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Mathematical analysis of pressure Poisson methods and

projection methods involving pressure boundary conditions
for incompressible viscous flows
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Summary

We consider pressure Poisson equations for stationary incompressible Stokes problems and time-
dependent incompressible Navier—Stokes problems. The pressure Poisson equation is an elliptic par-
tial differential equation of second order and is used in various numerical methods for incompressible
viscous flows. Since there are many mechanisms that generate flow by creating pressure differences,
one often sets a Dirichlet boundary condition for the pressure Poisson equation. However, in general,
the pressure of the boundary condition for the numerical methods differs from the exact pressure
solution of the original problem.

The thesis aims to provide a mathematical analysis for the pressure Poisson equation from the
viewpoint of additional boundary conditions. We establish error estimates in suitable norms between
solutions to a stationary Stokes problem and the corresponding pressure Poisson problem in terms
of the additional boundary condition. In addition, for a pseudo-compressibility problem that inter-
polates the Stokes and pressure Poisson problems, we also give error estimates in suitable norms
between the solutions to the pseudo-compressibility problem, the pressure Poisson problem, and the
Stokes problem for several additional boundary condition cases. Moreover, we propose a new addi-
tional boundary condition for the projection method for the time-dependent Navier—Stokes problem
with a Dirichlet-type pressure boundary condition and no tangent flow.

1 Pressure Poisson problem

Let © be a bounded domain of R? (d = 2 or d = 3) with Lipschitz continuous boundary I'. For
the boundary I', we assume that there exist two relatively open subsets I'y, 'y of I' satisfying the
following conditions:

P\ (T UTy)[ =0, [Ty >0, TiNly=0, Ti=I T>=TIy

where A is the closure of A C I' with respect to T, A is the interior of A with respect to I', and |A]
is the (d — 1)-dimensional Hausdorff measure of A.
We consider the following Stokes problem: Find u° : Q — R? and p°® : Q — R such that

— A+ VPP =F inQ,

dive® =0 in €2, (ST)
u® =0 on I'y,
T, (u¥, p°) =t° on I'y,
holds, where F : Q@ — R% t* : Ty, — R% n is the unit outward normal vector for T,
s Ouf  Ouj s . s : s s
Su®)y = — + =L, T (u?,p”); =Y Su”)wny — p°n;,
for all 4,7 = 1,...,d. The functions v° and p® are the velocity and the pressure of the flow governed

by (ST), respectively. Here, T;,(u”, p®) is often called the normal stress on I'. Let the fourth equation
of (ST) be called the traction boundary condition.
By taking the divergence of the first equation, we obtain

div F' = div(—Au® + Vp®) = —A(divu®) + Ap® = Ap?, (1.1)



which is often called the pressure Poisson equation (McKee et al., 2004).

We need an additional boundary condition for solving equation (1.1). In real-world applications,
the additional boundary condition is usually given by using experimental or plausible values. We
consider the following boundary value problem for the pressure Poisson equation: Find u”” : Q — R?
and pt'? : Q — R satisfying

(— Au"P —V(divu'P) + Vp'T = F in Q,
— ApPP = —divF in Q,
PP (PPT)
uPP:(),&p =q° on I'y,
on
\T ( PP7pPP) — tb,pPP — pb on F27

where ¢* : 'y — R and p® : 'y — R are the data for the additional boundary conditions. We call
this problem the pressure Poisson problem. The second term —V(divu®?) in the first equation of
(PPT) is usually omitted since divu® = 0, but this term is necessary to treat the traction boundary
condition in a weak formulation. The idea of using (1.1) instead of div u® = 0 is useful for calculating
the pressure numerically in the Navier—Stokes problem. For example, this idea is used in the marker
and cell (MAC) method (Harlow and Welch, 1965) and the projection method (Chorin, 1968; Temam,
1969).

As the boundary condition for the Stokes problem, we also consider the boundary condition
introduced by Begue et al. (1987);

u’ =0 on I'y,
u’ xn=0 only, (1.2)
p¥=p"  onTy,

where “x” is the cross product in R%. On boundary I's, the boundary value of the pressure is

prescribed, and the velocity is parallel to the normal direction on I'. Such a situation occurs at the
end of the pipe, such as blood vessels or pipelines (Fig. 1).
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Figure 1: Image of a flow in a pipe

To define weak formulations of the problems, for I' € {I';, T}, we set
HL(Q) ={Y e H(Q) | =0o0n '}, H={pe HI(Q)d |p=00onT1,¢xn=0onTs}.

We use the same notation (-, -) to represent the L?(2) inner product for scalar-, vector- and matrix-
valued functions. For the open subset I' € {I',T';, I's} of the boundary T, let H'/%(I") be the set of
all functions n € L*(I) such that the norm
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exists and is finite, which is a Banach space with respect to || - || j1/2(5), and let v : H'(Q) — HY2(T)
be the standard trace operator. For I'; and I'y, we define the following subspaces of H'/?(T),
HIP() = y0(Hy, (), HP(D2) = yo(H, ().
We assume the following conditions;
FelXQ), divFeL}Q), e (HVAT)Y, ¢ e (HYAT)), e H Q).

The weak form of the Stokes problem (ST) is as follows: Find (u®!,p®1) € H%l(Q)d x L?(Q) such
that
1

350, 5(0) = (0 dive) = (Fo) = 0 huprye Torall o€ BL@"
(divu®t, ) =0 for all 1 € L*(Q).
The weak form of (PPT) is as follows: Find v € H%l(Q)d and p”” € H'(Q) such that
%(S(UPP), S(9) = (077 dive) = (F.9) = (', 0) o,y Tor all o € HE ()",
(VP Vi) = —(div F, ) + (0" ) s, for all ¢ € H{, (), (PPT’)
ptt = pb on I's.

Here, (ST’) and (PPT’) have a unique solution. The weak form of the Stokes problem with the
boundary condition (1.2) is as follows: Find (u®?p°?) € H x L?(£2) such that

(V x 6™,V x v) — (p%,dive) = (F,v) —/ pPv-nds for all v € H,
rs (SP)
(divu?,9) =0 for all 1 € L*(Q).
There exists a unique solution to (SP’), e.g., if the boundary I' is C*-class or € is a polygon.
Our main results for (ST"), (PPT’), and (SP’) are the following theorems.
Theorem 1.1. If pt € HY(Q) and ApS! € L*(Q), there exists a constant ¢ > 0 such that
ap31 o
on

HUSI — UPPHHI(Q)d + HpSI _pPPHHl(Q) <c (’ + ”pSI _prHl/Z(F2)> :

(H)P(T1))*

Theorem 1.2. If AuS? + V(divus?) € L2(Q)"

constant ¢ > 0 such that

, p°2 € HY(Q) and Ap®* € L*(Q), then there exists a

S2
1p° = 0"l < ¢ — g’ :
on (HY2(ry))-
ap52
S2 PP b 52 b
0 e < ([ =] Pl )
Y0

where t9% = T, (u®?, p?).

Theorems 1.1 and 1.2 state that if we have a good prediction for the boundary data (g” and p®),
then the pressure Poisson problem is a good approximation for the Stokes problem. In particular,
we propose a new viewpoint of the pressure Poisson problem and the boundary condition (1.2). The
numerical solution to the Stokes problem with the boundary condition (1.2) requires delicate choices
of the weak formulation and special finite element techniques (Bertoluzza et al., 2017). On the other
hand, the pressure Poisson problem has been used as a simple numerical scheme for a long time.
From our results, we can confirm that the pressure Poisson problem is also available for the Stokes
problem with the boundary condition (1.2).



2 e-Stokes problem

Next, we consider the full-Dirichlet boundary condition for the Stokes problem: Find u® : Q — R?
and p° : Q — R such that

—~Au® +Vp®=F in Q,
divu® =0 in Q, (S)
u® =l on I
where u’ : I' — R? is a given Dirichlet boundary data satisfying fr u® - nds = 0. The corresponding
pressure Poisson problem is as follows: Find v? : Q — R? and p''" : Q — R satisfying

—Auf? + Vptt = F in ,
—ApfP = —div F in Q,
uff = b on T (PP)

+boundary condition for pf'*.

We introduce an “interpolation” between problems (S) and (PP). For € > 0, find u® : Q — R?
and pf : 2 — R such that

—Auf +Vp* =F in €,
—eAp® +divu® = —edivF  in
uf = ub on I, (ES)

+boundary condition for p°.

We call this problem the e-Stokes problem (ES). The e-Stokes problem is treated as an approximation
of the Stokes problem to avoid numerical instabilities (e.g., Brezzi and Pitkdranta, 1984). The e-
Stokes problem approximates the Stokes problem (S) as ¢ — 0 and the pressure Poisson problem
(PP) as ¢ — oo (Fig. 2).

(PP) o (5)

S A
(ES)

Figure 2: Sketch of the connections between problems (S), (PP) and (ES).

We specify the boundary conditions for p©’* and p°. We consider a Neumann boundary condition
(2.3) and a mixed boundary condition (2.4),

apPP apa

o = gb on I, o = gb on I, (2.3)
8pPP b aps b
f— p— F
an 9 only on Y BT (2.4)
pPP =p"  onTy, pF=p" onTy,
pPP = pb onl', p°= pb on I, (2.5)



where p* : T' — R and ¢* =T — R satisfying [, g°ds = [, div Fdx are the given boundary data. The
boundary condition (2.4) corresponds to (2.3) when I'y = I', I’y = () and to (2.3) when I'; = (, Ty =T.

The weak form of the Stokes problem becomes as follows: Find u5 € H*(Q)? and ps € L2(Q)/R
such that

d
(Vu®, V) +(VD*,0) oy = (Frp) for all p € Hy(Q)",
(divu®, ) =0 for all 1 € L*(Q)/R, (S7)
u® = ub in HY2(T)",

where L2(€2) /R is the space of all functions f € L?(§2) with the average being 0 and (Vp?, P a1yt =

—(p?, div ). We consider the following equations, which is a generalization of weak formulations of
the pressure Poisson problem with the boundary conditions (2.3), (2.4), or (2.5): Find uf? € H'()*
and p”” € H'(Q) such that

(Vul? V) + (VPP ) = (F,p) for all p € HY(Q)",
(

Vp'T V) = (G, ) for all ¢ € Q, (PP?)
uff —ub e H&(Q)d,
pP—=p’eq,

where Q@ C H'() is a closed subspace such that there exists a constant ¢ > 0 for which ||¢||z2¢) <
Va2 for all ¢ € Q (e.g., @ = Hj (), HL(Q), H' () /R) and G € Q*. We also consider the
following equations, which is a generalization of weak formulations of the e-Stokes problem with the
boundary conditions (2.3), (2.4), or (2.5): Find u¢ € H(Q)? and p° € H*(Q) such that

(Vus, Vo) + (Vp©,0) = (F¢) for all p € HY(Q)",
e(Vp®, V) + (divus,¢) = e(G,¢)q forall v € Q,
ut —u’ € H&(Q)d,

P —p €Q.

(ES’)

As in Section 1, we can show that there exists a constant ¢ > 0 independent of ¢ such that

lu® — uPPHHl(Q)d < c[|p® _pPPHHl/Q(F)a

[0 = g eye < ellp® = 2" gy

From the first inequality, if we have a good predictive value for pressure on I', then uff is a good
approximation of v°. Moreover, u° is also a good approximation of ©® from the second inequality.
Our main result for (ES’) and (PP’) is the following theorem:

Theorem 2.1. There exists a constant ¢ > 0 independent of € > 0 such that
s =7 s e + 157 = 77 @y < < diva™ g
for all e > 0. In particular, we have
u® — u? strongly in HI(Q)d, p° — p"" strongly in H'(Q) as e — oo,
Furthermore, the solution to (ES’) has the following asymptotic structure:
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Theorem 2.2. Let k € N be arbitrary (k > 1) and let v = u"P. If functions vV, v® ...,
vk ¢ H&(Q)d and ¢M,¢® ... ¢® € Q satisfy

{(vv@, Vi) + (Ve 0) =0 for all o € Hy(Q)", (2.6)

(Vg Vi) = —(dive Y ) for all ¢ € Q,

for all 1 < i <k, then there exists a constant ¢ > 0 independent of € satisfying

< LH div o™
€

= ck+1 Q"
(@)
1\" c
_ PP 1) ... - (k) N div B
pa (p + q + +(€) q > §€k+1||leU |Q*
HY(Q)

On the other hand, our main result for (ES’) and (S’) is the following theorem:

Theorem 2.3. Let the map L*(Q) > f— [f] = f — ﬁfgf dr € L*()/R. There exists a constant
¢ > 0 independent of € such that

[l g2yt + PN e20) < ¢ for alle > 0.
Furthermore, if the range of Q under the map [-] is dense in L*(2)/R, then we obtain
u — u® strongly in Hl(Q)d, [p°] — p° strongly in L*(Q)/R as e — 0.

Theorem 2.3 does not give the convergence rate. If Q = H'(Q2) /R (corresponding to the Neumann
boundary condition (2.3)), then the convergence rate becomes +/z.

Theorem 2.4. Suppose that Q = H'(Q)/R and p° € H' (). Then, there exists a constant ¢ > 0
independent of € such that

Ju® — USHH1(Q)‘1 + lp° — pS||L2(Q) < eve.

3 Projection method

We assume that the boundary I' is C1!-class or € is a polygon. For fixed T' > 0, we consider the
following Navier—Stokes problem: Find u : Q x [0,7] — R% and p : Q x [0,7] — R such that

( Ou 1 _
E—l—D(u,u)—I/Au—i—;VP:f in Q x (0,7),
divu =0 in Q% (0,7),
u=0 onI'y x (0,7, (NS)
uxn=0 on I'y x (0,7,
P=yp on I'y x (0,7),
[ u(0) = ug in €,

where D(v,w) = (V x v) X w, P =p+ &lul?, v,p >0, f: Q@ x (0,T) = R p* : Ty x (0,T) — R,
and ug : Q — R The first equation of (NS) is based on

1
(u-Vu=(V xu)xXu+ §V|u|2.
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For I'y, we assume a boundary condition including a pressure value p+ £ |u|?, which is called the total
pressure, stagnation pressure, or Bernoulli pressure. Usual pressure is often called static pressure
to distinguish it from the total pressure. In an experimental measurement of the total and static
pressure using a Pitot tube, the boss measurement is dependent on the yaw angle of the Pitot tube.
Then, the effect on the total pressure p + §|u|2 is smaller than the effect on the usual pressure p
(Holman, 2001). The boundary condition on I's in (NS) is introduced by Begue et al. (1987), and
the existence of a weak velocity solution is proven by Bernard (2003) and Kim and Cao (2015).

We introduce a projection method for (NS). The projection method is one of the numerical
schemes for Navier—Stokes equations (Chorin, 1968; Temam, 1969). Let 7(:= T//N < 1, N € N) be
a time increment and let t; = k7 (k = 0,1,..., N). We set uj = up and calculate u}, ug, pr (k =
1,2,...,N) by repeatedly solving the following problems (Step 1) and (Step 2).

(Step 1) Find u} : © — R? such that

*_

L L Dy, )~ vAu; = f(5) i 9

u, =0 onI'y, (3.7)
upxn=>0 on Iy,
| divuy =0 on I's.

(Step 2) Find P, :— R and u; :— R? such that

— ZAPk = —divuy in 2,
p

P
Q =0 on I'y, (3.8)
on
P, = (t) on Iy,
U = up — %VP;C in . (3.9)

Remark 3.1. For the velocity boundary condition on I's, we can rewrite the third and fourth equations
of (Step 1) by using k= divn = (d — 1) X (mean curvature) as follows:

*
ouy,

u, X n =0, ‘n+rku,-n=0 on I'y.
k on F 2
In particular, if U's is flat, then it holds that
ouj,
up xn =0, kipn=0 on I's.
k 871 2

3.1 Weak formulations

Let pg be
] 2+e itd=2,
P13 ifd=3,

where £ > 0 is arbitrarily small. We assume v = p = 1 and the following conditions for f,p®, and u:

feL*0,T;H*), p’ec L*0,T;HY(Q)), wuoe LP(Q)". (3.10)



To define weak formulations of the Navier—Stokes equations (NS) and the projection method (Step 1)
and (Step 2), we define the bilinear form ag : H x H — R and trilinear form a; : LP4(Q)?x Hx H — R

(p2 > 2,p3 = 3) by
ao(u,v) = (divu,dive) + (Vxu, Vxwv) for all u,v € H,

ar(u, v, w) = /u (VX (vxw))dx for all u € LP4(Q)% v, w € H,
Q

We set weak formulation of (NS) as follows: Find u € L2(0,T; HY(Q)") and P € L'(0,T; L2(2))
such that 2¢ € L'(0,T; H*), u(0) = uo, and for a.e. t € (0,7,

B
<a—7;,90> +ao(u,w)+a1(u7u,s0)—(Rdiw)=<f,so>H—/ p’p-nds forall ¢ € H,
H Iy

divu =0 in L?(Q).
(3.11)

On the other hand, a weak formulation of the projection method (Step 1) and (Step 2) with the
initial datum wuo(=: ug) is as follows:

Problem 3.2. Let (fi)Y_, € H* and (p})Y_, € HY(Q). For all k = 1,2,...,N, find (u}, Py, us) €
H x HY(Q) x LZ(Q)d such that P, — p}, € H{ () and

71_(“7; — U1, ) + ao(ug, ) + ar(up_y, ui, ©) = (fr. o) for all ¢ € H,

T(V P, Vib) = —(divuj, ) for all ¢ € H} (9), (3.12)

up =uy, —TVF in LQ(Q)d.

By the Lax—Milgram theorem, the problem 3.2 has a unique solution.
Remark 3.3. For f € L*(0,T; H*) and p® € L*(0,T; H'(Q)), we set for all k =1,2,...,N,
1 [ 1 [
o=t [ pwa pﬁz—Llwwﬁ (3.13)

T th_1 T

In Theorems 3.7 and 8.11, we assume f € C([0,T); H*),p* € C([0,T]; H*(Q)) and set for all k =
1,2,... N,

fe = f(tx), P = p"(t),
Remark 3.4. The function space Lz(Q)d has the following orthogonal decomposition:
L(Q)" = U@ V(HL,(9Q)),

where U = {p € L2(Q)* | dive = 0 in L*(), (¢ - n, V) g2y = 0 for all ¢ € Hy,(Q)} (Guermond
and Quartapelle, 1998). By the second and third equation of (3.12) and the Gauss divergence formula,
it holds that for all k =1,2,...,N and ¢ € H} (),

(uka v¢) = (UZ7 V¢) - T(vpk) V¢> - —(dIV ul:v ¢) - T(vpka v¢) = 07
which implies that u, € U. Since the third equation of (3.12) is equivalent to
up — VP (tr) = we + TV (P — pP(t)) in LA

Step 2 is the projection of u}, — TVp®(t1,) to the divergence-free space U.

8



3.2 Main results: stability and convergence

For two sequences ()i, and (yx)4_, in a Banach space E, we define a piecewise linear interpolant
&, € Whe(0,T; E) of (x1)h_, and a piecewise constant interpolant y, € L>(0,T; E) of (yx)r,,
respectively, by

t—tr_1

(1) = xp_1 +
U (t) = yp for t € (ty—1,tx) and k=1,2,..., N.

(ZEk — SEk_l) for t € [tk—latk] and k£ = 1,2,...,N,

We show the stability of the projection method (3.12) and establish error estimates in suitable
norms between the solutions to the Navier-Stokes equations (3.11) and the projection method (3.12).

Theorem 3.5. Under the condition (3.10), we set f,, € H* and p} € HY(Q) as (3.13) for all
k=1,2,...,N. Then, there exists a constant ¢ > 0 independent of T such that

[ oo oL@ T @z e (oL@ T 1@zl 2 (0,T;H (2)? \/—”UT - a;k—HL?(O,T;L?(Q)d)
<c (HuoHLz(Q)d + | fllz2 0,10y + HprLQ(O,T;Hl(Q))> :
For a convergence theorem, we assume:

Hypothesis 3.6. The solution (u, P) to (5.11) satisfies

w € C([0,T); HN H* Q)" N HY0,T; LZ(Q)d) N H?*(0,T; H*), P e C(0,T]; H(Q)).
We also assume f € C([0,T); H*) and p* € C([0,T); H*(Q)) and set in Problem 3.2 for all k =
1,2,....N,

fi = f(tr), = p°(t)-
Theorem 3.7. Under Hypothesis 3.0, there exist two constants ¢, 79 > 0 independent of T such that
for all0 < 7 < 19,
Ju — uT||L°°OTL2(Q + flu — T||L°°(OTL2(Q + [lu — @zl 2 O.15H (@)Y = VT,
lar — THLz(o,T;m(Q) ) S T

Remark 3.8. For reqularity of the solution (u, P) to (3.11), see Bernard (2003) and Kim (2015). In

the case of the homogeneous Dirichlet boundary condition on the whole boundary I', high regularity
properties of the solution to the Navier—Stokes equations are well-known (Boyer and Fabrie, 2013).

Furthermore, we assume the following regularity assumptions:

Hypothesis 3.9 (Regularity of the Stokes problem). There exists a constant ¢ = ¢(2,I'1,'3) > 0
such that for all e € LQ(Q)d
[wll 2@y + Irllae) < cllell 2 q)

where (w,r) € H x L*(Q) is the solution to

ao(w, ) — (r,divy) = (e,¢) for all p € H,
divw =0 in L*(Q).



Hypothesis 3.10. The solution (u, P) to (3.11) satisfies
we HY0,T; HY(Q)") N H*0,T; L2(Q)") N H¥0,T: H*), P € H'(0,T; H'(Q)).
Then, we can improve the convergence rate:

Theorem 3.11. Under Hypotheses 3.6 and 3.9, there exist two constants T,c > 0 independent of T
such that for all 0 < 7 < 74,

Ju— ETHLQ(O,T;LQ(Q)d) +lu— aiHLQ(OyT;LQ(Q)d) s e

Furthermore, if we also assume Hypothesis 3.10, then there exist two constants To, ¢ > 0 independent
of T such that for all 0 < 7 < 7o(< 11),

|P — Prlz20mr2@)) < VT

Remark 3.12. Hypothesis 3.9 holds, e.g., if Q is of class C*' (Bernard, 2002).

3.3 Main result: existence of a weak solution to (NS)

Using Theorem 3.5, we prove that there exists a solution to a weak formulation of (NS) weaker than
(3.11). Putting ¢ := v € V in the first equation of (3.11), we obtain the following equation: for all
veV,

<%,U>V + ag(u,v) + ar(u,u,v) = (f,v)g — /F2 p°v - nds (3.14)

in L'(0,7).

Corollary 3.13. Under the condition (3.10), there ezists a solution uw € L*(0,T;V) N L*>(0,T;
LA Q)Y N C([0,T);V*) to (3.14) with u(0) = ug such that Qu e L4Pa(0,T; V™).

Remark 3.14. For f € L2(0,T; L2(Q)") and p* € L*(0,T; HY2(T')), local existence and uniqueness
of a weak solution u to (3.14) with uy € H are proven by Bernard (2003). Since it holds that

(u,v) Z/gzggz /szfu-vds for all u,v € H,

where k = divn = (d — 1) X (mean curvature) (cf. Remark 3.1), (3.14) is equivalent to

<@ v> —I—i/aui avid:)ﬂ—/ ku - vds + ay(u, u, v)
o'/ A= Jodu; 0, - ne

:<f,v>H—/pbv'nds forallveV
I

(3.15)

in LY(0,T). Kim and Cao (2015) prove that there exists a weak solution u to (3.15) with f €
L*(0,T;V*), p* € L*(0,T; HY*(I'y)), and uy € U, where U is defined in Remark 3.4. We demon-
strate the existence of a weak solution u to (3.14) with a different approach than Bernard (2003) and
Kim and Cao (2015).
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