
����������
�������

Citation: Moreno-Anguiano, O.;

Cloutier, A.; Rutiaga-Quiñones, J.G.;

Wehenkel, C.; Rosales-Serna, R.;

Rebolledo, P.; Hernández-Pacheco,

C.E.; Carrillo-Parra, A. Use of Agave

durangensis Bagasse Fibers in the

Production of Wood-Based Medium

Density Fiberboard (MDF). Forests

2022, 13, 271. https://doi.org/

10.3390/f13020271

Academic Editor: Arijit Sinha

Received: 12 January 2022

Accepted: 28 January 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Use of Agave durangensis Bagasse Fibers in the Production of
Wood-Based Medium Density Fiberboard (MDF)
Oswaldo Moreno-Anguiano 1 , Alain Cloutier 2 , José Guadalupe Rutiaga-Quiñones 3, Christian Wehenkel 4 ,
Rigoberto Rosales-Serna 5, Pamela Rebolledo 6, Claudia E. Hernández-Pacheco 7 and Artemio Carrillo-Parra 4,*

1 Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales (PIDCAF), Universidad Juárez
del Estado de Durango (UJED), Río Papaloapan y Boulevard Durango, Col. Valle del Sur,
Durango, Dgo 34120, Mexico; oswaldo.moreno@ujed.mx

2 Centre de Recherche sur les Matériaux Renouvables (CRMR), Département des Sciences du Bois et de la Forêt,
Université Laval, Quebec, QC G1V 0A6, Canada; alain.cloutier@sbf.ulaval.ca

3 Facultad de Ingeniería en Tecnología de la Madera (FITECMA), Universidad Michoacana de San Nicolás de
Hidalgo (UMSNH), Avenida Gral. Francisco J. Múgica S/N, Ciudad Universitaria,
Morelia, Mich 58040, Mexico; rutiaga@umich.mx

4 Instituto de Silvicultura e Industria de la Madera (ISIMA), Universidad Juárez del Estado de Durango (UJED),
Boulevard del Guadiana 501, Ciudad Universitaria, Torre de Investigación, Durango, Dgo 34120, Mexico;
wehenkel@ujed.mx

5 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Carretera Durango-El
Mezquital km 4.5, Durango, Dgo 34120, Mexico; rosales.rigoberto@inifap.gob.mx

6 Centre d’Innovation des Produits Cellulosiques (INNOFIBRE), Cégep de Trois-Rivières,
Trois-Rivières, QC G9A 5E1, Canada; pamela.rebolledo@cegeptr.qc.ca

7 Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango (CIIDIR),
Instituto Politécnico Nacional (IPN), Sigma 119, Fraccionamiento 20 de Noviembre II,
Durango, Dgo 34120, Mexico; chernandezp1801@alumno.ipn.mx

* Correspondence: acarrilloparra@ujed.mx

Abstract: There is an increasing interest in using non-wood lignocellulosic materials for the produc-
tion of wood-based medium density fiberboard (MDF). Agave durangensis Gentry bagasse is a waste
product produced in large quantities in the mezcal industry. This study evaluated the incorporation
of A. durangensis bagasse fibers (ADBF) to elaborate MDF wood-based panels. Three types of panels
with different ratios (wood fibers: bagasse fibers) were investigated. The ratios evaluated were 100:0,
90:10, and 70:30. The density profiles, water absorption, and thickness swell of the panels were
determined, as well as the modulus of elasticity (MOE), modulus of rupture (MOR), and internal
bond (IB), according to the ASTM D1037-06a standard. The results were compared to the ANSI
A208.2-2016 standard. The effect of the addition of ADBF on the properties of the panels was analyzed.
Density profiles were comparable among the three types of panels, while water absorption, thickness
swelling, MOE, MOR, and IB were similar between panels with ratios of 100:0 and 90:10. Panels with
10% and 30% of ADBF meet the minimum ANSI requirements for quality grade 115. It is feasible to
use up to 30% of ADBF in the manufacture of wood-based MDF panels.

Keywords: non-wood fibers; MOE; MOR; internal bond; thickness swell; water absorption; density

1. Introduction

The demand for wood-based panels is increasing rapidly year after year. Fiberboards
are among the panels that are increasingly in demand. According to ANSI A208.2-2016,
medium density fiberboard (MDF) is recognized as a fiberboard panel of density between
500 and 1000 kg·m–3 [1]. Medium density fiberboard is a panel composed of cellulosic
fibers bonded with resin under heat and pressure. Medium density fiberboards have
a wide application for non-structural uses [2], such as in the home and office furniture
markets [3]. There are many advantages that distinguish MDF from other panels including
edge screwing, painting properties, and good machining [4].
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Wood is commonly used as raw material for the manufacture of MDF [5]. However,
the increasing demand for forest resources for different uses has led to the shortage of
wood supply. Therefore, the supply of raw material cannot meet the demand of the wood
industry in many regions of the world [6,7]. This is why it is necessary to search for new
lignocellulosic materials that may help to fulfill the requirements of the forest products
industry [8–10]. These alternative lignocellulosic materials comprise forest harvesting
residues such as bark, annual plants, residues from wood products and furniture industries,
residues from pulp mills, and recycled paper [6]. However, non-wood fiber has acquired
great relevance as a sustainable natural fiber resource for composite products. The use of
agricultural fibers as composite panel material is common in many parts of the planet [2].
There is interest in agricultural residues, which are generated on a large scale worldwide [9].

In recent years, the use of various non-woody fibers in the production of MDF panels
have been studied. Rhododendron [6], canola [11] and wheat straw [5], kenaf [12], oil palm
stem [13], coffee bean residues [14], banana leaf stem and lamina [15], okra [8], sugarcane
bagasse [4], sunflower and corn stalk [16], and hemp [17] were considered, among others.
However, there are still several fibers that have not been used in the production of wood-
based MDF, including bagasse from Agave durangensis Gentry.

Agave bagasse is the waste that remains after the boiled agave heads are shredded
and ground and the sugars are removed with water. Bagasse fibers could be used to
elaborate a broad variety of products such as filters, absorbents, geotextiles, fiberboard,
packaging, and molded products [18]. When one liter of mezcal is produced, it generates 15
to 20 kg of bagasse [19]. In 2019, 178,625 L of mezcal were produced in the state of Durango,
Mexico [20]. That year, it is estimated that 2679 to 3572 tons of wet base agave bagasse
were produced [21]. The objective of this work was to determine the effect of A. durangensis
bagasse fibers on the physical and mechanical properties of wood-based MDF panels.

2. Materials and Methods
2.1. Materials

For this work, A. durangensis bagasse fibers (ADBF) and wood fibers (WF) were used
to manufacture the panels. The ADBF was donated by Productora de mezcal Hacienda
Dolores located in Durango, Dgo, Mexico. The WF were a mixture of spruce, fir, and
pine and were donated by the Uniboard plant company located in Mont-Laurier, Quebec,
Canada. The adhesive used was urea formaldehyde (UF) (Table 1) donated by Hexion
located in St. Romuald, Quebec, Canada.

Table 1. Properties of urea formaldehyde adhesive.

Properties Unit Value

Appearance Clear to white liquid
Solids content (%) 67.00 ± 1.00

Specific Gravity (kg·m–3) 1.305 ± 0.010
Viscosity cPs 335 ± 75

pH @ 25 ◦C 8.20 ± 0.20
Buffer capacity mL 11.5 ± 3.0

Storage life 25 ◦C (77 ◦F) Days 21

2.2. Manufacture of MDF Panels

The panels were produced at the Composite Panel Laboratory of the Department of
Wood and Forest Sciences at Université Laval in Québec, QC, Canada. Three replicates of
each panel type were produced for this study (Table 2).

The adhesive and wax were applied to the fiber in a rotary drum blender, using
14% resin and 1% wax (by weight of the dry fiber), and NH4Cl at 25% catalyst was added
to the resin to lower its pH. Once the furnish was formed, it was taken through a ring
refiner (Pallman PSKM8-450) to separate the fiber aggregates formed during blending in
the drum. The fiber mat was formed using the refined furnish. It was carried out manually
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using a wooden mold with the dimensions established for the board. The formed mat was
pre-pressed before hot pressing. The hot pressing was performed in a Dieffenbacher hot
press. The panels had dimensions of 760 by 760 mm, a target thickness of 12 mm, and a
target density of 700 kg·m–3.

Table 2. Types of panels and their ratios of raw material used.

Type of Panel
Raw Material (%)

Wood Fibers (WF) A. durangensis Bagasse
Fibers (ADBF)

MDFC 100 0
MDF10 90 10
MDF30 70 30

MDFC: Medium-density fiberboard manufactured with 100% of WF; MDF10: Medium density fiberboard pro-
duced with 90% of WF and 10% of ADBF; MDF30: Medium density fiberboard elaborated with 70% of WF and
30% of ADBF.

2.3. Physical and Mechanical Properties of MDF Panels

The vertical density profile of the manufactured MDF panels was determined using a
Quintek X-Ray densimeter (QMS Core Model QPRS-01x and QMS Particleboard Model
QDP-01x). The physical and mechanical properties of the panels were determined accord-
ing to ASTM D1037-06a [22] and ANSI A208.2-2016 [1]. The physical properties evaluated
were water absorption and thickness swell at 2 and 24 h, while the mechanical properties
determined were internal bond (IB), modulus of elasticity (MOE), and modulus of rup-
ture (MOR). The number of specimens for each test and their characteristics are shown in
Table 3. The specimens used for the density profile were the same as those used in the IB
tests. The specimens were conditioned for 15 days at 65% relative humidity and 22 ◦C. The
mechanical tests were carried out in an MTS universal mechanical testing machine with a
capacity of 5 kN.

Table 3. Tests and samples sizes and number. The samples used for WA2h, WA24h, TS2h, and TS24h
tests were the same.

Test Symbol Size (mm) Samples per Panel Samples per Type of Panel

Water absorption after 2 h WA2h

150 × 150 4 12
Water absorption after 24 h WA2h

Thickness swell 2 h TS2h
Thickness swell 24 h TS24h

Internal bond IB 50 × 50 6 18
Modulus of elasticity MOE

75 × 339 6 18Modulus of rupture MOR

2.4. Statistical Analysis

Completely randomized design was used to analyze the data for each variable. Data
were analyzed using R Studio software [23]. A Shapiro–Wilk test was used to analyze the
normality of data. Analysis of variance (ANOVA) (p ≤ 0.05) and comparison of means with
Tukey test were performed. Furthermore, Pearson correlation analyses were performed
between average density, and water absorption and thickness swell. Additionally, Pearson
correlation analyses were performed between internal cohesion and average, maximum,
and minimum densities.

3. Results and Discussion
3.1. Panels Density

The density profiles for the three types of MDF panels are presented in Figure 1. It
shows a higher density near the surfaces, while the center of the panels presented a decrease
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in density. According to Halvarsson et al. [24], in MDF panels with this type of density
profile, it is the more compressed fibers of the high-density surface layers that expand
the most when the MDF samples are immersed in water for 24 h, thus causing swelling.
The panels with 10 and 30% of ADBF presented a similar density profile to the WF panel
(Figure 1A). However, there is a minimal difference between the profiles, which may be
caused by the ADBF; therefore, it is likely that this small difference influences the properties
of these panels. The density profile is related to the performance of the panel. A deep
density profile allows the board to better laminate, glue, and finish due to the high density
of the surface [25]. On the other hand, when the density profile is more flat, it can reduce
the bending properties of the panels [26].
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Figure 1. Density of MDF panels. (A) Density profiles of the average of eight samples of MDF panels.
(B) Types of density of the panels obtained from the X-ray densitometry. Different lowercase letters
represent statistically significant difference among panels by Tukey test (p ≤ 0.05).

The highest average density was obtained for MDFC (749 kg·m–3), followed by MDF30
(738 kg·m–3) and MDF10 (735 kg·m–3). The higher maximum density was obtained by
MDFC (995 kg·m–3), while the minimum density was obtained for MDF30 (390 kg·m–3).
There are no statistically significant differences between the three types of panels in the
average, but there are for the maximum density, with MDFC being different from MDF10
and MDF30, while for the minimum density, MDFC showed a significant difference with
MDF30 (Figure 1B). The p value of the ANOVA test for average, maximum, and minimum
density of the panels is shown in Table 4. Panels did not present statistically significant
difference in average density, while in maximum and minimum densities, there was
significant difference.

Table 4. p value of ANOVA test for average, maximum, and minimum density of the panels.

Type of Density p Value

Average 0.4565
Maximum 3.08 × 10−7 *
Minimum 0.0268 *

* Statistically significant difference for p ≤ 0.05.

3.2. Water Absorption and Thickness Swell

Water absorption and thickness swelling after 2 and 24 h in water immersion are
shown in Figure 2. The lowest water absorption (Figure 2A) at 2 and 24 h was obtained for
MDFC (3.7% and 18.9%, respectively), while MDF30 had the highest absorption at 2 (4.7%)
and 24 h (22.4%). There were no significant differences between MDFC and MDF10 in
water absorption at 2 and 24 h; however, there were significant differences between these
and MDF30. The lowest thickness swelling (Figure 2B) was presented by MDFC at both
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2 (0.9%) and 24 h (4.5%), followed by MDF10 (1.1% and 4.9%, respectively). There were no
statistically significant differences between MDF10 and the other panels for thickness swell
at 2 h, but there was between MDFC and MDF30. Statistically significant differences were
found between the three types of panels in thickness swell at 24 h.
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Table 5 shows the p value of ANOVA test for WA and TS after 2 and 24 h in water
immersion of the panels. The panels presented statistically significant difference in WA
and TS, both at 2 and 24 h.

Table 5. p value of ANOVA for WA and TS at 2 and 24 h of submersion of the panels.

Property p Value

WA2h 1.29 × 10−6 *
WA24h 0.000269 *

TS2h 0.000162 *
TS24h 1.05 × 10−5 *

* Statistically significant difference for p ≤ 0.05.

The results indicate that ADBF decreases the resistance of the panels to water ab-
sorption and swelling in thickness. According to Moreno-Anguiano et al. [21], fiber of
bagasse of A. durangensis contains 32.4% extractives, 44.7% holocellulose, 7.6% lignin, and
12.6% ash. Thus, the high content of extractives present in ADBF could have caused poor
gluing of these fibers, due to the migration of extractives to the surface after high pressing
temperatures [27]. On the other hand, Xing et al. [10] stated that excessive curing of the UF
resin in the surface layers of the panel may also have caused high thickness swelling. In
addition, agricultural residues have a higher buffer capacity compared to wood [28]. These
aspects remain to be investigated further.

Water absorption is a property of panels related to their dimensional stability, which
has been studied by several authors. Despite water absorption is reported in the literature,
it is not a characteristic evaluated in the ANSI A208.2-2016 standard. The results obtained
for WA in MDF10 and MDF30 panels are lower than those reported by Akgül [29] for MDF
made with 10–90%, and 30–70% of Urtica dioica L. stem-wood fiber, respectively. Akgül [29]
indicates that the addition of Urtica dioica stem fiber to the panels reduced their physical
properties; nonetheless, they still met the standards. Similarly, MDF30 showed lower WA
than those obtained by Akgül and Tozluoğlu [30] on MDF from Arachis hypogaea L. husk
and wood fibers. These authors report that Arachis hypogea husk could be added up to 30%
for the production of MDF.

The TS values obtained are lower than those reported by other authors for panels
made from wood and non-wood fiber [31–33]. Lee et al. [31] evaluated MDF manufactured
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from blends of sugar cane bagasse and tallow tree fibers. They found that the maximum
percentage to manufacture MDF is 50% without impact on thickness swelling. Whereas
Akgül et al. [32] produced MDF with mixtures of pine wood and corn stalks, and they
mentioned that the addition of corn stalks reduced the panel properties.

The TS (expressed in mm) at 2 and 24 h of immersion is plotted as a function of average
density in Figure 3. The TS values presented by the panels meets the maximum required
by ANSI A208.2-2016 for medium density fiberboard.
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The Pearson correlation among average density values and water absorption and
thickness swelling is presented in Table 6. There is a significant correlation between the
average density of MDF30 and water absorption after 24 h, which is a strong positive
correlation. On the other hand, there is no significant correlation between the rest of
the variables.

Table 6. Pearson correlation for average density values and water absorption and thickness swelling
of MDF panels.

WA2h WA24h TS2h TS24h

MDFC
Correlation −0.3007 −0.1049 0.2098 0.1049
Significance 0.34 0.75 0.51 0.75

MDF10
Correlation −0.0403 0.2134 −0.4775 −0.312
Significance 0.90 0.51 0.12 0.32

MDF30
Correlation 0.5412 0.6124 * 0.3434 0.3272
Significance 0.07 0.03 0.27 0.30

* Significant correlation (p ≤ 0.05).

3.3. Internal Bond

Internal bond was higher in MDFC (0.84 N·mm–2), while the lowest resistance was
presented by MDF30 (0.70 N·mm–2). MDF10 had an internal bond of 0.83 N·mm–2. There
are no statistically significant differences between MDF10 and MDFC; similarly, there are
no significant differences between MDFC and MDF30. The presence of 10% ADBF does not
affect the internal bonding strength with respect to MDFC panels; however, increasing the
percentage of ADBF to 30 decreases. The internal bonding strength showed by the panels
with ADBF meets the minimum required by ANSI A208.2-2016. The MDF10 panels reach
grade 155 while MDF30 meets grade 130 (Figure 4).

The results obtained for IB are higher than those reported by other authors for panels
with similar proportions of wood fiber and non-wood fiber. Gillah et al. [34] reported an
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IB of 0.48 N·mm–2 for sisal and wood fiber panels, in which their IB was reduced with
the addition of sisal fibers. Abdul et al. [35] indicated an IB of 0.73 N·mm–2 for oil palm
empty fruit bunch and rubber wood panels. They also reported that the increase of non-
wood fibers into the panels decreased their properties. On the other hand, Belini et al. [36]
obtained an IB of 0.58 N·mm–2 for eucalyptus and bagasse fiber panels with a ratio of
75:25%. Nevertheless, the IB increased to 0.80 N·mm–2 when a ratio of 50:50% was used.
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Figure 4. Internal bond of MDF panels (A) Internal bond of MDF panels. Different lowercase letters
represent statistically significant difference among panels by Tukey test (p ≤ 0.05). p value of ANOVA
for internal bond is 0.0195. (B) Internal bond as a function of density of MDF panels. Lines represent
MDF standard requirement for 115, 130, and 155 grades according to ANSI A208.2-2016.

The decrease of IB in MDF30 panels may be caused by the high presence of extractives
in bagasse fibers. Regularly, extractives modify the properties of lignocellulosic materials,
which, in turn, alters their adhesion properties [37]. It is possible that the waxes in the
bagasse fibers are incompatible with phenolic resins because of their different polarities.
Thus, the adhesive decreases its ability to penetrate the lignocellulosic material, resulting
in a lower resistance to internal bond of the panels [38].

Table 7 shows the Pearson correlation between internal bond and the different densities
obtained in the X-ray densitometer. Neither of the MDF panels presented significant
correlations between internal cohesion and average, maximum and minimum density.

Table 7. Pearson correlation for different density values and internal bond of MDF panels.

Test Average Density Maximum Density Minimum Density

MDFC
Correlation −0.149 0.027 0.181
Significance 0.56 0.91 0.47

MDF10
Correlation 0.425 0.290 0.286
Significance 0.08 0.24 0.25

MDF30
Correlation −0.005 0.147 0.234
Significance 0.98 0.56 0.35

Significant correlation (p ≤ 0.05).

3.4. Modulus of Elasticity (MOE) and Modulus of Rupture (MOR)

Figure 5 shows the values of the modulus of elasticity and modulus of rupture ob-
tained for each type of board. MDFC panels presented the highest MOE (1955 N·mm–2);
nevertheless, there is no significant difference between them and MDF10 (1786 N·mm–2).
On the other hand, MDF30 panels had the lowest MOE (1526 N·mm–2), which was signif-
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icantly different from MDFC and MDF10 (Figure 5A). Regarding the MOR, the highest
average value was shown by MDFC (17.8 N·mm–2), followed by MDF10 (17.6 N·mm–2);
however, there were no significant differences between them. On the other hand, MDF30
panels obtained the lowest value (13.2 N·mm–2) and were significantly different from
MDFC and MDF10 (Figure 5B). The MOE and MOR values are lower than those reported
by other authors for processed wood fiber and non-wood fibers MDF panels using fiber
ratios similar to this work. Çöpür et al. [39] report MOE of 2320 and 2852 N·mm–2 and MOR
of 18.6 N·mm–2 for panels made from hazelnut shells and fibers of Pinus nigra and Fagus
orientalis. They stated that up to 20% of hazelnut shells could be utilized to manufacture
panels which meet the standards. Akgül et al. [40] indicate MOE of 4035 N·mm–2 and
MOR of 27.1 N·mm–2 in corn stalk and oak wood panels. In their case, the incorporation of
corn stalk did not increase the MOE and MOR of the panels. Although the MOE and MOR
of the present work were lower than other reported, MDF10 and MDF30 panels met the
minimum value required by ANSI A208.2-2016 in MOE and MOR for grade 115 panels.
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Figure 5. (A) Modulus of elasticity of MDF panels. p value of ANOVA for modulus of elasticity is
9.84 × 10−5. (B) Modulus of rupture of MDF panels. p value of ANOVA for modulus of rupture is
6.50 × 10−6. Different lowercase letters represent statistically significant difference among panels
by Tukey test (p ≤ 0.05). Dotted lines represent MDF standard requirement for 115 and 130 grades
according to ANSI A208.2-2016.

The decrease in mechanical properties of MDF30 panels may be due to the presence
of small particles in the ADBF and the minimal contact between them [33]. The pH of the
ADBF is another factor that could reduce the mechanical strength of the panels. Moreno
et al. [21] report that A. durangensis bagasse fiber has a pH of 5.8. According to Baharoglu
et al. [41], materials with low pH result in panels with low strength properties, because
adhesive curing occurs before hot pressing when the pH of the fibers is low [42]. When
fibers with lower pH and UF resin are used in the MDF industry, it is expected to result
in a higher degree of pre-curing during drying [43]. Nevertheless, UF is an adhesive that
cures better in an acidic environment [44]. The aforementioned is in agreement with the
results obtained by Park et al. [45], who reported that high alkalinity fibers retarded the
curing of UF in MDF. According to Stefke and Dunky [46], the condensation reactions of
UF resin take place during the hardening process causing a cross-linked condition and thus
developing the internal bond between the fibers. UF preferably needs a low pH for the
above to take place.
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4. Conclusions

The results show that the incorporation of A. durangensis bagasse fiber does not affect
the physical and mechanical properties of wood-based MDF panels. The MDF panels made
with 10% of ADBF did not present significant differences in their physical and mechanical
properties with the wood-based panels, except for the thickness swelling after 24 h. In
contrast, panels with 30% ADBF showed significant differences from wood fiber panels.
However, both panels with 10% and 30% of ADBF meet the requirements of grade 115 for
medium density fiberboard for interior applications according to the American National
Standard. Density did not correlate concerning water absorption and thickness swelling,
except for the MDF30 board after 24 h. The densities did not present correlation with
internal bonding. The addition of ADBF to panels did not affect the type of density profile
of panels; however, the ADBF reduced the density of the MDF panels. These findings
demonstrate the potential of A. durangensis bagasse fiber to be used as a complement in the
manufacture of wood-based MDF panels.
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