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Abstract— The large-scale introduction of natural energy being 

promoted worldwide in recent years leads to an increased 

impact of weather fluctuations on wholesale electricity prices. In 

markets where the introduction of solar power generation is 

rapidly progressing worldwide including Japan, hedging needs 

for revenue fluctuations in the solar power business have been 

expanding year by year. Therefore, this study proposes hedging 

strategies for the revenue of power generation companies that 

trade generated solar power through the wholesale electricity 

market, using a portfolio of derivatives whose underlying assets 

consist of fuel price, solar radiation, and temperature. We 

specifically propose a multilateral hedging method that applies 

multiple non-parametric regression methods such as tensor 

product spline function, ANOVA decomposition, and spline 

function with cross variable, and demonstrate the hedging effect 

using empirical data from the Japan Electric Power Exchange 

(JEPX). 

Keywords-component; Non-parametric regression, Minimum 

variance hedge, Solar power energy,Weather derivatives 

 INTRODUCTION  

As part of global warming countermeasures, a large-scale 

introduction of natural energy is being promoted worldwide. 

In markets where the introduction of solar power generation 

is rapidly progressing, such as Japan, the impact of weather 

fluctuations on electricity prices continues to expand. As a 

result, hedging needs for revenue fluctuations in the solar 

power generation business have been expanding year by year. 

Therefore, this study proposes hedging strategies for the 

revenue of power generation companies that trade generated 

solar power through the wholesale power exchange market 

(e.g., JEPX, PJM, etc.) and verifies the hedging effect using 

empirical data from the Japanese market. 

Weather derivatives are widely used mainly for methods 

using the temperature index. Previous studies that applied 

weather derivatives to the electricity industry include  

proposing a pricing method using trend predictions for 

futures and options based on the monthly average 

temperature [1] and proposing weather derivatives for 

hedging the loss of power prediction errors for either wind 

power [2] or  solar power [3]. Although these studies propose 

methods for hedging volume risk, such as demand and power 

output, the hedge methods proposed in [4] also consider price 

fluctuation risk and hedges the retailer’s procurement cost as 

defined by the product of procurement price (wholesale 

electricity market price) and demand volume by using 

temperature derivatives. Another related study [5] verified 

the cross-hedging effect for a solar power producer in the U.S. 

when using standard temperature derivatives. This study can 

be positioned as applied research of [4] for the solar power 

business in that it proposes a hedging method for the 

electricity sales revenue defined by the product of wholesale 

electricity market  price and power generation output. 

In this paper, to suppress daily fluctuations in electricity 

sales, we consider building a hedging strategy based on a 

portfolio of derivatives with crude oil price, solar radiation, 

and temperature as the underlying assets. This paper also 

proposes a composite hedging method that applies multiple 

nonparametric regression methods from different viewpoints, 

as follows: (1) when estimating the derivatives’ payoff 

function that changes with yearly cyclical trend, we use a 

tensor product spline function that can take into account the 

smoothing conditions of both the direction of underlying 

asset price and time (expiration  date) with yearly cyclical 

trend at the same time; (2) we use a method called ANOVA 

decomposition to separate deterministic time trends from 

payoff functions estimated by the tensor product spline 

functions; and (3) assuming that sales revenue has yearly 

cyclical trend even when viewed at the rate of annual change, 

we use a spline function with cross variables to incorporate 

such mixed effect.  

This paper is organized as follows: first, Section II gives 

an overview of the characteristics of the Japanese electricity 

market and recent structural changes; second, section III 

outlines the techniques used in this study; third, section IV 

formulates a specific hedging model that is treated in this 

paper; forth, section V examines the hedging effects of 

derivatives using empirical data; and lastly, section VI 

provides a summary. 

 RECENT ELECTRICITY MARKET OVERVIEW IN JAPAN 

Intended for effective hedge modeling, this section gives 

an overview of the determinants and the features of electricity 

prices, in which we describe recent structural changes of the 

Japanese market. In the following, an analysis is made based 

on fuel price and supply-demand fluctuations, which are the 

main determinants of electricity prices. 

Relative to fuel prices, the Japanese wholesale electricity 



price (i.e., JEPX price) is distinguished by its strong link to 

the crude oil prices in the international oil market. For 

example, WTI, a typical crude oil price, has been reported to 

have a substantial correlation with the JEPX spot price, with 

a time lag of approximately one month [6]. 

Regarding supply-demand fluctuations, the JEPX price has 

been declining in recent years due to an increase in the supply 

capacity of nuclear (subsequent restart after all unit 

suspension due to the Fukushima nuclear accident) and solar 

power generation. In particular, solar power generation has 

continued to increase rapidly since 2012 when a feed-in tariff 

scheme was implemented; and in 2018, the percentage of 

solar power in the total national power generation reached 

6.5%. Thus, dealing with these annual changes in prices due 

to the supply-demand structure is also key to constructing an 

effective hedging model. 

 MINIMUM VARIANCE HEDGING PROBLEM  

In this paper, we consider the problem of minimizing the 

variance of a portfolio consisting of the revenue from selling 

electricity and the payoff function of the derivatives owned 

by a solar power operator that enters into a derivative contract 

through an insurance company in advance. 

The payoff function of weather derivatives used in this 

study is the following. First, the payoff of weather index 

futures is defined as the realized weather index value minus 

its  predicted value or trend, i.e., the prediction error 𝜀𝑊,𝑡 ≔
𝑊𝑡 − 𝑓𝑊(𝑡) as in [4]. Then, the payoff is given as an arbitrary 

function 𝜓(𝜀𝑊,𝑛) with the prediction error as the underlying 

asset. As a result, weather index futures that have a definite 

payoff function are used to find the optimal contract volume; 

alternatively, weather index derivatives are used to find the 

optimal payoff function. 

A. Estimate smoothing spline function 

In this study, as proposed in [2], the generalized additive 

model (GAM [7]) is used to estimate the optimal future 

contract amount and the payoff function of derivatives.  

1) Optimal contract volume calculation problem 

The estimation method of smoothing spline function can 

be applied to optimal contract volume calculation problems 

for weather index futures. Specifically, when hedging the 

fluctuation risk of solar power revenues  𝜋𝑡  using weather 

index futures whose payoff is given by 𝜀𝑊,𝑡 , we solve the 

following minimum variance hedging problem: 

 min
∆(∙),𝑓(∙)

Var[𝜋𝑡 − 𝑓(𝑡) − ∆(𝑡)𝜀𝑊,𝑡].  () 

where 𝑡  is the date and ∆(𝑡)  is the contract volume of the 

weather futures. Thus, (1) depicts a problem that minimizes 

the variance of the portfolio consisting of the solar power 

sales revenue 𝜋𝑡, 𝑓(𝑡) unit of discount bonds and ∆(𝑡) unit of 

weather futures with payoff 𝜀𝑊,𝑡[2]. 

2) Optimal payoff function calculation problem  

Similarly, the problem of finding the optimal payoff 

function of a derivative is given by the following: 

min
𝜓(∙),𝑓(∙)

Var[𝜋𝑡 − 𝑓(𝑡) − 𝜓(𝜀𝑊,𝑡)] s.t. ∑ 𝜓(𝜀𝑊,𝑡)𝑡 = 0  (2) 

This equation corresponds to the problem of minimizing 

the variance of the portfolio composed of electricity sales 

revenue 𝜋𝑡, 𝑓(𝑡) unit of discount bonds, with weather index 

derivatives with payoff 𝜓(𝜀𝑊,𝑡) under smoothing conditions. 

In this paper, assuming that the payoff function of the 

derivative is not constant throughout the year but changes 

smoothly according to the season, we set up the following 

optimal payoff function calculation problem: 

 min
𝜓(∙)

Var[𝜋𝑡 − 𝜓(𝑡, 𝜀𝑊,𝑡)] s.t. ∑ 𝜓(𝑡, 𝜀𝑊,𝑡)𝑡 = 0  (3) 

(3) uses the derivatives payoff 𝜓(𝑡, 𝜀𝑊,𝑡)  as a bivariate 

function; however, we want to consider an additional 

condition to obtain a function that smoothly connects both the 

directions of date 𝑡 and weather prediction error 𝜀𝑊,𝑡. Here, 

by estimating the function 𝜓(𝑡, 𝜀𝑊,𝑡)  as a tensor product 

spline function [8], it is possible to consider such different 

two-way smoothing conditions simultaneously (See [3] for 

an example of applying this method to the hedging problem.). 

B. ANOVA decomposition 

Since the function 𝜓(𝑡, 𝜀𝑊,𝑡) mentioned above contains a 

trend related to the date 𝑡 , there is a problem in that it is 

difficult to grasp the structure as a hedging model. Therefore, 

in the following formula, we consider a method of separating 

the trend for 𝑡 from the term 𝜓(𝑡, 𝜀𝑊,𝑡) by applying ANOVA 

decomposition [9]. When ANOVA decomposition is applied 

to the function 𝜓(𝑡, 𝜀𝑊,𝑡), the following equation is obtained: 

 𝜓(𝑡, 𝜀𝑊,𝑡) = 𝜓𝑡(𝑡) + 𝜓𝜖(𝜀𝑊,𝑡) + 𝜓𝑡𝜖(𝑡, 𝜀𝑊,𝑡)  (4) 

Here, each term on the right side can be found as a function 

whose average is zero. The univariate spline functions 𝜓𝑡(𝑡) 

and 𝜓𝜖(𝜀𝑊,𝑡) are called “main effects,” and correspond to the 

trends in which the date or weather index contribute 

independently to the original tensor product spline functions. 

Alternatively, the bivariate spline function 𝜓𝑡𝜖(𝑡, 𝜀𝑊,𝑡)  is 

called the “interactions effect” and corresponds to the 

interaction trend of date and weather index, which is obtained 

by removing the main effects from the original tensor product 

spline function. At this time, the function 𝜓̃(𝑡, 𝜀𝑊,𝑡): =

𝜓𝜖(𝜀𝑊,𝑡) + 𝜓𝑡𝜖(𝑡, 𝜀𝑊,𝑡)  is obtained as a payoff function of 

the derivative in which the yearly cyclical deterministic trend 

is removed from the original tensor product spline function. 

When this derivative is used, the objective function part of 

(3) is corrected to the following minimum variance problem 

(where 𝑓(𝑡): =  𝜓𝑡(𝑡) is contract unit of discount bonds): 



 min
𝑓̃(∙),𝜓̃(∙)

Var[𝜋𝑡 − 𝑓(𝑡) − 𝜓̃(𝑡, 𝜀𝑊,𝑡)]  (5) 

 CONSTRUCTION OF HEDGING MODELS 

A. Model consisting of fuel price and calendar trend 

Considering that electricity prices are linked to crude oil 

prices for large trends as a monthly average and also to day-

type and weather conditions in terms of daily granularity, the 

following “base model” can be constructed: 

 
𝜋𝑡 = 𝛽 ∙ 𝑊𝑇𝐼𝑡 + 𝑐(𝑡) + 𝜂𝑡

𝑠. 𝑡.  𝑐(𝑡): = 𝑓(𝑡) + 𝑓𝐻(𝑡)𝐼𝐻(𝑡) + 𝑔(𝑡)𝑃𝑒𝑟𝑖𝑜𝑑𝑡 .
  (6) 

where 𝜋𝑡 is the electricity sales revenue in the spot market on 

day 𝑡 (= ∑ 𝑆𝑡
(𝑚)𝑉𝑡

(𝑚)
𝑚 , sum of products of spot price 𝑆𝑡

(𝑚)
 

and power generation output 𝑉𝑡
(𝑚)

 at each time 𝑚), 𝛽 is the 

regression coefficient (the contract volume of WTI futures), 

and 𝑊𝑇𝐼𝑡  is the WTI futures price in the previous month of 

the month to which the day 𝑡 belongs, 𝑐(𝑡) is a calendar trend 

(the contract unit of discount bonds), and 𝜂𝑡 is the residual 

term with an average of 0. 𝑓(𝑡), 𝑓𝐻(𝑡) , and 𝑔(𝑡)  are the 

yearly cyclical trends estimated by GAM1, while 𝐼𝐻(𝑡) is a 

dummy variable that is 1 if the day 𝑡 is Saturday, Sunday, or 

holiday, and 0 otherwise. 𝑃𝑒𝑟𝑖𝑜𝑑𝑡   is the 𝑡  th day’s elapsed 

years (not necessarily an integer) from the beginning of the 

data starting year 2 . Of these, the term 𝑔(𝑡)𝑃𝑒𝑟𝑖𝑜𝑑𝑡  is 

introduced assuming that the calendar trend has yearly 

cyclical trend even when viewed at the rate of annual change, 

and 𝑔(𝑡) means the cyclical trend of the annual change. 𝑔(𝑡), 

as a spline function with cross variables, can be obtained as a 

quadratic programming problem and estimated by the same 

means as normal GAM [4]. 

Note that  𝜂𝑡  indicates the hedge error. Estimating the 

regression coefficient and spline functions using GAM  (6) 

corresponds to solving the hedging problem for the unit of 

holding WTI futures and discount bonds that minimizes the 

residual sum of squares of the hedging error Var[𝜂𝑡]. 

B. Model using solar radiation futures 

Next, assuming the case where solar radiation futures can 

be used, we consider the following hedging model: 

 𝜋𝑡 = 𝛽 ∙ 𝑊𝑇𝐼𝑡 + 𝑐(𝑡) + 𝛾1(𝑡)𝜀𝑅,𝑡 + 𝜂𝑡 . (7) 

where 𝜀𝑅,𝑡  is the solar futures payoff (solar prediction error) 

 
1We estimate the yearly cyclical trend using the smoothing spline function 

𝑓(𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡) with yearly cyclical dummy variables 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡 
(= 1, … ,365(𝑜𝑟 366)), whose allocation method is proposed in [10]. In 

this work, the starting point of the cyclical dummy variables is January 1, 

and from 1 to 365 (366 for leap years) are allocated in order. Note that we 

denote 𝑓(𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡) as 𝑓(𝑡) for concise notation. 
2 𝑃𝑒𝑟𝑖𝑜𝑑𝑡 is defined as a dummy variable calculated by the following 

equation: 𝑃𝑒𝑟𝑖𝑜𝑑𝑡: = 𝑌𝑒𝑎𝑟𝑡 − 𝑌𝑒𝑎𝑟1 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡 𝐷𝑎𝑦𝑠𝑡⁄ , where 𝑌𝑒𝑎𝑟𝑡 is 

the year to which the 𝑡 th day belongs, and 𝐷𝑎𝑦𝑠𝑡 is the total number of 

days in the year to which the 𝑡 th day belongs. 
3 Downloaded from http://www.jepx.org/market/index.html. 

on day 𝑡, and 𝛾1(𝑡) is the yearly cyclical trend of the solar 

futures’ contract volume. 

As shown in section II, due to an increase in solar power 

generation, the sensitivity of power sales revenue to the solar 

prediction error (contract volume of solar futures) is assumed 

to have a yearly cyclical annual change trend. Considering 

this point, the following model can be constructed: 

 
𝜋𝑡 = 𝛽 ∙ 𝑊𝑇𝐼𝑡 + 𝑐(𝑡) + 𝛾1(𝑡)𝜀𝑅,𝑡

+𝛾2(𝑡)𝑙(𝑃𝑒𝑟𝑖𝑜𝑑𝑡)𝜀𝑅,𝑡 + 𝜂𝑡.
   (8) 

Here, among the fourth term, we define 𝑙(𝑃𝑒𝑟𝑖𝑜𝑑𝑡)  in 

advance as 1 − 𝑒𝑥𝑝[−𝑃𝑒𝑟𝑖𝑜𝑑𝑡] , a nonlinear ageing trend 

function (a monotonically increasing decay function).  

C. Model using temperature derivatives 

Similarly, a hedging model using temperature derivatives 

is as follows: 

 𝜋𝑡 = 𝛽 ∙ 𝑊𝑇𝐼𝑡 + 𝑐(𝑡) + 𝜏𝑡𝑒̃(𝑡, 𝜀𝑇,𝑡) + 𝜂𝑡 (9) 

where 𝜀𝑇,𝑡   is the temperature prediction error on day 𝑡  and 

𝜏𝑡𝑒̃(𝑡, 𝜀𝑇,𝑡) is the payoff function of a temperature derivative 

estimated as a tensor product spline function from which a 

definite yearly cyclical trend has been removed by ANOVA 

decomposition in the way described in section III. 

 EMPIRICAL ANALYSIS 

In this section, we verify the effectiveness of the proposed 

method using real data as follows: 

(a)  Electricity spot price 𝑆𝑡 [JPY/kWh]: JEPX area price 

of Chugoku where Hiroshima city is located3 

(b)  Solar power output volume 𝑉𝑡  [kWh] : measured 

value of household’s solar power system in 

Hiroshima city4 

(c)  Solar radiation 𝑅𝑡[J m2⁄ ] , Max temperature  𝑇𝑡   [℃ ]: 

realized value of Hiroshima city published by Japan 

Meteorological Agency5 

(d)  WTI crude oil price 𝑊𝑇𝐼𝑡  [Thousand JPY/bbl]: 

historical WTI spot price FOB6 

A. Trend estimation of hedge models 

In this subsection, we estimate the model parameters and 

the trend functions using data for five years from January 1, 

2013 to December 31, 2017 and consider the results. 

4 With the permission of the owner, we use the data of the private roof-

mounted power system in Hiroshima city. 
5 Downloaded from https://www.data.jma.go.jp/gmd/risk/obsdl. Note that 

considering the correlation with the JEPX Chugoku area price, the max 

temperature data is created by averaging the temperatures in Nagoya City, 
Osaka City, and Hiroshima City by weighting the total prefecture 

population in which each city is located.  
6 Downloaded from https://www.eia.gov/dnav/pet/hist/RWTCD.htm. Note 
that it is converted into JPY using the past exchange rate published by the 

Bank of Japan (downloaded from https://www.stat-search.boj.or.jp/). 

https://www.data.jma.go.jp/gmd/risk/obsdl
https://www.eia.gov/dnav/pet/hist/RWTCD.htm
https://www.stat-search.boj.or.jp/


1) Optimal contract volume of solar radiation futures 

First, we consider the estimation results of model  (8) on 

solar radiation futures. The Figure 1. shows a composite 

calendar trend 𝑓(𝑡) + 𝑔(𝑡)𝑃𝑒𝑟𝑖𝑜𝑑𝑡(displayed range of 𝑡 axis 

is from Jan. 1 to Dec. 31). In 2013, the peak power sales 

revenue was around May; however, the peak in 2017 has 

moved to around August because an increase in solar power 

facilities has led the JEPX price to decline particularly in May 

when the amount of solar radiation is increased in the year. 

Next, the estimation result of the solar radiation future 

contract amount 𝛾1(𝑡) + 𝛾2(𝑡)𝑙(𝑃𝑒𝑟𝑖𝑜𝑑𝑡)  in model  (8) is 

shown on the Figure 2. This trend corresponds to the 

sensitivity of power sales revenue to the solar radiation 

residual. As this estimate shows, the rate of annual change 

varies greatly depending on the season. 

 

 

Figure 1.  Estimated calendar trend in model   (8) 

 

Figure 2.  Estimated solar radiation futures optimal contract amount in 

model   (8)  

 
7 Note that the items (numbers) in Figure 4. correspond to the following 

terms in the hedge model formula: 1.𝑓(𝑡), 2. 𝑓(𝑡) + 𝑓𝐻(𝑡)𝐼𝐻(𝑡), 

3. 𝑔(𝑡)𝑃𝑒𝑟𝑖𝑜𝑑𝑡, 4. 𝑐(𝑡), 5. 𝑊𝑇𝐼𝑡, 6. 𝛾1(𝑡)𝜀𝑅,𝑡, 7.{𝛾1(𝑡) +

2) Optimal payoff function of temperature derivatives 

Figure 3. shows the estimated result of the temperature 

derivative payoff function 𝜏𝑡𝑒̃(𝑡, 𝜀𝑇,𝑡), which is defined as a 

tensor product spline function using ANOVA decomposition 

in the model (9). 

 

Figure 3.  Payoff function for temperature derivatives in model (9) 

It has been confirmed that the sensitivity (slope) of solar 

power revenue to the temperature residual significantly 

increases in summer. It is thought that the rise in temperature 

in summer affects both the increases in power output and 

price (due to increase of power demand).  

B. Measurement of hedge effects 

Next, using the parameters and functions estimated from 

the learning period data (from January 1, 2013 to December 

31, 2017), we calculate the hedge effect of the weather 

derivative during the simulation period (from January 1, 2018 

to December 31, 2018). In this study, we define the variance 

reduction rate (VRR) as follows and call 1-VRR the hedge 

effect:  

    VRR: =
Var[hedge error of the target model ]

Var[hedge error of the base model]
.      (10) 

Here, we analyze changes in hedge effects when each 

derivative (hedge model term) is combined cumulatively．
Figure 4.  shows the contribution rate when each derivative 

is used alone (bar graph), the cumulative contribution rate 

when the terms are combined in order from the top (blue line 

graph), and the cumulative hedging effect of the weather 

derivative compared to the base model  (6) (red line graph)7.  

𝛾2(𝑡)𝑙(𝑃𝑒𝑟𝑖𝑜𝑑𝑡)}𝜀𝑅,𝑡, 8.𝛾𝑡𝑒̃(𝑡, 𝜀𝑅,𝑡),  9. 𝛾2(𝑡)𝑙(𝑃𝑒𝑟𝑖𝑜𝑑𝑡)𝜀𝑅,𝑡 + 𝛾𝑡𝑒̃(𝑡, 𝜀𝑅,𝑡), 

10. 𝜏(𝑡)𝜀𝑇,𝑡, 11. 𝜏𝑡𝑒̃(𝑡, 𝜀𝑇,𝑡). 



 

Figure 4.  Cumulative contribution ratio and hedging effect of solar 

radiation and temperature derivatives  

First, it was confirmed that the highest two contribution 

rates are solar derivatives and temperature derivatives. Next, 

looking at the cumulative contribution rate, a significant 

improvement was observed by adding yearly cyclical trends 

of annual change to the calendar trend or the solar radiation 

future contract amount. The former is improved by 7% and 

the latter by 4% (underlined). Also, the cumulative 

contribution rate increased monotonously with the inclusion 

of each term and reached 0.687 when all were combined. 

Finally, regarding the cumulative hedging effect, that of the 

solar radiation derivative was 0.517, and it improved to 0.588 

when combined with the temperature derivative. Although 

not shown in the figure, even when using only temperature 

derivatives, a sufficient cross-hedging effect of 0.300 was 

obtained. As for the hedging related to temperature, it is 

interesting that the hedging effect is greatly improved by 

using derivatives given by nonlinear payoff functions instead 

of using futures with a linear payoff function. Compared to 

the hedging effect when using only solar radiation derivatives 

(0.517), there was an improvement of 3% when combined 

with temperature futures (0.546) and an improvement of 7% 

when combined with temperature derivatives (0.588). 

 CONCLUSION 

In this paper, we proposed a hedging method using 

derivatives related to solar radiation and temperature against 

the fluctuation of solar power sales revenue and measured the 

hedge effects using Japanese data. The proposed method is 

based on the concept of the existing method for the retailer’s 

procurement cost but includes the following new points: 

• We set up a problem of finding the payoff function of 
nonlinear derivatives that change with the season and 
apply the tensor product spline function to estimate it 

• By using ANOVA decomposition, we make it easier 
to capture the structure of the hedge model 

• We assume that sales revenue has seasonality even 
when viewed at the rate of annual change and use a 
spline function with cross variables to estimate this 
trend 

For solar power sales revenues, the solar radiation 

derivatives provide a hedging effect that reduces the original 

variance by about 52%, and the combined use of temperature 

derivatives enables improvement to about 59%. Furthermore, 

there was a hedging effect of about 30% even when only 

temperature derivatives were used. The hedging strategies 

proposed in this study may be further developed for practical 

use in the near future as the introduction of renewable energy 

is continuously increasing.  

In order to show more universal effectiveness, it is a future 

task to verify using the verification results of empirical data 

from several cities and make analyses of these verification 

results. 
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