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Introduction
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1 Chapter 1. Introduction

In 2004, the groundbreaking article “A manifesto on psychology as idiographic sci-
ence: Bringing the person back into scientific psychology, this time forever” by Mole-
naar was published. Since then, the interest of many psychological researchers has
shifted towards focusing on the individual and the number of studies on psycho-
logical dynamics raised dramatically (Bos et al., 2015; Hamaker & Wichers, 2017;
Vachon et al., 2019). In short, Molenaar (2004) argued that ergodic processes are
rarely observed in psychology. To clarify what an ergodic process is, consider an ar-
ray of data with three dimensions (individuals, variables, and occasions, also known
as Cattell’s data box, 1978). If the process is ergodic, the relationships among the
variables between individuals are equivalent to the relationships of those variables
within an individual. In other words, if ergodicity holds, one can study a sample of
individuals at any occasion or one person during many occasions and draw the same
conclusions. Such a process can only be possible under very strict conditions, which
are seldom satisfied in real psychological processes (Molenaar, 2004). Therefore, to
study how psychological processes unravel at the individual level, one needs to study
the psychological dynamics of the individuals.

To being able to study psychological dynamics, researchers collect what is known as
time series or intensive longitudinal data. The research methods used to collect inten-
sive longitudinal data are known in the literature with terms such as “ecological mo-
mentary assessment”, “experience sampling methods”, and “ambulatory assessment”
(Myin-Germeys & Kuppens, 2021; Shiffman et al., 2008; Trull & Ebner-Priemer,
2014). This kind of data implies that an individual (or a sample of individuals) is
requested to report on the variables of interest (e.g., negative affect) many times, usu-
ally within short periods of time such as one week or one month. Participants might
be asked to answer a short questionnaire once every day, or multiple times a day with
random prompts, or whenever the behaviour of interest (e.g., smoking) happened.

Furthermore, there are certain advantages of doing intensive longitudinal research
when compared to cross-sectional studies, such as: (a) the emphasis on the individ-
uals, (b) the reduction of recall bias, and (c) the higher ecological validity. Firstly,
focusing on the individual allows researchers to differentiate between- from within-
person variability. This is not the case in cross-sectional research, where the effects
of between- and within-person variability are mixed together in the results (Hamaker,
2012). This is especially problematic when the processes of interest are non-ergodic
(Hamaker, 2012; Molenaar, 2004) because it may be the case that within-person ef-
fects have a completely different direction than the between-person effects. For this
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1Chapter 1. Introduction

reason, being able to differentiate these two sources of variability is helpful to better
understand psychological processes. Secondly, the use of self-report questionnaires
is widespread in psychological research. However, the response processes of the par-
ticipants are far from trivial. The final response is influenced, for example, by how
the questions are understood, by the questions’ format, or by the information that the
participant needs to recall to provide an answer (Schwarz, 2012). By using inten-
sive longitudinal methods, the cognitive burden required to answer the questions is
reduced because participants are asked to report on their behaviors or feelings at the
moment they happened (Schwarz, 2012). As a result, measurements are theoretically
more reliable, as the cognitive burden required to answer the questions is lower and
measurements should not suffer from a recall bias. Thirdly, intensive longitudinal
research offers a higher ecological validity (Reis, 2012) in comparison with research
conducted in laboratories because measurements are taken in the natural context of
the participants. For all these reasons, intensive longitudinal research allows studying
the behaviors and feelings of interest in diverse real-life situations to better grasp the
real psychological processes of the persons.

However, in spite of its advantages, intensive longitudinal research comes with its
own challenges. In relation to psychological measurement, the question “what are we
measuring?” is still the ‘elephant’ in the room. Firstly, as intensive longitudinal re-
search deals with repeated measurements from the same individuals, one necessarily
thinks about the distinction between traits and states. Broadly, traits are stable dispo-
sitions of the individuals and states reflect variability due to the situation. Hence, do
intensive longitudinal measurements capture the pure states of the individuals? Or,
are the measurements a combination of the traits and the states of the person? Can
we distinguish each of these components? Secondly, measurement error is inherent
to psychological measurement (Schuurman et al., 2015). Even though measurements
in intensive longitudinal research are in theory more reliable as they are collected in
the situation and with less recall bias, this is not a guarantee that measurements in
intensive longitudinal research are free of measurement error. Thus, key questions
are: How can researchers account for measurement error in intensive longitudinal
research?, How reliable are intensive longitudinal measurements, and, what are the
implications of measurement error in intensive longitudinal research?

3



1 Chapter 1. Introduction

1.1 Traits and States

Traits are typically understood as long-lasting and somewhat stable individual char-
acteristics from the persons (Chaplin et al., 1988; Epstein, 1979; Hamaker et al.,
2007). In contrast, states are commonly seen as temporary and situational responses
that can be observed in a given situation (Chaplin et al., 1988; Hamaker et al., 2007).
Yet, evidence of the lack of stability of traits (Burke et al., 1984; Koestner et al., 1992;
Roberts & DelVecchio, 2000) led to deep conceptual discussions about the meaning
and utility of traits (Allen & Potkay, 1981, 1983; Alston, 1975; Chaplin et al., 1988;
Endler & Magnusson, 1976; Hertzog & Nesselroade, 1987; Mischel, 2004; Steyer
et al., 1999; Zuckerman, 1983). While some researchers such as Allen and Potkay
(1981, 1983) and Mischel (1968, 2004) raised strong criticism about the definition of
traits in terms of their arbitrariness and the oversimplification that traits make of the
complex reality, others such as Endler and Magnusson (1976) and Steyer et al. (1999)
advocated for a more moderate approach that understands psychological concepts as
a combination of traits and states.

A first approach used to measure states and traits was to simply rephrase the items
to indicate what aspect the researchers were interested in. For example, one can use
the term “in general” to refer to trait-like measurements and the term “today” to refer
to state-like measurements (e.g., Lubin et al., 2001; Spielberger & Sydeman, 1994;
Zuckerman et al., 1983). However, this approach is far more problematic than it
may appear. Firstly, adopting this approach implies that traits and states are clearly
defined and differentiated by the participants but there is not guarantee that this is
the case (Allen & Potkay, 1981; Zuckerman, 1983). Secondly, changing the phras-
ing of the item may result in the item assessing substantially different experiences
(Schwarz, 2012). For example, the interpretation of an item measuring “irritability”
might completely change depending on the period time that the question refers to. If
the question asks for “today”, participants might answer based on minor annoyances
(e.g., the coffee was a bit bitter), but if the question asks for “the last six months”,
participants might base their response on major annoyances (e.g., the occasion when
the bus was delayed which led to missing a work interview). In this case, the scales
are not really capturing the difference between traits and states, but how the person
assesses annoying experiences in relation to the time when they happened.

Another approach to the measurement of traits proposed by Epstein (1979, 1981)
is the “aggregationist model”. Epstein was concerned about the lack of stability of

4



1Chapter 1. Introduction

trait measures, which he attributed to measurement error. To correct for this mea-
surement error, Epstein (1979) suggested to estimate traits by averaging the repeated
measurements of an individual. While the aggregationist model is about how to mea-
sure traits, it laid the foundation for the conceptual approach towards traits and states
that is commonly presumed in intensive longitudinal research (see Hamaker, 2012;
Hamaker & Grasman, 2015; Nesselroade, 1991; Nezlek, 2007; Schuurman et al.,
2016). Usually, most researchers in intensive longitudinal data assume that an obser-
vation from a variable of a subject i at a certain occasion t, yit , can be decomposed
into two parts, that is:

yit = µi +δit , (1.1)

where µi is the intraindividual mean of the i-th person, which is referred to as the
trait score, and δit is the deviation from the intraindividual mean at occasion t, which
is referred to as the state score. This approach has been extensively used in intensive
longitudinal research to study the between- and within-variability (e.g., Hamaker et
al., 2007; Moeller et al., 2018; Walls et al., 2006; Zelenski & Larsen, 2000).

Lastly, a framework that was specially proposed for the measurement of traits and
states is the so-called latent state-trait theory (LST; Steyer et al., 2015; Steyer et al.,
1999). This framework was proposed as a response to the lack of consistency of
trait measures and the criticisms raised by Mischel (1968, 2004). The LST theory
acknowledges that not only the person but also the situation and the person-situation
interaction are relevant sources of variance in the observed scores. In this framework,
states, traits, and measurement error are explicit components of the models, which
are implemented as structural equation models. In short, in the LST models, the true
score is defined as the latent state variable, which captures the effects of the person,
the situation, and the person-situation interaction. If longitudinal data is available, the
latent state variable can be decomposed into the latent trait variable and the latent
state residual. The former captures the effects that are stable over time and due to
the person, and the latter captures the effects unique to the situation, which are due
to the situation and the person-situation interaction. While the LST theory presents
a valuable framework for the measurement of traits and states, it has been developed
for the analysis of longitudinal data with a few number of waves and it has been rarely
used to analyze intensive longitudinal data (see Courvoisier et al., 2010; Eid et al.,
2012; Eid et al., 2017; Geiser et al., 2013).

5



1 Chapter 1. Introduction

1.2 Measurement Error

Measurement error is a central concept in psychological measurement. Traditionally,
in classical test theory (CTT; Crocker & Algina, 1986), the observed score of a test,
X , is linearly decomposed into the true score, T , and the error term, E. The true
score is defined as the expected score obtained from infinite independent administra-
tions of the test to the same person. The error term is assumed to be unsystematic
(i.e., random) and captures the effects of the person, the test, and the situation that
are not accounted for by the construct of interest. For example, when assessing the
mathematical ability of a person, sources of error may bet the fact that the person
was feeling too anxious while answering the test, that many questions were about the
topic that the person studied the most, or that the place where the person completed
the test was too noisy. Additional assumptions of CTT are that the expected value
of the error term is 0, and that the correlation between the random error and the true
score is 0.

However, within the context of intensive longitudinal research, key premises of CTT
are too restrictive. One of the aims of studying persons intensively is to distinguish
between- from within-person variability. Yet, in CTT, the within-person variability is
considered to be part of the measurement error (Hamaker, 2012). Also, CTT was de-
veloped thinking about measuring traits and the idea that the true score is the expected
value of infinite administrations of the test. Associated to these principles, one of the
most popular ways to estimate the reliability of a test is by means of the test-retest
reliability, but such a definition is not meaningful when doing intensive longitudinal
research because we are precisely interested in variability over time. Therefore, there
is a need to adjust psychological measurement for intensive longitudinal settings.

For longitudinal settings, the LST theory (Steyer et al., 1999, 2015) offers a proba-
bilistic framework to study psychological measurement which is based on CTT. The
most basic LST model capable of distinguishing traits, states, and measurement error
is the multistate-singletrait model. In this model, observation Yjt of a variable j (e.g.,
an indicator or an item) at time t can be decomposed as follows:

Yjt = τ jt + ε jt , (1.2)

where τ jt represents the latent state variable and ε jt represents the random measure-
ment error of variable j at time t. In the LST theory, the measurement error variables

6



1Chapter 1. Introduction

at time t are by definition uncorrelated with the latent state variable at time t and the
measurement error variables at time u, with t ̸= u. Then, the latent state variable is
further decomposed into:

τ jt = α jt +λTjt ξ +λS jt ζt , (1.3)

where α jt is the intercept of the j-th indicator at time t; ξ represent the latent trait
variable, which captures the effects of the person; ζt represents the latent state resid-
ual, which captures the effects of the situation and the person-situation interaction
at time t; and λTjt and λS jt represent the factor loadings for the latent trait variable
and the latent state residual, respectively. Additionally, the LST theory also defines
a set of variance coefficients, which are proportions of the total variance of the ob-
served variable Yjt . The main variance coefficients defined for every LST model are
the reliability, the consistency, and the occasion-specificity. These coefficients are
particularly useful to study the psychometric properties of the different indicators in
the study. Overall, the LST theory seems like a useful framework that can be used to
study psychological measurement in intensive longitudinal settings.

Another traditional approach in psychological measurement is the item response the-
ory framework (IRT; Embretson & Reise, 2013; Lord et al., 1968). IRT was devel-
oped to overcome several of the limitations of CTT, such as the lack of parameter
invariance and the fact that the standard measurement error is assumed to be homo-
geneous across the sample. In a nutshell, IRT is a nonlinear approach to measurement
that allows modeling the interaction between persons and items. In particular, IRT
models estimate the probability to endorse an item or a response option given the
level on the latent attribute of the person. IRT analyses also define a set of functions
such as the item characteristic function, the item information function, and the test
information function, which provide an in-depth understanding of the scale and the
items. While applications of IRT for longitudinal and intensive longitudinal settings
are scarce (e.g., Cai, 2010; Hecht et al., 2019; Kim & Camilli, 2014; Rijn et al.,
2010), developing IRT models for intensive longitudinal settings is a promising en-
deavour that can contribute to improve the measurement of psychological dynamics,
because it can inform about the performance and quality of the items and scales used
in intensive longitudinal research.

7



1 Chapter 1. Introduction

1.3 Outline of the Thesis

Chapter 2 addresses the question about how to distinguish between traits and states
in intensive longitudinal data. To do this, we extensively studied three popular lon-
gitudinal structural equation models applied to intensive longitudinal settings. The
models that we studied were the multistate-singletrait model (MSST; Steyer et al.,
2015), the common and unique trait-state model (CUTS; Hamaker et al., 2017), and
the trait-state-occasion model (TSO; Eid et al., 2017). While these models are typ-
ically used to analyze longitudinal data in wide format, they can be reformulated as
multilevel structural equation models to facilitate their application to intensive lon-
gitudinal data (Geiser et al., 2013; Hamaker et al., 2017). However, the multilevel
version of the models requires additional constraints. For example, in the multilevel
version, model parameters cannot vary over time. As a consequence, longitudinal
measurement invariance (Meredith, 1993; Meredith & Teresi, 2006) is assumed in
the multilevel version. This constraint is not necessary for the standard (single-level)
version of the models.

Furthermore, given that the models are or can be encompassed within the LST theory
(Steyer et al., 2015; Steyer et al., 1999), in chapter 2, we also studied the psycho-
metric properties of the variables based on the reliability, the consistency, and the
occasion-specificity variance coefficients as defined in the LST theory. These co-
efficients are useful to study how reliable each variable is and to what extent each
variable is state- or trait-like. A version of this chapter was published in “Psycholog-
ical Methods”.

Chapter 3 further develops one of the models from Chapter 2. In this chapter, we
proposed an extension of the TSO (Eid et al., 2017) to make the model more suitable
to analyze intensive longitudinal data. The extended version is named the mixed-
effect trait-state-occasion model (ME-TSO). The ME-TSO allows the autoregressive
effect to vary across individuals and the inclusion of situational variables. This ex-
tension was also based on the LST models for the combination of random and fixed
situations approach, which was suggested by Geiser et al. (2015b). In this approach,
fixed situations can be defined by characteristics of the situation which are relevant
for the research question, such as “being alone” versus “being accompained”. Yet,
the situations in which a person is alone can vary greatly. We use the term ‘random
situation’ to describe this phenomenon. Hence, the purpose of the LST models for
the combination of random and fixed situations is to assess if the overall behaviors
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or feelings of the participants differ across fixed situations. Additionally, we also
defined variance coefficients for the ME-TSO. These variance coefficients allow to
study the psychometric properties of the variables per person and per fixed situation.
We illustrated how to fit the ME-TSO and how to interpret its results by means of em-
pirical data from the HowNutsAreTheDutch (HoeGekIsNL) project (van der Krieke
et al., 2017; van der Krieke et al., 2016). This chapter was published in “Structural
Equation Modeling: A multidisciplinary journal”.

In Chapter 4, we step away from the LST theory (Steyer et al., 2015) and focus
on IRT (Embretson & Reise, 2013) instead. A handful of IRT models for intensive
longitudinal data have been proposed previously. For example, Rijn et al. (2010) ex-
tended the Rasch model and the partial credit model within the state-space modeling
framework, Hecht et al. (2019) developed a continuous time Rasch model, and Wang
et al. (2013) combined the Rasch model with a growth curve model and a random
walk to analyze time series educational data. However, in these previous applications
of IRT for intensive longitudinal data, core features of IRT used to study the psy-
chometric properties of the items tend to be ignored. For example, in these previous
applications, the authors did not make use of the item characteristic function or the
item information function to interpret their results. Because of this, in Chapter 4, we
propose an IRT model suitable to analyze time series data while using all the advan-
tages offered within the IRT framework. We refer to this model as the time-varying
dynamic partial credit model (TV-DPCM). How to use the TV-DPCM is exemplified
by analyzing data openly available in Kossakowski et al. (2017). These data come
from one male who filled in a total of 1,473 experience sampling assessments. This
Chapter was submitted for publication.

Lastly, in Chapter 5, we considered the topic of goodness-of-fit assessment for the
TV-DPCM. Generally, assessing the goodness-of-fit of statistical models is not straight-
forward, and more research in this area is needed for intensive longitudinal models.
Assessing the goodness-of-fit of a model is an important step when analyzing data,
to ensure that the model is capable of capturing the main relationships in the data.
To achieve this, in Chapter 5, we studied the application of the posterior predictive
model checking method (Gelman et al., 1996; Rubin, 1984) to assess the goodness-
of-fit of the TV-DPCM. In short, the posterior predictive model checking method is a
Bayesian approach that aims to compare features of the observed data with the same
features of replicated data. If the differences between the two types of data are too
large then there is evidence of model misfit. Based on previous studies of posterior
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predictive model checking of traditional IRT models, we introduce several test statis-
tics and discrepancy measures that can be used to assess the goodness-of-fit of the
TV-DPCM and (potentially) other IRT models for intensive longitudinal data.

The code developed for the different chapters is openly available in various GitHub
repositories. For chapter 2, code for the simulation study and for analyzing the empir-
ical data can be found in https://github.com/secastroal/LST_Analyses. For Chapter
3, the code used to analyze the empirical example is available in https://github.com/
secastroal/ME-TSO. We do not have authorization to share the empirical data used
for Chapters 2 and 3. Finally, code to run the simulations of Chapters 4 and 5, as well
as custom functions for the implementation of the posterior predictive model check-
ing method for the TV-DPCM can be found in https://github.com/secastroal/DIRT.
Notice that as Chapters 2 through 5 were written as separate articles, some overlap
can be found, especially, in the introductory sections of each chapter.
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Chapter 2. Using SEM to Study Traits and States

Abstract
Traditionally, researchers have used time series and multilevel models to analyze in-
tensive longitudinal data. However, these models do not directly address traits and
states which conceptualize the stability and variability implicit in longitudinal re-
search, and they do not explicitly take into account measurement error. An alterna-
tive to overcome these drawbacks is to consider structural equation models (state-trait
SEMs) for longitudinal data that represent traits and states as latent variables. Most
of these models are encompassed in the Latent State-Trait (LST) theory. These state-
trait SEMs can be problematic when the number of measurement occasions increases.
As they require the data to be in wide format, these models quickly become overpa-
rameterized and lead to non-convergence issues. For these reasons, multilevel ver-
sions of state-trait SEMs have been proposed, which require the data in long format.
To study how suitable state-trait SEMs are for intensive longitudinal data, we carried
out a simulation study. We compared the traditional single level to the multilevel
version of three state-trait SEMs. The selected models were the multistate-singletrait
(MSST) model, the common and unique trait-state (CUTS) model, and the trait-state-
occasion (TSO) model. Furthermore, we also included an empirical application. Our
results indicated that the TSO model performed best in both the simulated and the
empirical data. To conclude, we highlight the usefulness of state-trait SEMs to study
the psychometric properties of the questionnaires used in intensive longitudinal data.
Yet, these models still have multiple limitations, some of which might be overcome
by extending them to more general frameworks.

Keywords: states and traits, intensive longitudinal data, longitudinal structural equa-
tion modeling, measurement error
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The amount of intensive longitudinal studies has increased considerably in the last
20 years (Hamaker & Wichers, 2017). These studies, also known as ambulatory as-
sessments, experience sampling methods (ESMs), or ecological momentary assess-
ments (EMAs), include multiple measurements per person. These measurements are
collected in short periods of time and are intended to study the dynamics of psy-
chological processes. Several advantages of intensive longitudinal methods are often
highlighted, such as the emphasis on the individual, the higher ecological validity,
and the diminution of recall bias; these properties are discussed in depth by Hamaker
(2012), Reis (2012), and Schwarz (2012).

When studying intensive longitudinal data, the terms traits and states often occur, as
these terms conceptualize the stability and variability of human behaviors and atti-
tudes across time. Although traits and states have been defined differently throughout
the years (Allen & Potkay, 1981; Chaplin et al., 1988; Mischel, 2004; Steyer et al.,
1999), traits are typically regarded as relatively stable dispositions and states as the
observed variability due to situational conditions (Hamaker et al., 2017; Hamaker et
al., 2007). Moreover, some authors have suggested that most psychological variables
are not pure traits nor states but they are something “in-between” (Geiser et al., 2017;
Hertzog & Nesselroade, 1987).

In order to study states and traits in intensive longitudinal data, researchers have
found inspiration in the aggregationist model (Epstein, 1979, 1981). In short, the
aggregationist model assumes that the mean score over time for each individual (i.e.,
intra-individual mean) is a good estimate of a person’s trait level. Although it is not
explicitly mentioned, this conceptual approach has been integrated with the statistical
approaches that are generally used to analyze intensive longitudinal data. This in-
cludes time series analysis when N = 1 (Fan & Yao, 2003; Hamaker & Dolan, 2009)
and multilevel modeling when N > 1 (Houben et al., 2020; Nezlek, 2012; Walls et al.,
2006). In these approaches, the intra-individual means are considered as trait scores
and the deviations from that mean are considered as state scores (e.g., Hamaker &
Grasman, 2015; Nesselroade, 1991; Nezlek, 2007; Schuurman et al., 2016). Time
series analyses and multilevel models have been extensively used to study traits and
states in intensive longitudinal data (e.g., Moeller et al., 2018; Zelenski & Larsen,
2000).

However, the aggregationist approach is not free of criticism. According to Steyer et
al. (1992), in the aggregationist model, the situational context is not an integral part
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of the model. This criticism also applies to some extent to the way traits and states are
handled in multilevel models. As the situation is not an explicit part of the model, the
state scores are confounded with other sources of variability such as measurement
error and other unobserved variables. Moreover, the definitions of traits and states
are rather loose, mainly because multilevel models were not especially developed to
handle these concepts.

To overcome these drawbacks, longitudinal state-trait structural equation models (i.e.,
state-trait SEMs) can be used as an alternative approach to analyze intensive longi-
tudinal data. State-trait SEMs are especially suited as (a) their main focus is on
differentiating the trait and the state components of the observed variables and (b)
they incorporate measurement error. However, applying state-trait SEMs to inten-
sive longitudinal data is not straightforward (Geiser et al., 2013; Geiser et al., 2015b;
Nezlek, 2007) because these models have been originally developed for longitudinal
data with a limited number of measurement occasions. Furthermore, even though
some of these models are supposed to be useful to analyze experience sampling data
(Courvoisier et al., 2010; Eid et al., 2012; Eid et al., 2017), there are little to no
applications of these models on intensive longitudinal data.

The goal of this study was to explore the suitability of state-trait SEMs to study states
and traits in intensive longitudinal data. By doing this, we also provide a compre-
hensive introduction to these models, which will allow more researchers to apply
them to their intensive longitudinal data. To reach this goal, we compared three state-
trait SEMs through a simulation study, and we applied them to empirical data. The
three models that we considered were the multistate-singletrait (MSST; Geiser et al.,
2013; Steyer et al., 2012; Steyer et al., 2015), the common-unique trait-state (CUTS;
Hamaker et al., 2017), and the trait-state-occasion model (TSO; Cole et al., 2005; Eid
et al., 2017). These models were chosen because all of them require multiple indi-
cators, which is useful when multiple items are used to measure the same construct.
Moreover, the selected models are a good representation of the wide variety of state-
trait SEMs, as they cover the most general aspects that are commonly accounted for
in state-trait SEMs, as we will highlight in this study.

We also discuss important characteristics of state-trait SEMs that have to be addressed
when analyzing intensive longitudinal data. For example, we show how state-trait
SEMs can be reformulated as multilevel SEMs allowing researchers to deal with
a large number of measurement occasions per person. Moreover, we discuss how
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state-trait SEMs allow studying the psychometric properties of the items included in
intensive longitudinal studies. Currently, a multilevel version of the TSO model is
lacking, hence we also introduce the multilevel version of this model. Finally, we
also show how these models can be easily adjusted to the requirements of the data,
such as in the case of multidimensional settings.

In what follows, we explain the theoretical and statistical background of state-trait
SEMs. This includes (a) a brief overview of the latent state-trait theory (LST; Steyer
et al., 2012; Steyer et al., 2015; Steyer et al., 1999), (b) a discussion of the diffi-
culties of using these models with intensive longitudinal data and how they can be
overcome by reformulating the models as multilevel SEMs, (c) a detailed descrip-
tion of the models selected for this study, and (d) an explanation of the similarities
and differences among the selected models and other models and frameworks. Next,
we present the simulation study and its results. After this, the empirical example is
introduced by describing and analyzing the data with the three models. This empiri-
cal example aims to show practitioners how to analyze and interpret real experience
sampling data with state-trait SEMs. Finally, we conclude with a discussion of our
findings, and suggestions for future research on this field. Furthermore, in order to
help researchers apply these models to their own data, in Appendix A, we provide R
code to fit these models (also see https://github.com/secastroal/LST_Analyses).

2.1 State-Trait SEMs

State-trait SEMs are longitudinal structural equation models, which can distinguish
the trait and the state components of the observed variables. The observed vari-
ables are usually referred to as indicators in the state-trait SEM literature, which
are expected to be measured on a continuous scale. They can be, for example, the
sumscores of parallel tests or the items’ raw scores. Furthermore, an important as-
sumption of state-trait SEMs is that measurement time points are equally spaced over
time (Geiser et al., 2013), meaning that the time elapsed between two consecutive
observations is the same for all consecutive observations. Finally, an additional as-
sumption that should be considered when analyzing intensive longitudinal data with
state-trait SEMs is stationarity. A time series is (weakly) stationary if its means and
variances-covariances are equal over time (Song & Zhang, 2014).
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Regarding the state-trait distinction, in the state-trait SEMs, not only persons but
also situations and person-situation interactions are considered important sources of
variability. For example, a person’s anxiety is certainly not stable over time, but
highly influenced by the situation: How anxious a person feels will be completely
different at a romantic dinner than at a job interview. Also, anxiety will not only be
affected by the situation but also by the person-situation interaction. For instance,
the effect of a stressful situation on a person who has an anxiety disorder will be
different from the effect of that same situation on a person who does not have an
anxiety disorder.

These sources of variability are captured by the latent variables in state-trait SEMs.
Thus, a latent variable is needed to represent the effect of both the situation and
the person-situation interaction for each occasion of measurement (latent states), and
a general latent variable is needed to represent the stability of the measurements per
person across situations (latent trait). In other words, state-trait SEMs aim to describe
the structure of the constructs measured in longitudinal studies by differentiating the
proportion of the variance that is explained either by trait effects or situational effects
(Steyer et al., 1999). Additionally, state-trait SEMs are useful to understand how the
trait and the state components of different constructs are related and whether these
relationships are different among different subpopulations (Steyer et al., 1999).

An important characteristic of state-trait SEMs is that they are useful to analyze lon-
gitudinal data in wide format (Hamaker et al., 2017; Steyer et al., 2015). This means
that there are as many columns in the data set as there are measurement occasions for
each variable of interest. Therefore, parameters can be allowed to change over time.
Technically speaking, state-trait SEMs can be used to test for longitudinal measure-
ment and factorial invariance (Meredith, 1993; Meredith & Teresi, 2006) of the trait
and state structures. Longitudinal measurement invariance means that the conditional
distribution of the observed variable given a value of the latent variable is equal over
measurement occasions. Put differently, assuming longitudinal measurement invari-
ance means that the construct of interest (e.g., positive affect) is measured equally
over time (Geiser et al., 2015a). Hence, the latent scores at different occasions can
be interpreted in the same way, which allows for meaningful comparisons of latent
scores over time. On the other hand, if measurement invariance is not assumed, dif-
ferences between latent scores over time might be due to changes in the meaning
of the scale and not necessarily due to changes in the persons’ attributes (i.e., the
construct being measured).
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Despite their similarities, state-trait SEMs differ in many ways, such as the number
of indicators (i.e., variables) needed to identify the latent state variables, or the kind
of effects that are accounted for (e.g., autoregressive effects, method effects, trait
change). For example, the stable trait autoregressive trait and state model (STARTS;
Kenny & Zautra, 1995; Kenny & Zautra, 2001) is one of the few models that only
requires one indicator on each occasion to be able to measure a situational latent
variable, while most state-trait SEMs require multiple indicators. In addition, state-
trait-SEMs might include method effects in order to account for the specific time-
invariant component of an indicator that is not shared with other indicators. For
instance, these effects might be present if a variable was measured through self-report
and peer-rated questionnaires. In this case, each questionnaire might have its own
effect, which is independent of the situation and unique to each questionnaire. A
state-trait SEM that includes this kind of effects is the CUTS model (Hamaker et al.,
2017), where method effects are referred to as unique traits. Additionally, there are
also other approaches to account for method effects, which are broadly discussed by
LaGrange and Cole (2008) and Geiser and Lockhart (2012).

Moreover, some state-trait SEMs account for autoregressive effects (Cole et al., 2005;
Eid et al., 2017; Kenny & Zautra, 1995; Kenny & Zautra, 2001; LaGrange & Cole,
2008). Autoregressive effects are used to study the dependency of the variables on
themselves at previous time points. In other words, an autoregressive effect evidences
how an observation of a variable at time t can be affected by previous observations
of that same variable at time t − 1, t − 2, and so on. For example, if a person got a
raise in their salary, this would make him/her feel more cheerful during the next few
days, in such a way that the person might react more positively to future unpleasant
experiences. The STARTS (Kenny & Zautra, 1995; Kenny & Zautra, 2001) and the
TSO (Cole et al., 2005; Eid et al., 2017) models are examples of state-trait SEMs that
include autoregressive effects to account for the relationship between consecutive
occasions. These effects are especially important when studying intensive longitudi-
nal data given the short intervals of time in which observations are collected, as this
makes autoregressive effects more likely to occur.

2.1.1 Latent State-Trait Theory

Among the wide variety of state-trait SEMs that have been proposed, it is important
to highlight the so-called latent state-trait theory (LST; Steyer et al., 2012; Steyer
et al., 2015; Steyer et al., 1999). This theory encompasses several of the state-trait
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SEMs while also providing a probabilistic framework to study states and traits. In this
probabilistic framework, the LST theory first defines what is the random experiment
of interest, which is, in other terms, the set of possible outcomes (Steyer et al., 2015).
The random experiment is defined in four steps: (a) A person is sampled at time
0, (b) the person has certain experiences between the moment of sampling and the
assessment, (c) the person is in a certain situation at the moment of assessment, (d)
the behavior of interest is observed. The last three steps (b through d) are repeated
for t > 1. Thus, the LST theory acknowledges the dynamic nature of persons because
a person at time t is different from the person at time t +1 due to the experiences the
person has had between consecutive measurement occasions (Steyer et al., 2015).

Secondly, the LST theory defines all the random variables involved in the random
experiment. These random variables are the persons at time t (Ut), the situations at
time t (St), the observed variables j at time t (Yjt), and the conditional expectations
of the observed variables given the persons or the situations (e.g., E[Yjt |Ut ]). These
conditional expectations are at the basis of the formal definitions of the latent vari-
ables in the model (Steyer et al., 2015). Models encompassed by the LST theory are,
for example, the MSST (Steyer et al., 2015) and the TSO (Eid et al., 2017) models.

In addition, the LST theory defines three variance coefficients as proportions of the
total variance: The consistency, the occasion-specificity, and the reliability (Steyer
et al., 2015). The consistency is the proportion of the variance due to the sources
of variability that are stable over time (trait component). The occasion-specificity is
the proportion of the variance due to the sources of variability that depend on the
situation (state component). The consistency and the occasion-specificity indicate
to what extent the observed variables are trait- or state-like, respectively. Lastly,
the reliability is the sum of the consistency and the occasion-specificity. In other
words, the reliability is the proportion of the variance explained by both, stable and
situational sources of variability in the given situation. The proportion of the variance
that is not captured by the reliability coefficient is the random measurement error.
The consistency, the occasion-specificity, and the reliability are computed for each
observed variable Yjt , which means that the coefficients of variable j at time t might
be different from the coefficients of the same variable j at time u, for t ̸= u. Allowing
these coefficients to change over time might be interesting if there are clear trends.
For example, if a researcher observes that the reliability of an item decreases over
time, further inspection of that item would be required.
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2.1.2 State-Trait SEM as Multilevel SEM

Although some authors have suggested state-trait SEMs (single-level state-trait SEMs
from here on) as a way to analyze intensive longitudinal data (Courvoisier et al., 2010;
Eid et al., 2012; Eid et al., 2017), others have recognized that these models become
impractical when there are many measurement occasions (Geiser et al., 2013; Geiser
et al., 2015b; Nezlek, 2007). In fact, studies that use these models and have inten-
sive longitudinal data at hand consistently use fewer measurement occasions than the
ones available due to the requirement of having the data in wide-format. In general,
single-level state-trait SEMs are problematic when the number of measurement oc-
casions increases as these models were developed for studies with a limited number
of occasions. For instance, if a study measured three variables once a day during
ten consecutive days, there will be thirty observed variables in the model. However,
when the data are in long format, the number of observed variables in the model stays
at three. Therefore, applying single level state-trait SEMs to intensive longitudinal
data is difficult because the number of observed variables in the model becomes too
large. As a consequence, the syntax to specify the models is extremely long and
convergence issues are more likely to happen (Geiser et al., 2013).

To overcome these limitations, state-trait SEMs can be formulated as multilevel SEMs
(e.g., Geiser, 2020; Geiser et al., 2013), which requires the data in long format. A
multilevel SEM for longitudinal data defines two levels of analysis: The within-level
(level 1) and the between-level (level 2). The within-level aims to model the vari-
ability within persons and the between-level aims to model the differences between
persons. Thus, to specify state-trait SEMs as multilevel SEMs, one has to model
the effects of the situations and person-situations interactions as well as the random
measurement error at the within-level. Furthermore, one has to model the effects that
are independent of the situation, such as the effects of the persons, at the between-
level (Geiser et al., 2013). In particular, multilevel state-trait SEMs have as many
observed variables as there are indicators in the data, independently of the number of
measurement occasions. Considering the previous example, in a study with three in-
dicators and ten measurement occasions, there will be only three observed variables
in a multilevel setting, one for each indicator.

Additionally, in the multilevel formulation of state-trait SEMs, all parameters (load-
ings, intercepts, variances, residual variances, and variance coefficients) are con-
strained to be equal over time. This restriction implies that some sort of longitudinal
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measurement and factorial invariance (Meredith, 1993; Meredith & Teresi, 2006)
of the trait and state structure is assumed in the multilevel formulation of state-trait
SEMs. This can come as a disadvantage because the assumption of measurement
invariance cannot be tested. In general, researchers should be cautious when assum-
ing measurement invariance without testing for it. For example, Geiser et al. (2015a)
showed in a simulation study that when real data were characterized by a trait change
process (e.g., growth curve model), state-trait SEMs assuming measurement invari-
ance might result in well-fitting solutions. In these cases, the trait change process
might be masked and the researcher might conclude that there is no trait change at
all.

In conclusion, the main advantages of formulating state-trait SEMs as multilevel
SEMs are that many measurement occasions are easier to handle, there are fewer
parameters to estimate, and the syntax of the model remains unchanged regardless of
the number of measurement occasions included in the study. Moreover, the multilevel
formulation allows to easily handle missing data (Geiser, 2020; Geiser et al., 2013).
However, multilevel state-trait SEMs do not allow testing for longitudinal measure-
ment invariance, which can be tested in single-level state-trait SEMs. Thus, the previ-
ous example about observing the reliability of a variable decreasing over time would
not be possible in a multilevel setting because the reliability is constrained to be equal
over time.

In relation to the models of interest in this study, the multilevel version of the MSST
and the CUTS models have been proposed by Geiser et al. (2013) and by Hamaker
et al. (2017, Supplementary material), respectively. The multilevel CUTS model is
technically a multilevel confirmatory factor analysis (see Roesch et al., 2010). How-
ever, there is, to the best of our knowledge, no multilevel version of the TSO model;
below, we present such a model.

2.1.3 The Models

In this section, we explain in detail the models that were selected for this study: The
MSST, the CUTS, and the TSO models. As mentioned before, these models were
selected because all of them require multiple indicators to identify the latent state
variables. Therefore, they are useful when multiple items or variables are used to
measure one unique construct (e.g., positive affect). Additionally, these models cover
the most general characteristics that are studied in state-trait SEMs. In particular,
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the MSST model is at the foundations of the LST theory. It is the simplest model
that allows differentiating states from traits. The CUTS model accounts for method
effects straightforwardly and intuitively, while still differentiating between traits and
states. Finally, the TSO model takes into account autoregressive effects to study
the relation between consecutive measurement occasions, a feature which has been
extensively considered when studying intensive longitudinal data. We cover both the
single-level and multilevel version of each model. This section is complemented with
Appendix A, which provides R code to simulate data based on these models and to
fit both versions of each model in Mplus within the R environment.

The multistate-singletrait model (MSST)

The most straightforward model within the LST framework that allows distinguishing
between traits and states is the MSST model. Here, we use the version of the MSST
model from Geiser and Lockhart (2012). This version does not include the latent trait
variable as a second-order factor as it is usually done in the LST theory (Steyer et al.,
2015); instead, it is included as a general first-order factor. In general, the MSST
model is useful to identify the variance proportions of the indicator variables that are
due to either the trait component, the state component, or the random measurement
error.

To start, the MSST model requires a set of observed indicator variables Yjt ( j =
indicator, t = time), which are measured on multiple occasions and aim to measure
the same construct (e.g., anxiety, positive affect, etc.) from a sample of size n. Each
variable Yjt , which represents an n-variate vector of the sample’s responses on the
j− th indicator, is decomposed as follows:

Yjt = τ jt + ε jt . (2.1)

where τ jt is an n-variate vector of factor scores of the latent state variable and ε jt

is an n-variate vector that captures the deviations of the observed scores from the
factor scores of the latent state variable, namely, the random measurement error. The
random measurement error variables ε jt are assumed to be normally distributed with
mean zero, ε jt ∼ N(0,σ2

ε jt
). Then, the latent state variable is further decomposed as

follows:
τ jt = α jt +λTjt ξ +λS jt ζt , (2.2)
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Figure 2.1: Path Diagram of the MSST Model
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where α jt is an n-variate vector with the intercept of indicator j at time t, ξ is an n-
variate vector of the factor scores of the latent trait variable, which is assumed to be
stable over time, and ζt is an n-variate vector that captures the deviations of the latent
state variable from the latent trait variable at time t, namely, the latent state residual.
The latent state residuals ζt reflect both the effects of the situation and the person-
situation interaction. Moreover, as well as the random measurement error, the latent
state residuals are assumed to be normally distributed with mean zero, ζt ∼ N(0,σ2

ζt
).

Lastly, λTjt and λS jt are the factor loadings for the latent trait variable and the latent
state residual, respectively. Next, by replacing Equation 2.2 into Equation 2.1, the
full decomposition of the observed variables given the MSST model can be written
as follows:

Yjt = α jt +λTjt ξ +λS jt ζt + ε jt . (2.3)

In addition, it is also assumed that the latent trait variable ξ , the latent state residuals
ζt , and the random measurement error variables ε jt are uncorrelated with each other.
The MSST model is identified by fixing one factor loading parameter of the latent trait
variable and of each latent state residual to 1. Thus, one factor loading parameter λTjt

and the factor loading parameters λS jt associated to one of the indicators Yj have to
be equal to 1. Moreover, one of the intercepts α jt of the same indicator Yj has to be
fixed to 0.

The path diagrams of the single-level and the multilevel MSST models are presented
in Figure 2.1. Following the most common way of representing SEMs, observed
variables are presented as squares and latent variables are presented as circles. Linear
relationships between variables, either observed or latent, are shown through straight
arrows and covariances between two variables are shown as curved arrows. The vari-
ance of a variable is represented with a looping arrow. Moreover, random measure-
ment error variables and residual variables are represented as latent variables with
their own variances. Finally, intercepts and means are represented as the effects of
a constant variable 1 (triangle) on the observed or latent variables. Effects and co-
variances that are set to 0 are not shown in the path diagrams. In addition, in the
multilevel SEM representation of the models, a path diagram is used for each level:
The within-level model and the between-level model. The path diagrams of each
model follow the same conventions mentioned above, the only additional element
is a dot at the end of the straight arrows that come from the random measurement
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error variables. These dots aim to represent the intraindividual means of all individ-
uals on the specified observed variable. These intraindividual means per variable are
then represented as latent variables and used to fit the between-level model. Note
that in the multilevel SEM diagram, the subscripts t are dropped due to the required
assumption that parameters are time-invariant.

The common-unique trait-state model (CUTS)

This model proposed by Hamaker et al. (2017) is actually equivalent to the MSST
model with orthogonal methods (Steyer et al., 1992 as cited in Geiser and Lockhart,
2012). Even though it was first proposed within the LST framework, it is not consid-
ered a proper LST model because the additional method factors can not be defined
within the probabilistic principles of the LST theory (Geiser & Lockhart, 2012, Ap-
pendix A). According to the reasoning of Hamaker et al. (2017), the CUTS model
is developed based on the averaged R-technique and the pooled P-technique analysis
(Cattell, 1963) and its goal is to distinguish between four sources of variance, namely,
the common states, the common traits, the unique states, and the unique traits. The
CUTS model is also useful to test whether there is weak factorial invariance between
the trait factor structure and the state factor structure (Hamaker et al., 2017). If this
assumption holds, it means that the factor structure of the construct of interest ob-
tained in a cross-sectional study adequately describes both the between-factor and
the within-factor structures.

Just like the MSST model, the CUTS model requires a set of observed indicator
variables Yjt , which are measured on multiple occasions on a sample of size n and
aim to measure the same construct. Each observed indicator variable is an n-variate
vector with the observed scores of the variable j at time t. Next, in the CUTS model,
the observed variables Yjt are decomposed into trait-scores and state-scores as shown
in Equation 2.4:

Yjt = Tj +S jt , (2.4)

where Tj is an n-variate vector of the intraindividual means of indicator j, which are
time-invariant, and S jt is an n-variate vector of the deviations of the observed scores
Yjt from the intraindividual means of indicator j at time t. Then, the trait-scores are
further decomposed as follows:

Tj = α j +λTj ξ +ϑ j, (2.5)
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Figure 2.2: Path Diagram of the CUTS Model
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where α j is an n-variate vector with the grand mean of indicator j, ξ is an n-variate
vector of the common trait scores, which represents what is common to all indicators
over all time points, λTj is the factor loading relating the trait-scores Tj to the common
trait scores ξ of indicator j, and ϑ j is an n-variate vector that contains the part of the
trait-score that is not accounted for by the common trait scores and therefore is unique
to indicator j (unique trait scores). Both the common trait ξ and the unique trait ϑ j

are assumed to be normally distributed with mean zero and variances σ2
ξ

and σ2
ϑ j

,
respectively. Moreover, the intercepts α j and the loadings λTj can be allowed to vary
over time to test for longitudinal measurement invariance.

Similarly, the state-scores are decomposed as follows:

S jt = λS jt ζt + ε jt , (2.6)

where ζt is an n-variate vector of the common state scores representing what is com-
mon to all indicators at time t, λS jt is the factor loading relating the state-scores S jt

to the common state scores ζt of indicator j at time t, and ε jt is an n-variate vector
that contains the part of the state-score that is not accounted for by the common state
scores and therefore it is unique to indicator j at time t (unique state scores). Simi-
larly to the common and unique trait scores, the common state ζt and the unique state
ε jt are assumed to be normally distributed with mean zero and variances σ2

ζt
and σ2

ε jt
,

respectively.

The four sources of variance distinguished by the CUTS model are clearly evident
when the full model is written in one equation by replacing Equations 2.5 and 2.6
into Equation 2.4 as follows:

Yjt = α j +λTj ξ +ϑ j +λS jt ζt + ε jt . (2.7)

Here, each observation is decomposed into an intercept and four components that are
linked to four sources of variability. The first source of variability is the common
trait ξ that is invariant over time and variables. The second source is the unique trait
ϑ j that is invariant over time but specific to indicator j and can be interpreted as
systematic error. The third source is the common state ζt that is common over all the
indicators but specific at time t. Finally, the last source of variability is the unique
state ε jt that is specific to each indicator and each time point and can be interpreted
as random measurement error. This way of disentangling different sources of error
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variance is similar to the way this is done in generalizability theory (Brennan, 2005).

In the CUTS model, the four sources of variability are independent of each other,
which means that common traits, unique traits, common states, and unique states
are uncorrelated. The single-level CUTS model can be just-identified with as little as
two measurement occasions and three indicator variables when setting one loading of
the common trait variables and of each of the common state variables to 1. The path
diagrams of the single-level and multilevel versions of the CUTS model are presented
in Figure 2.2.

The trait-state-occasion model (TSO)

The TSO model was developed in order to account for autoregressive effects within
the LST framework. It was first proposed by Cole et al. (2005), inspired by the
STARTS model (Kenny & Zautra, 1995; Kenny & Zautra, 2001) and the autore-
gressive LST model (Steyer & Schmitt, 1994). Also, it was recently reintroduced
by Eid et al. (2017) to argue that it is effectively an LST model as all the latent
variables are well defined as conditional expectations. The main innovation of the
TSO model is that it introduces autoregressive effects among the latent state residu-
als. This creates two new sets of variables: The occasion-specific variables Ot and
the occasion-specific residuals ζt . Thus, the TSO model is useful to describe how
the trait and the state components of a construct are associated with the indicator
variables while controlling for the carry-over effect that might be present between
consecutive measurement occasions.

In this study, we use the version of the TSO proposed by Eid et al. (2017, Figure
3B) that does not consider the latent trait variable as a second-order factor, and that
uses latent trait-indicator variables instead of a common latent trait variable for all
the indicators. The TSO model first decomposes the observed variables Yjt as it is
done in the MSST model as in Equation 2.1. The difference is expressed in the
decomposition of the latent state variables τ jt as follows:

τ jt = α jt +λTjt ξ j +λS jt Ot , (2.8)

where α jt is an n-variate vector with the intercept of indicator j at time t, ξ j is an
n-variate vector that represents the latent trait-indicator variable of indicator j, Ot is
an n-variate vector that represents the latent occasion-specific variable at time t, and
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Figure 2.3: Path Diagram of the TSO Model
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λTjt and λS jt are the factor loadings of the latent trait-indicator variable ξ j and the
latent occasion-specific variable Ot , respectively.

Next, the latent occasion-specific variable at time Ot is regressed on the latent occasion-
specific variable at the previous time Ot−1. In other words, the TSO model assumes
that the effects of the situation and the person-situation interaction are carried-over to
future situations, which is represented by the autoregressive effect between consecu-
tive latent occasion-specific variables. This dynamic process has two main implica-
tions: (a) It is not possible to regress the latent occasion-specific variable O1 on any
other latent occasion-specific variable, therefore, O1 = ζ1 and (b) the latent occasion-
specific variable Ot is a linear combination of all the occasion-specific residuals ζs

for s= 1, ..., t. Equations 2.9 and 2.10 show how to define the latent occasion-specific
variables O2 and O3 in terms of the latent occasion-specific residuals ζt :

O2 = β1,2O1 +ζ2 = β1,2ζ1 +ζ2, (2.9)

O3 = β2,3O2 +ζ3 = β2,3(β1,2ζ1 +ζ2)+ζ3, (2.10)

where β1,2 and β2,3 are the autoregressive effects between two consecutive latent
occasion-specific variables, and ζ1 to ζ3 are n-variate vectors that represent the occasion-
specific residuals. These occasion-specific residuals capture the effects of the situa-
tion and the person-situation interaction, which are not explained by observations in
previous situations.

In the TSO model, the latent-trait indicators ξ j, the latent occasion-specific residu-
als ζt , and the random measurement error variables ε jt are assumed to be normally
distributed with mean zero and variances σ2

ξ j
, σ2

ζt
, and σ2

ε jt
, respectively. Moreover,

latent trait-indicator variables are uncorrelated with the latent occasion-specific resid-
uals and the random measurement error variables but are allowed to correlate among
themselves. In addition, the latent occasion-specific residuals and the random mea-
surement error variables are uncorrelated with each other. The path diagrams of the
single-level and multilevel TSO model are presented in Figure 2.3.

2.1.4 Similarities and Differences

As mentioned previously, the LST theory defines a set of coefficients that are pro-
portions of the total variance of an indicator. The three main coefficients are relia-
bility, consistency, and occasion-specificity (Steyer et al., 2015). These coefficients
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are common to every LST model. However, the equations are not necessarily equal
among models given how the total variance of an observed variable is defined in each
model. For example, while the consistency of an indicator Yjt in the MSST model
only accounts for the variance of the latent trait variable Var(ξ ), the consistency
in the TSO model accounts for both the variance of the latent trait-indicator vari-
able Var(ξ j) and the variance of the latent occasion-specific variable of the previous
measurement occasion Var(Ot−1). The equations of these variance coefficients are
presented in Table 2.1 for each of the three models to show how they differ.

Moreover, additional coefficients can be defined depending on the complexity of the
model. In the TSO model, the consistency can be further decomposed into two ad-
ditional coefficients: The predictability by trait and the unpredictability by trait (Eid
et al., 2017). The predictability by trait is the proportion of the variance that is due to
the latent trait-indicator variable ξ . It can be interpreted as the proportion of the vari-
ance that is explained by the trait differences between persons on the first occasion of
measurement. On the other hand, the unpredictability by trait is the proportion of the
variance that is due to the previous occasion-specific residuals ζt−u for u = 1, ..., t−1
(recall Equations 2.9 and 2.10). In other words, it is the proportion of the variance
that is explained by the carry-over effects observed in the data. The equations of the
predictability by trait and the unpredictability by trait are also presented in the end of
Table 2.1.

Lastly, the CUTS model is special in this regard because it was not developed within
the LST theory. Because of this, this kind of coefficients was not defined for the
CUTS model by its authors (Hamaker et al., 2017). However, given the equivalence
between the CUTS model and the MSST model with orthogonal methods, we propose
to use the coefficients defined by Geiser and Lockhart (2012) with the CUTS model
to facilitate the comparison of the models selected in this study (see equations in
Table 2.1). Thus, for the CUTS model, the consistency was also decomposed into
two additional coefficients: The common consistency and the unique consistency.
The common consistency is the proportion of the variance due to the common trait ξ .
Hence, it encompasses the effects that are stable over time and common across all the
indicators. On the contrary, the unique consistency is the proportion of the variance
due to the unique trait ϑ j, which is stable over time and unique to one indicator.

In short, there are variance coefficients as proposed in the LST theory that are shared
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Table 2.1: Variance Decomposition and Components of the MSST, CUTS, and TSO

Description Equation
MSST

Total Variance Var(Yjt) = λ 2
Tjt

Var(ξ )+λ 2
S jt

Var(ζt)+Var(ε jt)

Reliability Rel(Yjt) = 1− Var(ε jt)
Var(Yjt)

Consistency Con(Yjt) =
λ 2

Tjt
Var(ξ )

Var(Yjt)

Occasion-Specificity Spe(Yjt) =
λ 2

S jt
Var(ζt)

Var(Y jt)

CUTS

Total Variance Var(Yjt) = λ 2
Tjt

Var(ξ )+Var(ϑ j)+λ 2
S jt

Var(ζt)+Var(ε jt)

Reliability Rel(Yjt) = 1− Var(ε jt)
Var(Yjt)

Total Consistency TCon(Yjt) =
λ 2

Tjt
Var(ξ )+Var(ϑ j)

Var(Y jt)

Common Consistency CCon(Yjt) =
λ 2

Tjt
Var(ξ )

Var(Yjt)

Unique Consistency UCon(Yjt) =
Var(ϑ j)
Var(Y jt)

Occasion-Specificity Spe(Yjt) =
λ 2

S jt
Var(ζt)

Var(Y jt)

TSO

Total Variance Var(Yjt) = λ 2
Tjt

Var(ξ j) + β 2
t−1,tλ

2
S jt

Var(Ot−1) + λ 2
S jt

Var(ζt) +

Var(ε jt)

Reliability Rel(Yjt) = 1− Var(ε jt)
Var(Yjt)

Consistency Con(Yjt) =
λ 2

Tjt
Var(ξ j)+β 2

t−1,t λ
2
S jt

Var(Ot−1)

Var(Yjt)

Predictability by Trait Pred(Yjt) =
λ 2

Tjt
Var(ξ j)

Var(Y jt)

Unpredictability by Trait UPred(Yjt) =
β 2

t−1,t λ
2
S jt

Var(Ot−1)

Var(Y jt)

Occasion-Specificity Spe(Yjt) =
λ 2

S jt
Var(ζt)

Var(Y jt)

Note. These are the general equations of the variance coefficient components of the single level models. When all pa-
rameters are assumed to be invariant over time or when the models are formulated as multilevel SEM, the equations
get simplified because the subscripts t are not needed anymore. The equations of the MSST and the CUTS models
were retrieved from Geiser and Lockhart (2012), and the equations of the TSO model were retrieved from Eid et al.
(2017).

among the three models, which are the reliability, the consistency, and the occasion-
specificity. Even though the equations of these coefficients are different from model
to model due to how the total variance of an observed variable is computed, their
interpretation remains the same across models. Moreover, additional variance co-
efficients can be defined for a model. In this case, both the CUTS and the TSO
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models allow decomposing the consistency in two new variance coefficients: The
common consistency and the unique consistency for the CUTS, and the predictabil-
ity by trait and the unpredictability by trait for the TSO. These new coefficients are
entirely different between the two models, not only in their equations but also in their
interpretations. Functions to compute these coefficients can be found in the R code.

2.1.5 Relation of State-Trait SEMs with Other Models for Intensive
Longitudinal Data

An important advantage of formulating state-trait SEMs as multilevel SEMs, espe-
cially state-trait SEMs that account for autoregressive effects, is that it allows relat-
ing these models to other frameworks that are commonly used to analyze intensive
longitudinal data. Specifically, multilevel state-trait SEMs can be compared with
multilevel (vector) autoregressive models (multilevel-VAR; e.g., Bringmann et al.,
2013; Chow et al., 2007; De Haan-Rietdijk et al., 2016; Ebner-Priemer et al., 2015;
Rovine & Walls, 2006), dynamic factor analysis models (DFA; Fuller-Tyszkiewicz
et al., 2017; Molenaar, 1985; Song & Zhang, 2014), and more general frameworks
such as state-space modeling (Chow et al., 2009; Kalman, 1960; Lodewyckx et al.,
2011) and dynamic structural equation modeling (DSEM; Asparouhov et al., 2017,
2018). All these models have in common that they are specifically developed to ana-
lyze intensive longitudinal data, and they incorporate autoregressive effects to model
persons’ dynamics.

Firstly, multilevel-VAR models are an integration of time series and multilevel mod-
eling, which allow modeling auto- and cross-regressive effects when N > 1 (Rovine
& Walls, 2006). In contrast to autoregressive effects, cross-regressive effects model
the dependency of a variable X at time t on a different variable Y at previous time
points (e.g., Y at t −1 or t −2). In this framework, researchers are usually interested
in understanding persons’ dynamics and their relation with stable variables of the per-
sons (e.g., gender, neuroticism). Moreover, as these models aim to acknowledge the
idiosyncrasy of each individual, auto- and cross-regressive coefficients are defined
as random effects. Recently, multilevel-VAR models that account for measurement
error have been proposed (Schuurman & Hamaker, 2019; Schuurman et al., 2015).
These models differentiate the residuals of the model (known as innovations) from
the random measurement error by the inclusion of latent variables, which are iden-
tified by only one indicator. These one-indicator latent variables are equivalent to
the latent state variables used in state-trait SEMs. In particular, the multilevel-VAR
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model with measurement error (Schuurman & Hamaker, 2019) can be seen as the
multilevel version of the STARTS model (Kenny & Zautra, 1995; Kenny & Zautra,
2001) with random auto- and cross-regressive effects.

Secondly, multilevel state-trait SEMs can be framed as multilevel DFA models. Ini-
tially, DFA models (Fuller-Tyszkiewicz et al., 2017; Molenaar, 1985) were inspired
by the P-technique analysis proposed by Cattell (1963). These are factor analysis
models that are applied to the time series of an individual and account for the lagged
structure in the data. In recent years, multilevel DFA models have been proposed
(Song & Ferrer, 2012; Song & Zhang, 2014), which allow studying multivariate time
series when N > 1. As well as in multilevel-VAR, multilevel DFA models have an
emphasis on the individuals. Therefore, the lagged effects are allowed to randomly
vary in the population. The multilevel TSO model, which we presented above, can be
seen as a multilevel DFA model where the between factor structure is different from
the within factor structure and the autoregressive effect is fixed instead of random.

Thirdly, the state-space modeling approach (Kalman, 1960) is a broader framework,
which is especially useful to analyze intensive longitudinal data. In psychology, state-
space models have been used to study persons’ dynamics (e.g., Chow et al., 2009;
Lodewyckx et al., 2011). In general, state-space models are described by two equa-
tions: The observation equation and the transition equation (Chow et al., 2010). In
the observation equation, the measurement model is specified by incorporating la-
tent variables at each observation, which are denominated as states. In the transition
equation, the dynamics of the system are modeled by auto- and cross-regressive ef-
fects. Note that SEMs are also defined by two equations: The measurement model
and the structural model. While the measurement model in SEM is equivalent to the
observation equation in state-space modeling, the structural model is not immediately
equivalent to the transition equation. As a result, SEM can be seen as a special case
of state-space modeling and vice versa (Chow et al., 2010). In relation to multilevel
state-trait SEMs, the latent state variables are comparable to the states in state-space
modeling.

Finally, multilevel state-trait SEMs can be implemented in the DSEM framework
(Asparouhov et al., 2017, 2018; Hamaker et al., 2018; McNeish & Hamaker, 2020).
The most general DSEM is the cross-classified model (Asparouhov et al., 2018),
which decomposes the observation into three components: The person’s component,
Y2,i; the time component, Y3,i; and the deviation of person i at time t, Y1,it . A two-level
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DSEM model only includes the person’s component and the deviation of the person
i at time t. In particular, multilevel state-trait SEMs that include lagged relationships
(e.g., the multilevel TSO model) can be seen as DSEMs with fixed effects instead of
random effects. DSEM has been especially developed to analyze intensive longitudi-
nal data. It integrates time series analyses, multilevel modeling, structural equation
modeling (SEM), and time-varying effect modeling (TVEM; Hastie & Tibshirani,
1993; Hoover et al., 1998) into one unified framework. This results in a comprehen-
sive and accessible framework for the analysis of intensive longitudinal data.

To conclude this section, it is also important to highlight the major differences be-
tween state-trait SEMs and the models and frameworks that were just mentioned.
Firstly, the research questions that can be answered by using state-trait SEMs are
considerably different from the research questions that can be answered by using
multilevel VAR or state-space modeling. While state-trait SEMs are mostly useful to
identify the factor structure of the scales and short questionnaires used in intensive
longitudinal data, multilevel VAR and state-space models are more about explaining
how a dynamic system is affected by covariates of interest. In relation to DFA mod-
els, multilevel state-trait SEMs that account for autoregressive effects can be easily
formulated as DFA models, with the difference that DFA models are more flexible
by allowing autoregressive effects to be random among persons. Lastly, the DSEM
framework allows for bridging the gap between state-trait SEM and multilevel VAR
models, and thus for answering a broad range of research questions arising from both
approaches.

2.2 Simulation Study

State-trait SEMs have been rarely used to analyze intensive longitudinal data, mainly
because most of the models have been proposed as single-level models. As indi-
cated previously, single-level models become harder and practically impossible to
use when there are too many measurement occasions. To the best of our knowledge,
this chapter presents, for the first time, a simulation study that aims to systematically
explore under which conditions state-trait SEMs can be useful to analyze intensive
longitudinal data. For this, we selected three state-trait SEMs: The MSST, the CUTS,
and the TSO models. While these models are some of the simplest models that allow
differentiating states and traits, they also address some of the most important fea-
tures that are accounted for by more complex state-trait SEMs (i.e., method effects
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and autoregressive effects). In the simulation, we compared both the single-level and
the multilevel formulation of each model. Even though differences in the estimates
between the two versions of the same model were not expected because they are
mathematically identical, multilevel models can handle large numbers of measure-
ment occasions and missing data (Geiser, 2020; Geiser et al., 2013). It is therefore
important to see under which conditions (e.g., how many time points) the single-level
version runs into fitting issues, and thus, the multilevel formulation of the models be-
comes the only possible way to fit the models to the data.

In addition, multiple factors were manipulated, such as the model used to simulate
the data, the number of measurement occasions, the proportion of missing values, and
the ratio between the trait variance and the state variance. To start with, we simulated
separate data sets based on each model to be able to compare the model fits across
different data-generating models. We expected that each model would be favored
when it matches with the true or data-generating model. Next, we manipulated the
number of measurement occasions and the proportion of missing values. Although
it is known that the single-level models become impossible to fit as the number of
measurement occasions and the proportion of missing values increases, no simula-
tion study has yet aimed to determine the point at which this happens. Finally, the
ratio between the trait and the state variances was considered to study how the mod-
els would perform if the variables were more trait-like, more state-like, or evenly
trait- and state-like. Considering previous results (Cole et al., 2005), we expected no
differences in the results due to this factor.

In a nutshell, this simulation study aimed to explore how suitable the selected state-
trait SEMs are for analyzing intensive longitudinal data. To explore this, the models
were tested under different conditions, which represent realistic settings of inten-
sive longitudinal studies in psychology. The models were evaluated in terms of the
number of times the analysis converged to proper solutions and the quality of the es-
timated parameters in relation to the true population parameters. A secondary goal of
the simulation was to identify what is the maximum number of measurement occa-
sions that can be handled by the single-level models. By studying this, we expected
to be able to provide practical guidelines on the usage of state-trait SEMs when ana-
lyzing intensive longitudinal data.
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2.2.1 Method

In the simulation study, we manipulated four factors while keeping the sample size
and the number of variables fixed. Thus, the sample size was fixed at 100, as it is a
reasonable number of individuals to have in an intensive longitudinal study (e.g., Bos
et al., 2015; Bringmann et al., 2013; Kuppens et al., 2010), and the number of indi-
cators was fixed to 41. In relation to the manipulated factors, firstly, we manipulated
the model used to generate the data to be able to fairly compare the selected models.
In the following sections, the model used to generate data is referred to as the base
model. Secondly, the number of measurement occasions was set to 10, 15, 20, 30, 60,
or 90. The conditions with 20 measurement occasions or less aimed to aid in the iden-
tification of the maximum number of measurement occasions that can be handled by
single-level state-trait SEMs. Note that single-level state-trait SEMs are commonly
used to analyze data that have between two and eight measurement occasions (Geiser
& Lockhart, 2012, Appendix B). The conditions with 30 measurement occasions or
more aimed to mimic the common number of observations in psychological time se-
ries (e.g., Bringmann et al., 2016; Fuller-Tyszkiewicz et al., 2017; Schuurman et al.,
2015; Song & Zhang, 2014). Thirdly, three proportions of missing values were se-
lected: 0%, 10%, and 20%2. The missing values were assumed to follow an MCAR
mechanism (Little & Rubin, 2019; Rubin, 1976). Finally, the approximate ratio be-
tween the trait variance and the state variance was set to 1:3, 1:1, and 3:1. This factor
was manipulated in a similar way as it was done by Cole et al. (2005) in a simulation
study about method effects in the TSO model. In conclusion, the simulation follows
a 3 × 6 × 3 × 3 fully crossed design, where 100 replications were generated for each
condition.

1The number of indicators was kept fixed and small considering that intensive longitudinal ques-
tionnaires tend to be short in order to not burden the participant (Eisele et al., 2020). Thus, the number
of questions measuring the same construct is likely to be small. Moreover, we ran a short simula-
tion manipulating the number of indicators, which showed that this factor does not seem to affect the
performance of the model when it increases. Results from this simulation are available in Appendix B.

2These proportions of missing values were kept small due to several practical reasons. Firstly, in
previous runs, we observed that increasing the proportion of missing values to around 10% already
resulted in very long running times and convergence problems for the single-level models. Secondly, it
is known in the literature that a clear advantage of the multilevel formulation is that it is able to handle
missing values (Geiser, 2020; Geiser et al., 2013). Finally, these proportions of missing values aimed
to resemble the proportion of missingness observed in the filtered empirical data at hand.
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In relation to the true parameters, these were defined on the basis of other simula-
tion studies with state-trait SEMs (e.g., Cole et al., 2005; Geiser & Lockhart, 2012;
LaGrange & Cole, 2008) and empirical results of the models of interest (e.g., Eid
et al., 2017; Geiser & Lockhart, 2012; Hamaker et al., 2017). The proportion of
measurement error variance across all models and all indicator variables was set to
approximately 0.2, which implies that the true reliabilities of the indicators variables
were set to approximately 0.8. All true parameters were assumed to be time-invariant
because this is required in the multilevel formulation of the models. In other words,
measurement invariance was assumed to hold in all the generated data sets. The true
parameters and true variance coefficients are included in Appendix B.

Once a data set was simulated, it was analyzed 11 times (3 models × 2 versions
of each model × 2 estimation methods − 1 for the multilevel TSO with maximum
likelihood estimation). Hence, each replication was analyzed with the single-level
and the multilevel version of each model. Moreover, the estimation methods were set
to maximum likelihood estimation (MLE) and MCMC Gibbs sampler (Bayes). Note
that the multilevel version of the TSO model can only be estimated through Bayesian
methods because maximum likelihood estimation is not supported in Mplus when
using the LAGGED command or the ampersand (&) command to include lagged
variables in the model (Muthén & Muthén, 2017). This is why each generated data
set was analyzed 11 instead of 12 times.

The simulation was performed in Mplus 8.2 (Muthén & Muthén, 2017) and R 3.6.1
(R Core Team, 2022). Mplus was used to fit the models to the data and R was used
to generate the data and to analyze the results of the simulation. Furthermore, Mplus
was called from within the R environment through the package MplusAutomation
(Hallquist & Wiley, 2018). All the code for this study is available at https://github.
com/secastroal/LST_Analyses. Note that these models can also be fitted in any SEM
specialized software, for example with the R package lavaan (Rosseel, 2012). Also,
to fit the models within the Bayesian framework, alternative software such as Stan
(Carpenter et al., 2017) or JAGS (Depaoli et al., 2016) can be considered. When
running the analyses in Mplus, we used a maximum of 50,000 iterations when the
estimation method was maximum likelihood, and we used three chains each with
a minimum of 5,000 iterations with thinning 10 when the estimation method was
Gibbs sampling3. These conditions and in general the complexity of the models
made the analyses highly computationally demanding, especially when the number of
measurement occasions and the proportion of missingness were larger. Therefore, a
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maximum running time of one hour per model fit was set and 4GB of RAM dedicated
per core in order to be able to conduct the simulation study in a reasonable period of
time. After the time limit was reached or if all the available memory was used for a
specific analysis, it was interrupted and no output was saved.

Outcomes

To compare the performance of the models in the simulation study, we determined
(a) the number of successful analyses, that is, the number of times a model was not
interrupted, converged and provided a reasonable solution, and (b) the quality of the
parameter estimates in relation to the true population parameters. Analyses that did
not finish successfully were classified into warnings/errors, non-convergence, and
out of resources. The warnings/errors status might be due to negative variances, un-
reliable standard errors, or non-convergence of the H1 model. The H1 model is the
unrestricted model, which is needed to compute the χ2 and related fit measures in
SEM (Muthén & Muthén, 2017). The non-convergence status might be due to the
model being unable to compute standard errors or because the algorithm did not con-
verge (exceeding the maximum number of iterations in MLE or not satisfying the
convergence criterion in the MCMC algorithm). Finally, the out of resources sta-
tus implies that the analysis was forced to stop after an hour of running time or the
computing process ran out of available memory. To study the quality of the param-
eter estimates, we computed the average bias (E[θ̂ − θ ]), the average relative bias
(E[(θ̂ −θ)/θ ]), the average absolute bias (E[|θ̂ −θ |]), and the root mean squared er-

ror (RMSE;
√

E[(θ̂ −θ)2]). Additionally, in Appendix B, we included results about
information criteria indices, which indicate the number of times a model was selected
as the best fitting model.

As not all the parameters nor variance coefficients are shared across all the three
models, we focused our analyses on the parameters and variances coefficients that
are common to the three models. The comparable parameters across all models are

3In all Bayesian analyses, we used the default priors provided by Mplus, which are uninformative
priors. A sensitivity analysis was done with a random sample of analyses using weak priors. Results
from these analyses are included in Appendix B and provided evidence that the weight of the priors of
the estimated model is negligible. Furthermore, to be sure that the MCMC algorithm converged, we
used the BITERATIONS option of MPlus. This option makes the algorithm run until all the potential
scale reduction factors (also known as Rhat) are below 1.05 or 1.1 (when there is a large number of
parameters) given a minimum and a maximum number of iterations (Muthén & Muthén, 2017).
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the three factor loadings at the within-level λS j , the variance of the latent state residual
var(ζ ), the four variances of the measurement error component var(ε j), the reliabil-
ities Rel(Yj), the consistencies Con(Yj), and the occasion-specificities Spe(Yj).

Table 2.2: Percentages of Successes and Failures per Type of Analysis on 16200 Analyses Each

Model Est.Method Successful Warnings/Errors Non-convergence Out of Resources

MSST MLE 56.06 9.72 1.02 33.2
ML-MSST MLE 93.91 0.16 5.86 0.06
MSST Bayes 81.85 0 8.25 9.91
ML-MSST Bayes 92.81 0 5.35 1.84
CUTS MLE 21.4 45.31 0 33.29
ML-CUTS MLE 61.9 38.04 0.01 0.06
CUTS Bayes 88.49 0 0.04 11.47
ML-CUTS Bayes 99.44 0 0.04 0.52
TSO MLE 39.12 33.15 0 27.73
TSO Bayes 88.59 0 0 11.41
ML-TSO Bayes 99.48 0 0 0.52

2.2.2 Results

Successful analyses.

The percentage of analyses that finished successfully or failed per type of analysis
across all conditions is shown in Table 2.2. This table shows the effect of the formu-
lation of the model and the estimation method. As expected, analyses estimated via
MLE were more prone to be interrupted or to present convergence issues or errors
when the data were structured in wide format. For example, the single-level CUTS
model estimated with MLE only retrieved an interpretable solution in 21.4% of the
analyses performed. On the other hand, single-level models estimated via Bayesian
methods also failed in multiple replications but mainly due to the analyses running out
of time. In contrast, when the data were structured in long format and the multilevel
versions of the models were used, the analyses almost never failed independently of
the estimation method. However, this is not the case for the multilevel CUTS model
estimated by means of MLE, which only converged to an interpretable solution in
61.9% of the analyses.

Figures 2.4 through 2.6 show how many analyses finished successfully in the condi-
tions with trait-state variance ratio of 1:1 given each proportion of missingness. This
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allows observing in detail how the number of measurement occasions and the pro-
portion of missing values affect the convergence of the analyses. The same plots and
particular results for conditions with trait-state variance ratios of 1:3 and 3:1 are pre-
sented in Appendix B. Starting with the single-level models, analyses failed to pro-
vide a solution when estimated by means of MLE and with 60 or more measurement
occasions. This threshold becomes lower when including missing values. With 10%
missing values, 30 or more measurement occasions become hard to handle, and with
20% missing values, 20 measurement occasions are already problematic. Moreover,
when fitting the single-level CUTS model with MLE to non CUTS data, the analyses
completely failed to reach a solution independently of the number of measurement
occasions. When the number of measurement occasions was lower than 60, these
failures were mainly because of the model estimating negative variances. This could
happen due to the fact that there were not real method effects in the data. Similarly,
when fitting the single-level TSO model with MLE to MSST data, the single-level
TSO model completely failed to provide a reasonable solution. In general, increasing
the number of measurement occasions in combination with the proportion of missing
values makes the single-level models more likely to fail when estimated by means of
MLE.

In contrast, when using Bayesian estimation, single-level models successfully fin-
ished independently of the number of measurement occasions or the proportion of
missing values. Note that single-level models estimated by means of Bayesian meth-
ods only failed to reach a solution with 90 measurement occasions when there were
missing values. These failures were mainly due to the imposed time restriction.
Hence, without the one-hour time limit, the single-level models estimated via Bayesian
methods were likely to converge even with 90 measurement occasions.

In relation to the multilevel formulation of the models, the multilevel models tended
to perform relatively well in most conditions independently of the estimation method.
As shown in Figures 2.4 through 2.6, the multilevel models finished successfully in
almost all of the replications across all conditions. However, this is not true for the
multilevel CUTS model when estimated by means of MLE, which failed to provide
an interpretable solution when analyzing data generated from another model. These
failures were more likely because of negative variances. We conjecture again that
the problem is that there are no real method effects in the data generated based on
the MSST and the TSO models. As a consequence, it was difficult for the CUTS
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Figure 2.4: Number of Successful Analyses per Condition with 0% Missingness and
1:1 Trait-State Variance Ratio
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Figure 2.5: Number of Successful Analyses per Condition with 10% Missingness
and 1:1 Trait-State Variance Ratio
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model to estimate null unique trait variances, resulting in at least one negative esti-
mated variance. Note that the multilevel CUTS model failed completely when there
were autoregressive effects in the data. As this was unexpected, we further inspected
these analyses by performing some additional simulations while varying some of the
true population parameters. In these additional simulations, we found that the co-
variances of the latent trait-indicator variables ξ j of the TSO model had an effect on
the performance of the multilevel CUTS model estimated via MLE. In other words,
had we selected a different variance-covariance matrix to generate the TSO data, we
would have had results where the multilevel CUTS model with MLE would converge
in most of the replications. Results of these additional simulations are presented in
Appendix B.

Figure 2.6: Number of Successful Analyses per Condition with 20% Missingness
and 1:1 Trait-State Variance Ratio
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Estimated Parameters

Bias, relative bias, absolute bias, and RMSE were used to compare the estimated pa-
rameters with the population parameters. As said previously, we used these statistics
to compare the parameters that were common across all three models. Given that
these different measures did not lead to different conclusions, the following section
is based on the results from the average relative bias. In general, we observed that
the three models fit particularly well their own data, showing little deviation from the
population parameters. Moreover, the quality of the estimated parameters was not
overly affected by the proportion of missing values, the estimation method, or the
version of a model, which means that the average bias of a parameter did not vary
noticeably when these factors changed.

Figure 2.7: Average Relative Bias of the Variance of the Latent State Residual var(ζ )
per Condition with 1:1 Trait-State Variance Ratio and 0% Missingness
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As a whole, the estimated within factor loadings λS j showed biases close to 0 in most
situations. When looking at the estimated variance of the state residual (var(ζ ))
and the estimated variances of the measurement error components var(ε j), these es-
timates tended to show some bias, especially when the generation and estimation
models differed. For example, the MSST was shown to perform quite poorly in those
cases. Also, the CUTS model was considerably inaccurate at the estimation of the
variance of the state residual (var(ζ )) when analyzing data generated based on the
TSO model. In contrast, the TSO was consistently accurate independently of the
generating model. These observations are highlighted in Figure 2.7, which shows the
average relative bias of the variance of the latent state residual (var(ζ )) per condition
when the trait-state variance ratio was 1:1 and there were no missing values.

Figure 2.8: Average Relative Bias of the Reliability of the Third Indicator Y3 per
Condition with Trait-State Ratio 1:1 and 0% Missingness
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In relation to the variance component coefficients, such as reliability, consistency,
and occasion-specificity, the models did a relatively good job at recovering these
parameters. For example, in Figures 2.8 and 2.9, we display the average relative bias
of the reliability and the consistency for the third variable Y3 across the conditions
without missing values and a trait-state variance ratio of 1:1. For the estimates of
the reliability, the MSST model tended to slightly underestimate these parameters
when the data were generated based on a different model. This effect was larger
when the variables were more trait-like. Similarly, the estimates of the consistency
tended to show some bias when using the MSST model to analyze data based on the
other models. Yet, this effect was lower in the conditions with a trait-state variance
ratio of 3:1. On the other side, the CUTS model was fairly accurate at estimating the
reliability regardless of the base model. However, the estimates of the consistency got
worse when the model used to generate the data was the TSO and when the variables
were more state-like. Finally, the accuracy of the estimates of the TSO model was
high independently of the base model, the trait-state variance ratio, and the other
manipulated factors.

Additionally, we also looked at the variance component coefficients that were not
common across all the three models, such as the unique consistency for the CUTS
model and the unpredictability by trait for the TSO model. We expected these coef-
ficients to be estimated close to 0 if the data were generated from a different model.
In other words, if the base model was the MSST, and the data were analyzed with
the CUTS model, we expected the estimate of the unique consistency to be basically
0. To some extent, our expectations were met. On the one hand, the CUTS model
did estimate approximately null unique consistencies when the base model was the
MSST, but it did not when the base model was the TSO. Moreover, the unique con-
sistencies, when the base model was the TSO, tended to be larger the more trait-like
the variables were.

On the other hand, the estimates of the unpredictability by trait in the TSO model
when the data were not generated by itself were basically 0. This is shown in Figure
2.10, which plots the mean estimate across replications of the unpredictability by trait
for all indicators Yj when the model used to generate the data was the CUTS model,
the trait-state variance ratio was 1:1, and the proportion of missing values was 0%.
Moreover, the same observations were made about the estimates of the autoregressive
effect4. This is evidence of the robustness of the TSO model. In other words, if there
are no autoregressive effects in the data, the TSO is able to identify the lack of these
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Figure 2.9: Average Relative Bias of the Consistency of the Third Indicator Y3 per
Condition with Trait-State Ratio 1:1 and 0% Missingness

−0.6

−0.4

−0.2

0.0

−0.6

−0.4

−0.2

0.0

Wide−MLE
Long−MLE
Wide−Bayes
Long−Bayes

−0.6

−0.4

−0.2

0.0

10 15 20 30 60 90 10 15 20 30 60 90 10 15 20 30 60 90

R
el

at
iv

e 
B

ia
s 

C
on

si
st

en
cy

 Y
3

Number of Measurement Occasions

Model
MSST CUTS TSO

B
as

e 
M

od
el

M
S

S
T

C
U

T
S

T
S

O

47



2

Chapter 2. Using SEM to Study Traits and States

Figure 2.10: Estimated Unpredictability by Trait of all Indicators when the Base
Model was the CUTS Model, the Trait-State Variance Ratio was 1:1, and the Propor-
tion of Missing Values was 0%
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effects. Thus, the TSO does not estimate unrealistic autoregressive effects even if
method effects are present in the data.

2.2.3 Summary

Through the simulation study, we explored the suitability of the selected models at
analyzing hypothetical intensive longitudinal data. This also allowed comparing the
performance of the three models and to get an idea of which model can be more use-
ful and more reliable when analyzing intensive longitudinal data. As expected, the
results showed that the single-level models are harder to fit via MLE when the number
of measurement occasions and the proportion of missing values increase. On the con-
trary, the single-level models were able to converge when estimated via an MCMC
algorithm even with 90 measurement occasions and if they failed, it was mainly due
to the imposed time limit. Therefore, under the absence of missing values, single-
level models can be useful at analyzing data with up to 30 measurement occasions
if estimated via MLE and with up to 90 measurement occasions if estimated via an
MCMC algorithm. However, when estimated through Bayesian methods, comparing
models and thus testing for measurement invariance can be difficult due to the lack
of fit statistics, which makes the model impractical when there are too many mea-
surement occasions. In short, using the single-level models can be an alternative if
the time series of interest is not too long (around 30 time points), as this would allow
researchers to test for measurement invariance.

By any means, the multilevel formulation of the models is undeniably more practical
and straightforward to use in comparison with their respective single-level formula-
tion, although multilevel state-trait SEMs could also run into fitting problems when
the fitting model did not match the data-generating model. In general, the models did
a good job at recovering the population parameters, especially the multilevel TSO
model, which consistently performed well across all the conditions of the simulation
study. For this reason, we consider the multilevel TSO the most viable model to
analyze intensive longitudinal data among the models that were studied.

4A plot for the bias of the autoregressive effect is included in Appendix B.
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2.3 Empirical Example

To present a real data application, we analyzed data from the national crowdsourc-
ing study HowNutsAreTheDutch (Dutch: HoeGekIsNL; van der Krieke et al., 2017;
van der Krieke et al., 2016), which started in May 2014. The HowNutsAreTheDutch
(HND) project aims to study the mental health of the Dutch population by consider-
ing the mental health as “a dimensional and dynamic phenomenon” (van der Krieke
et al., 2016, p. 124). To capture the dynamics of the mental health, the HND project
includes in its design a daily diary study, from which we obtained the data. Specifi-
cally, we analyzed the items used to measure positive affect, which are I feel relaxed,
content, calm, energetic, enthusiastic, and cheerful. The first three items measure
positive affect deactivation, and the last three measure positive affect activation ac-
cording to the circumplex model of affect (Feldman Barrett and Russell, 1998, and
Yik et al., 1999, as cited in van der Krieke et al., 2016). In a nutshell, the circumplex
model assumes that affect can be explained by two dimensions: Valence (positive or
negative) and activation. In the following analysis, we used the three state-trait SEMs
discussed in this chapter to determine if the positive affect items are described best
by a one-factor or a two-factor measurement model. Moreover, we aimed to explore
the psychometric properties of the items and to determine to what extent the items
are trait- or state-like.

2.3.1 Method

In the diary study, participants were followed three times a day, for 30 days. Hence,
each participant could have a maximum of 90 measurements. To assess the partic-
ipants, a link to the questionnaire was sent through a text message every six hours
given each participant’s daily routine. After receiving the text message, participants
had to answer the questionnaire immediately or within the next hour. The question-
naire contained 43 items that measure, for example, subjective well-being, mood,
self-esteem, etc. Most of the items were rated on a visual analogue scale (VAS) from
0 to 100. Note that we only considered the six items that measure positive affect.

In this empirical example, we considered the data collected between May 2014 and
December 2018. Initially, the data included 115,386 records of 1,396 participants
with a mean of 43.13 observations per participant. Most of the participants had less
than 20 or more than 60 observations. As some participants did the daily diary study
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multiple times, we decided to analyze only the first daily diary study of each par-
ticipant. Furthermore, in some cases, participants have 93 observations because the
study period was wrongly programmed to last 31 days during the first month of the
study, from which we selected the first 90 observations. Also, given that many par-
ticipants tended to drop the daily diary study during the early stages of it, we only
included participants with at least 65% of the observations (59 or more) in the analy-
ses. This criterion is also used in the HND project to give personalized feedback (van
der Krieke et al., 2016, p. 128). After this selection, data were reduced to 57,945
records of 644 individuals (mean age 39.88; 83.86% women) with a mean of 74.9
observations per participant.

Figure 2.11: Histograms of the variable relaxed. (A) Histogram of the raw scores.
(B) Histogram of the intraindividual means.
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2.3.2 Results

The responses on the six positive affect items were spread over the whole range of
the scale. The median of the six items varied between 50.0 and 63.8, and the standard
deviation varied between 19.05 and 21.43. Moreover, their correlations ranged from
0.36 to 0.79. The distribution of the six items was very similar. Panel A of Figure
2.11 presents the distribution of the item relaxed. As shown in the histogram, the
item’s scores are concentrated around three main points: 40, 50, and 70. This odd
distribution can be explained by the large variability of the data and the method of
data collection. On the one hand, due to the nature of the variables, it was expected for
people to be concentrated just a little above and below the middle point. On the other
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hand, the visual analogue scales were presented with the middle point pre-selected.
If a person was not feeling in any particular way, they were able to just check their
response in the middle point. In contrast, the distribution of the intraindividual means
follows a more bell-shaped distribution as shown in panel B of Figure 2.11.

To give an illustration of the raw data, Figure 2.12 presents the trace plots of a random
subsample of 30 persons on the variables relaxed and energetic. As one of the as-
sumptions imposed by the state-trait SEMs discussed in this study is stationarity5, we
tested for it by means of the Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski
et al., 1992), where the null hypothesis is that the observable time series is trend-
stationary. By excluding individuals with at least one non-stationary time series,
the sample size was reduced to 376 persons. The main analyses of this study were
performed on the sample with and without the individuals with non-stationary time
series. As the results did not show major differences, here, we report the results of the
larger sample. The results excluding the individuals with non-stationary time series
are available in Appendix B.

The HND data were analyzed with the multilevel versions of the three models: MSST,
CUTS, and TSO. All the analyses were performed within the Bayesian framework.
This means the models were estimated with the MCMC Gibbs sampler including four
chains with thinning 10 and 5,000 iterations per chain. The first half of each chain
was considered part of the burn-in phase, which left a total of 10,000 valid sam-
ples of the posterior distribution of the parameters. These analyses aimed to identify
the factor structure and the variance component distribution of the six positive affect
items.

Initially, we tried to fit the models to all items at once, assuming a unique factor of
positive affect. However, the models did not fit well the data or did not converge. This
was a clear indication that one factor was not enough to capture the structure of the
data. Therefore, we decided to analyze the data in two sets of items as is suggested
by the circumplex model: The positive affect deactivation (PAD) and the positive
affect activation (PAA) sets. The results of these analyses were more promising but
the mixing of the chains of the intercepts was poor as shown in Figure 2.13. To

5In the literature, different types of stationarity are mentioned, for example, weak stationarity, strict
stationarity, trend stationarity, or if the data contained a random walk. Note that it is far from trivial to
test for these different kinds of stationarity (see Bringmann et al., 2017). In this specific case, we opted
to test for trend stationarity.
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Figure 2.12: Time Series of a Sample of 30 Individuals
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the bottom. The ticked time series shows the overall means at each time point.
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Figure 2.13: Traceplot of the Intercept of the Multilevel TSO
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solve this, we centered the data and constrained the intercepts to 0 to get a better
solution. Note that the intercepts do not influence the computation of the variance
coefficients. Next, we report the results of the models fitted to each of the centered
sets of items. The corresponding posterior predictive p-values (ppp6) and Deviance
Information Criteria (DIC7) are presented in Table 2.3 for each set. Note that the ppp
is not available for the TSO due to software limitations. Considering the DIC values,
the TSO model seems to fit the data best for both sets of items. Hence, we follow
with the interpretation of the results of the TSO analyses.

Table 2.3: ppp and DIC of the Three Models for the Two Sets
of Items

MSST CUTS TSO

PAD
ppp 0.583 0.644 -
DIC 1185142.150 1171133.218 1129157.419

PAA
ppp 0.583 0.657 -
DIC 1184024.092 1170988.591 1113933.571

To interpret the results, we focused on the variance coefficients of the model: Re-
liability, consistency, predictability by trait, unpredictability by trait, and occasion-
specificity. These estimates are shown in Table 2.4 for the two sets of items. The
estimated reliability coefficients show that a large proportion of the variance of the
items was explained by reliable sources of variability. In particular, the reliabilities of
the items that measure positive affect activation are on average higher than the relia-
bility of the items that measure positive affect deactivation, which means that positive
emotions with high arousal are measured more precisely than positive emotions with
low arousal.

6The posterior predictive p-value (ppp; Asparouhov & Muthén, 2010) is the Bayesian counterpart of
the traditional p-value. It tests the model against an unspecified alternative. As implemented in Mplus,
low ppp values indicate model misfit. For more details on how ppp values are computed in Mplus see
Asparouhov and Muthén (2010, pp. 28-30)

7The DIC as computed in Mplus should be interpreted with caution because it can be unstable,
especially when the model includes latent variables (Asparouhov et al., 2018, pp. 366-368). Also, note
that the DIC values of different models are not always comparable.
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Table 2.4: Variance Coefficients of the Three Models for the Two Sets of Items

Variance Coefficient Items

PAD

Relaxed Content Calm

Reliability 0.80 0.68 0.67
Consistency 0.40 0.41 0.39

Predictability by Trait 0.34 0.37 0.35
Unpredictability by Trait 0.06 0.04 0.04

Occasion-Specificity 0.40 0.27 0.28

PAA

Energetic Enthusiastic Cheerful

Reliability 0.70 0.84 0.79
Consistency 0.35 0.39 0.39

Predictability by Trait 0.31 0.34 0.35
Unpredictability by Trait 0.04 0.05 0.04

Occasion-Specificity 0.35 0.45 0.40

Regarding the consistency and occasion-specificity, the items content and calm of
positive affect deactivation have a consistency coefficient considerably larger than
the occasion-specificity. This means that these items are in general more trait-like
than state-like. In other words, emotions such as feeling content or calm are not as
influenced by the situation as emotions such as feeling relaxed. Yet, the variation
due to the situation is not negligible. On the other hand, the item relaxed as well as
all the items of positive affect activation appear equally trait-like as they are state-
like. The variability due to the person and the variability due to the situation are
evenly distributed and equally important. These results can be compared with the
intraclass-correlation (ICC; Houben et al., 2020) which is usually computed in an
empty multilevel model. The corresponding ICCs of the six items varied between
0.32 and 0.37, which indicates that all the items were more state-like. These contra-
dictory conclusions might be due to the fact that the state-trait SEMs do account for
the random measurement error, while traditional multilevel models do not.

Finally, the unpredictability by trait of all the items was estimated close to 0.05, which
means that only 5% of the variability is explained by the carry-over effects. The un-
predictability by trait is directly associated with the estimated autoregressive effects,
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which were 0.367 for the positive affect deactivation items and 0.317 for the positive
affect activation items. Despite the fact that the autoregressive effects were relatively
large and practically significant, this did not necessarily imply that the proportion of
the variance explained by the dynamic process, namely the unpredictability by trait,
would be practically significant as well.

Additionally, we fitted a simple extension of the TSO model in order to fit the two sets
of items at once and allow including cross-regressive effects on the latent occasion-
specific variables. The main goal of fitting this model was to study the possible
cross-regressive effects of positive affect deactivation on positive affect activation
and vice versa. This model was also fitted to the centered data to avoid divergent
MCMC chains. The path diagram of this model and its estimates are presented in
Figure 2.14. This analysis suggests that positive affect deactivation had an important
effect over time on positive affect activation, but the converse was not true. In other
words, when people feel positive emotions with low arousal (e.g., calm and relaxed),
then people’s positive emotions with high arousal (e.g., energetic and excited) are
likely to increase slightly in future situations, but not the other way around.

2.3.3 Summary

To conclude, by analyzing the HND data with the state-trait SEMs, we found evi-
dence supporting the thesis that the factor structure of positive affect consists of two
dimensions: Positive affect activation and positive affect deactivation. This evidence
supports the circumplex model of affect. Moreover, from the TSO model, we ob-
served that all the items are reliable at measuring positive affect. The analysis also
showed that most of the measured emotions are approximately as trait-like as they
are state-like. This means that the trait component of these emotions is not negligible
even though emotions are prone to fluctuate over time. Finally, the analysis showed
that there are important auto- and cross-regressive effects that help explaining the dy-
namic process that governs the relationship among emotions of positive affect. These
results are in concordance with the literature about emotional reactivity (see Kuppens
et al., 2010; Suls et al., 1998).
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Figure 2.14: Multidimensional TSO with crosslagged effects.
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2.4 Discussion

In this chapter, we explored how to study states and traits in intensive longitudinal
data by means of state-trait SEMs. We selected three state-trait SEMs for our study:
The MSST, the CUTS, and the TSO models, which represent the variety of state-trait
SEMs. Our analyses showed that these models might be especially useful when for-
mulated as multilevel SEM. This facilitates their application to intensive longitudinal
data regardless of the number of measurement occasions that are included (see also
Geiser, 2020; Geiser et al., 2013). Furthermore, with the empirical example, we also
showed how state-trait SEMs allow studying the psychometric properties of the items
used in experience sampling studies, and drawing conclusions about the nature of the
variables in terms of their state and trait components. As shown in the empirical
example, some modeling decisions might be required to facilitate the convergence
of the models. For example, centering and constraining intercepts to zero is a safe
way to simplify the models. This is possible because intercepts are not needed in the
computation of the variance coefficients, which are of major interest in a state-trait
SEM analysis.

In relation to our results, out of the three models, the multilevel formulation of the
TSO model was the one that performed the best in both the simulation study and the
empirical example. Our analyses showed that the multilevel TSO model estimated
the parameters with the lower bias across the different conditions and performed
equally well even when the real data did not have autoregressive effects. For these
reasons, and considering that autoregressive effects are likely to occur in intensive
longitudinal data, we can conclude that the multilevel TSO model is the most suitable
state-trait SEM for analyzing intensive longitudinal data. Note that this is not the case
for the single-level TSO model, which not only failed by increasing the number of
measurement occasions and the proportion of missing values, but also when the data
were generated based on the MSST. In contrast, the performance of both formulations
of the MSST and the CUTS models was not as good. For instance, the MSST model
introduced bias when there were method or autoregressive effects in the real data.
These results are consistent with the results of Geiser and Lockhart (2012), who
observed that the MSST model performance is not optimal when there are method
effects in the data. Similarly, the CUTS model introduced bias when there were
autoregressive effects in the real data.

One of the most important results from the simulation was that both single-level and
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multilevel TSO models were robust to data that include method effects, meaning
that unrealistic autoregressive effects were not estimated even when method effects
were present in the data. This result can be explained by the fact that the versions
of the TSO used in this study included latent trait indicator variables instead of a
common latent trait variable. Including latent trait indicator variables is in fact a way
to account for method effects in the state-trait SEM literature (Geiser & Lockhart,
2012). Therefore, this might be the reason why the TSO model as presented in this
study was able to correctly deal with data that include real method effects. Basically,
the real method effects were captured by the variance of the latent trait indicator
variables of the TSO model.

2.4.1 Studying the Psychometric Properties of Intensive Longitudinal
Data

One of the main advantages of analyzing intensive longitudinal data with state-trait
SEMs is that these models allow studying the psychometric properties of the items
used in daily diary studies. As a consequence, it is possible to account for the random
measurement error in the data and to study the precision of the items at measuring
what they intend to measure. In general, when measuring psychological variables,
measurement error is likely to happen (Schuurman & Hamaker, 2019; Schuurman et
al., 2015). Therefore, intensive longitudinal data should ideally be analyzed through
models that account for measurement error, such as state-trait SEMs.

Furthermore, state-trait SEMs allow quantifying the precision of the measurements in
terms of the variance coefficients proposed in the LST theory. As shown in the empir-
ical example, one can estimate the reliability of each item and identify the proportion
of random measurement error that is present in the data. In addition, the LST theory
estimates the consistency and the occasion-specificity coefficients. These coefficients
allow for additional interpretations of the data and they can be used to make decisions
about the items for future applications. In the empirical example, it was shown that
the positive affect emotions are as trait-like as they are state-like. For example, the
items content and calm had a consistency considerably larger than their occasion-
specificity, which meant that they where more trait-like than state-like. Note that
other measures used in traditional multilevel modeling such as ICC (Houben et al.,
2020) also indicate to what extent a variable is trait- or state-like. However, these
kinds of measures might be biased by the amount of random measurement error
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present in the data (Muthén, 1991; Roesch et al., 2010), which results in overesti-
mation of the variability within individuals. Therefore, models that account for the
random measurement error can more accurately determine the trait-state nature of the
variables.

Even though one of the advantages of state-trait SEMs is the possibility to study the
psychometric properties of the questionnaires used in intensive longitudinal data, this
topic has also been addressed from other perspectives. Within multilevel approaches,
it is common to study these psychometric properties during the pre-analysis of the
data (see Geschwind et al., 2011; Nezlek, 2007). Moreover, alternative reliability
coefficients have been recently proposed. Specifically, in the multilevel-VAR model
with measurement error (Schuurman & Hamaker, 2019), the authors proposed two
reliability coefficients: The between-person reliability and the within-person reliabil-
ity. Similarly, in the context of confirmatory factor analysis for intensive longitudinal
data, Hu et al. (2016) proposed the intraindividual reliability and the interindividual
reliability. While these coefficients seem similar to the consistency and the occasion-
specificity coefficients of the LST theory, they are not necessarily equal. Both Schu-
urman and Hamaker (2019) and Hu et al. (2016) acknowledge that the reliability of a
questionnaire can vary from person to person, allowing the within-person reliability
or the interindividual reliability to vary over persons. This is not the case for the
variance coefficients proposed within the LST theory.

2.4.2 Limitations and Future Research

There are some important limitations when applying state-trait SEMs to intensive
longitudinal data due to the assumptions that are made. In particular, state-trait SEMs
assume that measurement occasions are equally spaced over time, that parameters are
equally valid for all the individuals in the sample, that parameters do not vary over
time when the models are formulated as multilevel SEM, and that time series are
assumed to be stationary. Next, we discuss each of these limitations and possible
solutions if available.

Firstly, assuming that measurement occasions are equally spaced over time can be
an unrealistic assumption for intensive longitudinal data. This is because, in most
studies, individuals are required to fill the questionnaires at random intervals dur-
ing the day. Therefore, assuming that the measurements are equally spaced over
time does not hold and the parameter estimates can be misleading (Crayen et al.,
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2017; de Haan-Rietdijk et al., 2017b). This is especially problematic when auto- and
cross-regressive effects are included because a model like the TSO can only estimate
one autoregressive parameter, which is tied to a specific time interval. Thus, if the
measurement occasions are unequally spaced over time, such an autoregressive ef-
fect would mean that the effect of the variable Y at time t − 1 on itself at time t is
the same regardless of the elapsed time between occasions. One approach to deal
with data collected at unequal intervals, suggested within the DSEM framework (As-
parouhov et al., 2017, 2018), is to include missing values in such a way that the time
interval between occasions becomes approximately equal over time. Alternatively,
one can use continuous-time models to deal with unequal time intervals8, which is
strongly suggested as ignoring the violation of this assumption results in biased esti-
mates of the auto- and cross-regressive effects (de Haan-Rietdijk et al., 2017b). Some
of the most common continuous-time models used to analyze intensive longitudinal
data are encompassed within the hidden Markov model framework. For example,
a continuous-time mixture LST Markov model has been proposed by Crayen et al.
(2017) for analyzing categorical items.

Secondly, assuming that parameters are equally valid for all the individuals in the
sample violates one of the principles of intensive longitudinal methods, which is the
emphasis on the individual (Hamaker, 2012). Given this principle, it is logical to ex-
pect that relationships between variables or even the factor structures are not exactly
the same across all the persons. This is not taken into account when the parameters
are estimated for the sample as a whole, as in state-trait SEMs. In general, to account
for these individual differences, parameters can be modeled as random effects. This is
the standard procedure in the multilevel vector autoregressive (ML-VAR) literature,
where auto- and cross-regressive effects are treated as random slopes (Bringmann et
al., 2013; De Haan-Rietdijk et al., 2016; Rovine & Walls, 2006; Schuurman et al.,
2016). Recent developments also allow for random residual variances (Jongerling et
al., 2015). For state-trait SEMs, an important avenue for future research is therefore
to allow for random loadings, autoregressive effects, or residual variances, which can
be done by extending the models within the DSEM framework (Asparouhov et al.,
2017, 2018). Alternatively, some authors have suggested a more bottom up approach

8Selig et al. (2012) have proposed an interesting approach to deal with unequal time intervals in
panel data, which includes the time as a moderator of the lag effect. However, this method still needs to
be extended for intensive longitudinal data.
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(Adolf et al., 2017; Molenaar, 2004; Ram et al., 2017), where each single-subject
time series is first analyzed before pooling out results for the sample.

Thirdly, assuming that parameters are time-invariant and that the time series are sta-
tionary implies the type of psychological dynamics that can be studied is very re-
stricted. In other words, these assumptions imply that the dynamic process is static.
Therefore, time series collected during a psychological intervention, where the inten-
tion is to change the dynamic process, can not be analyzed under these assumptions.
Moreover, assuming that the dynamic processes of interest are static may not be ac-
curate in most cases (Bringmann et al., 2017; De Haan-Rietdijk et al., 2016). These
limitations not only apply to state-trait SEMs but also to most well-known techniques
such as ML-VAR. Alternative methods that relax these assumptions are in develop-
ment, for example, Bringmann et al. (2017) recently proposed a semi-parametric
time-varying autoregressive model to address this problem in the ML-VAR litera-
ture. Similarly, De Haan-Rietdijk et al. (2016) proposed a model that estimates a
different autoregressive effect given a threshold, which is useful to analyze persons
whose dynamics vary given the strength of the psychological variable. The DSEM
framework (Asparouhov et al., 2018) also allows relaxing these assumptions with the
cross-classified DSEM models, which include time as an additional level of analysis.
Lastly, if analyzing time series from a single individual, one can consider the ex-
tended Kalman filter with iteration and smoothing estimator (Molenaar et al., 2009).
Hopefully, future research will allow extending these methods to multilevel state-trait
SEMs.

Finally, notice that in this study, we only covered three fundamental state-trait SEMs.
This largely restricts the kind of research questions that can be addressed by these
models. However, more complex state-trait SEMs have been proposed over the years.
For example, Courvoisier et al. (2007) presented a mixture LST model that can incor-
porate time-varying covariates. A model like this allows studying the psychological
dynamics and how they are affected by other variables, which might answer similar
research questions like the ones commonly seen in the multilevel literature. Also,
Geiser et al. (2015b) proposed an LST model that accounts for the effects of random
and fixed situations. This model allows examining to what extent traits can be spe-
cific to a situation. In addition, this model has also been formulated as a multilevel
SEM model. To summarize, more complex LST models allow addressing more com-
plex research questions but researchers might need to reformulate them as multilevel
SEM in order to be able to study intensive longitudinal data with them.
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2.4.3 Conclusion

Through this study, we explored the suitability of state-trait SEMs to analyze inten-
sive longitudinal data. Our results showed that out of the three models included in
this study, the multilevel TSO model performed the best in both the simulation study
and the empirical example. This makes the multilevel TSO model an interesting alter-
native, which might be useful when analyzing intensive longitudinal data if multiple
items were used to measure the same construct. Particularly, we encourage the use
of the multilevel versions of state-trait SEMs estimated by means of Bayesian esti-
mation, as the analyses under these settings performed the best in terms of model
convergence and accurately recovered the parameters throughout the different condi-
tions. Yet, it might be a disadvantage that there are not enough absolute or relative fit
measures that allow comparing the goodness of fit of different models.

In general, for researchers that are interested in applying state-trait SEMs to daily
diary data, it is important to highlight that these models are applicable under certain
specific conditions such as that (a) there should be a latent construct that is mea-
sured with multiple items on the intensive longitudinal study, (b) the variables should
preferably be measured on a continuous scale, (c) the time interval between occa-
sions should be equal over time, and (d) the time series is assumed to be stationary.
Through these models, researchers can answer research questions about the factor
structure of their questionnaires, the proportion if the state and trait components of
their variables, and study the psychometric properties of the items used. Beware that
fitting state-trait SEMs can be subject to the same modeling decisions that are made
when using multilevel modeling such as data centering and item selection. In prac-
tice, if the data does not include too many measurement occasions (no more than 30),
researchers can consider using the single-level models and allow for time-varying
parameters to test whether measurement invariance holds.

In this study, we aimed to present state-trait SEMs as alternative tools that can be
considered when analyzing intensive longitudinal data. Moreover, we connected the
state-trait SEM literature to a broader literature, showing how these models are re-
lated to different frameworks that were especially developed to analyze intensive
longitudinal data. We consider this is an important opportunity to integrate these dif-
ferent frameworks, which will allow extending state-trait SEMs to more accurately
describe psychological dynamics.
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Abstract
The trait-state-occasion model (TSO) is a popular model within the latent state-trait
theory (LST). The TSO allows distinguishing the trait and the state components of
the psychological constructs measured in longitudinal data, while also taking into ac-
count the carry-over effects between consecutive measurements. In the present study,
we extend a multilevel version of the TSO model to allow for the combination of
fixed and random situations, namely the mixed-effects TSO (ME-TSO). Hence, the
ME-TSO model is a measurement model suitable to analyze intensive longitudinal
data that allows studying the psychometric properties of the indicators per individ-
ual, the heterogeneity of psychological dynamics, and the person-situation interaction
effects. We showcase how to use the model by analyzing the items of positive affect
activation of the crowdsourcing study HowNutsAreTheDutch (HoeGekisNL).

Keywords: trait-state-occasion model, dynamic structural equation modeling, person-
situation interaction
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Intensive longitudinal data are rich and complex data, which allow zooming in on
the day-to-day life of individuals. This has brought great opportunities but also great
challenges to researchers studying psychological dynamics (Hamaker et al., 2015;
Hamaker & Wichers, 2017). With intensive longitudinal data, researchers can study
in detail the stability and variability of the persons’ attributes in short periods of
time and how these attributes are related to each other over time. Furthermore, re-
searchers can include time-invariant and time-varying covariates to fully explore how
trait-like variables, situational variables, and situational circumstances have an effect
on the dynamic process of interest. Yet, intensive longitudinal methods, such as am-
bulatory assessment (Trull and Ebner-Priemer, 2014, 2020) can also be a burden for
the participants due to the frequency of the measurements and because answering
the questionnaires can interfere with the activities and interactions in their daily life
(Shiffman et al., 2008).

To keep the burden as low as possible, questionnaires tend to be short and in many
situations one single question is used as a direct measure of the psychological at-
tribute of interest (e.g., the network dynamics of symptoms, Bringmann et al., 2013).
Nevertheless, in some cases researchers do use multiple items to measure one unique
construct such as when measuring positive or negative affect (e.g., Geschwind et al.,
2011; Snippe et al., 2015). In these cases, a common practice is to compute the
sum scores and to study the dynamics of these scores. However, using sum scores
can mask the underlying structure of the construct and lead to biased and unreliable
results (Fried et al., 2016; McNeish & Wolf, 2020).

To tackle these issues, researchers can use measurement models for intensive lon-
gitudinal data. The most common measurement models used to analyze intensive
longitudinal data are multilevel structural equation models (multilevel SEM; Geiser,
2020; Geiser et al., 2013; Roesch et al., 2010) and multilevel dynamic factor analysis
(DFA; Fuller-Tyszkiewicz et al., 2017; Song & Zhang, 2014). On the one hand, mul-
tilevel SEMs are confirmatory factor models that separate the within-person (state)
and the between-person (trait) components of the observed variables while account-
ing for measurement error. Some of these models such as the multistate-singletrait
model are encompassed in the so-called latent state-trait theory (LST; Geiser, 2020;
Steyer et al., 2015). In particular, the LST theory explicitly defines variance coeffi-
cients to study the psychometric properties of the observed indicators. These variance
coefficients estimate the reliability of each indicator and to what extent the indica-
tor is trait- or state-like (Steyer et al., 2015). A shortcoming of multilevel SEMs,
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however, is that these models estimate the parameters of interest for the whole sam-
ple ignoring the individual heterogeneity. In contrast, multilevel DFA models fully
explore both inter- and intra-individual differences by allowing parameters to vary
across individuals, while also including random autoregressive effects to study indi-
vidual dynamics (Song & Zhang, 2014). Autoregressive effects are of key interest
in intensive longitudinal data because they capture the influences of the variables on
themselves over time. Note that multilevel DFA models also account for measure-
ment error, hence, reliability estimates per individual have been proposed for these
models (Fuller-Tyszkiewicz et al., 2017).

However, most applications of both multilevel SEM and DFA models have been
mainly focused on exploring the dynamic latent structure without taking into ac-
count time-invariant or time-varying covariates. As a consequence, little can be said
about the person-situation interactions with these kind of models. In general, time-
invariant covariates, also referred to as between-covariates, include trait-like vari-
ables such as neuroticism or optimism. In contrast, time-varying covariates, also
known as within-covariates, include situational circumstances like being in a party
or at work. Especially time-varying covariates can be of great relevance to under-
stand psychological dynamics because they provide insight into the development of
the dynamic process (McNeish & Hamaker, 2020; Ram & Gerstorf, 2009) as well
as into the person-situation interactions (Geiser et al., 2015b). In particular, Geiser
et al. (2015b) proposed an LST approach for the combination of random and fixed
situations to study person-situation interactions, which includes characteristics of the
situations as time-varying covariates.

In this chapter, following Geiser et al. (2015b), we introduce a comprehensive mea-
surement model for intensive longitudinal data to study the person-situation inter-
action. This extension, which we call the mixed-effects trait-state-occasion model
(ME-TSO), is fully encompassed within the dynamic structural equation modeling
framework (DSEM; Asparouhov et al., 2017, 2018). More specifically, the ME-TSO
is an extension of the trait-state-occasion model (TSO; Cole et al., 2005; Eid et al.,
2017), which is an LST model (Steyer et al., 2015). In a nutshell, the ME-TSO
model allows (a) distinguishing the trait and the state components of the variables,
(b) studying individual dynamics by including random autoregressive effects, (c) an-
alyzing the person-situation interactions by adding time-varying and time-invariant
covariates, and (d) evaluating the psychometric properties of the items used in inten-
sive longitudinal data.
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The outline of this chapter is as follows. We first provide a detailed review of the
TSO model. Next, we introduce the ME-TSO model, which accounts for the person-
situation interaction and the heterogeneity of the individuals. We also discuss the
implications of this extension for the definition and computation of the variance coef-
ficient components traditionally defined in the LST theory. Furthermore, we provide
an empirical application of the ME-TSO model, in which we analyze the items of
positive affect activation from the HowNutsAretheDutch crowdsourcing study (van
der Krieke et al., 2017; van der Krieke et al., 2016). Lastly, we discuss the advantages
and limitations of this new approach. Code to implement this model is available in
the git repository https://github.com/secastroal/ME-TSO.

3.1 The Trait-State-Occasion Model

The TSO model (Cole et al., 2005; Eid et al., 2017) is a model encompassed within
the LST theory (Steyer et al., 1992; Steyer et al., 2015). Initially, the TSO model was
introduced and applied as a longitudinal SEM (e.g., Cole et al., 2009; Conway et al.,
2018; Eid et al., 2017; Musci et al., 2016). This means that it has been presented as
a single-level model, which requires the data to be in wide format (i.e., one row per
subject and one column for each repeated measure). However, we have previously
presented a multilevel version of the TSO model (Castro-Alvarez et al., 2022d), the
path diagram of which is shown in Figure 3.1. In contrast to the single-level TSO
model, the multilevel TSO model requires the data in long format and is therefore
more suitable to analyze intensive longitudinal data. Moreover, while the single-
level TSO model allows testing for longitudinal measurement invariance (Meredith,
1993; Meredith & Teresi, 2006), the multilevel TSO model assumes that longitudinal
measurement invariance holds. In other words, the multilevel TSO model assumes
that the measurement of the construct of interest (e.g., positive affect) over time does
not change. Lastly, the multilevel TSO model is easier to apply and estimate than
the single-level TSO model because it has a smaller number of free parameters and
it allows to easily handle many measurement occasions and missing data (Castro-
Alvarez et al., 2022d; Geiser, 2020; Geiser & Lockhart, 2012).

In a nutshell, the TSO model (both single-level and multilevel) acknowledges that
psychological variables are not purely traits nor purely states but a combination of
both (Cole et al., 2005; Eid et al., 2017). In addition to this, the TSO model accounts
for the autoregressive structure likely to be found in longitudinal data. Hence, the
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Figure 3.1: Multilevel TSO Path Diagram
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Note. Path diagram of the multilevel TSO model. yi jt : Observed scores of person i of the
j-th indicator at time t. εi jt : Measurement error of person i of the j-th indicator at time t.
σ2

ε j
: Measurement error variance of the j-th indicator. Oi,t : Latent occasion-specific score of

person i at time t. λS j : Factor loading from Oi,t on the j-th indicator variable. ϕ: Autoregres-
sive effect between consecutive latent occasion-specific variables Oi,t−1 and Oi,t . ζi,t : Latent
occasion-specific residual of person i at time t. σ2

ζ
: Variance of the latent occasion-specific

residual. ξi j: Latent trait score of person i of the j-th indicator. E(ξ j): Overall mean of the
latent trait variable of the j-th indicator. σ2

ξ j
: Variance of the latent trait variable of the j-th

indicator. Furthermore, the dots at the end of the arrows in the within-level model represent
the random intercepts of each indicator variable, which are then represented as the latent
variables Yi j in the between-level model. Random intercepts are commonly depicted as latent
variables in SEM models due to the latent centering of the dependent variables.
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TSO model can not only distinguish between the trait and the state components of
the psychological variables of interest, but also accounts for the temporal effects
from a previous occasion on the next occasion. In other words, autoregressive effects
represent the tendency of persons to feel or behave as they were feeling or behaving
just the moment before. For example, in case of a positive autoregressive effect, a
person that starts their day with a relatively good mood will probably keep being in
a good mood throughout the day. One key difference of the TSO model with other
LST models is that the trait variables ξ j represent the trait of the persons on the
first measurement occasion and are not necessarily stable over time. This property is
extensively explained in Eid et al. (2017).

3.2 Mixed-Effects Trait-State-Occasion Model

While the multilevel TSO model mentioned in the previous section is more suitable
to analyze intensive longitudinal data than its single-level counterpart, it is still lim-
ited. Firstly, a clear limitation of the TSO model is that it assumes that the different
parameters of the model apply to the whole sample. This ignores one of the main
principles of intensive longitudinal methods, which is the emphasis on the individual
and individual heterogeneity. Considering the autoregressive effect, it is reasonable
to expect that this effect will be different among multiple individuals (Kuppens et al.,
2010; Nesselroade, 1991). For example, if we are measuring positive affect, persons
that are very optimistic might have a higher autoregressive effect than persons that are
more pessimistic. This may imply that a high positive affect at the beginning of the
day will have a larger impact throughout the day even if something negative happens.
On the other hand, persons that are more pessimistic might be more responsive to
the different situations throughout the day. As a result, these persons’ positive affect
might vary more and they would be better described by a lower autoregressive effect
on positive affect.

Secondly, another limitation of the TSO model is that the effects of the situation
and the person-situation interaction are confounded in the latent occasion-specific
residual term ζit . This means that the model cannot indicate if the variability in the
construct of interest is due to specific situations. For example, consider a person
who is struggling at work during a daily diary study on positive affect. Probably,
the measurements of this person when they were at work will show lower levels
of positive affect in contrast to the measurements taken when they were not. As
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with most measurement models for intensive longitudinal data, these differences are
currently not captured or modeled with the multilevel TSO model.

To overcome these limitations, we extended the multilevel TSO model within the
DSEM framework (Asparouhov et al., 2017, 2018) in combination with the LST ran-
dom and fixed situation approach (LST-RF) proposed by Geiser et al. (2015b). First
of all, DSEM is a framework that has been especially developed to analyze intensive
longitudinal data. To account for the dynamics in the data, DSEM allows to easily
include observed and latent lagged variables of any order (Hamaker et al., 2018).
Furthermore, it also allows the within-level parameters such as regression coeffi-
cients, factor loadings, and residual variances to vary randomly across individuals.
Note that all random parameters are then modeled as latent variables in the between-
person level model. DSEM is fully implemented within the Bayesian framework in
Mplus (Version 8.0 or newer, Muthén & Muthén, 2017) but fitting DSEM models in
any other Bayesian software (e.g., JAGS, Stan) is also possible.

A first step into extending the TSO model is allowing the within-person parame-
ters to vary randomly over the sample. The most flexible and unconstrained exten-
sion would be to allow the autoregressive effect ϕ , the factor loadings of the latent
occasion-specific residual λS, and the variance of the latent occasion specific resid-
ual σ2

ζ
to vary across individuals. This means adding an i subscript to all of these

parameters. However, such a complex DSEM model would require a large sam-
ple and long time series to deliver reliable estimates (Schultzberg & Muthén, 2018),
which are conditions that are rarely satisfied in intensive longitudinal psychological
research (Vachon et al., 2019). To strike a balance between flexibility and practical
feasibility, and based on the common statistical techniques used to analyze intensive
longitudinal data (Bringmann et al., 2013; Kuppens et al., 2010), we prioritize allow-
ing the regression slopes and the autoregressive coefficients to vary randomly across
individuals.

Additionally, to distinguish between the effect of the situation and the effect of the
person-situation interaction, we consider the LST-RF approach (Geiser et al., 2015b).
This approach includes situational variables as dummy variables to identify situation-
specific traits, situation effects, and person-situation interaction effects. The LST-RF
approach assumes that the situations where the measurements take place can either
be random or fixed depending on the study design and on the researcher’s knowl-
edge about the situations. In general, random situations are situations of which the
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specifics are unknown. This can happen by design. For example, in an ambulatory
assessment study the measurements are collected at random situations throughout
the duration of the study, while no information about the situation was collected.
In contrast, fixed situations are situations of which information is available to the re-
searcher. For example, in experimental designs, the situation in which the experiment
takes places can be manipulated to create different conditions. Moreover, fixed situa-
tions can occur “naturally” if individuals had to report at the moment of measurement
whether they were at home, at work, or at some other place (Geiser et al., 2015b).

In particular, in intensive longitudinal studies, random and fixed situations can be
combined into the design if details about the situation are collected. In this case,
the repeated measurements are observed throughout the study across diverse random
situations, which might share some characteristics (e.g., place or time of the day).
These random situations that have something in common define a fixed situation that
might be of interest for the research question. This means that the random situations
are nested in a few fixed situations. For example, during an intensive longitudinal
study, participants report their emotions across several days. Of course, the situations
in which the measurements take place are very diverse, depending on where the par-
ticipants were, with whom, if they were hungry, if they just did some exercise, etc.
These are random situations. However, if they also report whether they were alone at
the moment of measurement, then, we can group the random situations into two fixed
situations: Being alone and not being alone. Collecting information about the situa-
tions where the measurements happen allows studying the impact of the situation on
the behavior or attitudes of interest and the person-situation interaction (Geiser et al.,
2015b).

Here, we present how to extend the multilevel TSO within the DSEM framework
and the LST-RF approach (see Figure 3.2), namely the mixed-effects TSO model
(ME-TSO). The ME-TSO requires a set of indicators (i.e., item scores or sumscores)
that measure the same psychological construct over time in an intensive longitudinal
study. Consider, for example, an ambulatory assessment study where the participants
report m positive emotions such as being cheerful or being enthusiastic multiple times
a day for a couple of weeks (with m ≥ 2). Let yi jt be the observed score of person i
on variable j at time t. For example, y2,1,5 will be the observed score of the second
person on the first emotion at the fifth time point of the ambulatory assessment. To
facilitate the presentation of the model, consider that the observed scores yi jt are the
responses to a set of items that measure positive affect, with j = 1,2, . . . ,m. Now,
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Figure 3.2: ME-TSO Path Diagram
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let Yit be an m-variate vector that encompasses the observed scores of the positive
emotions of person i at time t, as follows:

Yit =


yi,1,t
yi,2,t

...
yi,m,t .

 (3.1)

Additionally, in the ME-TSO model, the situation under which the observations Yit

were collected matters, as it allows studying the person-situation interaction. Then,
given l + 1 mutually exclusive fixed situations s0, s1, . . . , sl , one of the fixed situa-
tions is defined as the reference situation and the other l fixed situations are added as
dummy variables to the model. Furthermore, as the model is encompassed within the
LST theory (Steyer et al., 2015), it assumes that the observed scores of the positive
emotions are measured with error. Hence, the measurement model of the ME-TSO
model is defined as follows:

Yit = τit + εit , (3.2)

where τit is a m-variate vector with the true scores of the positive emotions of person
i at time t. These true scores are referred to, in the LST theory, as the latent states
(Steyer et al., 2015). In our example, they represent the error-free positive state
emotions of a person at the situation of reference where the measurement took place.
In contrast, εit is an m-variate vector with the deviations of the observed scores from
the latent states (true scores). These deviations are known as random measurement
error. They capture the unsystematic variability of the observed scores that is not due
to the person, the situation, or the person-situation interaction (Steyer et al., 2015).
The random measurement errors εit are assumed to be uncorrelated and normally
distributed with means of zero and m×m diagonal covariance matrix Σε .

Moreover, the true scores τit are further decomposed as follows:

τit = α +ΛT ξir +Γidit +λSOit , (3.3)

where α is an m-variate vector with the intercepts of the observed emotions, which
can be interpreted as the grand means. Next, ξir is an m-variate vector with the factor
scores of the latent indicator- and situation-specific traits of the positive emotions of
person i. These trait scores are assumed to represent the trait level of the positive
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emotions of person i at the first measurement occasion when the person was alone.
The trait scores of the first measurement occasion influence all the future latent states
τit with t > 1 (Eid et al., 2017). Next, ΛT is just the m×m identity matrix. Note
that the latent indicator-specific traits ξir are latent variables with just one indicator.
Therefore, the loadings need to be fixed to 1, otherwise the model is unidentified.
Moreover, the latent trait scores are assumed to be normally distributed with a mean
of zero and an m×m covariance matrix Σξ . Alternatively, one can set the intercepts
α to zero and estimate the means of the latent traits ξir (as shown in Figure 3.2).
Then, dit is an l-variate vector of 0s and 1s that indicates the fixed situation of person
i at time t, and Γi is an m× l matrix with the effects of the fixed situations on each
of the indicators of person i. For example, if the fixed situations are “being alone”
and “not being alone”, “being alone” can be the reference situation. In this case,
dit is just a scalar (0 if the person was alone or 1 if the person was not) and Γi is
an m-variate vector with the effects of “not being alone” on each of the positive
emotions of person i. These coefficients indicate by how much the latent trait scores
of the positive emotions increase or decrease when the person is not alone. Hence,
they represent the effect of the situation. Note that Γi is a matrix of random slopes,
which can be further modeled in the between-person equations. Lastly, Oit is a scalar
that represents the score of the latent occasion-specific variable of person i at time t,
which, in our example, is a combination of the state of positive affect at time t and
the carry-over effect of states of positive affect from previous time points. The latent
occasion-specific variable Oit at time t is related to the states of positive emotions τit

at time t via the m-variate vector with the factor loadings λS.

Finally, the ME-TSO model acknowledges the dynamic nature of persons by assum-
ing that the latent occasion-specific variables follow an autoregressive structure of
order 1. This means that the latent occasion-specific variable at time t is regressed on
the latent occasion-specific variable at time t −1, that is,

Oit = ϕiOi,t−1 +ζit , (3.4)

where Oi,t−1 is a scalar that represents the score of the latent occasion-specific vari-
able of person i at time t − 1; ζit is a scalar that captures the residual of the autore-
gressive process of person i at time t, which is referred to, in the LST theory, as the
latent occasion-specific residual. This residual represents the pure state of positive
affect that is only due to the situation without the influence of the trait, the states
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of previous measurements, or the interaction between the person and the fixed situa-
tions. The latent occasion-specific residual ζit is assumed to be normally distributed
with mean zero and variance σ2

ζ
. Finally, ϕi is the autoregressive effect of person i,

which represents the individual carry-over effect between consecutive states of pos-
itive affect. In other words, ϕi is a random slope that is normally distributed with
mean E(ϕ) and variance σ2

ϕ (see Figure 3.2).

Additional advantages of extending the TSO model within the DSEM framework are
that observed variables are latent person-mean centered for the analysis and that the
model can handle observations that are unequally spaced over time. Firstly, DSEM
uses latent centering (Asparouhov et al., 2018; McNeish & Hamaker, 2020), which
means that the observed variables are centered based on their latent intraindividual
means instead of the observed intraindividual means. This is better, because using
latent centering implies that all the fluctuations and random error are captured in
the within-level model. As a result, the within-person effects are more meaning-
ful and interpretable in comparison with analyses when no centering or when grand
mean centering is used (McNeish & Hamaker, 2020). Furthermore, latent centering
avoids Nickell’s bias for the autoregressive effects and Lüdtke’s bias for the effects of
other time-varying covariates (Asparouhov et al., 2018; McNeish & Hamaker, 2020),
which can appear when observed person-mean centering is used.

Secondly, a common challenge of intensive longitudinal data is that measurements
are not equally spaced over time. When this happens, the auto- and cross-regressive
effects, which are parameters of key interest in dynamic models, do not have a clear
meaning given that the size of these effects depends on the size of the time interval
between the measurements. To handle this issue in DSEM, one can include additional
missing values to approximate the measurements to be relatively equally spaced over
time (Hamaker et al., 2018; McNeish & Hamaker, 2020). This technique offers
results that are similar to the results obtained via continuous time models (de Haan-
Rietdijk et al., 2017b) and it retrieves good estimates with a percentage of missing
values as large as 80% (Asparouhov et al., 2018).

Lastly, to study the person-situation interaction, the LST-RF approach (Geiser et al.,
2015b) proposes to regress the random slopes of the effect of the fixed situations on
the trait variables at the between-level model. For the ME-TSO model, this means
to regress the random slopes in Γi on the respective latent indicator- and situation-
specific trait variables ξir. This regression is expressed as follows given a slope γi j f
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of the matrix Γi:
γi j f = β0 j f +β1 j f ξi jr +ωi j f , (3.5)

where γi j f is the effect of the fixed situation f on the indicator j of person i, and ξi jr is
the factor score of the latent indicator- and situation-specific trait variable of indicator
j of person i. This regression is described by the coefficients β0 j f and β1 j f , which
are the intercept and the slope, respectively. The slope β1 j f can be interpreted as
the person-situation interaction effect. Finally, ωi j f is the residual of the regression,
which is assumed to be normally distributed with mean zero and variance σ2

ω j f . This
is the part of the effect of the situation of person i that cannot be explained by the
trait scores of the reference situation. Furthermore, one can add additional time-
invariant covariates in Equation 3.5 to further explain the variability of the effect of
the situation on the daily observations. Note that the random slope γi j f represents the
difference between the trait of the person at the f fixed situation against the trait of
the person at the reference situation (i.e., γi j f = ξi j f −ξi jr). This underlying structure
of the indicator- and situation-specific trait variables is shown in Figure 3.3.

Figure 3.3: Structural Diagram of the Indicator- and Situation-Specific Traits.
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Note. Path diagram representing the underlying structure of the relationship between the
indicator- and situation-specific traits of the reference and the fixed situations.

The key element of Equation 3.5 is the slope β1 j f that represents the interaction be-
tween the persons’ j-th trait with the f -th fixed situation. For example, let “feeling
happy” be one of the positive emotions measured in the ambulatory assessment in
which “being alone” was the reference situation and “not being alone” was the fixed
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situation. The slope β1 j f represents the interaction between the trait level of happi-
ness during the reference situation with the effect of “not being alone” on the state
happiness. In this case, β1 j f > 0 means that persons with higher scores of trait hap-
piness in the reference situation are more likely to have a stronger situation effect in
situations when they are not alone. Hence, being not alone implies a higher increase
in state happiness, if the trait happiness of the person is also high. On the contrary,
β1 j f < 0 means that persons with higher scores of trait happiness in the reference
situation are more likely to have a weaker situation effect in situations when they are
not alone.

3.3 Variance Coefficients

A fundamental contribution of LST models is the variance coefficients (Steyer et al.,
2015). These coefficients allow studying the psychometric properties of the instru-
ments used in longitudinal studies. In a nutshell, they are defined as proportions
of the total variance of each indicator that are explained by certain components of
the model. Diverse variance coefficients are defined based on the complexity of the
model. However, the most essential variance coefficients, which are defined for ev-
ery LST model, are the consistency, the occasion-specificity, and the reliability. The
consistency is the proportion of the variance of an indicator that is explained by the
time-invariant sources of variability. In other words, it indicates to what extent the
indicators are trait-like. In contrast, the occasion-specificity is the proportion of the
variance of an indicator that is explained by the time-varying sources of variability.
The occasion-specificity coefficient, thus, indicates to what extent the indicators are
state-like. Lastly, the reliability encompasses both, the time-invariant and the time-
varying sources of variability. To put it differently, the reliability is the proportion of
the variance that is explained by the true score.

For the ME-TSO model proposed in this study, two sets of coefficients can be defined
depending on whether they describe the variability across fixed situations or random
situations (Geiser et al., 2015b). First of all, the coefficients across fixed situations
are the consistency of traits, the situation-specificity of traits, the person-situation in-
teraction coefficient, and the unique situation effect. These coefficients are derived
from the assumed underlying structure of the indicator- and situation-specific traits
shown in Figure 3.3. The consistency of trait is defined as [Corr(ξ jr,ξ j f )]

2, which is
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the squared correlation of the indicator- and situation-specific trait variable of the ref-
erence situation with the indicator- and situation-specific trait variable of the fixed sit-
uation f . This coefficient indicates the proportion of variance that is shared between
the two indicator- and situation-specific traits. Notice that the correlation between the
two indicator- and situation-specific traits (Corr(ξ jr,ξ j f )) is not directly estimated in
the model but it has to be computed based on other parameters of the model as shown
in Equation 3.6 (for the mathematical derivation of these equations see Appendix C).
Next, the situation-specificity of traits is defined as 1− [Corr(ξ jr,ξ j f )]

2 and repre-
sents the proportion of the variance that is unique between the two indicator- and
situation-specific traits.

Var(ξ j f ) =Var(ξ jr)+2β1 j fVar(ξ jr)+β
2
1 j fVar(ξ jr)+Var(ω j f )

Cov(ξ jr,ξ j f ) =Var(ξ jr)+β1 j fVar(ξ jr) (3.6)

Corr(ξ jr,ξ j f ) =
Cov(ξ jr,ξ j f )√

Var(ξ jr)Var(ξ j f )

Furthermore, the person-situation interaction coefficient and the unique situation ef-
fect are defined as proportions of the variance of the random effect of the situation,
γ j f . The total variance of γ j f is defined as follows:

Var(γ j f ) = β
2
1 j fVar(ξ jr)+Var(ω j f ), (3.7)

which is derived from Equation 3.5. Thus, the person-situation interaction coefficient
is the proportion of the variance of γ j f that is explained by the indicator- and situation-
specific trait variable of the reference situation (i.e., β 2

1 j fVar(ξ jr)/Var(γ j f )). There-
fore, it is the proportion of the variance of the situation effect that is due to the
person-situation interactions. In contrast, the unique situation effect is the propor-
tion of the variance that is not explained by the person-situation interactions (i.e.,
Var(ω j f )/Var(γ j f )). This coefficient should decrease towards 0 when adding more
time-invariant covariates to the model as they further explain the person-situation
interaction.

Additionally, variance coefficients within fixed situations (across random situations)
can also be defined. This means that we can compute the traditional variance coef-
ficients of the TSO model (Eid et al., 2017) for each of the fixed situations. This
includes the reliability (Rel), the consistency (Con), the occasion-specificity (Ospe),
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the predictability by trait (Pred), and the unpredictability by trait (Upred). These
coefficients are usually defined for each indicator j at time t, allowing the variance
coefficients to change over time1. However, in the present study, we adapted all these
variance coefficients in such a way that they do not change over time and we defined
them for each person i, for each indicator j, and for each fixed situation f . This
adjustment aims to provide variance coefficients that are more meaningful for the
ME-TSO model, by taking into account the emphasis on the individual and the effect
of different fixed situations. Therefore, given the time series Yi j f of the variable j,
of person i, in the fixed situation f (with f = r,1, . . . , l), the total variance of Yi j f is
defined as follows2:

Var(Yi j f ) =Var(ξ j f )+λ
2
S j

ϕ2
i

1−ϕ2
i

Var(ζ )+λ
2
S j

Var(ζ )+Var(ε j). (3.8)

The rationale and derivation of this total variance is included in Appendix C.

Once the total variance is defined, defining the variance coefficients becomes trivial
as they are just proportions of the total variance. The equations for the five variance
coefficients of the ME-TSO model are shown in Equations 3.9-3.13. As mentioned
before, the consistency, the occasion-specificity, and the reliability are defined for
every LST model. The only difference in this case is that they are defined for each
indicator, each person, and each fixed situation. On the other hand, the predictability
by trait and the unpredictability by trait are variance coefficients exclusively defined
for TSO models. These two coefficients added together are the consistency. In the
first place, the predictability by trait is the proportion of the total variance that is
explained by the latent indicator- and situation-specific trait variable. It represents
the proportion of the variance that is stable over time and predicted by the indicator-
and situation-specific trait of the first measurement occasion. In contrast, the un-
predictability by trait is the proportion of the total variance that is explained by the

1This is the case for the TSO model even when all the parameters are assumed to be time invariant.
This happens due to the autoregressive structure of the model, which makes all the variance coefficients
to inevitably change over time. In particular, the reliability, the consistency, and the unpredictability by
trait increase over time and tend to an upper asymptote. On the other hand, the occasion-specificity and
the predictability by trait decrease over time and tend to a lower asymptote. This is further explained in
Appendix C.

2The total variance and the variance coefficients within fixed situations (Equations 3.8-3.13) are
computed for each individual. This means that the individual estimates of ϕi need to be extracted in
order to compute these coefficients.
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previous states. To put it differently, the unpredictability by trait represents the pro-
portion of the variance that is due to the autoregressive (carry-over) process, hence
it represents some sort of stability over time that is not explained by the indicator-
and situation-specific trait of the first measurement occasion. In relation to similar
reliability coefficients as the ones proposed by Fuller-Tyszkiewicz et al. (2017) and
Schuurman and Hamaker (2019), the advantage of the variance coefficients proposed
for the ME-TSO model is that the autoregressive structure is taken into account for
its computation.

Con(Yi j f ) =
Var(ξ j f )+λ 2

S j

ϕ2
i

1−ϕ2
i
Var(ζ )

Var(Yi j f )
(3.9)

Pred(Yi j f ) =
Var(ξ j f )

Var(Yi j f )
(3.10)

U pred(Yi j f ) =
λ 2

S j

ϕ2
i

1−ϕ2
i
Var(ζ )

Var(Yi j f )
(3.11)

Ospe(Yi j f ) =
λ 2

S j
Var(ζ )

Var(Yi j f )
(3.12)

Rel(Yi j f ) =
Var(ξ j f )+λ 2

S j

ϕ2
i

1−ϕ2
i
Var(ζ )+λ 2

S j
Var(ζ )

Var(Yi j f )
(3.13)

3.4 Applying the ME-TSO Model

In this section, we present the application and interpretation of the ME-TSO model
via an empirical example. For this, we analyzed daily diary data collected in the
HowNutsAreTheDutch study (Dutch: HoeGekIsNL; van der Krieke et al., 2017; van
der Krieke et al., 2016). Data were collected between May 2014 and December 2018.
The detailed description of the HowNutsAreTheDutch data and the design of the
project are available in van der Krieke et al. (2016). For the present application, we
analyzed the items used to measure positive affect, which were measured based on the
circumplex model of affect (Feldman Barrett and Russell, 1998, and Yik et al., 1999,
as cited in van der Krieke et al., 2016). This means that positive affect emotions are
divided into two categories: Positive affect activation and positive affect deactivation.
More precisely, in this empirical example, we analyzed the items of positive affect
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activation. Furthermore, to study the person-situation interaction, we considered two
situational variables. Firstly, we considered whether something negative happened
between the previous and the current measurement. Secondly, we considered whether
the persons were alone or in a social situation at the moment of measurement. These
analyses are similar to the analyses presented by Geiser et al. (2015b), which also
studied, with different data, how daily fluctuations of positive emotions are related
with the fixed situations of being alone versus being in a social situation and whether
there were person-situation interaction effects.

In these analyses, we aimed to study the psychometric properties of the items of
positive affect activation across different fixed situations. Furthermore, we aimed
to study the person-situation interaction effects between the positive emotions and
the fixed situations of interest while controlling for the lagged structure in the data.
Specifically, we wanted to know whether a negative event has a negative effect on the
positive affect activation emotions. Similarly, we explored whether being in a social
situation leads to an increase of the items of positive affect. Furthermore, we wanted
to know whether there are interaction effects such that the trait component of the
positive affect emotions in the reference situation predicts the size of the effect of the
fixed situations of interest. Lastly, we added optimism as a time-invariant covariate
of the situation effects. Hence, optimism was added to further explain the person-
situation interactions. Note that we have previously analyzed these data with the
TSO model, without considering random autoregressive effects or person-situation
interaction effects (Castro-Alvarez et al., 2022d).

3.4.1 Data

The data for these analyses includes the time series of positive emotions of 6443 Dutch
individuals (83.9% women, mean age 39.9). Participants reported their emotions
three times a day for 30 days, resulting in time series with a maximum length of 90
observations per individual. The number of observations per individual ranged from
59 to 90 with a mean of 74.9 observations per participant. The mean missingness rate
for the selected sample was 16.7%.

3The 644 individuals were selected out of 1396 individuals available in the data. Only individuals
that responded to at least 65% (59 out of 90) of the beeps in the daily diary study were considered for the
analyses. This criterion is also used within the HowNutsAreTheDutch project to provide personalized
feedback to the participants van der Krieke et al. (2016). Furthermore, given that participants were able
to do the daily diary multiple times, only the first daily diary of each participant was taken into account.

83



3

Chapter 3. ME-TSO Model

The items related to positive affect activation were measured on a visual analogue
scale (VAS) from 0 to 100. Positive affect activation was measured with the following
three items: Energetic, enthusiastic, and cheerful. As mentioned before, some char-
acteristics of the situations where the measurements took place were also reported.
These variables were included in the analysis as dummy coded variables. In partic-
ular, we are interested in the situations where nothing negative happened (0) versus
something negative happened (1), which we refer to as variable event; and in the
situations when the participants were alone (0) versus when they were not alone (1),
which we refer to as variable alone. These kind of situations are commonly studied in
relation to daily fluctuations of affect (see Elmer et al., 2020; van Roekel et al., 2015;
Wichers et al., 2010; Wichers et al., 2009). Lastly, we also included the variable opti-
mism, which was measured with the Life Orientation Test - Revised (van der Krieke
et al., 2016) during the cross-sectional stage of the HowNutsAreTheDutch project.
We included optimism mainly to showcase how to add additional time-invariant co-
variates to the model. In short, to show the possibilities of the ME-TSO model, we
included a latent construct measured by three indicators (positive affect activation),
a time-varying situational variable (event or alone), and a time-invariant covariate
(optimism).

3.4.2 Analyses

We considered four models to analyze the data. Model 1 (M1) is the ME-TSO model
with event as the situational dummy variable, to study the effect of a negative event
on the daily fluctuations of positive affect and the possible interaction between the
persons and the situations where something negative happened. Model 1b (M1b)
is the same as M1 but with the addition of optimism as a time-invariant covariate,
to study whether optimism also plays a role in explaining the person-situation inter-
action. Model 2 (M2) is the ME-TSO model with alone as the situational dummy
variable. Note that in M2, “being alone” is the reference situation, hence the model
studied the effect of being in a social situation on the daily fluctuations of positive
affect. Lastly, model 2b (M2b) is also equal to M2 but with optimism as a time-
invariant covariate. In particular, based on Equations 3.2-3.4, M1b can be defined by
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the following equations:EGit

ENit

CHit

=

ξEG,i1r

ξEN,i2r

ξCH,i3r

+

γEG,i11
γEN,i21
γCH,i31

EVit +

 1
λEN,S2

λCH,S3

OPA,it +

εEG,i1t

εEN,i2t

εCH,i3t

 , (3.14)

OPA,it = ϕiOPA,i,t−1 +ζPA,it , (3.15)

where EGit , ENit , and CHit are the observations of person i at time t of the items
energetic, enthusiastic, and cheerful, respectively; ξEG,i1r, ξEN,i2r, and ξCH,i3r are
the latent indicator- and situation-specific trait scores of person i for the reference
situation; and εEG,i1t , εEN,i1t , and εCH,i1t are the measurement errors of person i at
time t. Next, EVit is the score of the dummy variable that indicates whether something
negative happened for person i at time t; and γEG,i11, γEN,i21, and γCH,i31 are the effects
of a negative event on the positive emotions of person i. Furthermore, OPA,it and ζPA,it

are the latent occasion-specific score and residual of positive affect activation; and
λEN,S2 and λCH,S3 are the factor loadings of the latent occasion-specific variables of
positive affect. Recall that the first loading is fixed to 1 for identification purposes.

The effects of the fixed situation (γEG,i11, γEN,i21, and γCH,i31) are further decomposed
based on Equation 3.5 as follows:γEG,i11

γEN,i21
γCH,i31

=

β011
β021
β031

+

β111 0 0
0 β121 0
0 0 β131

ξEG,1r

ξEN,2r

ξCH,3r

+

βOPT,1
βOPT,2
βOPT,3

OPTi+

ωEG,i11
ωEN,i21
ωCH,i31

 ,

(3.16)
where β0 j1 and β1 j1 are the intercept and the slope of the j-th indicator for the situ-
ation where something negative happened. The slope represents the person-situation
interaction that is the effect of the trait of the situation of reference on the situa-
tional effect of a negative event on a certain emotion (e.g., energetic). Additionally,
OPTi is the score of person i on the cross-sectional variable optimism, and βOPT, j is
its respective effect on the j-th indicator. Lastly, ωEG,i11, ωEN,i21, and ωCH,i31 are
the residuals reflecting the effect of a negative event on a certain emotion that re-
mains unexplained. Estimates for each of the parameters in Equations 3.14-3.16 are
included in Appendix C.

To evaluate the relative fit of the models and to select the best fitting model, we ap-
plied the deviance information criterion (DIC). The DIC as well as other relative fit
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measures indicates that a model fits the data best when the DIC value is the low-
est among the competing models. Note that the DICs reported for different DSEM
models are not always comparable (Asparouhov et al., 2018). This is a problem
especially when comparing DSEM models with several latent variables. To be com-
parable, the list of latent variables that are treated as parameters needs to be same.
This requirement is satisfied in our analyses, given that all four tested model have the
same number of latent variables.

3.4.3 Preliminary Steps

As mentioned before, the ME-TSO model requires that multiple items measure the
same construct. This is the case in the HowNutsAreTheDutch data with the items of
positive affect activation (Castro-Alvarez et al., 2022d). Before fitting the models, we
described and visualized the raw data. For example, Figure 3.4 shows the time series
of the items of positive affect activation of four individuals. These time series also
show that the three items follow similar trends, which is expected because they are
supposed to measure the same construct. Furthermore, Figure 3.5 shows the overall
differences in the items across the situations when nothing negative happened versus
something negative happened. This clearly shows that there is probably a situational
effect when something negative happened. By analyzing the data with the ME-TSO
model, we can study how this situational effect actually varies across persons and
how it might be related to trait-like persons’ characteristics.

Moreover, one has to verify that the assumptions of the model are met. In particu-
lar, the ME-TSO model assumes that the autoregressive process is stationary and that
the observations are equally spaced over time. Regarding stationarity, we used the
Kwiatkowski-Phillips-Schmidt-Shin test to study whether the observed time series
were trend stationary (Kwiatkowski et al., 1992). This test suggested that 193 indi-
viduals had at least one nonstationary time series. However, these kinds of tests tend
to be prone to commit Type I errors with short time series (N ≤ 100; Jönsson, 2011).
For this reason, and because the results excluding the individuals with nonstationary
time series did not differ substantially from the results with the whole sample, we
include the results with the stationary sample in Appendix C. Another assumption is
that observations are equally spaced over time. This is not the case in the HowNut-
sAreTheDutch data due to missing data and the overnight periods. To handle this,
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Figure 3.4: Positive Affect Activation Time Series of Four Individuals
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Note. Time series of the positive affect activation items of four random individuals. The
breaks in the time series mean that the individual did not respond at those beeps.
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we approximated the data to be relatively equally spaced over time by including ad-
ditional missing values. We did this automatically in Mplus with the TINTERVAL
command4(Muthén & Muthén, 2017).

Figure 3.5: Boxplot of Positive Affect Activation Items by Event
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Note. Overall differences in the items of positive affect activation across the variable event.
NN = Nothing negative happened. SN = Something negative happened.

Finally, as the ME-TSO model is implemented within the Bayesian framework, it
is extremely important to verify that the posterior sampling algorithm converged as
expected. The convergence of Bayesian models is usually checked via the Gelman-
Rubin Statistic (R̂; Gelman and Rubin, 1992) and diagnostic plots such as traceplots
and autocorrelation plots. Figure 3.6 shows the estimated R̂ statistics of M1, which
suggests that the sampling procedure converged. The other tested models also seemed
to have converged according to this criterion (See Appendix C).

4All the code to run the models is available in the git repository https://github.com/secastroal/
ME-TSO.
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Figure 3.6: Gelman-Rubin Statistics of M1
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Note. M1: Model 1. R̂: Gelman-Rubin Statistic.
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3.4.4 Results

In this empirical example, we disentangled the trait and the state components of the
emotions of positive affect activation and we studied how the psychological dynam-
ics of positive mood are influenced by the situation and the person-situation interac-
tion. The results of the tested model are presented in Tables 3.1-3.2. These tables
include the estimates and the credibility intervals of the key parameters of the ME-
TSO model. Also, the number of free parameters, the DIC, and estimated number
of parameters (pD) are reported at the bottom of Tables 3.1-3.2. From this, we can
observe that M1 and M1b are better at explaining the daily variability of the positive
emotions than the models M2 and M2b. This means that the occurrence of a negative
event is more likely to influence the daily fluctuations of positive mood than being
alone.

In relation to optimism, the analyses showed that adding this variable does not sub-
stantially improve the fit of M1 nor M2. Additional evidence against M1b and M2b is
that the amount of unexplained variance of the effects of the situation at the between-
level (ω j f ) did not decrease (see Tables 3.1-3.2). Therefore, a person’s optimism
typically does not interact with the situation effect (i.e., something negative happen-
ing or not being alone) on the daily emotions of the persons.

Additionally, one can look at some key parameters of the model such as the ran-
dom autoregressive effect ϕi and the interaction effects β1 j f . Firstly, the estimated
mean autoregressive effect (E(ϕ)) in M1 and M2 evidenced that there is on average
a moderate carry-over effect on the states of positive affect activation. Nonetheless,
there are important differences in the lagged relationships across individuals given
the estimated variance of the random autoregressive effect (Var(ϕ) = 0.033). In
other words, there are participants that show little to no carry-over effects on pos-
itive affect activation as well as participants that show strong carry-over effects on
their positive affect dynamics. Secondly, M1 showed that there are person-situation
interactions between the situational variable event and the trait components of each
positive emotion (β111 = −0.19, β121 = −0.20, β131 = −0.22). This means that
the trait level of the positive affect emotions interacts with the effect of a negative
event on the daily emotions of the participants. Therefore, the lower the trait posi-
tive emotion of a person, the stronger the negative effect of a negative event on the
daily emotions. In other words, the daily emotions of an individual that is not too
enthusiastic (trait enthusiastic) will decrease more when something negative happen,
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Table 3.1: Unstandardized Estimates of the Key Parameters of the Models using the
Situation Variable Event

Parameter
M1 M1b

Est. [95% C.I.] Est. [95% C.I.]

Between-level
Eg-Ev Interaction Effect β111 -0.19 [-0.25, -0.13] -0.19 [-0.26, -0.10]
En-Ev Interaction Effect β121 -0.20 [-0.26, -0.13] -0.21 [-0.26, -0.14]
Ch-Ev Interaction Effect β131 -0.22 [-0.29, -0.16] -0.24 [-0.31, -0.17]
Opt-Eg-Ev Interaction Effect βOPT,1 — -0.02 [-0.26, 0.21]
Opt-En-Ev Interaction Effect βOPT,2 — 0.04 [-0.19, 0.29]
Opt-Ch-Ev Interaction Effect βOPT,3 — 0.04 [-0.20, 0.29]
AR Effect Mean E(ϕ) 0.32 [0.30, 0.34] 0.32 [0.30, 0.34]
Eg-Ev Effect Residual Variance
Var(ωEG,11)

23.79 [15.05, 34.05] 23.92 [14.76, 34.28]

Et-Ev Effect Residual Variance
Var(ωEN,21)

41.63 [31.06, 54.34] 41.98 [31.74, 54.52]

Ch-Ev Effect Residual Variance
Var(ωCH,31)

46.16 [34.97, 59.47] 46.19 [35.00, 59.56]

AR Effect Variance Var(ϕ) 0.033 [0.028, 0.039] 0.033 [0.028, 0.039]

Model Fit Information
Number of Free Parameters 34 43
DIC 1823224.25 1825196.44
pD 141759.28 141883.55

Note. M1: Model 1, M1b: Model 1b, Est.: Unstandardized estimate, C.I.: Credibility interval,
Eg: Energetic, En: Enthusiastic, Ch: Cheerful, Ev: Event, DIC: Deviance information crite-
rion, pD: Estimated number of parameters.
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than the daily emotions of an individual that tends to be enthusiastic. On the other
hand, M2 also showed that there are person-situation interactions between the situa-
tion variable alone and the trait components of each positive emotion (β111 =−0.08,
β121 = −0.10, β131 = −0.09). Therefore, the lower the trait positive emotion of a
person, the stronger the positive effect of not being alone on the daily emotions. To
put it differently, being in a social situation has a more positive impact on individuals
that tend to have low levels of positive emotions when they are alone than on indi-
viduals that tend to have high levels of positive emotions. However, the size of these
interactions was lower in comparison to the size of the interactions in M1. More-
over, while the interaction effects in M2 might be statistically significant, they are
not necessarily practically significant.

Finally, we report the variance coefficients of M1. These coefficients are the added
value of the ME-TSO model when compared with more traditional and simpler meth-
ods for intensive longitudinal data. In brief, these variance coefficients indicate the
strength of the person-situation interaction and allow studying the psychometric prop-
erties of the items according to the LST theory. Firstly, the coefficients across fixed
situations of the ME-TSO quantify the strength of the person-situation interaction,
which, to the best of our knowledge, is not possible in other approaches for intensive
longitudinal data. Secondly, the variance coefficients within fixed situations are used
to study the psychometric properties of the items and to determine to what extent
the items are trait- or state-like. Alternatively, this could be done with for exam-
ple the between- and the within-reliabilities (Schuurman & Hamaker, 2019) and the
intraclass-correlation (Houben et al., 2020). However, these indices might come short
when compared with the variance coefficients within fixed situations of the ME-TSO
model as they do not account for the autoregressive structure of the data. In what
follows, we present and interpret the estimated variance coefficients of M1.

Table 3.3 shows the estimated variance coefficients across fixed situations. Firstly,
the consistency of traits of energetic (0.8) was the highest across the three items,
which means that the inter-individual differences in energetic tend to be consistent
across the two situations. Secondly, the person-situation interaction coefficient varied
between 13% and 19% across the three items (see the fourth column in Table 3.3).
This means that an important part of the variability of the situation effects is due to
the person-situation interaction effects. To put it differently, the effect of the situation
not only depends on the situation happening but also on the trait level of the positive
emotions of the individuals.

92



3

Chapter 3. ME-TSO Model

Table 3.2: Unstandardized Estimates of the Key Parameters of the Models using the
Situation Variable Alone

Parameter
M2 M2b

Est. [95% C.I.] Est. [95% C.I.]

Between-level
Eg-Al Interaction Effect β111 -0.08 [-0.12, -0.04] -0.04 [-0.10, -0.01]
En-Al Interaction Effect β121 -0.10 [-0.13, -0.07] -0.08 [-0.12, -0.04]
Ch-Al Interaction Effect β131 -0.09, [-0.12, -0.06] -0.07 [-0.11, -0.03]
Opt-Eg-Al Interaction Effect βOPT,1 — -0.16 [-0.31, -0.01]
Opt-En-Al Interaction Effect βOPT,2 — -0.13 [-0.27, 0.00]
Opt-Ch-Al Interaction Effect βOPT,3 — -0.10 [-0.23, 0.03]
AR Effect Mean E(ϕ) 0.33 [0.31, 0.35] 0.33 [0.31, 0.35]
Eg-Al Effect Residual Variance
Var(ωEG,11)

18.63 [14.59, 23.11] 18.30 [14.25, 23.08]

Et-Al Effect Residual Variance
Var(ωEN,21)

13.74 [10.62, 17.53] 13.58 [10.31, 17.36]

Ch-Al Effect Residual Variance
Var(ωCH,31)

10.42 [7.59, 13.74] 10.44 [7.43, 13.87]

AR Effect Variance Var(ϕ) 0.032 [0.027, 0.039] 0.033 [0.027, 0.039]

Model Fit Information
Number of Free Parameters 34 43
DIC 1932395.64 1934237.58
pD 150001.81 149947.33

Note. M2: Model 2, M2b: Model 2b, Est.: Unstandardized estimate, C.I.: Credibility interval,
Eg: Energetic, En: Enthusiastic, Ch: Cheerful, Al: Alone, DIC: Deviance information crite-
rion, pD: Estimated number of parameters.
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Table 3.3: Variance Coefficients Across Fixed Situations

Item Consistency
of Traits

Specificity
of Traits

Person-Situation
Interaction
Coefficient

Unique Situation
Effect

Energetic 0.80 0.20 0.19 0.81
Enthusiastic 0.70 0.30 0.13 0.87
Cheerful 0.66 0.34 0.16 0.84

Furthermore, in the ME-TSO model, one can also estimate the variance coefficients
within fixed situations5. Note that these variance coefficients are estimated for each
item and they also vary across individuals. Therefore, in Table 3.4, we present
the average and the standard deviation of the estimated variance coefficients for
each item and each fixed situation. In relation to the reliability of the items, the
item enthusiastic was on average the most reliable item on both fixed situations
(M = 0.83,SD = 0.01). Moreover, the items energetic and cheerful seem to be
slightly less reliable in the situations where something negative happened. In gen-
eral, when considering the consistency and the occasion-specificity, the three items
seem to be on average as trait-like as they are state-like in both fixed situations be-
cause the average consistencies and occasion-specificities tend to be practically equal.
However, the items energetic and cheerful seem to be more trait-like in the situations
where nothing negative happened. For example, the difference between the mean
consistency and mean occasion-specificity of energetic when nothing negative hap-
pened is 0.06, while when something negative happened it is 0.01. Lastly, the con-
sistency is divided into the predictability by trait and the unpredictability by trait. On
the one hand, the mean predictability by trait of the items enthusiastic and cheerful
were very similar in both fixed situations. In contrast, the mean predictability by trait
of energetic was lower in the situations when something negative happened (0.28) in
comparison with the situations when nothing negative happened (0.33). This means
that the trait of energetic in the first measurement occasion when nothing negative
happened has a larger influence on future situations than the trait of energetic in the
first measurement occasion when something negative happened. On the other hand,
the average unpredictability by trait of all items across fixed situations was between

5In order to compute these variance coefficients, we extracted the estimates of the autoregresssive
effects per person by using the FSCORES command in Mplus.
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5% and 6%. This coefficient also showed the most variability across persons (SD
between 0.05 and 0.06). This means that for some individuals the amount of total
variance in their daily positive emotions that is due to the autoregressive process or
carry-over effects can be as large as 15%.

Table 3.4: Variance Coefficients Within Fixed Situations

Variance
Coefficient

Items
Energetic Enthusiastic Cheerful

M (SD) M (SD) M (SD)

Nothing Negative Happened
Reliability 0.70 (0.02) 0.83 (0.01) 0.79 (0.01)
Consistency 0.38 (0.03) 0.42 (0.04) 0.43 (0.03)
Occasion-Specificity 0.32 (0.02) 0.41 (0.03) 0.36 (0.02)
Predictability by Trait 0.33 (0.02) 0.36 (0.02) 0.37 (0.02)
Unpredictability by Trait 0.05 (0.05) 0.06 (0.06) 0.06 (0.05)

Something Negative Happened
Reliability 0.67 (0.02) 0.83 (0.01) 0.77 (0.01)
Consistency 0.33 (0.03) 0.4 (0.04) 0.4 (0.03)
Occasion-Specificity 0.34 (0.02) 0.43 (0.03) 0.37 (0.02)
Predictability by Trait 0.28 (0.01) 0.34 (0.02) 0.34 (0.02)
Unpredictability by Trait 0.05 (0.05) 0.06 (0.06) 0.06 (0.05)

Note. M: Mean, SD: Standard deviation.

3.5 Discussion

The ME-TSO model presented in this study aims to be an additional tool to model
psychological dynamics. The model integrates the multilevel TSO (Castro-Alvarez
et al., 2022d), the LST-RF approach (Geiser et al., 2015b), and the DSEM framework
(Asparouhov et al., 2018). In general, the ME-TSO model allows studying the carry-
over effects of psychological constructs, the person-situation interaction effects, and
the psychometric properties of the items per individual across fixed situations. More-
over, as it is implemented within the DSEM framework, it can be extended by allow-
ing other parameters (i.e., factor loadings and residual variances) to vary randomly
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across persons or by including additional within- or between-covariates.

We illustrated how to use the model by means of the empirical example. The results
showed that (a) the items of positive affect activation are relatively as state-like as
they are trait-like, (b) there are carry-over effects present in the states of positive affect
activation, which vary across individuals, (c) the effects of situations when something
negative happened better explained the variability of the dynamics of positive affect
activation than the effects of the situations when the participants were not alone, and
(d) the situations when something negative happened seemed to interact with the
trait level of the positive emotions of the individuals. Note that we have previously
analyzed these data with the multilevel TSO model (Castro-Alvarez et al., 2022d),
where the parameters are fixed for the sample and thus heterogeneity between persons
could not be taken into account. The analyses in this study, however, show that
variability across persons is non-negligible. Moreover, Geiser et al. (2015b) also
studied the person-situation interaction effect between the situation not being alone
and the emotions happy, energetic, and cheerful with different data. Their results are
comparable to our results of M2, for example, in both studies the interaction effect
between trait energetic and the situation was −0.08. However, while in Geiser et
al. (2015b) this effect was not significant, in our example it seems to be statistically
different from 0. This could be partially explained by the fact that our sample size
was much larger than the one used by Geiser et al. (2015b). Nevertheless, the size
of the effect is what really matters, and an interaction effect of −0.08 does not seem
practically significant.

The variance coefficients per individual are key results of the proposed model. These
variance coefficients allow studying the psychometric properties of the scales used in
intensive longitudinal data by estimating the reliability of each item per individual.
The reliabilities per person can be useful to evaluate the factor structure of each per-
son, as suggested by Fuller-Tyszkiewicz et al. (2017). If the reliability of a person is
too low, it might be an indication that the assumed factor structure does not fit this per-
son. Hence, a different factor structure might be preferred for these cases. Addition-
ally, the consistency and the occasion-specificity of the ME-TSO model also allow
studying to what extent the variance of an item is due to stable or variable sources of
variability per person. Thus, in our empirical example, we could determine whether a
positive emotion was more trait-like or state-like for each individual. Similar coeffi-
cients at the individual level have been proposed previously (e.g., Fuller-Tyszkiewicz
et al., 2017; Hu et al., 2016; Schuurman & Hamaker, 2019). However, the added
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value of the coefficients proposed within the ME-TSO model is that they also take
into account the autoregressive structure of the psychological dynamics. In particular,
with the unpredictability by trait, researchers can study to what extent the carry-over
effects explain the overall variability of an item per person.

As with any model, the ME-TSO model has some limitations. First of all, one of
the assumptions is that the autoregressive process is stationary, which can be difficult
to test given that this process is unobserved in the ME-TSO model. For example, in
the empirical example, we tested whether the observed time series were trend sta-
tionary. Yet, the stationarity of the observed time series does not necessarily imply
that the latent autoregressive process is also stationary or vice versa. Future research
can study how to improve the stationarity tests for the ME-TSO model and similar
dynamic factor models (Song & Ferrer, 2012). Secondly and related to the previous
point, the ME-TSO model assumes that longitudinal measurement invariance holds
for all the parameters. This means that the factor structure as well as the size of the
autoregressive effect does not change over time. Yet, this might not be a realistic as-
sumption. For example, it might be the case that persons transition between different
measurement models across time (Vogelsmeier et al., 2019b) or that the time depen-
dencies (autoregressive effects) change over time (Bringmann et al., 2017). Thirdly,
the model also assumes that configural invariance of the within-level factor model
holds. This means that the within-level factor structure is the same for all individu-
als. Even if the factor loadings and the residual variances are allowed to randomly
vary across individuals, there might still be persons for whom the assumed factor
structure is not adequate. This drawback can be overcome by, for example, allow-
ing the random measurement variances to correlate, as suggested in the multilevel
heterogeneous factor analysis model (Pan et al., 2020). Lastly, in our application of
the model we used the default prior distributions available in Mplus. However, it
has been shown that the default priors can lead to biased estimates under certain cir-
cumstances with latent growth models (Smid et al., 2020). Hence, in the meantime,
we recommend practitioners to perform sensitivity analyses when using the ME-TSO
model. Alternatively, simulation studies would be required to further investigate the
impact of the priors on the estimation of the ME-TSO model.

To conclude, in the present chapter, we presented the ME-TSO model. With this
model, researchers can (a) account for the measurement error and study the psy-
chometric properties of the items used in intensive longitudinal data, (b) estimate
person-situation interaction effects, and (c) analyze the psychological dynamics of
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the constructs of interest per individual. We illustrated how to interpret the model
with empirical data and we provide the code to fit the model in the git repository
https://github.com/secastroal/ME-TSO. With the ME-TSO model, we provided a
flexible statistical tool which can be useful to answer some of the research ques-
tions that are studied in intensive longitudinal research. We hope that this approach
contributes to a better understanding of psychological dynamics. Furthermore, we
expect this approach to serve as inspiration for future research to keep developing the
statistical methods used to analyze intensive longitudinal data.
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Chapter 4

A Time-Varying Dynamic Partial Credit
Model to Analyze Polytomous and
Multivariate Time Series Data

This chapter has been submitted for publication as Castro-Alvarez, S., Bringmann, L. F.,
Meijer, R. R., & Tendeiro, J. N. (2022). A Time-Varying Dynamic Partial Credit Model to
Analyze Polytomous and Multivariate Time Series Data. https://doi.org/10.31234/osf.io/
udnbt
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Abstract
The accessibility to electronic devices and the novel statistical methodologies avail-
able have allowed researchers to better comprehend psychological processes at the
individual level. However, there are still great challenges to overcome as, in many
cases, collected data are more complex than the available models are able to handle.
For example, most methods assume that the variables in the time series are mea-
sured on an interval scale, which is not the case when Likert-scale items were used.
Ignoring the scale of the variables can be problematic and bias the results. Addition-
ally, most methods also assume that the time series are stationary, which is rarely the
case. To tackle these disadvantages, we propose a model that combines the partial
credit model (PCM) of the item response theory framework and the time-varying au-
toregressive model (TV-AR), which is a popular model used to study psychological
dynamics. The proposed model is referred to as the time-varying dynamic partial
credit model (TV-DPCM), which allows to appropriately analyze multivariate poly-
tomous data and nonstationary time series. We test the performance and accuracy of
the TV-DPCM in a simulation study. Lastly, by means of an example, we show how
to fit the model to empirical data and interpret the results.

Keywords: item response theory, time series, psychological dynamics, non-linear
trends, splines
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Intensive longitudinal methods such as experience sampling or ecological momentary
assessment have allowed researchers to study and unravel the psychological dynam-
ics of individuals (Hamaker et al., 2015; Hamaker & Wichers, 2017). These methods
consist of assessing individuals repeatedly during short periods of time. In particular,
popular intensive longitudinal designs require participants to fill in short question-
naires of about 10 times a day for 5 to 7 days (Vachon et al., 2019). As a result,
psychological time series commonly have between 50 to 100 time points. However,
analyzing this kind of data has proven to be a challenging task.

Intensive longitudinal data are complex data with strong dependencies between the
measurements due to their closeness in time. Because of this, researchers have
applied extensions of the autoregressive model to analyze this kind of data (e.g.,
Asparouhov et al., 2018; Chatfield, 2003; Hamilton, 1994; Kuppens et al., 2010;
Shumway & Stoffer, 2017; Song & Zhang, 2014; Walls & Schafer, 2006). The sim-
plest autoregressive model used to analyze intensive longitudinal data is the autore-
gressive model of order 1 (AR(1); Chatfield, 2003; Hamilton, 1994), which regresses
the dependent variable on a lagged version of itself to represent the relation between
two consecutive observations of the dependent variable. This model has been ex-
tended, for example, to multilevel and multivariate settings (Bringmann et al., 2013),
to account for measurement error (Schuurman & Hamaker, 2019; Schuurman et al.,
2015; Song & Zhang, 2014), and to model unequally spaced measurements (i.e.,
continuous-time modeling, Crayen et al., 2017; Voelkle & Oud, 2013; Voelkle et al.,
2012). Furthermore, a comprehensive framework to analyze intensive longitudinal
data, known as dynamic structural equation modeling, was recently proposed by As-
parouhov et al. (2018).

However, one of the shortcomings of these current methods is that most of these
approaches require the data to be continuous, which is not always the case. In par-
ticular, to study psychological dynamics, researchers tend to either use visual ana-
logue scales or Likert scales (Vachon et al., 2019). While the former are continuous
variables, which are suitable for the mentioned methods, the latter, strictly speak-
ing, are ordinal categorical variables. This is a limitation, especially if there are not
many response categories and if the distributions of the item responses are heav-
ily skewed (Vogelsmeier et al., 2020). Furthermore, despite some few exceptions,
most of the available statistical methods used to analyze intensive longitudinal data
do not account for measurement error, which is likely to be present when measuring
psychological constructs (Schuurman et al., 2015). Furthermore, in many intensive
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longitudinal studies, multiple items are used to measure a unique construct such as
positive or negative affect (e.g., Hamaker et al., 2018; van der Krieke et al., 2016) and
composite scores are computed before fitting the model. However, ignoring the na-
ture of the variables and the factor structure of the data might lead to biased estimates
(Dolan, 1994; McNeish & Wolf, 2020). Hence, measurement models for categorical
intensive longitudinal data are needed.

A useful statistical theory that can help to overcome these drawbacks is the item
response theory framework (IRT; Embretson & Reise, 2013). In general, IRT mod-
els are latent variable measurement models that relate the categorical responses of a
set of items to one or multiple latent continuous variables that represent unobserv-
able psychological traits or ability levels (Hambleton & Swaminathan, 1985; Rijn
et al., 2010) such as positive affect. Well-known IRT models are, for example, the
Rasch model (von Davier, 2016) and the 2-parameter logistic model (van der Lin-
den, 2016) for dichotomous responses, and the partial credit model (Masters, 2016)
and the graded response model (Samejima, 1997) for ordered categorical responses.
Additionally, IRT as a psychometric theory also allows taking an in-depth look at the
quality of the psychological tests and measures. Within IRT, the standard error of
measurement differs across scores depending on the characteristics of the items and
the latent ability level of the subject (Embretson & Reise, 2013), and measurerement
precision can be determined conditional on the latent construct. This means that the
quality of the measurements might vary across individuals, given their level on the
latent construct.

Although IRT models have been largely developed within educational cross-sectional
settings, dynamic IRT models for intensive longitudinal data have also been proposed
in recent years (e.g., Hecht et al., 2019; Kropko, 2013; Rijn et al., 2010; Wang et al.,
2013). On the one hand, Rijn et al. (2010) proposed a Rasch model and a partial credit
model for intensive longitudinal data within the state space modeling framework,
which is estimated by means of a Kalman Filter. On the other hand, the approaches
by Kropko (2013, item response theory models for time series), Wang et al. (2013,
dynamic Rasch model for educational data), and Hecht et al. (2019, continuous time
Rasch model) are implemented within the Bayesian framework. The models pro-
posed by Rijn et al. (2010) and Kropko (2013) are of special interest for us as they
were developed to analyze psychological time series of one individual. However,
these approaches are still limited as they (a) are not suitable for non-stationary time
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series, (b) have not been systematically tested in simulation studies, (c) lack user-
friendly tutorials to be used by practitioners, and (d) do not use the core features of
IRT modeling (e.g., item characteristic curves and item information functions) that
allow assessing the quality of the scales.

In this chapter, we propose the time-varying dynamic partial credit model (TV-DPCM),
which is an IRT model suitable to analyze multivariate time series data of polyto-
mous responses. With this new method, we aim to offer a flexible tool that allows
modeling non-linear trends and studying the psychometric properties of the scales
used in intensive longitudinal data studies. Also, to facilitate its use by practition-
ers, we share all the code needed to fit the model in the following git repository:
https://github.com/secastroal/DIRT. In particular, the TV-DPCM is useful to ana-
lyze intensive longitudinal data of one individual, when a set of Likert scale items
that measure the same construct is repeatedly used to measure one subject. The TV-
DPCM extends the partial credit model (PCM; Masters, 2016) by assuming that the
latent variable follows a time-varying autoregressive model (TV-AR; Bringmann et
al., 2017).

This chapter is organized in as follows. Firstly, we introduce the TV-DPCM in detail.
This section also covers a brief introduction of the generalized additive model frame-
work. Secondly, we conducted a “proof of concept” simulation to test the perfor-
mance of the model under diverse conditions, while varying, for example, the number
of time points and the size of the true autoregressive effect. Thirdly, we present an
empirical application of the model to experience sampling data of self-esteem, which
aims to exemplify how to use and interpret the results obtained by means of fitting the
TV-DPCM. Lastly, we discuss our findings and how the TV-DPCM can contribute to
a better understanding of measurement in intensive longitudinal research. Moreover,
we provide some ideas for future methodological research for intensive longitudinal
data based on IRT.

4.1 The Time-Varying Dynamic Partial Credit Model

As mentioned before, the TV-DPCM integrates the partial credit model (PCM; Mas-
ters, 2016) and the time-varying autoregressive model (TV-AR; Bringmann et al.,
2017). Briefly, the PCM is an IRT model for polytomous data, which can be seen
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as an extension of the Rasch model (Embretson & Reise, 2013; Masters, 2016; Os-
tini & Nering, 2006). This means that the PCM holds most of the assumptions and
properties of the Rasch model such as the assumption of unidimensionality, local
independence, and the separability of the person and the item parameters. On the
other hand, the TV-AR integrates the standard autoregressive model and the gener-
alized additive model framework (Bringmann et al., 2017; Wood, 2017) to handle
non-stationary time series. This means that both the intercept and the autoregressive
effect are allowed to smoothly vary over time. By combining these two approaches,
we get the TV-DPCM, in which the measurement model is given by the PCM and the
dynamic latent process is described by a TV-AR model.

4.1.1 The Basis: The Partial Credit Model

To start, we first introduce the PCM (Masters, 2016), which is an IRT model for poly-
tomous items. The motivation to develop this model was to allow analyzing test items
that required multiple sequential steps to find the correct answer, where partial credit
is given for completing each of the steps (Embretson & Reise, 2013). Evidently,
this model was proposed within an educational assessment context. However, it is
also appropriate and it has been widely used to analyze items with ordered response
options as found in attitudes and personality tests (Embretson & Reise, 2013).

The PCM is commonly described as a “divide-by-total” (Thissen & Steinberg, 1986)
or “direct” (Embretson & Reise, 2013) model because the probability to endorse a
certain response option is directly defined as the ratio of the probability of that re-
sponse option to the sum of the probabilities of all possible response options. Con-
sider that we have a test with I Likert-scale items that is used to measure, for example,
positive affect. The items are scored from 0 to mi, with i = 1, . . . , I; which means that
item i has Ki = mi + 1 response categories (items might differ in the number of re-
sponse options). Then, the probability to select response option x of the i-th item
given the latent trait of the j-th person, θ j, can be written as:

P(Xi = x|θ j) =

exp
[ x

∑
k=0

(θ j −δik)
]

mi

∑
v=0

exp
[ v

∑
k=0

(θ j −δik)
] , (4.1)
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where δik is the step parameter, also known as threshold parameter, of the k-th cate-
gory of the i-th item. These threshold parameters δik represent the level on the latent
continuum at which the probabilities of selecting the response options k and k − 1
are equal. An example of an item with five response options is presented in Figure
4.1. This shows how the probability of endorsing each response option depends on
the level of the latent ability of the subject. Therefore, persons with lower levels of
the latent trait are more likely to select the response option 0 of this item (when θ

is lower than −1.42). Notice that for notational convenience, when x = 0, the sum-
mation in the numerator is defined as 0 so that the exponential evaluates to 1. Thus,
when there are only two response options (correct or incorrect), the PCM simplifies
into the Rasch model.

Figure 4.1: Item Characteristic Curves of an Example Item given the PCM.
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Note. Item characteristic curve of an item with five response options and threshold parameters
−1.42, −0.88, −0.09, and 0.51. The location of the threshold parameters is shown with the
vertical dotted gray lines, which also correspond with the intersection between the curves of
adjacent response options.

Moreover, it is important to highlight some of the assumptions and properties of the
PCM. First, regarding the assumptions, in a similar way as the most widespread IRT
models, the PCM assumes that unidimensionality and local independence hold (Em-
bretson & Reise, 2013). Unidimensionality means that the model assumes that all
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the items in the test measure a unique latent construct (e.g., positive affect or neu-
roticism). On the other hand, the assumption of local independence implies that the
responses to any pair of items are independent after controlling for the latent variable.
Secondly, the PCM also retains two important properties that are shared, in particular,
with the Rasch model: The separability of the person and the item parameters and
sufficient statistics. The former property means that each type of parameters can be
conditioned out from the estimation of the other. The latter property means that the
raw scale sum scores are sufficient statistics for the person parameters, so all persons
with the same sum score are assumed to display the same value on the latent trait
under study.

4.1.2 A Straightforward Extension: Modeling a Dynamic Latent Pro-
cess

Now, in the context of studying psychological time series, a straightforward extension
of the PCM model is to add an autoregressive structure at the latent level. This
has been suggested by Rijn et al. (2010) within the state-space modeling framework
and by Kropko (2013) within the Bayesian framework. However, to the best of our
knowledge, in none of these studies nor in any other studies, the models have been
systematically tested in a simulation study. In this chapter, we further extend this
model (see the following subsection) and assess its performance in a simulation study.
Thus, the model changes as follows:

P(Xi = x|θt) =

exp
[ x

∑
k=0

(θt −δik)
]

mi

∑
v=0

exp
[ v

∑
k=0

(θt −δik)
] . (4.2)

Notice that the latent variable θ now has a subscript t, which indicates time. In this
case, when there are repeated measurements from one individual, the latent variable
does not represent the latent trait of a person. Instead, it represents the latent state
dispositions of the individual at each measurement occasion. In other words, the
latent state disposition represents the attitude or emotion of the person in the situation
where the measurement took place. Moreover, we assume that these latent state
dispositions follow an autoregressive process of lag-order 1, which is:

θt = α +ϕθt−1 + εt , (4.3)
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where α is the intercept of the process and ϕ is the autoregressive effect of lag-order
1 between consecutive measurement occasions. In particular, the lag-order indicates
how many measurements in the past predict the current measurement. With a lag-
order 1, only the immediately previous measurement is used to predict the current
one. Moreover, the autoregressive effect represents the dependency between consec-
utive states. This effect is also known as the “innertia” parameter (Kuppens et al.,
2010) because the larger this parameter is, the longer it takes the system to return to
its equilibrium (i.e, its mean). Lastly, εt is the random innovation at time t. The inno-
vations are the part of the current latent state that cannot be explained by the model.
Yet, they still influence and are passed along to future states (Schuurman et al., 2015).
The innovations are assumed to be normally distributed with mean 0 and variance Ψ.

By extending the PCM in this way, additional assumptions are made about the latent
process. Firstly, this extension proposes a discrete-time model for the latent process.
This means that the repeated measurements are assumed to be observed in equally
spaced time intervals. If this condition is not satisfied, the autoregressive effect might
be overestimated and lead to the wrong conclusions (de Haan-Rietdijk et al., 2017b).
Secondly, the latent process is assumed to be stationary, which means that its means
and its variances-covariances do not change over time (Chatfield, 2003). A necessary
but not sufficient condition for stationarity in the autoregressive process in Equa-
tion 4.3 is that |ϕ| < 1. Lastly, it is assumed that item parameters δik are also time
invariant. In other words, it is assumed that longitudinal measurement invariance
(Meredith, 1993; Meredith & Teresi, 2006) holds.

4.1.3 Dealing with Change: The TV-DPCM

However, assuming stationarity might not be realistic in clinical practice. For exam-
ple, consider a person that is under psychological treatment and fills in a daily diary
questionnaire with Likert-scale items during the whole intervention. If the purpose is
to monitor relevant psychological constructs for the intervention such as positive or
negative affect, and if the intervention is effective, then we would expect to observe
durable changes on the person’s behavior and feelings (e.g., reduction of symptoms
or increase in well-being). To allow for such change, we further extended the PCM
to allow the latent dynamic process to be non-stationary. We called this extension the
TV-DPCM, which aims to model the non-linear change of the latent variable while
accounting for the measurement error of the psychological construct.
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As with the previous extension, the TV-DPCM is described in two equations: The
measurement equation and the structural equation. The measurement equation is the
same as Equation 4.2. This equation models the relation between the observed re-
sponses and the latent construct based on the PCM. Then, the structural equation,
which describes the latent dynamic process, is an extension of Equation 4.3 based
on the TV-AR model (Bringmann et al., 2017). In this case, the intercept α is al-
lowed to vary over time1. To put it differently, with a time-varying intercept, the
TV-DPCM is able to model latent processes that are trend-stationary (i.e., the time
series is stationary after detrending). Now, the structural equation is defined like this:

θt = αt +ϕθt−1 + εt , (4.4)

where α has a subscript t, which indicates that the intercept changes over time. This
change is assumed to be described by a smooth function (see the following section).

Moreover, based on the time-varying intercept and the autoregressive effect, it is pos-
sible to derive the model-implied mean and variance of the dynamic process in Equa-
tion 4.4 (Bringmann et al., 2017; Chatfield, 2003; Giraitis et al., 2014). Firstly, in a
TV-AR, the intercept does not have a clear interpretation and what describes the trend
of the time series is, in fact, the mean of the dynamic process. Because the intercept
varies over time, the mean of the dynamic process also varies over time. Therefore,
the mean of the dynamic process at time t can be defined as (see Bringmann et al.,
2017):

µt ≈
αt

1−ϕ
. (4.5)

Notice that the approximation in Equation 4.5 applies as long as the change of the
intercept is constrained to be gradual2 (i.e., smooth). The time-varying mean is also
known as the attractor (Giraitis et al., 2014). Furthermore, we can also derive the
variance of the dynamic process. Because the autoregressive effect is time-invariant,

1Ideally, both the intercept and the autoregressive effect should be allowed to vary over time, as
proposed in the TV-AR model (Bringmann et al., 2017). By doing this, the model can handle different
types of non-stationarity, where the means, the variances, and the autocorrelations change. However,
we did not succeed on writing a working TV-DPCM model in Stan that also allowed the autoregressive
effect to vary over time. Because of this, we settled with the simpler version in which only the intercept
is allowed to vary over time.

2The change of the intercept is required to be gradual because an assumption used to derive Equation
4.5 is that µt must be approximately equal to µt−1. This is also why, in Equation 4.5, the approximation
sign is used instead of the equal sign.
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then, the variance of the dynamic process is also assumed to be time-invariant, and it
is shown to be as follows:

σ
2 ≡ Ψ

1−ϕ2 . (4.6)

To summarize, herewith, we propose the TV-DPCM, which is a measurement model
useful to analyze psychological time series of one individual. The model keeps most
of the assumptions of the PCM and the TV-AR such as (a) unidimensionality, (b)
local independence, (c) trend-stationarity of the latent process, and (d) equally spaced
observations over time. In contrast, the separability of item and person parameters
and the sufficient statistics property, which are properties of the PCM, do not hold for
the TV-DPCM.

4.1.4 Estimation: Generalized Additive Models and Bayesian Inference

As with other dynamic IRT models (Hecht et al., 2019; Kropko, 2013; Wang et al.,
2013), we implemented the TV-DPCM within the Bayesian framework. This allows
estimating all the parameters simultaneously and prior information can be incorpo-
rated. Additionally, to estimate the time-varying intercept, we make use of the gener-
alized additive model (Wood, 2017). In what follows, we first do a brief introduction
of the generalized additive model (GAM) framework and then we mention the sug-
gested priors required to estimate the model.

Generalized additive models are flexible semiparametric models that define the rela-
tion between the dependent variable and the covariates based on “smooth functions”
(Wood, 2017). They are specially useful to model nonlinear relationships while keep-
ing a reasonable predictive power. A general representation of a GAM model, given
one dependent variable and one covariate is:

yi = f (xi)+ εi, (4.7)

where yi is the dependent variable, xi is a covariate, f () is a smooth function, and εi

is the independent and normally distributed random error.
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The smooth function is usually the weighted sum of some predefined “basis func-
tions” and is represented as a linear model, as follows:

f (x) =
s

∑
j=1

β jb j(x), (4.8)

where b j(), with j = 1, . . . ,s, is the j-th basis function, and β j is the unknown weight
for each function. Given this, in the TV-DPCM, the time-varying intercept αt is
modeled as a smooth function of time:

αt = f (t) =
s

∑
j=1

β jb j(t). (4.9)

Figure 4.2: Predicted B-Splines with Different Number of Basis Functions.
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Note. The gray dots represent the observed data and the black line represents the predicted
non-linear function. At the bottom of each plot, the basis B-splines functions are represented
with dashed lines. The number of basis functions are 5 (A), 10 (B), and 30 (C).

However, when using the GAM, one must decide on the type of smoother that is
going to be used and how smooth the resulting fit has to be. In our implementation,
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we opted to use cubic B-splines (Kharratzadeh, 2017; Wood, 2017)3. Without going
into too much detail, the basis splines or B-splines are a popular smoother in the
GAM literature for univariate analysis. B-splines have a polynomial degree p (order
of the B-splines is k = p+ 1) and a set of q knots that are typically defined based
on the percentiles of the predictor variable. Then, these knots are used to define
q+ p− 1 basis functions for the B-splines. Each basis function consist of k pieces
of polynomials with degree k− 1 (except for the ones close to the borders). These
pieces of polynomials of each basis function are joined continuously at k−1 interior
knots and are differentiable k−2 times. For the remaining range of the covariate, the
basis functions are 0. Most commonly, B-splines of order 4 (i.e., degree 3), which
are cubic B-splines, are used. To illustrate this, we simulated data based on cubic
B-splines with 10 basis functions as shown in the middle panel of Figure 4.2. The
10 basis functions are depicted at the bottom of the graph. When these functions
are weighted by the β j coefficients and summed together, they result in the nonlinear
trend (solid black line) that describes the data.

Figure 4.2 also shows what can happen when too little or too many basis functions are
used. Panel A presents the results from a cubic B-splines with 5 basis functions and
panel C presents the results from a cubic B-splines with 30 basis functions. While
using too little basis functions can result in underfitting, using too many can result
in overfitting the data. Because of this, when using GAM, researchers usually use
a larger number of basis functions than they would think are needed but impose a
penalization on the selected smoother (Bringmann et al., 2017; Wood, 2017). For our
implementation, to penalize the cubic B-splines, we used a random-walk prior for the
β j coefficients (Kharratzadeh, 2017). This means:

β1 ∼ N (0,1), β j ∼ N (β j−1,τ), τ ∼ N (0,1). (4.10)

The reasoning behind this prior is that the closer the β j coefficients are to each other,
the smoother the spline function is.

Lastly, to estimate the TV-DPCM within the Bayesian framework, we used relatively
informative prior distributions for the different parameters. The following priors were
used in both the simulation study and the empirical application. Starting with the

3We also wrote an alternative version of the model in JAGS (Depaoli et al., 2016), which can use
other kind of smoothers such as thin plate or penalized P-splines based on the mgcv (Wood, 2017)
package.
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threshold parameters δik, we used, as it is common in the IRT literature, a standard
normal prior (Fox, 2010). For the random innovations εt , we first sampled a starting
value from the standard normal, which was later scaled in the computation of θt

given Equation 4.4. Then, the prior for the scaling factor of the innovations (i.e., the
standard deviation σ ) was a normal distribution with mean 1 and standard deviation
1, which was truncated to be positive. Finally, for the autoregressive effect ϕ , we
used an uniform distribution between −1 and 1 as prior.

4.2 Simulation Study

In this section, we present the design and results of the simulation study that we
conducted with the TV-DPCM. The purpose of this simulation was to assess the per-
formance, in terms of convergence and recovery of the population parameters, of the
TV-DPCM under common settings seen in the literature.

4.2.1 Data Simulation and Design

Data were simulated based on the TV-DPCM model assuming that the time varying
intercepts αt followed a sinusoidal trend. An example of the simulated latent dy-
namic process and its trend is presented in Figure 4.3. The same trend was used for
all the conditions but it was adjusted to the length of the time series. Moreover, we
also kept the variance of the innovations fixed (at 1) and the number of response cat-
egories per item (5) equal across all conditions. Regarding the threshold parameters,
these were randomly generated in such a way that they were ordered within an item.
For example, the threshold parameters for an item with 5 response options in the
simulation could be: −1.42, −0.88, −0.09, and 0.51 (recall Figure 4.1 and that the
threshold parameters represent where in the latent continuum the item characteristic
curves of adjacent response options intersect). Lastly, the latent state disposition of
the first measurement occasion was randomly generated for each replication and each
condition from a normal distribution with mean α1/(1−ϕ) and standard deviation√

Ψ/(1−ϕ2). For details on the generation of these parameters, see the code shared
on the GitHub repository of this chapter.

Next, for the simulation design, we manipulated four factors. Firstly, the number of
time points was varied between 100, 200, 300, and 500. These time points were cho-
sen based on previous simulations with N = 1 time series (Bringmann et al., 2017;
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Schuurman et al., 2015). In fact, based on preliminary simulations with the TV-
DPCM, we do not expect the model to perform well with under 200 time points.
Secondly, the number of items was either 3 or 6 items. The reason for this is that
scales used in ESM studies tend to be short in order to reduce participants’ burden.
Next, the size of the autoregressive effect was varied between 0, 0.25, and 0.5, which
is similar to the values used in simulations with the VAR model with measurement
error (Schuurman & Hamaker, 2019; Schuurman et al., 2015). Lastly, the proportion
of missing observations was either 0% or 30%. To recreate the missing data patterns
that are commonly seen in ESM data (Silvia et al., 2013), where participants either
fill in the complete questionnaire or do not fill it in at all, we randomly sampled 30%
of the time points and removed all the observations in those time points. Basically,
the simulated missing data mechanism was missing completely at random with the
constraint that the observation of the first time point was never removed. The condi-
tions with missing data aimed to test the model under realistic circumstances, as the
percentage of missing measurements usually ranges between 20% and 40% (Vachon
et al., 2019). To summarize, the simulation had a 4×2×3×2 fully crossed design,
in which we ran 200 replications per condition (i.e., a total of 9,600 analyses).

The models were estimated within a Bayesian framework through the Hamiltonian
Monte Carlo algorithm as implemented in Stan (Carpenter et al., 2017). We ran
three chains per analysis, each with 2,000 iterations, 500 of which were used for
warm-up4. To run the analyses, we also adjusted other parameters of the Hamil-
tonian Monte Carlo algorithm such as the delta and the maximum treedepth (Stan
Development Team, 2022). We increased parameter delta from 0.8 (default) to 0.99
and the maximum treedepth from 10 (default) to 15, as this was required to facilitate
model convergence.

The simulation of the data, the estimation of the model, and the analysis of the results
were performed in R (R Core Team, 2022) with the R packages: rstan (Stan Devel-
opment Team, 2020) and bayesplot (Gabry & Mahr, 2021). Analyses were run on
a high performance computing cluster with Intel Xeon E5 2680v3 CPU (2.5GHz).
The maximum RAM usage for an analysis was approximately 500MB.

4We conducted preliminary simulations analyses with the model to ascertain that this number of
total and warm-up iterations was enough to obtain reliable samples from the posterior distributions.
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4.2.2 Output Variables

To assess the performance of the TV-DPCM, we focused on the convergence of the
model and the quality of the estimates. In relation to model convergence, we relied on
the convergence checks provided in Stan for the Hamiltonian Monte Carlo algorithm.
According to these checks, an analysis diverged if the Gelman-Rubin statistic (R̂;
Gelman & Rubin, 1992) for any of the parameters was larger than 1.05, if there was
any divergent transition after warm-up (Stan Development Team, 2022), or if any
Bayesian Fraction of Missing Information (BFMI; Betancourt, 2017) was too low.
Stan also provides other diagnostic checks about the efficiency of the algorithm that
indicate if the maximum tree depth was exceeded or if the effective sample sizes
(ESS) were too low. While the latter checks were tracked, no action was taken if, for
example, the ESS of an analysis was too low, as these problems do not jeopardize
the quality of the estimates and they are usually solved by increasing the number of
iterations.

To assess the quality of the estimates, we looked at different accuracy statistics such
as bias, absolute bias (abbias), relative bias (rbias), and root mean squared error
(RMSE). Suppose that we focus on the set of parameters Θ (e.g., the thresholds,
the latent states, or the autoregressive effect) and we run a simulation with M repli-
cations per condition. Given a condition c where there are Nc parameters Θn with
n = 1, . . . ,Nc, and their estimates for the m-th replication are Θ̂nm, with m = 1, . . . ,M,
then, these accuracy statistics are defined as follows:

bias =
1
M

M

∑
m=1

[
1

Nc

Nc

∑
n=1

(Θ̂nm −Θn)

]
, (4.11)

abbias =
1
M

M

∑
m=1

[
1

Nc

Nc

∑
n=1

|Θ̂nm −Θn|
]
, (4.12)

rbias =
1
M

M

∑
m=1

[
1

Nc

Nc

∑
n=1

Θ̂nm −Θn

Θ

]
, (4.13)

RMSE =
1
M

M

∑
m=1

√
1

Nc

Nc

∑
n=1

(Θ̂nm −Θn)2. (4.14)

For parameters such as the item thresholds, the latent state dispositions, and the at-
tractor, we did not compute the relative bias because some of the true values of these
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parameters were 0 or very close to 0. As a result, the computed relative bias reached
infinity or was extremely large, which made the measure unusable. Hence, for these
parameters we computed the correlation between the true and the estimated param-
eters as well as the RMSE. In contrast, with parameters such as the autoregressive
effect and the innovation variance, it was possible to compute the relative bias in
most of the conditions. Additionally, we also inspected the coverage proportion of
the credibility intervals as well as their average width for all the parameters.

4.2.3 Results

In total, 148 analyses of the 9,600 diverged. All the divergent analyses were due to
the presence of divergent transitions after warm-up (as indicated by the convergence
checks in Stan). Figure 4.4 presents the percentage of convergent replications per
condition. This shows that most of the divergences occurred in the conditions with
100 time points and when the true autoregressive effect was the largest. These results
indicate that, in general, at least 200 time points seem to be required to fit the TV-
DPCM.

Next, to assess the quality of the estimates of the relevant parameters such as the
thresholds, the latent state dispositions, and the autoregressive effect, we looked at
the different accuracy statistics per each set of parameters. Hereby, we present in
detail the results from the threshold parameters and the autoregressive effect. For
the other parameters, we summarize the main findings and add supporting Figures in
Appendix D. Figure 4.5 shows the average coverage proportions, the average width
of the credibility intervals, the average correlation, and the average bias across con-
ditions for the threshold parameters. The intervals around these averages indicate the
interquartile range of the measure over the 200 replications per condition. Starting
with the width of the credibility intervals across conditions, panel B of Figure 4.5
shows the credibility intervals shrank when there were more time points. This was
expected, as usually with IRT models, the estimation of the item parameters improves
when the number of subjects (time points in the TV-DPCM) increases and vice versa.
Secondly, regarding the coverage proportion, the panel A shows that on average 80%
of the credibility intervals included the true parameter. It seemed that the average
coverage was slightly lower and spread more when there were more time points.
This can be explained by the fact that for some analyses, there were large biases and
all the threshold parameters were completely over- or underestimated. This in com-
bination with narrow credibility intervals resulted in lower coverage rates. Thirdly,
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Figure 4.3: True Latent Dynamic Process (in gray) and its Trend (in black) of Simu-
lated Data
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the correlation between the true and the estimated thresholds (panel C) was on av-
erage above 0.9 across all conditions and it approached 1 when the number of time
points increased. The presence of missing data worsened the correlation between
the true and the estimated thresholds in relation to the conditions without missing
values. However, these differences became smaller as the number of time points in-
creased. Lastly, the average bias of the threshold parameters was close to 0 across all
conditions (panel D). Similar figures for the absolute bias and RMSE of the thresh-
old parameters are included in Appendix D, which show that these measures became
smaller as the number of time points increased. Overall, the accuracy of the estimates
of the threshold parameters improves, as indicated with the average correlation and
average width of the credibility intervals, when the number of time points is larger
than 200.

Regarding the autoregressive effect, Figure 4.6 presents the average coverage pro-
portion, credibility interval width, absolute bias, and relative bias of this parameter.
On average, the coverage proportion of the autoregressive effect was close to 100%
across all conditions (panel A). In contrast, the width of the credibility interval clearly
depended on the number of time points and the percentage of missing values as shown
in panel B. Furthermore, we present the absolute bias instead of the correlation, as
computing the correlation was not adequate or informative. Panel C shows that the
average absolute bias ranges between 0.15 and 0.05 across conditions, decreasing
when the number of time points increased or when there were no missing values. Re-
garding the relative bias (panel D), the average is only presented for the conditions in
which the true autoregressive effect was different from 0. In general, the relative bias
of the autoregressive effect was on average 0 across all conditions. However, when
there were 100 time points, 3 items, no missing values, and an autoregressive effect
of 0.25, the TV-DPCM tended to overestimate the autoregressive effect about 20%
above its true value.

In relation to the other parameters of interest, such as the latent states, the attractor,
the variance of the innovations, and the total variance of the dynamic process, we
briefly summarize the findings about the recovery of these parameters in Table 4.1
(Figures for these parameters are included in Appendix D). In general, the average
coverage rate per condition of these parameters was between 80% and 90%, and
the coverage percentage did not seem to be influenced by the manipulated factors.
Moreover, the recovery of the attractor showed similar results as the ones seen for the
threshold parameters. Similarly, the results of the variance of the innovations and the
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variance of the dynamic process in relation to the width of the credibility intervals
and the mean absolute bias were similar to the results observed for the autoregressive
effect.

Table 4.1: Summary of the Recovery of the Other Parameters of the TV-DPCM

Parameter Results Summary

Latent state dispositions The width of the credibility intervals shrank when
the number of items increased. Also, the average
correlation increased when the number of items in-
creased, when the size of the autoregressive effect
was larger, and when there were no missing values.

Attractor Similarly as with the threshold parameters, increas-
ing the number of time points resulted in a slight
decrease of the coverage rate, a shrinkage of the
credibility intervals, and a raise of the average cor-
relation.

Variance of the innova-
tions and variance of the
dynamic process

Just as with the autoregressive effect, the width
of the credibility intervals and the average abso-
lute bias decreased when the number of time points
increased. However, these parameters tended to
be underestimated as their estimates were between
20% (conditions with 100 time points) to 10%
(conditions with 500 time points) lower than the
true parameter according to the relative bias.

4.2.4 Summary

To conclude, this simulation study showed that the TV-DPCM performs well at re-
covering its parameters across most of the conditions. In general, the accuracy of
the estimates of the TV-DPCM improves when the number of time points increases.
The results suggest that at least 200 time points are required for the model to con-
verge and to accurately estimate the parameters. However, given the width of the
credibility intervals of some parameters, we tentatively suggest 300 time points as a
minimum to estimate the TV-DPCM. Still, in some cases, the model might over- or
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underestimate some of the parameters of interest. While in such cases the estimates
are biased and the coverage of the credibility intervals is poor, the overall pattern is
still well recovered as indicated by the high correlations. Regarding the number of
items, it seems the TV-DPCM can be estimated with as little as 3 items, with the
caveat that the credibility intervals can be very wide, specially in combination with
the presence of missing data.

4.3 Empirical example: Using the TV-DPCM to Analyze
Self-Esteem

To exemplify how to use and interpret the results of the TV-DPCM, in this section,
we analyzed mood data from one subject. These data, collected between August
2012 and April 2013, were retrieved from Kossakowski et al. (2017) and were pre-
viously analyzed by, among others, Wichers and Groot (2016). The data come from
a 57 years old male (at the time of the study) that had been diagnosed with major
depressive disorder. The participant completed up to 10 semi-random assessments
per day for 239 days. During this period, the participant also followed a blind grad-
ual reduction of his anti-depressant medication dosage. In what follows, the items of
interest and the data collection procedure are described in detail. Then, the data pre-
processing procedures are presented. Finally, the TV-DPCM is adjusted to the data
in order to study the psychological dynamics of self-esteem and the performances of
the items of the ESM questionnaire.

4.3.1 Data Collection and Procedure.

As mentioned before, the participant filled in an ESM questionnaire up to 10 times
a day for 239 days. The questionnaire was programmed at random moments within
90-minute intervals that were set between 07:30 AM and 10:30 PM. After the beep
signal, the participant had a 10-minute window to complete the questionnaire, which
consisted of 50 momentary assessment items that measured different emotions (e.g.,
feeling enthusiastic or feeling lonely), self-esteem, and descriptions of the situation
such as whether the participant was alone or doing something. Furthermore, addi-
tional items were used at certain beep signals to measure, for example, sleep quality
and depressive symptoms. These items were filled up on a daily or weekly basis. All
the momentary assessment items were measured on a 7-point Likert scale from “not
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feeling the state” to “feeling the state very much”. The participant completed a total
of 1473 assessments (i.e., on average 6.2 assessments per day). Moreover, the study
was divided in 5 phases (Kossakowski et al., 2017): (1) A baseline period of four
weeks, (2) a double-blind period without dosage reduction of two weeks, (3) a dou-
ble blind period with gradual dosage reduction of eight weeks, (4) a post-assessment
period of eight weeks, and (5) a follow-up period of twelve weeks.

For this empirical example, we actually fitted the TV-DPCM to different sets of items
including some or all the phases. The sets of items were defined based on the results
from a principal component analysis on the mood items (Wichers & Groot, 2016),
which extracted three components: Positive affect, negative affect, and mental unrest.
Furthermore, the set of items that measured self-esteem was also analyzed with the
TV-DPCM. Here, we present the results from the best fitting model5 to illustrate the
TV-DPCM, which was when fitting the model to the items of self-esteem including
phases 1 and 2 (286 complete beeps).

4.3.2 Data Pre-processing

The items of self-esteem were I like myself (Self-like), I am ashamed of myself
(Ashamed), and I doubt myself (Self-Doubtful)6. The items Ashamed and Self-
Doubtful were reverse-coded to have high scores on the scale represent high levels
of self-esteem. Also, given that not all the response categories were selected and
that some were selected too few times, several response categories were collapsed.
For the item Self-like, the response categories lower than 3 and the response cate-
gories larger than 5 were collapsed and recoded into response categories 1 and 3,
respectively. Also, response category 4 was recoded as 2. For the items Ashamed
and Self-Doubtful, response categories lower than 5 (after reversed coding) were col-
lapsed into response category 1 and response categories 6 and 7 were recoded to 2

5When developing the TV-DPCM, we were also working simultaneously on developing posterior
predictive model checking methods (PPMC) to assess the goodness of fit of the TV-DPCM. By using
preliminary versions of these PPMC methods that we were developing, the analysis of the items of
self-esteem including the phases 1 and 2 seemed to lead to the best results. Still, the results with the
complete data set are reported in Appendix D.

6A fourth item of self-esteem was I can handle anything. However, this item was excluded be-
cause the scale did not seem to be measuring an unidimensional construct when this item was included
according to the preliminary version of the PPMC methods.
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and 3, respectively. Therefore, the responses were changed from a 7-point Likert
scale to a 3-point Likert scale.

Figure 4.7: Observed Mean Scores of the Self-Esteem Items
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Moreover, it is important to note that the TV-DPCM is a discrete time model. This
means that the model requires that the time interval between consecutive observations
is the same for the whole duration of the data collection. This was clearly not the case
with the data at hand due to the random beeps, the missing data, and the overnight
time between days. One way to address this issue within the Bayesian framework is
to include missing values in order to make the time intervals between observations
approximately the same (Asparouhov et al., 2018). This approach has been shown
to be useful to deal with unequal time intervals and the results from these kind of
analyses are comparable with results from continuous time models (de Haan-Rietdijk
et al., 2017b). Given this, we also implemented this approach in the TV-DPCM
analysis of the self-esteem items. For this, we divided the days in 90-minute time
windows. As a result, there is a total of 16 time windows per day, 6 of which were
always missing because they happened during the night. Observations within any of
these time windows were considered as a representation of the state of self-esteem
of the participant for that time point. When no observations were available, “missing
values” were included in the date set. By doing this, we added 380 rows of missing
values, for a total number of 666 time windows. The time series of the observed
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mean scores, after recoding and after including rows of missing values, is presented
in Figure 4.7. The mean scores ranged between 1 and 3.

4.3.3 Fitting the TV-DPCM

To fit the TV-DPCM to the data, we used the same setup for the Hamiltonian Monte
Carlo algorithm as we did in the simulation study. This means that we ran three chains
in parallel, each with 2000 iterations, 500 of which were discarded as warm-up, and
we kept the same values for the adapt_delta (0.99) and max_treedepth (15) parame-
ters. To check convergence of the model, we examined the diagnostics provided in
Stan for the HMC algorithm. According to these diagnostics, we found no evidence
of divergence. Graphical diagnostics for some selected parameters are presented in
Appendix D.

Table 4.2: Estimated Parameters of the TV-
DPCM

Median SD C.I. ESS

δ̂11 −2.55 0.55 (−3.63,−1.46) 4474
δ̂12 1.46 0.44 (0.6,2.34) 3110
δ̂21 −1.44 0.63 (−2.69,−0.21) 4784
δ̂22 −1.60 0.48 (−2.55,−0.67) 3429
δ̂31 0.55 0.44 (−0.32,1.41) 3041
δ̂32 2.54 0.47 (1.63,3.48) 3177

ϕ̂ 0.47 0.12 (0.22,0.69) 758
Ψ̂ 1.90 0.56 (1.03,3.2) 1212
σ̂2 2.48 0.64 (1.47,4.02) 1401

Note. C.I. = 95% central credible interval.

Table 4.2 shows the estimated values (i.e., the median of the posterior distribution),
the standard deviation of the posterior distribution, the 95% credibility interval, and
the effective sample size of the threshold parameters, the autoregressive effect, the
variance of the innovations, and the total variance of the dynamic process. Note that
the threshold parameters are ordered within items 1 and 3 but not for item 2. This
means that there is a “reversal” for item 2. Hence, the probability to select response
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category 2 is always lower than the probability to select either response category 1
or 3 across the latent continuum (see Figure 4.9). Next, the estimated autoregressive
effect was 0.47, which implies that there is a medium-strong dependency between
consecutive states of self-esteem. Thus, when the person experienced a high level of
self-esteem at a certain time point, it was likely that they would keep experiencing
high levels of self-esteem for the next measurement. Lastly, the variance of the inno-
vations and the variance of the dynamic process were 1.9 and 2.48, respectively. The
first one indicates the variability of the state of self-esteem that cannot be explained
by the previous state of self-esteem. The latter represents the total variance of the
states of self-esteem across the time series.

Figure 4.8: Estimated Latent Dynamic Process
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Note. The estimated latent state dispositions for each beep (observed and missing) are repre-
sented with the gray line. The trend of the dynamic process or attractor is represented with
the black line alongside with its 95% credibility interval band in light gray.

The estimates of the latent state dispositions and the time-varying attractor are pre-
sented in Figure 4.8. To facilitate the interpretation, these estimates were previously
divided by the standard deviation of the dynamic process (i.e., σ̂ ). By doing this, a
latent state disposition of 1 means that the latent state of the individual at a certain
time point is one standard deviation above the expected mean score on the test. Thus,
Figure 4.8 shows that the latent state dispositions varied between −0.91 and 2.91.
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The time varying mean or attractor with its credibility interval band shows a slight
increasing trend over time7. This implies that, on average, at the beginning of the
study the mean of the latent states of self-esteem was about one standard deviation
above the expected mean score of the questionnaire. Moreover, the mean of the la-
tent states of self-esteem increased in such a way that by the end of the second phase,
the mean of the latent states was close to two standard deviations above the expected
mean score of the questionnaire.

Importantly, one of the key features of IRT modeling is that IRT models allow study-
ing the properties of the items and the test. In this context, IRT provides the item
characteristic functions (ICFs), the item information functions (IIFs), and the test
information function (TIF). For the TV-DPCM, we can compute and plot these func-
tions because the model assumes that the item parameters do not change over time
(longitudinal measurement invariance holds). Therefore, these functions are defined
given the latent state disposition (θt) at a certain time point t, namely the states of
self-esteem of the individual. Figures 4.9 to 4.11 present the ICFs, the IIFs, and the
TIF for the three items of self-esteem. Just as before, to facilitate the interpretation,
the estimated latent state dispositions and the estimated thresholds were divided by
the standard deviation of the dynamic process σ̂ . Regarding the ICFs, for the items
Self-like and Self-Doubtful, the curves for each response category are nicely ordered
and each of the response options gets to have the highest response probability at
some point in the latent continuum. On the other hand, for the item Ashamed there
is a reversal (i.e., the threshold parameters are not ordered for this item). As a con-
sequence, there is no point on the latent continuum where the response category 2
has the highest response probability. Additionally, when inspecting the IIFs, we can
see at what levels of the latent continuum the items are more or less informative.
Thus, the item Ashamed seems to be more useful at measuring lower states of self-
esteem and the item Self-Doubtful seems to be more useful at measuring higher states
of self-esteem. In contrast, the item Self-Like is less informative than the other two
items. Nonetheless, it seems it is useful to distinguish between very high and very
low states of self-esteem but it is not informative in the middle levels of self-esteem.
Lastly, the TIF shows that, overall, these three items are the most informative when
measuring lower levels of self-esteem (solid line). However, during the study the
participant mostly experienced medium and high levels of self-esteem, which means

7This trend must be interpreted with caution given the width of the credibility intervals of the attrac-
tor parameter, which can also suggest that the real trend is stable.
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Figure 4.9: Item Characteristic Functions for the Items of Self-Esteem
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that their self-esteem was measured with high levels of standard measurement error
(dashed line). This indicates that more items would be needed to accurately measure
the whole spectrum of the participant’s self-esteem.

Figure 4.10: Item Information Functions of the Items of Self-Esteem
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Finally, we also computed the expected mean scores given the model, which can be
interpreted as estimates of the true scores (Embretson & Reise, 2013), to compare
them with the observed mean scores. This is shown in Figures 4.12 and 4.13. Figure
4.12 shows the nonlinear relation between the estimated latent state dispositions and
the observed mean scores. It also displays the expected mean scores given the model
(black line) for the observed range of the latent state dispositions. This plot evidences
that the observed mean scores are not sufficient statistics for the latent state disposi-
tions. Moreover, Figure 4.13 shows the observed mean scores against the expected
mean scores for the last 50 observed beeps. The trajectory of the observed mean
scores is closely followed by the trajectory of the expected mean scores. This shows
the high predictive value of the TV-DPCM.
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Figure 4.11: Test Information Function
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4.4 Discussion

In this chapter, we presented an extension of the PCM to analyze psychological time
series, namely, the TV-DPCM. This proposed model integrates the PCM (Masters,
2016) and the TV-AR (Bringmann et al., 2017) to allow studying the quality of the
measures of psychological constructs when measured intensively on one subject. We
tested the performance of the model in a simulation study while controlling for the
number of time points, the number of items, the size of the autoregressive effect, and
the presence of missing data. We also illustrated, by means of an empirical example,
how to estimate the model and interpret its results. Overall, the TV-DPCM seems to
be a promising tool to further understand how psychological measurement works on
intensive longitudinal settings.

In general, the simulation study indicated that the model requires a large number of
time points (more than 200) to converge and to deliver accurate estimates. This is
in line with other results from simulation studies with autoregressive models for one
individual (Bringmann et al., 2017; Schuurman et al., 2015). In fact, the TV-DPCM
might also require more time points due to the increased complexity of the model.
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Figure 4.12: Comparison Between the Estimated Latent States Dispositions, the Ex-
pected Mean Scores, and the Observed Mean Scores
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Note. Comparison between the estimated latent state dispositions and the observed mean
scores (gray dots). Also, the expected mean scores given the model in relation to the latent
state dispositions are represented by the solid black line.

Figure 4.13: Comparison Between the the Expected Mean Scores and the Observed
Mean Scores for the First and the Last 50 Observations.
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Note. This figure presents the observed mean scores (solid light gray line) for the last 50
observed beeps of phase 2. The dashed gray line represents the expected mean scores given
the model for the same 50 observed beeps.
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Given that the credibility intervals of the estimates tend to be wide even with 200
time points, we actually suggest 300 observed time points as a minimum to have less
uncertainty about the results and we discourage researchers to use the model with
less than 200 time points. Nonetheless, the TV-DPCM seems to be able to accurately
recover its parameters across most of the tested conditions.

In relation to the empirical example, we showed how the TV-DPCM allows making
a rich interpretation of the scales used in intensive longitudinal settings. By using
all the features provided by the IRT framework while accounting for the time de-
pendencies of the data, we were able to take a closer look at the properties of the
items and the scale of self-esteem from the empirical data. The information provided
by the ICCs, the IIFs, and the TIF allows assessing the quality of the items and the
scale, which can give researchers the opportunity to make adjustments for future ap-
plications of their experience sampling questionnaires. In this particular example, we
noticed that probably more items that measure medium and high levels of self-esteem
were needed to reliably measure this individual’s self-esteem.

Even though the TV-DPCM can be a useful tool to gather relevant information about
the measures in intensive longitudinal data, which can help to improve the scales
used, the model still has its limitations. First, as shown in the empirical example,
the model requires several steps of data manipulation such as reverse coding and
collapsing response options. These steps are required to facilitate the interpretation
of the latent variable and to be sure that thresholds are interpretable. Just as in the
PCM, all responses options need to be observed to be able to estimate the parameters
of the items in the TV-DPCM. If this is not the case, collapsing and recoding some
response options becomes necessary, which reduces the variability of the observed
data. While this might be a limitation of the model, it also represents a general
challenge for researchers that are interested in studying psychological dynamics. This
suggest that more research is needed in relation with the wording and the number of
response options of the Likert-scale items used in intensive longitudinal settings. In
other words, research focused on testing and improving the questionnaires used in
intensive longitudinal setting is lacking.

Secondly, while the TV-DPCM is flexible enough to handle (non-linear) trend-stationary
time series, which is a specific kind of non-stationarity, the model cannot handle other
types of non-stationarity. Initially, a more flexible extension would be to allow the
autoregressive effect to also smoothly vary over time (Bringmann et al., 2017). By
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doing this, the model would be able to handle time series with time varying variances
and autocorrelations. Similarly, the TV-DPCM assumes that longitudinal measure-
ment invariance (Meredith, 1993; Meredith & Teresi, 2006) holds. This assumption
implies that the items have the same meaning and the same relation with the latent
variable for the whole duration of the study. However, if measurement invariance
does not hold, the parameters of the items might change, namely item parameter
drift (Donoghue & Isham, 1998), and then the latent state dispositions from different
measurement occasion would not be comparable. Given this, it would be necessary
to extend the model to handle item parameter drift or at least develop statistics to test
whether there is item parameter drift on some items. Currently, one way to study
measurement non-invariance on intensive longitudinal data from multiple subjects
has been proposed by Vogelsmeier et al. (2020) with the latent Markov latent trait
analysis. Yet, given the complexity of this model, its use by practitioners might be
limited and more research is needed to set guidelines in terms of minimum sample
size, number of measurement occasions, or number of response options.

Thirdly, the simulation study showed that the TV-DPCM requires more than 200
time points to perform well. This is considerably above the typical length of the
time series observed in intensive longitudinal research of psychological dynamics
(Vachon et al., 2019). To overcome this, future research can try to extend the model
to multilevel settings. Furthermore, the simulation also showed that the credibility
intervals of most parameters tend to be relatively wide. A solution to this would be
to increase the number of items in order to have more accurate estimates of the latent
dynamic process. Yet, increasing the number of items might be hard to achieve in
most intensive longitudinal data settings.

Lastly, in the empirical example, we showed that the TV-DPCM has a reasonable
predictive value when comparing the expected mean scores and the observed mean
scores. However, this is no guarantee that the model fits the empirical data well.
For this, goodness of fit statistics should be developed for the TV-DPCM model and
in general for the methods used to analyze intensive longitudinal data. Within the
Bayesian framework, a method to assess the goodness of fit of a model is based on
posterior predictive model checking methods (Gelman et al., 1996). These methods
have also been developed for Bayesian IRT models (Li et al., 2017; Sinharay et al.,
2006) but they need to be extended for the TV-DPCM to account for the time de-
pendencies present in intensive longitudinal data. In fact, this is ongoing research,
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that we expect to be also useful for the TV-DPCM and other IRT model for intensive
longitudinal data.

To conclude, bringing IRT with all its features to intensive longitudinal research is a
great opportunity for the field. In addition to allowing the study of the psychological
dynamics of the individual, it allows assessing the quality of the scales used in inten-
sive longitudinal data, which can provide insight in how to improve these scales. As
a result, researchers might be able to make better inferences and comprehend better
the psychological dynamics of the individuals.

133





Chapter 5

Posterior Predictive Model Checking
Methods for the Time-Varying Dynamic
Partial Credit Model

This chapter is an unpublished manuscript titled Castro-Alvarez, S., Sinharay, S., Bringmann,
L. F., Meijer, R. R., & Tendeiro, J. N. (2022). Posterior Predictive Model Checking Methods
for the Time-Varying Dynamic Partial Credit Model
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Abstract
In recent years, new models to analyze intensive longitudinal data have been pro-
posed based on item response theory. One of this new models is the time-varying
dynamic partial credit model (TV-DPCM), which is suitable to analyze psychologi-
cal time series (N = 1). The TV-DPCM is a combination of the partial credit model
and the time-varying autoregressive model which allows studying the psychometric
properties of the items and modeling nonlinear trends at the latent level. Being the
TV-DPCM a new model, statistics to assess its model fit are lacking. In this chapter,
we propose and develop several test statistics and discrepancy measures based on the
posterior predictive model checking method (PPMC) to assess the goodness-of-fit
of the TV-DPCM. The proposed tools are based on implementations of the PPMC
method for traditional dichotomous and polytomous item response theory models.
The test statistics and discrepancy measures aim to identify model misfit when one
or more of the assumptions of the TV-DPCM are violated. Simulated and empirical
data are used to illustrate the effectiveness of the different measures.

Keywords: time-varying dynamic partial credit model, partial credit model, autore-
gressive model, model misfit, posterior predictive model checking, psychological time
series
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The use of intensive longitudinal data to study psychological dynamics has steadily
grown during the last years (Hamaker & Wichers, 2017; Trull & Ebner-Priemer,
2020). Briefly, intensive longitudinal data consist of measuring individuals several
times during short periods of time. For example, typical designs tend to request
participants to fill in short questionnaires 10 times a day for one week (Vachon et al.,
2019). This kind of studies is also known in the literature as “ecological momentary
assessment”, “experience sampling”, or “daily diaries” (Myin-Germeys & Kuppens,
2021; Shiffman et al., 2008).

The growing interest in has also resulted in the development of new and complex
statistical techniques to analyze intensive longitudinal data in psychology. Several
new models and frameworks have been proposed to deal with such kind of data.
Examples include network models (Bringmann et al., 2016; Bringmann et al., 2013;
Moeller et al., 2018), dynamic structural equation modeling (Asparouhov et al., 2017,
2018), dynamic factors models (Fuller-Tyszkiewicz et al., 2017; Molenaar, 1985;
Song & Zhang, 2014), unified structural equation modeling (Beltz et al., 2013; Beltz
& Gates, 2017), and continuous-time modeling approaches (Voelkle & Oud, 2013;
Voelkle et al., 2012).

Furthermore, researchers have also developed models based on the item response
theory framework (IRT; Embretson & Reise, 2013) to analyze intensive longitudinal
data. For example, the Rasch and the partial credit model were reformulated within
the state-space modeling framework by Rijn et al. (2010). The Rasch model was
also extended to handle continuous time data by Hecht et al. (2019), and recently, the
partial credit model was extended to analyze categorical and multivariate time series
data Castro-Alvarez et al. (2022a). These models have been specially developed to
handle intensive longitudinal data when the items are dichotomous or polytomous
(e.g., Likert-scale items). IRT models allow studying the response processes of the
persons given their level on the latent ability. Furthermore, they also allow under-
standing the properties and the quality of the items and scales by means of the item
parameters, the item characteristic function, and the item information function. In
this chapter, we are specially interested in the time-varying dynamic partial credit
model (TV-DPCM; Castro-Alvarez et al., 2022a) because this model is a promising
approach that can handle non-stationary time series. The TV-DPCM is a combination
of the partial credit model (PCM; Masters, 2016) and the time-varying autoregressive
model (TV-AR; Bringmann et al., 2017). In a nutshell, the TV-DPCM allows mod-
eling nonlinear latent dynamic processes of one individual while accounting for the
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measurement error of the latent construct of interest (e.g., positive affect). Moreover,
as the TV-DPCM is an IRT model, it also allows studying the psychometric prop-
erties of the items and the scales used in intensive longitudinal research. However,
in empirical settings, practitioners lack tools to assess the goodness-of-fit of the TV-
DPCM. In this chapter, we develop goodness-of-fit statistics to assess the fit of the
TV-DPCM to data. These goodness-of-fit statistics are derived from the posterior
predictive model checking method (PPMC; Gelman et al., 1996; Rubin, 1984).

The PPMC method is a popular model checking tool within the Bayesian framework
(Gelman et al., 1996; Rubin, 1984). The method consists of comparing features
of the observed data to those from “replicated” data from the fitted model. Typ-
ically, these features are either test statistics or discrepancy measures that can be
computed on both the observed and the replicated data. Furthermore, the PPMC
method also allows estimating what is known as posterior predictive p-values (also
known as Bayesian p-values), which are tail-area probabilities that quantify the sim-
ilarity of the observed data with the replicated data. Within the IRT framework, the
PPMC method has been introduced for dichotomous IRT models by Glas and Mei-
jer (2003) and Sinharay (2005, 2006), and for polytomous IRT models by Li et al.
(2017) and Zhu and Stone (2011). Based on these previous studies, we adapt and
extend existing test statistics and discrepancy measures to assess the goodness-of-fit
of the TV-DPCM (Castro-Alvarez et al., 2022a). The PPMC tools presented in this
chapter can also be generalized to other dynamic IRT models.

The remaining of the chapter is organized as follows. Firstly, we briefly introduce the
TV-DPCM alongside with its assumptions, practical use, and limitations. Secondly,
we present the rationale behind the PPMC method and we list several test statistics
and discrepancy measures proposed for the TV-DPCM. Thirdly, we present results
from applying the proposed PPMC measures to simulated data. Then, we present
results from applying the PPMC measures to empirical data. In this case, we show
three examples, two in which the TV-DPCM does not fit the data and one in which it
does. Finally, we discuss the implications and practical use of the proposed methods
for future research.
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5.1 The Time-Varying Dynamic Partial Credit Model

Let us consider a person who, as a part of treatment for depression, is asked by
a therapist to report their mood multiple times a day by means of an application
on a mobile phone for the whole duration of the treatment. In this application, a
set of emotions is presented to the individual on every measurement occasion, and
the individual must report the extent to which they are feeling those emotions on
a Likert scale (e.g., with 5 response options). For example, to the question “I feel
enthusiastic”, the individual may choose among the response options “not at all”
through “very much”.

While variation is expected over the measurement occasions for an individual, we
would expect that the measurements follow, for example, an increasing trend if the
treatment was effective (with larger scores representing higher well-being). The ob-
servations from this person are useful to study psychological dynamics (Hamaker et
al., 2015) and constitute a multivariate categorical time series. Temporal dependence,
or the degree to which current observations can be predicted by previous observa-
tions, is one particularly informative aspect of multivariate categorical time series.
A popular set of tools to handling temporal dependence consists of autoregressive
(AR) models, which are a family of statistical models in which the structure of the
time-dependency in the data is explicitly modeled through regression equations (e.g.,
Bringmann et al., 2017; Rovine & Walls, 2006). A recent example of an AR model
based on IRT is the time-varying dynamic partial credit model that was suggested by
Castro-Alvarez et al. (2022a).

The TV-DPCM can be viewed as a combination of the PCM (Masters, 2016) and the
TV-AR (Bringmann et al., 2017). Thus, the model captures the assumption that the
relationship between the observed responses and the latent states of the individual is
described by the PCM, and that this relationship is stable over time (thus, longitu-
dinal measurement invariance is assumed). Furthermore, at the latent-variable level,
the TV-DPCM is based on the assumption that the latent states are described by a
dynamic nonstationary structure that is represented by the TV-AR model. The pur-
pose of this assumption is to account for the dependencies over time, which might
be present between consecutive measurement occasions, while also accounting for
durable change over time. Thus, the TV-DPCM is described by two equations: the
measurement equation and the structural equation. The measurement equation is
technically the same as the general equation of the PCM. Let us assume that the
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person reported how they felt at each of T time points on I emotions (items), each
feeling being expressed in one of mi + 1 response categories. Then, the probability
of the person to select the x-th category of item i at time t can be expressed as

P(Xi = x|θt) =

exp
[ x

∑
k=0

(θt −δik)
]

mi

∑
v=0

exp
[ v

∑
k=0

(θt −δik)
] , (5.1)

where x = 0, . . . ,mi; i = 1, . . . , I; t = 1, . . . ,T ; θt is the latent state disposition of the
individual at time t and δik is the step parameter, also known as threshold parameter,
of the k-th response category of item i. The threshold parameters δik represent the
level on the latent continuum at which the probabilities of selecting the response
options k and (k−1) are equal. In other words, the threshold parameters are the points
on the latent continuum at which consecutive category response functions intercept.
Furthermore, by definition:

0

∑
k=0

(θt −δik)≡ 0. (5.2)

Note that the expression provided by Equation 5.1, which is the measurement equa-
tion of the TV-DPCM, is identical to that of a PCM. Then, the TV-DPCM involves
the assumption that the latent states follow a dynamic structure based on the TV-AR
model with a time-varying intercept. Thus, the dynamic equation under the model is
defined as

θt = αt +ϕθt−1 + εt , (5.3)

where αt represents the time-varying intercept and ϕ represents the autoregressive
effect between consecutive latent states, which is also known as the inertia (Kuppens
et al., 2010); εt represents the innovation at time t. The innovations are assumed to be
normally distributed with mean 0 and variance Ψ. Also, in contrast with Bringmann
et al. (2017), in the TV-DPCM, the autoregressive effect is not allowed to change over
time. This constrain was kept because the authors of the TV-DPCM did not succeed
on writing a working model that also included a time-varying autoregressive effect
(Castro-Alvarez et al., 2022a).

To model the time-varying intercepts αt , the generalized additive modeling frame-
work (GAM, Bringmann et al., 2017; Wood, 2017) is used within the TV-AR model
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implemented at the latent level. This framework is useful to model smooth nonlin-
ear relationships. In general, generalized additive models (GAMs) imply that the
relationship between the dependent variable and the predictors is based on multiple
“basis functions”, which are functions of the predictor. Then, the basis functions are
weighted and summed together to form the nonlinear smooth function that better de-
scribes the relationship between the variables. For the TV-DPCM, we assumed that
the time-varying intercepts αt are a function of time based on the GAM without error,
that is,

αt = f (t) =
s

∑
j=1

β jb j(t), (5.4)

where b j(), j = 1, . . . ,s, is the j-th basis function and β j is the unknown weight of
the j-th basis function.

There exist several methods which can be used to define the basis functions, known
as smoothers. Popular smoothers for univariate analyses are, for example, B-splines
and thin plate (Wood, 2017). In addition to selecting a smoother, one must also select
a penalization factor. Penalization is required to avoid overfitting and to diminish the
fit wiggleness. In particular, the TV-DPCM, as implemented by Castro-Alvarez et al.
(2022a), uses basic cubic splines to define the basis functions for the intercept and
penalizes the fit by using a random walk prior on the β j coefficients (Kharratzadeh,
2017).

Because of the introduction of a dynamic model component at the latent level, unlike
for the PCM, the sumscore is no longer a sufficient statistic for the latent construct
in the TV-DPCM. In addition, the TV-DPCM involves the assumptions that the au-
toregressive process is of order 1, the dynamic process is trend-stationary based on a
nonlinear trend, and the item parameters do not change over time (i.e., longitudinal
measurement invariance holds).

Castro-Alvarez et al. (2022a) demonstrated, using simulation and real-data results,
that the TV-DPCM performs satisfactorily for certain types of multivariate categorical
time-series data when there are at least 200 time points. They concluded that the TV-
DPCM is a promising tool to further understand how psychological measurement
works on intensive longitudinal settings.

While the TV-DPCM showed some promise, before applying the TV-DPCM at a
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larger scale, one has to demonstrate, using appropriate tools, that this model fits in-
tensive longitudinal data adequately. However, Castro-Alvarez et al. (2022a) noted a
lack of research on assessment of fit for models handling intensive longitudinal data,
including the TV-DPCM. The main goal of this chapter is to fill that gap. Specifically,
this chapter develops several tools, all under the framework of PPMC (Gelman et al.,
1996; Sinharay et al., 2006), for assessing the goodness-of-fit of TV-DPCMs.

5.2 Posterior Predictive Model Checking

The idea behind the PPMC method is to assess whether various features of data sim-
ulated from the posterior predictive distribution are similar to those of the observed
data (Gelman et al., 1996; Rubin, 1984). Usually, certain summaries (e.g., descriptive
statistics) of the simulated and the observed data are compared. If there are system-
atic differences between the summaries for the two types of data, then one infers that
the model fails to explain an aspect of the data (Sinharay et al., 2006). The PPMC
method is in essence a visual diagnostic tool (Gelman et al., 1996). However, one can
also use what are known as posterior predictive p-values (PPPs), which are tail-area
probabilities. PPPs that are too extreme (for example, < .05 or > .95) are considered
to provide evidence of model misfit.

Let p(y|ω) be the likelihood function of a statistical model with parameters ω applied
to data y, and let p(ω) be the (joint) prior distribution of the parameters in the model.
Based on Bayes theorem, the posterior distribution of ω is p(ω|y), which is propor-
tional to p(y|ω)p(ω). Then, let us define yrep as “replicated” data that could have
been observed. Conceptually speaking, yrep are the resulting data of replicating the
experiment that produced y assuming that the model and the estimated parameters are
correctly specified. With this, the posterior predictive distribution of the replicated
data can be defined as follows:

p(yrep|y) =
∫

p(yrep,ω|y)dω

=
∫

p(yrep|ω,y)p(ω|y)dω (5.5)

=
∫

p(yrep|ω)p(ω|y)dω.
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Figure 5.1: Posterior Predictive Model Checking Methods
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Note. Visual representation of posterior predictive model checking methods by using a test
statistic (A) or a discrepancy measure (B). In panel A, the vertical line represents the value
of the test statistic of the observed data, the histogram represents the distribution of the test
statistic when computed for the replicated data yrep. The proportion of the histogram that is
larger than the test statistic of the observed data is an estimate of the PPP. Panel B represents
the scatter plot of the pairs {D(y,ω j);D(yrep j ,ω j)}. The proportion of dots above the dashed
gray line is an estimation of the PPP.
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The third step in Equation 5.5 follows from the assumption that y and yrep are condi-
tional independent given ω (Gelman et al., 2014).

It is possible to run the PPMC method using test statistics or discrepancy measures
(Gelman et al., 1996). When one uses a test statistic T to perform PPMC, where T is
a function of the data only (and not a function of the model parameters), one actually
compares the value T (y) to the posterior predictive distribution of T (yrep). Here, the
posterior predictive distribution of T (yrep) refers to the distribution of the statistic
T computed from the replicated data, or, yrep’s. The preferable way to compare
T (y) to the posterior predictive distribution of T (yrep) is to plot the histogram of the
posterior predictive distribution of T (yrep) against T (y) (see panel A of Figure 5.1).
Alternatively, one can also compute the corresponding PPP:

PPP = P(T (yrep)≥ T (y)|y) =
x

T (yrep)≥T (y)

p(yrep|ω)p(ω|y)dyrepdω, (5.6)

which is the tail-area probability of T (yrep) being larger than T (y).

When one performs PPMC using a discrepancy measure, D, to compare the simu-
lated and the observed data, where the value of D depends on the model parameters
ω , one compares the posterior distribution of D(y,ω) with the posterior predictive
distribution of D(yrep,ω). Panel B of Figure 5.1 demonstrates how one can perform
the comparison using a graphical plot. The posterior predictive p-value correspond-
ing to this comparison is given by

PPP = P(D(yrep,ω)≥ D(y,ω)|y) =
x

D(yrep,ω)≥D(y,ω)

p(yrep|ω)p(ω|y)dyrepdω. (5.7)

Because it is difficult to derive many theoretical results using equations 5.5 through 5.7
for all but very simple models, the application of the PPMC method is typically ac-
complished using simulations, and especially using MCMC algorithms (Gelman et
al., 2014; Kruschke, 2014). Given a set of N draws ω1,ω2, . . . ,ωN from the posterior
distribution p(ω|y), implementation of the PPMC involves the following steps for
j = 1,2, . . . ,N:

1. Given ω j, simulate a data set yrep j from the distribution p(y|ω j).
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2. Use yrep j to compute T (yrep j) when using a test statistic or compute D(y,ω j)
and D(yrep j ,ω j) when using a discrepancy measure.

While using a test statistic, the result is a set of N values T (yrep j). One can com-
pare the distribution of these values with T (y) via a histogram. The proportion of
T (yrep j) that is larger than T (y) is an estimate of the PPP. When using a discrepancy
measure, the result is a set of N pairs {D(y,ω j);D(yrep j ,ω j)}, which can be plotted
in a scatterplot. Consequently, the estimate of the PPP is the proportion of pairs for
which D(yrep j ,ω j) is larger than D(y,ω j). Note that the PPPs are not a result of
hypothesis-testing.

5.2.1 Test Statistics and Discrepancy Measures for the TV-DPCM

The importance of using a variety of test statistics and discrepancy measures to assess
the fit of IRT models using the PPMC method has been emphasized by, for example,
Sinharay et al. (2006) and Zhu and Stone (2011). Therefore, in this chapter, we
use a variety of test statistics and discrepancy measures to assess the fit of the TV-
DPCM. Some of the test statistics and discrepancy measures are modifications of
those suggested for IRT models by Li et al. (2017), Sinharay et al. (2006), Zhu and
Stone (2011), with modifications made to account for the time dependency implicit
in time series data and in the TV-DPCM. The test statistics and discrepancy measures
are described below. They are categorized into three groups: Test-level measures,
item-level measures, and item pairwise measures.

Test-Level Measures

Popular test-level measures for regular IRT models include comparing the distribu-
tion of the sumscores (Li et al., 2017; Zhu & Stone, 2011). To account for the time
component in the TV-DPCM, we initially used the trajectory of the time series of
the sumscores instead. However, assessing the trajectories of the time series was not
an effective measure to assess model misfit given preliminary simulations. Because
of this, we considered using other test statistics or discrepancy measures that could
be computed from the sumscores as test-level measures. Thus, traditional descrip-
tive statistics of time series data (see Chatfield, 2004) such as the autocorrelation
(ACF), the autocorrelation of the residuals (RACF), and the mean square successive
differences of the sumscores were used as test statistics or discrepancy measures.

145



5

Chapter 5. PPMC Methods for the TV-DPCM

Moreover, an adjusted version of the autocorrelation of the residuals based on the
residuals of the TV-DPCM is also proposed below.

Autocorrelation The autocorrelation function (ACF) consists of correlating one
variable with lagged versions of itself (Chatfield, 2004; Houben et al., 2020). This
statistic captures how self-predictive the variable is over time. The order of the auto-
correlation is defined by the number of times that the variable was lagged. Usually,
the strength of the autocorrelation is expected to fade away as the number of lags in-
creases. To assess the goodness-of-fit of the TV-DPCM, we use the autocorrelations
up to order 3 as test statistics.

Autocorrelation of the Residuals When fitting autoregressive models, the residu-
als are also ordered in time and can be seen as a time series. For this reason, calcu-
lating the autocorrelation function of the residuals is a usual procedure to assess the
adequacy of autoregressive models (Chatfield, 2004). For example, if the autocorre-
lation of the residuals at lag 1 is high, it might imply that an autoregressive model of
a higher order is needed to analyze the data. Following this idea, we consider the first
autocorrelation of the residuals (RACF) as a test statistic for the TV-DPCM. In this
case, we fit an autoregressive model to the time series of the sumscores and extract
the residuals in order to compute the autocorrelation.

Mean Square Successive Differences This statistic is commonly used in autore-
gressive models as an indication of instability (Houben et al., 2020; von Neumann
et al., 1941) and is a measure of dispersion that takes into account the order of the
data. It aims to measure how different the successive observations are. The mean
squared successive difference (MSSD) of the sumscores is computed as

MSSD(Y ) =
∑

T−1
t=1 (Yt+1 −Yt)

2

T −1
, (5.8)

where Yt is the sumscore at the t measurement occasion with t = 1, . . . ,T .

Autocorrelation of the Latent Residuals We propose another version of the auto-
correlation of the residuals, which is calculated with the residuals of the TV-DPCM.
For this, we first need to define how to compute the expected scores given the TV-
DPCM. The expected score of item i at time t given the latent score of the person at
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time t is:

Eit =
mi

∑
x=0

xP(Xi = x|θt), (5.9)

where P(Xi = x|θt) is the probability of the observed response to item i at time t as
defined in Equation 5.1. Then, to compute the expected sumscores given the TV-
DPCM, one can sum the expected scores across items. The expected sumscores
can be subtracted from the observed sumscores to obtain the residuals. Lastly, the
autocorrelation is computed based on these residuals. We refer to this statistic as the
autocorrelation of the latent residuals (LRACF).

Item-Level Measures

Discrepancy measures at the item level are used to identify problematic items. Typi-
cal item-level measures include the item scores distribution (Zhu & Stone, 2011), the
item-total correlation (Li et al., 2017; Sinharay et al., 2006; Zhu & Stone, 2011), and
item-fit indices such as the Orlando and Thissen item-fit statistic (Sinharay, 2006)
and Yen’s Q1 statistic (Li et al., 2017; Zhu & Stone, 2011). In this chapter, we use
the item-total correlation, Yen’s Q1, and the autocorrelation of the latent residuals of
the item scores as discrepancy measures.

Item-Total Correlation The item-total correlation has been used in the PPMC
method to demonstrate misfit of the Rasch model when the discrimination param-
eters varied across the items (Sinharay et al., 2006) and misfit of the graded response
model (GRM) for multidimensional data (Zhu & Stone, 2011). In general, the item-
total correlation coefficient is the simple correlation between the scores of an item
with the total score of the test. A more rigorous version of this static implies to cor-
relate the scores of an item with the rest scores, which are the total scores minus the
scores of the relevant item (Howard & Forehand, 1962). For our analysis, we use
the definition of the item-total correlation that uses the rest scores. Depending on the
scale of the items, different types of correlations are used (biserial, polyserial, and
Pearson). Moreover, to account for the time dependency of the data, we propose two
alternative versions of this coefficient. A first modification consists of fitting an au-
toregressive model to the rest scores and extracting the residuals of this model. Then,
we use the correlation coefficient between the item scores and these residuals as a dis-
crepancy measure. The second alternative involves fitting an autoregressive model to
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both the scores of the item and the rest scores; we use the correlation coefficient
between the residuals of the two models as a discrepancy measure.

Yen’s Q1. Yen’s Q1 (Yen, 1984) was proposed as a goodness-of-fit statistic that
compares the observed and the predicted score distributions of each item in dichoto-
mous unidimensional IRT models. This goodness-of-fit statistic was later generalized
for polytomous items (Zhu & Stone, 2011). Thus, for polytomous items, Yen’s Q1
can be defined as follows:

Q1 =
G

∑
g=1

mi

∑
x=0

Ng
(Oigx −Eigx)

2

Eigx
, (5.10)

where Oigx and Eigx are the observed and the expected proportions of responses in cat-
egory x of item i of group g, and Ng is the size of group g. The G groups (usually 10)
are ability subgroups of approximately the same size in which subjects with similar
ability are grouped together. In the TV-DPCM, the groups represent a subset of time
points in which the participant’s experiences had a similar intensity. When used as a
discrepancy measure in the PPMC approach, this measure has shown mixed results.
For example, Zhu and Stone (2011) did not find this measure effective to identify
violations of model assumptions of the GRM. In contrast, Li et al. (2017) found it ef-
fective to identify model misspecification for nested models based on the generalized
PCM.

We propose an alternative version of the Yen’s Q1 (referred to as “Q1 alt.” later) in
which the groups are defined according to the order of the observations; the first set
of observations form the first group and so on. By keeping the order of the observa-
tions, we expect to account for the time dependency likely to be observed in intensive
longitudinal data.

Autocorrelation of the Latent Residuals per Item As with the autocorrelation of
the latent residuals of the sumscores, we also use the autocorrelation of the residuals
given the TV-DPCM but for each item score. The expected item scores are obtained
by means of Equation 5.9. Then, to obtain the residuals, the expected scores are
subtracted from the observed item scores. Lastly, the autocorrelation of the residuals
is computed per item.
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Pairwise-Measures

Models within the IRT framework typically involve the assumption of local indepen-
dence, which means that the relationships among items are fully captured by the IRT
model (Embretson & Reise, 2013). Consequently, when studying the fit of an IRT
model using the PPMC method, fit indices that describe the associations between
items, such as the odds ratio, Yen’s Q3, and the absolute item covariance residual,
have also been used as discrepancy measures (Li et al., 2017; Zhu & Stone, 2011).
In this study, we also use these same statistics to assess the goodness-of-fit of the
TV-DPCM. Next, we briefly describe each of these measures.

Yen’s Q3 Yen’s Q3 (Yen, 1984) is a popular fit statistic used as a discrepancy mea-
sure for polytomous IRT models (Li et al., 2017; Zhu & Stone, 2011). When used
as a discrepancy measure, it has been effective in identifying violations of unidimen-
sionality when assessing the GRM (Zhu & Stone, 2011). In simple words, Yen’s
Q3 is defined as the correlation between scores of two items after controlling for the
latent ability of the persons. In other words, given the residuals scores (di) of two
items, which are computed based on the expected scores of Equation 5.9, Yen’s Q3 is
the correlation of the residuals (Q3 = cor(di,d j)).

Odds Ratio The odds ratio has been used as a discrepancy measure with dichoto-
mous and polytomous IRT models (Li et al., 2017; Sinharay et al., 2006; Zhu &
Stone, 2011). When applied to polytomous items, the responses need to be di-
chotomized to compute this statistic. For dichotomous responses, the odds ratio is
defined as

OR =
n11n00

n10n01
, (5.11)

where ni j is the number of persons whose responses to the two items in the item pair
were i and j, respectively. For the version of the odds ratio that we used to assess the
fit of TV-DPCM, ni j denotes the number of time points where the subject’s responses
were i and j. We also use a modified version of this discrepancy, where the odds ratio
between two items is computed for each half of the time series and the difference
between the two odds ratio is used as a discrepancy measure. The reason of using
this discrepancy, referred to as the odds ratio difference or the OR difference is to
capture changes in the response process that are not accounted for by the TV-DPCM.
For example, if the person starts interpreting and responding to the items differently
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after a certain time point (i.e., longitudinal measurement invariance does not hold),
this measure should indicate some sort of misfit given that longitudinal measurement
invariance is assumed in the TV-DPCM.

Absolute Item Covariance Residual This discrepancy measure was used by Zhu
and Stone (2011) to test violations of unidimensionality and local dependence of the
GRM. This measure is defined as the absolute value of the difference between the
observed and the expected item covariances after estimating the model. Given two
items i and j, the absolute item covariance residual is defined as follows:

RESIDi j = |cov(Xi,X j)− cov(Ei,E j)|. (5.12)

Here, Ei is the expected scores on item i across all the time points, which is com-
puted based on Equation 5.9. As with the odds ratio, we compute the absolute item
covariance residual for each half of the time series and use the difference between
the two estimates as a discrepancy measure in addition to using the residual itself as
a discrepancy measure. This alternative is referred to as RESID difference.

5.3 Testing the PPMC Method with Simulated Data

We studied the performance of the different test statistics and discrepancy measures
under the PPMC framework for assessing the fit of the TV-DPCM to several sim-
ulated data sets. In general, we generated data that violated none or some of the
assumptions of the TV-DPCM. We then fit the TV-DPCM to the simulated data and
computed the values of the test statistics and discrepancy measures. From these val-
ues, we computed the PPPs for each measure and evaluated the proportion of PPPs
that were too extreme (smaller than 0.05 or larger than 0.95).

5.3.1 Method

We studied the performance of the test statistics and discrepancy measures for 10
different generating models. Two of these did not involve any misfit of the TV-
DPCM while eight had different types of misfit. The description of each model is
presented in Table 5.1. For all the simulations, we used 200 time points, which is the
minimum number of time points advisable to accurately estimate the parameters of
the TV-DPCM (Castro-Alvarez et al., 2022a). Moreover, the number of items was
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Table 5.1: True Generating Models and Sources of Misfit

Data Generating Model Source of Misfit

TV-DPCM None.

DPCM None.

TV-DPCM(3) The true dynamic process has 3 lagged effects.

TV-MDPCM The items are grouped into two correlated latent
dimensions.

TV-DGPCM Two items have discrimination different from 1.

TV-DPCM-IPD There is homogeneous item parameter drift for all
the items on the second half of the measurements.

TV-DPCM-HIPD Two items show parameter drift for the last third of
the observations. One item becomes “harder” and
the other becomes “easier”.

TV-DPCM-Default The responses to the last third of the measurements
are the same for all the items and time points.

TV-DPCM-Random The responses to the last third of the measurements
are randomly generated for all items.

TV-DPCM-Meaning The interpretation of one item changes for the last
third of the measurements. The simulated item
scores of this item are reversed.
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varied between 3, 6, and 12. By crossing the generating model and the number of
items, we obtained 30 different simulation conditions. We used 10 replications per
condition.

The TV-DPCM was fitted to each simulated data set using the Hamiltonian Monte
Carlo algorithm (Carpenter et al., 2017). For each data set, we employed three par-
allel chains and 2,000 iterations per chain (500 iterations of warm-up). Additional
parameters of the Hamiltonian Monte Carlo algorithm were adjusted. In particular,
the delta parameter was increased from 0.8 to 0.99 and the maximum treedepth was
increased from 10 to 15 (see Stan Development Team, 2020). Then, the PPPs were
computed for all the test statistics and discrepancy measures presented in the previous
sections.

PPPs that were smaller than 0.05 or larger than 0.95 were considered to be too ex-
treme and evidence of model misfit. In the results, we summarize the evidence of
misfit with the proportion of extreme PPPs for a given discrepancy across condi-
tions. For the test-level measures, the proportion of extreme PPPs is the number of
PPPs that indicated model misfit divided by the 10 replications. In contrast, for the
item-level and the pairwise measures, the proportions were aggregated across items
or pairs. In other words, for an item-level measure such as the item-total correlation,
the proportion of extreme PPPs for a condition with 6 items was based on 60 PPPs
(number of replications × number of items). Furthermore, for some conditions, the
proportions of extreme PPPs of the item-level and pairwise measures were computed
for different subsets of items or pairs. For example, when the generating model was
the TV-DPCM-HIPD, a proportion of extreme PPPs of the item-level measures was
computed for the items that do not show item parameter drift and another proportion
was computed for the items that show item parameter drift.

5.3.2 Results

The proportions of extreme PPPs for each statistic and for the conditions with dif-
ferent number of items when the generating model was the TV-DPCM are shown
in Table 5.2. The proportions when the generating model is the DPCM are not pre-
sented as they are very similar to those shown in Table 5.2. In general for these two
conditions, extreme PPPs were rarely observed. In most of the cases the proportions
of observed extreme PPPs were 0. When the proportions were larger than 0, they
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Table 5.2: Proportion of Extreme PPP-Values with the
TV-DPCM as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Test-level measures

ACF lag 1 0.00 0.00 0.00
ACF lag 2 0.00 0.00 0.00
ACF lag 3 0.00 0.00 0.00
RACF 0.00 0.00 0.00
LRACF 0.00 0.00 0.00
MSSD 0.00 0.00 0.00

Item-level measures

Item-total correlation 0.07 0.03 0.04
Item-total correlation (v2) 0.07 0.00 0.03
Item-total correlation (v3) 0.00 0.02 0.04
Yen’s Q1 0.00 0.00 0.00
Yen’s Q1 alt. 0.00 0.05 0.04
Item LRACF 0.00 0.00 0.08

Pairwise measures

Yen’s Q3 0.00 0.03 0.03
OR 0.07 0.07 0.07
OR difference 0.07 0.11 0.09
RESID 0.00 0.00 0.00
RESID difference 0.00 0.01 0.02
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varied between 0.01 and 0.11 for discrepancy measures such as the OR and the OR
difference.

Figures 5.2 and 5.3 present the distributions of the PPPs for the different item-level
and pairwise discrepancy measures when the generating model was the TV-DPCM
and when there were 12 items. Some of these distributions are far from a uniform
distribution between 0 and 1. In particular, the PPPs for Yen’s Q1 are never larger
than 0.8 and the PPPs for the RESID are never larger than 0.7. Thus, Table 5.2 and
Figures 5.2 and 5.3 imply that the proposed test statistics and discrepancy measures
are conservative.

Figure 5.2: Distribution of the PPPs of the Item-Level Measures.
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Note. The distributions are based on the simulations when the generating model was the
TV-DPCM with 12 items. PPPs that indicate model misfit are drawn in black.

When looking at the conditions in which the generating model included some sort
of misfit, none of the test-level measures were effective at detecting misfit. Across
all conditions, the proportions of extreme PPPs of the test-level measures were 0 or
very close to 0, indicating that the PPPs for test-level measures were rarely extreme.
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Figure 5.3: Distribution of the PPPs of the Pairwise Measures.
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Furthermore, in the conditions where the generating model was the TV-DPCM(3)
or the TV-DPCM-IPD, implying that the latent dynamic process had up to 3 lagged
effects and that all the items showed homogeneous item parameter drift, none of the
measures were powerful at identifying misfit for these generating models. Across all
the different test statistics or discrepancy measures, the proportions of extreme PPPs
were 0 or very close to 0. Similarly, the measures were not effective at identifying
misfit when the generating model was the TV-DPCM-Random, implying that the
responses of the last third of the measurements were randomly selected. For these
simulation conditions, the proportion of extreme PPPs among the item-level and the
pairwise measures was rarely higher than 40%. While some indication of misfit was
observed, the proposed PPMC methods failed to consistently identify misfit under
these conditions.

Tables 5.3 to 5.7 present the proportions of extreme PPPs for the measures of the
conditions where the generating model were the TV-MDPCM (multidimensional),
the TV-DGPCM (discrimination different from 1), the TV-DPCM-Default (default
responses), the TV-DPCM-HIPD (item parameter drift for some items), and the TV-
DPCM-Meaning (change of meaning for one item), respectively. Under these con-
ditions, some of the discrepancy measures seemed to be effective at identifying the
misfit.

Table 5.3 shows that Yen’s Q3 was effective at identifying violations of the unidi-
mensionality assumption. When the items are multidimensional, one can expect that
the PPPs for Yen’s Q3 indexes for the pairs of items of the same dimension to be too
extreme—the proportions of extreme PPPs for such pairs were around 0.9. When the
item pairs include items from the two dimensions, the proportions of extreme PPPs
for Q3 increased from 0.2 for 3 items to 0.74 for 12 items, implying that the mea-
sure was more effective when the number of items increases. Other extreme PPPs
were observed across the other discrepancy measures but they did not have enough
power and did not consistently indicate misfit when the generating model was the
TV-MDPCM.

Table 5.4 shows that when the generating model was the TV-DGPCM, that is, when
the discrimination parameters of some items were different from 1, only the differ-
ent versions of the item-total correlations were effective at detecting misfit for the
problematic items. From these, the unmodified version of the item-total correlation
performed the best, showing proportions of extreme PPPs equal to or larger than
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Table 5.3: Proportion of Extreme PPP-Values with the TV-
MDPCM as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Item-level measures

Item-total correlation dim1 0.15 0.03 0.03
Item-total correlation dim2 0.5 0.17 0.05
Item-total correlation (v2) dim1 0.15 0.07 0.03
Item-total correlation (v2) dim2 0.6 0.13 0.08
Item-total correlation (v3) dim1 0.1 0.07 0.05
Item-total correlation (v3) dim2 0.4 0.13 0.1
Yen’s Q1 dim1 0 0 0
Yen’s Q1 dim2 0 0 0
Yen’s Q1 alt. dim1 0.05 0 0.05
Yen’s Q1 alt. dim2 0 0.07 0.08
Item LRACF dim1 0.1 0.33 0.33
Item LRACF dim2 0.4 0.4 0.33

Pairwise measures

Yen’s Q3 (dim1, dim1) 0.9 0.87 0.86
Yen’s Q3 (dim1, dim2) 0.2 0.57 0.74
Yen’s Q3 (dim2, dim2) - 0.93 0.9
OR (dim1, dim1) 0.4 0.37 0.5
OR (dim1, dim2) 0.15 0.33 0.28
OR (dim2, dim2) - 0.47 0.45
OR difference (dim1, dim1) 0.3 0.2 0.29
OR difference (dim1, dim2) 0 0 0.02
OR difference (dim2, dim2) - 0.23 0.27
RESID (dim1, dim1) 0.6 0.53 0.37
RESID (dim1, dim2) 0.05 0.22 0.32
RESID (dim2, dim2) - 0.5 0.43
RESID difference (dim1, dim1) 0.2 0.23 0.18
RESID difference (dim1, dim2) 0.05 0.2 0.19
RESID difference (dim2, dim2) - 0.23 0.21

Note. dim1 denotes the items of dimension 1. dim2 denotes the items of
dimension 2. Proportions larger than 0.7 are highlighted in boldface.
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0.85 when there were 6 or more items for the items with discrimination parameters
different from 1.

Table 5.5 presents the proportions of extreme PPPs for the conditions where the gen-
erating model was the TV-DPCM-HIPD (two items had item parameter drift). For
these conditions, the alternative version of Yen’s Q1 and the LRACF of each item
were effective at identifying the problematic items. For these two measures, all the
proportions were larger than 0.8. Moreover, all the pairwise measures with the ex-
ception of the OR difference were successful at identifying misfit, especially for the
conditions with more items.

Table 5.6 shows that when the generating model was the TV-DPCM-Default, that is,
when the person selected the same response option for all the items during the last
third of the study, the alternative version of Yen’s Q1 and the two versions of the
odds ratio were powerful in detecting misfit of the TV-DPCM. For these simulation
conditions, the alternative Yen’s Q1 always indicated model misfit. On the other hand,
the proportions of extreme PPPs for the two versions of the odds ratio were around
0.8 independent of the number of items.

Lastly, Table 5.7 indicates that for the conditions where the generating model was the
TV-DPCM-Meaning, all the item-level measures seemed to have more than enough
power to identify misfit of the TV-DPCM with proportions of extreme PPPs close to
1. Furthermore, for the pairwise measures such as the odds ratio, the RESID, and the
RESID difference, the PPPs are mostly extreme for the pairs that included the item
whose meaning changed. In particular, the pairwise measures worked better in the
conditions with more items.
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Table 5.4: Proportion of Extreme PPP-Values with the TV-
DGPCM as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Item-level measures

Item-total correlation disc1 0.1 0.1 0.1
Item-total correlation disc2 0.25 0.85 0.95
Item-total correlation (v2) disc1 0 0 0.07
Item-total correlation (v2) disc2 0.25 0.55 0.7
Item-total correlation (v3) disc1 0 0 0.08
Item-total correlation (v3) disc2 0.15 0.6 0.8
Yen’s Q1 disc1 0 0 0
Yen’s Q1 disc2 0 0.05 0.25
Yen’s Q1 alt. disc1 0 0 0.03
Yen’s Q1 alt. disc2 0 0.1 0.1
Item LRACF disc1 0 0.03 0.02
Item LRACF disc2 0 0 0

Pairwise measures

Yen’s Q3 (disc1, disc1) - 0 0.05
Yen’s Q3 (disc1, disc2) 0.2 0.16 0.09
Yen’s Q3 (disc2, disc2) 0 0 0
OR (disc1, disc1) - 0.03 0.08
OR (disc1, disc2) 0.2 0.3 0.32
OR (disc2, disc2) 0 0 0.2
OR difference (disc1, disc1) - 0.1 0.1
OR difference (disc1, disc2) 0.05 0.17 0.1
OR difference (disc2, disc2) 0.1 0 0.1
RESID (disc1, disc1) - 0 0
RESID (disc1, disc2) 0.05 0.12 0.2
RESID (disc2, disc2) 0 0 0
RESID difference (disc1, disc1) - 0 0.01
RESID difference (disc1, disc2) 0.05 0.1 0.09
RESID difference (disc2, disc2) 0.1 0.1 0.2

Note. disc denotes the items with discrimination parameter equal to 1.
disc2 denotes the items with discrimination parameters different from 1.
Proportions larger than 0.7 are highlighted in boldface.
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Table 5.5: Proportion of Extreme PPP-Values with the TV-
DPCM-HIPD as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Item-level measures

Item-total correlation drift1 0.5 0.45 0.24
Item-total correlation drift2 0.15 0.7 0.5
Item-total correlation (v2) drift1 0.5 0.25 0.07
Item-total correlation (v2) drift2 0.15 0.15 0.4
Item-total correlation (v3) drift1 0.6 0.25 0.17
Item-total correlation (v3) drift2 0.2 0.15 0.25
Yen’s Q1 drift1 0 0 0
Yen’s Q1 drift2 0.1 0.35 0.4
Yen’s Q1 alt. drift1 0 0.03 0.06
Yen’s Q1 alt. drift2 0.9 0.8 0.95
Item LRACF drift1 0 0 0.05
Item LRACF drift2 0.85 0.9 1

Pairwise measures

Yen’s Q3 (drift1, drift1) - 0.05 0.06
Yen’s Q3 (drift1, drift2) 0.25 0.05 0.06
Yen’s Q3 (drift2, drift2) 0.4 0.7 1
OR (drift1, drift1) - 0.18 0.13
OR (drift1, drift2) 0.15 0.19 0.26
OR (drift2, drift2) 0.4 0.7 1
OR difference (drift1, drift1) - 0.22 0.14
OR difference (drift1, drift2) 0.25 0.16 0.12
OR difference (drift2, drift2) 0.4 0.2 0.2
RESID (drift1, drift1) - 0.03 0
RESID (drift1, drift2) 0.1 0.12 0.22
RESID (drift2, drift2) 0.3 0.7 1
RESID difference (drift1, drift1) - 0.12 0.02
RESID difference (drift1, drift2) 0.1 0.12 0.19
RESID difference (drift2, drift2) 0.3 0.5 0.8

Note. drift1 denotes the items without parameter drift. drift2 denotes the
items with parameter drift. Proportions larger than 0.7 are highlighted in
boldface.
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Table 5.6: Proportion of Extreme PPP-Values with the
TV-DPCM-Default as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Item-level measures

Item-total correlation 0.53 0.52 0.53
Item-total correlation (v2) 0.4 0.37 0.37
Item-total correlation (v3) 0.37 0.4 0.46
Yen’s Q1 0.13 0.23 0.39
Yen’s Q1 alt. 1 1 1
Item LRACF 0.5 0.42 0.58

Pairwise measures

Yen’s Q3 0.43 0.52 0.52
OR 0.9 0.77 0.77
OR difference 0.77 0.85 0.8
RESID 0.23 0.25 0.29
RESID difference 0.37 0.28 0.31

Note. Proportions larger than 0.7 are highlighted in boldface.
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Table 5.7: Proportion of Extreme PPP-Values with the TV-DPCM-
Meaning as the Generating Model

Number of Items
I = 3 I = 6 I = 12

Item-level measures

Item-total correlation meaning1 0.25 0.8 0.35
Item-total correlation meaning2 0.9 1 1
Item-total correlation (v2) meaning1 0.2 0.58 0.15
Item-total correlation (v2) meaning2 0.9 1 1
Item-total correlation (v3) meaning1 0.3 0.62 0.26
Item-total correlation (v3) meaning2 0.2 1 1
Yen’s Q1 meaning1 0 0 0
Yen’s Q1 meaning2 0.1 1 1
Yen’s Q1 alt. meaning1 0.2 0.02 0.03
Yen’s Q1 alt. meaning2 0.7 0.7 0.8
Item LRACF meaning1 0.45 0.06 0.06
Item LRACF meaning2 1 1 1

Item-level measures

Yen’s Q3 (meaning1, meaning1) 1 0.59 0.09
Yen’s Q3 (meaning1, meaning2) 0.55 0.72 0.35
OR (meaning1, meaning1) 0.7 0.52 0.21
OR (meaning1, meaning2) 0.25 0.78 0.94
OR difference (meaning1, meaning1) 0.3 0.37 0.17
OR difference (meaning1, meaning2) 0.55 0.2 0.08
RESID (meaning1, meaning1) 0.9 0.6 0.04
RESID (meaning1, meaning2) 0.4 0.88 0.9
RESID difference (meaning1, meaning1) 0.2 0.28 0.07
RESID difference (meaning1, meaning2) 0.4 0.8 0.84

Note. meaning1 denotes the items for which its meaning did not changed. mean-
ing2 denotes the item for which its meaning changed. Proportions larger than 0.7
are highlighted in boldface.
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5.3.3 Summary

We studied the performance of several test statistics and discrepancy measures in as-
sessing the fit of the TV-DPCM under a PPMC framework using simulated data. In
general, the discrepancy measures tended to be conservative and insensitive to cer-
tain types of misfit, such as when the generating model was the TV-DPCM(3) or the
TV-DPCM-IPD. However, some of the discrepancy measures were effective in de-
tecting other types of misfit. As we tested the measures with simulated data, we have
certainty about which type of misfit is being detected, so we know which measures
were effective at identifying multidimensionality, item discrimination parameters be-
ing different from 1, or changes in the response process of the participant. Table 5.8
presents a summary of the effectiveness of the different test statistics and discrepancy
measures under the misfitting generating models. Regarding the different versions of
the item-total correlation, the performance of these three test statistics was very simi-
lar. Therefore, the traditional item-total correlation seems to be enough for assessing
model fit by means of the PPMC method. Extreme values of the item-total correlation
might indicate that the item discrimination is different from 1 or that the interpreta-
tion of the item changed for the person. The alternative version of Yen’s Q1 was also
effective at identifying model misfit for the conditions where the response process
of the person changed (i.e., TV-DPCM-HIPD, TV-DPCM-Default, and TV-DPCM-
Meaning). For this measure, the simple change to Yen’s Q1 led to an improvement
of the traditional Yen’s Q1 when applied to the TV-DPCM. Also, in agreement with
Zhu and Stone (2011), Yen’s Q3 statistic was also effective at identifying violations of
unidimensionality. Lastly, measures such as the LRACF of the item scores, the OR,
the RESID, and the RESID difference were relatively effective at identifying misfit
under some of the conditions where the response process of the person changed.

One important finding from the simulations is that there is no single winner among
the test statistics and discrepancy measures; that is, there is no single measure that
is powerful to detect all types of model misfit. Instead, various measures are pow-
erful for various types of misfit. This result is not a surprise—researchers such as
Sinharay et al. (2006) and Zhu and Stone (2011) found similar results in applications
of the PPMC method to IRT models, which is exactly why they, as well as other ex-
perts, recommended the use of several test statistics and discrepancy measures while
performing PPMC for IRT models using a data set.
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5.4 Application to Empirical Data

To examine how our suggested measures perform for real data, we assessed the fit
of the TV-DPCM to data from a daily diary study conducted by Wichers and Groot
(2016). The data come from a 57 years old male (at the time), who completed in
total 1.473 experience sampling assessments between August 2012 and April 2013.
The participant had to fill in an experience sampling questionnaire up to 10 times
a day within 90-minute intervals for 239 days (Kossakowski et al., 2017). On av-
erage, the participant completed 6.2 assessments per day. Furthermore, by the time
of the study, the participant had a medical history of major depression and was tak-
ing medication. The data collection happened in conjunction with a double-blind
dose reduction scheme of the participant’s antidepressant (Kossakowski et al., 2017;
Wichers & Groot, 2016) which included (1) four weeks of baseline, (2) two weeks
without dosage reduction, (3) eight weeks with gradual dosage reduction, (4) eight
weeks of post assessment, and (5) twelve weeks of follow-up.

The experience sampling questionnaire included 50 items that were asked on every
occasion. Overall, the items aimed to measure mood states, self-esteem, physical
condition, and the social environment at the moment of the assessment. All the items
measuring the different emotions and self-esteem were measured on a 7-point Likert
scale raging from “not feeling the state” to “feeling the state very much”. We assessed
the fit of the TV-DPCM to data for three sets of items included in the study. First,
we assessed the fit to data corresponding to the items on negative affect and mental
unrest. These items correspond to the emotions “down”, “lonely”, “anxious”, and
“guilty” for negative affect; and “irritated”, “restless”, and “agitated” for mental un-
rest. Second, we assessed the fit to data corresponding to the items of positive affect,
which correspond to “relaxed”, “satisfied”, “enthusiastic”, “cheerful”, and “strong”.
Finally, we assessed the fit to data corresponding to the items on self-esteem, which
correspond to “I like myself”, “I am ashamed of myself”, and “I doubt myself”;
Castro-Alvarez et al. (2022a) fitted and interpreted the results of the TV-DPCM to
the same items.

Notice that for the analyses, we collapsed several response categories and recoded the
responses because some response categories were never chosen by the participant.
Thus, the number of response options of the items of negative and positive affect,
and the items of mental unrest, were reduced to five response options. The number of
response options of the items of self-esteem was reduced to three response options.
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Also, the items of self-esteem, “I am ashamed of myself” and “I doubt myself”, were
reversed-coded before the analyses so that high scores on the items represent high
levels of self-esteem.

Furthermore, to account for the unequal time interval between observations due to
missing data and the time overnight, we implemented an approach that is typically
used in the dynamic structural equation modeling framework (Asparouhov et al.,
2018). This approach involves including missing data between observations to make
the time intervals approximately equal across the data. In our case, we divided a day
into 16 90-minute time windows. If an observation was made within a specific time
window, then the observation was considered representative for the mental state of the
participant during that 90-minute time window. Given that the participant reported
their emotions up to 10 times a day, data for at least 6 of the 16 time windows were
always missing for each day.

Lastly, to fit the TV-DPCM to the empirical data, we used three parallel chains each
with 2,000 iterations from which the first 500 were used as warm-up. Then, to assess
the fit of the models, we used 4,500 posterior predictive data sets for each model to
compute the PPPs for the various test statistics and discrepancy measures.

5.4.1 Assessing Model Fit of the Items of Negative Affect and Mental
Unrest

In our analysis of the items of negative affect and mental unrest, the test statistics and
discrepancy measures showed strong evidence of model misfit. Table 5.9 presents
the PPPs of some item-level measures for each item. Figure 5.4 presents the PPPs
of the different pairwise measures. The results for Yen’s Q3 showed the presence of
two distinct dimensions underlying the observations—these dimensions correspond
to negative affect and mental unrest, respectively. The results of the OR also point
to the presence of these two dimensions. The PPPs of both the item LRACF and
the RESID were 0 for all the possible items and pairs, respectively. This result, in
combination with the model misfit detected by the item-total correlation, Yen’s Q1,
and the alternative Yen’s Q1 for some of the items might indicate that the response
process of the participant to, for example, items 1, 6, and 7 changed during the study.
Therefore, in addition to multidimensionality, item parameters may have drifted or
the interpretation of the individual may have changed for some of these items.
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Table 5.9: PPPs Item-Level Measures Items of Negative Affect and Mental Unrest

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Item-Total Correlation 1 0.321 0.006 0.21 0.975 0.006 0
Yen’s Q1 0.021 0.133 0.158 0.002 0.039 0.064 0.018
Yen’s Q1 Alternative 0.001 0.04 0.338 0.067 0.064 0 0.064
Item LRACF 0 0 0 0 0 0 0

Note. PPPs lower than 0.05 or larger than 0.95 are highlighted in boldface.

Figure 5.4: Pairwise Measures of the Items of Negative Affect and Mental Unrest
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5.4.2 Assessing Model Fit of the Items of Positive Affect

Table 5.10 and Figure 5.5 present the PPPs for the different item-level and pairwise
measures, respectively, for the items of positive affect. All the item-level measures
showed evidence of model misfit for items 1 (“relax”) and 5 (“strong”), which implies
that the meaning of these items for the participant may have changed during the study.
Also, the fact that the PPPs of the item-total correlation were so extreme for all the
items might suggest that a model that does not constraint the discrimination to be
equal to 1 might be more appropriate for these data. Moreover, the pairwise measures
also showed evidence of model misfit (see Figure 5.5). For example, Yen’s Q3 and
the OR showed misfit, which may be interpreted as evidence of multidimensionality.
Based on the patterns of the extreme PPPs of these two measures, it seems that items
2-5 were measuring a dimension that was different from the dimension measured by
item 1.

Table 5.10: PPPs Item-Level Measures Items of Positive Affect

Item 1 Item 2 Item 3 Item 4 Item 5

Item-Total Correlation 1 0 0 0 0
Yen’s Q1 0.002 0.07 0.023 0 0.027
Yen’s Q1 Alternative 0.001 0.516 0.264 0.162 0.004
Item LRACF 0 0.676 0.301 0.2 0.009

Note. PPPs lower than 0.05 or larger than 0.95 are highlighted in boldface.
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Figure 5.5: Pairwise Measures of the Items of Positive Affect
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5.4.3 Assessing Model Fit of the Items of Self-Esteem

Table 5.11 and Figure 5.6 present the PPPs for the item-level and pairwise measures,
respectively, for the items on self-esteem. In this analysis, the evidence of model
misfit was scarce. Item 1 showed evidence of misfit according to the alternative
Yen’s Q1, and the item pairs including items 1 and 3 showed evidence of misfit given
the OR and the OR difference. However, the extent of model misfit does not appear
to be severe for the items on self-esteem.

Table 5.11: PPPs Item-Level Measures Items of Self-
Esteem

Item 1 Item 2 Item 3

Item-Total Correlation 0.212 0.676 0.113
Yen’s Q1 0.115 0.164 0.461
Yen’s Q1 Alternative 0.019 0.537 0.149
Item LRACF 0.082 0.133 0.171

Note. PPPs lower than 0.05 or larger than 0.95 are high-
lighted in boldface.
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Figure 5.6: Pairwise Measures of the Items of Self-Esteem
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5.5 Discussion

Evaluating whether the statistical model is appropriate to explain the data is a key step
in statistical modeling. This evaluation can be performed by assessing the goodness-
of-fit of the model to the data. However, there is a lack of goodness-of-fit statistics
for intensive longitudinal models. Within the context of Bayesian statistical analysis,
a popular tool used to assess the goodness-of-fit of a model is the PPMC method. In
this chapter, we proposed and studied several test statistics and discrepancy measures
under the framework of the PPMC method to assess the goodness-of-fit of the TV-
DPCM, which was recently developed by Castro-Alvarez et al. (2022a).

The proposed test statistics and discrepancy measures were inspired by previous ap-
plications of the PPMC method to traditional IRT models (e.g., Li et al., 2017; Sin-
haray et al., 2006; Zhu & Stone, 2011). We modified some of these measures to
account for the time dependency likely to be present in intensive longitudinal data.
We tested the performance of the different test statistics and discrepancy measures
using simulated data. Our results show that there is no single best measure that is
effective in detecting several sources of model misfit. Instead, we found that dif-
ferent measures were effective at detecting misfit under different conditions. These
results were in agreement with results observed by Sinharay et al. (2006) and Zhu
and Stone (2011) and support the recommendation that several test statistics and dis-
crepancy measures should be used when assessing goodness-of-fit under the PPMC
framework.

Given the recommendation to apply several measures to assess the goodness-of-fit of
a model, researchers might consider making adjustments for multiple comparisons
in applications of the PPMC method. However, Gelman et al. (2014) recommended
against adjusting for multiple comparison and emphasized that the purpose of apply-
ing the PPMC method is not to test for a hypothesis but to understand the limitations
of the model in explaining the data at hand.

Overall, we found the item-total correlation, the alternative Yen’s Q1, the LRACF per
item, Yen’s Q3, and the OR as key measures for their effectiveness in detecting model
misfit of the TV-DPCM. Their utility was also evident with the analyses of the items
of positive and negative affect, mental unrest, and self-esteem from the empirical
data (Kossakowski et al., 2017; Wichers & Groot, 2016). These test statistics and
discrepancy measures can also be useful to assess the goodness-of-fit of other IRT
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models for intensive longitudinal data, as those proposed by Hecht et al. (2019) and
Wang et al. (2013).

In the analyses of the empirical data, we showed two examples in which the TV-
DPCM did not seem to fit the data. An important question after finding evidence of
model misfit is “What is next?”. One of the challenges of using the PPMC method
(or any other goodness-of-fit method) is that when misfit is detected, information is
typically lacking on the reason of the misfit. Evidence of model misfit only indicates
that certain aspects of the data cannot be replicated by simulated data (Gelman et
al., 2014). Then, it is the job of the researcher to hypothesize about the reasons of
model misfit and to decide whether they are able to adjust the model accordingly.
Also, it is important to highlight that even when extreme PPPs are found, the model
can still be useful for some purposes (Gelman et al., 2014). Therefore, one needs
to find a balance between the amount of misfit that one is willing to tolerate and the
practical utility of the model for the intended purpose. It is important to keep in mind
that perfect model fit can be a sign of overfitting, resulting in a less useful model in
practical terms (Pitt & Myung, 2002).

To conclude, we highlight the limitations of the current study. Starting with the sim-
ulation, we only used 10 replications per condition due to time constraints. Ideally,
these test statistics and discrepancy measures should be tested in a simulation study
with at least 100 replications per condition to collect clear evidence about their per-
formance. Also, another limitation is due to the model of interest itself. The TV-
DPCM requires more than 200 time points for one subject in order to obtain reliable
estimates. This condition is rarely satisfied in the study of psychological dynam-
ics, which can prevent the application of the TV-DPCM. In future research, one can
consider extending the TV-DPCM to a multilevel framework to be able to analyze
psychological dynamics of a sample of individuals. Such a model would be more
relevant given that most of the studies in psychological dynamics collect time se-
ries from a sample. Also, given that we focused on the TV-DPCM, it is unclear if
the test statistics and discrepancy measures proposed in this chapter would be use-
ful to assess the goodness-of-fit of other IRT models for intensive longitudinal data.
For example, considering the continuous-time Rasch model proposed by Hecht et al.
(2019), most of the proposed measures could be useful if applied to each individ-
ual. However, further adjustments would be needed to account for all the individuals
simultaneously. Overall, the PPMC method offers a flexible and easy to adapt tool
to assess the goodness-of-fit of models implemented within the Bayesian framework.
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We encourage researchers interested in psychological dynamics to keep exploring the
implementation of the PPMC method to models used to study intensive longitudinal
data.
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The driving question of this thesis was “what are we measuring in psychological in-
tensive longitudinal research”? This led us into two main topics: Distinguishing be-
tween traits and states, and accounting for measurement error. Firstly, distinguishing
between traits and states is key in longitudinal research. This allows having a better
understanding regarding what the measurements mean and how to better interpret the
results based on solid conceptualizations. Secondly, we recognize that psychologi-
cal measurement is unreliable by nature. Hence, measurements are always executed
with some sort of error that needs to be accounted for. To address these topics, we
started by studying the latent state trait theory (LST; Steyer et al., 2015; Steyer et al.,
1999) and how it can be used for intensive longitudinal settings (see Chapters 2 and
3). Additionally, in Chapters 4 and 5, we also addressed the issue of measurement er-
ror in psychological time series by means of an item response theory approach (IRT;
Embretson & Reise, 2013; Lord et al., 1968).

6.1 Main Findings

In Chapter 2, we started by studying several longitudinal structural equation models
used to study traits and states. We focused on three particular models: The multistate-
singletrait model (MSST; Steyer et al., 2015; Steyer et al., 1999), the common and
unique trait state model (CUTS; Hamaker et al., 2017), and the trait-state-occasion
model (TSO; Eid et al., 2017). From these models, the MSST and the TSO are
encompassed within the LST theory (Steyer et al., 2015). We were interested in
studying whether the selected models were useful to analyze intensive longitudinal
data. To do this, we reformulated the models as multilevel structural equation models
and tested the two versions of each model in a simulation study. In general, the
multilevel versions of the selected models can be considered additional tools for the
analysis of intensive longitudinal data, if one is interested in distinguishing between
traits and states. Specially, the multilevel version of the TSO model is advised, as it
accounts for the carry-over effects likely to be found in time series data and because
it was the model that performed the best in the simulation study. Moreover, these
models also offer an approach to study the reliability of the items and the scales used
in intensive longitudinal research.

Another interesting result from Chapter 2 was that fitting the single-level version of
the models to intensive longitudinal data in wide format was possible with many
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measurements occasions when using Bayesian estimation. This was unexpected be-
cause analyzing the data in wide format implies that the models need to deal with
extremely large variance-covariance matrices, which usually results in convergence
issues (Geiser et al., 2013). While the single-level version of the models allows for
more flexibility because the parameters can be allowed to vary over time, we still
recommend against using the single-level models when there are more that 30 mea-
surement occasions. The reason for this is that fitting the single-level models with
many measurement occasions is more time-consuming, does not necessarily address
the research questions of interest in psychological dynamics, and comes short, as fit
statistics for model comparison are lacking.

In Chapter 3, we further extended the TSO model as it was the most promising model
for the analysis of intensive longitudinal data. The extension consisted of allowing the
autoregressive effect to vary randomly across individuals, and allowing the inclusion
of situational variables to account for fixed and random situations, as suggested in
the LST theory with fixed and random situations approach (Geiser et al., 2015b). We
referred to this new model as the mixed-effects trait-state-occasion model (ME-TSO).
Also, by allowing the autoregressive effect to vary randomly across individuals, we
also redefined all the variance coefficients within fixed situations such that they are
computed per person. This provides a psychometric approach based on the LST
theory with an emphasis on the individual level. In a nutshell, the ME-TSO is a
model that researchers can use to study (a) the psychometric properties of the items
used in intensive longitudinal research per person, (b) the interaction between the
persons and the fixed situations of interest, and (c) the dynamic processes of the
psychological constructs per person. The usefulness of the ME-TSO was illustrated
by analyzing data from the HowNutsAreTheDutch project (van der Krieke et al.,
2017; van der Krieke et al., 2016).

Next, in Chapter 4, we introduced the time-varying partial credit model (TV-DPCM),
which is an IRT model for the analysis of psychological time series data. This model
was specially proposed to analyze intensive longitudinal data from one individual
when a set of Likert-scale items is used to measure one psychological construct such
as negative affect. We tested the performance of the model in a simulation study while
varying the number of time points, the number of items, the size of the autoregressive
effect, and the proportion of missing data. Overall, the TV-DPCM performed well
under the different conditions. We recommended using the model when there are at
least 300 time points. The other manipulated factors did not have major effects on
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the performance of the TV-DPCM. However, the results showed that the credibility
intervals of the different parameters of interest tend to be too wide, especially when
there are a few number of items and when the proportion of missing data increases.
Nevertheless, by means of the empirical example, where we analyzed the self-esteem
items scores of one individual from an experience sampling study (Kossakowski et
al., 2017; Wichers & Groot, 2016), the TV-DPCM proved to be a useful approach
that provides a rich interpretation of the psychological dynamics and the scales used
in intensive longitudinal research. Regarding the psychological dynamics, it allows
modeling psychological dynamics described by non linear trends, and it provides in-
formation about the situations where the measurements are more or less reliable. In
relation to the scales, by making use of core features of IRT, such as the item char-
acteristic function, the item information function, and the test information function,
one could identify which items are better and more informative to measure the con-
struct of interest. Also, one can study the overall quality of the scale in order to make
adjustments for future applications.

Nowadays, many approaches used to analyzed intensive longitudinal data have been
implemented within the Bayesian framework (e.g., Asparouhov et al., 2018; De
Haan-Rietdijk et al., 2016; de Haan-Rietdijk et al., 2017a; Hecht et al., 2019; Schu-
urman & Hamaker, 2019; Schuurman et al., 2015) and the TV-DPCM is not an ex-
ception. The advantage of the Bayesian approach is that it facilitates and allows
the estimation of very complex models that are challenging to fit with traditional
frequentist approaches. However, due to the novelty of these models, assessing their
associated goodness-of-fit is not necessarily straightforward and has been overlooked
in the literature. In Chapter 5, we were particularly concerned about how to assess the
goodness-of-fit of the TV-DPCM. For this reason, we adapted several test statistics
and discrepancy measures within the posterior predictive model checking method for
the TV-DPCM (Gelman et al., 1996; Li et al., 2017; Sinharay et al., 2006; Zhu &
Stone, 2011). These different statistics proved to be effective at identifying misfit
under certain simulated conditions. For example, evidence of model misfit via Yen’s
Q3 (Yen, 1984) statistic can be a clear indication of multidimensionality of the scale.
Although we proposed these measures specifically to assess the goodness-of-fit of the
TV-DPCM, they may be also useful to assess the goodness-of-fit of other Bayesian
IRT models for intensive longitudinal data, such as the ones proposed by Hecht et al.
(2019) and Wang et al. (2013). Furthermore, they can also serve as a basis for the
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application of the posterior predictive model checking method for other Bayesian ap-
proaches for the analysis of intensive longitudinal data, such as the dynamic structural
equation modeling framework (Asparouhov et al., 2018).

6.2 Defining Traits and States

Throughout this dissertation, we discussed how the distinction between traits and
states is not consistent in the literature (e.g., Allen & Potkay, 1981; Epstein, 1979;
Hamaker, 2012; Spielberger & Sydeman, 1994; Steyer et al., 2015). This is prob-
lematic for studying psychological dynamics, given that these terms are recurrent in
intensive longitudinal research and in many circumstances their definition is taken
for granted. We addressed this problem in Chapters 2 and 3, based on the LST theory
(Steyer et al., 2015; Steyer et al., 1999). The strengths of the LST theory are that (a)
it provides a clear definition of traits and states supported on a probabilistic approach,
and (b) it accounts for measurement error. Specifically, the LST theory acknowledges
the dynamic nature of individuals, as it considers that the person at time t is not the
same person at time t +1 due to the new situation and the experiences of the person
between measurement occasions (Steyer et al., 2015). Based on this, the LST the-
ory defines a set of random variables that represent the persons and the situations at
a given time point, and the latent variables of the model are defined as conditional
expectations. In this sense, the latent trait variables capture the effect of the person
at each time point and the latent state residuals capture the effects of the situation
and the person-situation interaction at each time point. Moreover, the combination
of the latent trait variables and the latent state residual form the latent state variables,
meaning that in the LST theory, the state of a person at time t is truly considered a
combination of the effects of the person, the situation, and the person-situation in-
teraction. Conceptually speaking, I consider that the LST theory approach should be
adopted in the field of studying psychological dynamics, as it offers clear definitions
of traits and states. We also demonstrated that models based on the LST theory can
be developed to analyze intensive longitudinal data, and that they provide additional
features that enrich the interpretation of the data.

Naturally, adopting the LST theory approach has consequences on the kind of re-
search questions we ask and how we can approach them. Understanding persons’
aspects as a mix of traits and states means that typical ‘trait’ measures found in cross-
sectional research do not really represent a pure ‘trait’ but a combination of the trait
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and the state components of the aspect of interest. In other words, as discussed by
Hamaker (2012), between- and within-person effects are entangled in cross-sectional
research. As a consequence, if we want to distinguish between traits and states, we
need to conduct longitudinal or intensive longitudinal research. In this sense, using
scales that claim to measure either traits or states based on the wording of the items
would not be appropriate. Furthermore, in several longitudinal studies, “trait” mea-
sures are included as covariates to explain between-person variability. I think that this
is problematic, because adding this kind of “trait” covariates ignores that there are no
pure traits or pure states. Therefore, from a theoretical point of view, adding these
“trait” covariates is not coherent with the theory. Given this, something that needs to
be discussed in future research is what is the meaning of the effect of a “trait” covari-
ate on the psychological dynamic while acknowledging that such effect is a mix of
between- and within-person variability.

6.3 Item Response Theory: An Underused Tool

IRT has been extensively developed and used within cross-sectional settings (Embret-
son & Reise, 2013). Among its advantages over classical test theory (CTT; Crocker &
Algina, 1986), one can highlight that IRT models explicitly model the item response
behavior of the individuals. As a result, they provide a set of parameters that charac-
terize the properties of the items. Moreover, some properties of IRT models are that
(a) unbiased item parameters may be estimated from unrepresentative samples, (b)
standard measurement error is a function of the latent ability, meaning that it varies
across response patterns, and (c) short tests may be more reliable than longer tests
due to the previous property. However, although questionnaires with Likert-scale
items are commonly used in intensive longitudinal research (Vachon et al., 2019),
applications of the IRT approach to intensive longitudinal settings are rather scarce.
Specifically, only a handful of IRT models have been proposed for the analysis of in-
tensive longitudinal data (see Hecht et al., 2019; Kropko, 2013; Ram et al., 2005; Rijn
et al., 2010; Vogelsmeier et al., 2020; Wang et al., 2013). In this thesis, in Chapter
4, we also proposed an IRT model, namely the TV-DPCM, to analyze psychological
time series data while also emphasizing important features of IRT.

In our implementation of the TV-DPCM, we showed how the TV-DPCM can be used
to make a comprehensive analysis and interpretation of the individual, the items,
and their relationship in intensive longitudinal studies. This is precisely one of the
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main contributions of IRT and we consider that the field of psychological dynamics
can benefit greatly from this kind of modeling. Nevertheless, there are two clear
limitations of the TV-DPCM that can hinder its application. The first limitation is
that the model was developed to analyze multivariate time series of one individual.
The second limitation is that many time points are required to fit the model. To
overcome these limitations, future research can explore extending the TV-DPCM to
multilevel settings in order to be able to analyze multivariate time series of a sample
of individuals, as it is similarly done by Hecht et al. (2019) and Vogelsmeier et al.
(2020). Such an extension would also require the consideration of how to handle the
distinction between traits and states within the TV-DPCM model.

6.3.1 A Bright Future

Overall, IRT modeling has many desirable properties for the analysis of intensive
longitudinal data. In addition to allowing studying the properties and quality of the
items, another important topics in IRT are for example the study of item and person
misfit (Glas & Meijer, 2003; Meijer & Sijtsma, 2001; Orlando & Thissen, 2000),
differential item functioning (Wang, 2008), item parameter drift (Donoghue & Isham,
1998), and computerized adaptive testing (CAT Meijer & Nering, 1999; Wainer et al.,
2000), among others. Each of these topics has great value if adapted to the study of
psychological dynamics. One first step to set the basis for these future developments
is the development of IRT models suitable to analyze intensive longitudinal data such
as the TV-DPCM.

In particular, I think there is a great potential in implementing CAT for the devel-
opment and analysis of questionnaires in intensive longitudinal research. The aim of
CAT is to construct an optimal test to assess each individual (Meijer & Nering, 1999).
In short, in CAT, the latent ability of the subject is estimated and monitored while the
test is being administered and the subsequent items are selected based on the current
estimation of the latent ability. This can allow administering shorter questionnaires
which is preferable to reduce the burden on the participants. It can also increase com-
pliance rates given that every administration of the questionnaire will be potentially
different from previous administrations, making the task of filling in the experience
sampling questionnaire less monotone.
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6.4 Stationarity and Measurement Invariance

Most of the statistical methods used to study psychological dynamics imply that psy-
chological dynamic processes are stationary (e.g., Asparouhov et al., 2018; Hamaker,
2005; Schuurman et al., 2015; Song & Zhang, 2014), meaning that the means, the
variances, and the autocorrelations of the dynamic processes are stable over time
(Hamilton, 1994). While this assumption is convenient to have simpler statistical
models, testing that this assumption is satisfied can be hard. Firstly, there are sev-
eral tests such as the Kwiatkowski-Phillips-Schmidt-Shin test (Kwiatkowski et al.,
1992), the augmented Dickey-Fuller test (Mushtaq, 2011), and the Phillips-Perron
test (Phillips & Perron, 1988), which test different aspects of stationarity. Secondly,
these tests tend to have low detection rates when analyzing short time series (Jöns-
son, 2011; Leybourne & Newbold, 1999). This is problematic given that the length
of time series in the field of psychological dynamics is typically lower than 100 (Va-
chon et al., 2019). Moreover, the assumption of stationarity in itself can be unrealistic
on the context of psychological research (Bringmann et al., 2017; De Haan-Rietdijk
et al., 2016). For example, in many situations, researchers are interested on the effec-
tiveness of a psychological treatment or the development of the participants, which
are expected to be non-stationary processes by nature.

Furthermore, when using latent variable models as the ones presented in this the-
sis, one also needs to consider whether longitudinal measurement invariance holds
(Meredith, 1993; Meredith & Teresi, 2006). This means that the scale measures the
concept of interest equally over time. This assumption is necessary to make sure
that the scores on a test on different time points are comparable. Yet, this assump-
tion is rarely tested in intensive longitudinal studies. Besides the work on latent
Markov latent trait models by Vogelsmeier et al. (2019a), Vogelsmeier et al. (2020),
Vogelsmeier et al. (2019b) and on measurement in longitudinal data by McNeish et
al. (2021), research on measurement invariance in psychological dynamics is scarce.

Another limitation in the literature of intensive longitudinal research is that the as-
sumptions of stationarity and measurement invariance are studied as if they were
independent. However, I consider that these two assumptions are in fact related, as
both of these assumptions are concerned with the stability of the dynamic process.
Therefore, when studying measurement models for intensive longitudinal data, one
needs to address what are the implications of the assumptions of stationarity and
measurement invariance for the model and the data at hand.
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6.4.1 Handling Stationarity and Measurement Invariance

Both stationarity and measurement invariance imply that there is some stability present
in psychological dynamic processes. These assumptions are often mentioned as lim-
itations when studying psychological dynamics, as they may be too strict or unre-
alistic. Yet, at the same time, assuming stationarity and measurement invariance is
helpful to keep the models simpler. We also highlighted these assumptions as lim-
itations on Chapters 2 and 3, and even one of the aims of Chapter 4 was to handle
non-stationary time series. From my research, I consider that these two properties
are interconnected when studying measurement models for intensive longitudinal
data. Nonetheless, more research is needed to understand the implications of these
assumptions on each other. Some important questions that need to be addressed
are: Does stationarity imply longitudinal measurement invariance when using mea-
surement models for intensive longitudinal data?, can a dynamic process be station-
ary while violating the assumption of longitudinal measurement invariance or vice
versa?, when assuming stationarity in measurement models for intensive longitudi-
nal data, do we assume that the observed time series is stationary, or that the latent
time series is stationary, or both?, if it is observed that the time series is stationary,
does it imply that the latent time series is stationary as well?

6.5 Latent Variables: Are They Worth the Struggle?

Latent variables have been central to psychological measurement and lay at the foun-
dations of CTT and IRT. In a nutshell, a latent variable aims to represent an unob-
served theoretical construct that is a common cause of a set of observed indicators
or items. In other words, there exists a causal relationship between the latent vari-
able and the observed indicators. Moreover, in most of the cases, we assume that the
shared variance among the indicators is captured by the latent variable sufficiently
well. Overall, latent variable models imply several strong and restrictive assump-
tions that come into play when using this kind of models. In the context of intensive
longitudinal research, one can argue that there are several limitations to the use of
latent variables. One limitation is the requirement that multiple indicators need to be
used to identify the latent variable. This is a practical limitation because question-
naires in intensive longitudinal research tend to be short in order to reduce the burden
on the participants. Thus, having multiple items measuring the same construct may
not be feasible in many circumstances. Furthermore, when measurement models are
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used, the rationale for using them is mostly based on the statistical justification rather
than on the conceptual theory (Rhemtulla et al., 2020). This is problematic because
perfect fitting models may still be wrong if they are not supported on solid theories.
Also, by adding the time component, problems related to longitudinal measurement
invariance also arise.

These issues can discourage researchers from using latent variable models in gen-
eral. In fact, the latent variable approach have been criticized and complex network
approaches has been suggested as an alternative conceptualization of psychological
phenomena (Borsboom & Cramer, 2013; Cramer et al., 2012; Epskamp et al., 2018).
Nevertheless, the distinction between latent variable models and network approaches
is not clear cut (Bringmann & Eronen, 2018). Bringmann and Eronen (2018) argue
that latent variable models are not inherently problematic. Furthermore, it has been
shown that some latent variable models and some network models are mathematically
equivalent (Epskamp et al., 2018; van Bork et al., 2021).

Lastly, in spite of the criticism towards latent variable models, I consider that latent
variable models are here to stay, also in intensive longitudinal research. In most of the
cases, the limitations that are mentioned in relation to the assumptions of latent vari-
able models can be overcome by making the models more flexible. Also, another ad-
vantage is that latent variable models allow accounting for measurement error, which
is of utter importance in psychological research. In addition to the models studied
in this dissertation, several latent variable models have been proposed to study psy-
chological dynamics (e.g., Asparouhov et al., 2018; Chow et al., 2011; Hecht et al.,
2019; Molenaar, 1985; Schuurman & Hamaker, 2019; Schuurman et al., 2015; Song
& Ferrer, 2012; Vogelsmeier et al., 2019b). In particular, some interesting latent vari-
able models for the study of psychological dynamics were proposed by Schuurman
and Hamaker (2019) and Schuurman et al. (2015). These models are autoregressive
models with measurement error in which the latent variables are identified with just
one indicator. This development is very useful, given that in intensive longitudinal
research, it is harder to have multiple items measuring the same construct.

6.6 Beyond Measurement Models

To conclude, I want to emphasize that understanding what and how we are measur-
ing in intensive longitudinal research goes beyond the use of measurement models.
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As shown in this thesis, measurement models aid on understanding the strengths and
limitations of the questionnaires used in intensive longitudinal research, but they do
not fix poor quality measurements. Therefore, complementary to the use of measure-
ment models, qualitative research is also needed to understand the response processes
of the individuals (e.g., why they choose a certain response option) and which type
of items are better suited for self-report in intensive longitudinal research (e.g., Lik-
ert versus visual analogue scales). Naturally, research about measurement models
and the development of questionnaires need to go ‘hand-by-hand’, where results on
one area are used for the improvement of the other. One idea to get more informa-
tion about persons’ response processes would be to ask participants to explain the
reasoning of their responses to a couple of key items every now and then during an
experience sampling study. This can be helpful to monitor how the participant inter-
prets the item and to assess whether the interpretation is stable or changes over time.
Although much more research is needed, the methods presented in this thesis offer
a solid basis to understanding how psychological measurement is done in intensive
longitudinal research. In this sense, in the future, by assessing the scales that are
currently used, researchers might be able to improve how we measure psychological
processes over time.
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In this appendix of Chapter 2, we intend to show how to easily analyze data with the
MSST, CUTS, and TSO models in Mplus from within the R environment. Clearly,
both Mplus and R should be installed. We also suggest to install RStudio.

This material includes the following sections:

• Prepare enviroment, which mentions which R packages are needed for the anal-
yses and how to load the functions stored in the git repository associated to this
article.

• Multistate-singletrait model (MSST).
• Common-unique trait-state model (CUTS).
• Trait-state-occasion model (TSO).

Moreover, the sections of each model include three subsections: (a) Generating data,
(b )fitting the single level model, and (c) fitting the multilevel model. The subsection
generating data shows how to simulate data based on each model. This subsection
can be skipped, as their main purpose is to generate data to use in the following
subsections. Own data should be load into R through the function read.table or
similar functions from the foreign package. Moreover, the function reshape can
be used to change the data from wide to long format or vice versa. Finally, the
subsections fitting the single level model and fitting the multilevel model show how
to fit both versions of each model to the data by means of bayesian estimation in
Mplus.

A.1 Prepare environment

To prepare the environment for the next analyses three packages have to be loaded:

• RCurl, which is needed to load the functions from the git repository.
• MASS, which is needed for some of the written functions.
• MplusAutomation, which allows using Mplus within R.

Next, the functions developed within this study have to be loaded into R. These func-
tions allow generating data and writing the Mplus syntaxes based on each model.
There are two ways to load these functions. Firstly, you can download the files in
your working directory and use the source function to load them in R. Alternatively,
you can run the following code, which loads all the functions directly from the git
repository without saving the files in your hard drive:
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rfiles <- c("sim.data.cuts.R",
"sim.data.msst.R",
"sim.data.tso.R",
"var.coeff.R",
"write.cuts.to.Mplus.R",
"write.mlcuts.to.Mplus.R",
"write.msst.to.Mplus.R",
"write.mlmsst.to.Mplus.R",
"write.tso.to.Mplus.R",
"write.mltso.to.Mplus.R",
"write.Mplus.options.R")

for( i in 1:length(rfiles)){
eval(
parse(
text =
getURL(
paste0(
"https://raw.githubusercontent.com/secastroal/LST_Analyses/master/R/",

rfiles[i]), ssl.verifypeer = FALSE)))
}
rm(i, rfiles)
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A.2 Multistate-singletrait model (MSST)

We will be generating data from the MSST model for 100 individuals, 3 items, and
3 measurement occasions. Two graphical representations of the model are shown in
Figures A.1 and A.2 for the single level MSST and the multilevel MSST, respectively.

Figure A.1: Single level MSST

Figure A.2: Multilevel MSST

190



A

Appendix A.

A.2.1 Generating MSST data

To generate data based on the MSST, use the function sim.data.msst. This function
requires the number of persons, the number of items, the number of measurement
occasions, and two lists that contain the within and the between parameters. Let us
define these parameters as follows:
N <- 100 # Number of persons
I <- 3 # Number of items
nT <- 3 # Number of measurement occasions

# Within Parameters

loadings.state <- c(1, 0.5, 1.3) # Loading parameters for the latent state
# variables.
error.var <- c(1, 0.5, 1.5) # Variance of measurement errors for each
# item.
state.var <- 2 # Variance of the latent state residual.

within.parameters <- list(loadings = loadings.state,
state.var = state.var,
error.var = error.var)

# Between Paramaters

loadings.trait <- c(1, 0.8, 1.2) # Loading parameters for the latent trait
# variable.
intercepts <- rep(0, I) # Intercepts.
trait.var <- 2 # variance of the latent trait variable.
trait.mean <- 4 # Mean of the latent trait variable.

between.parameters <- list(loadings = loadings.trait,
intercepts = intercepts,
trait.mean = trait.mean,
trait.var = trait.mean)

Next, once all the parameters are defined, we can simulate data based on the model:

data <- sim.data.msst(N, nT, I,
within.parameters = within.parameters,
between.parameters = between.parameters)

The last code will store the simulated data in the object data. This object returns a
list that includes the within and the between parameters, and the simulated data in
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wide and long format. These are the first five rows of the simulated data in wide and
long format:

Table A.1: First 5 Rows of the MSST Simulated Data in Wide Format

subjn y11 y21 y31 y12 y22 y32 y13 y23 y33

1 1 1.80 1.29 0.93 2.07 1.40 2.65 1.90 1.64 2.98
4 2 3.02 2.67 3.45 2.86 1.19 -0.62 1.83 3.22 5.44
7 3 5.66 5.34 7.40 5.51 3.88 8.43 6.04 5.59 8.68
10 4 5.67 4.49 6.11 3.82 3.66 7.34 5.27 3.59 9.56
13 5 2.62 2.20 0.64 4.06 3.31 5.58 4.58 4.79 5.81

Table A.2: First 5 Rows of the MSST Simulated Data in Long Format

subjn time y1 y2 y3

1 1 1.80 1.29 0.93
1 2 2.07 1.40 2.65
1 3 1.90 1.64 2.98
2 1 3.02 2.67 3.45
2 2 2.86 1.19 -0.62
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A.2.2 Fitting the single level MSST model

To fit the different models, we will follow basically the same procedure with small
differences. Firstly, we will write the whole syntax of the model in R and export it to
Mplus. Secondly, we will run the model in Mplus by using the function runModels
and we will read the output file in R with the function readModels. Finally, we will
take the output in R to extract the estimated parameters to be able to compute the
variance coefficients.

To create the syntax in R for the single level MSST model the next functions are
needed:

• prepareMplusData, which exports the data to be compatible with Mplus and
creates a basic input file.

• write.Mplus.options, which allows specifying additional options for the
analysis such as the estimation method and the number of iterations. This
function does not include all the options available in Mplus.

• write.msst.to.Mplus, which creates a basic syntax to fit the single level
MSST model in Mplus.

Prepare the data and the syntax files for Mplus

Here we export the data to Mplus in the file slmsst.dat and create the syntax file
slmsst.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.wide, paste0(getwd(), "/slmsst.dat"),

inpfile = TRUE)

# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.wide)[-1],
analysis_type = "GENERAL",
estimator = "BAYES",
iterations = 5000)

# Write Mplus syntax of the single level MSST:
analysis_syntax <- write.msst.to.Mplus(

data$data.wide[, -1],
neta = nT,
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ntheta = 1,
equiv.assumption = list(tau = "cong", theta = "cong"),
scale.invariance = list(lait0 = TRUE, lait1 = TRUE,

lat0 = TRUE, lat1 = TRUE),
homocedasticity.assumption = list(error = TRUE, state.red = TRUE),
second.order.trait = FALSE)

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_slmsst.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/slmsst.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/slmsst.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/slmsst.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

Next, we can run the analysis in Mplus with the following code:

runModels(paste0(getwd(), "/slmsst.inp"))

This can take a while, especially if the estimation method is “BAYES”. By default,
the function write.Mplus.options uses 4 processors, 4 chains, and 10 thinning.
Once the analysis is done, the results, which are in the file slmsst.out, can be read in
R as follows:

fit <- readModels(paste0(getwd(), "/slmsst.out"))

This object (fit) is a list that stores all the information available in the output file
from Mplus. To access the estimated parameters you can type:

fit$parameters$unstandardized

This is a data frame that includes the estimated parameters, the posterior standard
deviations, and the credibility intervals. The first five rows will look like this:

194



A

Appendix A.

Table A.3: Mplus Estimates of the Single Level MSST Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig

ETA1.BY Y11 1.00 0.00 0 1.00 1.00 FALSE
ETA1.BY Y21 0.60 0.05 0 0.50 0.71 TRUE
ETA1.BY Y31 1.44 0.12 0 1.23 1.71 TRUE
ETA2.BY Y12 1.00 0.00 0 1.00 1.00 FALSE
ETA2.BY Y22 0.60 0.05 0 0.50 0.71 TRUE

Compute variance coefficients

The variance coefficients defined in the LST theory are the most important output of
these models because they provide the information about the psychometric properties
of the items. To estimate the variance coefficients of the MSST model, we will use
the function msst.var.coeff. For this function, we need the within and the between
estimated parameters in lists as it was done in Section A.2.1. Doing this requires some
little coding, but once this coding is done, the variance coefficients can be computed
like this:

msst.var.coeff(within.parameters = within.estimates,
between.parameters = between.estimates)

Table A.4: Variance Coefficients of the Single Level MSST Model

Coefficent Item 1 Item 2 Item 3

Consistency 0.49 0.63 0.44
Occasion-Specificity 0.33 0.20 0.42
Reliability 0.82 0.83 0.86
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A.2.3 Fitting the multilevel MSST model

Prepare the data and the syntax files for Mplus

To fit the multilevel MSST model, we use the function write.mlmsst.to.Mplus
instead of write.msst.to.Mplus. In the following code, we export the data to
Mplus in the file mlmsst.dat and we create the syntax file mlmsst.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.long, paste0(getwd(), "/mlmsst.dat"),

inpfile = TRUE)

# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.long)[-(1:2)],
cluster = names(data$data.long)[1],
analysis_type = "TWOLEVEL",
estimator = "BAYES",
iterations = 5000)

# Write Mplus syntax of the multilevel MSST:
analysis_syntax <- write.mlmsst.to.Mplus(data$data.long[, -(1:2)])

# The previous syntax has some variances constrained to 0, which is
# undesirable when doing bayesian estimation. Hence, those constraints
# are changed to 0.001.
analysis_syntax <- gsub("@0;", "@0.001;", analysis_syntax)

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_mlmsst.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/mlmsst.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/mlmsst.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/mlmsst.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

The analysis is run in Mplus with the following code:
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runModels(paste0(getwd(), "/mlmsst.inp"))

Once the analysis is done, we import the results in R from the file mlmsst.out as
follows:

fit <- readModels(paste0(getwd(), "/mlmsst.out"))

The estimates can be found in:

fit$parameters$unstandardized

The first five rows of this data frame look like this:

Table A.5: Mplus Estimates of the Multilevel MSST Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig BetweenWithin

ETA.BY Y1 1.00 0.00 0 1.00 1.00 FALSE Within
ETA.BY Y2 0.60 0.05 0 0.50 0.71 TRUE Within
ETA.BY Y3 1.44 0.12 0 1.22 1.71 TRUE Within
Variances ETA 1.86 0.29 0 1.37 2.50 TRUE Within

Residual.Variances Y1 1.02 0.14 0 0.76 1.31 TRUE Within

Compute variance coefficients

To estimate the variance coefficients of the multilevel MSST model, we need the
same function msst.var.coeff. Hence, we will need to extract the estimates from
fit and store them in two lists. When this is ready, the variance coefficients van be
computed like this:

msst.var.coeff(within.parameters = within.estimates,
between.parameters = between.estimates)

Table A.6: Variance Coefficients of the Multilevel MSST Model

Coefficient Item 1 Item 2 Item 3

Consistency 0.50 0.63 0.45
Occasion-Specificity 0.33 0.20 0.41
Reliability 0.82 0.83 0.86
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A.3 Common-unique trait-state (CUTS)

We will generate data from the CUTS model for 100 individuals, 3 items, and 3
measurement occasions. The graphical representations of the single level CUTS and
multilevel CUTS are shown in Figures A.3 and A.4, respectively.

Figure A.3: Single level CUTS

Figure A.4: Multilevel CUTS
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A.3.1 Generating CUTS data

To generate data based on the CUTS, we need the function sim.data.cuts. Let us
define the parameters to simulate the data as follows:
N <- 100 # Number of persons
I <- 3 # Number of items
nT <- 3 # Number of measurement occasions

# Within Parameters

loadings.state <- c(1, 0.5, 1.3) # Loading parameters for the latent common
# state.
US.var <- c(1, 0.5, 1.5) # Variance of the latent unique states.
CS.var <- 2 # Variance of the latent common state.

within.parameters <- list(loadings = loadings.state,
CS.var = CS.var,
US.var = US.var)

# Between Paramaters

loadings.trait <- c(1, 0.8, 1.2) # Loading parametes for the latent common
# trait.
intercepts <- rep(0,I) # Intercepts.
UT.var <- c(0.5, 1, 0.3) # Variance of the latent unique traits.
CT.var <- 1.5 # Variance of the latent common trait.

between.parameters <- list(loadings = loadings.trait,
intercepts = intercepts,
CT.var = CT.var,
UT.var = UT.var)

Next, we can simulate data based on the model like this:

data <- sim.data.cuts(N, nT, I,
within.parameters = within.parameters,
between.parameters = between.parameters)

This function returns the simulated data in both wide and long format. These are the
first five rows of these data:
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Table A.7: First 5 Rows of the CUTS Simulated Data in Wide Format

subjn y11 y21 y31 y12 y22 y32 y13 y23 y33

1 1 -2.02 0.89 -2.27 -4.38 0.09 -3.76 -2.78 1.19 -3.79
4 2 -0.02 0.97 -0.37 -0.52 -0.24 1.00 -1.84 0.66 -2.99
7 3 1.53 1.19 -0.36 1.90 3.51 3.30 1.20 1.37 -0.37
10 4 0.91 0.46 -0.06 1.60 2.94 2.08 0.01 2.80 -0.60
13 5 0.32 -0.69 2.03 -0.77 -0.04 -1.19 0.34 -0.73 -1.40

Table A.8: First 5 Rows of the CUTS Simulated Data in Wide Format

subjn time y1 y2 y3

1 1 -2.02 0.89 -2.27
1 2 -4.38 0.09 -3.76
1 3 -2.78 1.19 -3.79
2 1 -0.02 0.97 -0.37
2 2 -0.52 -0.24 1.00

A.3.2 Fitting the single level CUTS model

Prepare the data and the syntax files for Mplus

To fit the single level CUTS model to the data, we will create the syntax for this
model with the function write.cuts.to.Mplus. Through the next code we export
the data to Mplus in the file slmsst.dat and create the syntax file slmsst.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.wide, paste0(getwd(), "/slcuts.dat"),

inpfile = TRUE)

# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.wide)[-1],
analysis_type = "GENERAL",
estimator = "BAYES",
iterations = 5000)
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# Write Mplus syntax of the single level MSST:
analysis_syntax <- write.cuts.to.Mplus(

data$data.wide[,-1],
nstate = nT,
method.trait = "om",
scale.invariance = list(int = TRUE, lambda = TRUE),
state.trait.invariance = FALSE,
fixed.method.loadings = TRUE,
homocedasticity.assumption = list(error = TRUE,

cs.red = TRUE,
ut.red = FALSE))

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_slcuts.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/slcuts.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/slcuts.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/slcuts.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

Next, run the analysis in Mplus:

runModels(paste0(getwd(), "/slcuts.inp"))

The results from this analysis are stored in the file slcuts.out, which can be read in R
as follows:

fit <- readModels(paste0(getwd(), "/slcuts.out"))

To access the estimated parameters, type:

fit$parameters$unstandardized

From which the first five rows look like this:
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Table A.9: Mplus Estimates of the Single Level CUTS Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig

CS1.BY Y11 1.00 0.00 0 1.00 1.00 FALSE
CS1.BY Y21 0.50 0.05 0 0.40 0.61 TRUE
CS1.BY Y31 1.29 0.13 0 1.06 1.56 TRUE
CS2.BY Y12 1.00 0.00 0 1.00 1.00 FALSE
CS2.BY Y22 0.50 0.05 0 0.40 0.61 TRUE

Compute variance coefficients

For the single level and multilevel CUTS model, we use the function cuts.var.coeff
to compute the variance coefficients as follows:

cuts.var.coeff(within.parameters = within.estimates,
between.parameters = between.estimates)

Table A.10: Variance Coefficients of the Single Level CUTS Model

Coefficient Item 1 Item 2 Item 3

Common Consistency 0.16 0.19 0.17
Unique Consistency 0.12 0.37 0.04
Total Consistency 0.28 0.56 0.21
Occasion-Specificity 0.47 0.22 0.56
Reliability 0.75 0.78 0.77

A.3.3 Fitting the multilevel CUTS model

Prepare the data and the syntax files for Mplus

To fit the multilevel CUTS model, use the function write.mlcuts.to.Mplus. The
next code exports the data to Mplus in the file mlcuts.dat and creates the syntax file
mlcuts.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.long, paste0(getwd(), "/mlcuts.dat"),

inpfile = TRUE)
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# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.long)[-(1:2)],
cluster = names(data$data.long)[1],
analysis_type = "TWOLEVEL",
estimator = "BAYES",
iterations = 5000)

# Write Mplus syntax of the multilevel MSST:
analysis_syntax <- write.mlcuts.to.Mplus(data$data.long[, -(1:2)])

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_mlcuts.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/mlcuts.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/mlcuts.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/mlcuts.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

Next, run the analysis in Mplus:

runModels(paste0(getwd(), "/mlcuts.inp"))

Finally, read the output file mlcuts.out in R as follows:

fit <- readModels(paste0(getwd(), "/mlcuts.out"))

Look at the first five estimated as follows:

Table A.11: Mplus Estimates of the Multilevel CUTS Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig BetweenWithin

CS.BY Y1 1.00 0.00 0 1.00 1.00 FALSE Within
CS.BY Y2 0.50 0.05 0 0.40 0.61 TRUE Within
CS.BY Y3 1.29 0.13 0 1.06 1.57 TRUE Within

Variances CS 2.08 0.39 0 1.45 2.98 TRUE Within
Residual.Variances Y1 1.06 0.20 0 0.71 1.49 TRUE Within
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Compute variance coefficients

Now, the function cuts.var.coeff is used to compute the variance coefficients:

cuts.var.coeff(within.parameters = within.estimates,
between.parameters = between.estimates)

Table A.12: Variance Coefficients of the Multilevel CUTS Model

Coefficient Item 1 Item 2 Item 3

Common Consistency 0.14 0.18 0.16
Unique Consistency 0.13 0.37 0.04
Total Consistency 0.27 0.55 0.20
Occasion-Specificity 0.48 0.23 0.57
Reliability 0.75 0.78 0.77
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A.4 Trait-state-occasion model (TSO)

Finally, we will generate data from the TSO model for 100 individuals, 3 items,
and 3 measurement occasions. The graphical representations of the single level and
multilevel TSO model are shown in Figures A.5 and A.6.

Figure A.5: Single level TSO

Figure A.6: Multilevel TSO
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A.4.1 Generating TSO data

Here, we define the parameters to simulate data based on the TSO model:
N <- 100 # Number of persons
I <- 3 # Number of items
nT <- 3 # Number of measurement occasions

# Wihtin Parameters

loadings.state <- c(1, 0.5, 1.3) # Loading parameters for the latent
# occasion specific variable.

error.var <- c(1, 0.5, 1.5) # Variance of the latent measurement errors.
state.var <- 2 # Variance of the latent state residual
# variable.
ar.effect <- 0.5 # Autoregressive effect.

within.parameters <- list(loadings = loadings.state,
ar.effect = ar.effect,
error.var = error.var,
state.var = state.var)

# Between Paramaters

trait.ind.var <- c(2, 1.5, 2.5) # Variance of the latent indicator trait
# variables.
intercepts <- rep(0, I) # Intercepts.
cor.matrix <- matrix(c(1.0, 0.7, 0.6,

0.7, 1.0, 0.8,
0.6, 0.8, 1.0), 3) # Correlation matrix of the latent

# indicator trait variables.

between.parameters <- list(intercepts = intercepts,
trait.ind.var = trait.ind.var,
cor.matrix = cor.matrix)

Next, the function sim.data.tso is used to generate the data:

data <- sim.data.tso(N, nT, I,
within.parameters = within.parameters,
between.parameters = between.parameters)
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This function also returns the data in both wide and long format. The first five rows
are like this:

Table A.13: First 5 Rows of the TSO Simulated Data in Wide Format

subjn y11 y21 y31 y12 y22 y32 y13 y23 y33

1 1 0.52 -1.61 1.22 -0.88 -1.40 0.06 -0.35 -0.32 -1.06
4 2 -0.43 -1.49 -1.79 -3.07 -2.22 -2.71 -2.50 -1.08 -3.54
7 3 -3.44 -2.06 -2.88 -4.33 -2.40 -5.63 -0.55 -1.93 -0.45
10 4 -3.27 0.10 -2.62 -0.93 -0.80 -0.36 1.56 -0.97 0.57
13 5 -0.76 0.58 0.21 -1.66 -1.36 1.59 -2.47 -0.67 -1.84

Table A.14: First 5 Rows of the TSO Simulated Data in Long Format

subjn time y1 y2 y3

1 1 0.52 -1.61 1.22
1 2 -0.88 -1.40 0.06
1 3 -0.35 -0.32 -1.06
2 1 -0.43 -1.49 -1.79
2 2 -3.07 -2.22 -2.71

A.4.2 Fitting the single level TSO model

Prepare the data and the syntax files for Mplus

To prepare the files to fit the single level TSO model, we will use the function
write.tso.to.Mplus. The following code will export the data to Mplus in the
file sltso.dat and create the syntax file sltso.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.wide, paste0(getwd(), "/sltso.dat"),

inpfile = TRUE)

# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.wide)[-1],
analysis_type = "GENERAL",
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estimator = "BAYES",
iterations = 5000)

# Write Mplus syntax of the single level MSST:
analysis_syntax <- write.tso.to.Mplus(

data$data.wide[,-1],
nocc = nT,
figure = "3b",
equiv.assumption = list(occ = "cong", theta = "equi"),
scale.invariance = list(int = TRUE, lambda = TRUE),
homocedasticity.assumption = list(error = TRUE, occ.red = TRUE),
autoregressive.homogeneity = TRUE)

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_sltso.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/sltso.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/sltso.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/sltso.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

Run the analysis in Mplus:

runModels(paste0(getwd(), "/sltso.inp"))

Read the results from the outfile sltso.out in R as follows:

fit <- readModels(paste0(getwd(), "/sltso.out"))

We can access the first five rows of the estimated parameters like this:

Compute variance coefficients

Now, compute the variance coefficients of the TSO model by using the function
tso.var.coeff. In the case of the TSO, these variance coefficients will vary over
time due to the autoregressive effect. The function tso.var.coeff computes these
variance coefficients for each occasion like this:
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Table A.15: Mplus Estimates of the Single Level TSO Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig

OCC1.BY Y11 1.00 0.00 0 1.00 1.00 FALSE
OCC1.BY Y21 0.55 0.07 0 0.43 0.71 TRUE
OCC1.BY Y31 1.16 0.14 0 0.90 1.48 TRUE
OCC2.BY Y12 1.00 0.00 0 1.00 1.00 FALSE
OCC2.BY Y22 0.55 0.07 0 0.43 0.71 TRUE

tso.var.coeff(I = I, nT = nT,
within.parameters = within.estimates,
between.parameters = between.estimates)

Table A.16: Variance Coefficients of the Single Level TSO Model

Coefficient Time 1 Time 2 Time 3

Predictability by trait Item 1 0.40 0.34 0.32
Predictability by trait Item 2 0.56 0.51 0.50
Predictability by trait Item 3 0.41 0.35 0.34

Unpredictability by trait Item 1 0.00 0.14 0.19
Unpredictability by trait Item 2 0.00 0.09 0.12
Unpredictability by trait Item 3 0.00 0.13 0.17

Consistency Item 1 0.40 0.48 0.51
Consistency Item 2 0.56 0.60 0.62
Consistency Item 3 0.41 0.48 0.51

Occasion-Specificity Item 1 0.40 0.35 0.33
Occasion-Specificity Item 2 0.24 0.22 0.21
Occasion-Specificity Item 3 0.37 0.32 0.31

Reliability Item 1 0.80 0.83 0.84
Reliability Item 2 0.81 0.82 0.83
Reliability Item 3 0.78 0.81 0.82
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A.4.3 Fitting the multilevel TSO model

Prepare the data and the syntax files for Mplus

To finish, we will write the syntax of the multilevel TSO model with the function
write.mltso.to.Mplus. The following code exports the data to Mplus in the file
mltso.dat and creates the syntax file mltso.inp:
# Write data in Mplus format and write input file template to the working
# directory:
prepareMplusData(data$data.long, paste0(getwd(), "/mltso.dat"),

inpfile = TRUE)

# Write additional options:
options_syntax <- write.Mplus.options(

usevariables = names(data$data.long)[-(1:2)],
cluster = names(data$data.long)[1],
analysis_type = "TWOLEVEL",
estimator = "BAYES",
iterations = 5000)

# Write Mplus syntax of the multilevel MSST:
analysis_syntax <- write.mltso.to.Mplus(data$data.long[, -(1:2)])

# Additional options important for Bayesian analyses to save MCMC samples and
# Rhat statistics:
output_syntax <- "\nSAVEDATA: BPARAMETERS=samples_mltso.dat;\nOUTPUT: TECH8;"

# Overwrite the basic syntax file to include additional options and the
# syntax of the model:
write(options_syntax, paste0(getwd(), "/mltso.inp"), append = TRUE)
write(analysis_syntax, paste0(getwd(), "/mltso.inp"), append = TRUE)
write(output_syntax, paste0(getwd(), "/mltso.inp"), append = TRUE)

Run the analysis in Mplus and import the results in R

Run the analysis in Mplus:

runModels(paste0(getwd(), "/mltso.inp"))

Read the output file mltso.out in R:
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fit <- readModels(paste0(getwd(), "/mltso.out"))

In R, the first five rows of the estimated parameters look like this:

Table A.17: Mplus Estimates of the Multilevel TSO Model

paramHeader param est posterior_sd pval lower_2.5ci upper_2.5ci sig BetweenWithin

ETA.BY Y1 1.00 0.00 0 1.00 1.00 FALSE Within
ETA.BY Y2 0.55 0.07 0 0.43 0.70 TRUE Within
ETA.BY Y3 1.12 0.13 0 0.88 1.40 TRUE Within
ETA.ON ETA&1 0.64 0.13 0 0.32 0.83 TRUE Within

Residual.Variances Y1 1.02 0.20 0 0.64 1.43 TRUE Within

Compute variance coefficients

The variance coefficients for the multilevel TSO model are also computed with the
function tso.var.coeff. This function retrieve these coefficients for each measure-
ment occasion like this:

tso.var.coeff(I = I,
nT = nT,
within.parameters = within.estimates,
between.parameters = between.estimates)
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Table A.18: Variance Coefficients of the Multilevel MSST Model

Coefficient Time 1 Time 2 Time 3

Predictability by trait Item 1 0.34 0.28 0.27
Predictability by trait Item 2 0.54 0.49 0.47
Predictability by trait Item 3 0.38 0.33 0.32

Unpredictability by trait Item 1 0.00 0.15 0.21
Unpredictability by trait Item 2 0.00 0.09 0.13
Unpredictability by trait Item 3 0.00 0.13 0.18

Consistency Item 1 0.34 0.44 0.47
Consistency Item 2 0.54 0.58 0.60
Consistency Item 3 0.38 0.47 0.49

Occasion-Specificity Item 1 0.44 0.37 0.35
Occasion-Specificity Item 2 0.25 0.23 0.22
Occasion-Specificity Item 3 0.37 0.32 0.30

Reliability Item 1 0.78 0.81 0.82
Reliability Item 2 0.79 0.81 0.82
Reliability Item 3 0.75 0.78 0.80
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This appendix includes complementary results of the simulation study and the empir-
ical example. In relation to the simulation study, we provide (a) the true population
parameters used during the simulation to generate the data, (b) a sensitivity analysis
of the Bayesian models, (c) the results of the simulation that was performed to ma-
nipulate and explore the effect of the number of indicators, (d) the extended results
of the simulation taking into account the information criteria and the particular effect
of the trait-state variance ratio in some conditions, (e) the results of the additional
simulation that was performed to explore why the multilevel CUTS model failed to
fit to TSO data, and (f) a plot of the average bias of the autoregressive effect for the
conditions where the TSO model was fitted to TSO data. Regarding the empirical
example, we present the results of the analyses when non-stationary time series were
excluded from the analyses, which reduced the sample size to 376 individuals. In par-
ticular, we added four tables that summarize these results: The first table shows the
ppp and the DIC of the models fitted to these data, the second and third tables show
the estimates of the multilevel TSO model and their credibility intervals for each set
of items, and the fourth table shows the estimates of the variance coefficients.

B.1 True Population Parameters
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Table B.1: MSST True Parameters per Trait-State Variance Ratio

MSST 1:3 MSST 1:1 MSST 3:1

Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
State variance var(ζ ) 1.80 1.20 0.60
Error variance var(ε1) 0.60 0.60 0.60
Error variance var(ε2) 0.25 0.25 0.25
Error variance var(ε3) 0.70 0.70 0.70
Error variance var(ε4) 0.50 0.50 0.50
Between loading λT1 1.00 1.00 1.00
Between loading λT2 0.50 0.50 0.50
Between loading λT3 1.30 1.30 1.30
Between loading λT4 0.80 0.80 0.80
Intercept α1 0.00 0.00 0.00
Intercept α2 0.20 0.20 0.20
Intercept α3 0.40 0.40 0.40
Intercept α4 0.60 0.60 0.60
Trait variance var(ξ ) 0.60 1.20 1.80
Trait mean ξ̂ 4.00 4.00 4.00
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Table B.2: CUTS True Parameters per Trait-State Variance Ratio

CUTS 1:3 CUTS 1:1 CUTS 3:1

Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
Common State variance var(ζ ) 1.80 1.20 0.60
Unique state variance var(ε1) 0.60 0.60 0.60
Unique state variance var(ε2) 0.25 0.25 0.25
Unique state variance var(ε3) 0.80 0.80 0.80
Unique state variance var(ε4) 0.50 0.50 0.50
Between loading λT1 1.00 1.00 1.00
Between loading λT2 0.50 0.50 0.50
Between loading λT3 1.30 1.30 1.30
Between loading λT4 0.80 0.80 0.80
Intercept α1 2.00 2.00 2.00
Intercept α2 2.50 2.50 2.50
Intercept α3 3.00 3.00 3.00
Intercept α4 3.50 3.50 3.50
Common Trait variance var(ξ ) 0.40 1.00 1.60
Unique trait variance var(ϑ) 0.20 0.20 0.20
Unique trait variance var(ϑ) 0.10 0.10 0.10
Unique trait variance var(ϑ) 0.25 0.25 0.25
Unique trait variance var(ϑ) 0.15 0.15 0.15
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Table B.3: TSO True Parameters per Trait-State Variance Ratio

TSO 1:3 TSO 1:1 TSO 3:1

Within loading λS1 1.00 1.00 1.00
Within loading λS2 0.50 0.50 0.50
Within loading λS3 1.30 1.30 1.30
Within loading λS4 0.80 0.80 0.80
Occasion-specific residual variance var(ζ ) 1.80 1.20 0.60
Error variance var(ε1) 0.60 0.60 0.60
Error variance var(ε2) 0.25 0.25 0.25
Error variance var(ε3) 0.70 0.70 0.70
Error variance var(ε4) 0.50 0.50 0.50
Autoregressive effect β 0.50 0.50 0.50
Intercept α1 2.00 2.00 2.00
Intercept α2 2.50 2.50 2.50
Intercept α3 3.00 3.00 3.00
Intercept α4 3.50 3.50 3.50
Latent trait indicator variance var(ξ1) 0.30 0.80 1.60
Latent trait indicator variance var(ξ2) 0.10 0.20 0.55
Latent trait indicator variance var(ξ3) 0.40 1.30 2.20
Latent trait indicator variance var(ξ4) 0.20 0.50 1.20
Cov(ξ1,ξ2) 0.14 0.32 0.75
Cov(ξ1,ξ3) 0.31 0.92 1.69
Cov(ξ2,ξ3) 0.16 0.41 0.88
Cov(ξ1,ξ4) 0.22 0.57 1.25
Cov(ξ2,ξ4) 0.10 0.22 0.57
Cov(ξ3,ξ4) 0.20 0.56 1.14
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Table B.4: MSST True Variance Coefficient Components per Trait-
State Variance Ratio

MSST 1:3 MSST 1:1 MSST 3:1

Reliability Y1 0.80 0.80 0.80
Reliability Y2 0.71 0.71 0.71
Reliability Y3 0.85 0.85 0.85
Reliability Y4 0.75 0.75 0.75

Consistency Y1 0.20 0.40 0.60
Consistency Y2 0.18 0.35 0.53
Consistency Y3 0.21 0.43 0.64
Consistency Y4 0.19 0.38 0.57
Occasion Specificity Y1 0.60 0.40 0.20
Occasion Specificity Y2 0.53 0.35 0.18
Occasion Specificity Y3 0.64 0.43 0.21
Occasion Specificity Y4 0.57 0.38 0.19
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Table B.5: CUTS True Variance Coefficient Components per Trait-State
Variance Ratio

CUTS 1:3 CUTS 1:1 CUTS 3:1

Reliability Y1 0.80 0.80 0.80
Reliability Y2 0.72 0.72 0.72
Reliability Y3 0.83 0.83 0.83
Reliability Y4 0.76 0.76 0.76

Total Consistency Y1 0.20 0.40 0.60
Total Consistency Y2 0.22 0.39 0.56
Total Consistency Y3 0.19 0.41 0.62
Total Consistency Y4 0.20 0.38 0.57

Common Consistency Y1 0.13 0.33 0.53
Common Consistency Y2 0.11 0.28 0.44
Common Consistency Y3 0.14 0.35 0.57
Common Consistency Y4 0.12 0.31 0.50
Unique Consistency Y1 0.07 0.07 0.07
Unique Consistency Y2 0.11 0.11 0.11
Unique Consistency Y3 0.05 0.05 0.05
Unique Consistency Y4 0.07 0.07 0.07

Occasion Specificity Y1 0.60 0.40 0.20
Occasion Specificity Y2 0.50 0.33 0.17
Occasion Specificity Y3 0.64 0.43 0.21
Occasion Specificity Y4 0.56 0.37 0.19
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Table B.6: TSO True Variance Coefficient Components per Trait-State
Variance Ratio

TSO 1:3 TSO 1:1 TSO 3:1

Reliability Y1 0.82 0.80 0.80
Reliability Y2 0.74 0.71 0.75
Reliability Y3 0.86 0.85 0.84
Reliability Y4 0.78 0.75 0.77

Consistency Y1 0.27 0.40 0.60
Consistency Y2 0.26 0.35 0.60
Consistency Y3 0.27 0.42 0.60
Consistency Y4 0.26 0.37 0.60

Predictability by Trait Y1 0.09 0.27 0.53
Predictability by Trait Y2 0.11 0.24 0.55
Predictability by Trait Y3 0.08 0.28 0.52
Predictability by Trait Y4 0.09 0.25 0.54
Unpredictability by Trait Y1 0.18 0.13 0.07
Unpredictability by Trait Y2 0.16 0.12 0.05
Unpredictability by Trait Y3 0.20 0.14 0.08
Unpredictability by Trait Y4 0.17 0.13 0.06

Occasion Specificity Y1 0.55 0.40 0.20
Occasion Specificity Y2 0.47 0.35 0.15
Occasion Specificity Y3 0.59 0.43 0.24
Occasion Specificity Y4 0.52 0.38 0.17
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B.2 Sensitivity Analysis

When doing Bayesian estimation, researchers have to be careful in the selection of
their prior distributions because they can influence the estimates of the model. In
general, the effect of the prior distributions is diminished the larger the data are. For
the simulation study, we used the default prior distributions available in Mplus for
our Bayesian analyses. These default priors are uninformative priors, for example,
loadings are given normal priors N(0,1010). To verify that a different selection of
priors would not affect our results, we conducted a sensitivity analysis on a random
sample of the analyses of the simulation. We selected one random replication from 20
random conditions, and fitted the Bayesian models using the default priors and some
weak priors selected by us (e.g., N(0,5)). The results from these analyses showed that
the estimates are basically the same regardless of the priors. Differences between the
estimates at the within-level were not larger than 0.01 and differences between the
estimates at the between-level were not larger than 0.15. These larger differences
in the between-level were mainly associated to the variances, which are harder to
estimate because there was less information at this level due to the sample size. As
an example, Table B.7 presents the estimates obtained by using both uninformative
and weak priors of one of the models in one of the replications.
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Table B.7: Estimates of the Multilevel TSO Model using Uninformative and Weak
Priors with the Base Model as the TSO, 30 Measurement Occasions, 0% Missing
Values, and a Trait-State Variance Ratio of 1:1.

Uninformative Priors Weak Priors

Within loading λS1 1.00 1.00
Within loading λS2 0.479 0.479
Within loading λS3 1.258 1.259
Within loading λS4 0.780 0.780
Occasion-specific residual variance var(ζ ) 1.347 1.348
Error variance var(ε1) 0.599 0.599
Error variance var(ε2) 0.263 0.262
Error variance var(ε3) 0.644 0.642
Error variance var(ε4) 0.510 0.510
Autoregressive effect β 0.493 0.495
Intercept α1 1.930 1.935
Intercept α2 2.477 2.479
Intercept α3 2.903 2.918
Intercept α4 3.479 3.481
Latent trait indicator variance var(ξ1) 0.829 0.696
Latent trait indicator variance var(ξ2) 0.209 0.180
Latent trait indicator variance var(ξ3) 1.295 1.110
Latent trait indicator variance var(ξ4) 0.505 0.438
Cov(ξ1,ξ2) 0.339 0.279
Cov(ξ1,ξ3) 0.927 0.773
Cov(ξ2,ξ3) 0.424 0.352
Cov(ξ1,ξ4) 0.570 0.477
Cov(ξ2,ξ4) 0.235 0.192
Cov(ξ3,ξ4) 0.528 0.422
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B.3 Simulation: Effect of the Number of Indicators

When using the single-level state-trait SEMs, increasing the number of indicators has
a similar effect as increasing the number of measurement occasions in relation to the
number of observed variables that are included in the models. For example, a study
with six indicators and five measurement occasions has the same number of observed
variables as a study with three indicators and ten measurement occasions. Because
of this, it is reasonable to think that increasing the number of indicators also impacts
the performance of the models. However, this factor was kept fixed in the simulation
design because intensive longitudinal studies are not likely to include a lot indicators
to measure the same construct. Nevertheless, to verify how the number of indicators
might affect the performance of the models, we ran a small-scale simulation where
we manipulated this factor. In these analyses, the number of indicators was varied
between 4, 7, and 10; and the number of measurement occasions was varied between
10, 20, 30, and 60. Moreover, we only analyzed the data with the same model that
was used to generate them.

The number of analyses that finished successfully given each condition are shown
in Figures B.1 to B.3. These plots clearly show that the number of indicators does
not impact the performance of the models but the number of measurement occasions
does. This difference can be explained by how each of these factors directly af-
fects the models. On the one hand, increasing the number of measurement occasions
makes the models more complex because it introduces more latent variables that have
to be modeled for each additional occasion. For example, if we are using the CUTS
model in a design with 3 indicators and increase the number of measurement occa-
sions from 10 to 20, the number of latent variables in the model increases from 14
to 24. On the other hand, while increasing the number of indicators increases the
number of loadings and within-residual variances, it barely increases the number of
latent variables that have to be modeled. For example, if we are applying the CUTS
model and increase the number of indicators from 3 to 6 in a design with 10 mea-
surement occasions, we go from a model with 14 to a model with 17 latent variables.
In conclusion, with large datasets, single-level state-trait SEMs are more likely to run
into convergence issues the more latent variables there are in the model. Therefore,
as increasing the number of indicators barely increases the number of latent variables
in the model, including this factor in the simulation study was unnecessary.
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Figure B.1: Number of Successful Analyses varying the Number of Indicators with
the MSST Model
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Figure B.2: Number of Successful Analyses varying the Number of Indicators with
the CUTS Model
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Figure B.3: Number of Successful Analyses varying the Number of Indicators with
the TSO Model

0

20

40

60

80

100

10 20 30 60

Wide−MLE
Wide−Bayes
Long−Bayes

10 20 30 60 10 20 30 60

N
um

be
r 

of
 S

uc
ce

ss
fu

l A
na

ly
se

s

Number of Measurement Occasions

Number of items

TSO

I = 4 I = 7 I = 10

226



B

Appendix B.

B.4 Simulation: Extended Results

In this section, we provide extended results of the simulation study. Firstly, we give
a brief summary of the information criteria indices, which are useful to decide which
model fitted the data best. Secondly, we include the results of the number of success-
ful analyses and the quality of the estimates related to the conditions with a trait-state
variance ratio different from 1:1.

B.4.1 Information Criteria

To decide which model fitted the data best, we used the information criterion in-
dices available in Mplus. This includes the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC), and the adjusted Bayesian Information Crite-
rion (aBIC) when the estimation method was MLE; and the Deviance Information
Criterion (DIC) when the estimation method was MCMC Gibbs sampling.

Concerning the information criteria, we were only able to compare models estimated
with the same method. When the estimation method was MLE, we selected among
five models (MSST, ML-MSST, CUTS, ML-CUTS, and TSO) by means of the AIC,
the BIC, and the aBIC. The percentage of the number of times a model was selected
as the best model is shown in Table B.8 given the model used to generate the data.
In most of the cases, the correct model was selected as the best model regardless of
whether it was the single level or the multilevel version. However, when the data
were generated based on the TSO model, the model selected as the best model was
actually the ML-MSST in about a third of the analyses. This happened because when
the number of measurement occasions was large and the base model was the TSO, the
only model that converged by means of MLE was the ML-MSST model (see Figures
B.4 to B.9). Hence, it was the only model to pick from as the best model.

When the estimation method was Bayesian, we compared the models by means of
the DIC. The ML-TSO model was almost always selected as the best model across
all the conditions independently of the base model. For example, when the data were
generated based on the MSST model, the ML-TSO model was selected as the best
model 5383 times out of 5400 regardless of the number of measurement occasions,
the proportion of missing values, or the trait-state variance ratio. Note that if the data
were in wide format and had 30 measurement occasions or more, Mplus was unable
to compute the DIC.1This means that when the number of measurement occasions
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Table B.8: Percentage of Times a Model was Selected as Best Model According to
the Information Criteria Indices Available with Maximum Likelihood Estimation

Base Model
Information
Criterion

Fitted Model
MSST ML-MSST CUTS ML-CUTS TSO

MSST
AIC 35.9 63.6 0.1 0.4 0
BIC 58.4 41.6 0 0 0
aBIC 58.2 41.6 0.2 0 0

CUTS
AIC 0 0 50.1 42.4 7.4
BIC 0 0 56.5 38.4 5.1
aBIC 0 0 42.9 38.4 18.7

TSO
AIC 0.1 42.8 0.7 1.1 55.4
BIC 6.6 36.2 0.7 1.1 55.4
aBIC 6.6 36.2 0.7 1.1 55.4

was 30 or more, the best model according to the DIC was selected only from the
multilevel models.

B.4.2 Effect of the Trait-State Variance Ratio

We included the trait-state variance ratio in the simulation design expecting little to
no differences when manipulating this factor. While this was generally true, there
are some particular conditions where the trait-state variance ratio interacts with other
manipulated factors and shows some effects in the performance of the models and
the quality of the estimates. In this section, we further explain these results.

First of all, in Figures B.4 to B.9, we present the number of analyses that finished
successfully in the conditions with a trait-state variance ratio different from 1:1 given

1When doing the analyses in wide-format by means of the Gibbs sampling algorithm, the following
message was always printed in the Mplus output: “Problem occurred in the computation of the posterior
predictive p-value. This may be due to a singular sample variance-covariance matrix, such as with zero
sample variances.” This happened because of the large number of observed variables that were included
in some of our analyses (120, 240, 360), which led to huge sample variance-covariance matrices. These
huge matrices might make it impossible for Mplus to compute the deviance and the posterior predictive
p-value of the model.
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each proportion of missingness. In particular, Figures B.7 to B.9 show how having
more state-like variables can affect the performance of the MSST when analyzing
CUTS data and the performance of the TSO model when analyzing its own data.
Firstly, the single-level and the multilevel MSST models performed very poorly when
analyzing CUTS data across all conditions. This means that the MSST model is prob-
lematic if the variables of interest are more state-like and if real method effects are
present in the data. Secondly, the single-level TSO model with MLE seemed to im-
prove as the number of measurement occasions increased. One possible explanation
is that, because the variables were more state-like, more data was needed to correctly
capture the structure of the latent trait indicator variables (the trait component of the
variables).

Figure B.4: Number of Successful Analyses per Condition with 0% Missingness and
3:1 Trait-State Variance Ratio
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Figure B.5: Number of Successful Analyses per Condition with 10% Missingness
and 3:1 Trait-State Variance Ratio
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Figure B.6: Number of Successful Analyses per Condition with 20% Missingness
and 3:1 Trait-State Variance Ratio
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Figure B.7: Number of Successful Analyses per Condition with 0% Missingness and
1:3 Trait-State Variance Ratio
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Figure B.8: Number of Successful Analyses per Condition with 10% Missingness
and 1:3 Trait-State Variance Ratio
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Figure B.9: Number of Successful Analyses per Condition with 20% Missingness
and 1:3 Trait-State Variance Ratio
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Finally, varying the trait-state variance ratio also had some specific effects in the
quality of the estimates of some of the parameters. Firstly, while the estimates of the
within factor loadings λS j were practically unbiased in most conditions, they tended
to be overestimated when analyzing TSO data in conditions that had a trait-state
variance ratio of 3:1 with the MSST model. Moreover, as mentioned in the main text,
the estimates of the consistencies tended to show more bias when the variables were
more state-like. In contrast, the estimates of the occasion-specificities tended to show
more bias when the variables were more trait-like.
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B.5 Simulation: Fitting the Multilevel CUTS model to TSO
data

In the simulation study, it was unexpected that the multilevel version of the CUTS
model failed to converge to a reasonable solution in all the replications of certain con-
ditions. Particularly, the CUTS model failed when it was estimated with maximum
likelihood estimation (MLE) and the TSO model was used to generate the data. As a
consequence, we decided to further investigate these results.

To start with, we repeated some analyses under the problematic conditions. We noted
that the CUTS model was estimating at least one negative variance, which resulted in
an improper solution. To find what was causing these results, we repeated part of the
simulation changing the true parameters of the TSO model. Specifically, we decided
to modify the correlation matrix used to simulate the latent trait indicator variables
of the TSO. We followed the next process: (a) Generate a new correlation matrix
based on a specific seed, (b) simulate 50 datasets with 30 measurement occasions
and without missing values, (c) fit the multilevel CUTS model to the data by means
of MLE, (d) count how many analyses failed. This procedure was repeated 14 times,
using seven different seeds and with high (i.e., 0.7, 0.8, 0.9) and low (i.e., 0.5, 0.6,
0.7) correlations.

The results of the analyses with high correlations are shown in Table B.9. This table
presents the seed used to generate the correlation matrix, the correlation matrix, its
determinant, and the number of analyses that failed out of the 50 replications. The
first row is actually the correlation matrix used in the simulation of this study, which
failed in 50 out of 50 analyses. Next, by generating the correlation matrix based on
a different seed, the results change dramatically. In some cases, the CUTS model
did an excellent job (seeds 13002 and 666), in other cases, the CUTS model was
mediocre (seeds 13003, 13004, and 2019), and in others, it failed completely (seeds
13001 and 13014).

We also repeated the previous simulations but with low correlations. The results are
shown in Table B.10. In these cases, the CUTS model did, generally speaking, a good
job. There were only two situations were there was at least one analysis that failed,
and the number of analyses that failed was rather small.

To sum up, it is a fact that the correlation matrix used to generated the TSO data
has an effect on the number of analyses that fail when fitting the CUTS model by
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Table B.9: Results of Simulations Varying the Correlation Matrix of High
Correlations used to Generate TSO Data

High Correlations

Seed Correlation matrix Determinant # of Analyses that Failed

13001


1

0.8 1
0.9 0.8 1
0.9 0.7 0.7 1

 0.0077 50

13002


1

0.7 1
0.8 0.9 1
0.8 0.8 0.8 1

 0.0168 1

13003


1

0.8 1
0.8 0.7 1
0.9 0.9 0.8 1

 0.0117 15

13004


1

0.9 1
0.7 0.9 1
0.9 0.8 0.7 1

 0.0032 9

13014


1

0.9 1
0.8 0.9 1
0.7 0.9 0.8 1

 0.0045 49

666


1

0.8 1
0.7 0.7 1
0.7 0.7 0.7 1

 0.066 0

2019


1

0.7 1
0.7 0.8 1
0.7 0.7 0.9 1

 0.0288 7
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Table B.10: Results of Simulations Varying the Correlation Matrix of Low
Correlations used to Generate TSO Data

Low Correlations

Seed Correlation matrix Determinant # of Analyses that Failed

13001


1

0.6 1
0.7 0.6 1
0.7 0.5 0.5 1

 0.1469 3

13002


1

0.5 1
0.6 0.7 1
0.6 0.6 0.6 1

 0.1616 0

13003


1

0.6 1
0.6 0.5 1
0.7 0.7 0.6 1

 0.1421 0

13004


1

0.7 1
0.5 0.7 1
0.7 0.6 0.5 1

 0.1236 0

13014


1

0.7 1
0.6 0.7 1
0.5 0.7 0.6 1

 0.1205 1

666


1

0.6 1
0.5 0.5 1
0.5 0.5 0.5 1

 0.28 0

2019


1

0.5 1
0.5 0.6 1
0.5 0.5 0.7 1

 0.21 0
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means of MLE. Importantly, if the correlations in the correlation matrix are high then
it is more likely that analyses will fail. However, it is unclear what exactly in the
correlation matrix results in more failed analyses.

239



B

Appendix B.

B.6 Average Bias of the Autoregressive Effect

Figure B.10: Average Bias of the Autoregressive Effect when fitting the single-level
and multilevel TSO models to TSO data.
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B.7 Empirical Example Excluding Non-stationary Time Se-
ries

Stationarity is an important assumption of state-trait SEMs when analyzing intensive
longitudinal data. For this reason, the HND data were analyzed a second time but
excluding individuals with at least one non-stationary time series. To test for sta-
tionarity, we used the Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski et al.,
1992). This procedure reduced our sample size from 644 to 376 individuals. Next, we
present the fit measures of the MSST, the CUTS, and TSO models in Table B.11. The
DICs indicated that the TSO model fit best the data. Moreover, Tables B.12 and B.13
present the estimates of the TSO model for the two samples: The sample with 644
individuals and the sample with 376 individuals that excludes non-stationary time
series. Finally, Table B.14 presents the estimates of the variance coefficients for the
TSO model on the sample without non-stationary time series.

Although there were some small differences in the estimates, they were not large
enough to change our interpretation of the results. For example, the autoregressive
effect of the multilevel TSO model fitted to the items of positive affect deactivation
went from 0.37 with the whole sample to 0.32 with the stationary sample (see B.12).
However, the fact that the differences were not substantial does not mean that station-
arity is not a required assumption for state-trait SEMs. Simply, in this particular data
the violations of stationarity were not large enough to bias our results. In general, we
advice practitioners to always test for stationarity and to fit the models with both the
whole sample and the stationary sample. If the results from these analyses lead to
different interpretations, the results from the stationary sample should be preferred.

Table B.11: ppp and DIC of the Three Models for the Two
Sets of Items

MSST CUTS TSO

PAD
ppp 0.614 0.655 -
DIC 688083.833 680948.219 656303.508

PAA
ppp 0.603 0.650 -
DIC 687287.995 680842.489 647618.688
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Table B.12: Estimates of the Multilevel TSO for the Items of Positive Affect Deactivation

N = 644 N = 376

Parameter θ̂ θ̂

(Credibility Interval) (Credibility Interval)

Within Loading R 1 1
Within Loading Co 0.89 (0.88, 0.9) 0.89 (0.87, 0.91)
Within Loading Ca 0.89 (0.87, 0.9) 0.86 (0.84, 0.88)
Autoregressive Effect 0.37 (0.36, 0.38) 0.32 (0.3, 0.33)
Within Variance R 74.15 (72.01, 76.23) 71.74 (68.87, 74.58)
Within Variance Co 135.45 (133.12, 137.79) 136.67 (133.63, 139.93)
Within Variance Ca 130.34 (128.14, 132.6) 132.21 (129.34, 135.27)
Latent Occasion-Specific Residual
Variance: PAD

143.56 (140.3, 146.98) 153.02 (148.56, 157.57)

Latent Trait Indicator Variance: R 124.38 (111.26, 139.93) 104.89 (90.66, 122.35)
Latent Trait Indicator Variance: Co 157.47 (141.13, 176.96) 141.34 (121.83, 164.55)
Latent Trait Indicator Variance: Ca 138.43 (123.97, 155.18) 121.22 (104.68, 141.38)
Covariance R-Co 119.75 (106.39, 135.84) 104.95 (89.11, 123.77)
Covariance R-Ca 119.04 (105.89, 134.48) 100.89 (86.2, 118.49)
Covariance Co-Ca 117.98 (104.05, 134.32) 104.87 (88.3, 124.26)
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Table B.13: Estimates of the Multilevel TSO for the Items of Positive Affect Activation

N = 644 N = 376

Parameter θ̂ θ̂

(Credibility Interval) (Credibility Interval)

Within Loading Eg 1 1
Within Loading Et 1.13 (1.11, 1.14) 1.13 (1.11, 1.14)
Within Loading Ch 1.05 (1.04, 1.06) 1.06 (1.05, 1.08)
Autoregressive Effect 0.32 (0.31, 0.33) 0.28 (0.26, 0.29)
Within Variance Eg 140.1 (137.91, 142.36) 140.66 (137.75, 143.57)
Within Variance Et 68.83 (66.92, 70.72) 68.51 (66, 71.04)
Within Variance Ch 92.11 (90.21, 94.06) 92.41 (89.9, 94.99)
Latent Occasion-Specific Residual
Variance: PAD

158.55 (155.06, 162.17) 163.11 (158.39, 167.91)

Latent Trait Indicator Variance: Eg 144.93 (129.81, 162.75) 119.77 (103.65, 139.86)
Latent Trait Indicator Variance: Et 148.82 (133.23, 167.41) 128.13 (110.17, 149.22)
Latent Trait Indicator Variance: Ch 152.34 (136.63, 170.84) 125.63 (108.52, 146.89)
Covariance Eg-Et 130.74 (116.22, 147.84) 110.42 (94.28, 129.97)
Covariance Eg-Ch 127.22 (112.71, 144.05) 105.07 (89.49, 124.2)
Covariance Et-Ch 138.49 (123.49, 156.24) 115.51 (98.71, 135.75)
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Table B.14: Variance Coefficients of the Three Models for the Two Sets of Items

Variance Coefficient Items

PAD

Relaxed Content Calm

Reliability 0.79 0.67 0.65
Consistency 0.35 0.38 0.35

Predictability by Trait 0.30 0.34 0.32
Unpredictability by Trait 0.05 0.03 0.03

Occasion Specificity 0.44 0.29 0.30

PAA

Energetic Enthusiastic Cheerful

Reliability 0.68 0.84 0.78
Consistency 0.30 0.34 0.34

Predictability by Trait 0.27 0.30 0.30
Unpredictability by Trait 0.03 0.04 0.04

Occasion Specificity 0.37 0.49 0.44
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In Chapter 3, we extended the multilevel trait-state-occasion model (TSO; Castro-
Alvarez et al., 2022d; Eid et al., 2017) based on the dynamic structural equation
modeling framework (DSEM; Asparouhov et al., 2018) and the latent state-trait the-
ory for the combination of random and fixed situations (Geiser et al., 2015b). This
appendix includes (a) the mathematical derivation of the variances and covariances of
the latent indicator- and situation-specific traits; (b) the rationale for the development
of the variance coefficients within fixed situation per person of the ME-TSO model;
(c) plots of the convergence of the models M1b, M2, and M2b; and (d) the unstan-
dardized estimates of key parameters of the models when excluding individuals that
had at least one nonstationary time series.
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C.1 Variances and Covariances of the Latent Indicator- and
Situation-Specific Traits

The ME-TSO model provides a set of variance coefficients that allow studying the
psychometric properties of the items used in intensive longitudinal data. In particular,
the model defines a set of coefficients across fixed situations, namely, the consistency
of traits, the situation-specificity of traits, the person situation-interaction coefficient,
and the unique situation effect. These coefficients are derived based on the path
diagram presented in Figure C.1, which is the assumed structural model that relates
the indicator- and situation-specific traits (ξ j f ) with the trait of the reference situation
(ξ jr).

Figure C.1: Structural Diagram of the Indicator- and Situation-Specific Traits.

ξjr

σ2
ξjr

ωjf

σ2
ωjf

γjf

ξjf

1

β1jf
E(ξjr)

β0jf

1

1

Next, we derive the variance of the indicator- and situation-specific trait variable ξ j f

as well as its covariance and correlation with the indicator-specific trait variable of the
reference situation ξ jr. These results are required to compute the variance coefficients
proposed within the ME-TSO model. Note that the model assumes the following:

ξ j f = ξ jr + γ j f

= ξ jr +β0 j f +β1 j f ξ jr +ω j f

E[ω j f ] = 0

Cov(ξ jr,ω j f ) = E[ξ jrω j f ] = 0.

(C.1)
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Variance of the indicator- and situation-specific trait variable ξ j f :

Var(ξ j f ) = E
{[

ξ jr +β0 j f +β1 j f ξ jr +ω j f −E(ξ jr +β0 j f +β1 j f ξ jr +ω j f )
]2
}

= E
{[

ξ jr +β0 j f +β1 j f ξ jr +ω j f −E(ξ jr)−β0 j f −β1 j f E(ξ jr)−

E(ω j f )
]2
}

= E
{[

ξ jr +β1 j f ξ jr +ω j f −E(ξ jr)−β1 j f E(ξ jr)
]2
}

= E
{

ξ
2
jr +β

2
1 j f ξ

2
jr +ω

2
j f +E(ξ jr)

2 +β
2
1 j f E(ξ jr)

2 +2β1 j f ξ
2
jr +2ξ jrω j f−

2ξ jrE(ξ jr)−2β1 j f ξ jrE(ξ jr)+2β1 j f ξ jrω j f −2β1 j f ξ jrE(ξ jr)−

2β
2
1 j f ξ jrE(ξ jr)−2ω j f E(ξ jr)−2β1 j f ω j f E(ξ jr)+2β1 j f E(ξ jr)

2
}

= E(ξ 2
jr)+β

2
1 j f E(ξ

2
jr)+E(ω2

j f )+E(ξ jr)
2 +β

2
1 j f E(ξ jr)

2 +2β1 j f E(ξ 2
jr)+

2E(ξ jrω j f )−2E(ξ jr)
2 −2β1 j f E(ξ jr)

2 +2β1 j f E(ξ jrω j f )−
2β1 j f E(ξ jr)

2 −2β
2
1 j f E(ξ jr)

2 −2E(ω j f )E(ξ jr)−2β1 j f E(ω j f )E(ξ jr)+

2β1 j f E(ξ jr)
2

= E(ξ 2
jr)+β

2
1 j f E(ξ

2
jr)+E(ω2

j f )+E(ξ jr)
2 +β

2
1 j f E(ξ jr)

2 +2β1 j f E(ξ 2
jr)−

2E(ξ jr)
2 −2β1 j f E(ξ jr)

2 −2β1 j f E(ξ jr)
2 −2β

2
1 j f E(ξ jr)

2 +2β1 j f E(ξ jr)
2

= E(ξ 2
jr)−E(ξ jr)

2 +2β1 j f E(ξ 2
jr)−2β1 j f E(ξ jr)

2 +β
2
1 j f E(ξ

2
jr)−

β
2
1 j f E(ξ jr)

2 +E(ω2
j f )

=
[
E(ξ 2

jr)−E(ξ jr)
2]+2β1 j f

[
E(ξ 2

jr)−E(ξ jr)
2]+β

2
1 j f

[
E(ξ 2

jr)−
E(ξ jr)

2]+E(ω2
j f )

=Var(ξ jr)+2β1 j fVar(ξ jr)+β
2
1 j fVar(ξ jr)+Var(ω j f ).
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Covariance of the trait variables of the reference situation and a fixed situation f :

Cov(ξ jr,ξ j f ) = E
{[

ξ jr −E(ξ jr)
][

ξ jr +β0 j f +β1 j f ξ jr +ω j f −E(ξ jr +β0 j f+

β1 j f ξ jr +ω j f )
]}

= E
{[

ξ jr −E(ξ jr)
][

ξ jr +β0 j f +β1 j f ξ jr +ω j f −E(ξ jr)−β0 j f−

β1 j f E(ξ jr)−E(ω j f )
]}

= E
{[

ξ jr −E(ξ jr)
][

ξ jr +β1 j f ξ jr +ω j f −E(ξ jr)−β1 j f E(ξ jr)
]}

= E
{

ξ
2
jr +β1 j f ξ

2
jr +ξ jrω j f −ξ jrE(ξ jr)−β1 j f ξ jrE(ξ jr)−ξ jrE(ξ jr)−

β1 j f ξ jrE(ξ jr)−ω j f E(ξ jr)+E(ξ jr)
2 +β1 j f E(ξ jr)

2
}

= E(ξ 2
jr)+β1 j f E(ξ 2

jr)+E(ξ jrω j f )−E(ξ jr)
2 −β1 j f E(ξ jr)

2−
E(ξ jr)

2 −β1 j f E(ξ jr)
2 −E(ω j f )E(ξ jr)+E(ξ jr)

2 +β1 j f E(ξ jr)
2

= E(ξ 2
jr)−E(ξ jr)

2 +β1 j f E(ξ 2
jr)−β1 j f E(ξ jr)

2

=Var(ξ jr)+β1 j fVar(ξ jr).

Correlation of the trait variables of the reference situation and a fixed situation f :

Corr(ξ jr,ξ j f ) =
Cov(ξ jr,ξ j f )√

Var(ξ jr)Var(ξ j f )
(C.2)

=
Var(ξ jr)+β1 j fVar(ξ jr)√[

Var(ξ jr)
][

Var(ξ jr)+2β1 j fVar(ξ jr)+β 2
1 j fVar(ξ jr)+Var(ω j f )

] .

249



C

Appendix C.

C.2 Total Variance Decomposition in the ME-TSO

In the ME-TSO model, we propose the variance coefficients within fixed situations
per individuals. These coefficients are proportions of the total variance decompo-
sition of the variables Yi j f , which represent the time series of person i on the j-th
indicator in the fixed situation f . This total variance decomposition was developed
based on the total variance decomposition of the TSO model (Castro-Alvarez et al.,
2022d; Eid et al., 2017). To start with, consider the observed variable Yjt that repre-
sents the scores across the sample of indicator j at time t. In the TSO model assuming
longitudinal measurement invariance, Yjt is decomposed as follows:

Yjt = α j +λTj ξ j +λS j Ot + ε jt , (C.3)

where α j is a constant vector that represents the intercept, ξ j represents the latent
indicator-specific trait variable of indicator j, λTj is the loading of the trait variable
ξ j and is equal to 1 for identification purposes, Ot is the latent occasion specific
variable, and λS j is the j-th loading of the occasion specific variable. Moreover, the
autoregressive structure is imposed on the latent occasion specific variables, which
means that a occasion specific variable Ot at time t is regressed on the occasion
specific variable of the previous occasion Ot−1. As a result, the first three occasion
specific variables are defined as follows:

O1 = ζ1, (C.4)

O2 = ϕO1 +ζ2

= ϕζ1 +ζ2, (C.5)

O3 = ϕO2 +ζ3

= ϕ
2
ζ1 +ϕζ2 +ζ3. (C.6)

This can be generalized to any occasion specific variable Ot as follows:

Ot = ϕOt−1 +ζt

=
t

∑
u=1

ϕ
t−u

ζu. (C.7)

Next, to define the variance coefficients, we first need to define the decomposition
of the total variance. Note that because of the longitudinal measurement invariance,
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Var(ζ1) = Var(ζ2) = · · · = Var(ζt) = Var(ζt+1) = . . . . Hence, the variance of the
latent occasion specific residual ζt is simply denoted as Var(ζ ). Thus, the variances
of the first three occasion specific variables are defined as follows:

Var(O1) =Var(ζ ) (C.8)

Var(O2) = ϕ
2Var(ζ )+Var(ζ ) (C.9)

Var(O3) = ϕ
4Var(ζ )+ϕ

2Var(ζ )+Var(ζ ). (C.10)

Again, this can be generalized to any occasion specific variable Ot :

Var(Ot) =Var(ζ )
t−1

∑
u=0

ϕ
2u. (C.11)

The previous result, along with the assumption that the latent indicator-specific traits
ξ j, the occasion-specific variables Ot , and the random measurement errors ε j are un-
correlated, allows defining the total variance decomposition of an observed variable
Yjt (see Equation C.3) as follows:

Var(Yjt) =Var(ξ j)+λ
2
S j

Var(ζ )
t−1

∑
u=0

ϕ
2u +Var(ε j)

=Var(ξ j)+λ
2
S j

Var(ζ )
t−1

∑
u=1

ϕ
2u +λ

2
S j

Var(ζ )+Var(ε j). (C.12)

Given this definition, we can see that the total variance of a variable Yjt is larger
than the total variance of the variable Yj,t−1 (i.e., . . . < Var(Yj,t−1) < Var(Yj,t) <
Var(Yj,t+1) < .. . ). Moreover, if |ϕ| < 1, the total variance of Yjt will approach an
horizontal asymptote as t increases. As a result, the variance coefficients of the TSO
model change over time even when longitudinal measurement invariance is assumed.

Now, let us define the total variance decomposition of the ME-TSO model. To do
this, there are two essential changes in relation to the TSO model. Firstly, the latent
indicator-specific trait variables ξ j are now latent indicator- and situation-specific
trait variables ξ j f . Secondly, the autoregressive effect ϕ is allowed to vary across
individuals, hence we add an i subscript to it. With these changes, we can define the
“total variance” of an observation Yi jt f of person i on indicator j at time t and fixed
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situation f as follows:

Var(Yi jt f ) =Var(ξ j f )+λ
2
S j

Var(ζ )
t−1

∑
u=1

ϕ
2u
i +λ

2
S j

Var(ζ )+Var(ε j). (C.13)

However, defining the total variance of an observation is not really meaningful be-
cause there is no variability when there is only one datum. Therefore, in the ME-TSO
model, we propose to drop the time component by approaching t to infinity and we
define the total variance for the time series Yi j f of person i on the j-th indicator at the
fixed situation f instead. These changes make sense within the ME-TSO model be-
cause there are many measurement occasions and because the model acknowledges
the individuals’ heterogeneity. Hence, the total variance of Yi j f is defined as follows:

Var(Yi j f ) =Var(ξ j f )+λ
2
S j

Var(ζ )
∞

∑
u=1

(ϕ2
i )

u +λ
2
S j

Var(ζ )+Var(ε j). (C.14)

This can be simplified, by noticing that ∑
∞
u=1(ϕ

2
i )

u is a convergent series if |ϕ| < 1.
This should be the case, given that the ME-TSO model assumes that the time series
are stationary. Thus, when solving for the infinite convergent series, we get that the
total variance of Yi j f is:

Var(Yi j f ) =Var(ξ j f )+λ
2
S j

ϕ2
i

1−ϕ2
i

Var(ζ )+λ
2
S j

Var(ζ )+Var(ε j). (C.15)
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C.3 Model Convergence: Plots of the Gelman-Rubin Statis-
tic

Figure C.2: Gelman-Rubin Statistics of M1b
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Note. M1b: Model 1b. R̂: Gelman-Rubin Statistic.
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Figure C.3: Gelman-Rubin Statistics of M2
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Note. M2: Model 2. R̂: Gelman-Rubin Statistic.
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Figure C.4: Gelman-Rubin Statistics of M2b
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Note. M2b: Model 2b. R̂: Gelman-Rubin Statistic.
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C.4 Results with Stationary Sample

We tested stationarity with the Kwiatkowski-Phillips-Schmidt-Shin test to study the
trend-stationarity in the data (Kwiatkowski et al., 1992). The results of these tests
reduced our sample size to 451 individuals once individuals with at least one nonsta-
tionary time series were excluded. We repeated the analyses with the reduced sample
(see Tables C.1 and C.2). The results did not differ to a large extent in comparison
with the analyses with the whole sample reported in the article. Here we present the
results with the stationary sample for completeness.
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Table C.1: Unstandardized Estimates of the Key Parameters of the Models using the
Situation Variable Event

Parameter
M1 M1b

Est. [95% C.I.] Est. [95% C.I.]

Between-level
Eg-Ev Interaction Effect β111 -0.15 [-0.22,-0.07] -0.14 [-0.23,-0.04]
En-Ev Interaction Effect β121 -0.17 [-0.24,-0.1] -0.16 [-0.24,-0.07]
Ch-Ev Interaction Effect β131 -0.23 [-0.31,-0.16] -0.24 [-0.34,-0.15]
Opt-Eg-Ev Interaction Effect βOPT,1 -0.07 [-0.36,0.21]
Opt-En-Ev Interaction Effect βOPT,2 -0.1 [-0.38,0.19]
Opt-Ch-Ev Interaction Effect βOPT,3 0.01 [-0.3,0.31]
AR Effect Mean E(ϕ) 0.29 [0.27,0.31] 0.29 [0.27,0.32]
Eg-Ev Effect Residual Variance
Var(ωEG,11)

23.76 [13.42,36.58] 23.87 [13.48,37.16]

En-Ev Effect Residual Variance
Var(ωEN,21)

35.72 [23.66,50.67] 35.7 [23.68,51.06]

Ch-Ev Effect Residual Variance
Var(ωCH,31)

47.44 [33.59,63.73] 47.64 [33.72,64.53]

AR Effect Variance Var(ϕ) 0.030 [0.024,0.038] 0.031 [0.024,0.038]

Model Fit Information
Number of Free Parameters 34 43
DIC 1280670.22 1282051.36
pD 99514.70 99594.22

Note. M1: Model 1, M1b: Model 1b, Est.: Unstandardized estimate, C.I.: Credibility inter-
val, Eg: Energetic, En: Enthusiastic, Ch: Cheerful, Ev: Event, DIC: Deviance information
criterion, pD: Estimated number of parameters.
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Table C.2: Unstandardized Estimates of the Key Parameters of the Models using the
Situation Variable Alone

Parameter
M2 M2b

Est. [95% C.I.] Est. [95% C.I.]

Between-level
Eg-Al Interaction Effect β111 -0.08 [-0.13,-0.04] -0.06 [-0.12,0]
En-Al Interaction Effect β121 -0.11 [-0.15,-0.07] -0.1 [-0.15,-0.05]
Ch-Al Interaction Effect β131 -0.09 [-0.13,-0.05] -0.08 [-0.13,-0.03]
Opt-Eg-Al Interaction Effect βOPT,1 -0.11 [-0.3,0.07]
Opt-En-Al Interaction Effect βOPT,2 -0.08 [-0.25,0.08]
Opt-Ch-Al Interaction Effect βOPT,3 -0.04 [-0.2,0.13]
AR Effect Mean E(ϕ) 0.3 [0.28,0.32] 0.3 [0.28,0.32]
Eg-Al Effect Residual Variance
Var(ωEG,11)

16.56 [12.23,21.75] 16.27 [11.82,21.61]

En-Al Effect Residual Variance
Var(ωEN,21)

12.57 [8.91,16.95] 12.41 [8.74,16.67]

Ch-Al Effect Residual Variance
Var(ωCH,31)

9.77 [6.53,13.79] 9.67 [6.3,13.72]

AR Effect Variance Var(ϕ) 0.030 [0.024,0.037] 0.030 [0.024,0.038]

Model Fit Information
Number of Free Parameters 34 43
DIC 1356724.47 1358088.51
pD 105463.61 105473.08

Note. M2: Model 2, M2b: Model 2b, Est.: Unstandardized estimate, C.I.: Credibility inter-
val, Eg: Energetic, En: Enthusiastic, Ch: Cheerful, Al: Alone, DIC: Deviance information
criterion, pD: Estimated number of parameters.
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In this appendix, we present additional Figures to support the results presented in the
Chapter 4. As mentioned in Chapter 4, the time-varying dynamic partial credit model
(TV-DPCM) integrates the partial credit model (PCM; Masters, 2016) and the time-
varying autoregressive model (TV-AR; Bringmann et al., 2017) into one model. In
particular, Figures D.1 through D.6 complement the results of the simulation study.
These figures summarize the recovery and accuracy statistics for the latent state dis-
positions, the attractor, the variance of the innovation, the process variance. Then,
Figures D.7 through D.9 present diagnostic plots for the fitted model to the items of
self-esteem during phases 1 and 2. Lastly, Table D.1 and Figures D.10 through D.12
show the results from fitting the model to the items of self-esteem during the whole
duration of the study.
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Figure D.1: Mean Absolute Bias of the Threshold Parameters per Condition.
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Figure D.2: Mean RMSE of the Threshold Parameters per Condition.
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Figure D.7: Gelman-Rubin Statistics for the Estimated Parameters of the TV-DPCM
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Figure D.8: Traceplots of Selected Parameters
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Figure D.9: Autocorrelation Plots of Selected Parameters
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Table D.1: Estimated Parameters of the TV-
DPCM Fitted to the Items of Self-Esteem during
Phases 1 through 5

Median SD C.I. ESS

δ̂11 −2.93 0.43 (−3.76,−2.06) 1273
δ̂12 0.75 0.40 (−0.04,1.54) 979
δ̂21 −2.27 0.43 (−3.1,−1.43) 1211
δ̂22 −0.93 0.40 (−1.7,−0.15) 1131
δ̂31 0.78 0.40 (−0.01,1.55) 1026
δ̂32 3.42 0.42 (2.6,4.25) 986

ϕ̂ 0.71 0.03 (0.65,0.77) 693
Ψ̂ 3.44 0.44 (2.65,4.4) 988
σ̂2 7.03 0.76 (5.71,8.71) 1299

Note. C.I. = 95% central credible interval.
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Appendix D.

Figure D.10: Estimated Latent Dynamic Process
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Note. The estimated latent state dispositions for each beep (observed and missing) including
phases 1 through 5 are represented with the gray line. The trend of the dynamic process or
attractor is represented with the black line alongside with its 95% credibility interval band in
light gray.
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Appendix D.

Figure D.11: Item Characteristic Functions for the Items of Self-Esteem during
Phases 1 through 5
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Appendix D.

Figure D.12: Test Information Function when Analyzing Phases 1 through 5
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Samenvatting

Het gebruik van smartphones en andere elektronische apparaten heeft het verzamelen
van data voor het bestuderen van psychologische dynamiek vergemakkelijkt. Tegen-
woordig is het relatief eenvoudig om proefpersonen gedurende weken of zelfs maan-
den drie of meer keer per dag een korte vragenlijst te laten invullen. Dit resulteert in
tientallen metingen per persoon. Dit soort data staan bekend als intensieve longitudi-
nale data of tijdreeks data. Meten in de psychologie is echter verre van eenvoudig, en
het meten van psychologische processen over tijd, voegt nog een extra moeilijkhei-
dsgraad toe. Dit maakt het bijzonder belangrijk om duidelijkheid te verschaffen over
wat precies wordt gemeten.

In dit proefschrift behandel ik de vraag “wat meten we?” vanuit twee hoofdonder-
werpen. Een eerste onderwerp is het onderscheid tussen “traits” en “states”. Deze
twee begrippen komen onvermijdelijk in beeld bij intensieve longitudinale data om-
dat ze traditioneel gebruikt worden om respectievelijk de stabiliteit en de variabiliteit
van psychologische constructen te beschrijven. Toch zijn er in de literatuur verschil-
lende definities van “traits” en “states” te vinden (ziet Endler & Magnusson, 1976;
Hamaker et al., 2007; Nezlek, 2007; Steyer et al., 1999). Echter, duidelijke definities
van wat wij onder “traits” en “states” verstaan is zeer belangrijk voor het gebied van
dynamische psychologische processen om data en theorie beter met elkaar in verband
te brengen en te begrijpen wat er gemeten wordt. Ten tweede besteed ik bijzondere
aandacht aan het begrip meetfout. Telkens wanneer wij iets meten, gaat onze met-
ing gepaard met meetfouten. Begrijpen in welke mate onze metingen meetfouten
vertonen houdt rechtstreeks verband met het begrijpen van wat wij meten en hoe be-
trouwbaar onze metingen zijn. Meetfouten zijn vooral belangrijk bij psychologische
metingen omdat de meeste constructen in de psychologie niet direct waarneembaar
zijn. Ondanks het belang ervan is de meetfout echter zelden een thema in intensief
longitudinaal onderzoek (Schuurman & Hamaker, 2019; Schuurman et al., 2015).
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Om deze lacune in de literatuur op te vullen, houd ik in onze modellen wel expli-
ciet rekening met meetfouten in intensief longitudinaal onderzoek op basis van de
latente state-trait theorie (LST; Steyer et al., 2015; Steyer et al., 1999) en de item-
responstheorie (IRT; Embretson & Reise, 2013).

Dit proefschrift bestaat in totaal uit 6 hoofdstukken, waaronder een algemene in-
leiding, vier onderzoekspapers en één algemene discussie. In de algemene inleid-
ing presenteer ik de theoretische achtergrond met betrekking tot (a) het belang van
het bestuderen van psychologische dynamiek, (b) het onderscheid tussen “traits” en
“states”, (c) meetfouten, en (d) een schets van het proefschrift. Nu volgt een korte
samenvatting van elk van de volgende hoofdstukken, te beginnen met hoofdstuk 2.

Hoofdstuk 2

In dit hoofdstuk hebben we onderzocht hoe we “traits” en “states” kunnen onder-
scheiden in intensieve longitudinale gegevens met drie populaire longitudinale struc-
tural equation modellen (SEM): Het multistate-singletrait model (MSST; Steyer et al.,
2015; Steyer et al., 1999), het common and unique trait state model (CUTS; Hamaker
et al., 2017), en het trait-state-occasion model (TSO; Eid et al., 2017). Aangezien
deze modellen werden ontwikkeld om longitudinale gegevens met een klein aantal
tijdspunten te analyseren, werden de modellen geherformuleerd als multilevel SEM
modellen om de analyse van intensieve longitudinale gegevens te vergemakkelijken.
De modellen werden getest in een simulatiestudie om hun prestaties in termen van
convergentie en schatting van de parameters onder verschillende omstandigheden te
beoordelen. In het algemeen waren de prestaties van de multilevel versies van de
modellen bevredigend en presteerde de multilevel versie van de TSO het best in alle
omstandigheden. Bovendien heben we geïllustreerd hoe de resultaten van deze mod-
ellen kunnen worden ingepast en geïnterpreteerd aan de hand van de analyse van
gegevens uit het project HoeGekIsNL (van der Krieke et al., 2017; van der Krieke
et al., 2016). In dit hoofdstuk hebben we ook besproken hoe deze modellen zich
verhouden tot andere modellen en raamwerken die gebruikt worden om intensieve
longitudinale data te bestuderen, zoals dynamische factoranalyse benaderingen en
het dynamische SEM.

Hoofdstuk 3

In dit hoofdstuk hebben we een uitbreiding voorgesteld van de multilevel versie van
het TSO-model dat we het mixed-effect trait-state-occasion model (ME-TSO) noem.
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Deze uitbreiding is gebaseerd op de random en fixed situation benadering van de LST
theorie (Geiser et al., 2015b) en het dynamic structural equation modeling frame-
work (Asparouhov et al., 2018). Het doel van deze uitbreiding was om het model
algemener te maken en beter geschikt voor de analyse van intensieve longitudinale
data. Ten eerste kan het TSO-model, door de integratie van de “random en fixed” sit-
uatiebenadering, nu rekening houden met de context van de situatie en de interactie
tussen de persoon en de situatie identificeren. In een intensieve longitudinale studie
kunnen we bijvoorbeeld geïnteresseerd zijn in het effect van het alleen zijn versus het
verkeren in een sociale situatie op het positieve affect van individuen. Dit effect kan
worden bestudeerd met het voorgestelde ME-TSO-model. Bovendien erkennen we in
de ME-TSO de heterogeniteit van de psychologische dynamiek, daarom hebben we
toegestaan dat het autoregressieve effect varieert tussen de individuen, wat betekent
dat voor elke proefpersoon een ander autoregressief effect wordt geschat. Bijgevolg
mochten de variantiecoëfficiënten, die essentieel zijn voor de interpretatie van LST-
modellen, ook variëren tussen individuen. Om te laten zien hoe de ME-TSO kan
worden ingepast en hoe de resultaten kunnen worden geïnterpreteerd, hebben we ook
gegevens gebruikt van het HoeGekIsNL project (van der Krieke et al., 2017; van der
Krieke et al., 2016).

Hoofdstuk 4

De meeste statistische modellen en raamwerken die zijn ontwikkeld om psycholo-
gische dynamische processen te analyseren, vereisen continue data. Psychologische
onderzoekers gebruiken echter niet altijd continue schalen om constructen te meten.
Juist het gebruik van geordende categorische schalen, zoals Likert-schalen, is zeer
populair in intensief longitudinaal onderzoek (Vachon et al., 2019). Om deze reden en
in navolging van het idee van meetmodellen voor intensieve longitudinale gegevens,
hebben we in dit hoofdstuk een IRT-model voorgesteld voor de analyse van psycholo-
gische tijdreeksen. Wij noemen dit model het time-varying partial credit model (TV-
DPCM). IRT modellen zijn niet lineaire modellen die speciaal zijn ontwikkeld voor
het analyseren van schalen met dichotome en polytome items. Dit raamwerk maakt
het mogelijk om de interactie tussen de personen en de items te bestuderen, en de
eigenschappen en kwaliteit van de gebruikte items en schalen te analyseren. Het doel
van het TV-DPCM is het analyseren van psychologische tijdreeksen van één proef-
persoon wanneer een set van likert-schaal items wordt gebruikt om een construct te
meten zoals negatief affect. Het TV-DPCM integreert het partiële credit model (Mas-
ters, 2016) en het tijdsvariërende autoregressieve model (Bringmann et al., 2017).
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Dit betekent dat het model kan omgaan met niet-stationaire tijdreeksen wanneer het
latente dynamische proces een niet-lineaire trend volgt. We hebben de prestaties van
het TV-DPCM beoordeeld in een simulatiestudie en het model geïllustreerd met een
empirisch voorbeeld. Bovendien, door gebruik te maken van bijkomende kenmerken
van IRT zoals de item karakteristieke functies, de item informatie functies, en de test
informatie functie, laten we zien hoe het TV-DPCM kan worden gebruikt om een uit-
gebreide analyse te maken van de schalen in intensief longitudinaal onderzoek. Door
bijvoorbeeld de items die “eigenwaarde" meten te analyseren, tonen we aan dat deze
set items informatiever was bij het meten van lagere niveaus van eigenwaarde, maar
dat de deelnemer meestal gemiddeld een hoog niveau van eigenwaarde ervoer. Dit
wees erop dat meer items die hoge niveaus van eigenwaarde meten nodig waren om
de eigenwaarde van de deelnemer accuraat te kunnen meten.

Hoofdstuk 5

Bij de toepassing van nieuwe modellen kan het voor onderzoekers onduidelijk zijn
hoe zij de passing (goodness-of-fit) van het model moeten beoordelen. In dit hoofd-
stuk hebben we dit probleem aangepakt voor het TV-DPCM methode. Aangezien
het TV-DPCM binnen het Bayesiaanse raamwerk is geïmplementeerd, hebben we
ons geconcentreerd op de implementatie van de posterior predictive model checking
methode (PPMC; Gelman & Rubin, 1992; Rubin, 1984) voor het beoordelen van de
goodness-of-fit van het TV-DPCM. De PPMC-methode bestaat uit het vergelijken
van kenmerken van de waargenomen gegevens met kenmerken van “gerepliceerde”
gegevens op basis van het gepaste model. Als de verschillen tussen de waargenomen
gegevens en de “gerepliceerde” gegevens te groot zijn, dan zijn er aanwijzingen voor
modelmisfit. Om de PPMC-methode voor het TV-DPCM te implementeren, hebben
we teststatistieken en discrepantiemetingen gebruikt en aangepast die gebruikt zijn
om de goodness-of-fit van andere populaire IRT-modellen te beoordelen (Li et al.,
2017; Sinharay et al., 2006; Zhu & Stone, 2011). We hebben deze teststatistieken en
discrepantiematen getest met verschillende passende en niet passende gesimuleerde
data. De resultaten van deze analyses toonden aan onder welke omstandigheden deze
goodness-of-fit maten doeltreffend waren om modelmisfit vast te stellen.

Hoofdstuk 6

Tenslotte presenteer ik in dit laatste hoofdstuk een algemene discussie over dit proef-
schrift. Eerst belicht ik de belangrijkste bevindingen van ons onderzoek in de voor-
gaande hoofdstukken. Daarna bespreek ik het belang van duidelijke definities van
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wat we verstaan onder “traits” en “states” om meer duidelijkheid te hebben over
wat we meten in intensieve longitudinale data. Vanuit een theoretisch oogpunt denk
ik dat de LST-theorie kan bijdragen aan een beter begrip van metingen in intensief
longitudinaal onderzoek. Ik benadruk ook dat IRT nog niet vaak is toegepast in in-
tensieve longitudinale settings, maar beragumnteer ook de voordelen van een IRT
benaderingen in dit veld. Bijvoorbeeld, zoals aangetoond in dit proefschrift, IRT
benaderingen maken het mogelijk om de eigenschappen en kwaliteit van de items
en de schalen die gebruikt worden in intensief longitudinaal onderzoek diepgaand te
bestuderen. Tenslotte erken ik dat onderzoekers nog voor veel uitdagingen kunnen
komen te staan die niet kunnen worden aangepakt met de statistische modellen die
in dit proefschrift worden gepresenteerd. Desalniettemin legt dit onderzoek een aan-
tal grondslagen voor het omgaan met meetfouten in de context van psychologische
dynamische processen.
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The use of smartphones and other electronic devices has facilitated the collection of
data to study psychological dynamics. Nowadays, it is relatively simple to get partic-
ipants to complete a short questionnaire three or more times a day for weeks or even
months, resulting in dozens of measurements from the same individual. This kind of
data is known as intensive longitudinal data or time series data. However, measure-
ment in psychology is far from easy, and the fact that we now measure psychological
processes over time adds another layer of difficulty. This makes it especially impor-
tant to have clarity on what exactly is being measured.

In this thesis, to address the question “what are we measuring?”, I focus on two main
topics. One first topic is the distinction between “traits” and “states”. These two con-
cepts inevitably come to mind when dealing with intensive longitudinal data, as they
have traditionally been used to describe the stability and the variability of psycholog-
ical constructs, respectively. Yet, several definitions of traits and states can be found
in the literature (see Endler & Magnusson, 1976; Hamaker et al., 2007; Nezlek, 2007;
Steyer et al., 1999). I consider that having clear definitions of what we understand
for traits and states is important for the field of psychological dynamics in order to
better relate the data with the theory and to understand what we are measuring. Then,
I give special attention to the concept of measurement error. Whenever we measure
something, our measurement is typically affected by sources other than the target of
our measure. This ‘noise’ in the data is commonly referred to as measurement error.
Understanding to what extent our measurements are affected by measurement error is
directly associated with understanding what we are measuring. Measurement error is
specially important in psychological measurement because most of what is measured
in psychology is non observable. Hence, measurement error tends to be considered a
major threat. However, in spite of its importance, measurement error has rarely been
addressed in intensive longitudinal research (Schuurman & Hamaker, 2019; Schuur-
man et al., 2015). Hence, to fill this gap in the literature, I account for measurement
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error in intensive longitudinal data based on the latent state-trait theory (LST; Steyer
et al., 2015; Steyer et al., 1999) and the item response theory (IRT; Embretson &
Reise, 2013).

This thesis is composed by a total of 6 chapters including a general introduction, four
chapters that are published articles or manuscripts of articles submitted for review
or in preparation, and one general discussion. The general introduction presents the
theoretical background regarding (a) the importance of studying psychological dy-
namics, (b) the distinction between traits and states, (c) measurement error, and (d)
an outline of the dissertation. Next, I also present a brief summary of each of the
following chapters, starting from Chapter 2.

Chapter 2

In this chapter, we studied how to distinguish traits and states in intensive longitudi-
nal data with three popular longitudinal structural equation models: The multistate-
singletrait model (MSST; Steyer et al., 2015; Steyer et al., 1999), the common and
unique trait state model (CUTS; Hamaker et al., 2017), and the trait-state-occasion
model (TSO; Eid et al., 2017). Given that these models were developed to analyze
longitudinal data with a few number of time points, the models were reformulated as
multilevel structural equation models to facilitate the analysis of intensive longitudi-
nal data. The models were tested in a simulation study to assess their performance in
terms of convergence and recovery of the parameters under different conditions. In
general, the performance of the multilevel versions of the models was satisfactory and
the multilevel version of the TSO performed the best across all conditions. Moreover,
we illustrated how to fit and interpret the results of these models by analyzing data
from the project HowNutsAreTheDutch (van der Krieke et al., 2017; van der Krieke
et al., 2016). In this chapter, we also discussed how these models are related to other
models and frameworks used to study intensive longitudinal data, such as dynamic
factor analysis approaches and the dynamic structural equation modeling framework.

Chapter 3

In this chapter, we proposed an extension of the multilevel version of the TSO model
that we refer to as the mixed-effect trait-state-occasion model (ME-TSO). This exten-
sion is based on the random and fixed situation approach of the LST theory (Geiser
et al., 2015b) and the dynamic structural equation modeling framework (Asparouhov
et al., 2018). The purpose of this extension was to make the model more general
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and better suited to analyze intensive longitudinal data. First, by incorporating the
random and fixed situation approach, the ME-TSO model can take the context of the
situation into account and identify the interaction between the person and the situa-
tion. For example, in an intensive longitudinal study, we might be interested in how
being alone versus being in a social situation has an effect in the positive affect of the
individuals. This effect can be studied with the proposed ME-TSO model. Further-
more, in the ME-TSO, we acknowledge the heterogeneity of psychological dynamics.
For this reason, we allowed the autoregressive effect to vary randomly across indi-
viduals, meaning that a different autoregressive effect is estimated for each subject.
As a consequence, the variance coefficients, which are key for the interpretation of
LST models, were also allowed to vary across individuals. To show how to fit the
ME-TSO and interpret its results, we also used data from the HowNutsAreTheDutch
project (van der Krieke et al., 2017; van der Krieke et al., 2016).

Chapter 4

Most of the statistical models and frameworks developed to analyze psychological
dynamics require continuous data. However, psychological researchers not always
use continuous scales to measure the constructs of interest. In fact, using ordered cat-
egorical scales like Likert scales is highly popular in intensive longitudinal research
(Vachon et al., 2019). For this reason and following the idea of measurement models
for intensive longitudinal data, in this chapter we proposed an IRT model for the anal-
ysis of psychological time series. We refer to this model as the time-varying partial
credit model (TV-DPCM). In a nutshell, IRT models are non linear models that have
been especially developed to analyze scales with dichotomous and polytomous items.
This framework allows studying the interaction between the persons and the items,
and analyzing the properties and quality of the items and scales used. The purpose of
the TV-DPCM is to allow analyzing psychological time series of one subject when a
set of likert-scale items was used to measure a construct such as negative affect. The
TV-DPCM integrates the partial credit model (Masters, 2016) and the time-varying
autoregressive model (Bringmann et al., 2017). This means that the model can han-
dle non-stationary time series when the latent dynamic process follows a non linear
trend. We assessed the performance of the TV-DPCM in a simulation study and illus-
trated the model with an empirical example. Moreover, by using additional features
of IRT such as the item characteristic function, the item information function, and
the test information function, we show how the TV-DPCM can be used to make a
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comprehensive analysis of the scales used in intensive longitudinal research. For ex-
ample, by analyzing the items of self-esteem, we showed that this set of items was
more informative at measuring lower levels of self-esteem, but the participant mostly
experienced medium and high levels of self-esteem. This indicated that more items
measuring high levels of self-esteem were needed to accurately measure the partici-
pant’s self-esteem.

Chapter 5

When applying new models, practitioners might find that it is unclear how they are
supposed to assess the goodness-of-fit of the model. In this chapter, we tackled
this issue for the TV-DPCM. Given that the TV-DPCM was implemented within the
Bayesian framework, we focused on implementing the posterior predictive model
checking method (PPMC; Gelman & Rubin, 1992; Rubin, 1984) for assessing the
goodness-of-fit of the TV-DPCM. In a nutshell, the PPMC method consists of com-
paring features of the observed data with features of replicated data based on the fitted
model. If the differences between the observed data and the replicated data are too
large, then one infers that there is evidence of model misfit. To implement the PPMC
method for the TV-DPCM, we used and adapted test statistics and discrepancy mea-
sures that have been used to assess the goodness-of-fit of other popular IRT models
(Li et al., 2017; Sinharay et al., 2006; Zhu & Stone, 2011). We tested these test statis-
tics and discrepancy measures with a handful of fitting and misfitting simulated data.
The results from these analyses showed under which conditions these goodness-of-fit
measures were effective in determining model misfit.

Chapter 6

In this final chapter, I present a general discussion of this thesis. First, I highlight the
main findings of my research across the previous chapters. Then, I further discuss the
importance of having clear definitions of what we understand for traits and states, to
have more clarity about what we measure in intensive longitudinal data. Personally,
I think that from a theoretical point of view, the LST theory can contribute to a better
understanding of measurements in intensive longitudinal research. I also highlight
that IRT has remained relatively unexplored in intensive longitudinal settings, but
there is much that IRT approaches can offer to the field. For example, as shown in this
thesis, IRT approaches allow a thorough understanding of the properties and quality
of the items and scales used in intensive longitudinal research. Finally, I acknowledge
that there are still many challenges that researchers may face that cannot be addressed
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with the statistical models presented in this thesis. Nonetheless, this research sets
some foundations for accounting for measurement error in the field of psychological
dynamics.
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Resumen

El uso de teléfonos inteligentes y otros dispositivos electrónicos ha facilitado la
recolección de datos para estudiar procesos psicológicos dinámicos. Hoy en día, es
relativamente fácil hacer que los participantes completen un breve cuestionario tres o
más veces al día durante semanas o incluso meses, lo que da como resultado docenas
de mediciones del mismo individuo. Este tipo de datos se conoce como datos longi-
tudinales intensivos o datos de series tiempo. Sin embargo, la medición en psicología
no es un proceso sencillo y el hecho de que ahora midamos procesos psicológicos
a lo largo del tiempo agrega otro nivel de dificultad. Por lo tanto, es especialmente
importante tener claridad sobre qué estamos midiendo exactamente.

En esta tesis, para responder la pregunta“¿qué estamos midiendo?", nos enfocamos
en dos temas. En primer lugar consideramos la distinción entre“rasgos" y “estados".
Estos dos conceptos necesariamente tienen que ser discutidos cuando se trabaja con
datos longitudinales intensivos, ya que tradicionalmente se han utilizado para de-
scribir la estabilidad y la variabilidad de los constructos psicológicos. Teniendo en
cuenta que se han propuesto múltiples definiciones de estos conceptos en la liter-
atura (ver Endler & Magnusson, 1976; Hamaker et al., 2007; Nezlek, 2007; Steyer
et al., 1999), consideramos que es importante clarificar que es lo que entendemos
por rasgos y estados para el estudio de procesos psicológicos dinámicos con el fin
de poder relacionar mejor los datos con la teoría y comprender mejor lo que estamos
midiendo. En segundo lugar, nos enfocamos en el concepto de “error de medición”.
Cada vez que medimos algo, nuestras mediciones se suelen ver afectadas por fuentes
distintas de lo que realmente queremos medir. Este ‘ruido’ en los datos se conoce
comúnmente como error de medición. De esta manera, comprender hasta qué punto
nuestras mediciones se ven afectadas por el error de medición está directamente aso-
ciado con comprender qué estamos midiendo. El error de medición es especialmente
importante en la medición en psicología porque la mayor parte de los fenómenos psi-
cológicos que intentamos medir no son observables. Por lo tanto, el error de medición
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tiende a considerarse una amenaza importante a la validez de nuestros resultados. Sin
embargo, a pesar de su importancia, el error de medición rara vez es tenido en cuenta
en las investigaciones con datos longitudinales intensivos (Schuurman & Hamaker,
2019; Schuurman et al., 2015). Así, para estudiar el error de medición en datos longi-
tudinales intensivos, proponemos diferentes modelos basados en la teoría del estado-
rasgo latente (LST; Steyer et al., 2015; Steyer et al., 1999) y la teoría de respuesta al
ítem (IRT; Embretson & Reise, 2013).

Esta tesis está compuesta por un total de 6 capítulos que incluyen una introducción
general, cuatro capítulos que son artículos publicados o manuscritos de artículos pre-
sentados para revisión de pares o en preparación, y una discusión general. La intro-
ducción general presenta los antecedentes teóricos con respecto a (a) la importancia
de estudiar los procesos psicológicos dinámicos, (b) la distinción entre rasgos y esta-
dos, (c) el error de medición y (d) un resumen de la esta tesis. A continuación, tam-
bién presentamos un breve resumen de cada uno de los siguientes capítulos, comen-
zando por el Capítulo 2.

Capítulo 2

En este capítulo, estudiamos cómo distinguir rasgos y estados en datos longitudinales
intensivos con tres modelos de ecuaciones estructurales longitudinales: El modelo de
multiestado y rasgo único (MSST; Steyer et al., 2015; Steyer et al., 1999), el modelo
de rasgo y estado - común y único (CUTS; Hamaker et al., 2017), y el modelo rasgo-
estado-ocasión (TSO; Eid et al., 2017). Debido a que estos modelos se desarrollaron
para analizar datos longitudinales con un número reducido de medidas repetidas, los
modelos se reformularon como modelos de ecuaciones estructurales multinivel para
facilitar el análisis de datos longitudinales intensivos. Los modelos fueron probados
en un estudio de simulación para evaluar su desempeño en términos de la convergen-
cia del algoritmo y la precisión de la recuperación de los parámetros bajo diferentes
condiciones. En general, las versiones multinivel de los modelos tuvieron un desem-
peño satisfactorio y la versión multinivel del TSO fue la que se desempeñó mejor
en todas las condiciones. Adicionalmente, demostramos cómo ajustar e interpretar
los resultados de estos modelos mediante el análisis de datos del proyecto HowNut-
sAreTheDutch (van der Krieke et al., 2017; van der Krieke et al., 2016). En este
capítulo, también discutimos cómo estos modelos se relacionan con otros modelos y
enfoques estadísticos utilizados para estudiar datos longitudinales intensivos, como
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por ejemplo, el análisis factorial dinámico y los modelos de ecuaciones estructurales
dinámicos.

Capítulo 3

En este capítulo, propusimos una extensión de la versión multinivel del modelo TSO
a la que nos referimos como modelo de efectos mixto de rasgo-estado-ocasión (ME-
TSO). Esta extensión se propuso con base en el modelo de situación aleatoria y fija
de la teoría del estado-rasgo latente (Geiser et al., 2015b) y en los modelos de ecua-
ciones estructurales dinámicos (Asparouhov et al., 2018). El propósito de esta exten-
sión era hacer que el modelo fuera más flexible y más adecuado para analizar datos
longitudinales intensivos. En primer lugar, al incorporar el modelo de situación fija
y aleatoria, el ME-TSO puede tener en cuenta el contexto de la situación e identi-
ficar como interactuan los efectos de la persona y la situación. Por ejemplo, en un
estudio longitudinal intensivo, nos podría interesar estudiar el efecto que tiene en el
afecto positivo de una persona el hecho de que la persona se encuentre sola o acom-
paãda, para esto, sugerimos utilizar el ME-TSO. Adicionalmente, en el ME-TSO,
reconocemos la heterogeneidad de los procesos psicológicos dinámicos, es decir, que
no todas las personas de comportan y reaccionan de la misma manera. Por esta
razón, en el ME-TSO, permitimos que el efecto autorregresivo varíe aleatoriamente
entre los individuos, lo que significa que se estima un efecto autorregresivo diferente
para cada sujeto. Por consiguiente, los coeficientes de varianza, que son esenciales
para la interpretación de los modelos LST, también varían entre los individuos. Para
mostrar cómo ajustar el ME-TSO e interpretar sus resultados, también usamos datos
del proyecto HowNutsAreTheDutch (van der Krieke et al., 2017; van der Krieke et
al., 2016).

Capítulo 4

La mayoría de los modelos y enfoques estadísticos desarrollados para analizar los
procesos psicológicos dinámicos requieren datos continuos. Sin embargo, en psi-
cología, no siempre se utilizan escalas continuas para medir los constructos de in-
terés. De hecho, el uso de escalas categóricas ordenadas como por ejemplo las es-
calas Likert es muy popular en la investigación longitudinal intensiva (Vachon et
al., 2019). Por esto, en este capítulo propusimos un modelo de IRT para el análi-
sis de series de tiempo en psicología. Este modelo lo nombramos como el modelo
dinámico de crédito parcial con tiempo variable (TV-DPCM). En pocas palabras, los
modelos TRI son modelos no lineales que se han desarrollado especialmente para
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analizar escalas con ítems dicotómicos y politómicos. Este enfoque permite estudiar
la interacción entre las personas y los ítems, y analizar las propiedades y calidad de
los ítems y escalas utilizadas. El propósito del TV-DPCM es permitir el análisis de
series de tiempo en psicología de un sujeto cuando se ha utilizado un conjunto de
ítems tipo Likert para medir un constructo como por ejemplo el afecto negativo. El
TV-DPCM integra el modelo de crédito parcial (Masters, 2016) y el modelo autorre-
gresivo con tiempo variable (Bringmann et al., 2017). Esto significa que el modelo se
puede utilizar cuando las series de tiempo no son estacionarias, siendo que el proceso
dinámico latente sigue una tendencia no lineal. En este capítulo, evaluamos el de-
sempeño del TV-DPCM en un estudio de simulación y demostramos como utilizarlo
con un ejemplo empírico. Además, mediante el uso de propiedades de la IRT, como
la función característica del ítem, la función de información del ítem y la función de
información del test, mostramos cómo se puede usar el TV-DPCM para realizar un
análisis integral de las escalas utilizadas en la investigación longitudinal intensiva.
Por ejemplo, al analizar los ítems de autoestima de los datos empíricos, mostramos
que esta escala era más informativa para medir niveles relativamente bajos de au-
toestima, pero el participante en la mayoría del tiempo experimentó niveles medios y
altos de autoestima. En consecuencia, estos resultados sugirieron que se necesitaban
más ítems que midieran niveles medios y altos de autoestima para poder medir con
precisión la autoestima del participante.

Capítulo 5

Al utilizar modelos estadísticos nuevos, los investigadores pueden encontrar que no
es claro cuales son los procedimientos para evaluar la bondad de ajuste del modelo
seleccionado. En este capítulo, abordamos esta problemática para el TV-DPCM por
medio de el método de evaluación predictiva a posteriori del modelo (PPMC; Gel-
man & Rubin, 1992; Rubin, 1984), dado que el TV-DPCM se implementó dentro del
enfoque bayesiano. En pocas palabras, el método PPMC consiste en comparar las
características de los datos observados con las características de los datos replicados
con base en el modelo ajustado. Si las diferencias entre los datos observados y los
datos replicados son demasiado grandes, se infiere que existe evidencia de un de-
sajuste del modelo. Para implementar el método PPMC para el TV-DPCM, usamos
y adaptamos estadísticos de prueba y medidas de discrepancia que se han usado para
evaluar la bondad de ajuste de otros modelos de IRT (Li et al., 2017; Sinharay et al.,
2006; Zhu & Stone, 2011). En nuestro estudio, simulamos bases de datos con base
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en el TV-DPCM incluyendo violaciones a algunos supuestos del modelo para exam-
inar los diferentes estadísticos de prueba y medidas de discrepancia. Los resultados
de estos análisis mostraron en qué condiciones estas medidas de bondad de ajuste
fueron efectivas para indentificar el desajuste del modelo.

Capítulo 6

En este capítulo final, presentamos las principales conclusiones y trabajo a futuro
que se derivan de esta tesis. En primer lugar, destacamos los principales hallazgos de
nuestra investigación en los capítulos anteriores. Luego, analizamos más a fondo la
importancia de tener definiciones claras de lo que entendemos por rasgos y estados,
para tener más claridad sobre lo que medimos en datos longitudinales intensivos.
Personalmente, creemos que desde un punto de vista teórico, la teoría LST puede
contribuir a una mejor comprensión de las medidas en la investigación longitudi-
nal intensiva. También destacamos que IRT ha permanecido relativamente inexplo-
rado en entornos longitudinales intensivos, pero hay mucho que los enfoques de IRT
pueden ofrecer al campo de estudio. Por ejemplo, como se muestra en esta tesis, los
enfoques de IRT permiten estudiar a profundidad las propiedades y la calidad de los
ítems y las escalas que se utilizan en la investigación longitudinal intensiva. Final-
mente, reconocemos que aún existen muchos desafíos que los investigadores pueden
enfrentar y que no pueden solucionarse con los modelos estadísticos presentados en
esta tesis. No obstante, esta investigación sienta algunas bases para tener en cuenta
el error de medición en el estudio de procesos psicológicos dinámicos.
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To conclude, my experience after four years of Ph.D. can be
summarized as follows:
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