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“The one, simple, elegant equation to explain everything.”

The Theroy of Everything
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Abstract

Jianqiang Xiao

Optimizing 3D Convolutions on Stereo Matching for
Resource Efficient Computation

Humans and most organisms are born with one set of eyes. Our pupillary distance

is close, so the visual range of both eyes mostly overlap each other. Both eyes

produce similar visual signals to the brain. After processing the signals, we can

determine the distance from our eyes to an object. Therefore, we can perceive our

position in 3D space.

For computers, we can also simulate biological vision by fixing the focus of two

cameras on the same horizontal plane with a close distance. We refer to this as

stereo matching. Most of the deep learning approaches extract semantics from

each of the two images using 2D CNNs. Since the left and right views mostly

overlap, a share-weight siamese network is used to extract semantic informations.

Then the left and right feature maps aggregate with each other and a disparity

dimension is added to the 3-dimensional feature map and from a 4-dimensional

cost volume. However, when 3D CNNs are used to process cost volume, an extra

dimension makes the computational cost rise exponentially. Therefore, binocular

vision technology is difficult to apply in real-world scenarios that require real-

time. Besides stereo matching, 3D CNNs are widely used in other stereo vision

subjects, such as multiple view stereo, 3D object detection, visual SLAM (simul-

taneous localization and mapping), etc. To address this problem, we investigate

2D kernel-based methods, select suitable methods for building 3D CNN kernels,

and experiment on the stereo matching algorithm. By using both exact methods
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and efficient methods, our model significantly reduces the computational cost and

maintains a comparable accuracy without changing the architecture. Our study

provides a comprehensive discussion of 3D convolutions in stereo matching algo-

rithms, which has guidance for other stereo vision subjects.
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Chapter 1

Introduction

About 543 million years ago, the vast majority of species predated by simply wait-

ing for their prey to enter their range. Creatures with vision ability appeared on

Earth, and the Cambrian explosion occurred (Parker, 2004). Since then, organisms

with the ability to see quickly gained an advantage, and it made them to become

more proactive in their predatory and survival behavior. Under the superiority of

the natural environment, now, most organisms have vision ability, which means

vision is the most important sense for a living creature.

Most organisms with vision have a pair of eyes, and environmental perception

under binocular vision gives organisms greater advantage in the harsh nature en-

vironment. Binocular vision refers to the vision produced by organisms when the

visual fields of the two eyes overlap with each other. Due to the interpupillary

distance between the eyes, they produce a pair of slightly different visual signal

on the retina. After this visual signal is transmitted to the brain, the brain inte-

grates the two different images to determine the precise distance from the eye to

the object (Visual Fields: Examination and Interpretation 2010).

From a technical perspective, computer vision has become one of the most active

research fields since AlexNet (Krizhevsky, Sutskever, and Hinton, 2012a) made

historical progress with absolute advantages in ILSVRC (ImageNet Large Scale

Visual Recognition Challenge) 2014 (Russakovsky et al., 2014). Computer vision

has made significant progress in semantic-related tasks, such as classification (He

et al., 2015a; Szegedy et al., 2015), object detection (Ren et al., 2015; Lin et al.,

2017a) and semantic segmentation (Ronneberger, P.Fischer, and Brox, 2015; He et



2 Chapter 1. Introduction

al., 2017). Recent studies have shown that in the field of monocular vision, com-

puter has achieved similar performance as human. However, in stereo vision, the

computer has encountered some serious problems. The main reason is that in com-

puter vision, when the input is two pictures, the cost of calculation is not increase

twice, but increases exponentially. This makes it necessary for researchers to make

trade-offs between accuracy and real-time performance, which makes it difficult

to apply stereo vision research in the real world. Based on the problem of com-

putational cost and accuracy, this research proposes a convolution-based method,

which greatly reduces the computational cost without reducing the accuracy.

1.1 Motivation

Stereo matching plays an important role in 3D computer vision applications, such

as augmented reality (AR) (Zenati and Zerhouni, 2007), mixed reality (MR) (Noh,

Sunar, and Pan, 2009), autonomous vehicle (Hane, Sattler, and Pollefeys, 2015)

and robot navigation (Nalpantidis, Sirakoulis, and Gasteratos, 2007; Samadi and

Othman, 2013). It provides accurate disparity by a pair of stereo images. We can

calculate the depth value by D = f B/d, where d denotes the disparity of the pixel,

f is the focal length of the camera and B is the distance between the camera centers

(Zbontar and LeCun, 2015a). To get a precise disparity map is one of the most

important tasks in stereo vision.

Classic stereo matching algorithms contain four parts: matching cost computa-

tion, cost support aggregation, disparity computation and disparity optimization

(Scharstein and Szeliski, 2002). Early studies perform machine learning methods

to optimize disparity by Markov random field (Zhang and Seitz, 2007), conditional

random field (Scharstein and Pal, 2007) or random forest ref-31. With the rise of

convolutional neural networks (CNNs), CNN-based approaches have been devel-

oped progressively. MC-CNN (Haeusler, Nair, and Kondermann, 2013) first inves-

tigates CNNs on matching corresponding points for disparity estimation. Geom-

etry and Context Network (GC-Net) (Kendall et al., 2017) makes the training pro-

cess end-to-end with a differentiable ArgMin operation on disparity estimations.
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The Pyramid Stereo Matching Network (PSMNet) (Chang and Chen, 2018) intro-

duces spatial pyramid pooling and a stacked hourglass module for an accurate

disparity map. These famous studies form a CNN-based approach framework:

2D Siamese feature extraction, cost volume aggregation, cost volume regulariza-

tion and disparity regression.

One major problem with current CNN-based stereo matching algorithms is the

enormous computation for cost volume regularization. The cost volume aggrega-

tion stage builds correspondence between left and right feature maps, aggregating

disparity as an additional dimension on left feature maps to form 4D cost volumes

(Kendall et al., 2017). For the cost volume regularization stage, most CNN-based

methods build 3D convolution layers and 3D deconvolution layers, composing a

3D encoder–decoder architecture for regularizing 4D cost volumes. Compared to

2D convolution kernels, the additional dimension forming 3D convolution kernels

raises computation complexity exponentially, leading the cost volume regulariza-

tion to contain most of the computation among the entire architecture. There-

fore, we build the 3D version of resource efficient kernel-based methods which

can match up with the logic of a 3D encoder–decoder. By classifying all 3D layers

in PSMNet according to their functions, we replace the original layers with our

lightweight 3D convolution layers and implement a series of comparative exper-

iments. Eventually, compared to the original PSMNet, we save 34.3% parameters

and 73.1% multiply-add operations (MAdd) (95.50% paramters and 94.53% MAdd

for 3D CNNs) without losing performance. We evaluate our model on Scene Flow

and KITTI 2015 public datasets and obtain competitive results with other state-of-

the-art stereo matching algorithms.

1.2 Contribution

The contributions of this thesis can be summarized as follows:

• We compile a full discussion on optimizing 3D convolutional kernels on

stereo matching algorithms. These days, there are several well-known 2D

kernel-based methods, some of which are used to reduce the computational
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cost of the network, making it lightweight and able to use in mobile devices.

Some other kernel-based methods make the network perform significantly

better with only a small additional computational cost. In our study, we

divided the existing kernel-based methods into lightweight kernels and ac-

curate kernels, and tested their performance on the stereo matching network

separately.

• We explore a network design guideline for optimizing 3D convolution ker-

nels on stereo matching algorithms and achieve an accurate and lightweight

stereo matching algorithm. By classifying the 3D convolution layers in the

baseline, for different classes of convolutions, we use the corresponding 3D

convolutions for our experiments. Through a series of experiments based

on the kernel approach, we obtain the effect of 3D convolution on the stereo

matching algorithm at different layers. And since 3D convolution is also

widely used for other 3D-related tasks, our study is instructive for some

other stereo tasks as well.

• By following the above guidelines, our model exhibits comparable results

and much lower computational cost without changing the network archi-

tecture.

1.3 Thesis Outline

The following thesis is organized as:

In Chapter 2, we present a comprehensive survey of recent research on stereo

matching and kernel-based methods.

In Chapter 3, we explained some important concepts and notations. These include

our application scenario, training dataset and computational complexity matrics.

In Chapter 4, we explained the structure of the network, including PSMNet and

the designed 3D convolutions.

In Chapter 5, we described the entire network design pipeline on optimizing 3D

convolutions for resource efficient computation in detail.
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In Chapter 6, we compared the resulting network model with state-of-the-art.

In Chapter 7, we discussed the problems in the research and their reasons.

In Chapter 8, we draw a summary of the entire thesis.
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Chapter 2

Survey of Related Studies

In this chapter, we present the main r covered in this paper. Through the research

on the related literature of stereo matching, we understand the problems faced by

this research field, which leads to the solution of the kernel-based methods as one

of the solution.

2.1 Stereo Matching

Stereo matching is also known as disparity estimation, or binocular depth esti-

mation. Under stereo matching framework, we use a binocular camera with cal-

ibrated rectification as the sensor and get a pair of stereo images. In chapter 1,

we mentioned that the stereo matching algorithm can estimate depth information.

Now we briefly introduce how to get depth information through the triangulation

geometry. Note: we only discuss calibrated parallel cameras in the thesis.

2.1.1 Triangulation geometry

In a standard model (calibrated camera) as shown in figure 2.1, OL and OR are

focuses of the left and right cameras. We have an object P can be shown in left

frame in PL and right frame in PR. If we need to get the depth D from the point

P to the stereo camera, we need to use similar triangle geometry. In the figure we

can simply recognize △POLOR ∼ △PPLPR . And we can refer line "PLPR" as:

PLPR = b − (XL −
L
2
)− (

L
2
− XR) = b − (XL − XR). (2.1)
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FIGURE 2.1: Triangulation geometry in stereo vision.

As △POLOR ∼ △PPLPR , we have:

b − (XL − XR)

D − f
=

b
z

. (2.2)

So, the depth ’D’, can be calculated as:

D =
b × f

XL − XR
. (2.3)

And d = |XL −XR| is disparity of this pixel. b (the baseline) and f (the focal length)

are the intrinsic parameters of the stereo camera. So in the equation 2.3, if we get

the disparity PLPR, we can get the exactly depth D. And how to get disparity is

the theme of stereo matching.

2.1.2 Classic Stereo matching algorithms

In taxonomy (Scharstein and Szeliski, 2002), we know that stereo matching mainly

have four stages: matching cost computation, cost support aggregation, disparity

computation and disparity refinement.
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Matching Cost Computation

The purpose of the matching cost computation is to measure the correlation be-

tween the pixel to be matched and the candidate pixel. Whether two pixels are

points with the same name or not, the matching cost can be calculated through the

matching cost function. The smaller the cost, the greater the correlation and the

greater the probability of being a same pixel.

When we search for a pixel corresponding to the left and right image, we set a

range D(Dmin − Dmax) as the maximum disparity searching range. Then we create

a W × H × D (W is the width of input images, and H is the height of input images)

three-dimensional matrix C to store the matching cost value of each pixel within

the disparity search range. We usually call matrix C as Disparity Space Image

(DSI) (Intille and Bobick, 1994).

There are many ways to calculate the matching cost. For traditional methods, we

use Absolute Differences (AD) (Yang, Yuille, and Lu, 1993), Sum of Absolute Dif-

ferences (SAD) (Hamzah, Rahim, and Noh, 2010), Normalized Correlation Coeffi-

cient (NCC) (Zhang et al., 2009) and so on to calculate the matching cost of the DSI

matrix.

Cost Support Aggregation

In the previous step, we calculated the matching cost of the corresponding pixel

in a certain size range. As for cost support aggregation, the purpose is to enable

the matching value to reflect the correlation between the left and right pixels accu-

rately. When matching within a local area, it is easily affected by visual noise. And

when the area is a weak texture area or a repeated texture area, the cost matching

value may not accurately reflect the correlation between pixels.

The cost aggregation is to introduce the relationship between adjacent pixels (e.g.,

there should be continuous inspection values between adjacent pixels) to optimize

the cost matrix DSI C(W, H, D). This optimization introduces the global informa-

tion of the image, and the disparity cost of each pixel will be recalculated based
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on the disparity value of its neighboring pixels. Therefore, we get a new DSI as

C′(W, H, D′).

We can think of cost aggregation as a kind of disparity propagation. In the high

textural areas, the cost computation is accurate. Then spread from the high textural

areas to the low textural areas through cost aggregation, so we can get a relatively

realistic global disparity map. Commonly cost aggregation methods include scan-

line method (Mei et al., 2011), dynamic programming method (Leung, Appleton,

and Sun, 2008), path aggregation method in SGM (Semi-Global Matching) algo-

rithm (Hirschmuller, 2008), etc.

Disparity Computation

In the disparity computation step, WTA (Winner-Takes-ALL) algorithm is widely

used for calculating the disparities of every pixel of the input image (Gong et al.,

2007). For each pixel, the WTA algorithm selects the smallest cost value of all

disparities as the result of the disparity.

Disparity Refinement

Disparity refinement is to further optimize the preliminary disparity map we got

in the previous step, which includes steps such as removing noise, smoothing tex-

ture, and optimizing pixel accuracy. Generally, the left-right consistency check

algorithm is used to eliminate errors caused by occlusion and noise (Hosni et al.,

2009). Smoothing algorithms also are used to smooth the disparity map such as

median filter (Ma et al., 2013) and bilateral filter (Richardt et al., 2010). There are

also some methods that can effectively improve the quality of the disparity map,

such as: robustness plane fitting (Hong and Chen, 2004), IC (Intensity Consistent)

(Hirschmuller and Scharstein, 2008), LC (Locally Consistent) (Hirschmuller and

Scharstein, 2008), etc.

2.1.3 CNNs-based Stereo matching algorithms

Nowadays, due to the development of artificial intelligence and convolutional

neural networks, researchers turn their focus on CNNs-based methods. Therefore,
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FIGURE 2.2: Network architecture of MC-CNN.

in this section, we introduce some main CNNs-based stereo matching algorithms.

MC-CNN (2015)

In 2015, (Zbontar and LeCun, 2015b) proposed the first stereo matching approach

based on CNNs (convolutional neural networks). This paper replaces the match-

ing cost computation step in the traditional stereo matching algorithm by intro-

ducing CNNs and set up the architecture of using siamese network to extract in-

formation from stereo images. The network architecture is shown in figure 2.2.

GC-Net (2017)

In 2017, GC-Net (Geometry and Context Network) (Kendall et al., 2017) success-

fully makes the stereo matching training process end-to-end. The entire network

complies with a clean and concise structure of 2D CNNs - Cost Aggregation - 3D

Encoder Decoder as shown in figure 2.3. This paper introduces a 4-dimensional
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FIGURE 2.3: Network architecture of GC-Net.

cost volume to express the disparity cost in stereo matching, which is a more suit-

able form for CNNs. Cost volume adds the dimension of disparity cost to the

feature map corresponding to each other from left and right to form a 4D cost

volume. It adds stereo geometry information to the semantic and textural infor-

mations learned by 2D CNNs, which also conforms to the principle of traditional

stereo matching.

Because when we use the traditional Argmin loss function on calculating the loss

of cost volume, there are two obvious problems. a) The output is discrete and

cannot produce sub-pixel disparity estimation. b) It is not differentiable, so it can-

not be trained end-to-end when using backpropagation. They produced a soft

Argmin that is fully differentiable during training and to calculate a smooth dis-

parity estimation. First, convert the predicted costs cd from a numerical value to

a probability by taking the negative number of the cost value d. Then the entire

disparity dimension is regularized by softmax operation σ(.). Finally, they sum

up all disparity d with the weighted probability. The mathematical expression of

Soft Argmin is shown in equation 2.4:

So f t Argmin :=
Dmax

∑
d=0

×σ(−cd) (2.4)

The loss function is shown in equation4. The model uses absolute error to calculate

the loss between predicted disparity dn and ground truth disparity d̂n at pixel n.

Loss =
1
N

N

∑
n=1

∥dn − d̂n∥1 (2.5)
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FIGURE 2.4: Network architecture of PSMNet.

PSMNet (2018)

Based on the GC-Net, PSMNet (Pyramid Stereo Matching Network) (Chang and

Chen, 2018) optimized the network modules and achieved much better perfor-

mance. In figure 2.4, PSMNet also follows a 2D CNNs - Cost Aggregation - 3D

Encoder Decoder architecture. And PSMNet adds the mechanism of modern com-

puter vision on the GC-Net framework. During 2D CNNs extracting feature maps

from the input, the SPP (Spatial Pyramid Pooing) (He et al., 2015b; Zhao et al.,

2017) module is added. By introducing the hierarchical features on the last fully-

connected layer, they output more accurate semantic and textural feature maps.

Also, they also upgrade the 3D encoder-decoder architecture with stacked hour-

glass (Newell, Yang, and Deng, 2016), which is widely used in human pose esti-

mation and semantic segmentation. It consists of repeated top-down/bottom-up

processing combined with intermediate supervision.

StereoNet (2018)

At the same time, part of the research is devoted to improving the real-time perfor-

mance of the stereo matching algorithm. StereoNet (Khamis et al., 2018) is one of

the most representative studies. Compared with an accurate method like PSMNet,
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FIGURE 2.5: Network architecture of StereoNet.

FIGURE 2.6: Network architecture of GwcNet.

StereoNet uses more down-sampling to extract a smaller feature map. Smaller fea-

ture maps aggregate a lower-resolution cost volume, which ultimately reduces the

amount of calculation for the entire network.

Gwc-Net (2018)

Gwc-net (Group-wise Correlation Network) (Guo et al., 2019) improved the cost

aggregation step and proposed group-wise correlation volume to calculate the

originally combined cost volume by grouping, thereby it reduce the calculational

cost. In figure 2.6, we can find that compared with PSMNet, the main contribution

of Gwc-net is how to improve cost aggregation. The rest of steps are basically the

same as PSMNet.
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FIGURE 2.7: Network architecture of Ga-net.

Ga-net (2019)

Compared with other CNNs-based stereo matching algorithms, GA-net (Guided

Aggregation Net) (Zhang et al., 2019) uses two aggregation methods, SGA (Semi-

Global Matching)and LGA (Local Guided Aggregation) to replace 3D convolu-

tions. In traditional patch matching tasks, SGM and LGA are quite famous aggre-

gation methods. In traditional patch matching tasks, SGM and LGA are very well-

known aggregation methods. However, there are many difficulties when they are

put into end-to-end NN (neural network) for training. The main contribution of

Ga-net lies in the design of new aggregation steps so that SGM and LGA can be

used in the stereo matching algorithm of end-to-end training. The network archi-

tecture is shown in figure 2.7.

DeepPruner (2019)

Deeppruner algorithm (bibid) is also a real-time algorithm. The difference be-

tween it and StrereoNet is mainly in the method of constructing cost volume. In

StereoNet, they use more down-sampling to get a low-resolution cost volume. In

DeepPruner, they use PatchMatch module (Barnes et al., 2009) to generate sparse

differentiable cost volume. Figure 2.8 shows the architecure of DeepPruner algo-

rithm.
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FIGURE 2.8: Network architecture of DeepPruner.

FIGURE 2.9: Network architecture of ACF-Net.

ACF-Net (2020)

Based on the general stereo matching pipeline, ACF-Net (Adaptive unimodal Cost

volume Filtering Network) (Zhang et al., 2020) adds Ground Truth disparity and

unimodal distribution, generating Ground Truth cost volume for intermediate su-

pervised learning. The confidence estimation network (Fu and Fard, 2018) and

stereo focal loss (Lin et al., 2017b) are also performed on the network to further

improve the estimation accuracy.

AANet (2020)

In AAnet (Adaptive Aggregation Network) (Xu and Zhang, 2020), two different

aggregation methods, ISA (Intra-Scale Aggregation) and SCA (Cross-Scale Aggre-

gation), are proposed to replace 3D convolutions. In figure 2.10, AAnet aggregates

multi-scale cost volumes, and forms an adaptive aggregation module through an
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FIGURE 2.10: Network architecture of AANet.

ISA layer aggregated in three scales and a CSA layer aggregated in three cross-

scales. Then stack multiple AA modules to complete cost aggregation and dispar-

ity computation, and finally output 3 low-resolution disparity maps. Finally, use

the module of StereoDRNet (Chabra et al., 2019) to restore the resolution of the

disparity map

CSN (2020)

As shown in figure 2.11, CSN (Cascade Stereo Network) (Gu et al., 2020) uses

a coarse-to-fine model to build multi-level cost volumes. The cost volume that

compares coarse is composed of larger scale semantic 2D features and hypothesis

that compares sparse. Then we use the prediction of the previous stage to narrow

the range of depth or parallax in the subsequent stage. Using this coarse-to-fine

cost volume construction framework reduces the amount of network calculations.

According to previous references, most of the works focus on optimizing the net-

work architecture, especially the cost volume aggregation part, which costs the

greatest computational resources. Yet, 3D convolution layers and 3D transposed

convolution layers, the basic elements of cost volume aggregation, have been rarely

studied.
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FIGURE 2.11: Network architecture of MVSNet + Cascade Cost Vol-
ume.

2.2 Kernel-based Methods

2.2.1 Lightweight Kernel-based Methods

Recent studies focus on building lightweight convolution kernels, which com-

prise the CNN-based application suitable for low resource devices, such as mobile

phone and navigation robot. The origin SqueezeNet (Iandola et al., 2016) achieves

AlexNet (Krizhevsky, Sutskever, and Hinton, 2012b) -level accuracy with 50 times

fewer parameters. Xception (Chollet, 2017) and MobileNetV1 (Howard et al., 2017)

implement depthwise separable convolutions for reducing the model parameters.

MobileNetV2 (Sandler et al., 2018) proposes an inverted residual block with chan-

nel expansion for boosting the performance. ShuffleNetV1 (Zhang et al., 2018)

presents grouped pointwise convolution and a channel shuffle operation to save

computation. ShuffleNetV2 (Ma et al., 2018) further considers the relationship be-

tween hardware and network design, improving their performance in terms of

speed and accuracy.

2.2.2 Channel-wise Attention Mechanism

The channel-wise attention mechanism has proven the potential for enhancing the

performance with a small implementation. Squeeze and excitation networks (SE-

Net) (Hu, Shen, and Sun, 2018) firstly present an effective attention mechanism
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by aggregating a feature map with global average pooling along the channel and

weights it on the respective channel. Selective kernel networks (SK-Net) (Li et al.,

2019) improve the performance with optimizing the channel-wise information in

two different sizes of receptive fields. Efficient channel attention networks (ECA-

Net) (Wang et al., 2020) propose an effective channel attention module for saving

computational burden.



19

Chapter 3

Important Concepts and Notations

In this chapter, we will introduce the application scenarios of stereo matching in

the real world, the dataset used in training the algorithm and the matrics to eval-

uate the computational complexity of the network.

3.1 Application Scenario

3.1.1 Autonomous vehicle

The ADAS (Advanced Driver Assistance Systems) is a system that assists in driv-

ing and parking a car. When the system contains a human-computer interac-

tion interface, it can increase vehicle safety and road safety. There are many au-

tonomous driving companies that are researching related technologies, but they

each have their own sensor-based research directions. For example, Mobileeye

(Mobileye, 2021) uses a monocular camera plus LIDAR (LIght Detection And Rang-

ing) as a solution. The monocular camera mainly relies on the Bounding Box (BB)

that detects the target when measuring the distance, but in the scene where there

is no object detected, it is difficult for the monocular system to get distance infor-

mation. And the binocular system can solve this problem. It estimates the depth

through disparity and solves the problem of the monocular self-driving system

that depends on the detected bounding boxes. Subrau eyesight (Subaru, 2021) is a

representative ADAS based on a binocular vision system. As shown in figure 3.1,

Baidu’s Apollo L4 ADAS (Apollo, 2021) also uses a binocular system. Tesla (Au-

topilot, 2021), based on a pure vision solution, uses 8 cameras around the body
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FIGURE 3.1: Sensor placement scheme of Baidu Apollo L4 ADAS.

FIGURE 3.2: Sensor placement scheme of Tesla Autopilot.

to provide a 360-degree perception of the environment without blind spots 3.2.

Although the binocular camera can measure depth while obtaining semantic in-

formation, autonomous driving based entirely on the binocular system requires a

huge amount of calculation, so it is difficult to guarantee real-time performance.

Therefore, most of the automatic driving solutions are to detect the semantic in-

formation of the object through the camera, plus the LIDAR detection distance to

implement automatic driving.
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FIGURE 3.3: ORB-SLAM2 mainly consists of three parallel threads:
tracking, partial mapping and loop closing.

3.1.2 Robot Navigation

For AGV (Autonomous Guided Vehicle), SLAM (Simultaneous Localization And

Mapping) is often used to build navigation systems. Early researchers often used

LIDAR as a sensor (Chetverikov et al., 2002; Koide, Miura, and Menegatti, 2019;

Rozenberszki and Majdik, 2020), because it can output accurate distance informa-

tion and able to perform in real-time. However, LIDAR sensors have the disad-

vantages of being very expensive and low accuracy in foggy, rainy and snowy

conditions. In order to solve the drawbacks of LIDAR, researchers began to study

visual-based SLAM. The most representative of visual slam is ORB-SLAM family

(Mur-Artal, Montiel, and Tardós, 2015; Mur-Artal and Tardós, 2017; Campos et al.,

2021). We take ORB-SLAM2 as an example to introduce visual SLAM algorithms.

As shown in figure 3.3, ORB-SLAM2 mainly includes three parts: tracking, local

mapping and loop closing. During the tracking process, the algorithm search for

the matched the local map features, and minimize the re-projection errors with

motion-only BA (Bundle Adjustment). Local mapping is used to manage the fea-

tures of local mapping and optimize the matching results through local BA. The

loop closing process is used to detect and eliminate accumulated drift in a larger

loop. It is mainly achieved through the comparison and optimization of essential

frames. After implementing these three basic threads, full BA is used to optimize

the pose-graph information and calculate the optimal structure and robot motions.
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（a) Left image （b) Ground truth

FIGURE 3.4: Scene Flow dataset. (a) left image of stereo image pair,
(b) ground truth disparity.

3.2 Dataset

For all our designed models, we mainly use two convincing stereo image datasets.

3.2.1 Scene Flow

Scene Flow (Mayer et al., 2016) is a large scale dataset with synthetic stereo images.

It contains 35,454 training and 4370 testing image pairs with 940× 540 resolutions.

We report the end-point-error (EPE) for evaluations, where EPE shows the average

disparity error in pixels.

3.2.2 KITTI 2015

KITTI 2015 (Menze and Geiger, 2015) contains real street scenes taken by driving

a car. It includes 200 training image pairs with ground truth disparity maps col-

lected by LiDAR and 200 other test image pairs without ground truth disparity.

The size of the training and test images is 1240 × 376. We repot D1-all metrics as

the official leaderboard.
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（a) Left image （b) Right image

（c) Ground truth disparity

FIGURE 3.5: KITTI 2015 dataset. (a) left image of stereo image pair,
(b) right image of stereo image pair, (c) ground truth disparity.

3.3 Computational Complexity Matrics

Before we dive into the network design pipeline, we introduce the metrics for

evaluating the computational complexity as follows:

• Parameters are the number of trainable neurons in the designed convolu-

tional neural network;

• Multiply-Add operations(MAdd) describe the accumulated operations when

training neural networks. (Molchanov et al., 2016) explain the calculation of

floating point operations (FLOPs). MAdd is approximately half of FLOPs;

• Memory Access Cost (MAC) is the amount of allocating computational re-

source during the training process;

• Model Size shows the storage size of all trained parameters.
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Chapter 4

Network Architecture

We first introduce the details about our network structure, including the architec-

ture of the prototype PSMNet (Chang and Chen, 2018), and a series of 3D convo-

lution kernels as the basic components of the network design pipeline.

4.1 PSMNet

In our research, we take the PSMNet as the baseline and explore a series of 3D

kernel-based methods to find a lightweight and accuracy model. In Figure 4.1, we

separate all 3D convolution kernels into five categories: 3D head, 3D convolution,

3D convolution with stride = 2, 3D deconvolution and 3D output. Table 4.1 shows

the network settings of PSMNet, we optimize the network design by experiment-

ing with the 3D kernel-based method on different stages of the architecture.

The 4D cost volumes (disparity × height × width × channel) are formed by con-

catenating the left and the right feature maps fl, fr (height × width × channel) in

Equation 4.1:

C(d, x, y, channel) = (Concat fl(x, y), fr(x − d, y), channel). (4.1)

The 3D stacked hourglass module performs cost volume regularization. The con-

tinuous disparity map is obtained by the disparity regression process in (Kendall

et al., 2017). The output disparity d̂ is calculated as the summation of each dispar-

ity d weighted by corresponding probability σ(−cd),
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FIGURE 4.1: Architecture of PSMNet: We specified all 3D CNN ker-
nels with different colors representing different interactions on the

size and channel of cost volumes.

d̂ =
Dmax

∑
d=0

d × σ(−cd). (4.2)

The σ(.) denotes softmax operation, and the maximum disparity Dmax is set to 192.

For generating a smooth disparity map, the PSMNet uses a smooth L1 loss func-

tion to train the whole architecture. The loss function of PSMNet is defined as:

L(d, d̂) =
1
N

N

∑
i=1

smoothL1(di − d̂i), (4.3)

where

smoothL1(x) =

0.5x2, i f |x| < 1

|x| − 0.5, otherwise
. (4.4)

N is the amount of label pixels. d and d̂ are the ground-truth disparity and pre-

dicted disparity, respectively.
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4.2 Architecture of 3D Convolution Kernels

In this section, we introduce the architecture of our 3D kernel-based methods. We

build all 3D kernels based on their 2D version and fit them to the 3D part of PSM-

Net according to categories of layers in Figure 4.2.

4.2.1 3D MobileNetV1

As shown in Figure 4.2, 3D MobileNetV1 (Howard et al., 2017) decomposes a stan-

dard 3× 3× 3 convolution kernel into a 3× 3× 3 depthwise separable convolution

and a 1 × 1 × 1 pointwise convolution. The 3D depthwise separable convolution

exploits a series of convolutional filters according to the channel number of the

input cost volume and extracts local context in a channel-wise manner. Pointwise

convolution walks through the cost volumes, restoring spatial information across

different channels.

By isolating local context extraction and channel interaction, MobileNetV1 de-

creases computational complexity and model size significantly. Unlike most recent

CNN architecture, MobileNetV1 excludes ResNet-like residual connections (He et

al., 2016) or multi-branch operations, which makes it accessible for channel-wise

operations (3D Head in Table 4.1).

4.2.2 3D MobileNetV2

Figure 4.3b shows the 3D MobileNetV2 (Sandler et al., 2018) block. It follows the

main idea of MobileNetV1 by building depthwise convolution layers and point-

wise convolution layers for reducing computational complexity. It also proposes

inverted residual blocks with linear bottlenecks and residual connections. The lin-

ear bottlenecks increase the cost volume channels with an expansion factor for

solving the problem that high dimensional targeting feature expression often col-

lapses when operating the rectified linear unit (ReLU) activation. The 3D Mo-

bileNetV2 block with stride = 1 (Figure4.3-left) comprising the inverted residual

structure helps to construct a deeper model as ResNet ref-5, while the block with
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FIGURE 4.2: Architecture of 3D MobileNetV1.

stride = 2 (Figure 4.3-right) keeps excluding the residual connections for a smooth

channel-wise operation.

4.2.3 3D ShuffleNetV1

Compared to other lightweight CNNs, ShuffleNetV1 (Zhang et al., 2018) uses

1 × 1 × 1 pointwise group convolutions (GConv) for computational efficiency. As

shown in figure 4.4, the symbolic channel shuffle operation helps to break through

the barriers of different groups to build a more robust model. Unlike MobileNetV2,

ShuffleNetV1 follows the residual structure to decrease the feature map channels

to make it lightweight.

The 3D ShuffleNetV1 block with stride = 1 (Figure 4.4-left) builds the standard

ResNet-like residual connections, while the stride = 2 version constructs the resid-

ual connections in another way. As shown in Figure 4.4-right, the main branch

keeps the structure unchanged, downsamples the feature maps by half with a

strided depthwise convolution (DWConv). On the other hand, the shortcut branch
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FIGURE 4.3: Architecture of 3D MobileNetV2.

utilizes average pooling to halve the feature maps. As the output feature channels

of two branches are C, the concatenation results raise feature channels to 2C.

3D ShuffleNetV2

Compared to ShuffleNetV1, ShuffleNetV2 (Ma et al., 2018) changes the 1 × 1 × 1

pointwise group convolution into standard pointwise convolution. In figure 4.5,

since the pointwise convolution is not grouped, the channel shuffle operation is

placed after the two-branches concatenation to enable information communication

between two branches.

The 3D ShuffleNetV2 block with stride = 1 (Figure 4.5-left) shuffles the feature

channels and splits all feature maps by two with a channel split operation. Half of

them remain untouched with the residual connection. Another half follows a three

convolutions scheme without changing the channels. The stride = 2 version (Fig-

ure 4.5-right) makes use of all feature maps on each branch. Commonly, the down

sampling layers contain channel increases. The main branch (right) accomplishes
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FIGURE 4.4: Architecture of 3D ShuffleNetV1.
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FIGURE 4.5: Architecture of 3D ShuffleNetV2.

the channel variation on the first pointwise convolution. However, the identity

branch compiles the channel change after the 3 × 3 × 3 depthwise convolution to

keep the channel-wise dependency until the pointwise layer.

3D ECA Blocks

For the outputting cost volume followed by 3D CNNs, we build the 3D ECA

(Wang et al., 2020) blocks for optimizing channel-wise attention. Figure 4.6 shows

that our 3D ECA blocks aggregate cost volumes (D × H × W) along the channel

with a 3D global average pooling operation. Different from other channel-wise

attention modules, ECA blocks do not perform dimensionality reductions when

extracting channel-wise information with 3D global average pooling. Then 1D

convolution achieves information aggregation on the nearby extracted channel in-

formation. After passing a Sigmoid activation function (σ), we implement the
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GAP3D

 

Conv1D
k=3

: Channel-wise production 

: Sigmoid activation function

FIGURE 4.6: Architecture of 3D ECA blocks.

channel-wise product on the input cost volume to form a 3D channel-wise atten-

tion mechanism.
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Chapter 5

Network Design Pipline

In this chapter, we use the 3D kernel-based methods introduced above to replace

the standard 3D CNNs in PSMNet, and design a series of comparative experi-

ments to illustrate the impact of different 3D convolution kernels on the perfor-

mance. Since we focus on discussing the role of 3D convolution kernels in the

stereo matching algorithm, we completely follow the original PSMNet on the net-

work layer setting in Table 4.1.

5.1 Implementation

We train all models with an Adam optimizer on one NVIDIA RTX 3090 GPU. Dur-

ing the training process, all input images are randomly cropped to 512 × 256. We

first train our models from scratch on the Scene Flow dataset for 20 epochs with a

batch size of four. The learning rate is 0.0005 constantly. Then we train the models

on KITTI 2015 with Scene Flow pre-trained weights for 2000 epochs. The initial

learning rate is 0.0005 and is decreased by half at 400th, 600th and 800th epochs.

Since the training dataset of KITTI 2015 only contains 200 input pairs, we perform

the training process with 10-fold cross validation (Ng et al., 1997) for preventing

overfitting. In appendix A, we discuss the difference between normal cross vali-

dation and 10-fold cross validation during the re-implementation of the original

PSMNet on KITTI 2015 dataset.
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5.2 Optimize 3D Convolution Kernels on PSMNet

In Figure 4.1 and Table 4.1, we specify all 3D convolution kernels in PSMNet to

five categories: 3D Head, 3D Conv, 3D Conv stride = 2, 3D Deconv and 3D Out.

We replace the traditional CNNs in PSMNet with the 3D convolution kernels in

Section 4.2 according to different functions of 3D convolution kernels.

5.2.1 3D Head

The first 3D convolution layer (3D Head) reduces the number of channels of the

cost volume from 64 to 32. Among all 3D convolution kernels, MobileNetV1 builds

without residual connection, which is beneficial when operating feature channels.

We build 3D MobileNetV1 on the first layer.

5.2.2 3D Convoltion Layers

For all 3D convolution layers (3D Conv and 3D Conv stride = 2), we used Mo-

bileNetV1, MobileNetV2, ShuffleNetV1 and ShuffleNetV2 to replace the original

kernels.

In Figure 4.4-right, ShuffleNetV1 with stride = 2 always blocks double the chan-

nels to 2C. However, as shown in Table 4.1, 3DStack3_x layer downsamples the

cost volume without changing the channels. To make an impartial comparison

with PSMNet, as shown in Figure 5.1, we build a ShuffleNetV1 block with down-

sampling without changing the number of output channels. In the main branch,

we modify the channel of the last pointwise group convolution into C
2 . As for the

identity branch, we add a pointwise group convolution followed by the 3D av-

erage pooling layer and decrease the channels to C
2 . Therefore, the output cost

volumes remain with the same channel number as the PSMNet architecture.

After obtaining the results in Table 5.1 through comparative experiments, we found

that 3D ShuffleNetV2 performs the best among all 3D convolution kernels. Then,

we added the 3D ECA block on 3D ShuffleNetV2. The original paper only imple-

ments the ECA block on residual connection modules. However, the concatenation
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FIGURE 5.1: The implementation of 3D ShuffleNetV1 with stride = 2
at 3DStack3_x layer. Following the PSMNet, we downsample the cost

volume by half without changing the channels.
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FIGURE 5.2: We build the 3D ECA blocks after the channel shuf-
fle operations on 3D ShuffleNet V2. (a) 3D ECA-ShuffleNetV2 with

stride = 1. (b) 3D ECA-ShuffleNetV2 with stride = 2.

in ShuffleNetV2 and the addition operation in the residual connection reflect dif-

ferent logic when operating the channels of cost volumes. We discussed the most

suitable position for inserting a 3D ECA block in ShuffleNetV2 in Appendix B. The

3D ECA-ShuffleNetV2 is shown in Figure 5.2.

5.2.3 3D Deconvoltion Layers

Three dimensional (3D) transposed convolutions upsample the input cost volumes

to twice the size. It first expands the input size by zero padding the cost volume of

each channel, and then compiles the standard 3D convolution to introduce learn-

ing parameters for more refined textural information. In our implementation, we

follow the ShuffleNetV2 as the 3D convolution. However, when inserting 0 values
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to restore the size, the pointwise convolution will destroy the learned semantic

information and textural information. We add upsamping with trilinear inter-

polation before ShuffleNetV2 for a continuous and rough cost volume, then the

ShuffleNetV2 block restores the cost volume with a series of parameterized con-

volution layers.

Following the architecture of PSMNet in Table 4.1, we build the 3DStack5_x layer

by simply adding an upsampling layer as we mentioned. Since the channel needs

to be reduced to half, we construct the 3DStack6_x layer as illustrated in Figure

5.3. The channel split operation divides the input channels into two branches. In

the main branch (right), the first pointwise convolution decreases the channels to
C
4 instead C

2 . In the identity branch (left), we include a pointwise convolution to

reduce the channels to C
4 . Eventually, we get the output cost volume with twice

the size and half the channels.

5.2.4 3D Out

For the last 3D CNN layer (Out2_x), we keep the 3D convolution kernel unchanged

for establishing the disparity and textural information.

5.2.5 Network Design Overview

As shown in Table 5.1, in the first stage, we discuss the influence of MobileNetV1,

MobileNetV2, ShuffleNetV1 and ShuffleNetV2 as the basic 3D convolution kernels

of the PSMNet on the accuracy and computational complexity. Then we follow the

same strategy for designing comparative experiments. We put the MobileNetV1

on the first layer for saving computation, ECA blocks on every 3D convolution ker-

nel for boosting the model accuracy and transposed ShuffleNetV2 for switching all

3D parts of PSMNet to a lightweight method. Eventually, the computational com-

plexity (MAdd) of PSMNet reduced from 256.66 G to 69.03 G 3D convolution ker-

nels implementation. Parameters and model size also decrease from 5.23 M to 3.43

M, and from 21.1 M to 14.1 M, respectively. MAC increases to build more small

layers during training. We reduced the computational complexity of the model
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while keeping the performance almost unchanged. In appendix C, we parame-

terize of all models in a layer-manner to emphasize how different 3D convolution

kernels change the model computational complexity.
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Benchmark Results

In Section 5, we built 3D convolution kernels and explored the best combination

of 3D kernels with comparative experiments. Due to the number of comparative

experiments being relatively large, for saving time, we only train all models to

close results without convergence. For benchmarking, we train our model on two

NVIDIA V100 for setting the batch size to eight. Since now we have a larger batch

size, we double the learning rate for two stages of training. For Scene Flow, the

learning is 0.001 constantly. For KITTI 2015, the initial learning rate is 0.001 and is

decreased by half at the 400th, 600th and 800th epochs. We perform 10-fold cross

validation on the first 1000 epochs. Then we train another 1000 epochs without

10-fold cross validation with a 0.000125 learning rate.

We evaluate our model on Scene Flow and KITTI 2015. In Table 6.1, our model

achieves accurate results on these datasets with a low-cost MAdd in terms of

computation. For Scene Flow, our model outperforms the original PSMNet 0.18

on end-point-errors. As for KITTI 2015, Table 6.2 demonstrates that our model

achieves similar results to PSMNet, only taking 26.9% of the MAdd. Meanwhile,

our model surpasses the PSMNet significantly in foreground pixels (D1-fg in the

table). Figure 6.1 further visualizes the disparity estimation result on the KITTI

2015 test set.

TABLE 6.1: Evaluation results on the Scene Flow dataset. Our model
is competitive with other top-performing models.

Method Ours Baseline GC-Net GANet DeepPruner-Best DispNetC StereoNet JDCNet

EPE 0.91 1.09 2.51 0.84 0.86 1.68 1.10 0.83
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TABLE 6.2: Evaluation results on the KITTI 2015 dataset. The first
seven methods are accurate methods (included the baseline). The
other five are considered fast methods. Our model not only achieves
results comparable to those of some accurate methods but also re-
quires significantly less computational complexity. We only calcu-

lated the MAdd of some representative models.

Method All(%) Noc(%) Runtime(s) MAdd(G)D1-bg D1-fg D1-all D1-bg D1-fg D1-all

Baseline 1.86 4.62 2.32 1.71 4.31 2.14 0.41 256.66
PSMNet-lite (Ours) 1.91 4.56 2.35 1.75 4.06 2.13 0.63 69.03

MC-CNN 2.89 8.88 3.89 2.48 7.64 3.33 67 -
GC-Net 2.21 6.16 2.87 2.02 5.58 2.61 0.9 733.36
GwcNet 1.74 3.93 2.11 1.61 3.49 1.92 0.32 247.6
DeepPruner-Fast 1.87 3.56 2.15 1.71 3.18 1.95 0.18 -
GANet-15 1.55 3.82 1.93 1.40 3.37 1.73 0.36 -
CSN 1.59 4.03 2.00 1.43 3.55 1.78 0.6 -
SMD-Net 1.69 4.01 2.08 1.54 3.70 1.89 0.41 -

StereoNet 4.30 7.45 4.83 - - - 0.015 47.08
DispNetC 4.32 4.41 4.34 4.11 3.72 4.05 0.03 -
DeepPruner-Best 2.32 3.91 2.59 2.13 3.43 2.35 0.06 -
AANet 1.99 5.39 2.55 1.80 4.93 2.32 0.062 -
Fast DS-CS 2.83 4.31 3.08 2.53 3.74 2.73 0.02 -
JDCNet 1.91 4.47 2.33 1.73 3.86 2.08 0.079 -

(a) (b) (c) (d)

FIGURE 6.1: Visualization of prediction error on KITTI test set (red
and yellow pixels denote error disparities). The red boxes denote
foreground regions and green boxes denote background regions. (a)

Left image. (b) Our model. (c) PSMNet. (d) AANet.
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Discussion

In Table 6.2, compared to other studies, our model contains very little computa-

tional complexity. However, the runtime is longer than that of the original PSM-

Net. As mentioned in (Qin et al., 2018; Lu, Zhang, and Wang, 2021), the reason

may be that the cuDNN library does not fully support depthwise convolutions

and pointwise convolutions. For the GPU platform of the cuDNN library, the op-

timization of classic convolutions on end-to-end training is better. So, it will be

faster than some lightweight convolutions, although it produces more computa-

tion theoretically. We present the runtime of all models in Table 7.1.
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Chapter 8

Conclusions

In this paper, based on PSMNet as a prototype, we design a series of kernel-

based methods aiming for a lightweight and accurate model without modifying

the original architecture. By optimizing 3D convolution kernels with correspond-

ing kernel-based methods, our model greatly reduces computational complexity

and achieves comparable results to the modern stereo matching algorithms. In

future work, as we mentioned in 7, we will investigate the implementation of 3D

depthwise convolutions and 3D pointwise convolutions on the cuDNN library and

improve our model to become faster in training and inference.
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Appendix A

10-Fold Cross Validation

Since KITTI 2015 has a small amount of training set, during the re-implementation

of PSMNet, we examine the normal training manner and 10-fold cross validation

with the same pretrained model on Scene Flow data set.

TABLE A.1: The re-implementation of PSMNet with cross validation
and 10-fold cross validation. Both follow the same implementation
details in Section 5.1. We calculate the average 3-pixel error of all
image pairs in the whole training set with the model we submitted

for evaluation.

Method All(%) Noc(%) Loss 3-pixel Error in
D1-bg D1-fg D1-all D1-bg D1-fg D1-all Training Set

Cross Validation 2.03 4.89 2.51 1.86 4.53 2.30 0.291 0.707
10-fold Cross Validation 1.94 4.76 2.41 1.75 4.42 2.22 0.314 0.747

As illustrated in Table A.1, the cross validation training manner leads to a lower

loss and more accurate disparity map on the training set, while the evaluation

result is worse. This situation reflects it has an explicit overfitting on the training

set.
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Appendix B

3D ECA-ShuffleNetV2 Blocks

In order to achieve the attention mechanism on each channel of the cost volumes,

we build the 3D ECA block after concatenation of the main branch and the identity

branch. Two potential 3D ECA-ShuffleNetV2 blocks are shown in figure B.1. For

saving time, we only train both potential 3D ECA-ShuffleNetV2 blocks on Scene

Flow data set for 10 epochs and evaluate the model by training loss.

We show the training performance in Figure B.2, the (b) architecture slightly out-

performs than (a) architecture. For model (a), after it learning the channel-wise

attention information, the channel shuffle operation disrupts the channel order of

cost volumes. Based on the results, we think that the order of channels contains

part of the spatial representation ability of the model.
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FIGURE B.1: We built ECA block both before and after channel shuf-
fle operation to find a more appropriate architecture of 3D ECA-
ShuffleNetV2. (a) before channel shuffle operation. (b) after channel

shuffle operation.
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Appendix C

Parameterize Model Details on
Optimizing 3D Convolution Kernels

In order to reflect the influence of the reduction of computational complexity on

building different 3D convolution kernels, we show the parameterize model de-

tails on Tabel C.1. Since our work mainly focused on the regularization of the cost

volume, we omit the model details of feature extraction to one output as 2DCNN.

When only considering the 3D CNNs in the model, we reduce the parameters and

MAdd from 1.887M to 0.085M (95.50%) and from 198.47G to 10.84G (94.53%).
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