shows the feature coefficients, importance, and t-value 

n elastic net, gradient boosted trees, random forest, LMEM, and 

EE for the top 20 features with the highest rankings. The rank- 

ngs are further summarised and visualised in Fig. 6 . The rankings 

ere generally consistent among the three regression models and 

etween the two hierarchical models, while discrepancy can be ob- 

erved between them as a whole. The majority of the top 20 fea- 

ures were the maximum and 90th percentile statistics of minute- 

evel step counts. No sleep or heart rate features were seen. One 
7 
ctivity profile feature (the interquartile range of the ratio of time 

pent in a sedentary state) and two clinical/demographic features 

the use of walking aid and age) can be found in the top 20 fea-

ures. Furthermore, additional contributions of the features in the 

resence of other features can be seen from the coefficients in 

he elastic net in Table 6 . While the use of walking aid had the

argest absolute model coefficient, Fitbit-derived features also had 

arge contributions. In particular, most of the high-ranking minute- 

evel features were calculated within time windows no more than 

 minutes. Fig. 7 reveals high multicollinearity in between features 

ith high rankings, especially those with top rankings. The use of 

 walking aid, age, and interquartile range of sedentary duration 

howed moderate negative associations with the other features. 
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Fig. 6. Feature rankings in the elastic net, gradient boosted trees, random forest, linear mixed-effects (LME) model, and generalized estimating equations (GEE). The hori- 

zontal axis is ordered by the median rankings from each of the models. The number in each rectangle denotes the ranking of the feature in the respective model. 

Fig. 7. Pearson correlation heatmap for top 20 features (median rankings from all models). 
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After applying CFS, eight features were selected in over 50% 

f the cross-validations: 3-minute 90th percentile, the need for a 

alking aid, age, the proportion of time spent in the sedentary 

tate interquartile, MS phenotype, 2-minute 90th percentile, 30- 

inute maximum, maximum non-stop duration interquartile. With 

hese features, we obtained a slightly better performance, as seen 
8 
n Table 7 and Fig. 8 . Yet, we did not find statistically significant

ifference. 

Fig. 9 shows the comparison between upper and lower 25% 

MWT scores derived from the maximum in each participant. 

ll the models were able to show statistically significant differ- 

nces between the participants with high and low 6MWT scores. 
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Fig. 8. Estimation performance of 6-minute walk test (6MWT) scores using elastic net, gradient boosted trees, and random forest with a subset of features selected using 

correlation-based feature selection. Left: R 2 , Centre: Root mean square errors (RMSE). Right: Median absolute error (MAE). Edges of boxes: 25th and 75th percentiles. 

Whiskers: maxima and minima. 

Table 7 

Estimation performance (median of pooled cross validation results). 

Elastic net Gradient boosted trees Random forest 

R 2 0.28 0.29 0.30 

RMSE [m] 76.6 75.5 76.1 

MAE [m] 50.3 50.5 49.6 
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he classification performance using AUC was 0.84, 0.85 and 

.87 for elastic net, gradient boosted trees and random forest, 

espectively. 

. Discussion 

This study investigates the relationship between the 6MWT and 

arameters extracted using data collected through Fitbit wearable 

evices. We explored features in a wide range of temporal granu- 

arity from minute-level to daily and compared three popular re- 

ression models (elastic net, gradient boosted trees and random 

orest). We achieved promising estimation performance and high- 

ighted a few features that had consistently higher contributions or 

ore relevance in different models. This work has the potential to 

e translated into the real-world workflow as a continuous moni- 

oring tool, which serves to augment clinical visits and aid clinical 

ecision making. Monitoring people with MS post diagnosis could 

rovide not only greater insights for clinicians but also assist peo- 

le with MS with self-management. This work might also help as a 

iagnostic tool, as remote and continuous monitoring may provide 

ore details to characterise the diagnosis of the participant (e.g., 

 better understanding of the impact on mobility or activities of 

aily living). 

Existing works focused on the utility of daily step count when 

omparing the clinical test scores and Fitbit-derived passive data 

 16 , 18 ]. In this study, we further examined a considerably expand- 

ng set of features in finer temporal resolution and their statis- 

ics in the time window centring the date of clinical tests. We 

ound that the statistics of minute-level features, in particular no 
9 
onger than 8 minutes, were far more predictive than those of 

aily features. Furthermore, among these minute-level features, it 

as shown that the maximum or 90th percentile features were 

ore strongly related to the clinical test scores than median or 

nterquartile range features. This finding is in line with another 

tudy in which it was shown that gait speed in the standardized 

ests corresponds to the higher part of the distribution of the daily- 

ife gait speed [36] . In this study, we derived daily the maximum 

f each feature after excluding days where fewer than 128 steps 

ere detected. Subsequently, we calculated the statistics in the 

ime window of 60 days. This data pre-processing, equivalent to 

ltering, was done to reduce the impact of the confounding cases 

uch as step counts being recorded as zero due to a lack of con- 

ection to the Fitbit server. 

In the data visualisation, we found a stronger cross-sectional 

orrelation between one of the most predictive features (3-minute 

0th percentile) and 6MWT across participants in comparison with 

he longitudinal correlation within each participant. This might be 

xplained by observing that most participants had only been in 

he study less than 1.5 years, during which the disability severity 

as not likely to progress substantially [37] . The small variations in 

he measured 6MWT might be related to individual walking vari- 

bility reflected in the snapshot walking test done in the clinic. 

nother factor affecting the relationship between 6MWT and the 

eature could be that step count data in free-living settings may 

e more sensitive than 6MWT at detecting worsening ambulatory 

unction by revealing modest early changes which are not yet cap- 

ured by 6MWT [16] . Thus, the finer quantification of physical ac- 

ivity through wearable devices may provide a complementary or 

otentially a more complete view of the disease status and pro- 

ression. 

The 6MWT estimation performance in this study was less 

avourable than that in a recent study on predicting 6MWT scores 

n heart failure patients [38] . Among different reasons explaining 

he discrepancy, one plausible reason could be that people with MS 

ften have distinctively degraded ambulation and therefore require 

 walking aid. Movement patterns and therefore steps may not 
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Fig. 9. Comparison between upper and lower 6MWT scores for ground truth and estimations from different models. (a) Ground truth. (b) Corresponding estimation from 

elastic net. (c) Corresponding estimation from gradient boosted trees. (d) Corresponding estimation from random forest. 
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e captured as well by Fitbit devices for such participants. Inter- 

stingly, the overall median 6MWT for participants walking freely 

as 410.0 m, much higher than 264.05 m for those in need of a 

alking aid; the need for a walking aid was one of the most in-

ormative features. Another reason explaining the less favourable 

erformance could be related to the longitudinal nature of this 

tudy. As discussed previously, the disability in people with MS of- 

en deteriorates gradually and remains relatively stable with nat- 

ral variations over a period of one year, especially under good 

linical care. This may pose challenges for estimating the repeated 

ollow-up measures of 6MWT for some participants. Finally, digi- 

al health technologies such as Fitbit step count employed in free- 

iving conditions might measure new constructs which the in-clinic 

old standard (6MWT) does not consider, which leads to inherent 

iscrepancy between the two [39] . 

In the ranking analysis, we found consistency in feature impor- 

ance across different models. As discussed earlier, the maximum 

nd 90th percentile of minute-level step counts, in particular those 

xtracted in time windows no longer than 8 minutes, were more 

trongly related to 6MWT than daily features often used in the ex- 

sting literature [ 16 , 18 ]. This finding can be explained by the ob-

ervation that daily step count can be affected by other factors 

uch as the proportion of indoor and outdoor stay and comorbidi- 

ies [36] . Interestingly, the maximum step count sum in six-minute 
10 
pochs in free-living conditions were also shown to differentiate 

etween people with cardiovascular disease and controls [40] . Age 

ad high rankings in the three regression models, possibly due 

o its negative correlation with 6MWT ( r = −0.13, p < 0.05). In- 

erestingly, it was much less important in LMEM and GEE, which 

ould be attributed to the use of the age at enrolment which re- 

ained the same in the subsequent repeated measurement. The 

eason why the extracted heart rate and sleep features were not 

mong the top 20 may be attributed to the fact that they can be 

mpacted by other factors such as comorbidities and the fact that 

e did not exploit the information contained in these two data 

treams. It should also be noted that the correlation between fea- 

ures (i.e., multicollinearity) may complicate the interpretation of 

eature rankings in the regression models, as shown in Fig. 7 . We 

itigated this complication by repeating the participants’ split 20 

imes and combining the ranking in the regression models with 

hose in the two hierarchical models in which features were eval- 

ated independently. 

When selecting a subset of features using CFS to feed into the 

egression model, 6 out of the 8 most frequently selected features 

ad high rankings. The other 2 were MS phenotype and maximum 

on-stop duration interquartile, which was selected later with 6 

igh-ranking features already in place. This suggests that these 

eatures provided complementary information to the high-ranking 
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eatures. The better estimation performance using the subset of 

eatures might be explained by the use of fewer features in the 

odel to avoid overfitting. This model with fewer features may be 

referred for its computational efficiency and ease of application 

n a clinical setting. 

To the best of the authors’ knowledge, this is the first large 

ommunity based longitudinal study to examine the utility of 

earables in monitoring people with MS but there are some lim- 

tations of this work. First, the variation in 6MWT scores within 

articipants was relatively small over the studied period hindering 

n analysis of within individual changes over time. This is most 

ikely due to the slow developing MS-induced disability in combi- 

ation with effective treatment. The ongoing RADAR-CNS study has 

een continuously collecting passive data, however, the outbreak 

f COVID-19 posed considerable challenges for the programme. As 

 consequence of social restrictions on mobility, participants were 

nable to attend review appointments to carry out 6MWT and 

heir daily physical activity was greatly reduced [ 25 , 41 ]. Conse- 

uently, in this work, we did not have enough data to perform a 

onger analysis focusing only on the periods before the outbreak of 

he pandemic. Future work will attempt to find ways to incorpo- 

ate the data fairly impacted by the pandemic. Second, we did not 

onsider the possible major events of clinical relevance happen- 

ng to participants during the study, which may impact the med- 

cal condition of participants. Future work will explore the com- 

lications induced by these events. Third, although the features 

xtracted in this study cover a wide range of temporal resolu- 

ions, the description and quantification of the mobility patterns 

ould be further extended. Future work may explore using deep 

earning to characterise step count profiles and find hidden pat- 

erns often unable to be captured by conventional machine learn- 

ng algorithms. Fourth, we specifically excluded the data on the 

est date to avoid including the data during the test. If the test 

ime slots can be recorded accurately in future works, it would 

e interesting to only exclude that duration and include the rest 

ata on the day, especially before the test time slots. It could 

e possible that extensive travelling to clinics may also affect the 

est performance. In other words, we may be able to study some 

actors potentially causing variability in one-off measurement. Fi- 

ally, while 6MWT is a widely used performance-based disability 

ndicator, it would be also interesting in the future to see how 

he features and models performed on other variables such as 

DSS. 

. Conclusion 

This study demonstrated the utility of wearable Fitbit data 

n estimating 6MWT for people with MS in multi-country co- 

orts in both cross-sectional and longitudinal manners. Using 

itbit-derived features extracted in different temporal granular- 

ty, we achieved comparably promising performance with elas- 

ic net, gradient boosted trees and random forest. We also found 

onsistency in feature importance in the three regression mod- 

ls and hierarchical models (LMEM and GEE). The minute-level 

tep count, particularly those capturing the maximum or 90th per- 

entiles of the distribution, were found to have a stronger asso- 

iation with 6MWT. The favourable length of the time window 

or calculating the step count features is generally less than or 

qual to 8 minutes. The use of walking aid is indicative of am- 

ulatory function measured through 6MWT. An automatically se- 

ected subset of features may further improve the model perfor- 

ance. This model was able to distinguish the participants with 

ow performances from those with high performances. This study 

rovides a basis for future investigation into the clinical rele- 

ance and utility of Fitbit-derived parameters derived in free-living 

onditions. 
11 
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Fig. A1. Scatter plots of 2-minute 90th percentile and 6MWT for participants with > = 5 6MWT scores. (a): OSR. (b): VHIR. (c) DMSC. The markers in the same shape and 

colour represent the same participant. 

Fig. A2. Temporal changes over > 1 year for one Fitbit-derived feature (2-minute 90th percentile; blue) and 6MWT (red) in 3 (a, b, c) participants with different disability 

levels. 

Fig. A3. Scatter plots of 30-minute maximum and 6MWT for participants with > = 5 6MWT scores. (a): OSR. (b): VHIR. (c) DMSC. The markers in the same shape and colour 

represent the same participant. 

Fig. A4. Temporal changes over > 1 year for one Fitbit-derived feature (30-minute maximum; blue) and 6MWT (red) in 3 (a, b, c) participants with different disability levels. 

12 
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Fig. A5. Scatter plots of the proportion of time spent in the sedentary state interquartile and 6MWT for participants with > = 5 6MWT scores. (a): OSR. (b): VHIR. (c) DMSC. 

The markers in the same shape and colour represent the same participant. 

Fig. A6. Temporal changes over > 1 year for one Fitbit-derived feature (the proportion of time spent in the sedentary state interquartile; blue) and 6MWT (red) in 3 (a, b, c) 

participants with different disability levels. 

Fig. A7. Scatter plots of maximum non-stop duration interquartile and 6MWT for participants with > = 5 6MWT scores. (a): OSR. (b): VHIR. (c) DMSC. The markers in the 

same shape and colour represent the same participant. 

Fig. A8. Temporal changes over > 1 year for one Fitbit-derived feature (maximum non-stop duration interquartile; blue) and 6MWT (red) in 3 (a, b, c) participants with 

different disability levels. 

13 
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