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Background: Tracking person-to-person SARS-CoV-2 
transmission in the population is important to under-
stand the epidemiology of community transmission 
and may contribute to the containment of SARS-CoV-2. 
Neither contact tracing nor genomic surveillance 
alone, however, are typically sufficient to achieve this 
objective. Aim: We demonstrate the successful appli-
cation of the integrated genomic surveillance (IGS) 
system of the German city of Düsseldorf for tracing 
SARS-CoV-2 transmission chains in the population as 
well as detecting and investigating travel-associated 
SARS-CoV-2 infection clusters. Methods: Genomic sur-
veillance, phylogenetic analysis, and structured case 
interviews were integrated to elucidate two geneti-
cally defined clusters of SARS-CoV-2 isolates detected 

by IGS in Düsseldorf in July 2021. Results: Cluster 1 
(n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were 
detected in a surveillance dataset of 518 high-quality 
SARS-CoV-2 genomes from Düsseldorf (53% of total 
cases, sampled mid-June to July 2021). Cluster 1 could 
be traced back to a complex pattern of transmission 
in nightlife venues following a putative importation 
by a SARS-CoV-2-infected return traveller (IP) in late 
June; 28 SARS-CoV-2 cases could be epidemiologically 
directly linked to IP. Supported by viral genome data 
from Spain, Cluster 2 was shown to represent multi-
ple independent introduction events of a viral strain 
circulating in Catalonia and other European coun-
tries, followed by diffuse community transmission in 
Düsseldorf.
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Conclusion: IGS enabled high-resolution tracing of 
SARS-CoV-2 transmission in an internationally con-
nected city during community transmission and pro-
vided infection chain-level evidence of the downstream 
propagation of travel-imported SARS-CoV-2 cases.

Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has caused a worldwide pandemic 
with > 593 million cases and > 6.4 million associated 
deaths up to August 2022 [1]. SARS-CoV-2 vaccines 
have greatly contributed to reductions in coronavirus 
disease (COVID-19)-associated morbidity and mortal-
ity in many countries; however, non-pharmaceutical 
interventions (NPIs) to limit viral spread and reduce the 
healthcare burden of SARS-CoV-2 remain important in 
many contexts. Such contexts include instances of low 
vaccine availability or high rates of vaccine hesitancy in 
some countries, the potential for vaccine breakthrough 
infections and, more generally, the emergence of novel 
viral variants.

As the aim of NPIs is to interrupt or prevent pathogen 
transmission chains, a comprehensive understanding 
of these transmission chains in the population – who 
infected whom, and in which epidemiological context 
– could be greatly beneficial. Contact tracing regimes, 
which typically employ structured case interviews and 
which are operated by many countries, are an impor-
tant data source on pathogen transmission in the pop-
ulation. Contact tracing is generally recognised as an 
important element of SARS-CoV-2 mitigation strategies 
[2-5]. However, the ability of classical contact tracing 
regimes to reliably track transmission chains in the 
population is limited and a substantial number of infec-
tions typically remain unexplained. For example, in the 
German city of Düsseldorf, an international economic 
and air travel hub of ca 600,000 inhabitants, ca 45% of 
SARS-CoV-2 infections remained unexplained in 2021 
(Düsseldorf Health Department internal data), despite 
the operation of a well-staffed and comprehensive con-
tact tracing effort. Similar numbers have been reported 
from other localities [6]. Genomic surveillance, another 
potential data source on the structure of population 
transmission chains, has also emerged as an impor-
tant element of SARS-CoV-2 mitigation strategies [7,8]. 
However, due to the relatively low mutation rate of 
SARS-CoV-2 [9] and the fact that many genomic sur-
veillance systems only sample a limited proportion of 
total cases, genomic surveillance by itself is typically 
not sufficient to enable reconstruction of transmission 
chains at the person-to-person level in the population 
outside of confined outbreak scenarios.

Integrated genomic surveillance (IGS) is an emerg-
ing approach that refers to the integrated analysis of 
genetic and complementary epidemiological data. As 
we and others have shown [10-13], IGS can contrib-
ute to identification of otherwise unrecognised SARS-
CoV-2 transmission chains in the general population 
even under conditions of high-incidence community 

transmission and thus provide important complemen-
tary information for the design and implementation of 
NPIs.

Here we use the IGS system of Düsseldorf  (IGSD) to 
investigate person-to-person transmission chains in 
this city in late June and July 2021.

Methods

Integrated genomic surveillance in Düsseldorf
The IGSD has been described elsewhere [10]. Briefly, 
when fully operational, the system operates as follows.
First, a large proportion of SARS-CoV-2 from local 
cases is rapidly sequenced. Viral genomes (Z* sam-
ples) are primarily generated by the Centre for Medical 
Microbiology, Hospital Hygiene, and Virology of 
Heinrich Heine University Düsseldorf as part of a dedi-
cated local sequencing effort. Viral genome sequences 
of local cases generated under the national German 
SARS-CoV-2 surveillance programme by a collaborating 
large diagnostic laboratory (N* samples) are also inte-
grated. In 2021, the achieved sequencing rate typically 
varied between 40 and 60% of new cases on a weekly 
basis; the ‘routine Düsseldorf surveillance dataset’ 
described below consists of sequence data obtained 
as described here (Z* and N* samples).

Second, putative infection clusters are identified with 
a search algorithm for groups of pairwise-identical 
samples (‘cliques’).

Third, the generated sequencing data and identified 
putative infection clusters are displayed in a visual 
form (‘dashboard’; available at https://covgen.hhu.de); 
this visualisation is continuously-updated. This system 
is used as the main information exchange mechanism 
with the Düsseldorf Health Authority.

Fourth, the identified putative infection clusters are 
investigated at the Düsseldorf Health Authority. The 
investigation combines (i) routine data collected as 
part of Düsseldorf Health Authority’s contact tracing 
activities, including on symptom onset, travel history 
and contact persons and (ii) information obtained from 
structured case interviews (‘deep backward contact 
tracing’; see below) to elucidate potential case connec-
tions not captured by standard contact tracing.

Of note, the IGSD does not comprise the routine collec-
tion of clinical metadata, and case severity is not used 
as a sample selection criterion.

To investigate the applicability of the developed sys-
tem beyond Düsseldorf, a trial run of the IGS system 
was carried out in the nearby smaller city of Solingen 
in July and August 2021; the Solingen data were pro-
cessed and analysed separately from the Düsseldorf 
data and only integrated with the Düsseldorf data dur-
ing the phylogenetic cluster refinement analysis (see 
below).
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3www.eurosurveillance.org

Figure 1
Phylogenetic analysis of the extended dataset of sequences of SARS-CoV-2 registered cases, Düsseldorf and Solingen, 
Germany, 15 June–01 August 2021 (n = 699 sequences)a
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a The phylogenetic tree, generated with Geneious (see Methods) and visualised with iTol [19], shows 699 sequences. Nine sequences were 
found to exhibit low-quality alignments in the multiple sequence alignment of the 708 input sequences by manual inspection and were 
removed from the alignment before construction of the tree.

Cluster 1 and Cluster 2 are highlighted (areas of the tree shaded in blue and red, respectively). The nodes serving as the two clusters’ root 
nodes, I361 and I584, are displayed as little boxes with green background. The presence of T14064C and C18744T, mutations used in the 
process of defining Cluster 1 and Cluster 2, is indicated by blue circles and red triangles, respectively.
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Inter-sample distance metric
Inter-sample genetic distances were calculated as 
defined previously [10], with one modification (point (iv) 
below). Briefly, a multiple sequence alignment (MSA) of 
all sequences was built with MAFFT [14], using GISAID 
[15] instructions. The distance d(x, y) d(x, y)   between 
two samples  x  and  y  was defined as the number of 
differences between the MSA entries of xx and yy , (i) 
ignoring leading or trailing gap characters, (ii) counting 
matches and mismatches according to International 
Union of Pure and Applied Chemistry (IUPAC) ambiguity 
codes, (iii) counting subsequent non-matching gaps 
columns as a difference of 1, (iv) ignoring deletions 
aligned to ‘N’ regions in the other genome, and (v) 
ignoring any mismatches in the MSA regions between 
the beginning of the MSA and the 20th ACGT character 
of either sequence and the end of the MSA and the 20 
last ACGT characters of either sequence.

Structured case interviews
A specialised team of interviewers within Düsseldorf 
Health Authority conducted structured case interviews. 
These covered (i) occupation and place of work; (ii) uti-
lisation of public transport; (iii) social, household and 
family contacts; (iv) utilisation of medical services; 
(v) supermarket and retailer visits; (vi) gastronomy 
and nightlife; (vii) travel history. Before a case was 
classified as unavailable, a minimum of three contact 
attempts were carried out using available landline or 
mobile phone numbers; participation in the structured 
case interviews was voluntary.

Phylogenetic cluster refinement analysis
To refine the definition of two large groups of genet-
ically-related-SARS-CoV-2-infected cases, which are 
referred to as Cluster 1 and Cluster 2, phylogenetic 
analysis of an ‘extended’ dataset (see Results section) 
was carried out using the neighbour-joining method 
with the Tamura–Nei genetic distance model as imple-
mented in Geneious version 10.2.6 (Figure 1). The sam-
ples previously flagged by the IGSD routine cluster 
analysis algorithms were located in the phylogenetic 
tree. Once the presence of two large clusters of genet-
ically-related isolates was confirmed, an analysis of 
the mutational patterns observed downstream of the 
putative cluster-associated root nodes was carried out. 
FASTA files and the phylogenetic tree are publicly avail-
able (see Data availability). 

Cluster 1 strain-of-origin analysis background 
dataset
To investigate potential origins of the viral strain 
of Cluster 1, a background dataset was assembled 
by combining (i) a random sample of non-Cluster 1 
Düsseldorf sequences (n = 30); (ii) the set of all SARS-
CoV-2 sequences from the Balearic Islands sampled 
between 15 June and 01 July 2021 available on GISAID 
(n = 173); (iii) the sequence of EPI_ISL_2710175, a 
viral genome from the Balearic Islands sampled on 
14 June 2021 that was identified using the GISAID 
Audacity Instant Search [15]; (iv) 61 GISAID sequences 

related to Cluster 1. This GISAID set was assembled 
by carrying out a tree neighbourhood search in the 
GISAID ‘Global Phylogeny’ tree from August 2021 
(GISAID-hCoV-19-phylogeny-2021–08–16; represent-
ing 624,052 sequences). Specifically, two Cluster 1 
sequences (N1501, N1506) with genetic distance 0 to 
an individual SARS-CoV-2-infected traveller returning 
to Düsseldorf from the island of Mallorca (IP), who was 
retrospectively identified as a likely Cluster 1 index 
case in the city, were located in the tree. The identi-
ties of all leaves with a tree distance (defined as the 
cumulative length of the edges along the shortest path 
between two nodes) of ≤ 3/29,903 to either of the two 
Cluster 1 sequences and sampling date ≤ 15 July 2021 
were extracted.

The corresponding viral genome sequences were 
obtained from the GISAID MSA, and details and 
acknowledgements are provided in  Supplementary 
Table 1.

Results 

Detection and refinement of two large clusters 
in July 2021
Between 15 June and 01 August 2021, 541 SARS-CoV-2 
surveillance genome sequences from Düsseldorf were 
registered within the IGSD, of which 518 were high-qual-
ity sequences (< 5,000 undefined nt;  Supplementary 
Table 2); this set is referred to as the ‘routine Düsseldorf 
surveillance dataset’. Over the same period, 976 new 
SARS-CoV-2 cases were registered in Düsseldorf, i.e. a 
high-quality viral genome sequence was available for 
ca 50% of cases.

In mid-July 2021, the emergence of multiple overlap-
ping putative infection clusters (‘cliques’ in the pair-
wise isolate distance matrix, i.e. groups of multiple 
pairwise-identical viral isolates) was detected by the 
system’s routine cluster analysis algorithms in the rou-
tine Düsseldorf surveillance dataset and indicated the 
presence of two novel large groups of closely related 
viral isolates (Delta variant; Phylogenetic Assignment 
of Named Global Outbreak (Pango) lineage designa-
tion: B.1.617.2 [16]).

Phylogenetic analysis (see Methods section;  Figure 
1) was carried out based on an expanded dataset, 
referred to as the ‘extended dataset’, with 708 viral 
genome sequences sampled between 15 June and 01 
August 2021 (Supplementary Table 2) that comprised 
the original Düsseldorf routine surveillance data-
set (n = 518); lower-quality Düsseldorf surveillance 
sequences (n = 23); Düsseldorf University Hospital 
patient sequences from the same period (n = 27); and 
available sequences from the nearby city of Solingen, 
where a trial run of the IGS system took place in July 
and August 2021 (n = 140). In this analysis, qual-
ity thresholds were applied after the construction 
of the phylogenetic tree; the rationale for including 
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sequences from Solingen was to investigate potential 
transmission beyond Düsseldorf.

The phylogenetic analysis identified the mutation 
T14064C (blue circles in  Figure 1) as associated with 
Cluster 1, and C18744T (red triangles) as associated 
with Cluster 2. The internal nodes I361 and I584 of the 
constructed phylogenetic tree (see  Figure 1  and ‘Data 
availability‘) were chosen as the root nodes for Cluster 
1 and Cluster 2 respectively. The isolate clusters Cluster 
1 and Cluster 2 were provisionally defined as the sets 
of leaf-level descendants of these nodes, including 
Z4116, a sample carrying an isolated undefined geno-
type (‘N’) at position 14064 with distance 0 to other 
Cluster 1 samples (e.g. IP).

Subsequent to the creation of the phylogenetic tree 
(Figure 1) with the extended dataset, phylogenetic 

outliers, repeat samples from the same individual, 
sequences with > 5,000 undefined nt, and non-surveil-
lance Düsseldorf University Hospital sequences sam-
pled after 09 July were removed (see  Supplementary 
Table 3 for a full list of included and removed samples). 
For Cluster 1 (n = 71 leaf-level descendants of node I361 
in the tree), this meant removing 11 sequences (two 
outlying – including a sequence from a case named 
KP1_5; four redundant; two with > 5,000 undefined 
nt – including one from a case named KP5_2_1; and 
three non-surveillance). For Cluster 2 (n = 49 leaf-level 
descendants of node I548 in the tree), this meant taking 
away seven sequences (one with > 5,000 undefined nt; 
four redundant; and two non-surveillance).

The phylogenetics-based definition of Cluster 1 com-
prised 60 viral sequences with an average pair-
wise genetic distance of 0.91 (59 from Düsseldorf, 

Figure 2
Cluster 1 contact tracing results, Düsseldorf and Solingen, Germany, 15 June–01 August 2021 (n = 68 cases)
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A. Bar plot showing (i) the number cases who had a direct contact-tracing link to IP (i.e. first-, second- and third-order contacts), (ii) the 
number of cases with no contact-tracing link to IP but with an epidemiological link to other Cluster-1 cases, who were also not related to IP 
and (iii) the number of cases with no contact-tracing links to any Cluster 1 cases.

B. Visualisation of the reconstructed epidemiological structure of Cluster 1. Each node in the transmission chain graph represents one case. 
Nodes shaded in grey represent epidemiologically linked, but non-sequenced cases (see text). Unshaded nodes represent epidemiologically 
linked and sequenced cases. Of note, the sequence of IP was not used for Figure 1, as this case and respective sequence data were found 
later in the investigation. While KP1_5 and KP5_2_1 cases had sequence data, these were initially not included in the phylogenetics-based 
definition of Cluster 1: KP1_5 exhibited an increased genetic distance to the other samples in the cluster (and is therefore shown with a 
dashed border; see Supplementary Note for a discussion) and KP5_2_1 had > 5,000 undefined nt. Upon contact tracing findings, however, 
these two cases were included as part of Cluster 1. Test dates of assumed index cases, who were epidemiologically unconnected to IP, 
but for whom contact-tracing suggested that they further transmitted the Cluster-1 strain to other IP-unconnected cases, are respectively 
shown above the respective nodes of these assumed index cases. The inset to the right of the transmission-chain graph shows the complex 
patterns of visits of IP and IP’s first- and second-order contacts to two bars in the Old Town District of Düsseldorf. The two cases shown 
with red boxes also visited Bar A, but their sequenced viral isolates group with Cluster 2 in phylogenetic analysis. Cases KP9 and KP10 
participated in a pub crawl in the Düsseldorf Old Town area around Bar A. The text inset details the precise nature of the identified case 
relationships. Transmission chain graphs were plotted with Graphviz [20].
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one from Solingen), sampled from 05 July onwards 
(Supplementary Table 4); of Cluster 2, 42 viral 
sequences with an average pairwise genetic distance 
of 1.89 (36 from Düsseldorf, six from Solingen), sam-
pled from 30 June onwards (Supplementary Table 5).

The FASTA file used for the phylogenetic analysis com-
prising all analysed sequences as well as the con-
structed tree in Newick format are publicly available 
(see ‘Data availability‘). To further investigate Cluster 
1 and Cluster 2, integration of routine contact-tracing 
data and structured case interviews were carried out 
(see Methods’ section).

Cluster 1 was associated with nightlife 
spreading events following a putative travel-
associated importation
The emergence of Cluster 1 in Düsseldorf could be 
traced back to multiple nightlife spreading events fol-
lowing putative importation of the Cluster 1-associated 
strain by IP, an individual SARS-CoV-2-infected traveller 
returning to Düsseldorf from the island of Mallorca on 
28 June (the sequence of IP was not included to com-
pile the phylogenetic tree in Figure 1 as this case was 
identified during the epidemiological investigation). 
The identified epidemiological links between Cluster 

1 cases are visualised in Figure 2. Transmission of the 
imported viral strain (Delta variant) in Düsseldorf was 
likely initiated during encounters between IP and eight 
first-order contacts (KP1–KP8) in two bars (‘Bar A’, ‘Bar 
B’) in the Old Town District of Düsseldorf, a popular area 
for nightlife activities with narrow streets and more 
than 200 bars, on 30 June. Additional transmissions 
took place in a complex pattern of additional visits of 
the first-order contacts to Bar A on 02 July (KP2 and 
KP1 were present in the bar in the same time as KP1_1–
KP1_7) and 03 July (Figure 2B  Inset) during a likely 
encounter between the first-order contacts and KP9 
and KP10, who were on a pub crawl in the area around 
Bar A on 03 July (where KP5 and KP6 were present, 
as well as KP5_1–KP5_4); and from the second-order 
contacts into the local population via private meetings, 
family and household contacts (Figure 2B). Contact 
tracing and structured interviews also uncovered links 
between an additional 15 cases without direct links to 
IP (Figure 2B); these likely represented ongoing com-
munity transmission of the introduced viral strain or 
secondary introduction events (see below). Apart from 
IP, the other cases had no recorded travel histories. 

Of note, looking into a potential link between IP and 
Cluster 1 begun after it emerged during routine contact 

Figure 3
Distribution of SARS-CoV-2 cases according to time, their cluster, and epidemiological or genomic basis for inclusion in a 
cluster, Düsseldorf, Germany, 01 July–31 July 2021 (n = 850 cases)
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IP: infected return traveller, which is considered as the index case; SARS-CoV-2: severe acute respiratory coronavirus syndrome coronavirus 2.

The figure shows daily new registered SARS-CoV-2 cases in Düsseldorf in July 2021, and how many of these were associated with Cluster 1 
or Cluster 2. For Cluster 1, ‘directly linked to index case’ refers to uninterrupted, contact tracing-supported putative transmission chains 
between the linked cases and IP; ‘genotype’ refers to respective case samples that were identified as belonging to Cluster 1 in the 
phylogenetic tree analysis (see text). For Cluster 2, ‘directly linked to travel from Catalonia’ refers to cases who either recently returned 
from Catalonia and to cases who were directly linked to Catalonia returnees in a manner supported by contact tracing; ‘genotype’ refers to 
respective case samples that were identified as belonging to Cluster 2 in the phylogenetic tree analysis (see text).
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tracing that IP had frequented Düsseldorf Old Town 
nightlife venues on 30 June; when this link started to 
be explored, the investigation of Cluster 1 was already 
under way and had identified the Old Town and 30 
June as focal points for Cluster 1-related viral trans-
mission. The positive PCR test of IP was carried out 
in a laboratory not located in Düsseldorf and there-
fore not covered by the IGSD; the viral genome of IP 
(available on GISAID under EPI_ISL_3044996), how-
ever, was sequenced under Germany’s SARS-CoV-2 
national genomic surveillance programme and could 
be requested by Düsseldorf Health Authority after iden-
tification of IP. Analysis of the viral genome sequence 
of IP confirmed that it was highly related to Cluster 1, 
carrying the T14064C mutation and exhibiting a genetic 
distance of 0 to 34 of the 60 Cluster 1 sequences phylo-
genetically defined (Supplementary Table 4).

The assignment of IP as the likely Cluster 1 index case 
was based on the reconstructed pattern of likely infec-
tion events as well as on the dates of symptom onset 
(Supplementary Table 4) of IP (01 July) and KP1–8 (04–
07 July for all cases but KP1, who reported symptom 
onset on 02 July). IP’s symptom onset on 01 July ren-
dered an infection on 30 June unlikely and favoured 
Mallorca or the return flight to Düsseldorf as infection 
contexts. In addition, apart from IP, only KP4 and KP5 
were present in both Bar A and Bar B (Bar B was where 
KP7 and KP8 were likely infected) on 30 June, and KP4 
and KP5 reported symptom onset on 04 July, consistent 
with an infection transmitted by IP on 30 June.

To further investigate potential origins of the viral strain 
of Cluster 1, we analysed the sequences of Cluster 1 
against a background dataset of other contemporane-
ous sequences from Düsseldorf, the Balearic Islands, 
and GISAID samples related to Cluster 1 (see Methods 
section). Consistent with an assumed infection of IP 
on Mallorca, phylogenetic analysis (Supplementary 
Figure 1) showed that the sequences of Cluster 1 and 
a small number of isolates from the Balearic Islands 
and GISAID formed a distinct cluster. Furthermore, an 
analysis of genetic distances (Supplementary Table 
6) showed that the Cluster 1-related sequences from 
the Balearic Islands were as closely related (genetic 
distance 1) to the sequence of IP as any of the GISAID 
sequences up to a sampling date of 07 July, approxi-
mately 1 week after the initiation of Cluster 1 transmis-
sion in Düsseldorf. IP-identical viral isolates started 
appearing in the GISAID dataset with sampling dates 
from 07 July onwards; the ‘originating laboratory’ 
record of the earliest three such isolates, however, 
indicated a likely sampling location in the area around 
Düsseldorf and thus a likely connection to Cluster 1. 
The first IP-identical isolates in the GISAID dataset 
from another German state were collected from 13 July 
onwards; these, as well as earlier Cluster 1-related 
sequences from June and July with genetic distance 1, 
may reflect wider circulation of Cluster 1-related strains 
in Europe and highlight the possibility of independ-
ent introduction events, as well as, in particular for 

the GISAID samples collected from mid-July onwards, 
potential export of the Cluster 1 viral strain from the 
Düsseldorf area.

Including IP; two individuals (KP2, KP5) who were in 
the company of KP1, KP3, KP4, and KP6 when they 
were likely infected by IP; three individuals (KP1_1, 
KP1_6, KP1_7) who were with KP1_4 and KP1_5 when 
they were likely infected by KP1 or KP2; KP5_2_1 (the 
viral genome of whom had more than 5,000 unde-
fined nt and who was therefore removed from the ini-
tial results of the phylogenetic analysis); and KP1_5 
(the viral genome of whom exhibited an increased 
genetic distance to the other samples in the cluster; 
see  Supplementary Note), 28 SARS-CoV-2 cases in 
Düsseldorf could be directly linked to IP (defined as 
the identification of an uninterrupted, contact tracing-
supported putative transmission chain between the 
linked cases and IP;  Figure 2A), with a median serial 
interval of 3 days. With these cases included, Cluster 
1 comprised 67 Düsseldorf cases, or 8% of new SARS-
CoV-2 cases registered in Düsseldorf in July (Figure 3), 
and one Solingen case. Of note, two cases belonging 
to Cluster 2, Z4187 and Z4145, also visited Bar A on 02 
July (without recorded direct contacts to other Cluster 1 
cases); despite this potential epidemiological link, the 
genetic data clearly showed that these belonged to a 
different infection cluster. For 24 Düsseldorf cases and 
S88, the only Solingen sample in Cluster 1, no links 
to other Cluster 1 samples or other putative infection 
sources were identified.

Investigations by the Düsseldorf Health Authority and 
the discovery of a video posted to social media chan-
nels showed limited adherence to mandatory SARS-
CoV-2 infection prevention measures in Bars A and B 
in force at the time, including dancing and non-compli-
ance with indoor masking rules. In addition, the investi-
gations demonstrated insufficient tracking of customer 
contact details, also in violation of mandatory German 
pandemic regulations in place at the time.

Cluster 2 represents multiple independent 
importation events linked to return travel
For Cluster 2, detected from 30 June onwards and com-
prising 42 cases, no clear index case could be identi-
fied. While the integration of contact tracing data and 
structured case interviews enabled delineating relation-
ships for 25 cases (e.g. household contacts), the overall 
size of the identified transmission chains was limited 
compared with Cluster 1 (Figure 4A). Examination of 
the travel history of the cases, however, showed that 
almost a quarter of the 42 Cluster 2 cases could be 
linked to return travel from Catalonia (seven returnees 
from Catalonia and three associated downstream infec-
tions in Düsseldorf); an additional five cases had been 
travelling to France before testing positive for SARS-
CoV-2 (Figure 4B,  Supplementary Table 5). Analysis of 
symptom onset (Supplementary Table 5) in relation to 
return travel dates suggested that eight of 15 return 
travellers in Cluster 2 were likely infected during their 
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Figure 4
Cluster 2 genetic structure and contact tracing results, Düsseldorf and Solingen, Germany, 15 June–01 August 2021 (n = 42 
cases)
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A. Bar plot showing the number of cases according to their status with regard to travel, contacts with returning travellers and exposure to the 
Old Town of Düsseldorf in Cluster 2.

B. Bar plot showing the number of cases in Cluster 2 with contact-tracing links found to other cases in Cluster 2 and the number of cases with 
no links identified by contact tracing.

C. Visualisation of genetic distances and contact tracing results for Cluster 2, created with MicrobeTrace [21]. Each node represents one case; 
edges between nodes indicate links identified by contact tracing; edge colours indicate genetic distances between the samples linked by 
contact tracing. The text inset details the precise nature of the identified case relationships.
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stay abroad because their symptoms had started either 
when abroad or within the first 24 hours after return. 
For some of these cases, exposure in Düsseldorf could 
be ruled out with certainty (e.g. Z4106, with symp-
tom onset on the same day as the return flight). The 
viral sequences of Z4077 and Z4076, which belonged 
to some of the earliest Cluster 2 cases in Düsseldorf, 
exhibited a genetic distance of 3. The cases corre-
sponding to these two sequences were likely infected 
during a joint trip to Barcelona (symptom onset 1 and 
3 days after return to Düsseldorf, respectively), and 
likely represented two independent infection events 
in Barcelona. Cluster 2 thus likely reflected multiple 
independent introduction events of a viral strain also 
circulating in Catalonia, Spain and other European 
countries, followed by diffuse community transmission 
in Düsseldorf. Consistent with this, isolates closely 
related to Z4076 (EPI_ISL_2982413; genetic distance 1; 
sampling date 30 June) and Z4077 (EPI_ISL_3306421, 
EPI_ISL_3009886, EPI_ISL_3009934; genetic distance 
0; sampling dates from 06 July onwards) were identified 
by genomic surveillance in Barcelona, in a collabora-
tive effort to investigate this cluster. Of note, an addi-
tional direct contact of Z4077 and Z4076 in Barcelona 
also tested positive for SARS-CoV-2 after return to 
Düsseldorf and reported many contacts at work and in 
social gatherings in Düsseldorf and other cities, pos-
sibly contributing to community transmission; the viral 
sequence of this case could be obtained through a 
commercial diagnostic laboratory in Cologne and was 
found to also cluster with Cluster 2 (data not shown). 
Consistent with diffuse community transmission in 
and around Düsseldorf, for five additional cases from 
Düsseldorf, and one case from Solingen at the begin-
ning of a six-person transmission chain, case inter-
views suggested a possible exposure to the virus in the 
Old Town district of Düsseldorf (Figure 4). Furthermore, 
consistent with circulation of the Cluster 2 viral strain 
in other European regions, sequence-identical samples 
from multiple European countries (e.g. Belgium France, 
Germany) were identified via a GISAID Audacity Instant 
search for the sequence of Z4077, with sample collec-
tion dates of the identified sequences beginning on 24 
June, i.e. approximately 1 week before sample collec-
tion of the first Cluster 2 cases in Düsseldorf (30 June). 
Over the course of July, Cluster 2 accounted for 4% of 
total SARS-CoV-2 infections in Düsseldorf. 

Discussion
Increased understanding of SARS-CoV-2 transmis-
sion chains in the population is important to support 
improved containment strategies. Here, we used IGS, 
an emerging approach integrating genetic and classical 
epidemiological data, to investigate two large clusters 
of genetically-related SARS-CoV-2 isolates occurring 
in Düsseldorf. Taken together, isolates from these 
two clusters accounted for more than 10% of SARS-
CoV-2 cases in the city during the considered period 
(Figure 3). We show that IGS allowed to trace complex 
SARS-CoV-2 transmission chains in both clusters, each 
involving cases who had journeyed abroad.

While both identified clusters were related to travel-
imported SARS-CoV-2 infections, they exhibited dif-
ferent patterns with respect to transmission and 
potential public health implications. A large proportion 
of detected cases in Cluster 1 could be linked to a puta-
tive index case, who was a returning traveller with an 
initially undetected SARS-CoV-2 infection; non-adher-
ence to infection prevention rules at nightlife venues 
contributed to an environment conducive to subse-
quent spread of infections. Cluster 1-associated case 
load could likely have been reduced at multiple points: 
by detecting the infection of IP upon return to Germany 
e.g. through a PCR test at the border; by mandatory 
quarantine regardless of infection status for return 
travellers; or by measures to reduce infection risks in 
nightlife settings, such as mandatory PCR or rapid anti-
gen testing of patrons or strict adherence to physical 
distancing and indoor masking rules. What is more, 
compliance with mandatory customer contact data 
collection rules in place would have benefited post-
hoc cluster investigation efforts, and it may also have 
contributed to further infection containment efforts. Of 
note, Spain, including the Balearic Islands, was only 
declared a region of high COVID-19 risk by the German 
health authorities on 27 July [17], i.e. almost 4 weeks 
after the first transmission in the reported clusters 
occurred. Cluster 2, by contrast, was driven by multiple 
independent introductions of a viral strain also circulat-
ing in Catalonia and other parts of Europe, and a larger 
number (n = 6) of Cluster 2 cases were found in another 
city, Solingen, which is part of the wider metropolitan 
area around Düsseldorf. Strict testing requirements for 
return travellers would likely also have contributed to a 
significant reduction of Cluster 2 cases.

IGS was a necessary approach for the investigation 
of the two clusters; in many instances, links between 
cases were only uncovered by the structured case inter-
views carried out after genetic links had been iden-
tified. On the other hand, Clusters 1 and 2 may have 
been considered as connected without the additional 
information gathered through genomic surveillance. 
Indeed, two cases from Cluster 2 (Z4187 and Z4145) 
were present in one of the bars where Cluster 1-related 
transmissions took place. Furthermore, the genomic 
data collected during the investigation of Cluster 2 
could be analysed together with genomic data from 
the city of Barcelona to trace infection chains beyond 
Germany. The joint effort between researchers in 
Düsseldorf and Barcelona, which contributed to under-
standing the spread of the virus in Cluster 2, also dem-
onstrates the potential of pan-European collaboration.

This study has multiple potential limitations. First, rel-
evant cases may be missing from the analysis of the 
two clusters. Reasons for this may include undetected 
infections in asymptomatic individuals or failure to 
identify relevant cases during contact tracing or based 
on genetic data. Second, high-quality viral genomes 
were only available for ca 50% of SARS-CoV-2 cases in 
Düsseldorf during the considered period, so relevant 
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cases in the genetic analysis may have been missed 
(see previous point). There remains also uncertainty 
with respect to cases for whom no sequencing data 
were available, such as the epidemiologically linked 
additional KP cases of Cluster 1. In addition, the assign-
ment of KP1_5 to Cluster 1 remained ambiguous even 
with genetic data. Third, while the assignment of IP as 
the index case of Cluster 1 was supported by dates of 
symptom onset, the reconstructed pattern of putative 
transmission events in different bars, and the detec-
tion of related viral isolates from the Balearic Islands, 
a degree of uncertainty remained, as there was no way 
to rule out the presence of undetected cases or inde-
pendent importation events at the beginning of the 
detected transmission chains. The detection of related 
sequences in other regions highlights the possibility of 
additional independent introduction events, in particu-
lar for Cluster 1 cases from mid-July onwards for which 
no link to IP could be identified, as well as the pos-
sibility of export of viral strains from the Düsseldorf 
area, as inferring the directionality of transmission 
from genetic data alone is generally not possible. In 
addition, it is possible that the structured case inter-
views failed to uncover relevant case travel histories. 
Fourth, the possibility of multiple exposures to SARS-
CoV-2 during high-incidence periods, likely observed 
e.g. for two Cluster 2 cases in this study, represents a 
general challenge for the accurate tracing of transmis-
sion chains; inferred links that are not supported by 
both genomic and epidemiological evidence should be 
interpreted with caution. Fifth, the current study was 
carried out on a timescale of weeks and retrospective 
in nature; in the future, the sequencing speeds achiev-
able with modern single-molecule sequencing technol-
ogies (from ‘swab to sequence’ in < 72 hours [10]) may 
enable implementations of IGS that support ‘real-time’ 
containment efforts. Sixth, the IGSD does not comprise 
the routine collection of clinical metadata, and case 
severity is not used as a sample selection criterion; 
inclusion of clinical metadata may further increase the 
utility of IGS.

Due to the emerging nature of IGS, there are many 
remaining open questions with respect to how to best 
design and implement an IGS system. For example, it 
is unclear at which level – national, regional, or at the 
level of a city – the integration between genetic and 
contact tracing data should be carried out, and how 
structured case interviews for backward contact tracing 
should best be conducted. The two clusters presented 
here clearly demonstrate the benefits of integrating 
local knowledge acquired ‘on-the-ground’ with data 
gathered by surveillance systems in different cities or 
countries; in the future, integration of local systems 
with larger national or European networks may enable 
the improved characterisation of introduction events 
and viral strain flow across cities and states.

Our work demonstrates the feasibility of tracing SARS-
CoV-2 infection chains through a locally implemented 
system and during the later phases of the pandemic 

with high-incidence community transmission in an 
internationally connected city. This study complements 
existing studies from earlier phases of the pandemic 
[12,18] or from national or state-level genomic surveil-
lance systems [7,11,13]. While the developed IGS sys-
tem is currently limited to the tracing of SARS-CoV-2, 
its future potential applications include other emerging 
pathogens or multi-resistant bacterial pathogens.
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