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Summary
This book provides a new and robust power-law (PL)-based, non-extensive entropy 
econometrics approach to the economic modelling of ill-behaved inverse problems. 
Particular attention is paid to national account-based general equilibrium models 
known for their relative complexity.

In theoretical terms, the approach generalizes Gibbs-Shannon-Golan entropy 
models, which are useful for describing ergodic phenomena. In essence, this entropy 
econometrics approach constitutes a junction of two distinct concepts: Jayne’s 
maximum entropy principle and the Bayesian generalized method of moments. Rival 
econometric techniques are not conceptually adapted to solving complex inverse 
problems or are seriously limited when it comes to practical implementation. 

In recent years, PL-based Tsallis entropy has been applied in many fields. Its 
popularity can be attributed to its ability to more accurately describe heavy tail, 
non-ergodic phenomena. However, the link between PL and economic phenomena 
has been neglected—probably because the Gaussian family of laws are globally suf-
ficient for time (or space) aggregated data and easy to use and interpret. Recent lit-
erature shows that the amplitude and frequency of macroeconomic fluctuations do 
not substantially diverge from many extreme events, natural or human-related, once 
explained at the same time or space-scale by PL. In particular, in the real world, 
socioeconomic rare events may, through long-range correlation processes, have 
higher impact than more frequent events could. Because of this and based on exist-
ing literature, this monograph proposes an econometric extension called Non-exten-
sive Entropy Econometrics or, using a less technical expression, Superstar-Generalised 
Econometrics.

Recent developments in information-theoretic built upon Tsallis non-additive 
statistics are powerful enough to put established econometric theory in question 
and suggest new approaches. As will be discussed throughout this book, long-range 
correlation and observed time invariant scale structure of high frequency series may 
still be conserved—in some classes of non-linear models—through a process of time 
(or space) aggregation of statistical data. In such a case, the non-extensive entropy 
econometrics approach generally provides higher parameter estimator efficiency over 
existing competitive econometrics procedures. Next, when aggregated data converge 
to the Gaussian attractor, as generally happens, outputs from Gibbs-Shannon entropy 
coincide with those derived through Tsallis entropy. In general, when the model 
involved displays less complexity (with a well-behaved data matrix) and remains 
closer to Gaussian law, computed outputs by both entropy econometrics approaches 
should coincide or approximate those derived through most classical econometric 
approaches. Thus, the proposed non-ergodic approach could at least be as good as the 
existing estimation techniques. On empirical grounds, it helps in ensuring stability of 
the estimated parameters and in solving some classes of, up to now, intractable non-
linear PL-related models. Furthermore, the approach remains one of the most appro-
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priate for solving all classes of inverse problems, whether deterministic or dynamic. 
It is a more general approach. Finally, this approach helps us better assess—thanks 
to the Tsallis-q parameter—the interconnection level (complexity) between economic 
systems described by the model. 

Consequently, this book aims at providing a new paradigm for econometric mod-
elling through non-extensive (cross) entropy information-theoretic. Reaching this 
goal requires some intermediary results obtained through a synthesis of the exist-
ing, sometimes sparse literature. There are, then, methodological issues to address. 
Among these is the application of non-extensive entropy to low frequency time series. 
This constitutes a new challenge and must be clarified. Next, generalizing Gibbs-
Kullback-Leibler information divergence to the Tsallis non-ergodic econometric 
model with different constraining moment formulations in both classes of entropy 
model will require special attention since we are not aware of any publications on the 
subject. Another important intermediary result of this work will be the proposition 
of a new theorem linking PL and macroeconomics on both the supply and demand 
sides. Its demonstration will provide new keys for carrying out further Tsallis entropy 
econometric modelling. Finally, we will provide an ad hoc statistical inference cor-
responding to the new modelling approach presented here. 

The first part of the monograph presents basic targets and principal hypotheses. 
In the second part, we present definitions and quantitative properties of statistical 

theory of information. Progressively, a link between the statistical theory of informa-
tion and the generalized ill-posed inverse problem is established. After having shown 
the properties of the Shannon-Jaynes maximum entropy principle in detail, tech-
niques for solving ill-behaved problems, from the Moore-Penrose generalized inverse 
problem to non-extensive entropy, are compared. Intrinsic relationships between 
both forms of Shannon-Jaynes1 and Tsallis entropies are also shown. After having 
presented Kullback-Leibler information divergence, a generalization of this concept 
to non-extensive entropy is developed. A general linear non-extensive entropy econo-
metric model is then introduced. It will play an important role for models to be devel-
oped in subsequent chapters. Next, an inferential formalism for parameter confidence 
interval area is proposed. This part is concluded with an applications example: the 
estimation of a Tsallis entropy econometrics model using the case of labour demand 
anticipation with a time series, error-correction model. Its outputs are compared with 
those of other approaches through Monte-Carlo simulations. 

The third and fourth parts of the book—and, to a certain extent, the fifth part—
are closely related to each other since a social accounting matrix can be seen as a 
kind of input-output transaction matrix generalization. The separation of these two 

1 Here we prefer to shorten the name of this form of entropy. Scientists who have contributed to 
this form of entropy are many and cannot all be mentioned. It could be ‘succinctly’ named “Gibbs-
Shannon- Jaynes-Kullback-Leibler Golan entropy econometrics.”
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parts has avoided highly horizontal and vertical subdivisions in the book, thereby 
preserving the clarity of the study. These two parts provide economic applications of 
statistical theory presented through Part II. Part III focuses on updating and forecast-
ing national accounts tables. In particular, a new efficient approach to forecast input-
output tables—or their extended forms—is set forth. The RAS approach is presented 
as a competing technique with empirical application and comments. To show one of 
the possible fields of entropy model implementation, we provide an ecological model 
to be solved as an inverse problem. 

After having proposed a theorem linking PL distribution and the macroeconomic 
aggregative structure of national accounts, the problem of balancing a social account-
ing matrix (SAM) in the context of non-ergodicity is posed and solved in Part IV. The 
example presented deals with the actual problems of updating a SAM in real-world 
conditions. 

In Part V, a computable general equilibrium (CGE) model is presented as a 
national account-related model. Two important concepts are discussed in the context 
of optimum property that both of them convey: the maximum entropy principle and 
the Pareto-optimum. Next, we open a short, epistemological discussion on two com-
petitive and frequently confused estimation approaches, the Bayesian approach and 
the maximum entropy principal. An approach using non-extensive relative entropy 
for parameter estimation in the case of a constant elasticity of substitution (CES) func-
tion is proposed through the presentation of the CGE model. 

To show the extensions of the standard national accounts table and to go beyond 
the general equilibrium framework, an environmentally extended social accounting 
matrix and a subsequent theoretical model displaying externalities are presented in 
Part VI. Finally, a carbon tax and double dividend theory model is presented and its 
social welfare impact is derived as well. 

The last part of the book concludes with the principal findings and proposes 
areas for further investigation and research. 

Two examples are provided in Annex C and D. The first concerns the use of GAMS 
as a platform for economic programming. The second presents some hints for solving 
inverse problems in the context of the proposed model.

To enable readers to better understand the results in the different chapters, they 
are accompanied by detailed examples or case studies and summarizing comments. 
As such, this book can be an ideal reference for students and researchers in many dis-
ciplines (infometrics, econometrics, statistics, national accounting, optimal control, 
etc.) interested in becoming familiar with approaches that reflect the most recent 
developments in statistical theory of information and their application for stochastic 
inverse problem modelling. Last but not least, the discussion in this book is limited 
to technical issues; it does not cover the philosophical implications of non-extensive 
entropy, whether general or within the discipline of economics.



PART I: Generalities and Scope of the Book



1  Generalities

1.1  Information-Theoretic Maximum Entropy Principle and Inverse 
Problem

1.1.1  Information-Theoretic Maximum Entropy Principle

According to recent literature (Golan, Judge, & Miller, 1996; Golan, 2008), the infor-
mation-theoretic maximum entropy principle is a coincident junction of two lines of 
research: inferential statistics and statistical thermodynamics. 

The first line of research emerged in the beginning of the 18th century through 
the work of Bernoulli (Jaynes, 1957; Halmos & Savage, 1949; Bayes, 1763; and Laplace, 
1774). They developed the Principle of Sufficient Reason, which consists of determin-
ing the state of the system on the basis of limited information (moments) from a sub-
system. This principle was later extended in the last century by Jeffreys (1946), Cox 
(1946), and Jaynes (1957b) to the principle of “not telling more than you know,” thus 
suggesting the necessity of avoiding additional hypotheses imposed merely to sim-
plify the problem to be solved. The purpose of all of the above authors’ research was 
to retrieve characteristics of a general population on the basis of limited information 
from a possibly non-representative sample of that population, out of risky or non-
convenient hypotheses.

The second line of research is represented, amongst others, by Maxwell (1871), 
Boltzmann (1871), Cauchy (1855), Weierstrass (1886), Lévy and Gibbs (Gibbs, 1902), 
Shannon (1948), Jaynes (1957, 1957b), Rényi (1961), Bregman (1967), Mandelbrot 
(1967), Tsallis (1988). Its main objective was to provide mathematical formalism to 
statistical modelling of physical information related to natural phenomena. Thanks 
to the celebrated work of Tsallis (1988), on non-extensive thermodynamics2, this 
second line elegantly extended its multidisciplinary applications to “auto-organized 
systems” and to the social sciences, particularly in financial fields. 

The ascent and development of the post-war information theory-based, maximum 
entropy proposed by Shannon (1948) can be viewed as a major step toward the rapid 
extension of the discipline. Less than a decade was needed to develop the informa-
tion-theoretic principles of statistical inference, inverse problem solution methodol-
ogy based on Gibbs-Shannon maximum entropy, and its generalizations by Kullback 
and Leibler (1951), Kullback (1959) and Jaynes (1957b). The above authors developed, 
in particular, fundamental notions in statistics, such as sufficiency and efficiency 

2 Currently, this theory—undoubtedly the best—generalizes Boltzmann-Gibbs statistics for describ-
ing the case of anomalous systems characterized by non-ergodicity or metastable states. It thus bet-
ter fits dynamic correlation of complex systems and can be better explained (e.g., Douglas, 2006), 
amongst many others. 
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� Information-Theoretic Maximum Entropy Principle and Inverse Problem   3

(Halmos & Savage, 1979), a generalization of Cramer-Rao inequality (e.g., Kullback, 
1959) and the introduction of a general linear model as a consistency restriction 
(Heckelei et al., 2008) through Bayesian philosophy. Thus, it became possible to unify 
heterogeneous statistical procedures via the concepts of information theory. Lindley 
(2008), on the other hand, had provided the interpretation that a statistical sample 
could be viewed as a noisy channel (Shannon’s terminology) that conveys a message 
about a parameter (or a set of parameters) with a certain prior distribution. This new 
interpretation extended application of Shannon’s ideas to statistical theory by refer-
ring to the information in a statistical sample rather than in a message.

Over the last two decades the literature concerned with applying entropy in 
social science has grown considerably and disserves closer attention. On one side, 
Shannon-Jaynes-Kullback-Leibler-based approaches are currently used for modelling 
economic phenomena competitively with classical econometrics. A new paradigm in 
econometrical modelling is taking place and finds its roots in the influential work of 
Golan, Judge, and Miller (1996). The present monograph constitutes an illustration of 
this.

As mentioned above, this approach is particularly useful in the case of solving 
inverse problems or ill-behaved matrices when we try to estimate parameters of an 
econometric model on the basis of insufficient information from an observed sample, 
and this estimation may concern the behaviour of an individual element within the 
system.

Insufficient information implies that we are trying to solve an ill-posed problem, 
which plausibly can arise in the following cases:
— data from sampling design are not sufficient and/or complete due to technical or 
financial limitations—small area official statistics could illustrate this situation;
— non-stationary or non-co-integrating variables are resulting from bad model speci-
fication;
— data from the statistical sample are linearly dependent or collinear for various 
reasons;
— Gaussian properties of random disturbance are put into question due to, amongst 
many others things3, systematic errors from the survey process; 
— the model is not linear and approximate linearization remains the last possibility;
— aggregated (in time or space) data observations hide a very complex system repre-
sented, for instance, by a PL distribution, and multi-fractal properties of the system 
may exist. 

3 It is not excluded that distribution law may be erroneously applied since, for instance, randomness 
is dependent on the experimental setup or the sophistication of the apparatus involved in measuring 
the phenomenon (Smith, 2001). 
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Using the traditional econometrical approaches in one or more of the above cases—
without additional simplifying hypotheses—could lead to various estimation prob-
lems owing to the nonexistence of a bounded solution or the instability of estima-
tes. Consequently, outputs from traditional econometrical approaches will display, 
at best, poor informative parameters. In the literature, there are other well-known 
techniques to cope with inverse problems or ill-conditioned data. Among them, two 
popular techniques deserve our attention: the bi-proportional RAS approach (and 
its variants), particularly used for updating or forecasting input/output matrices 
(Parikh, 1979) and the Moore-Penrose pseudo-inverse technique, useful for inver-
ting irregular matrices (e.g., Green, 2003, p. 833). In spite of their popularity, both 
techniques present serious drawbacks in empirical investigations. In fact, the RAS 
techniques, in spite of their divergence information nature, remain less adapted to 
solving stochastic problems or to optimizing the information criterion function under 
a larger number of different prior constraining data. Since Moore-Penrose generalized 
inverse ensures a minimum distance (Y-BX) only when the matrix B has full rank, it 
will not reflect an optimal solution in other cases. Golan et al. (1996) have clearly 
shown higher efficiency of Shannon maximum entropy econometrics over the above 
cited methods in recovering unknown information when data or model design is 
poorly conditioned. The suggested superiority stands on the fact that it combines and 
generalizes maximum entropy philosophy (as in the second law of thermodynamics) 
and statistical theory of information attributes as a Bayesian information processing 
rule. As demonstrated convincingly by Golan (1996, 2006), Shannon entropy econo-
metrics formalism may generalize least squares (LS) and the maximum likelihood 
(ML) approaches and belongs to the class of Bayesian method of moments (BMOM). 
It is worthwhile to point out that in the coming chapters many cases of cross-entropy 
(or minimum entropy) formalism will be used in place of maximum entropy. This is 
because, in this study, many problems to be treated involve information measuring in 
the context of the Kullback-Leibler framework.

This monograph does not intend to treat the case of high frequency series for 
which a rich literature already exists. We invite readers interested in the case of high 
frequency series to see, for instance, J.W. Kantelhardt (2008) for testing for the exis-
tence of fractal or multi-fractal properties, suggesting the case of a PL distribution.

1.2  Motivation of the Work

1.2.1  Frequent Limitations of Shannon-Gibbs Maximum Entropy Econometrics

In spite of a growing interest in the research community, some incisive critics have 
come forward to address Shannon-based entropy econometrics (e.g., Heckelei et al., 
2008). According to some authors, generalized maximum entropy (GME) or cross-
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entropy (GCE) econometrical techniques face at least three difficulties. The first is 
related to the specification and interpretation of prior information, imposed via the 
use of discrete support points, and assigning prior probabilities to them. The authors 
argue that there are complications that result from the combination of priors and 
their interaction with the criterion of maximum entropy or minimum cross-entropy 
in determining the final estimated a posteriori probabilities on the support space. The 
second group of criticisms questions the sense of the entropy objective function once 
combined with the prior and data information. The last problem, according to the 
same authors, refers to computational difficulties owing to the mathematical com-
plexity of the model with an unnecessarily large number of parameters or variables.

Concerning the first criticism, the problem—selecting a prior support space and 
prior probabilities on it—exists since estimation outputs seem to be extremely sensi-
tive to initial conditions. However, when there is a theory or some knowledge about 
the space on which parameters are supposed to be staying, the problem becomes trac-
table. In particular, when we have to estimate parameters in the form of ratios, the 
performance of entropy formalism is high. To this counterargument, it is worthwhile 
to add that GME or GCE formalism constitutes an approach based on the Bayesian 
efficient processing rule and, as such, prior values are not fixed constraints of the 
model; they combine and adapt with respect to other sets of information (e.g., con-
sistency function) added to the model to update a new parameter level in the entropy 
criterion function. 

The second problem concerns questioning the sense or interpretability of output 
probabilities from the maximum entropy criterion function once combined with real 
world probability-related restrictions. One cannot comment on this problem without 
making reference to the important contribution of Jaynes (1957, 1957b), who proposed 
a way to estimate unknown probabilities of a discrete system in the presence of less 
data point observations than parameters to be estimated through the celebrated 
example of Jaynes dice. Given a set of all possible ways of distribution resulting from 
all micro-elements of a system, Jaynes proposed using the one that generates the 
most “uncertain”4 distribution. To understand this problem, the question becomes a 
matter of combining philosophical interpretation of the maximum entropy principle 
with that of Jaynes’ formulation in the context of Shannon entropy. Depending on the 
type of entropy5 considered, output estimates will have slightly different meaning. 
However, all interpretations refer to parameter values that assure a long-run, steady-

4 Here we are in the realm of the second law of thermodynamics, which stipulates, in terms of en-
tropy, that natural equilibrium of any set of events is reached once disorder inside them becomes 
optimal. This results from their property of having equal (ergodic system) odds to occur. In that state, 
we reach the maximum uncertainty about which event should occur in the next trial.
5 Later, for comparison, properties of the most well-known types of entropy in the literature will be 
presented.



6   Generalities

state equilibrium of the system (relations defined by the model) with respect to data 
and other knowledge at hand, usually in the form of moments and/or normalization 
conditions. Owing to maximum entropy alone, the more consistent moments are or 
the more other a priori information binds, the more output probabilities will differ 
from those in a uniform distribution. Considering the above, interpretation of the 
maximum entropy model is far removed from interpretation of the classical model, 
especially in the case of the econometric linear model where estimates mean a change 
in the endogenous variable due to unitary change in an explicative variable, that is, 
in ceteris paribus conditions.

The last criticisms concern the burden arising from the computational and 
numerical process—a problem common to all complex, nonlinear systems. Thanks to 
recent developments of computer software, this problem is now less important.

In many empirical studies that attempt to solve inverse problems, the Shannon 
entropy-based approach is relatively efficient in recovering information. However, 
gaining in parameter precision requires good design of the prior. In particular, the 
point support space must fit into the space of the true population parameter values. 
As Golan et al. (1996) have shown, when prior design is weak, outputs of Shannon 
entropy econometrics will produce approximately the same parameter precision as 
traditional econometrical methods, such as LS or the ML, which means Shannon 
entropy could discount information not fitting the maximum entropy principle as 
expected. 

The above criticisms of the Shannon entropy econometrics model remain rela-
tively weak as has been shown through the preceding discussion. 

According to us, the main drawback related to that form of model is due to the 
analytical function of constraining moments. In fact, as already suggested, long-
range correlation and observed time invariant scale structure of high frequency series 
may still be conserved—in some classes of non-linear models—through a time—or 
space—aggregation process of statistical data. This raises the question of why this 
study proposes a new approach of Tsallis non-extensive entropy econometrics. 

The next section provides a first answer by showing potential theoretical and 
then empirical drawbacks of the Shannon-Gibbs entropy model and potential advan-
tages from the PL-related Tsallis non-extensive entropy approach.

1.2.2  Rationale of PL-Related Tsallis Entropy Econometrics and Low Frequency 
Series

This section presents the essence of the scientific contribution of this monograph 
to econometric modelling. For a few decades, PL has confirmed its central role in 
describing a large array of systems, natural and manmade. While most scientific 
fields have integrated this new element into their analytical approaches, economet-
rics and hence, economics globally, is still dwelling—probably for practical reasons—
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on the Gaussian fundamentals. This study takes a step forward by introducing Tsallis 
non-extensive entropy to low frequency series econometric modelling. The potential 
advantages of this new approach will be presented, in particular, its capacity to ana-
lytically solve complex PL-related functions. Since any mathematical function form 
can be represented by a PL formulation, the importance of the proposed approach 
becomes clear. To be concrete, one of the complex nonlinear models is the fractionally 
integrated moving average (ARFIMA) model, which, to our knowledge, has remained 
non-tractable using traditional statistical instruments. An empirical application to 
solve such a class of models will be implemented at the end of Part V of this book.

According to several studies (Bottazzi et al., 2007), (Champernowne, 1953), 
(Gabaix, 2008), a large array of economic laws take the form of a PL, in particular 
macroeconomic scaling laws, distribution of income, wealth, size of cities and firms6, 
and distribution of financial variables such as returns and trading volume. Ormerod 
and Mounfield (2012) underscore a PL distribution of business cycle duration. Stanley 
et al. (1998) have studied the dynamics of a general system composed of interacting 
units, each with a complex internal structure comprising many subunits, where the 
subunits grow in a multiplicative way over a period of twenty years. They found that 
this system followed a PL distribution. It is worthwhile to note the similarity of such a 
system with the internal mechanism of national accounts tables, such as a SAM, also 
composed of interacting economic sectors, each with a complex internal structure 
defined by firms exercising similar business. Ikeda and Souma (2008) have made an 
international comparison of labour productivity distribution for manufacturing and 
non-manufacturing firms. A PL distribution in terms of firms and sector productivity 
was found in US and Japanese data. Testing the Gibrat's law of proportionate effect, 
Fujiwara et al. (2004) have found, among others things, that the upper-tail of the dis-
tribution of firm size can be fitted with a PL (Pareto-Zipf law). The list of PL evidence 
here is limited to social science. 

Since this study focuses on the immense potentiality of PL-related economic 
models, PL ubiquity in the social sciences will be underscored and a theorem showing 
the PL character of national accounts in its aggregate form will be presented.

In line with the rationale for the proposed methodology detailed below, the fol-
lowing from recent literature is evidence of entropy:

–– Non-extensive entropy, as such, models the non-ergodic systems which com-
pound Levy7 instable phenomena8 converging in the long range to the Gauss-
ian basin of attraction. In the limiting case, non-extensive entropy converges to 
Shannon Gibbs entropy.

6 See (Bottazzi et al., 2007) for different standpoints on the subject.
7 Shlesinger, Zaslavsky, & Klafter, Strange Kinetics, 1993. 
8 Shlesinger et al., Lévy Flights and Related Topics in Physics, 1995.



8   Generalities

–– PL-related Tsallis entropy should remain, even in the case of a low frequency 
series, a precious device for econometric modelling since the outputs provided 
by the exponential family law (e.g., the Gibbs-Shannon entropy approach) cor-
respond to the Tsallis entropy limiting case when the Tsallis-q parameter equals 
unity. 

–– A number of complex phenomena involve long-range correlations which can 
be seen particularly when data are time scale-aggregated (Drożdż & Kwapień, 
2012), (Rak et al., 2007). This is probably because of the interaction between the 
functional relationships describing the involved phenomena and the inheritance 
properties of a PL or because of their nonlinearity. Delimiting the threshold values 
for a PL transition towards the Gaussian structure (or to the exponential family 
law) as a function of the data frequency amplitude is difficult since each phe-
nomenon may display its own rate of convergence—if any—towards the central 
theorem limit attractor. 

–– Systematic errors from statistical data collecting and processing may generate a 
kind of tail queue distribution. Thus, a systematic application of the Shannon-
Gibbs entropy approach in the above cases—even on the basis of annual data—
could be misleading. In the best case, it can lead to unstable solutions.

–– On the other hand, since non-extensive Tsallis entropy generalizes the exponen-
tial family law (Nielsen & Nock, 2012), the Tsallis-q entropy methodology fits well 
with high or low frequency series. 

In the class of a few types of entropy displaying higher-order entropy estimators able 
to generalize the Gaussian law, Tsallis non-extensive entropy has the valuable quality 
of concavity–and then stability—along the existence interval characterizing most real 
world phenomena. As far as the q-generalization of the Kullback-Leibler (K-L) relative 
entropy index is concerned, it conserves the same basic properties as the standard K-L 
entropy and can be used for the same purpose (Tsallis, 2009). 

The above-enumerated points imply that in cases where the assumed Levy law 
complexity is not verified by empirical observation, outputs from the non-extensive 
entropy model converge with those derived from Shannon entropy. In other words, 
errors which involve taking a sample as if it were PL-driven has no consequence on 
outputs if the truth model belongs to the Gaussian basin of attraction. This explains 
why in most empirical applications—but by no means all—both forms of entropy 
provide similar results and the entropic Tsallis-q complexity parameter then tends 
to converge to unity, revealing the case of a normal distribution. Empirical examples 
will be presented at the end of this document, and the strength of Tsallis maximum 
entropy econometrics will be demonstrated in different contexts.

In summary, the following are entropy function regularities:
–– The Tsallis entropy model generalizes the Shannon-Gibbs model, which consti-

tutes a converging case of the former for the Tsallis-q parameter equal unity.
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–– The Shannon-Gibbs model fits natural or social phenomena displaying Gaussian 
properties.

–– PL high frequency time (space) series scaling—aggregating—does not always lead 
to Gaussian low frequency time (space) series. Additionally, the rate of conver-
gence from the PL to the Gaussian model, if any, varies according to the form of 
the function used.

Is it judicious to replace Shannon-Gibbs entropy modelling by Tsallis non-extensive 
entropy for empirical applications? 

The answer is yes, and this is the motivation for this study. There are at least three 
expected advantages to introducing Tsallis non-extensive econometric modelling:
1.	 A data generating system characterized by a low—or no—convergence rate from 

PL to Gaussian distribution only becomes analytically tractable when using 
Tsallis entropy formalism. (This will be proven through an econometrical model 
with constant substitution elasticity and then considered as an inverse problem 
to be estimated later.) 

2.	 The Tsallis entropy model displays higher stability than the Shannon-Gibbs, par-
ticularly when systematic errors affect statistical data.

3.	 The Tsallis-q parameter presents an expected advantage of monitoring complex-
ity of systems by measuring how far a given random phenomenon is from the 
Gaussian benchmark. In addition to other advantages, this can help draw atten-
tion to the quality of collected data or the distribution involved.

The choice of national accounts-related models for testing the new approach of non-
extensive entropy econometrics is motivated by the empirical inability of national 
systems of economic information to provide consistent data according to macroe-
conomic general equilibrium. As a result, national account tables are generally not 
balanced unless additional—often contradictory—assumptions are applied to balance 
them. However, following the principle of not adding (to a hypothetical truth) more 
than we know, it remains preferable to deal with an unbalanced national accounts 
table. Trying to balance such a table implies that we are faced with ill-behaved inverse 
problems. According to the existing literature, and as will be seen through this mono-
graph, entropy formalism remains the best approach to solving such a category of 
complex problems. The superiority of Tsallis non-extensive entropy econometrics 
over other known econometrical or statistical procedures results from its capacity to 
generalize a large category of most known laws, including Gaussian distribution. 
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1.3  National Accounts-Related Models and the Scope of this Work

Under the high frequency series hypothesis, we postulate that social and economic 
activities are characterized by complex behavioural interactions between socio-eco-
nomic agents and/or economic sectors. Recent, Big Data for Official Statistics may 
illustrate such a complexity. This could mean that the supposed extreme events may 
appear systematically more (or less) frequently than expected (Gaussian scheme), 
implying internal and aggregated long-range correlation (over time, space, or both). 
The maximum entropy principle is best suited to estimating ill-behaved inverse prob-
lems and, in particular, models with ratios or elasticity as parameters. In this latter 
case, as we will see later, the support space area for unknown parameters coincides 
with the probability area over the space from zero to unity. Fortunately enough, due 
to its macroeconomic consistency, national account table structure reflects this prop-
erty. In empirical macroeconomic investigations, the national accounts system of 
information plays a crucial role for modelling as it guarantees internal coherence of 
macroeconomic relations. Numerical information is embodied inside comprehensive 
statistical tables or balance sheets displaying algebraic properties of a matrix. Having 
in mind an economic or statistical inference investigation, mathematical treatment 
of information compounded inside these matrices is carried out by economists or 
statisticians on the basis of a priori information at hand. When such matrices are 
algebraically regular, traditional inverse methods can be applied to solve the problem 
of, for instance, estimating parameters that define relationships between the endog-
enous variable and its covariates. Nevertheless, in the social sciences, causality rela-
tionships linking both variables seldom have a one-to-one correspondence. In many 
cases, two or more different inputs or causes can lead to the same output or effect. 
Such different causal concomitances for the same output render the social or eco-
nomic model indeterminate. In such cases, the recovery of a data generating system 
from the observed finite sample becomes impossible using the traditional statistical 
or econometric devices, such as the standard maximum likelihood method or the 
generalized method of moments. On mathematical grounds, this may result from an 
insufficient number of model data points with respect to the number of parameters 
to estimate. Such a sample is said to be ill-behaved. This situation leads to the lack 
of an optimal solution sought. Collinear variables, inadequate size of a small sample, 
or the poor quality of statistical data may lead to the same difficulties. Finally, taking 
into account the above deficiencies and anomalies, modellers have to deal with ill-
behaved inverse problems most of the time. Following what has been said above, 
this monograph targets developing a robust approach generalizing Kullback-Leibler-
Shannon entropy for solving inverse problems related to national account models in 
a way that reflects the complex relationships between economic institutions and/
or agents. Statistical data from such complex interrelations are usually difficult to 
collect, incomplete, and defective. Additionally—and this may be one of the most 
important points—modelling national account table-related information involves 
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some class of nonlinear functions, otherwise only solvable using the PL model; thus, 
non-ergodic situations are involved.

The next area of national accounts modelling to be treated in this monograph is:
–– Updating an input/output table when the problem is posed as inverse, with the 

possibility of adding extra sample information to the model in the form of an 
a priori and without any additional assumption;

–– Forecasting an input/output table or its extended forms, such as the social 
accounting matrix (SAM), solely on the basis of yearly published national accounts 
concerning sectorial elements of final demand and gross domestic product;

–– Deriving backward or forward multiplier coefficient impact on the basis of insuf-
ficient pieces of information; 

–– Demonstrating a method to forecast a sectorial energy final demand and total 
pollutants emission by production, the basis of an environmentally extended 
input/output table when basic information is missing;

–– Presenting a computable general equilibrium model using the maximum entropy 
approach instead of calibration techniques to derive the parameters of CES func-
tions;

–– Estimating other nonlinear economic functions as inverse problems and conduct-
ing Monte Carlo experiments to test Tsallis entropy econometrics outputs;

–– Presenting in detail, across different chapters, national account-related general 
equilibrium models before coming back to inverse problem solution techniques 
as suggested above. 

The reader should be enriched not only by techniques for solving complex inverse 
problems but also by a thorough examination of different aspects of national account 
updating and modelling in the Walrasian spirit. To render the models presented 
here more consistent, emergent elements on an environmentally extended system of 
accounts will be included along with their impact on the general equilibrium frame-
work and the optimum Pareto or social welfare. 
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PART II: Statistical Theory of Information and 
Generalised Inverse Problem



1  Information and its Main Quantitative Properties

1.1  Definition and Generalities

This chapter constitutes the base of the next theoretical formalism to be developed 
in this part of the book. The connection between the Bayesian rule and Kullback 
information divergence is first envisaged. This will permit a better understanding of 
Shannon-Jaynes-Kullback cross-entropy. The next section will deal with the connec-
tion between Shannon-Gibbs entropy and non-extensive (Tsallis) entropy. Finally, the 
generalized non-extensive cross-entropy will be presented for further applications in 
the remaining parts of the work.

Many forms and measures of information exist. As far as parameters linked to 
data observations are concerned, one well-known measure of information was pro-
vided by R.A. Fisher in 1929. As will be clear below, the next can be log(n), explaining 
the sum of n hypotheses Hi, all uniformly distributed and known as Hartley’s infor-
mation measure (Hartley, 1928). Information theory has its mathematical roots in the 
concept of disorder or entropy in statistical mechanics. Kullback (1959) provides an 
extensive literature on the form and mathematics linking entropy and information 
theory. As mentioned, the next formal definition will be followed by theoretical and 
empirical extensions arising from the entropy principle.

Let us now develop a workable measure of information obtained through obser-
vation of an event having probability p. Our first problem is to ignore any particular 
features of the event and focus only on whether or not it happened. Thus we will think 
of an event as the observance of a symbol whose probability of occurring is p. Thus, 
the information will be defined in terms of the probability p.

Let us consider the probability spaces (χ, ϑ, μi), i = 1,2 as a basic set of elements Χ ϵ 
χ (sample space) and the σ — algebra ϑ, a collection of all possible sets of events from 
χ with the probability measure μi. Under general assumptions of the above probability 
measures, in particular those stating their absolute continuity with respect to one 
another, let λ ≡ μi. By the Radon-Nikodym theorem (e.g., Loeve, 1955), there exist func-
tions ſi(x), i = 1,2, called generalized probability densities, 0 < ſi (x) < ∞ [λ] such that:

 𝜇𝜇𝑖𝑖(E) = ∫ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑑𝑑𝜆𝜆(𝑥𝑥),
E

  𝑖𝑖 = 1,2 ,	 (2.1)
E

for all E belonging to the σ — algebra ϑ. Following Kullback (1959) and Halmos & 
Savage (1949), the symbol [λ], pronounced “modulo λ”, means that the assertion is 
true along with all the support space of events E except the case for E ϵ ϑ and λ (E)=0.

In (2.1), the function ſi(x) is also referred to as the Radon-Nikodym derivative. If 
the probability measure μ is absolutely continuous with respect to the probability 
measure λ and the probability measure v is absolutely continuous with respect to μ, 
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then the probability measure v is also absolutely continuous with respect to λ, and the 
Radon-Nikodym derivatives satisfy:
𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝜇𝜇 ∙ 𝑑𝑑𝜇𝜇𝑑𝑑𝜆𝜆 [𝜆𝜆] 

The defined symbols above allow us to better derive the conceptual definition of 
information below as it will be understood in the coming chapters of this book.

Next, let Hi, i = 1,2, be the hypothesis that a variable is X from the statistical pop-
ulation with probability measure μi. Then, by applying Bayes’s theorem, it follows 
that:

 
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After transformations with respect to logarithms of relative function densities 
ſi(x), we obtain:

 
)(
)(log

)|(
)|(log

)(
)(log

2

1

2

1

2

1

H
H

xH
xH

xf
xf








  ,	 (2.3)

where: x is an element of X; P(Hi) is the prior probability of Hi and P(Hi | x) is the pos-
terior probability of Hi. The logarithm in (2.3) stands for an information measure base 
unit (Hartley, 1928). The right-hand side of (2.3) is an informative measure resulting 
from the difference (positive or negative) between the logarithm of the odds in favour 
of Hi once observation of x has occurred and before it occurred. 

Thus, following Kullback, one defines the logarithm of the likelihood ratio,
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as the information in X = x for discrimination in favour of H1 against H2. An interesting 
alternative definition of information after (2.3) is the weight of evidence for H1 given x 
(Kullback, 1959), (Good, 1963). Next, most informative is the mean information for 
discrimination in favour of H1 against H2 given x∈ E∈ ϑ, for μ1, which is defined as 
follows:

)(
)(
)(log)()(

)(
)(log):(

2

1
11

2

1
21 xd

xf
xfxfxd

xf
xfI      =

 







)(
)(log)(

)|(
)|(log

2

1
1

2

1

H
Hxd

xH
xH   	 (2.4)

with = dμi (x) = ſ1(x)d λ (x).
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Here one has treated the general case when E represents the entire sample space χ 
and then must not appear as support space for integration (see 2.1). The last member 
in (2.4) is the difference between the mean value, with respect to μ1, of the logarithms 
of the posterior and prior odds of the hypotheses. Following Savage (1954), Kullback 
(1959), I(1:2) could be referred to as the information of μ1 with respect to μ2.

Let us extend the above general definition of information to some known cases. 
Suppose we have a set (categories) of hypotheses, Hi = 1, 2,.., n and that from observa-
tion, we can infer with certainty which hypothesis is true. Then the mean information 
in an observation about H is the mean value of -log P(Hi), that is,

P(H1) log P(H1) – P(H2) log P(H2) – ...– P(Hn) log P(Hn).	 (2.5)

The expression in (2.5) above is called entropy of the Hi’s (e.g., Khinchin, 1957; 
Shannon, 1948). When hypotheses Hi are uniformly distributed (then equally prob-
able) so that

P(Hi) = 1/n, i = 1...n, this leads to      ,log)(log)(
1

nHH i

n

i
i 



 

which turns out to be Hartley’s information measure.
As shown below, an interesting applicability of (2.4) may concern the analysis of 

hypotheses Hi, i = 1,2, on dependency between variables x and y or on the measure of 
divergence between given hypotheses Hi. Presenting relationships between informa-
tion discriminating measure and dependency between variables will be useful when 
we introduce an inferential approach for entropy econometrics models. In particular, 
measure of divergence constitutes, once again, the cornerstone of the present work in 
which a priori and a posteriori hypotheses will be recalled in many applicable analy-
ses.

Suppose we have the entire sample space χ being the Euclidean space of two 
dimensions R2 with elements X = (x, y). Let us consider that under H1 variables x and y  
are dependent with probability density f(x, y) and that, under the alternative hypoth-
esis H2, both variables are independent with probabilities g(x) and h(y). In this case, 
we rewrite (2.4) as follows:

dxdy
yhxg

yxfyxfI
)()(

),(log),():( 21    	 (2.6)

Information measure I(μ1 : μ2) is nonnegative (Kullback, 1959) and equal to zero 
if and only if f(x, y) = g(x) h(y) [ λ ]. As such, it constitutes an informative indicator 
on dependency degree between x and y. Note that in the case of a bivariate normal 
density 
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where hypothesis H2 then represents the product of the normal densities as explained 
in (2.6), and finally one obtains:

)1log(
2
1):( 2

21  I  ,	 (2.7)

which indicates that in the case of bivariate normal distribution, as expected, the 
mean information is discriminatory in favour of H1 (dependence) against H2 (indepen-
dence); that is, I(μ1 : μ2) is a function of the correlation coefficient ρ alone.

Following Jeffreys (1946) and Kullback (1959), if we define I(2 : 1) as
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xfxfI    	 (2.8)

that is, the mean information from μ2 for discrimination in favour of H2 against H1, one 
can define the divergence between hypotheses (noted ∇) by:

∇(H1, H2) = I(μ1 : μ2) + I(μ2 : μ1) = )(
)(
)(log))()(1(
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Thus, ∇(H1, H2) measures the divergence between H1 and H2 or between μ1 and μ2. 
As such, it constitutes a measure of the difficulty of discriminating between them.

1.2  Main Quantitative Properties of Statistical Information

The approach undertaken here is axiomatic (Carter, 2011). It is worthwhile to note 
that we can apply this axiomatic system in any context where we have an available 
set of non-negative real numbers. This can be the case, for instance, when we dispose 
of non-negative coefficients (noted p) of a given set and target the estimation of the 
related model parameters through their reparametrization (Golan, Judge & Miller, 
1996). Naturally, we will come back to such applications, and an estimation approach 
using probabilities and support space simultaneously will be presented. This under-
scores an important role to be assigned to the probability form of numbers, which 
motivated the selection of the axioms below. We will want our information measure 
I(p) to have several properties:
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1.	 Information is a non-negative quantity, i.e., I(p) ≥ 0. Following what has been pre-
sented above on information definition (see 2.4), one may generalize this prop-
erty to convexity in the next theorem:
Theorem: I(p1 : p2) is almost positive defined, that is I(p1 : p2) ≥0 with equality if 
and only if ſ1(x) = ſ2(x) [λ]. 
We will not demonstrate this theorem (see Kullback, 1959, pp. 14–15); we just 
provide the reader with the essence channelled through it. The above theorem 
explains that in the mean, discrimination information from statistical observa-
tions is positive. It follows from what has been previously said that no discrimi-
nation information will result if the distribution of observations is the same [λ] 
under hypothesis one and two. A typical example—as we will see later—may con-
stitute maximum entropy and cross-entropy principles. In that case, when non-
informative consistency moments from observations are not provided, minimum 
cross-entropy declines into maximum entropy.

2.	 If an event has probability 1, certainty follows, and we get no information from 
the occurrence of the event: I(p = 1) = 0.

3.	 If two independent events occur (whose joint probability is the product of their 
individual probabilities), then the information we get from observing the events 
is the sum of the two pieces of information: 
I(p1 p2) = I(p1) + I(p2). This property is referred to as additivity. Note that this prop-
erty presents a valuable feature; it represents the basis of the logarithmic form 
of information. Intuitively, that means that a sample of n independent observa-
tions from the same population provides n times the mean information in a single 
observation.
In the case of non-independent events, the additive property is retained, but in 
terms of conditional information. 

4.	 Finally, as already stipulated in the preceding section, we will want our infor-
mation measure to be a continuous (and, in fact, monotonic) function of the 
probability—slight changes in probability should result in slight changes in infor-
mation. For consistency with the properties above, it can be useful to show the 
logarithmic feature of statistical information in the following way:

1. I(p2) = I(pp) = I(p) + I(p) = 2I(p)				                     (2.10)

2. Through inductive reasoning, one can generalize (2.10) and write I(pn) = 
nI(p)

3. I(p) = I((p1/m)m) = m(p1/m)

and we have

)(1)( /1 PI
m

pI m   
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and, once again, we can generalize in the following way :

)()( / pI
m
npI mn   

4. The property of continuity allows us to write, for 0 < p ≤ 1 and a real 
number α:

)()( PIpI    .

From (2.10), one can observe that an operator transforming the probability p at 
the power n/m, (that is, pn/m) into an information measure I(pn/m) displays a logarithmic 
property of additivity. This allows us to write a general, useful relation:

)1(log)(log)( pppI bb    for base b.	 (2.11)

For other information properties not directly connected with the aim of this work, 
such as invariance or sufficiency, which will not be presented here, see Jaynes (1994), 
Kullback (1959). Furthermore, in the coming chapters, additional properties for differ-
ent forms of entropy will be presented, such as concavity and stability (common for 
both Shannon-Gibbs and Tsallis entropies) or extensivity (common for both Shannon-
Gibbs and Renyi (1961) entropies).

As a final remark of this section, it is important to note that the above logarithmic 
nature of information as explained in (2.11)—for the case of independent events—is 
limited to ergodic systems which convey additive-extensive properties of information 
in the case of independent events.



2  Ill-posed Inverse Problem Solution and the 
Maximum Entropy Principle

2.1  Introduction

As explained in the introduction, many economic relationships are characterized by 
indeterminacy. This may be because of long-range feedback and complex correla-
tions between source and targets, thus rendering causal relationships more difficult 
to investigate.

In this part of the work, the formal definition of the inverse problem will be dis-
cussed. A Moore-Penrose approach will be presented for solving this kind of problem 
and its limits will be stressed. The next step will be to present the concept of the 
maximum entropy principle in the context of the Gibbs-Shannon model. Extensions 
of the model by Jaynes and Kullback-Leibler will be presented and a generalisation 
of the model will be implemented to take into account random disturbance. The next 
step will concern the non-ergodic form of entropy known in the literature of thermo-
dynamics as non-extensive entropy or non-additive statistics. There will be a focus on 
Tsallis entropy, and its main properties will be presented in the context of information 
theory. To establish a footing in the context of real world problems, non-extensive 
entropy will be generalized and then random disturbances will be introduced into 
the model. This part of the work will be concluded with the proposition of a statistical 
inference in the context of information theory.

2.2  The Inverse Problem and Socio-Economic Phenomena

An inverse problem (e.g., Thikonov et al. (1977), Bwanakare (2015), Golan et al. (1996)) 
explains a situation where one tries to capture the causes of phenomena for which 
experimental observations represent the effect. 

The essence of the inverse problem is conveyed by the expression:

  XY  	 (2.12)

or its equivalent in continuous form:

)(),()()(  bdXXBXgY
D

   	 (2.13)

where
X represents the state space,
Y designates the observation space,
D defines the Hilbert support space of the model,
B is the transformation kernel linking measures X and Y,
b(ζ) displays random error process.

 Open Access. © 2017 Second Bwanakare, published by De Gruyter.  This work is licensed 
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In classical econometrics, when given a state X, an operator B and, as happens most 
of the time, a disturbance term (ζ), what is Y? This is referred to as a forward problem. 
In social science, one must often cope with the above random (Gaussian or not) dis-
turbance term, and this usually complicates matters in spite of significant, recent 
developments in econometrics, particularly concerning stochastic time-series anal-
ysis (Engle & Granger, 1987). Furthermore, the inverse question is more profound: 
Given y and a specific B, what is the true state X?

If B should also be a functional of X, the problem becomes arbitrarily complex. 
Correlation between (ζ) and X will be at the base of such additional complexity.

Every day, psychologists cope with such inferential problems. Patients display 
identical symptoms from different sicknesses. Health practitioners need more histori-
cal (a priori) information on patients to try to find the solution.

In economics, the same national output growth rate may result from different 
combinations of factors. One of the main problems encountered by practicing econo-
mists is isolating the causes of economic phenomena once they have occurred. In 
most cases, the economist becomes inventive in finding an appropriate hypothe-
sis before trying to solve the problem. As an example, in the case of a recession or 
financial turbulence, it is usually difficult to point to principal causes and fix them. 
Schools of economics suggest different, even contradictory, solutions—the legacy of 
its inverse problem nature.

In empirical research, many techniques exist to try to solve the inverse problem. 
In the context of the present work, the presentation will be limited to those more 
applicable to matrix inversion, like the Moore-Penrose pseudo-inverse approach, 
and, naturally, maximum entropy based approaches. The approach better known in 
economics for updating national accounts on the basis of bi-proportionalities will 
then be added to these two techniques.

2.2.1  Moore-Penrose Pseudo-Inverse

Let us consider the discrete and determinist case and rewrite (2.12) as follows:

Y = XB = Xρ	 (2.14)

In the right equality ρ reflects the case where we have to deal with a ratio or prob-
ability parameter, for example, after reparametrizing B. We then have:

ρ = YS ⇔ Y = XBS
ρ̂ = BY ⇔ Y = XYV
Y = Xρ̂ = XVY = XBXρ,	 (2.15)

which means:
XBX = X and V, representing the generalized inverse matrix (Golan, 1996), (Kalman, 
1960).
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This is a matrix with the symbol B+ that satisfies the following requirements:

B B+ B = B,
B+B B+ = B,
B+B is symmetric,
B B+ is symmetric.

Following Theil (1967), a unique B+ can be found for any matrix: square, non-
singular or not. When the matrix B+ happens to simultaneously be square and non-
singular, then the generalized inverse will be the ordinary inverse B-. The problem 
that interests us is the over-determined system of equations

Y = XB

where B has n rows, K < n columns and column rank equal to R ≤ K.
If we retain the particular case when R equals K to ensure the existence of (B’B)-1, 

then the generalised inverse of B is 

B+= (B’B)–1B’ 

as can be easily verified. A solution to the system of equations can be presented as:

X= B + Y.

Following Green (2003, p. 833), we note in this case that the length of this vector 
minimizes the distance between Y and BX, according to the least squares properties 
method. This distance will naturally remain equal to zero if y lies in the column space 
of B.

If we now retain the more general case where B does not have full rank, the above 
solution is no longer valid and a spectral decomposition using the reciprocals of the 
characteristic roots is involved to compute the inverse which becomes:

 B+ = C1 A1
–1 C1’B’

where C1 are the R characteristic vectors corresponding to the non-zero roots arrayed 
in the diagonal matrix A1.

The next and last case is the one where B is symmetric and singular, that is, with 
the rank R ≤ K. In such a case, Moore-Penrose inverse is computed as in the preceding 
case but without pre-multiplying by B’. Thus, for such a symmetric matrix,

B+ = C1 A1
–1C1’,	 (2.16)

with A1
–1 being a diagonal matrix of the reciprocals of the non-zero roots of B.

It is important to note that only matrix B with full rank ensures a minimum dis-
tance between Y and BX. In other cases, there may exist an infinite number of combi-
nations of elements of matrix B or ρ̂ which satisfy (2.14).
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To conclude, in spite of strong advantages of the Moore-Penrose generalised 
inverse, outputs will not always reflect an optimal solution.

2.2.2  The Gibbs-Shannon Maximum Entropy Principle and the Inverse Problem

Let us introduce the concept of Shannon entropy by continuing with the case of pure 
linear inverse problem solution discussed above. The simplest (one dimensional 
case) example is the Jaynes dice inverse problem.

If a die is fair, and we throw it a large number of times n, with k different output 
modalities9 (k = 1,..., K), the expected value will be 3.5, as from a uniform distribution 
with probability fk equal 1/6. How can one infer about pk if we have ‘loaded’ (unfair) 
dice and the expected value of the trial becomes:

4.5 = 



K

k
kkp

1
5.4  								        (2.17)

where frequencies pk is n
nk  ?

In this case, the central question is: Which estimate of the set of frequencies 
would most likely yield this number? The problem is underdetermined since there 
are many sets of fk that can be found to fit the single datum of Equation (2.17). Here 
we have to deal with a multinomial distribution where the multinomial coefficient W 
is given by:
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!!..!
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Deriving and using the Stirling approximation lnx! ≅ xlnx – x for a large number 
of N, we get the Shannon entropy formulation: 





K

k
kkp pppHMax

1
ln)(  					                    (2.18)10

In the case of a die, parameter K equals 6, and W is the multinomial coefficient, 
i.e., the number yielding a particular set of frequencies among 6N possible outcomes.

9  Generally, if the number of trials is equal to n, we will have nk possible outputs corresponding 
to each modality k with 

k
knn  . Thus, the frequency pk = 

n
nk  is related to each modality k. 

10  Note that the generalized form of Shannon entropy in the continuous case has the form: 
Maxf(y)H(f(y)) = –∫f(y)logf(y)dy.
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We need only find the set of frequencies maximizing W in order to find the set that 
can be realized in the greatest number of ways. This is the most plausible combina-
tion in the case of fair dice.

This turns out to convey the same logic as maximizing Shannon Gibbs entropy. 
Thus, starting from two pieces of information, that is, the number k equal to six and N, 
a large number of trials, we are able to derive six probabilities related to a die distribu-
tion.

Next, Jaynes (1994) maximized the Shannon function through the restriction of 
consistent information at hand. This opened entropy theory application to many sci-
entific fields, including the social sciences. 

Thus, if we add to the formulation (2.18) the moment-consistency and the adding 
up-normalization constraints, we then get:
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K

k
kkp pppHMax

1
ln)(  						      (2.19)

subject to:
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1  								        (2.21)

where {y1, y2,..., yt} denotes a set of observations (e.g., aggregate accounts or their 
averages) being consistent with a function ft(xk) of explicative variables weighted by a 
corresponding distribution of probabilities {p1, p2,..., pk}. As usually happens, T is less 
than K, and the problem is ill-posed (underdetermined).

Two main results emerge from the above formulation. First, if all events are inde-
pendent or quasi-independent (locally dependent) and equally probable, then the 
above entropy is a linear function of the number of the possible system states and then 
is extensive11.

A second fundamental result is connected with information theory and suggests 
that a Gaussian variable has the largest entropy among all random variables of equal 
variance (see Papoulis, 1991 for proof). In the next chapter on non-extensive entropy, 
a measure to assess the divergence of a given distribution from Gaussian distribution 
will be presented.

11  For this reason, as earlier alluded to, the Gibbs-Shannon entropy is called extensive. In reverse, 
as it will be commented on in the coming sections, the hypothesis of long-range correlation between 
events leads to the concept of non-extensive entropy (e.g., Tsallis entropy) suggesting an entropy no 
longer being a linear function of data. 
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Coming back to the dice case, maximization of Shannon entropy in (2.19), that is 
H(P) = –P΄ln P  under Jaynes consistency, leads to the distribution presented in Table 1. 
To solve this inverse problem of six unknowns, the only two pieces of information 
available are the expected value—from the experiments in this example—assumed 
to be equal to 4.5 and the information that the probability of different possibilities 
adds up to one. However, since we are dealing with unbalanced dice, we have no idea 
about the distribution.

The next chapters extend the Shannon-Gibbs-Jaynes maximum entropy principle 
with Kullback-Leibler relative entropy. The next to the last targeted presentation will 
deal with the general linear entropy model, that is, the one with a stochastic compo-
nent. To conclude, Tsallis power law distribution to generalize Kullback-Leibler cross-
entropy will be considered. 

2.2.3  Kullback-Leibler Cross-Entropy

Kullback (1959), Good (1963) extended the Jaynes-Shannon-Gibbs model by formulat-
ing the principle of minimum (cross or relative) entropy. Using an a priori piece of 
information q about unknown parameter p, the resulting formulation is as follows:





K

1k
qp'lnp')/ln(),(_ pqppqpHMin kkk  p'ln p − p'lnq				    (2.22)

 
under restrictions:

Y = XP	 (2.23) 

P'1 = 1	 (2.24)

where p = (p1,..., pK)ʹ, q = (q1,..., qK).

These restrictions are the same as those presented earlier. In the criterion func-
tion (2.22), a posteriori and a priori vectors or matrices p and q are confronted with the 
purpose of measuring entropy reduction resulting from exclusive new content of data 
information. 

Table 1: Recovering probability distribution of an unbalanced die through the maximum entropy 
principle.

P1 P2 P3 P4 P5 P6 

0.054 0.079 0.114 0.166 0.240 0.348
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One should note that when q is fully consistent with moments, then p = q and the 
distribution becomes uniform with qk = 1/K. This leads to the solution of the maximum 
entropy principle. 

Thus, the cross-entropy principle stands for a certain form of generalization of 
maximum entropy. Relation (2.22) above is an illustration of the previous Kullback 
formulation in (2.8) as a mean information from (2.23) and (2.24) for discrimination in 
favour of p against q.

2.3  General Linear Entropy Econometrics

In social science, it is rare to encounter the situation described by the relation (2.14) 
where the random term is meaningless as is often encountered in the experimental 
sciences. Social phenomena are particularly affected by stochastic components. Let 
us rewrite it below in its generalized form:

𝑦𝑦𝑖𝑖 =∑𝐵𝐵𝑗𝑗𝑋𝑋𝑗𝑗 +
𝐾𝐾

𝑗𝑗−1
 ei   	 (2.12’)

with the random term ζi∈e and
i = (1,..., I) (I being the number of observations); K is the number of model parameters 
to be estimated.

2.3.1  Reparametrization of Parameters

Following Golan et al. (1996), we first reparametrize the above generalized entropy 
model (2.12’).

We treat each Bj (j = 1,…, K) as a discrete random variable within a compact 
support and 2 < M < ∞ possible outcomes. So, we can express Bj as: 

1

M

k km km
m

B p v k K

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	 (2.25)

where pkm is the probability of outcome vkm and the probabilities must be non-negative 
and sum up to one.

Similarly, let us treat each element ζi of e as a finite and discrete random vari-
able with compact support and 2 < M < ∞ possible outcomes centred on zero. We can 
express ζi as:


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j
njnji wr

1
.  	 (2.26)
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where rn is the probability of outcome wn. The term ζi, like any prior value in the 
model, reflects Bayesian properties and is not a fixed value as in the case of classical 
econometric models. In practice, support sets with three or more points12 are used to 
take into account higher moments of the distribution during the process of informa-
tion recovery.

2.4  Tsallis Entropy and Main Properties

2.4.1  Definition and Shannon-Tsallis Entropy Relationships

This relatively new form of entropy is emerging over an immense area of applica-
tions in social science, including economics. One of the fields of interest is model-
ling and predicting markets of financial returns (Drożdż & Kwapień, 2012), (Grech & 
Pamula, 2013). Nevertheless, due to the high frequency nature of Big Data in Official 
Statistics (e.g., Braaksma & Zeelenberg, 2015), the PL-based non-extensive entropy 
econometrics should be seen as a potential and natural estimation device in this 
new statistical area. As in statistical physics, socioeconomic random events display 
two types of stochastic behaviour: ergodic and non-ergodic systems. Whenever iso-
lated in a closed space, ergodic systems dynamically visit with equal probability all 
the allowed micro-states (Gell-Mann & Tsallis, 2004). However, it seems logical to 
imagine systems visiting the allowed micro-states in a much more complex way than 
defined by ergodicity. The financial market is a well-known example of such complex 
systems, as characterized by multifractal dimensions (Drożdż & Kwapień, 2012), 
(Grech & Pamula, 2013). Other examples include income distribution inside a given 
region, evolution of a given disease inside a region, size of cities, or cellular structure. 
These forms seem to display an organized structure owing to long-range correlation 
between micro-elements, heavy queues with respect to Gaussian distribution, scale-
invariant structures, and criticality. Such phenomena would be better described by a 
stable law-based Levy process, like power law distribution.

Shannon-Kullback-Leibleir Equations (2.22–2.24) are generalized by Tsallis rela-
tive entropy formulation. To emphasize consistency among the principal formula-
tions, it is worthwhile to reiterate the statistical theory connection between the above 
relations and the Kullback relation presented in (2.8) or to some extent (2.9), which 

12 Golan, Judge, and Miller (1996) suggest the Chebyshev inequality as a good starting point to define 
the error support set: Pr[|x| < vσ] ≥ v–2 where v is a positive real and x a random variable, such that 
E(x) = 0 while var(x) = σ2. This inequality leads to the three-sigma rule (Pukelsheim, 1994) for v = 3, 
i.e., to the probability Pr[–3σ < x < 3σ], which is at least 0.88 and higher when x displays a standard 
normal distribution. Let us remember that this inequality has the additional advantage of being inde-
pendent of distribution laws.
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measures the divergence between two hypotheses H1 and H2. A similar concept will be 
introduced in the case of non-extensive entropy, which will constitute the final step 
of Shannon entropy extensions.

Let us generalize the Shannon Gibbs inverse problem through ordinary differen-
tial equation characterization (Tsallis, 2009). First, we need to introduce the three 
simplest—in terms of dynamic complexity—differential equations and their inverse 
functions,

0
dx
dy  = 0    (y(0) = 1).	 (2.27)

Its solution is y=1 (∀x), and its inverse function is X=1 (∀y).
The next simplest differential equation is

0
dx
dy  = 1    (y(0) = 1).	 (2.28)

Its solution is y=(1 + x) and its inverse Y=(x – 1).
The next higher step in increasing complexity is the differential equation

0
dx
dy  = y    (y(0)=1).	                  (2.29)

Its solution is y = ex, and its inverse is y = lnx.
Note that the latter inverse equation satisfies the additive property:

ln(xaxb) = ln(xa) + ln(xb).	 (2.30)

Following Gell-Mann & Tsallis (2004) and trying to unify the three cases (without 
preserving linearity), we get:

0
dx
dy  = yq    (y(0)=1; q∈ℜ).	 (2.31a)

We observe that this expression displays power-law distribution form.
Its solution is

𝑦𝑦 = [1 + (1 − 𝑞𝑞)𝑥𝑥]
1

1−𝑞𝑞 ≡ 𝑒𝑒𝑞𝑞𝑥𝑥(𝑒𝑒1𝑥𝑥 = 𝑒𝑒𝑥𝑥) ,

and its inverse function is 
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 lnq x (ln1 x = ln x).					                    (2.31b)

The above represents the non-extensive (Tsallis) entropy formula. Though it 
will be discussed in the next section, let us immediately show here the relationship 
between Shannon and Tsallis entropies through the next pseudo-additive property:

lnq(xaxb) = ln(xa) + ln(xb) + (1 – q)lnq(xa)lnq(xb)				    (2.32)
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for q → −∞, q = 0, q = 1 we obtain the three initial cases (2.27 – 2.29), respectively.
In particular for q = 1, we then obtain (after using l’Hôpital’s rule) the solution 

of (2.29), the case of Shannon Gibbs entropy. The expression (2.30) states that if two 
systems xa and xb are logarithmically multiplied, the output is the additive sum of 
these systems in a logarithmic scale. This explains why Shannon entropy is some-
times referred to as additive entropy. This observation has been taken from (2.21) to 
emphasize that Shannon entropy is a direct function of data. The term q is referred 
to as “q-Tsallis.” When it is equal to unity, we reach in this limiting case the Shannon 
entropy.

Tsallis entropy should now be described and compared with other entropy forms. 
This description indirectly replies to the question of why Tsallis or Shannon entropy 
rather than Renyi entropy or another is appropriate for a given problem. 

2.4.2  Characterization of Non-Extensive Entropy 

2.4.2.1  Correlations
Following Tsallis (2009), suppose we have a system composed of subsystems13 A (with 
WA possibilities of complexities) and B (with WB possibilities of complexity). Their 
joint probabilities can be presented as  AB

ijp  (i = 1,2,..., WA j = 1,2,..., WB) and marginal 
probabilities as 





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j

AB
ij

A
i pp

1
 (hence 1

1
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In general,
AB
ij

B
j

A
i ppp   	 (2.33)

if they happen to be equal, then A and B are said to be probabilistically independent. 
Otherwise, they are dependent or correlated. Let us then define entropies: 

    A
iq

A
q pSpS   

and 

    B
iq

B
q pSpS   . 

13 For models to be presented later, subsystem A can be considered as a data generating process and 
B as a subsystem of disturbances. After reparametrization, these two subsystems will be associated 
in terms of probabilities.
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More interestingly, the conditional entropies definition, that is, 

   A
qBAq pSpS    and  ABq pS  ,

may deserve closer attention, as it can intervene for the definition of estimation preci-
sion of a model whether or not the hypothesis of independence between the model 
variables and its random terms has been accepted. If and only if A and B are indepen-
dent, 

   A
qBAq pSpS   

and 

   B
qABq pSpS   .

Next, 

    AB
ijqq pSABS   , 

in general, satisfies:

                     BAq
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qABq
A

qq pSpSqpSpSpSpSqpSpSABS  11  

                     BAq
B

qBAq
B

qABq
A

qABq
A

qq pSpSqpSpSpSpSqpSpSABS  11  						                       (2.34)

Finally, to be more explicit than in the previous section, Sq is said to be non-
extensive in the sense that given two independent random systems A and B, i.e., 
P(A, B) = P(A)P(B), then,

           B
q

A
q

B
q

A
qq pSpSqpSpSABS  1  	 (2.35)

In the next, empirical part of this book, for inferential purposes and for optimal 
simplification of numerical computations, this formula will play a key role in deter-
mining the level of entropy of a complex system under the hypothesis of indepen-
dence of subsystems, i.e., between the model and the random term.

2.4.2.2  Concavity
The concept of concavity is important since, among others things, it allows us to 
determine whether or not a system is stable. Stability is a meaningful concept in 
econometrics since it implies stationarity of a process in a given system. Testing for 
stationarity and cointegration using entropy distribution seems thus to be an open 
area of further research14.

14 However, the job may be rendered difficult since optimal equilibrium responding to economic 
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Sq is concave (convex) for all probability distributions and all  .00  qq  ( .00  qq  ) (Gell-
Mann & Tsallis, 2004). Let us follow the traditional mathematical definition of con-
cavity and let {pi} and   Wipi ,...,2,1'    be two arbitrary probability distributions. The 
next relation of intermediate distribution follows: 

   .101   
iii ppp  

By concavity we mean that it can be proven that for all λ,

         .1 




 





 

iqiqiq pSpSpS   

2.4.3  Tsallis Entropy and Other Forms of Entropy

Let us first review the mathematical main forms of entropies before presenting their 
most important distinctive properties.

LVRAR
iBG SSSpipipS 111ln)(    				                     (2.36)
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 	                  (2.39)

A key element deserves attention here. We see from the first mathematical rela-
tion in (2.36) above that Shannon-Gibbs entropy may be generalized, too, by Renyi 
entropy (2.38) or by the normalized non-extensive form (2.39), independently intro-
duced by Landsberg & Vedral (1998) and by Rajagopal and Abe (2000). Both forms of 
entropy are monotonically increasing functions of Sq. Tsallis (Gell-Mann & Tsallis, 
2004, p. 11) poses and explains a relevant question concerning relationships between 
these forms of entropy. In fact, after pointing out that monotonicity makes Sq, SqR, 
and SqN extreme for the same probability distribution, he asks why not base thermo-
dynamics on SqR or SqN rather than only on Tsallis entropy. The response lies in the 

laws does not necessarily fit into optimal entropy equilibrium. This problem will be briefly covered, 
later.
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disadvantages of these two forms of competitive entropy. In fact, it happens that they 
are not concave for all positive values of q, but only for 0  .00  qq   q ≤ 1. Since many physi-
cally meaningful phenomena for which q are higher than unity exist, this becomes a 
serious drawback of both competitive entropies. As far as economic, financial, or social 
phenomena are concerned, the problem does not allow for any ambiguity since, as we 
will see in the next section, 1 ≤ q  .00  qq   5/3. For the majority of them15, extreme events are 
on average more frequent (with persistence) than predicted by Gaussian law and not 
the reverse (i.e., less frequent—with persistence—than predicted by Gaussian law). 
Tsallis entropy thus remains the one form that not only generalizes SG entropy but 
also ensures concavity (stability) inside the whole finite interval where probability 
distribution is defined. The reader should thus far understand why non-extensive 
Tsallis entropy has been recently used to generalize all other forms of entropy, at least 
in many fields where entropy is applied.

2.4.3.1  Characterization
In the following table, we illustrate different links between the commonly used forms 
of entropy with respect to the characterization in Table 2. “Yes” and “No” correspond, 
respectively, to what, according to recent thermodynamics literature (Gell-Mann 
& Tsallis, 2004), are thermodynamically allowed and forbidden violations of the 
Boltzmann–Gibbs (BG) entropy properties.

15  For example, for stock market returns, q is around 1.4, far enough from the unity which charac-
terises Gaussian distribution.

Table 2: Comparison of different forms of entropy with regard to important properties

Property Entropy

SBC Sq
R
qS  LVRA

qS  

Extensive 

  B
j

A
i

AB
ij pppq   

Yes No Yes No

Concave  0q  Yes Yes No No

Stable  0q  Yes Yes No No

Optimizing distribution
( 0q  )

exponential Law Power Law Power Law Power Law

Source: own, based on Tsallis (2009) and Gell-Mann & Tsallis (2004)
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NB: R stands for Renyi, and N
q

LVRA
q SS   (LVRA and N stand for Landsberg-Vedral-

Rajagopal-Abe and normalized, respectively (Gell-Mann & Tsallis, 2004).

2.4.3.2  Scale of q-Tsallis Index and its Interpretation
Following the thermodynamcs literature built on Lévy-like anomalous diffusion, it 
has been shown that 

2

)( x
qexp    optimizes

 
1

)(1



 

q
xpdx

S
q

q  

under appropriate constraints. If one convolutes n times p(x)(n → ∞), we approach a 
Gaussian distribution if q  .00  qq   5/3, and a Lévy LγL(x) if 5/3  .00  qq   q  .00  qq   3. The index γL of Lévy 
distribution is related to q as follows:

1
.3





L
Lq



 (5/3  .00  qq   q  .00  qq   3).

Thus, in empirical applications, the value of q should vary inside an interval from 
unity to 5/3, which corresponds to cases of finite variance for phenomena dwelling 
within the Gaussian basin of attraction. 

2.5  Kullback-Leibler-Tsallis Cross-Entropy

2.5.1  The q-Generalization of the Kullback-Leibler Relative Entropy

Kullback-Leibler-Tsallis cross-entropy is known in literature as the q-generalization of 
Kullback-Leibler relative entropy. The Kullback-Leibler-Shannon entropy introduced 
in Part II can be q-generalized (Tsallis, 2009) in a straightforward manner. The dis-
crete version becomes:
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ioq  	 (2.40)16

since with any real r  .00  qq  , one has the following properties:
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16  In a continuous case, we have:
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Thus, retaining the practical case of q . 0 0 q q  0, we can write:
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Therefore, coming back again to the generalized K-Ld cross-entropy, we have18:

Iq(p,po) ≥ 0 if q  .00  qq   0, 
	 = 0 if q = 0,

	 ≤ 0 if q  .00  qq   0.								       (2.42)

Thus, as Tsallis (2009) has made us aware, the above q-Kullback-Leibler index 
has the same basic property as the standard Kullback-Leibler entropy and can be used 
for the same purpose while having the additional advantage of an adaptive q accord-
ing to the system with which we are dealing. 

There exist two different versions of the Kullback-Leibler divergence (K-Ld) 
in Tsallis statistics, the usual generalized K–Ld shown above and the generalized 
Bregman K–Ld. According to Venkatesanet et al. (Plastino & Venkatesan, 2011), prob-
lems have been encountered in empirical thermodynamics trying to reconcile these 
two versions. Unfortunately—or fortunately!—the same problems seem to reappear 
while applying this theory in social science since every version of generalized K-Ld 
leads to different outputs. Let us try to synthesize what recent literature says about 
this problem.

17  It is straightforward to derive this property in the case of the continuous case.
18 The same conclusion is obtained by using Jensen's inequality (e.g., Gell-Mann & Tsallis, 2004).
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2.5.2  Tsallis Versions of the Kullback-Leibler Divergence in Constraining Problems

This short section represents the final bridge between theory and the applications 
in the last parts of this work. In a recent study, Plastino & Venkatesan (2011) lay out 
interesting aspects of empirical research when q-generalized K-Ld cross-entropy is 
associated with constraining information. Since, in the social sciences, we particu-
larly need discrete forms of these relative entropies, let us first rewrite these forms 
before commenting on their conditions of applicability:
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The form (2.43) is the one derived directly from Kullback-Leibler formalism and 
presented in (2.40). The second form is referred to as the generalized Bregman form of 
K-Ld cross-entropy, and it is more appealing than (2.43) from an information-geomet-
ric viewpoint (Plastino & Venkatesan, 2011) even if it does contain certain inherent 
drawbacks.

A study by Abe and Bagci (2005) has demonstrated that the generalized K–Ld 
defined by (2.44) is jointly convex in terms of both pi and p0i while the form defined by 
(2.43) is convex only in terms of pi. A further distinction between the two forms of the 
generalized K–Ld concerns the property of composability. While the form defined by 
(2.44) is composable, the form defined by (2.43) does not exhibit this property. 

The second interesting aspect for practitioners concerns the manner in which 
mean values are computed. Non-extensive statistics has employed a number of forms 
in which expectations may be defined. The first among these are the linear constraints 
initially used by Tsallis (2009), also known as normal averages, that is:

i
i

i ypy   

The second is the Curado-Tsallis (C-T) constraints of the form:

i
i

q
iq ypy   

and the normalized Tsallis-Mendes-Plastino (TMP) constraints (also known as q-aver-
ages or an escort distribution) of the form: 

i
i
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q
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q
i

q y
p

py 
  

A fourth—less applied by practitioners—constraining procedure is the optimal 
Lagrange multiplier approach.
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Among these four methods to describe expectations, the most commonly 
employed by Tsallis practitioners is TMP, referred to as escort distribution.

Recent work by Abe (2009) suggest that, in generalized statistics, expectations 
defined in terms of normal averages, in contrast to those defined by q-averages, seem 
to display higher consistency in material chaos hypotheses. Recent reformulation of 
the variational perturbation approximations in non-extensive statistical physics fol-
lowed from these findings. To my knowledge, application in the social sciences to 
assess the universality of this finding has not been done yet. 

Finally, there is the issue of consistency. This stems from the form of the gen-
eralized K–Ld defined by (2.43) being consistent with expectations and constraints 
defined by q-averages (“prominently” the TMP) while, on the other hand, the gen-
eralized Bregman K–Ld defined by (2.44) is consistent with expectations defined by 
normal averages.

Thus, through reformulations of an empirical inverse problem, this last point may 
play a key role since non-appropriated constraints should lead to a non-optimal solu-
tion in the best case or to computational problems, as is often the case. 

2.6  A Generalized Linear Non-Extensive Entropy Econometric 
Model

2.6.1  A General Model

This section presents a generalized linear non-extensive entropy econometric 
approach to estimate econometric models. Following Golan et al. (1996), we first repa-
rametrize the generalized linear model of the equation (2.12’) rewritten below: 

 
ik

K

k
ki XBy 

1
	 (2.12’)

with, once again, the random term ζi∈e and i = (1,..., I) (I being the number of observa-
tions); K is the number of model parameters to be estimated; where B values are not 
necessarily constrained between 0 and 1, and ζ is an unobservable disturbance term 
with finite variance, owing to the nature of economic data that exhibits error observa-
tion from empirical measurement or random shocks. If we treat each Bj (k = 1... K) as 
a discrete random variable with compact support and 2 < M < ∞ possible outcomes, 
we can express B as:

km

M

m
kmk vpB 




1

,  Kk ,,1  	 (2.45)

where pkm is the probability of the outcome vkm. The probabilities must be non-nega-
tive and add up to one. Similarly, by treating each element ζi of ζ as a finite and dis-
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crete random variable with compact support and 2 < M < ∞ possible outcomes centred 
around zero, we can express ζi as:





J

j
ijiji wr

1
  	 (2.46)

where ri is the probability of outcome wi on the support space j, with j∈{1,...,J} and i∈ 
{i = 1,...,N}. Note that the term e (an estimator of ζ) can be fixed as a percentage of the 
explained variable, as an a priori Bayesian hypothesis. Posterior probabilities within 
the support space may display non-Gaussian distribution. The element vkm constitutes 
a priori information provided by the researcher while pkm is an unknown probability 
whose value must be determined by solving a maximum entropy problem. In matrix 
notation, let us rewrite β = V⋅P with pkm ≥ 0 and
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where again, K is the number of parameters to be estimated and M the number of data 
points in the support space. Also, let e = r⋅w, with rij ≥ 0 and
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for N the number of observations and J the number of data points on the support 
space for the error term. Then, the maximum Tsallis Entropy Econometric (MTEE) 
estimator can be stated as:
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where the real q, as previously stated, stands for the Tsallis parameter. 
Above, Hq(p,r) weighted by α dual criterion function is nonlinear and measures 

the entropy in the model. The estimates of the parameters and residual are sensitive 
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to the length and position of support intervals of β parameters. When parameters 
of the proposed mode19 concern elasticity or error correct coefficients, the values of 
which lie between 0 and 1, then the support space should be defined inside the inter-
val zero and one. In other cases, the support space may be defined between minus 
and plus infinity, according to the intuitive evaluation of the modeller. Additionally, 
within the same interval support, the model estimates and their variances should be 
affected by the number of support values (Golan et al., 1996). Increasing the number 
of point values inside the support space leads to improving the a priori information 
about the system. A few years of modelling with the maximum entropy approach 
seem to show that a well-defined support space is crucial to obtaining better results. 
The weights α and (1 – α) are introduced into the above dual objective function. The 
first term “of precision” accounts for deviations of the estimated parameters from the 
prior (defined under support space). The second, “prediction ex post,” accounts for 
an empirical error term as a difference between predicted and observed data values 
of the model. 

2.6.2  Parameter Confidence Interval Area 

In this section, we will propose the normalized Tsallis entropy coefficient S(âk) as an 
equivalent to a standard error measure in the case of classical econometrics. An equiv-
alent of the determination coefficient R2 will be introduced, also under the entropy 
symbol S(P̂r). The departure point is that the maximum level of entropy-uncertainty 
is reached when significant information-moment constraints are not enforced. This 
leads to a uniform distribution of probabilities over the k states of the system. As 
we add each piece of informative data in the form of a constraint, a departure from 
the uniform distribution will result, which means a lowering in uncertainty. Thus, 
the value of the proposed S(P̂r) below reflects a global departure from the maximum 
uncertainty for the whole model. Without giving superfluous theoretical details, we 
follow formulations in, e.g., Bwanakare (2014) and propose a normalized non-exten-
sive entropy measure of S(âk) and S(P̂r).

From the Tsallis entropy definition, Sq vanishes (for all q) in the case of M = 1; for 
M > 1, q > 0, whenever one of the pi(i = 1..M) occurrences equals unity, the remaining 
probabilities, of course, vanish. We get a global, absolute maximum of Sq (for all q) in 
the case of a uniform distribution, i.e., when all pi = 1/M. Note that we are interested, 

19  As already presented, the expression 

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  is referred to as escort probabilities, and we 

have for q=1 (then Pm is normalized to unity), that is, in the case of Gaussian distribution (Gell-Mann 
& Tsallis, 2004), (Tsallis, 2009).
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for our economic analysis, in q values lying inside the interval (1, 5/3). In such an 
instance, we have for our two systems:

Sq(p) = (M1 – q – 1)⋅(1 – q)–1	 (2.51)

and

Sq(r) = (N1–q – 1)⋅(1 – q)–1	 (2.52) 

in the limit when q = 1, relation (2.51) or (2.52) leads to the Boltzmann-Shannon expres-
sion (Gell-Mann & Tsallis, 2004). 

Below, a normalized entropy index is suggested, one in which the numerator 
stands for the calculated entropy of the system while the denominator displays the 
highest maximum entropy of the system owing to the equiprobability property:

S(âk) = – [1 – ∑k∑m(pkm)q]/[k ⋅(M1 – q – 1)]	 (2.53)

with k varying from 1 to K (number of parameters of the system) and m belonging to M 
(number of support space points), with M > 2. S(âk) then reporting the accuracy on 
estimated parameters. Equation (2.54) reflects the non-additivity property of Tsallis 
entropy for two (probably) independent systems; the first, parameter probability dis-
tribution, and the second, error disturbance probability distribution (plausibly with 
quasi-Gaussian properties):

S(P̂r) = [ S(p̂ + r̂)] = {[S(p̂) + S(r̂)] + (1 – q) ⋅ S(p̂) ⋅ S(r̂)}		               (2.54)

where:

S(p̂) = – [1 – ∑k∑m(pkm)q]/[k ⋅(M1 – q – 1)]

and

S(r̂)= – [(1 – ∑ ∑rq)]/[k ⋅N ⋅(J1 – q – 1)]
	               n        j

S(P̂r) is then the sum of normalized entropy related to parameters of the model S(p̂) 
and to the disturbance term S(r̂). Likewise, the latter value S(r̂) is derived for all obser-
vations n, with J the number of data points on the support space of estimated prob-
abilities r related to the error term. 

The values of these normalized entropy indexes S(âk), S(P̂r) vary between zero 
and one. Their values, near to one, indicate a poor informative variable while lower 
values are an indication of better informative parameter estimate âk about the model. 
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The next part of the book will present in detail national accounts tables used for 
building or forecasting macroeconomic models. The statistical theory will be imple-
mented particularly in the case of the inverse problem, while keeping in line with this 
work's objective.

2.7  An Application Example: a Maximum Tsallis Entropy Econome-
trics Model for Labour Demand

This example presents, through Monte Carlo simulations, a model for labour demand 
adjustment for the Polish private sector. It constitutes an extension of an initial model 
presented by Bwanakare (2010) for the labour demand adjustment by the private sector 
of Subcarpathian province in Poland. The model aims at displaying short-run and 
long-run relationships between labour demand determinants through an error self-
correct process. Due to the relatively short period of the sample (fourteen annual data 
points) and the autoregressive nature of the model, we may have to deal with limited 
possibilities of statistical inference in the absence of convergence properties or, in the 
worst case, an inverse ill-behaved problem. Thus, traditional methods of parameter 
estimation may fail to be effective. We then propose to apply the generalized maximum 
Tsallis entropy econometric approach—as an extension of Jaynes-Shannon-Gibbs 
Information theoretic entropy formalism, already applied in econometrics (Golan, 
Judge & Miller, 1996). Due to an annual data frequency of the sample, the approach 
proves to be applicable in the case of classical econometrics when a small, lower fre-
quency data sample is available. Such a small data sample should display tail queue 
Gaussian distribution. Through this application, Monte Carlo experiment outputs 
seem to confirm the reliability of the Tsallis entropy econometrics approach, which 
in this particular case performs as well as the generalized least square technique.

2.7.1  Theoretical Expectation Model

In the short run, managers decide on the number of employees to be hired (or dis-
missed) in accordance with the expected long-run optimal level of production. 
However, because of institutional or economic reasons, that optimal number is not 
hired (or fired) at once. First, uncertainty remains a predominant characteristic of 
business. For this reason, employers naturally prefer a moderate and progressive 
adjustment of recruited workers to the targeted optimal level. Recruitment in some 
economic sectors could be time-consuming as well, especially when searching for 
good specialists. Second, relatively well organized trade unions could prevent 
employers from abrupt, large-scale layoffs, or the cost of dismissing a worker may 
become high, depending on prevailing labour laws at a given period. In both cases, 
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the process of shock correction will be more or less long, depending on its origin and 
magnitude. 

Under classical assumptions of constant returns to scale, ex ante and ex post 
complementarities of factors, and long-run constant rate of labour productivity, the 
desired level of labour demand Lt* is a function of the output Yt and the technical 
progress t20:

Lt* = α.exp(–β.t).Yt	 (2.55)

Assuming that labour demand adjusts to its targeted level by an error correction 
model:

log(Lt /Lt–1) = λ.log(L*t /L*t–1) +μ. log(L*t–1/Lt–1),	 (2.56)

combining (2.55) and (2.56) leads to:

log(Lt /Lt–1) = λ.log(Yt/ Yt–1) +μ. log(Yt –1/Lt–1) + μ. β.t + αo	 (2.57)

The parameter λ is the impact of output on labour demand, and then a short-run 
elasticity of labour demand with respect to output Yt, μ being the error correction 
parameter. Since a relation –1 ≤ μ ≤ 0 should prevail, the equilibrium error is only 
partly adjusted at each period. In other words, this parameter synthesizes employ-
ers’ determinants of labour demand adjustment once a shock in sales for the coming 
period is expected. 

2.7.2  A Generalized Non-Extensive Entropy Econometric Model

2.7.2.1  General Model
Presently we are interested in the estimation of parameters of a Podkarpacki labour 
demand model, applying a generalized non-extensive entropy econometric approach. 
Following Golan, Judge & Miller (1996) and Bwanakare (2014a, 2014b), we reparam-
etrize, in the first step, the generalized linear model before fitting it to Equation (2.48). 
This step allows for including in moment equations-restrictions the same probability 
variables as those optimized in the criterion function. 

To reparametrize the model, we follow each equation in (2.45–2.46) where each 
βk  (k = 1,…,K) is treated as a discrete, random variable with compact support and 
2 < M < ∞ possible outcomes. Next, for the estimation of the model, we maximize the 
entropy criterion function in (2.47) under moment and normality condition restric-
tions presented in (2.48–2.50). For confidence area analysis, we need to apply Equa-
tions (2.53–2.54).

20 This is a simplification stipulating that technical progress is a linear function of time.
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With the purpose of improving estimated parameter quality, one can add addi-
tional a priori restrictions to (2.48–2.50) as follows:

e = Y – Y = Ŷ – XVp̂ = 0.	 (2.58)

Then we constrain the error term e to sum up to zero21 which provides an addi-
tional quality of requiring an unbiased parameter estimator. 

The property of efficiency mainly depends upon the informative quality of both 
the prior (support space) and the model (econometric equation). When it is poor, the 
values of the estimated p̂i from the model tends to be equal for all pi, i.e., the case of a 
uniform distribution. 

According to economic theory, we constrain elasticity parameters within a point 
support space of zero and one. As known (e.g., Golan, Judge & Miller 1996), sharper 
support area points of a parameter act as increasing quality of the “a priori” infor-
mation. Furthermore, this allows computations of this nonlinear model to promptly 
converge to a global optimum solution. This is explained as follows:

0 ≤ λ = Vp̂ ≤ 1	                  (2.59)

Likewise, we may add additional economic restrictions to the model (2.57) param-
eters; this leads to the following formulations:

–1 ≤ μ = Vp̂ ≤ 0	 (2.60)

–∞ ≤ β = Vp̂ ≤ 0	                    (2.61)

2.7.3  Estimated Confidence Area Of Parameters 

In classical econometrics, we usually combine the variance of random model error 
with the co-linearity level of explicative variables to determine the standard error of 
estimated parameters and to infer their confidence area while assuming a normal 
distribution law of random errors. This is particularly true in the case of the Least 
Squares approach for a linear model.

In entropy econometrics, the approach is very different. We use the normalized 
entropy S(âij) (Equation 2.53) as an equivalent of the estimate standard error measure 
in classical linear model econometrics. Likewise, the equivalent of the coefficient 
of determination R2 is a S(P̂r) (Equation 2.54). Following Golan et al. (1996a, 1996b, 
1996c, 2002) and Soofi (1992, 1994), in the case of maximum entropy formulation, 
the maximum level of entropy-uncertainty results when the information-moment 

21 Note that our model has a constant term, suggesting that the economic initial condition may im-
pact the optimal solution.



�An Application Example: a Maximum Tsallis Entropy Econometrics Model for Labour Demand   45

constraints are not enforced. Furthermore, this leads to uniform distribution of prob-
abilities over the k states of the system. As we add each piece of informative data in 
the form of a constraint, a departure results from the uniform distribution, which 
explains an uncertainty reduction. Thus, the value of S(P̂) reflects a global departure 
from the maximum uncertainty for the whole model. A similar measure, 1 – S(P̂), 
called the information index, explains the level of informative content of the model. 
For theoretical details, we refer the reader to the formulations presented above in 
Equations (2.51–2.54) or, e.g., in Golan et al. (1996). 

2.7.4  Data and Model Outputs

In this section, the output parameters of Tsallis entropy, Shannon entropy, and least 
squares econometric models are presented. Next, the obtained results will be com-
pared to those from a Monte Carlo simulation using the same data.

Data used in the model (Equation 2.57) come from the Polish Office of Statistics 
(GUS) and concern the period 1997–2010. Parameters of the model have been com-
puted with the GAMS (General algebraic modelling system) code with the incorpo-
rated solver PATHNLP. We have noticed, through different simulations, that the Shan-
non-Gibbs entropy model seems more sensitive to initial conditions (support space of 
parameters in particular) than Tsallis entropy. This is a useful property, particularly 
when an economic theory does not exist to prompt us as to the starting parameters 
with which to begin. Parameter estimation by the robust standard errors least squares 
(LS) approach has been carried out, using freeware Gretl software (http://gretl.source-
forge.net/). Thus, the HAC estimator is used for heteroscedasticity and autocorrela-
tion correction.
a)	 Parameter outputs of Tsallis entropy model:

Dependent variable: 
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  










1

1log
t

t
L

Y
 

 T  a0

 Estimates âj  0.710  0.010  -0.020 -0.266

Precision error S(âk) on estimated 
parameters

 0.135  0.250  0.250 0.236

Information Index I[S(P̂r)] = 1 – S(P̂r) = 0.852
Tsallis -q parameter (for a weight αi=15%) =  2.091 



46   Ill-posed Inverse Problem Solution and the Maximum Entropy Principle

Throughout many conducted experiments, we have observed the coefficient S(P̂r) to 
be very sensitive to weighting parameters α in the objective function. Tsallis-q value 
being itself influenced by the above weights, its values closer or higher to 5/3 cor-
respond to meaningless information index coefficients for which S(P̂r) vanishes to 
zero. In empirical research, the Tsallis-q coefficient may take much higher values as a 
consequence of model linearity attributes or in the case when the sample is small. In 
the present case, we have noticed a high sensitivity of this Tsallis-q parameter on the 
change of the weight αi in the criterion function. The higher the weight αi, the higher 
the value of the Tsallis-q parameter. We have retained the value of this weight for 
which I[S(P̂r)] is the highest.

b)	 Parameter outputs of Shannon-Gibbs entropy model:

Dependent variable: 

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 Exogenous variables   
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
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1log
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 T  a0

 Estimates âj  0.709  0.010  –0.020 –0.263

Precision error S(âk) on estimated 
parameters

 0.297  0.518  0.518 0.421

Information Index I[S(P̂r)] = 1 – S(P̂r) = 0.829 

c)	  Robust standard errors LS estimation:

Dependent variable: 

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
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 Exogenous variables   
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  

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






1

1log
t

t
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 T  a0

 Estimates âj  0.709963  0.010417  –0.02031 –0.26578

P-values  2.73e–011***  4.34e–06  2.89e–06*** 0.0302**

Corrected R2 = 0.79
DW = 1.4832 

Three parameters are different from zero at 1%, and one on the variable a0 signifi-
cant at 10%. The above precision on the estimated parameters from such a small data 
sample of an autoregressive model suggests the presence of co-integrating—at the 
same order—variables Lt and Yt. Such a particular situation leads to super-consistency 
of estimated parameters.
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Table 3: Monte Carlo simulation outputs

Poland Labor demand Model  and simulation outputs

Es
tim

at
es

  NEE/GLS #5000 #10000 #15000 #20000 #25000








1
log

t

t
y

y
  
0.709963106 0.7092748 0.70445994 0.7126441 0.709756 0.708636


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

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1log
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0.010416764 0.0105625 0.01052379 0.0103705 0.010461 0.010458

T -0.020312463 -0.020624 -0.0205689 -0.020213 0.020406 -0.02038

C0
-0.26577817 -0.272354 -0.2652226 -0.266263 -0.26784 -0.26663

St
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rr
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s



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


1
log
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0.176056192 0.3303391 0.33502592 0.3377129 0.331089 0.335143












1

1log
t

t
L

Y
 
0.003753087 0.0070234 0.00704595 0.0071221 0.007143 0.007144

T 0.007938838 0.0148845 0.01489532 0.0150799 0.015074 0.015107

C0 0.222643946 0.4216688 0.42344287 0.4260381 0.420446 0.426712

Source: own elaboration.

Figure 1: Monte Carlo model estimates and T-student from simulations: initial model, #5000, 
#10000, #15000, #20000, #25000.
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For comparative purposes, Table 3 presents outputs from Monte Carlo experi-
ments (computed with Mathlab 7.3.0 software).

The above outputs have been derived under the hypothesis of random normal 
law. The empirical standard error initially computed for random value generation is 
0.02035. This constitutes 50% of the observed endogenous variable standard error. 
We observe that Shannon-Tsallis entropy and the least squares outputs are similar 
and almost reflect Monte Carlo convergence outputs. The initial t-student related to 
the parameters on the variables yt/yt–1 and yt–1/Lt–1 decrease when we carry out the 
#5000 simulation and remain practically unchanged up at the #25000 simulation 
experiment. Nevertheless, we observe that parameter estimates of the model remain 
unchanged irrespective of the number of the simulations. 

To conclude, we note the accuracy in the similarity of outputs from the three 
models. This suggests that we are dealing with a convergent case of power law to 
Gaussian distribution. If the Tsallis-q parameter is too high, it cannot be interpreted 
in a model where its nonlinearity and the small sample size (in this case 14 observa-
tion years) should have a significant impact on the value of that parameter (Grech 
& Pamula, 2013). The impact parameter is around 0.71. This is, on average, a 0.71% 
growth of labour demand when gross profits shift up to 1%. As it has been indicated, 
these outputs are related to a period (1997–2010) during which Poland was undergo-
ing structural, post-communism reforms. As such, their interpretation should be done 
carefully. As far as exogenous technical progress is concerned, we observe a negative 
sign on the value of the estimated parameter β on the symptomatic variable t, which 
indicates an expected adverse impact of technical progress on labour demand.

Annex A

The solution for the above constrained equation is obtained by forming the Lagrange 
function:
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After defining the first order conditions, the solution to this (K + T + 1) equations 
and parameters is:
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is a normalization factor.

It is easy to prove the uniqueness of the primal ME solution. In fact, given the first 
order conditions, elements of the Hessian matrix are as follows:
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Thus, the Hessian is negative defined and sufficient condition for a unique global 
maximum is fulfilled. Furthermore,
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One may observe that the value of the entropy H is a function of the given data:
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Annex B: Independence of Events Within q-Generalized Kullback-
Leibler Relative Entropy

Let us consider (Tsallis, 2009) the problem of independence of random variables in 
the case of two-dimensional random variable (x, y), and its corresponding distribu-
tion function p(x, y) with ∫ dxdyp(x, y) = 1

As expected, the marginal distribution functions are then given by 

h1(x) ≡ ∫ dyp(x, y)
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and

h2(y) ≡ ∫ dxp(x, y).

The discrimination criterion for independence concerns the comparison of p(x, y) 
with po(x, y) ≡ h1(x)h2(y). Once again, the one-dimensional random variables x and y 
are independent if and only if p(x, y) = po(x, y). Therefore, the criterion becomes:

,0
1

1
)()(

),(

)(

1

21 












 q
yhxh

yxp

ydxd

q

 for q  .00  qq   0.

When q → 1, we then recover the usual discrimination criterion, i.e.:

∫ dx dy p(x, y) ln p(x, y) – ∫ dx h1(x) ln h1(x) – ∫ dy h2(y) ln h2(y) ≥ 0.

An interesting case is if q → 2, then we have:
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The value of this quantity, useful in economics, may give a sign of independence 
between x and y, when it vanishes. 

Finally, if we generalize to the case of many variables, the Kullback-Leibler-Tsallis 
index of information becomes:

Iq (p(x1, x2, ..., xd), po(x1, x2, ..., xd)) ≥0 (for q ≥ 0)

or its symmetrized version:

1
2  [Iq (p(x1, x2, ..., xd), po (x1, x2, ..., xd) + Iq po (x1, x2, ..., xd) p(x1, x2, ..., xd))] ≥ 0 (q ≥ 0)

When equality holds for these two above relations, this means that all elements 
x1, x2, ..., xd are independent among them (almost everywhere). 
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Part III: Updating and Forecasting Input-Output 
Transaction Matrices



1  Introduction
The second part of this book was concerned with showing statistical theory of infor-
mation-based approaches as a basis for solving the ill-behaved inverse problem. This 
third part deals with the applications of the statistical theory of information in mac-
roeconomics. It introduces ad hoc macroeconomic theory before building and esti-
mating different models in the context of an inverse problem. A system of national 
accounts with particular emphasis on input-output tables reflecting complex interac-
tions between economic activities, product markets, factors of production, and the 
behaviour of different economic agents is presented. A section is devoted to input-
output multipliers. Numerical examples are provided using the RAS approach as well 
as the non-extensive entropy econometrics procedure. Limited extension of these 
tables will allow us to treat certain themes of the natural environment through a theo-
retical model. Then, tables such as input-output tables are treated in detail in the 
context of modelling or forecasting when prior information is insufficient and the 
matrix is ill-behaved. Faced with this problem, maximum entropy formalism, in par-
ticular, Tsallis non-extensive entropy, will be employed. 
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2  The System of National Accounts
The System of National Accounts (SNA) constitutes the internationally agreed set of 
standardized conventions on how to compile, in a coherent and consistent way, an 
integrated set of macroeconomic accounts to measure economic activity (e.g., Eurostat, 
2002). Such procedures require a set of internationally agreed-upon concepts, defini-
tions, classifications, and accounting rules. In addition, the SNA provides an overview 
of economic processes, recording how production is distributed among consumers, 
businesses, government, and foreign nations. It shows how income originating in pro-
duction, modified by taxes and transfers, flows to these groups and how they allo-
cate these flows to consumption, saving, and investment. Consequently, the national 
accounts are building blocks of macroeconomic statistics, forming a basis for economic 
analysis and policy formulation.

The SNA is intended for use by all countries, having been designed to accommodate 
the needs of countries at different stages of economic development. It also provides an 
overarching framework for standards in other domains of economic statistics, facilitat-
ing the integration of these statistical systems to achieve consistency with the national 
accounts. However, the complexity of the interrelations that emerge makes the under-
standing of underlying macroeconomic rules difficult.

In 1947, Stone (1955, 1981), then head of the League of Nations Committee of Statis-
tical Experts, submitted for the first time a report from the Subcommittee on National 
Income Statistics that would constitute the origins of the SNA. During the same year, 
the United Nations Statistical Commission (UNSC) promoted the evident need for inter-
national statistical standards for statistical comparisons in support of a large array of 
policy implementations. 

This led in 1953 to the publication of the SNA under the auspices of the UNSC. It 
consisted of a set of six standard accounts and a set of twelve standard tables present-
ing details and alternative classifications of flows in the economy. Successive modifica-
tions and extensions were implemented in 1960, 1964, 1968, 1993, and 2008. Extensions 
made in 1968 deserve more attention in the context of the present monograph. Input-
output accounts and balance sheets were added to the framework of the SNA. Attention 
was focused on constant price derivation and a comprehensive effort was deployed to 
bring the SNA and the Material Product System (MPS) closer together. The archetype 
of the modern SNA was implemented in 1993 (Beutel & De March, 1998). In fact, the 
1993 SNA represented a major advance in national accounting and embodied the result 
of harmonizing the SNA and other international statistical standards more completely 
than in previous versions. Since the first United Nations Conference on the Human Envi-
ronment held in Stockholm in mid-1972, increasing needs to incorporate environmental 
aspects into the SNA started to be fulfilled in 1993 when a system of integrated environ-
mental and economic accounting (SEEA) was introduced by Caticha & Giffin (UN, 1993; 
USA, 2007). The 2008 SNA update addresses issues brought about by changes in the 
economic environment, advances in methodological research, and the needs of users.
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3  The Input-Output (IO) Table and its Main 
Application
Leontief (1941, 1966), the 1973 Economics Noble laureate and the father of the I-O 
table approach to economic analysis, began his first book about I-O analysis with the 
following words:

This modest volume describes an attempt to apply the economic theory of general equilibrium—
or better, general interdependence—to an empirical study of interrelations among the different 
parts of a national economy as revealed through covariations of prices, outputs, investments, 
and incomes.

Leontief tried to apply neo-classical (Walras) general equilibrium to practical eco-
nomic life. This suggests that subsequent analyses based on I-O tables or their exten-
sions could have economic interpretations within the Walrasian framework apart 
from a few particular cases—e.g., those that consider the environment—violating 
Pareto optimum conditions. 

The objective of this chapter is to present a consistent methodology of updating, 
forecasting, and economic modelling on the basis of I-O tables—for which underly-
ing matrices are ill-behaved or data are not reliable. The proposed maximum entropy 
methodology can dynamically assess I-O multipliers and update and forecast I-O 
table information by combining the generalized maximum entropy principle and 
macroeconomic theory. The procedure remains in line with multiplier-accelerator 
analysis, assuming that induced investment is a function of expected growth. The 
only required condition to apply the proposed techniques is the availability of statis-
tical information on final demand or value-added accounts which allow for updat-
ing under some constraining information (macroeconomic or not) obtained earlier, 
according to the traditional approach I-O table. 

In the following sections, classical structure of an I-O table will be reviewed. The 
next step will describe I-O multipliers and their usage before trying to solve the more 
complex aspects of their estimation. Next, the proposed methodology for updating 
and forecasting an ill-behaved IO table will be described and the model presented.

3.1  The I-O Table and Underlying Coefficients

The I-O method (Tomaszewicz 1992, 2005) represents a quantitative research approach 
that helps to understand how economic global product is created and shared with 
particular reference to connections within different sectors of production at this inter-
mediate stage of product processing (Almon & Clopper, 2000; Avonds & Luc, 2007; 
Robinson, Cattaneo & El-Said, 2001).
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Use of this method of analysis is built upon I-O tables, the construction of which 
assumes the existence of constant returns to scale in the production process and the 
existence of general Walrasian equilibrium in the overall economy. In fact, as sug-
gested earlier, the intention of Wassily Leontief was to apply general equilibrium 
theory previously proposed by Warlas (Leontief, 1970, 1986). In the context of the 
methodology of this work, let us first present the familiar I-O table structure, known 
for many decades, with only a slight modification that allows it to retain its square 
form. The fundamental concept of the I-O model is the concept of a direct technical 
financial coefficient: 

j

ij
ij X

x
a    for  i,j = 1,...,n.	    (3.1)

Matrix A = (aij) is called a matrix of coefficients of inputs. It expresses the propor-
tion of the value of product from sector i to be involved (sold) in the sector j for produc-
tion of one unit value (e.g., 1 euro). The elements of this table are also called technical 
coefficients when expressed in quantitative flows between industries.

Indications:
Xj is the value of the global product of j- branch, j = 1, ..., n.
xij is the flow from the branches i to j, i.e., the value of the product manufactured in 
branch i-th and consumed by a branch of the j-th, i, j = 1, ..., n.
Yif is the value of the final demand, i = 1, ..., n and f =1, ...F. Index f represents final 
demand composition, such as households, investment, exports, etc. The number F 
depends on the degree of table aggregation.
Dj is the value added from branches of the j-th, j = 1, ..., n.

Note that the above table can be split into four main parts:
The first part (upper-left part of the table) is composed of sub-matrix A showing 

the structure of intermediary demand of products “i” by sector “j”.

Table 4: Simplified inputs-outputs table structure.

Sector Flows Final demand Total

1 x11 x12 x13 … xln Y1f X1

2 x21 x22 x23 … x2n Y2f X2

… … … … … … … ….

N xn1 xn2 xn2 … xnn Ynf Xn

D1 D2 D3 … Dn D

Total X1 X2 X3 … Xn Yf

Source: own elaboration.
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In the second part (top right), we have the final demand (Yif). Its traditional ele-
ments are: household consumption, government consumption, investment and 
stocks and the export sector. 

The third part (lower left) shows the revenue created in the modes of production, 
i.e., the value added (Dj), i.e., remuneration of labour and gross profit of capital in 
production sectors. If in the second part the “export” sector is explicitly shown, then 
in the third part one must, consequently, show the import sector. 

Part four of the table refers to the secondary division of generated revenues. In 
the case of the I-O matrix it remains empty. Only construction of the social accounts 
matrix allows for completing this information. 

Here, one should recall macroeconomic balance between final demand and value 
added, i.e.:

 
j i

ij YD  .

A further important equation is the definition of the Leontief model: 

(I – A)X = Y	                  (3.2a)

or

(I – A)–1 Y = X	                  (3.2b)

where:
X = [Xj] n-dimensional relationships to the column vector of global product 
Y = [Yi] n-dimensional relationships to the row vector of the final product, and I is the 
identity matrix. This relationship between the final product Y, the global product X, 
and cost structure matrix A is useful for the calculation of one of these elements when 
information about the other items is available. In the literature, this is known as a 
forecast of the first type (3.2a) or the second type (3.2b).

3.2  Input-Output Multipliers

3.2.1  The principal models

Multiplier coefficients play a central role in economic analysis (Leontieff, 1970). They 
make it possible to measure the impact of the exogenous variable or a shock on the 
whole system in which elements are interconnected. On these grounds, systemic 
models like these based on I-O tables—or their extension, or on computable general 
equilibrium models—have proved decisively superior to the classical ceteris paribus 
approach, using the classical econometric models.

The above defined relations (3.2a) and (3.2b) are very useful in empirical research. 
(3.2b) explains, in (input) multiplier terms, responses of producing sectors to a one 



� Input-Output Multipliers   59

unit value increase in sectorial demand. For example, if the government spends one 
additional euro for buying a product from a given sector, what will the (backward) 
production impact be on the whole economy? The response is given by the level of 
multiplier coefficients along the sector column under consideration and total impact 
is given by its multiplier sum. The term (I – A)–1 in relation (3.2b) represents the multi-
plier. This formula can be decomposed as follows:

(I – A)–1 = 




i

i

iA
0

  with A0 = I and Ai = Ai–1 A	 (3.2c)

Such a multiplier displays three impacts:
–– initial impact equal to one,
–– direct impact equal to A, and
–– indirect impact summing up to A2 + A3 +...+ Ak +...+ An. Note that this geometric 

progression is quickly convergent; after a few steps, the last term vanishes to zero.

If we try to make a thorough analysis regarding the probabilistic nature of the multi-
plier, then we can rewrite (3.2c) as follows:

 


0
!

i

iA Aie  = (I – A)–1,	                  (3.2d)

after having used the Taylor development. Thus, due to (3.2d), economic multiplier 
structure displays the exponential family of laws, which may constitute—as indicated 
in the first part of this book—a transitional law between power law and Gaussian law 
when power law-related higher frequency data are progressively aggregated towards 
the low frequency series. The purpose of this short discussion is to draw attention to 
the use of formula (3.2c). Not only should the frequency level of data have an impact 
on results, but also the functional relation of matrix A could modify the convergence 
transition path between the three probabilistic laws above.

Equation (3.2b) is generalized by the following, one of the most important rela-
tions of I-O modelling theory, referred to as the central model of input-output:

Z = B (I – A)–1 Y	 (3.3)

B = matrix of input coefficients for specific variables in economic analysis (intermedi-
ates, labour, capital, energy, emissions, etc.)
I = Identity matrix
A = matrix of technical financial coefficients [aij]
Y = diagonal matrix of final demand 
Z = matrix with results for direct and indirect requirements (intermediates, labour, 
capital, energy, emissions, etc.)
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Three of the most frequently used types of multipliers in I-O analysis are those that 
estimate the effects of the exogenous changes of final demand (consumption, invest-
ment, exports) on:
a)	 outputs of the sectors in the economy,
b)	 value added and income earned by the households, and
c)	 employment that is expected to be generated by the new activity levels.

However, due to interesting potential applications of this theory, it is worthwhile to 
be more complete about I-O multipliers. In empirical research, the I-O models used 
are based on input coefficients. Nevertheless, there is also a family of I-O models that 
are based on output coefficients. These models are sometimes called Gosh-models 
(Gosh, 1964). These models can be used to study price and cost effects or forward link-
ages of industries. Input coefficients reflect production functions or cost structures 
of activities. In contrast, output coefficients are distribution parameters for products 
reflecting market shares.

Presented below are only the four basic I-O models with input and output multi-
pliers. The four I-O models have a dual character with an underlying symmetry. Each 
I-O model with input coefficients has a complement with output coefficients.

j

j
j X

Dd   , i.e., input coefficient for value added. 	   (3.4)

Input coefficients for intermediates (aij) (3.1) reflect the requirements for the use 
of product i in industry j for one unit of output of industry j. The capital and labour 
requirements are defined in the same way.

i

ij
ij X

Xb   , output coefficients for products					       (3.5)

i

i
i X

Yy   , output coefficients for final demand				      (3.6)

Output coefficients for intermediates (bij) identify the share of deliveries of sector 
i for sector j, (xij) in the total output of sector i.

Model 1: quantity model with input coefficients
This model has been already defined in (3.2a) and (3.2b).

Model 2: price model with input coefficients

A'p + d = p	 (3.7)
(I – A')p = d	 (3.8)
p = (I – A')–1d	 (3.9)

A' = transposed matrix of input coefficients for intermediates with A =[aij] for i, 
j = 1,...,m.
I = identity matrix
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x = column vector of unit product price indexes for sectors 1 to m. w = column vector 
of exogenous input coefficients for value added w1,...wm.

Model 3: price model with output coefficients

Bp + y = p	 (3.10)
(I – B)p = y	 (3.11)
p = (I – B)–1y	 (3.12)

B = matrix of output coefficients for intermediates with B = bij for i, j = 1,...,m
I = identity matrix
p = column vector of unit product price indexes for sectors 1 to m
y = column vector of exogenous output coefficients for final demand by product, with 
y1,...,ym. 

Model 4: Quantity model with output coefficients

B'x + Z = X	 (3.13)
(I – B')X = Z	 (3.14)
x = (I – B')–1Z	 (3.15)

B' = Transposed matrix of output coefficients for intermediates with B = bij for i, 
j = 1,...,m
I = identity matrix
X = Column vector of product output for sectors 1 to m
Z = Column vector of exogenous value added by sector, with Z1, ..., Zm.

However, due to lack of a proper microeconomic foundation, I-O models with output 
coefficients are rarely used in empirical research. The question often put to empirical 
researchers concerns the extent to which I-O multipliers are stable in time and behave 
according to expectations. Naturally, we can ask the same—but on a different scale—
concerning the stability of I-O coefficients. We do not pretend to have the answers to 
these questions, which remain beyond the scope of this book. 

3.2.2  A Model of Recovering the Sectorial Greenhouse Gas Emission Structure

Starting from insufficient information, let us combine below the central model of 
I-O (3.3) with the statistical information theory approach to predict emission multipli-
ers of an extended I- O table (Miller & Blair, 1985). As above, let vector Xt be the global 
product of a given economy, At a matrix of I-O coefficients, Yt a diagonal matrix of final 
demand, and Bt a matrix of outputs emission. Let us now suppose that these pieces 
of information have been obtained for a given period zero t0 and that this has made it 
possible to derive multipliers Z0 from the equation explaining emission content from 
final demand. 
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Next, we need to predict these multipliers for the next period one t1 to eventu-
ally compare changes within economic sectors and/or environmental themes. As very 
often happens in the real world, the only information concerning each emission theme 
is the total Ei (where index i refers to each type of theme) estimated at the end of the 
period t1, for example, a certain number of tons of CO2 emitted during that period is 
equal to E1 without, however, any knowledge concerning the industrial branch being 
the source of that emission. We must then estimate matrix B1 (see Table 5) on the basis 
of the a priori information of the initial period 0 and from data on measured sector 
totals of each ecological theme in the current period 1.

Evidently, we are confronted with an inverse problem since there may exist infi-
nite combinations of emission levels by theme, related to global product, the total of 
which could lead to Ei. Without additional imaginative assumptions, any classical 
approach could solve this class of problem. As we will see later, some techniques 
exist like the bi-proportional approach, known as the RAS method (Bacharach, 1971), 
which could offer a solution with sufficiently limited effects as it does not take into 
account additional information on the investigated stochastic model. The Bayesian 
approach could be used in this class of problem. It can be shown that the approach 
presented below may be seen as an enhanced Bayesian technique to incorporate the 
second law of thermodynamics, which is a natural principle of organization. The neu-
ronal class of model could also be suggested. However, it is not based on any theory, 
its application is time-consuming, and its outputs are not always guaranteed. 

Using minimum information and without additional assumption, we suggest 
solving the problem by applying minimum entropy formalism, according to (2.43 
or 2.44)22. Shannon-Gibbs entropy has been applied with success for updat-

22 At the end of Part IV of the book, a theorem is presented proposing the power law properties of 

Table 5: Example of matrix B1 of ecological emissions.

Themes Sector 1 Sector 2 … Sector n Themes total (period 1)

CO2 E1

CH4 E2

N2O E3

HFCS E4

PFCS E5

SF6S E6

Total global product X1 X2 ... Xn T
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ing and balancing matrices. However, on theoretical grounds, this assumes that 
entropy is a positive function of the number of possible states and is extensive 
(see 2.21), and it then neglects the possibility of inter-correlations among the states 
and their impact. 

Let us then minimize the criterion function of the next non-extensive entropy 
model:

Min(p, p0) →     1
00

1
0

1
0 ))(()()(

1
1   

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Probabilities rij distribution of theme emission i on column j is defined on a 
discrete support space Zh where H is the number of points minimally equal to two, 
z = [z1, z2,..., zH]. Support space is added since rj are not probabilities and do not sum—
by column—to unity. On a support space Z, parameters rj are distributed with prob-
abilities 

Pjk = [pjk1, pjk2,... pjkH]’. 

Thus, in matrix formulation, we have:

E = ZP,

with
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an input-output or a SAM. For the time being, it is suggested that the existence of these properties 
be assumed and non-extensive entropy formalism be applied. As we already know, non-extensive 
entropy formalism generalizes Shannon-Kullback-Leibler, which means at least we cannot lose the 
advantages of that generalization. 
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Moments expression in (3.17), as already seen in Part II of this work, contains a 
term of probability coefficients referred to as escort distribution23.

In that way we get quantity emission eij, being elements of matrix B, and on this 
basis, we can immediately derive the matrix of direct and indirect requirement emis-
sions consecutive to one unit final demand Yi according to the relation (3.3). 

In this example, we have supposed the global product xj and transactions matrix 
xij or I-O coefficients are known. At the end of this book, in Annex C (Tables 23 and 24), 
an instructional example is provided in which we are asked to recover total pollutants 
emission by industrial sector and by region on the basis of moment information. In 
the next section, we will remove these assumptions and suppose that the only infor-
mation we have about the current I-O table is the final demand vector Y and a priori 
components, a previous I-O matrix.

3.3  Updating and Forecasting I-O Tables

3.3.1  Generalities

Methods for updating I-O tables (Snower, 1990; Toh, 1998) can be categorized into 
univariate, bivariate, econometric, and stochastic procedures (e.g., Miller & Blair, 
1985:266–316). All methods attempt to solve the following problem: row and column 
sums of an I-O table should correspond to the exogenous projection, and negative 
inputs should be avoided.

The basic idea of univariate methods to update I-O tables is to correct the matrix of 
input coefficients row-wise with a diagonal matrix of correction factors. An example 
of a version of such a method is the Statistical Correction Method.

The Bivariate approach, in contrast to univariate methods, which work with cor-
rections of rows only, corrects rows and columns of an I-O table at the same time. The 
well-known RAS approach (Stone, 1984; Toh, 1998) represents an example of such an 
approach. However, a simple RAS procedure will normally fail to produce an accept-
able projection of the structural change of an I-O table when change in relative prices 
and change in technology are substantial. Nevertheless, the incorporation of other 
exogenous data in the modified RAS procedure will tend to improve the quality of 
the projection. Several variations of the RAS technique can be found, for example, in 
Miller and Blair (1985:276–313).

Stochastic procedures assume that many independent variables may influence 
changes of input coefficients. The changing coefficients do not follow homogenous 

23 As discussed in (II.2.5.2), note that there is now an ongoing discussion of whether or not his form 
of constraint is appropriate in this case of Bergman relative entropy.
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row and column multipliers, but rather the complex features of stochastic elements. 
The Lagrange method applied by the Central Statistical Office of the Netherlands 
(CBS) is an example of that method. The Least Squares Method can constitute another 
example of such an approach. It is worthwhile to add to this category of stochastic 
procedure: the EURO method used by EUROSTAT. The basic idea of this approach is to 
derive I-O tables that are consistent with official macroeconomic forecasts for GDP but 
avoid arbitrary adjustments of input coefficients to ensure the consistency of supply 
and demand. More specifically, this method should only use official macroeconomic 
forecasts as exogenous input for the iterative procedure. Column and row vectors 
for intermediate consumption and final demand should be derived as endogenous 
variables rather than accepted as exogenous variables from unspecified sources. The 
EURO method, like any other method presented above, presents advantages related 
to simplification of numerically and conceptually complex problems with substan-
tial cost advantages. However, these advantages come at the price of certain disad-
vantages. In fact, primary forecasts for output levels normally not being available, it 
should be noted that the structural composition of final demand estimates in the Euro 
procedure is not based on econometric functions. Moreover, the impact of relative 
prices and other important economic variables such as innovation, technical prog-
ress, and productivity gains become difficult to fully anticipate. 

3.3.2  RAS Formalism and its Limits

While the RAS method was implemented in the 1930s, Stone adapted the technique in 
1961 for use in updating I-O tables from the work of Deming and Stephan (1940). The 
method is used when new information on the matrix row and column sums becomes 
available and we need to update a fully existing matrix.

Thus, following Lemelin, Fofana & Cockburn (2005) and Robinson, Cattaneo & 
El-Said (2001), the basic problem is generating a new nxn matrix of A1 from an existing 
matrix A0 of the same dimension under restriction of the new given row and column 
totals X and Y. We then need to apply row and column multipliers r and s, respectively. 
The (2n – 1) unknown multipliers are determined by the (2n – 1) independent row and 
column restrictions using an iterative adjustment procedure. 

Suppose we need to update a social accounting matrix (SAM). If we define T as 
a SAM transactions matrix, where tij is a cell value that satisfies the next restrictions:

•
i

ijj tT  

to construct the coefficient matrix [aij] = A of a SAM, we divide each cell tij by the row 
total t⋅j of a corresponding column, i.e.:

aij = 
j

ij
t

t
•
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In this case, if we indicate the unknown coefficients of A1 by [a1
ij] and known coef-

ficient elements of A0 by [a0
ij], the RAS procedure is as follows:

a1
ij = ri a0

ijsj, 

In matrix notation, we have:

SARA ~~ 0
1   ,

Where  ͠  indicates the diagonal matrix of elements R and S. Then, this last equa-
tion shows that the RAS method successfully constitutes an iterative algorithm of bi-
proportional adjustments.

Let us indicate the serial number of different steps of the RAS algorithm by 1,2,…t 
and then define each algorithm as the following:

Step 1:


•

j
ij

i

x
xa i 0

1 ˆ  011
ijij xax i 


•

i
ij

j
j

x
xb 1

1 ˆ  112
ijiij xbx   ,

Step 2:


•

j
ij

i

x
xa i 2

2 ˆ  223
ijij xax i 


•

i
ij

j
j

x
xb 3

2 ˆ 
324

ijiij xbx   
,

Step t:

 
•

j

t
ij

it

x
xa i 22
ˆ  2212   t

ij
tt

ij xax i


 
•

i

t
ij

j
j

t

x
xb 22
ˆ  1222   t

ij
t

i
t

ij xbx  .

Thus, the step t corresponds to the last iteration ensuring a final convergence solution.
Compared to the cross-entropy approach presented above, the RAS procedure 

presents an obvious advantage of being relatively simple to use. However, it presents 
the following severe drawbacks: 

Lack of underlying economic theory and limited possibility of constraining information

For instance, there is a need to fix some cell values inside an I-O matrix during its 
updating procedure when these values are known with sufficient certainty. The RAS 
procedure is not well suited for tackling such problems.

No possibility to treat the problem on the stochastic side



� Updating and Forecasting I-O Tables   67

For instance, if the new known row and column totals, X and Y, are known with 
uncertainty—a realistic hypothesis—one will need to add a random component to the 
model. The RAS procedure is not suited for tackling such problems.

The risk of starting with a basic I-O matrix A0 characterized by “spurious consistency” 

This is the case when the matrix has been updated or balanced on the basis of a 
theoretical hypothesis, e.g., macroeconomic closure rules. In such a case, the matrix 
appears well balanced despite possibly containing systematic errors. 

Because of the above empirical problems, many researchers have tried the exten-
sion of the RAS procedure in the hope of rendering it more flexible. Lemelin et al. 
(2005) show that the RAS procedure can be apprehended as a Bayesian information 
processing rule with the new known row and column totals X and Y taken for new data 
in the Bayesian sense. In the process, after having compared the Lagrange multipli-
ers of both procedures, the authors show conditions of equivalence between the RAS 
procedure and the Kullback-Leibler cross-entropy approach. Similar work has been 
presented by McDougall (1999). He concluded that the RAS approach corresponds to a 
generalized Shannon cross-entropy technique, suggesting that the latter cannot sup-
plant the former. Nevertheless, according to McDougal, the cross-entropy approach 
can extend and adapt the RAS technique to problems that do not fit well with the 
traditional matrix balancing framework. Interestingly enough, Robinson et al. (2001), 
have conducted a comprehensive experiment on a 1994 SAM of Mozambique. Start-
ing from the balanced SAM and randomly imposing new row and column totals, the 
authors have operated a Monte Carlo experiment in which they have simultaneously 
updated the matrix using RAS and Shannon cross-entropy procedures. They found 
RAS and CE to be equivalent measures—meaning that RAS is an entropy theoretic—if 
the CE method uses a single cross-entropy measure as an objective instead of attempt-
ing to use the sum of column cross-entropies. They concluded by confirming the find-
ings of many previous researchers according to whom the RAS procedure remains less 
flexible in the case of new information in comparison with the cross-entropy tech-
nique, which is better at processing new information for optimal consistency of the 
updated SAM. 

However, due to its popularity, researchers have proposed new extensions of the 
RAS approach [e.g., http://ec.europa.eu/eurostat/ramon/statmanuals/files/KS-RA-
07–013-EN.pdf]. 

One of the interesting extensions has been the Model of Double Proportional Pat-
terns (MODOP) developed by Stäglin (1972:69–81). This model consists of estimating 
all the existing cells of transaction. The resulting inconsistent matrix is then esti-
mated by the RAS approach. The basic idea is to calculate the geometric mean of row 
and column multipliers and then to apply this factor to each element of the matrix. 
Following the above author, outputs from the MODOP are often similar to those from 
the RAS approach. Some trials that allow the RAS approach to constrain targeted cells 
inside a matrix or to render the cells stochastic have been undertaken in recent years. 
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In a recent, thorough study on the comparative performance of the cross-entropy 
and RAS techniques, Chisari et al. (2012) concluded that cross-entropy had a more 
general character for the following reasons:
a)	 It does not need all the new totals of rows or columns (although prediction will 

be less accurate).
b)	 It does not need a balanced initial matrix (the sum of rows could be more/less 

than the sum of columns).
c)	 New rims could contain an error term.
d)	 New rims can be non-fixed parameters.
e)	 Many values on the final matrix could be fixed (not necessarily a parameter).
f)	 It allows non-linear constraints.

Referring to their simulation outputs, the authors propose a rule of thumb consisting 
in preferring the RAS method if and only if any constraint or one constraint is enforced. 
This seems to explain why the RAS approach continues to be successfully applied in 
different prediction studies. Furthermore, comparing the starting point to the RAS 
method, the above authors observe that the purchasing method is preferred to the 
supplying matrix because the aggregate bias is in this lower case. Furthermore, note 
that this suggestion does not seem to be consistent with the above investigations done 
by Robinson et al. (2001) on the Mozambique economy according to which the RAS 
and Shannon entropy approaches produce the same performance when no additional 
restriction is imposed. We will come back to this point when we present an example of 
I-O updating at the end of this section.

Trying to assess the cross-entropy approach in a dynamic, stochastic multi-objec-
tive optimisation problem, Bekker & Aldrich (2011) have concluded that acceptable 
results can be obtained while doing relatively few evaluations. Such an empirical fact 
tends to confirm a large area of cross-entropy application.

Finally, the central point to focus on through this section has been the limit—at 
least according to existing literature—of the RAS method compared to Shannon-Kull-
back-Leibler cross-entropy. Thus, since the latter is itself a converging case of Tsallis 
non-extensive entropy, the RAS procedure can be seen as relatively less attractive 
with respect to both entropy approaches.

3.3.3  Application: Updating an Aggregated EU I-O Matrix

3.3.3.1  The RAS Approach
Tables 8 and 9 represent 27 aggregated EU symmetric I-O tables for domestic output 
at basic prices for years 2006 and 2007. In this simplified example, let us suppose 
that we have no information—though we do—on the elements of the intermediate 
consumption sub-matrices for the period 2007 in Table 2. Using both the RAS and 
cross-entropy approaches, we are asked to predict those elements on the basis of the 
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2006 I-O matrix and sectorial accounts totals of the period 2007, which are supposed 
to be known. 

In the example below, we directly use the transaction matrix in current price 
value. Thus, instead of coefficient matrix A presented in the above RAS formula, we 
use the matrix X of transactions. Using the formalism explained in the above section 
for the RAS approach, we present below the algorithm to solve the problem:

Iteration 1
Calculation of row multipliers 
1.098105 1.068032 1.066862 1.044765 1.052929 1.037053

Actual Row  
multipliers

50495.53 184777.3 3012.483 24612.5 3822.238 6453.238 273173.2 280691 1.027522

84702.14 2585662 382824.5 542838.5 230943.7 266151.9 4093122 4128898 1.008741

2941.775 45081.56 361192.4 47169.66 121551.4 47356.15 625293 598576 0.957274

38756.27 770976.1 124401.9 865048.6 264081.2 185633.2 2248897 2228709 0.991023

27106.73 694435.6 18950.7 753990.3 1314546 370177.4 3349764 3236274 0.96612

5269.119 83635.91 11198.4 72001.38 108426.3 267284.2 547815.4 538038 0.982152

where, e.g., starting multiplier 1.098105 to be later multiplied by the first column 
elements of the initial transaction matrix of 2006 is obtained from the quotient 
419340/381876, i.e., the first column output of 2007 divided by the first column output 
of 2006, both respectively from Tables 9 and 8.

With elements of row multipliers on the diagonal matrix premultiplied by X0ij 
obtained in the above transformation, we get:

0~
ijXR   equal to:

1.027522 0 0 0 0 0

0 1.008741 0 0 0 0

0 0 0.957274 0 0 0

0 0 0 0.991022853 0 0

0 0 0 0 0.96612 0

0 0 0 0 0 0.982152
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X
50495.53 184777.3 3012.483 24612.5 3822.238 6453.238

84702.14 2585662 382824.5 542838.5 230943.7 266151.9

2941.775 45081.56 361192.4 47169.66 121551.4 47356.15

38756.27 770976.1 124401.9 865048.6 264081.2 185633.2

27106.73 694435.6 189507.7 753990.3 1314546 370177.4

5269.119 83635.91 11198.4 72001.38 108426.3 267284.2

equal to:

51885.25 189862.6 3095.392 25289.88 3927.432 6630.843

85442.48 2608262 386170.6 547583.2 232962.2 268478.2

2816.084 43155.38 345759.9 45154.27 116358 45332.79

38408.35 764055 123285.2 857282.9 261710.5 183966.7

26188.35 670908 183087.1 728445 1270009 357635.7

5175.075 82143.16 10998.53 70716.28 106491.1 262513.7

209915.6 4358386 1052397 2274472 1991459 1124558

Actual 210592 4373650 1056144 2280581 1974301 1115919

Column 
multiplier 1.00322 1.003502 1.003561 1.002686 0.991384 0.992318

SXRX ij
~~ 0

1    equal to:

51885.25 189862.6 3095.392 25289.88 3927.432 6630.843

85442.48 2608262 386170.6 547583.2 232962.2 268478.2

2816.084 43155.38 345759.9 45154.27 116358 45332.79

38408.35 764055 123285.2 857282.9 261710.5 183966.7

26188.35 670908 183087.1 728445 1270009 357635.7

5175.075 82143.16 10998.53 70716.28 106491.1 262513.7

X

1.00322 0 0 0 0 0

0 1.003502 0 0 0 0

0 0 1.003561 0 0 0

0 0 0 1.002685984 0 0

0 0 0 0 0.991384 0

0 0 0 0 0 0.992318
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equal to:

52052.34 190527.6 3106.414 25357.81 3893.595 6579.903

85717.63 2617396 387545.8 549054 230955.1 266415.7

2825.153 43306.52 346991.2 45275.55 115355.5 44984.53

38532.04 766730.8 123724.2 859585.6 259455.7 182553.5

26272.69 673257.6 183739.1 730401.6 1259068 354888.3

5191.74 82430.84 11037.69 70906.23 105573.6 260497

Iteration 2. …j….:
Repeat Iteration 1 algorithm
In this example, we reach the optimal value at the seventh iteration and then get the 
following values of the new supposed unknown transaction matrix of the year 2007:

0.999998 0 0 0 0 0

0 0.999999 0 0 0 0

0 0 1.000001 0 0 0

0 0 0 0.999999944 0 0

0 0 0 0 1.000001 0

0 0 0 0 0 1.000006

X

51929.5 190003.4 3095.379 25249.69 3870.157 6543.312

85635.77 2613871 386712.9 547482.9 229888.1 265307.2

2829.519 43356.44 347112.1 45258.99 115109.9 44909.49

38562.37 767033.6 123673.6 858620.7 258707.4 182111

26405.53 676396.6 184447.4 732693.9 1260792 355538.3

5228.733 82985.65 11103.05 71275.19 105935.8 261511.4

X

1.000001 0 0 0 0 0

0 1.000001 0 0 0 0

0 0 1 0 0 0

0 0 0 0.999999724 0 0

0 0 0 0 0.999999 0

0 0 0 0 0 0.999998
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equal to:

51929.54 190003.5 3095.379 25249.68 3870.153 6543.302

85635.84 2613873 386712.9 547482.7 229887.9 265306.8

2829.521 43356.47 347112 45258.98 115109.8 44909.42

38562.4 767034 123673.6 858620.4 258707.2 182110.7

26405.55 676397 184447.4 732693.7 1260790 355537.7

5228.738 82985.69 11103.05 71275.17 105935.7 261511

Table 6: Error(%) prediction from the RAS procedure

3 0 1 -4 -7 4

1 0 0 -2 0 0

-7 5 -1 6 -4 3

-6 -1 -2 1 0 3

1 0 2 0 0 -1

-4 1 4 2 2 -2

The above errors are calculated as the error discrepancy percentage between 
the true matrix of transaction representing the period of year 2007 and the matrix 
updated by the RAS procedure on the basis of the 2006 I-O matrix.

3.3.3.2  The Entropy Approach
For comparative purposes, let us apply entropy formalism for updating the same IO 
transactions table as in the above example related to the RAS approach. Thus, using 
the Tsallis entropy formalism presented in (3.17) and in (2.48–2.50) under the hypoth-
esis that transaction totals of the targeted period are known (and without any addi-
tional restriction), we get the outputs presented in Table 7.
Comparison of Tables 6 and 7 shows slightly higher performance of the RAS approach. 
This seems to confirm the rule of thumb proposed by Chisari et al. (2012): if and only 
if any constraint or one constraint is enforced as in the present case. However, such 
a conclusion, as already mentioned above, is not in line with the one proposed by 
investigations conducted by Robinson et al. (2001) which lead to equivalent perfor-
mance in the same conditions between the cross-entropy and RAS approaches. More 
investigations are needed to contradict or confirm the study results of the above 
authors. Of course, following the results of several investigations presented above, 
cross-entropy naturally presents higher performance than the RAS approach, par-
ticularly when statistical data are known with uncertainty. In the next section, we 
are going to propose the forecasting of a higher dimension I-O table through cross-
entropy formalism. Later, when treating the case of a SAM with higher dimension, we 
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will present the methodology of updating it in the presence of uncertainty and with a 
free number of restrictions.

3.3.3.3  I-O table Forecasting
By “updating,” we compute operations on table rows and columns with the purpose 
of balancing its row and column totals, but a forecasting operation implies the use of 
a certain theoretical model—whether deterministic or not. To forecast an I-O table, 
the statistical data concerning final demand Yi and the value added Dj are generally 
available or could be obtained on the basis of existing information. For example, 
in the case of Eurostat, this information exists for the time horizon year 2013 while 

Table 7: Error (%) prediction of the I-O table by the Tsallis (or Shannon) cross-entropy procedure

Products 
(CPA) 

P1 P2 P3 P4 P5 P6

P1 7.985 3.141 1.934 -0.049 -7.602 4.579

P2 8.954 2.214 -0.722 -0.099 -2.772 -0.158

P3 -8.035 2.042 -5.767 3.010 -11.670 -2.940

P4 -4.044 0.691 -4.533 7.906 -4.444 0.523

P5 0.370 -2.219 -2.198 -1.980 -6.118 -0.147

P6 -2.688 0.587 1.827 1.848 -2.704 -4.190

Table 8: Symmetric I-O Tables for domestic output at basic prices (year 2006; EU27, Mio. EUR current 
prices)

Inputs of products
Products 
(CPA)

P1 P2 P3 P4 P5 P6 Others Total

P1 45984 173007 2824 23558 3630 6223 126650 381876

P2 77135 2420959 358832 519579 219335 256642 2999462 6851944

P3 2679 42210 338556 45149 115441 45664 1130576 1720275

P4 35294 721866 116605 827984 250806 179001 2465270 4596826

P5 24685 650201 177631 721684 1248467 356951 1932724 5112343

P6 4798 78308 10497 68916 102976 257734 3054393 3577624

Others 191301 2765392 715330 2389956 3171688 2475408 1499777 13208852

Total 381876 6851944 1720275 4596826 5112343 3577624 13208852

Source: own calculations. 
Source: based on http://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/overview
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neither the value of global product Xj nor the matrix of cost structure [aij] are known 
for that forecasting period. Here, the last updating of IO tables concerns the period 
2007. Building an I-O table is time consuming and a lot of information, particularly 
concerning the transaction matrix (including import elements), is not easy to assess. 
Economic information from different enterprises or industries must be updated on 
the basis of new flows of additional information. As a result, getting a final version 
of that table comes long after with many lag years. Under such conditions, finding a 
workable methodology for setting up a robust prediction technique of an I-O table 
should bear precious advantages.

Therefore, the key question is: Based on the I-O table of the previous period, on 
vectors Yp

i and Dp
j (both from the forecasting period), is it possible, using the connec-

tion (3.2), to estimate the unknown I-O tablep of the forecasting period? Of course, the 

Table 9: Symmetric I-O Tables for domestic output at basic prices(year 2007)

Inputs of products

Products 
(CPA)

P1 P2 P3 P4 P5 P6 Others Total

P1 53529 189315 3126 24311 3626 6784 138648 419340

P2 86528 2624065 386717 535924 229362 266302 3189197 7318095

P3 2656 45671 344941 48062 111100 46147 1236719 1835296

P4 36335 756877 121086 869135 258074 187202 2573895 4802604

P5 26539 673893 188669 730656 1264384 352132 2146659 5382932

P6 5005 83827 11606 72494 107755 257351 3172149 3710187

Others 208748 2944446 779152 2522023 3408631 2594266 1599374,605 14056642

Total 419340 7318096 1835296 4802604 5382933 3710185 14056642

Source: based on http://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/overview

where :

P1 Products of agriculture, hunting and fishing

P2 Industrial products (incl Energy)

P3 Construction work

P4 Trade, transport and communication services

P5 Financial services and business services

P6 Other services

Others Use of imported products, cif

  Taxes less subsidies on products

  Value added at basic prices

Total Row or column totals
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answer is not affirmative if we use the classical statistical-mathematical approach to 
solve that inverse problem. On the one hand, we do not have information about matrix 
Ap of the forecasting period to derive the value Xp using relation (3.2) and, in this way, 
to determine I-O tablep. On the other hand, as an effect of the possibility of estimating 
Xp, for example using a dynamic investment model, the new question that arises is: 
Disposing of Xp and of Yp of the forecasting period, could one possibly determine the 
matrix coefficients Ap on the basis of the same relation (3.2)? Since the IO table has 
size NxN, and we have by assumption only information about final demand Yp and 
global product Xp of each sector, this means that we have (N – 2)x(N – 2) degrees of 
freedom, where N is, once again, the number of branches in the IO table. Such a prob-
lematic belongs then to the category of inverse problems, which suggests that there 
may be an infinity of matrices Ap that could reproduce the identical values of final 
demand Yp and the global product Xp. Among them, we will choose the one that best 
maximizes consistency information between the prior, data, and the posterior. We 
can retrieve a solution proposal to that problem in the second part of this monograph 
about the maximum entropy principle or relative (cross) entropy. Let us again present 
it below in the context of updating and forecasting an I-O table on any other form of 
its extension. 

3.3.3.4  The Non-Extensive Cross-Entropy Approach and I-O Table Updating
As suggested above, in the recent literature there are several methods for updating 
and balancing elements of national accounts balance sheets, for instance, an I-O 
table when equality of corresponding sums of columns and rows is required. Some 
of their limits have been emphasised here. Preference is then given to methods based 
on statistical theory of information for their capacity to adjust information when 
structural changes affect the economy or when additional consistent information has 
to be added to what already exists. The most frequently used theoretic-information 
methods are the Maximum Likelihood, Bayesian method of moments, and methods 
based on the maximum entropy principle. Through their article, Giffin & Caticha 
(2007) have proven that the principle of maximum entropy represents a generaliza-
tion of the Bayesian approach as a method of inference on the basis of an a priori 
information. Probably for these reasons, application of the cross-entropy approach to 
balance the social accounting matrix has been widely adopted in empirical applica-
tion during recent years (e.g., Robinson et al., 2001).

As we know from Part II of the monograph, on the basis of the results of Shannon 
(1948) and Jaynes (1957), Kulback-Leibler (KL) (1951, 1957) and Good (1963) have pro-
posed the principle of minimum (relative) entropy. This principle aims at assessing 
a posteriori parameters (probabilities P) of the most plausible, shortest divergence 
in relation to a priori parameters (probabilities Q), under restrictions related to data 
moments, normalization condition, or any other a priori information presenting con-
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sistency with probabilities in the criterion function. The formulation in the case of 
discrete events is like in (3.16) and, thus, we have:

Min(rj, r0) →  oq rrI   1
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Ω(h) = F	 (3.20)

P'I = 1 and P ≥ 0.	 (3.21)

We adopt Shannon-Gibbs symbols in the criterion function above. Correspon-
dence with the Tsallis criterion function in (3.16) is easy to do. The symbol P corre-
sponds to r and Q to ro. Matrix P stands for posterior probabilities guaranteeing the 
balance of a previously unbalanced table, the elements of which sum up to unity by 
column (sector). Q is a matrix of coefficients from a known table. In the case of the 
I-O table (see Table 2) elements of Q are derived by dividing each column element by 
its total. They then represent input coefficients except the case of the final demand 
column, where these coefficients explain the structure of product consumption for a 
given final demand institution. Thus, its elements must satisfy the additivity condi-
tion. Equation (3.18) demonstrates that the column total must match with correspond-
ing row elements multiplied by corresponding probabilities (coefficients) Pj . Equa-
tion (3.19) states equality between value added and final demand totals, with d

jp '   
and 'y

iP   being transposed respective vector of sectorial value added components and 
vector of structural coefficients of final demand. Probabilities are presented in escort 
distribution formulation presented in footnote 19. Functional h in (3.20) gives a piece 
of information which has a significant relationship (consistency) with probabilities in 
the criterion function. This may be, for example, a macroeconomic balance equation 
or any distribution of a treatment of errors. Equation (3.21) is one of the additivity con-
ditions of probabilities and reminds us that no probability can take a negative value.
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3.3.3.5  Forecasting an I-O Table
Let us first formulate the model. As previously stated, a fundamental problem results 
from the lack of information about sectorial global product Xj

p or equivalent input 
transactions xij since we assume final demand to be known. Thus, before implement-
ing entropy formalism (3.16), we must first estimate the values Xj

p. For this purpose, 
we propose using a dynamic model24 of I-O in which investment is the endogenous 
variable in the context of accelerator analysis of macroeconomic theory. According to 
macroeconomic theory, it is expected that investment is induced if final demand is 
expected to grow. Based on the preceding period, traditional assumptions of such a 
model are as follows:

–– the investment is a function of the expected growth, 
–– information about the coefficients of material and production factors are avail-

able, 
–– information about capital ratios are available, 
–– all economic sectors are in full effect, 
–– capital has an infinite lifetime.

We then have the following dynamic equation of global product:

Xt+1 = B–1[(I – A + B)Xt – Yt]	 (3.22)

and

Invt = B(Xt+1 – Xt)	 (3.23)

where: 
Xt+1: 	 global product,
Invt: 	 induced investment, 
B: 	 coefficients of capital production,
A: 	 coefficients of material, 
Yt: 	 final demand,
t: 	 the index of the time.

It should be added that value of global product derived in this way does not con-
stitute the ultimate result of the whole process of forecasting. This value only provides 
the a priori information in terms of a Bayesian viewpoint, and it will be changed in 
the process of entropy minimization, as previously explained. At the end of the proce-
dure, applying relation of relative entropy in (3.16), we upgrade I-O coefficients for the 
period T + 1 to obtain a new post entropy I-O table. Thus let us consider a known I-O 
matrix BT of period T in the form of Table 2.1 displaying coefficient structure, obtained 

24  See EUROSTAT.
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after dividing each column element by the corresponding total column. The problem 
is retrieving new matrix BT+1 of period T + 1 for which we already know global product 
from (3.22) and sectorial aggregates of final demand. As is often the case in real life, let 
us suppose sectorial value added is known, too. If our I-O table has a dimension n x n 
(with n >> 2), then we have (n – 1) (n – 2) degree of freedom. Building on the formula-
tion (2.47–2.50) involving an inverse problem, we obtain: 
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Ω(h) = F 	 (3.28)

blij ≥ 0.	 (3.29)

In the present model Bt[bijt] with (i = 0 and 1) is a matrix of I-O coefficients for 
the period Tt. Thus, B0 is a priori known, and we seek to estimate B1, that is, for t = 1. 
Since both coefficients display probability properties of continuously belonging to 
interval zero-one, of summing up to unity (by column), and of additivity, we do not 
need to reparameterize B, and it will be taken for probability. Tsallis complexity index 
q informing about departure from Gaussian to power law distribution appears in 
the criterion function (3.24) and in constraints (3.25) and (3.26) under formulation 
of escort distribution, as earlier explained in footnote 19. Index one on variable X1j 
(explaining “global product”) in (3.25) refers to the period of forecast. It is equal to the 
vector column of coefficients multiplied by the total column, taking then into account 
weights related to escort distribution. A total obtained this way is equal to the total 
corresponding line X1i. This applies equally well to (3.26), which means that totals 
of value-added Dj and of final demand Yi are equal. The rest of the restrictions, i.e., 
(3.27–3.29) are as in (3.20–3.21).
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3.3.4  Application: Forecasting the Aggregated 27 EU IO Coefficients

In this example, we will present two cases where we apply the non-extensive entropy 
principle25 to forecast the aggregated 27 EU I-O coefficient table for the period 2007. 
The basis of that forecasting is the I-O table of the previous year, 2006, and some 
information related to the targeted I-O coefficients of 2007. Both tables can be found at 
the Eurostat statistics site: http://ec.europa.eu/eurostat/web/esa-supply-use-input-
tables/overview. Since we already know the true values26 of the I-O table of 2007, it 
will be much easier to assess the performance of the applied technique.

In the first case, besides information from the 2006 table, we are supposed to 
additionally have data on sectorial value added and final demand of the targeted 
period 2007. In this example, sectorial global product is neither known nor assessed. 
We then consider here a case which is more unfavourable than it appears in empirical 
investigations where, in general, many values of the targeted I-O table are assessable 
on the basis of existing theory or through intuition.

In the second case, besides the information used in the first case, we are sup-
posed to additionally have the possibility of estimating some reliable inter-sector 
transactions of the targeted period 2007 and to incorporate them into the model as 
new data, according to the Bayesian model. Then, the following list of accounts which 
have been arbitrarily selected from the true 2007 table and information related to 
them have to be incorporated into the entropy model: 
tobac Tobacco products
pulpap Pulp, paper, and paper products
Insur Insurance and pension funding
compserv Computer and related services
uranores Uranium plus ores

Among the 60 accounts in the table—we have a NACE A60 breakdown—these five 
accounts represent 5% of all accounts and around 2% of their transaction total. Thus, 
in spite of using that additional piece of information, we are still dealing with an 
inverse problem consisting of recovering (n – 6) x (n – 6) coefficients of the I-O table 
on the basis of the coefficient table from the previous period, 2006, and some addi-
tional, random information from the forecasted period. Not included27 in this book, 

25 In this study, outputs from Shannon and Tsallis entropies are similar.
26 As can be verified at the electronic address http://appsso.eurostat.ec.europa.eu/nui/show.
do?dataset=naio_15_agg_60_r2&lang=en, this version of the 2007 table does not yet seem to be defin-
itive since some accounts are not balanced. The implication is that input-output coefficients related 
to that table cannot be considered known with certainty. At the same electronic address, we can find 
input-output tables of other periods, such as for 2006. However, since we have made small changes to 
these two tables, they will be displayed in the annex. 
27 Due to lack of space, these tables cannot be presented in this book. Nevertheless, they are here 
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two output tables allow for assessing the performance of the proposed technique. The 
first table, F1, displays the precision error for the ex post forecasted inter-sector trans-
actions for the period 2007 and is related to a minimum of hypotheses, that is, the 
knowledge of sectorial values added and final demand. Thus, that table displays the 
forecasted I-O transaction table for the period 2007 with the minimum a priori infor-
mation. The second table, F2, displays the precision error for the forecasted inter-
sector transactions of the period 2007 in the second hypothesis, that is, with some 
knowledge on inter-sector transactions of the five above listed accounts. 

What could we learn from these outputs? Here, we will limit our comments to 
general aspects of cross-entropy formalism. More details will be provided in the 
coming chapter concerning the procedure of updating a social accounting matrix, as 
a generalized case of an I-O table. Table F1, as already mentioned, shows the degree 
of precision of the entropy procedure in forecasting the I-O coefficients of the period 
2007. The only a priori information remains the I-O transaction matrix of 2006, secto-
rial values added and final demands of the period 2007. All computations have been 
carried out with the GAMS code. To measure the precision of the I-O coefficient, we 
have used the next average error variance coefficient (AEVC):
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The coefficients aij represent the true coefficients displayed by the 2007 table of 
the I-O matrix prepared by Eurostat. Though the table is not fully balanced, we still 
consider it sufficient to correspond to a true data generating system. The forecasted 
coefficients âij are supposed to be affected by a certain margin of error. The denomina-
tor explains the degree of freedom of a Warlasian equilibrium table, i.e., the number 
of accounts28 but one. 

Let us first consider a simple benchmark measure of the information divergence 
between the 2006 and 2007 tables. In these circumstances, values of coefficients âij 
represent the period 2006 and values of the coefficients aij, that of 2007. Thus, the 
derived variance value AEVC is 0.00003846. In the context of information theory, this 
value corresponds to the minimum entropy result when any restriction (except nor-
mality conditions) to the criterion function has been enforced. It corresponds, too, to 
the maximum entropy outputs in the same conditions. 

Now, if we consider the first case when we know the inter-sector values added 
and final demands, we get a new AEVC equal to 0.00002932 and representing a dis-
crepancy between the true and the estimated values. In comparison with the bench-
mark coefficient, the new piece of information has brought about an overall coeffi-

numbered F1 and F2 so that the interested reader can, on request, get a copy of them from the author.
28 For computational reasons, two accounts concerning the mining sectors have been aggregated 
into one account.
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cient variance reduction of around 24%. Though this coefficient is very small, a look 
at the non reported in this book outputs (table “F1") could reveal a high variation in 
these coefficients. As it has been noticed in Shannon entropy econometrics litera-
ture, entropy formalism tends to shrink small probabilities in favour of those higher. 
Through this example, we discover the same stylised fact found in the case of Tsallis 
entropy formalism. Inside that table, we notice the presence of a 100% shift of many 
values. This is the result of small probability shrinkage, as explained above. To reduce 
these variations, we need to impose additional restrictions on the model. On theoreti-
cal grounds, the formal causes of small probability shrinkage are well presented in 
the work (see previous chapters) of Golan et al. (1996) as an extension of the work of 
Greenberg et al. (1989) on the family of Stein-rule estimators29 proposed by Stein & 
James (1961). 

In the last experiment carried out, we additionally consider that some transac-
tion values of the above listed accounts are known. We then get a new AEVC equal 
to 0.00001042502. In comparison with the benchmark coefficient, the new piece of 
information has brought about an overall coefficient variance reduction of around 
74%. Noting that the small variance AEVC naturally represents the average for all 
values inside the table, this seems to contrast with the relatively higher precision 
error affecting many cell values of the tables F1 and F2. In general, as underscored 
above, higher imprecisions tend to affect smaller values (then with smaller weights) 
inside the table cells.

3.3.5  Emission Coefficients Forecasting: A Theoretical Model

One may now combine the two previous procedures of retrieving information in 
the case of the inverse problem. The first procedure has assessed emission coeffi-
cients when sectorial global product and the transactions matrix were available (see 
section III.3.2.2). The second has assessed the I-O table on the basis of knowledge of 
sectorial final demand of current period and a priori information about the table of 
preceding period. Now, the interesting problematic could be assessing sectorial emis-
sion coefficients on a knowledge basis of:

–– total emission by theme of the forecast period,
–– sectorial final demand of the forecast period,
–– an input-output table of a recent period.

29 The main idea is that if three or more unrelated parameters are measured using the James-Stein 
estimator, their total square error will be lower than in the case of the least square (LS) estimator 
well known to provide the lowest variance among all other linear estimators. However, when each 
parameter is estimated separately, the LS estimator leads to higher performance. This is so because 
of the tendency of the Stein family of estimators to shrink small probabilities of the estimated system.
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Table 10: A Simplified Environmentally extended I-O table

i Sector Flows Final demand Total

1 X1 x11 x12 x13 ... x1m Y1 0

2 X2 x21 x22 x23 ... x2m Y2 0 X2

... ... ... ... ... ... ... ... 0 ...

m Xm xm1 xm2 xm2 xmm Ym 0 Xm

m +1 Dj

Value-
added

D1 D2 D3 ... Dn 0 0 D

... Ej e11 e12 e1m 0 eY1 E1

... ... ... ... ... ... ... 0 ... ...

n (Energy 
themes)

ef1 ... ... ... efm 0 eYf Ef

Total X1 X1 X1 ... Xm Yv Ye Total

Source: own elaboration.

Solution of such an inverse problem can be set up as follows:
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with h=f + 2, i.e., additional columns due to the demand of emissions by institutions 
(one of them having zero value since demand of emissions must have a separate 
column).

All symbols are as before. Note that in this case the environmentally extended 
I-O matrix has the form presented in Table 10 above. Input coefficients are derived 
from global column totals, including, thus, quantities (instead of values) representing 
emissions. 

3.4  Conclusions

As suggested above, generally, new information should render more homogeneous 
divergence between the true coefficients and those forecasted. According to the above 
results, we observe that new restrictions added to the model lead to a significant 
reduction of errors. This is in accordance with the rule of thumb proposed by Chisari 
et al. (2012) in section III.3.3.1 about particular conditions explaining the superiority 
of entropy approaches over the RAS technique.

The obtained AEVC coefficients naturally present a random character and dif-
ferent experiments would produce different values. However, as expected through 
Bayesian formalism, new data evidence will always tend to reduce the level of uncer-
tainty or entropy. 

The true difficulty in assessing a new methodology to assess a complex infor-
mation system—like the one represented by an I-O table—is that, due to instruments 
of measure or adopted economic hypotheses, a part of the observed data may not 
be accurate. This can be even worse in the case of general equilibrium systems in 
which the balance of the whole system—or accounts—may be more or less forced. 
This observation is particularly true in developing countries where statistical infor-
mation management can be more challenging. What we intend to explain here is that, 
faced with such circumstances, the output performance of the non-extensive entropy 
approach should, consequently, be taken with a certain margin of error. The quality 
of priors and model data will always play a central role. 
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PART IV: Social Accounting Matrix



1  Position of the Problem 
After presentation, in the previous part of an input-output table in the context of ill-
behaved inverse problem solution, let us talk about the next national accounts table, 
known as a Social Accounting Matrix (SAM) (e.g., Stone, 1970; Graham, 1985; Scan-
dizzoa & Ferrareseb, 2015). From a macroeconomic point of view, this table is a gen-
eralization of an input-output table. While input-output shows primary distribution 
of income without saying anything about its secondary distribution, the SAM table 
fills in this missing information and, at the same time, displays a complete flow of 
products and values in a general equilibrium framework. In the coming section, the 
ill-behaved inverse problem will be particularly addressed since SAM table building, 
more than for input-output tables, requires more information to be gathered from dif-
ferent sources but involving, consequently, higher risk of statistical inconsistencies 
when this information is aggregated. In this chapter, we present the general aspects of 
a SAM by introducing the parameter or multiplier estimation approach, and we then 
discuss the limits of classical econometric methods.

For the last two decades, Kullback-Leibler minimum entropy (KLME) formalism 
has encountered relative success in the social sciences, particularly when a solution 
was required for inverse problems (e.g., Robinson et al., 2001; Bwanakare, 2013). The 
objective of the present document is to extend the KLME approach to the non-ergodic 
Tsallis entropy system, represented in the present study by an initially non-balanced 
quadratic social accounting matrix (SAM), known to display Walrasian general equi-
librium features. 

The described economic system is then defined by different interactive subsys-
tems, each represented by respective actors and characterized by optimizing behav-
iour. Households, which tend to maximize a certain utility function, remain the 
owner of factors of production and are the final consumer of produced commodities 
while firms maximize profits by optimal renting of these factors from households for 
the production of goods and services. In this model, government has the passive role 
of collecting taxes and disbursing tax revenue. Furthermore, the economy analysed 
is small and open and a ‘price taker’ from the rest of the world. The above optimal 
behaviour inside subsystems leads to general market equilibrium in all respective 
sectorial markets.

A SAM table is a statistical tool to summarize all the above economic transactions 
by registering, in their respective rows and columns income and expenses in accor-
dance with the double-entry book-keeping principle. However, due to different and 
sometimes contradictory sources of collected statistical information, the SAM is not 
balanced, i.e., respective column or row totals are not matching. Such statistical data 
may display, as partially coming from statistical surveys, systematic errors, most of 
the time evidenced through a tail queue Gaussian distribution. 
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Since a SAM-based model contains more unknown parameters to estimate than 
the number of determined equations, updating and balancing such stochastically 
unbalanced matrices belongs to the category of the generalized inverse problem. 



2  A SAM as a Walrasian Equilibrium Framework 
In this part of the present work, we are going to present different macroeconomic 
aspects of a SAM in the context of further macroeconomic models to be presented and 
estimated. It is useful to remind readers about Walrasian general equilibrium features 
of a SAM. This will increase understanding of its construction and improve interpreta-
tion of its post-estimation outputs. This point of interpreting outputs will appear with 
more acuity in the coming sections when, at the end of the estimation process by the 
maximum entropy principle, we have to interpret parameters of the estimated model. 
Though in the next chapter on the computable general equilibrium model we will 
examine the philosophical underpinnings of the SAM in terms of economic theory, we 
must immediately be aware that both the input-output table and the SAM were con-
ceived as practical applications of the general equilibrium theory earlier introduced 
by Walras, one of initiators of the Australian school of thought. Brown & Stone (1962) 
has provided a definition of Walrasian hypotheses as follows:

H1. Observed market demand is the sum of consumers’ demands derived from utility maximization 
subject to budget constraints at observed market prices.

H2. There exists an observable (locally) unique equilibrium price system such that the observable 
market demand is equal to the observable market supply in every market.

H3. The observed equilibrium price system is a (locally) stable equilibrium of trial-and-error price 
adjustment.

The first hypothesis fixes the prerequisites under which Walrasian equilibrium is fea-
sible. The second and third hypotheses specify quantitative relations which lead to 
equilibrium. Equilibrium in the economic flows results in the conservation of both 
product and value (Liossatos, 2004).

Additionally, the three conditions of market clearance, zero profit, and income 
balance are employed by CGE modellers to solve simultaneously for the set of prices 
and the allocation of goods and factors that support general equilibrium. In terms of 
circular flows in economy, each row total of each economic sector is equal to a cor-
responding column total, and in that way a general equilibrium of macroeconomic 
aggregates is ensured.

Research contributions in this area are, to our knowledge, very limited. In their 
pioneering work, Duncan & Smith (Duncan, 1999; Liossatos, 2004) found that Walra-
sian equilibrium is not guaranteed by a free market existence. Without implausibly 
strong restrictions on the production sets and preferences (for example, that the pro-
duction sets do not exhibit increasing returns to scale, a pervasive feature of real tech-
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nologies), the demand and supply correspondences may be empty for some prices 
and may be discontinuous, so that no equilibrium price system can be found. 

The question of the existence and stability of a Walrasian equilibrium encoun-
ters mathematical difficulties and paradoxes. In particular, the question of finding 
a robust stability in equilibrium prices has remained elusive, and the issue of the 
existence of Walrasian equilibrium has been settled only by introducing into the argu-
ment powerful abstract mathematical principles, which have no real economic foun-
dation (see, e.g., Duncan & Smith, 2009). Taking the above into account, one may 
think that Walrasian equilibrium, at least on empirical grounds, is a kind of approxi-
mation of the Pareto efficiency benchmark.

Using the maximum entropy principle, the above authors (Duncan, 1999; Liossa-
tos, 2004) have recently tried to prove the existence, the uniqueness, and the stability 
of the Pareto optimum. 

The starting hypothesis is to consider 

a set of feasible market transactions as typically large, that is, once the number of types, the 
number of traders of each type, and the number of points in the offer sets become moderately 
large. Furthermore, there are many different ways of assigning traders to transactions in their 
offer sets that clear (or approximately clear) the market. The principle of voluntary market 
exchange in and of itself is not sufficient to determine the market transaction. Thus, entropy 
equilibrium is a short-run, temporary equilibrium model of market exchange which replaces the 
Walrasian picture of the market in equilibrium as a budget hyper plane defined by equilibrium 
relative prices with a scalar field of transaction probabilities. (Brown & Shannon, 1997).

Under these conditions and following the same authors, entropy prices clear 
the market by distributing agents over their offer sets, rather than moving agents 
to optimal commodity bundles in their consumption sets, and thus effectively “con-
vexify” the economy. Furthermore, the fact that different traders experience different 
transaction prices implies that random statistical equilibrium does not exhaust all 
the potential Pareto-improving transactions in the economy. Thus, such a statistical 
equilibrium approximates, but does not achieve, Pareto-efficiency. The statistical 
equilibrium in this market fails to achieve Pareto-efficiency because some potentially 
mutually advantageous transactions fail to be executed, and there is dispersion in 
actual transactions prices.

To achieve the Pareto optimum, the pioneering work of Foley (1994) has attempted 
to endogenize the offer sets of economic actors in a rational expectation framework:

If we imagine a given agent repeatedly entering a market in statistical equilibrium, it is tempting 
to suppose that she will alter her offer set in order to optimize her market outcome given the pro-
babilities that govern transactions in the market equilibrium. This idea gives rise to the concept 
of endogenous offer sets.

According to the same author, the present state of research should be that we rigor-
ously establish that Walrasian equilibrium is the asymptotic outcome of a process 
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in which endogenous offer sets adapt to statistical equilibrium entropy prices, and 
where the chances to transact in any period become numerous. Walrasian equilibrium 
is not unique, whereas statistical equilibrium for given offer sets of traders should be 
unique. The adaptation process sketched out here allows offer sets to change over 
time, giving rise to a dynamic process which may have multiple equilibria, each cor-
responding to a Walrasian equilibrium in markets with multiple Walrasian equilibria.

We argue that the problem should be placed in the context of non-additive statis-
tics, suggesting that agent behaviours are time or space dependent. In fact, the above 
Gibbs-Shannon entropy related price suggests an ergodic system in which agent 
actions are disconnected from long-run memory of past market events and/or conflu-
ent—space related—information from surrounding markets. Then, system complexity 
describing market transactions should lead to non-extensive entropy related prices. 
Further research is needed to understand to what extent macroeconomic equilibrium 
and thermodynamic equilibrium are comparable in the context of non-ergodic real 
world systems.

To conclude, there is no assurance that the balanced post-entropy social account-
ing matrix is achieving (or approximating) the Pareto Optimum. As stated above, some 
probabilistic distributions of price entropy may be meaningless or not optimal in the 
convex space of all possible transactions—not even the voluntarily contracted ones. 

More investigation is required to better appreciate, among other possibilities, the 
new approach of endogenizing dynamic offer sets, as suggested above. For the time 
being, entropy econometrics as presented in the coming sections seems to be the best 
approach to resolve such ill-behaved inverse problems.



3  The Social Accounting Matrix (SAM) Framework

3.1  Generalities

The objective of a social accounts matrix is to provide to economic analysts a highly 
detailed record, consistent with the relations between different economic agents at a 
particular moment in time, usually the period of a year, presenting in one matrix the 
interaction between production, income, consumption, and investment. A SAM is the 
representation of the circular flow established in the economy by the flow of money, 
on the one hand, and the flow of goods and services, on the other. A SAM constructed 
on a country or regional basis remains mainly static. Below we present a prototype 
of a SAM.

SAMs are square matrices (columns reflect transposed rows) in the sense that all 
economic sectors or institutional agents (Firms, Households, Government, and 'Rest of 
Economy' sector) are both buyers and sellers. Columns represent buyers (expenditures) 
and rows represent sellers (receipts). SAMs were created to identify all monetary flows 
from sources to recipients, within a disaggregated national account. The SAM is read 
from column to row, so each entry in the matrix comes from its column heading, going 
to the row heading. Each column total equals each corresponding row total. As already 
said, this ensures accounting consistency in the context of general equilibrium. 

The initiator of the SAM table is the Cambridge Growth Project in Cambridge, 
England, which developed the first SAM in 1962 (Brown & Stone, 1962). This table 
was built as a matrix representation of the National Account. Finally, it was Graham 
(1985), the former associate of Stone in the 1960s who transferred SAM construction 
knowhow to the World Bank and became with E. Thorbecke, one of its leading propo-
nents and developers on a worldwide scale.

One of the advantages of the SAM is it simplifies the design of the economy being 
modelled. As we will see in the next sections, a SAM forms the backbone of comput-
able general equilibrium models or various types of empirical multiplier models.

The empirical importance of the SAM has influenced its form30, which clearly 
depicts spending patterns of an economy. SAMs are currently in widespread use in 
the world, and many statistical bureaus, particularly in OECD countries, create both a 
national account and this matrix counterpart. 

As in the case of input-output matrices, a theoretical SAM should always balance, 
but empirically estimated SAMs never do so in the first collation. The source of these 
imbalances may be diverse, but the principal ones are the conversion of national 
accounting data into money flows and the introduction of non-SNA. Additionally, 

30 IMPLAN and RIMS II data exploit these standardized data formats to implement much economic 
impact analysis.
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organizational problems in some countries can lead to conflicting sources of informa-
tion, and the impossibility of balancing the constructed SAM creates a challenge. This 
problem was noted as early as 1984 by Mansur and Whalley (1984) and numerous 
techniques have been devised to ‘adjust’ SAMs, as “inconsistent data estimated with 
error.” These techniques are similar to those discussed in the preceding chapter in the 
case of input-output tables, so they will not be discussed again here. As in the case of 
input-output matrices, when a SAM table is not balanced, this constitutes a case of the 
ill-behaved inverse problem. In fact, under this situation, besides a reduced number 
of accounts that we may claim to know with sufficient certainty, most of the accounts, 
about n(n – 1) of them, are known with uncertainty and the problem of indeterminacy 
usually arises. Robinson et al. (2001) first suggested a Shannon-Gibbs-Golan entropy 
based method for adjusting an unbalanced SAM of Mozambique’s economy. Since 
then, as we will see later, a growing number publications applying this technique 
have been observed.

3.2  Description of a Standard SAM

The SAM table displays, in a systematic way, the circular flows inside macroeconomic 
accounts according to the bookkeeping principle (input equals output). Within that 
table, each account on the row stands for receipts by the sector at the left side of the 
same row. At the same time, these accounts constitute expenses by the sector situ-
ated on the top of the column. For instance, sector activities purchases “Intermediate 
Inputs” from the commodity sector. This means that this last sector receives a certain 
revenue from the activity sector.

Elements in the first column of sector activity (production sector) concern 
costs necessary to produce the global product at basic price. Thus, in this column 
are intermediary inputs (including imported goods) offered by different economic 
sectors, primary inputs (wages, operating surplus plus depreciation) and net indi-
rect taxes (taxes on production minus subsidies from the government) on produc-
tion. The second sector of commodities buys commodities from the activity sector on 
which direct taxes on consumption must be imposed — mainly value added taxes 
and import tariffs and duties. The commodity sector purchases goods from the rest of 
the world, i.e., imports, for internal consumption needs, complementary to commodi-
ties locally produced. Primary factors pay incomes from sold services to their owners 
(households, enterprises) in the activity sector. Primary factors disburse social secu-
rity premiums to social institutions in exchange for insurance. 

Households, thanks to income received from factors of production or public trans-
fers, purchase goods for private consumption, pay direct taxes to the government, 
as well as taxes on wealth and other revenues and different non-tax disbursements 
in favour of local government. Households save income, not disbursed, for current 
needs and charges, and private banks receive these amounts for savings.
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Enterprises disburse a part of their income in favour of their owners, i.e., house-
holds. Enterprises pay corporate taxes and the public sector factor in favour of gov-
ernment. 

Next, social security institutions, which have received social security premiums 
from households, disburse social security expenditures in relation with insurance 
contract execution.

Government institutions disburse received income (mainly from taxes and other 
government charges) to consume commodities, to make transfers to households, and 
grant subsidies to enterprises, pay interest on domestic and foreign debts, and save 
the remaining income.

Domestic banks, like any other private enterprise, distribute net profits to house-
holds, pay taxes to the government, and disburse saved money for investment; they 
may also lend (national bank) money to the government to finance the difference 
between public investment and public savings. Finally, domestic banks pay interest 
to foreign banks.

Capital Account represents durable materials purchased from commodities for 
private or public investments.

Rest of the world (ROW), that is, foreign countries and institutions, import (our 
exports) goods and services locally produced, and pay remittances to national produc-
tion factors. It pays private transfers of our enterprises residing in foreign countries. 
This account appears as a balance, taking into account transfers made by foreign 
enterprises residing inside our country. Rest of the world finances domestic banks, 
too. This happens, in particular, when branches of international banks are located 
inside the national territory. 

In spite of the sectorial equilibrium between demand and supply predicted by 
theory—that is, in terms of the social accounting matrix, balancing respective rows 
and columns—the system of data collecting and organization of national accounting 
are far from perfect. As a consequence, we get a social accounting matrix which is 
unbalanced, at least for a few of the sectorial accounts. 

This is generally the case for institution accounts like households, enterprise, 
government, and non-profit organizations. That is, contrary to the above explained 
conservation law, general equilibrium is not attained. For instance, total revenue of 
enterprises is lower than their total expenditures, and the situation is reversed in the 
case of the government. The principles of market clearance and of zero-profit may 
not be satisfied in the case of the enterprise sector. The principle of balanced budget 
account is not satisfied in the case of government. In practice, the case of no bal-
anced accounts constitutes the rule rather than the exception. To balance respective 
rows and columns, economists may implement arbitrary economic hypotheses such 
as those related to closure rules31 or use different quantitative techniques already dis-

31 The essential problem is that the classic CGE model, in which all markets clear, yields a full-em-
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cussed above in the case of balancing input-output tables. Some of these techniques 
are more or less reliable. This is the case for the least squares or the linear program-
ming methods, but their accuracy remains poor, as already noted. The bi-proportional 
RAS method (Golan et al., 1996) is relatively powerful. However, it is a not appropriate 
for the imposition of restrictions with random errors in the model. 

Fortunately, recent techniques of cross-entropy econometrics display interest-
ing estimation properties and seem to be adapted to such ratio problems. The next 
section presents the cross-entropy technique which will be applied to balance a social 
accounting matrix of Gabon (see output details in Bwanakare (2013)) or to present 
further applications of the procedure by balancing the ecological SAM of Poland (see 
Tables 23 and 24). As is well known, disaggregating a SAM requires a lot of, often 
non-reconcilable, information which worsens its equilibrium. This is particularly true 
in developing countries. The case of disaggregating labour or household accounts 
without reliable information to split them up should be emphasised. 

ployment equilibrium and market-clearing prices, while short-run macro models typically involve 
wage and price rigidities, partial adjustment mechanisms, and equilibrium without market clearing, 
including unemployment. The two paradigms embody very different notions of equilibrium. http://
www.ifpri.org/events/seminars/2003/20031014/robinson_thorbecke_EPIAM.pdf



4  Balancing a SAM 
As already noted, the numerous data sources used in the process are in diagreement 
and in need of supplemental assumptions. Hence, it is no surprise that the resulting 
SAM is not balanced. The largest discrepancies are found inside accounts concerned 
with secondary distribution of income. This concerns, in particular, the disaggregated 
household account because of the assumptions that have been involved to spread 
the various incomes, transfers, and expenditures of households within its disaggre-
gated components or between the disaggregated components and other accounts.

Once again, there are several ways of balancing inconsistent social accounting 
or any other matrix. Besides economic closure rules, one of the most commonly used 
techniques to balance matrices is the RAS approach. It is typically used for updating 
SAMs for which new row and column sums are known. As we have already noticed in the 
case of the input-output transactions matrix, the RAS technique produces a new trans-
action matrix that is consistent with the new row and column sums by interactively 
adjusting the row and column entries proportionately until the new totals are obtained. 
This approach has at least one severe drawback. The RAS technique assumes that the 
initial SAM is consistent and that there is no measurement error in the row and column 
sums. When dealing with social accounting matrices in general, the initial SAM will 
often not be consistent, there will typically be measurement errors, and there will cer-
tainly be some data entries that the analyst finds more reliable than others. Mainly for 
that reason, the cross-entropy approach seems to be better adapted for balancing the 
SAM. If a reader is interested in comparing the RAS approach with the cross-entropy 
technique, we refer him to Part III, section 3.3. The only question that remains con-
cerns the distribution law of the model to be retained, capable of describing the above 
discrepancies and stochastic errors. This will be answered in the following section. 

Since much has been said in Part II concerning relationships between the cross-
entropy approach and the statistical information theory approach, only a concise 
presentation of this technique will be given here, and the reader is referred to the 
aforementioned references for further detail.

The entropy technique is a method of solving undetermined estimation problems. 
The problem is undetermined because, in the case of a SAM, for an nxn matrix dimen-
sion, we seek to identify n(n – 1) independent, unknown, non-negative parameters, 
i.e., all the cells of the SAM but one column or row, in conformity with Walras’s law. 
In other words, restrictions must be imposed on the estimation problem so that we 
have enough information to obtain a unique solution and to provide enough degrees 
of freedom. The underlying philosophy of entropy estimation is to use all the infor-
mation at hand for the problem and only that information: the estimation procedure 
should not ignore any available information nor should it add any false information.32

32 See Shannon (1948) and Theil (1967) for a discussion of the concept of ‘information.’
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In the case of a SAM estimation, ‘information’ may be the knowledge that there 
is measurement error concerning the variables, and that some parts of the SAM are 
known with more certainty than others. There may be a prior in the form of a SAM 
from a previous year, whereby the entropy problem is to estimate a new set of coef-
ficients ‘close’ to the prior using new information to update it. Furthermore, ‘informa-
tion’ could consist of moment constraints on, for instance, row and column sums, or 
the average of the column sums. In addition to the row and column sums, ‘informa-
tion’ may also consist of certain economic aggregates such as total value-added, final 
demand components, and/or imports. In that way, it becomes possible33 to maintain 
Walrasian conditions of equilibrium. Such information may be incorporated as linear 
adding-up restrictions on the relevant elements of the SAM. In addition to equality 
constraints such as these, information may also be incorporated in the form of inequal-
ity constraints to the macro-aggregates mentioned. In most cases, macroeconomic 
theory can be useful in suggesting signs or interval of variation of certain parameters 
or ratios. This information will then be incorporated among other constraining equa-
tions. Finally, one may want to restrict cells that are zero in the prior to remain so after 
the entropy balancing procedure. Similarly, some cell values belonging to the SAM to 
be updated may not need to be modified because they come from well documented 
sources. Such cell values could then be restricted to stay unmodified during all steps 
of information processing. 

4.1  Shannon-Kullback-Leibler Cross-Entropy

Let us follow for the next estimation procedure found, for example, in Robinson et 
al. (2001), and let the SAM be defined as a matrix T with elements Tij representing a 
payment from column account j to row account i. As mentioned above, each account 
is supposed to display Walrasian equilibrium. In other words, every row sum (toti) in 
the SAM must equal the corresponding column sum (totj):

 
j j

jiiji TTtot  	   (4.1)

Dividing each cell entry in the matrix by its respective column total generates a 
matrix of column coefficients A:

j

ij
ij tot

T
A   	   (4.2)

33  This constitutes a necessary and not a sufficient condition for the achieving of Walras equilib-
rium.
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It is assumed that the entropy problem starts with a prior A which plausibly is a 
SAM from a previous period or, as in this case, a raw and unbalanced SAM. A repre-
sents the starting point from which the cross-entropy balancing procedure departs 
in deriving the new matrix of coefficients A. The entropy problem is to find a new 
set of A coefficients which minimize the so-called Kullback-Leibler (1951) divergence 
measure of the ‘cross-entropy’ (CE) between the prior A* and the posteriori coefficients 
matrix A.
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ij tottotA    = 1 and 0 ≤ Aij ≤ 1	 (4.5)

Note that, according to Walras’s law in general equilibrium theory, one equa-
tion can be dropped in the second set of constraints: If all but one column and row 
sums are equal, the last one must also be equal. The solution of the above problem is 
obtained by setting up the Lagrangian. The k macro-aggregates can be added to the 
set of constraints on the problem above as follows:

)()( k

i j
ij

k
ij T   	 (4.6)

where H is an nxn aggregator matrix with ones for cells that represent the macro-
constraints and zeros otherwise, and γ is the value of the aggregate constraint. As 
mentioned above, in the real world one faces economic data measured with error. The 
cross-entropy problem can also be formulated as an ‘error-in-variables’ system where 
the independent variables are measured with noise e. If, for example, we assume the 
known column sums are measured with error, the row/column consistency constraint 
can be written as:

totj = xi + ei	  (4.7)

where totj is the vector of row sums and xi, the known vector of column sums, is mea-
sured with error ei. The prior estimate of the column sums could be, for instance, the 
initial column sums, the average of the initial column and row sums, or the row sums.

Following Golan et al. (1996), the errors are written as weighted averages of 
known constants v defined over a finite discrete support space m>>1,...,M with points:
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where fim is a set of weights that fulfil the following constraints:
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 = 1 and 0 ≤ fim ≤ 1	 (4.9)

In the estimation problem, the weights are thus treated as probabilities to be esti-
mated, and the prior for the error distribution in this case is chosen to be a symmetric 
distribution around zero with predefined lower and upper bounds, and using either 
three or five weights. Naturally, not only the column and row sums can be measured 
with error, the macro-aggregates by which we constrain our estimation problem may 
also be measured with error, and so we can operate with two sets of errors with sepa-
rate weights f1’s on the column sum errors, and weights f2’s on the macro-aggregate 
errors. The optimization problem in the ‘errors-in-variables’ formulation is now the 
problem of finding A’s, f1’s, and f2’s that minimize the cross-entropy measure, includ-
ing terms for the error weights:









   ij

i j i j
ijijij AAAAffAAI *

21
* lnln)||||(min  

+ 







  

i Mm
iJim

i Mm
imim ffff

,,
11

,,
11 lnln










  

i Mm
iJim

i Mm
imim ffff

,,
22

,,
22 lnln



 

 

(4.10)

Referring once again to the definition of information provided by Kullback and 
presented in the second part of this book, cross-entropy measurements reflects how 
much the information we have introduced has moved our solution estimates away 
from the inconsistent prior, while also accounting for the imprecision of the moments 
assumed to be measured with error. Hence, if the information constraints are binding, 
the distance from the prior will increase. If they are not binding, the cross-entropy 
distance will be zero. It becomes now clearer why we have proposed, while assessing 
forecasting performance of the entropy technique, the difference between the average 
error variance coefficients (AEVC) of the periods 2006 and 2007 as a benchmark, 
maximum divergence precision measurement.

4.2  Balancing a SAM through Tsallis-Kullback-Leibler 
Cross-Entropy

In the following, we are going to generalize the Jaynes-Kullbac-Leibler model (4.10) 
and thus reconsider all the implications of the above theorem on the power law prop-
erty of economy.



� A SAM as a Generalized Input-Output System   101

Let us formally explain Tsallis relative entropy model (2.47-2.50) to be minimized 
together with the above suggested constraints. In this presentation, the Bregman form 
of relative entropy (2.47) will be used:
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subject to: 

ij
j

ij tottotA   	 (4.12)

1
2



N

Mi ijA


 	 (4.13)

1
,,1

  Ih ihw


 	 (4.14)

Symbols are as in Equation (4.9), except wih, which takes the place of f2iJ, and both 
represent disturbance errors on parameters but, this time, of different distribution 
laws.

Empirical, long practice with this class of economy-wide models provides some 
prior information on relevant ranges for parameter values and likely parameter esti-
mates. Furthermore, while the support of any imposed prior distribution for a parame-
ter is a maintained hypothesis (the estimate must fall within the support), the shape of 
the prior distribution over that support (e.g., the weights on each support point) is not. 
Unless the prior is perfect, the data will push the estimated posterior distribution away 
from the prior. The direction and magnitude of these shifts are, in themselves, informa-
tive. Also, note from Equations (4.11– 4.14) that, with increases in the number of data 
points, the second term of prediction in the objective function increasingly dominates 
the first term precision. In the limit, the first term in the objective becomes irrelevant. 
The prior distributions on parameters are only relevant when information is scarce.

4.3  A SAM as a Generalized Input-Output System

In the present paragraph, Kullback-Leibler (K-L) information divergence is extended 
to Tsallis non-ergodic systems and a q-Generalization of the K-L relative entropy cri-
terion function (c.f.), with a priori consistency constraints, is derived for balancing a 
SAM as a generalized input-output transaction matrix. 

On the basis of an unbalanced, Gabonese social accounting matrix (SAM) rep-
resenting a generalized inverse problem input-output system, we propose to update 
and balance it following the procedure explained through the above section.
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4.3.1  A Generalized Linear Non-Extensive Entropy Econometric Model

This section applies the results of, e.g., Jaynes (1957) and Golan et al. (1996) to present 
the model to be later implemented for updating and balancing input-output systems. 
While the argument in the criterion function is already known (see Equation 4.18), 
we need to reparametrize34 the generalized linear model, to be introduced later into 
the model as restrictions in the spirit of Bayesian method of moments (e.g., Zellner, 
1991). Note that such a linear restriction will be affected by a stochastic term expected 
to belong to the larger family of power law distribution. Let us succinctly present the 
general procedure for parameter reparametrization as it follows:

Y = X ⋅β + ε	 (4.15)

Parameter β in general bears values not constrained between 0 and 1. When this 
is the case, reparametrization will no longer be necessary since parameter variation 
area fits well to probability definition area. The variable ε is an unobservable dis-
turbance term with finite variance, owing to the economic data nature of exhibiting 
observation errors from empirical measurement or from random shocks. These sto-
chastic errors are assumed to be driven by a large class of PL. As in classical econo-
metrics, variable Y represents the system, the image of which must be recovered, and 
X accounts for covariates generating the system with unobservable disturbance ε to 
be estimated through observable error components e. Unlike classical econometric 
models, no constraining hypothesis is needed. In particular, the number of param-
eters to be estimated may be higher than the observed data points and the quality 
of collected information data low. Additionally, as already explained, to increase 
the accuracy of such estimated parameters from the poor quality of data points, the 
entropy objective function allows for incorporation of all constraining functions 
which act as Bayesian a priori information in the model.

Let us treat each βk(k = 1,...,K) as a discrete random variable with compact support 
and 2 < M < ∞ possible outcomes. Thus, we can express βk as:
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where pkm is the probability of outcome vkm and the probabilities must be non-negative 
and sum up to one. Similarly, by treating each element ei of e as a finite and discrete 

34 Reparametrization aims at treating parameters of the model as outputs of probability distribu-
tion to be estimated following the procedure presented by Golan et al. (1996) and later exploited for 
modelling many entropy econometric models (see, e.g., Bwanakare et al. (2014, 2015, 2016). Since 
the same probabilities are related to entropy variable defining the criterion function, optimizing the 
whole model then leads to outputs taking into account stochastic a priori information owing to model 
restrictions. 
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random variable with compact support and 2 < M < ∞ possible outcomes centred 
around zero, we can express ei as:





Jj

njnji zre
,,1

 	 (4.17)

where rn is the probability of outcome zn on the support space j. Following Bwana-
kare (2014), we will use the commonly adopted index n, here and in the remaining 
mathematical formulations, to set the number of statistical observations. Note that 
the term e can be initially fixed as a percentage of the explained or endogenous vari-
able, as an a priori Bayesian hypothesis. Posterior probabilities within the support 
space may display non-Gaussian distribution. The element vkm constitutes an a priori 
information provided by the researcher while pkm is an unknown probability whose 
value must be determined by solving a maximum entropy problem. In matrix nota-
tion, let us rewrite β = V⋅P

with pkm ≥ 0 and   


K

k Mm kmp
1 ,,1

1


 pkm = 1,

where again, K is the number of parameters to be estimated and M the number of data 
points over the support space. Also, let e =r ⋅ w
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and rnj = 1 for N the number of observations and the K number of data points over the 
support space for the error term. Then, the Tsallis cross-entropy econometric estima-
tor can be stated as:
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Additionally, k macro-aggregates can be added to the set of constraints as follows:
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where H is a dxd aggregator matrix with ones for cells that represent the macro-con-
straints and zeros otherwise, and γ is the expected value of the aggregate constraint. 
Once again, gs stands for a discrete point support space from s = 2,...,s. Probabilities 
wts stand for point weights over gs. The real q, as previously stated, stands for the 
Tsallis parameter. 

Above, Hq(p||p0, r||r0, w||w0) is nonlinear and measures the entropy in the model. 
Relative entropies of three independent systems (three posteriors p, r, and w and cor-
responding priors p0, r0, and w0) are then summed up using weights αβδ. These are 
positive reals summing up to unity under the given restrictions. We need to find the 
minimum divergence between the priors and the posteriors while the imposed sto-
chastic restrictions and normalization conditions must be fulfilled. As will be the case 
in the application below, the first component of the criterion function may concern 
the parameter structure of the table; the second component errors on column (or 
row) totals and the last component may concern errors around any additional con-
sistency variable, such as the GDP in the case below. As it has been shown by Tsallis 
(2009), this form of entropy displays the same basic properties as K-L information 
divergence index or relative entropy. The estimates of the parameters and residual 
are sensitive to the length and position of support intervals of β parameters (Equa-
tions 4.16 and 4.17) in the context of the Bayesian prior. When parameters of the pro-
posed model are expressed under the form of elasticity or ratio—as will be the case 
in the example below—then the support space should be defined inside the interval 
between zero and one and will fit that of the usual probability variation interval. In 
such a case, no reparametrization of the model is needed. In general, support space 
will be defined between minus and plus infinity, according to the prior belief about 
the parameter area variation by the modeller. Additionally, within the same support 
space, the model estimates and their variances should be affected by the support 
space scaling effect, i.e., the number of affected point values (Foley, 1994). The higher 
the number of these points, the better the prior information about the system. The 
weights αβδ are introduced into the above dual objective function. The first term of 
“precision” accounts for deviations of the estimated parameters from the prior (gen-
erally defined under a support space). The second and the third terms of “prediction 
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ex-post” account for the empirical error term as a difference between predicted and 
observed data values of the model. As expected, the presented entropy model is an 
efficient information processing rule that transforms, according to Bayes’s rule, prior 
and sample information into posterior information (Ashok, 1979).

4.4  Input-Output Power Law (Pl) Structure

It is time now to come back to the fundamental problem concerning the true statisti-
cal nature of input-output data used in the above studies or those below. In recent 
years, as already explained in Part I, many studies (Champernowne, 1953; Gabaix, 
2008) have shown that a large array of economic laws take the form of a PL, in par-
ticular macroeconomic scaling laws, distribution of income and wealth, size of 
cities, firms35, and the distribution of financial variables, such as returns and trading 
volume. Stanley and Mantegna (2007) have studied the dynamics of a general system 
composed of interacting units each with a complex internal structure comprising 
many subunits where the latter grow in a multiplicative way over a period of twenty 
years. They found the system follows a PL distribution. Such outputs should present 
similarities with the internal mechanism of national accounts tables, such as an input 
output table or a SAM. A PL displays, besides its well-known scaling law, a set of inter-
esting characterizations related to aggregative properties of a PL according to which 
a power law is conserved under addition, multiplication, polynomial transformation, 
and minimum and maximum. As far as the PL hypothesis for a SAM is concerned, 
taking into consideration the above literature and using PL properties, it should not 
be difficult to prove the PL character of a SAM, including the Gaussian trivial case. 
About SAM construction and components, see for example, Pyatt (1985). General 
equilibrium (Wing Ian Sue, Sept 2004) implies that respective row and column totals 
are expected to balance. Conceptually, this model is based on the laws of product 
and value conservation (Serban Scrieciu & Blake, 2005) which guarantee conditions 
of zero profits, market clearance, and income balance. However, different stages of 
statistical data processing remain concomitant with human errors and the SAM will 
not balance. It is generally assumed that the main sources of these imbalances remain 
different sources of documentation and different time of data collecting. This means 
that an unknown number of economic transaction values within the matrix are incon-
sistent with the data generating macroeconomic system. For clarity, let us use Table 13 
to explain these imbalances, noting, for instance, a difference between the institution 
row and column totals as follows:

(iT + e4) – (iT + ε4) = (e4 – ε4)	 (4.22)

35  See Bottazzi et al. (2007) for a different standpoint on the subject.
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The term on the left hand side of the above expression represents the difference 
between two erroneous and unequal totals of institution account. The origin of that 
difference results from difference between plausibly different stochastic errors e4 and 
ε4, respectively, on column and row totals. In Table 11, the first alphabetical letter of 
symbols inside each cell represents the first letter of the row (supply) account, and 
the second letter represents the first letter of the corresponding (demand) column. In 
the SAM prototype below, e.g., the symbol “Ca”, explains purchases by the activity 
sector of goods and services from the commodity sector.

The targeted purpose is to find, out of all probability distributions, a set of a pos-
teriori probabilities closest to a priori initial probabilities and insure the balance of 
the SAM table while satisfying other imposed consistency moments and normaliza-
tion conditions. Following Shannon terminology, one may consider post-entropy 
structural coefficients and disturbance errors, respectively, as signal and noise. The 
first step consists in computing a priori coefficients by column from real data from 
Table 11 by dividing each cell account by the respective column total. Next, we treat 
these column coefficients as analogous to probabilities and column totals as expected 
column sums, weighted by these probabilities (see Equation 4.19). These coefficient 
values will serve as the starting, best prior estimates of the model. The other two types 
of priors to initialize the solution concern errors on column totals (Equation 4.17) and 
on gross domestic product (GDP) at factor and market prices (Equation  4.21). GDP 
variables are added to the model with the purpose of binding the latter to meet con-
sistency macroeconomic relationships for different accounts inside the SAM. Other 
macroeconomic relations like those affecting interior or global consumptions could 
be added. The proposed approach combines non-ergodic Tsallis entropy with Bayes’ 
rule to solve a generalized random inverse problem. We may optionally consider only 

Table 11: General structure of a stochastic non-balanced SAM

  Activities Commodities Factors Institutions Capital World Total

Activities 0 Ac 0 Ai 0 aw aT+ ε1 

Commodities Ca 0 0 Ci cc 0 cT+ ε2

Factors Fa 0 0 0 0 0 fT+ ε3

Institutions Ia Ic If ii 0 iw iT+ ε4

Capital 0 0 0 ci 0 cw cT+ ε5

World 0 Wc 0 wi 0 0 wT+ ε6

Total aT+ e1 cT+ e2 fT+ e3 iT+ e4 cT+ e5 wT+ e6  

Source: own elaboration.
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some cell values as certain36 while the rest of the accounts are unknown. This is one 
of the strongest points of the entropy approach over other mechanical techniques 
of balancing the national accounts table through a stochastic framework. All row 
and column totals are known with uncertainty. It is straightforward to notice that the 
potential freedom degree number of parameters to estimate (n – 1) (n – 1) remains 
significantly higher than n observed data points (column totals). In a particular case 
of a SAM, and due to empty cells, that number of unknown parameters may be much 
lower. In any event, that will not generally prevent us from dealing with an ill-behaved 
inverse stochastic problem. The next important step is initializing the above defined 
errors through a reparametrizing process. A five point support space symmetric around 
zero is defined. To scale the error support space to real data, we apply Chebychev’s 
inequality and three sigma rules (Serban Scrieciu & Blake, 2005). Corresponding 
optimal probability weights are then computed so as to define the prior noise compo-
nent (Robinson et al., 2001).

4.5  Balancing a SAM of a Developing Country: the Case of the 
Republic of Gabon

In our analysis of the last cases, we have rather underscored technical aspects of 
entropy for balancing input-output tables. However, when statistical data from differ-
ent sources are available and sufficiently consistent, applying a complex procedure 
as the one relying on entropy formalism can be more time consuming than relatively 
easier techniques like the RAS (e.g., Pukelsheim, 1994; Bacharach, 1970). This is the 
case for many developed countries where statistical data gathering is generally effi-
cient37. On the contrary, as we are going to see in the coming pages, this is not the case 
for the majority of developing countries in which statistical data are not only scarce 
but also of bad quality.

Thus, to complete an array of empirical advantages of the proposed entropy 
approach, we are going to analyse the case of developing countries where complete 

36 Only transaction accounts with the rest of the world (import, export, external current balance), 
plus government commodity consumption accounts are concerned. 
37 The statistical data gathering system in Poland can been seen as relatively efficient in compari-
son with those of most of developing countries. Availability of data on a large scale and their quasi-
consistency though from various unrelated sources is the criterion retained here for giving such an 
appraisal. As a result, it should be relatively easier to balance national account tables without using 
complicated procedures such the entropy-related one. Thus, inconsistencies displayed in Table 1 may 
not reflect outputs from other publications on the same subject. The purpose of the present example 
is just to show the performance of the cross-entropy procedure in balancing a system under con-
straining, a priori information, like different macroeconomic identities characterizing national ac-
count tables. 
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statistical information is generally unavailable. Not only does such information not 
fully exist, what does should be approached with a high level of uncertainty. Applying 
traditional balancing techniques, like the RAS approach, becomes in practice difficult.

Based on the Shannon entropy approach, a large number of studies—particularly 
from developing countries—designed to balance SAM tables have been prepared in 
the last two decades. The already cited paper of Robinson et al. (2001), consecutive to 
the publications of Golan et al. (1996), has become a reference work for having shown 
an algorithm—in GAMS code (General Algebraic Modelling System)—for balancing 
a SAM in the case of uncertainty. One can list other studies with identical purpose, 
such as those of Salem (2004) for Tunisia and Kerwat et al. (2009) for Libya. Murat 
(2005), using Shannon cross-entropy formalism, has balanced a Turkish Financial 
Social Accounting Matrix and, more recently, Miller et al. (2011) has built and bal-
anced a disaggregated SAM for Ireland. Note that these last two countries belong, 
respectively, to the category of intermediary developed and developed countries. 
Many other entropy-based studies have been presented for various countries like 
Malawi, South Africa, Zimbabwe, Ghana, Gabon, and Vietnam. The results shown 
below generalize, once again, Shannon formalism by applying a non-extensive 
entropy divergence formalism.

4.5.1  Balancing the SAM of Gabon by Tsallis Cross-Entropy Formalism

A complete description of data sources or others details concerning the methodology 
of building the aggregated and disaggregated SAM of Gabon can be found in Bwa-
nakare (2013).38 That methodology has been proposed by Robinson et al. (2001) for 
balancing the SAM of Mozambique. Briefly, it consists of two steps in building the 
final SAM. In the first step, an aggregate and unbalanced SAM is built on the basis of 
official macroeconomic data. The second will serve as a control in building a much 
more disaggregated SAM in which accounts will be obtained by splitting out aggre-
gated accounts of the balanced39 SAM of the first step. Table 12 below represents the 
initial aggregated and unbalanced SAM of Gabon. Statistical data come from three 
sources: the Ministry of Planning, the Ministry of Economy and Finance, and the Bank 
of Central Africa States.

38 This document was prepared with the help of the Directorate of National Accounting at the Min-
istry of Planning and Development of the Republic of Gabon. A copy of the outputs of the balanc-
ing of this SAM has been transmitted to the Ministry. See the document at http://www.numilog.
com/236150/Methodologie-pour-la-balance-d-une-matrice-de-comptabilite-sociale-par-l-approche-
econometrique-de-l-entropie---le-cas-du-Gabon (ebook: Paris: Editions JePublie).
39 We have used the cross-entropy technique for balancing such an aggregated SAM.
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Thus, one may observe that all columns are not balanced with respective rows. 
This is the case for the enterprise and government accounts. This means that the 
general equilibrium is not attained. The total revenue of enterprises is higher than 
their total expenditures and the situation is reverse in the case of government.

In the case of Gabon, we target disaggregate accounts from 8 macro-accounts of 
the aggregated SAM to 82 subaccounts of the disaggregated new SAM. Among these 
subaccounts, we have 31 activity accounts, 33 product accounts (including 3 margin 
accounts which replace wholesale and retail trade), 3 accounts of labour factors 
and 1 of social capital, 4 classes of households, 3 business institutions, 4 government 
accounts, including public investment. The rest of the accounts are private invest-
ment, change in stock and rest of the world. Disaggregating a SAM requires much 
and often non-consistent information from different sources and periods. In the case 
of Gabon, this is particularly true for labour or the household accounts since reliable 
information allowing to tease out such accounts is scarce.

In statistical theory of information terms, the problem to be solved is one of 
finding a new disaggregated, a posteriori balanced SAM as close as possible to the 
initial unbalanced and disaggregated a priori SAM, while fulfilling imposed statistical 
and/or macroeconomic restrictions. To implement the model, we use the mathemati-
cal expression of non-extensive relative entropy under the next additional macroeco-
nomic restrictions related to the targeted period (i.e., 1997 in the case of Gabon):
·· Nominal GDP = consumption + investment + government expenditures + export 

– import
·· GDP at factor cost = Nominal GDP – indirect taxes + subsidies 
·· Nominal GNP = Nominal GDP + net foreign income 
·· Fixing the input-output coefficients inside the SAM to the level of the previous 

period, implying that the structure of the Gabonese economy has not changed 
during the preceding years. Such a hypothesis remains realistic in the case of 
most developing countries, over a relatively long period. 

·· All accounts concerning business with the rest of the world have been fixed to 
the known level from international sources. This is so because, generally, data on 
international business remain reliable even in the case of developing countries.

When analysing the discrepancy between the prior and the posterior SAM, important 
modifications are observed. In particular, important discrepancies take place in the 
case of the institution and factor accounts. For instance, we note that wage assess-
ment in the petroleum sector is probably underestimated for the senior executive 
category by around 300% of the real value deriving from post entropy modelling. In 
the period 1977, it had been pointed out many times by international institutions and 
media that financial transparency in Gabon needed to be improved. We note large 
modifications in factor inputs for bank and insurance activities.

Finally, it is important to note that outputs from Shannon cross-entropy (reported 
in Bwanakare, 2013) are identical to those from Tsallis cross-entropy formalism. As 
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pointed out many times, this suggests that we are dealing with a Gaussian distribu-
tion model. Thus, since similar outputs have been published in the above reference, 
outputs from the non-extensive entropy technique are not presented in this mono-
graph. Nevertheless, interested readers can obtain more details on these outputs.

To conclude, the question of assessing the performance of the approach could be 
posed here. In fact, since no previous, benchmark SAM exists in the case of Gabon40, it 
is difficult to know to what extent we have deviated from values representing the true 
level of the economy. Fortunately enough, the entropy approach allows additional infor-
mation embodied by the macroeconomic restrictions to be easily incorporated into the 
model. Next, when the optimum solution is reached, we then get the best results, gener-
ally conforming to our expectations. This should be the case in the present Gabon model.

4.6  About the Extended SAM

A SAM can be extended in different ways and for different purposes. Generally a SAM 
is extended to incorporate monetary aspects of the economy or to take into account 
the natural environment. In this document, we will deal with this last case only. 

A SAM can be extended and incorporate auxiliary accounts concerning the envi-
ronment and natural resource sectors, so that it becomes possible to analyse inter-
actions between them and the economy. In fact, an environmentally extended SAM 
(ESAM) usually captures the relationships among economic activities, pollution 
abatement activities, and pollution emissions. The multiplier and structural path 
analyses are applied to the ESAM for assessing environmental impacts of pollution-
related economic policies.

Recent literature shows that an ESAM can be a useful tool for environmen-
tal policy analysis. Interested readers can find rich and detailed information in the 
monograph of Plich (2002).

Table 13 presents a Polish unbalanced ESAM. The particularity of that matrix is 
that we have added four new sectors related to ecological activity. The first sector is 
the abatement ecological activity sector. In that sector, firms carry out depollution 
activities. The second sector is the abatement ecological commodity sector, which 
offers the produced services and products to the market. The third sector is that of 
pollution fees. Firms (or households) must pay tradable pollution permits or other 
forms of tax to government as a cost of using the polluting engines. In this context, 
this sector is considered as a (negative) factor of production Plich (2002). The last 
sector concerns the environmental capital accumulation for depolluting activity. It is 

40 As in many developing countries, even if it existed, it would not necessarily represent a good 
reference.
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worth emphasising that Table 13 may display more or less weakness since any bench-
mark table for Poland has not been found in the existing literature. The sole source of 
data used is the Polish Central Office of Statistics (GUS). Under these circumstances, 
let us suppose that more reliable information does not exist, as it often happens for 
this kind of research. Finding results using traditional approaches may take time, and 
reliability of outputs is generally limited since environmental data assessment is a 
difficult task. The purpose of this section is to apply entropy formalism to update the 
unbalanced Table 13. As we already know, the more significant moment restrictions 
are, the less significant precision errors will result. There are many reasons to con-
sider the non-extensive entropy model to be—in this case of an ecological model— an 
ideal balancing rule since it has been proven to display multidisciplinary properties in 
many application areas. After having applied non-extensive cross entropy formalism 
(see Equations 4.18–4.21), we present below Table 14 an environmentally extended 
(aggregated) balanced Polish SAM (2005). In this experiment, accounts related to gov-
ernment and to foreign operations are supposed to be known with a random error. 
Such restrictions seem acceptable for a country like Poland, where statistical data on 
government incomes and expenses or operations with the rest of the world remain 
sufficiently reliable. The next restriction has concerned matrix cells with zero values 
in the initial Table 13. These zero value cells have been supposed to be known with 
certainty so that no change has modified them after computation. Information diver-
gence between the two tables is reported in Table 15. Values inside the cells are in 
percent. The reader may notice the precision of the model, through the retained con-
straining variables in the minimization entropy model.
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Glossary of table abbreviations:

aAct: activity sector
aPOLLABAT: abatement ecological activity sector
pCom: commodity sector
pPOLLABAT: abatement ecological commodity sector
Labor: labor sector (factor of production)
Capital: capital sector (factor of production)
Pollfees: pollution fees sector (factor of production)
Hou: households institution
Ent: enterprise institution
GRE: government institution
CapAc: capital accumulation sector (private investment)
CAPACENV: abatement -oriented capital accumulation sector (private investment)
RoW: rest of the world institution



5  A SAM and Multiplier Analysis: Economic Linkages 
and Multiplier Effects

5.1  What are the Economic Linkages and Multiplier Effects? 

The strongest argument in favour of the Walras equilibrium—as opposed to the Mar-
shall ceteris paribus approach—will find its momentum once industry linkages and 
multiplier effects are envisaged. This is so because in these circumstances thinking 
about partial equilibrium becomes less sustainable. In fact, the effect of a shock from 
one industry may have direct and indirect impact on the whole system defined by dif-
ferent industries. Let us analyse below a shock generated by the demand side. When 
we talk of “exogenous demand-side shocks” to an economy, we refer to changes to 
final control demand aggregates, i.e., export demand, government spending, or net 
investment demand of stocks. The effects of these shocks are both direct and indirect. 

The direct effects are to those sectors that affront the shock. For example, an 
exogenous increase in demand for Polish manufactured exports has a direct impact 
on the manufacturing industry, which results in increased inputs, production, sales, 
and value-added. However, the positive consequences of such a shock go beyond the 
manufacturing industry. It may also have indirect effects stemming from manufac-
tures’ linkages to other industries inside the economy. These indirect linkages can be 
classified into supply-side and demand-side. When we add up all direct and indirect 
linkages, we get a measure of the shock’s multiplier effect, or how much an initial 
effect is amplified or multiplied by indirect linkage effects. Supply-side linkages are 
determined by industry production technologies, which can be depicted from an 
input-output table. Next, they are differentiated into backward and forward linkages. 
Backward production linkages are the demand for additional inputs used by produc-
ers to supply additional goods or services. For instance, when production (of man-
ufacturers) expands, it requires additional intermediate goods or services like raw 
material, machinery, and transport services. This demand then stimulates produc-
tion of other industries that supply these intermediate goods. Technical coefficients 
supply information on the input intensity of the production technology used. The 
more an industry’s production technology is input intensive, the stronger its back-
ward linkages.

Forward linkages allude to supply inputs to upstream industries. For instance, 
increased manufacturer production should lead to increased supply of goods to the 
construction industry, which, in turn, stimulates, among others, service industries. 
As in the case of backward linkages, the more important an industry is regarding 
upstream industries, the stronger its forward linkages will be and multipliers will 
definitely become larger.

 Open Access. © 2017 Second Bwanakare, published by De Gruyter.  This work is licensed 
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.  
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The conceptual structure of the input-output matrix only allows for deriving mul-
tipliers that measure the effects of supply linkages. Since the input-output table does 
not show secondary income distribution, it is not possible to consider consumption 
linkages, which arise when an expansion of production generates additional incomes 
for factors and households, which are then used to purchase goods and services. 
Continuing the same example as above, when manufacturing production expands, 
it raises households’ incomes, which are used to buy consumer goods. Depending 
on the share of domestically produced, tradable, and imported goods in households’ 
consumption baskets, domestic producers benefit from greater demand for their 
products. The size of consumption linkages depends on various factors, including the 
share of net factor income distributed to households; for an open economy, the level 
of gross domestic product per inhabitant, which exercises an influence on the compo-
sition of the consumption basket; and the relative price between locally produced and 
imported goods which determines in Armington fashion the share of domestically 
supplied goods in consumer demand.

Consequently, SAM multipliers tend to be larger than input-output multipliers 
because they capture both production and consumption/income linkages.

Following Breisinger et al. (2009), 

while economic linkages are determined by the structural characteristics of an economy (evi-
denced through technical coefficients and/or the composition of households’ consumption 
baskets) and remain thus static, multiplier effects capture the combined dynamic effects of eco-
nomic linkages over a period of time through different auto-generated rounds. 

Three types of multipliers are generally reported in empirical research. First, an 
output multiplier combines all direct and indirect (consumption and production) 
effects across multiple rounds and reports the final increase in gross output of all pro-
duction activities. Second, a GDP multiplier measures the total change value-added 
or factor incomes caused by direct and indirect effects. Finally, the income multiplier 
measures the total change in household incomes.

The dampening path of multipliers is consecutive to the level of leakage inside 
economic circular flows. Ultimately, higher leakages stemming from income allocated 
to imported goods or from government taxes make the round-by-round effects slow 
down more quickly and reduce the total multiplier effect.

In empirical research, one must often deal with two kinds of economic hypoth-
eses. First, still in the context of the above example, one can suppose that demand 
shock will encounter no constrained response from the supply side. The second case 
is the one where demand shock is constrained. This can happen when supply is not 
able to completely satisfy increased demand. In this hypothesis, multipliers will 
follow a modified dynamic path towards slowing down. Let us still follow Breisinger 
et al. (2009) and then succinctly analyse both cases.
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5.1.1  A SAM Unconstrained Multiplier

Let us present below a simplified SAM where presented accounts are just those 
required to derive a multiplier matrix. 

Table 16: A simplified SAM for multiplier analysis

  Activities Commodities Factors Households Exogenous 
demand

Total

  A1 A2 C1 C2 F H E  

A1     X1         X1

A2     X2       X2

C1 Z11 Z12     C1 E1 Z1

C2 Z22 Z22       C2 E2 Z2

F V1 V2           V

H         V1 + V2     Y

E     L1 L2   S   E

Total X1 X2 Z1 Z2 V Y E  

Source: own elaboration, based on Breisinger, Thomas, and Thurlow (2009).

We divide columns by their total to derive the coefficient matrix (M-matrix) excluding 
the exogenous components of demand.

Table 17: Transformed Table 16

Activity Commodities Factors Households Exogenous 
demand

A1 A2 C1 C2 F H E

A1 b1=X1/Z1

A2 b2=X2/Z2

C1 a11=Z11/X1 a12=Z12/X2 c1=C1/Y E1

C2 a21=Z21/X1 a22=Z22/X2 c2=C2/Y E2

F v1=V1/X1 v2=V2/X2

H 1=(V1 + V2)/V

E l1=L1/Z1 l2=L2/Z2 s=S/Y

Total 1 1 1 1 1 1 E

Source: own elaboration, based on Breisinger, Thomas, and Thurlow (2009).
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Symbols:

a) Values:
X: Gross output of each activity (i.e., X1 and X2)
Z: Total demand for each commodity (i.e., Z1 and Z2)
V: Total factor income 
Y: Total household income 
E: Exogenous components of demand shares

b) Share:
a: Technical coefficients 
b: Share of domestic output in total demand
v: Share of value-added or factor income in gross output
l: Share of the value of total demand from imports or commodity taxes
c: Household consumption expenditure shares
s: Household savings rate 

To derive equations representing the relationships in the above SAM, we start by 
setting up simple demand equations:

Z1 = a11X1 + a12X2 + c1Y + E1

Z2 = a21X1 + a22X2 + c2Y + E2	 (4.23)

Total demand = intermediate demand + household demand + exogenous demand. 
The next relationships tell us that domestic production X is only part of total 

demand Z.

X1 = b1Z1

X2 = b2Z2

Since household income Y depends on the share each factor earns in each sector, 
then:

Y = v1X1 + v2X2

or,

Y = v1b1Z1 + v2b2Z2

Now replacing all X and Y in Equation (4.23), moving everything except for E onto 
the left-hand side, and grouping Z together, we finally obtain:

(I – M)Z = E,	 (4.24)
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where 
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We note that M is a square matrix, the elements (share values) of which are not nega-
tive. Each column sum (see Table 16) is less or equal to unity. Thus, an inverse matrix 
of (I – M) exists and should display non-negative values, suggesting the non-negativ-
ity of the multiplier matrix.

Formally, from (4.24) we directly get the final multiplier equation of the form:

Z = (I – M)–1E	 (4.25)

Total demand = multiplier matrix × exogenous demand
The above formulation tells us that when exogenous demand E increases, one 

will end up with a final increase in total demand equal to Z, owing to all the direct and 
indirect multiplier effects (I – M)–1. 

5.1.2  Equation System for Constrained SAM Multiplier

Often when factor allocation is not optimal, exogenous demand shocks may encounter 
limited response from producing sectors. Let us analyse below how much a multiplier 
will change if some producing sectors are unable to correctly respond. The expected 
issue is that if we fix one of two sectors Z, for instance Z2. In that case, imports should 
substitute for domestic supply, thus eliminating any growth linkages from this sector.

The next equation is related to the non-constrained case and expresses total 
demand as the sum of its parts.

(1 – a11b1 – c1v1b1)Z1 + (– a12b2 – c1v2b2)Z2 = E1

(– a21b1 – c2v1b1)Z1 + (1 – a22b2 – c2v2b2)Z2 = E2

Grouping exogenous terms on the right-hand side (i.e., E1 and Z2) and rearrang-
ing41, we finally obtain:
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41  For derivation details, see Breisinger, Thomas, and Thurlow (2009).
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Interpretation of the above equation is the following: an exogenous increase in 
demand for the unconstrained sectors [E1] leads to final increase in total demand 
for these sectors [Z1], including all of the forward and backward linkages (I – M*)–1. 
For the sectors with constrained supply (in our case sector Z2), it is net exports that 
decline. This means that the current trade balance must worsen if we have to amor-
tize demand shock in the case of constrained supply. If exports remained unchanged, 
then the alternative of reducing exports would be increasing imports so as to meet 
additional exogenous demand in the context of this constrained supply.

5.1.3  On Modelling Multiplier Impact for an Ill-Behaved SAM

Let us now return back to the central problem of this presentation and suppose that 
the matrix is unbalanced, which implies that multiplier values are not reliable. The 
way to avoid this should consist of only estimating parameters of the model without 
taking into account the obligation that the whole SAM be internally consistent. Thus, 
we should maximize (or minimize) entropy for probabilities related to the multiplier 
matrix under traditional restrictions, plus an additional constraint declaring values 
of an already balanced SAM to be taken as a prior.

Remembering about the interpretation of estimated parameters through the 
maximum entropy principle, it would be easy to make a link between the multiplier 
effect and maximum entropy modelling. In fact, in a linear model, parameters esti-
mated by entropy formalism are interpreted as the long-run (equilibrium) impact of 
one unit change of regressor x on regresand y. Thus, long-run impact means that direct 
and indirect effects of the multiplier are accounted for with respect to the shock.

Annex C. Proof of Economy Power Law Properties 

1. Definition of Power Law Distribution
Since we already know existing relationships between power law function and non-
extensive entropy from Part II of this work, let us now present the main properties of 
the former in the context of a SAM. 

Using a simplified formulation, a power law is the relation of the form f(x) = Kxα 
where x  .00  qq   0 and K and α are constants. While power laws can appear in many dif-



� Annex C. Proof of Economy Power Law Properties    123

ferent contexts, the most common are those where f(x) describes a distribution of 
random variables or the autocorrelation function of a random process. 

The formulation above has the advantage of being intuitive. However, it does not 
show the real attributes of that distribution, which displays asymptotical character-
istics.

Thus, the notion of a power law as it is used in extreme value theory is an asymp-
totic scaling relation. Let us first explain what we understand by equivalent scaling. 
Two functions f and g have equivalent scaling, f(x) ~ g(x) in the limit x → ∞42 if:
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	 (4.27)

x → ∞

with L(x) is a slowly varying function, thus satisfying the relation:
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,

x → ∞

for any finite constant t > 0. Slowly varying functions are, for example, L(x) = C and 
L(x) = ln(x), that is, a constant and a logarithmic function, respectively.

A power law is defined as any function satisfying f(x) ~ xα. This definition then 
implies that a power law is not a single function but an asymptotical composite func-
tion. The slowly varying function L(x) can be thought of as the deviation from a pure 
power law for finite x. 

For f(x) = L(x)xα, taking logarithms of both sides and dividing by log(x) gives 

log f(x)/log (x) = –α + log L(x)/log (x)	 (4.28)

Remembering that L(x) is a slowly varying function, in the limit, the second term 
on the right vanishes to zero as x → ∞, and thus we have:

log f(x)/log (x) = –α,

or equivalently,

f(x) = x–α, for x → ∞.

This means that the empirical form of the function becomes:

f(x) ~ x–α 	 (4.29)

and in terms of probabilities, a the cumulative function P(S > x) = kx–α corresponds to 
a probability density function: f(x) = kαx–(α+1).

42  Note that this limit is not the one possible, but remains a realistic device, e.g., in finance.
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2. Main Properties
We list below only properties directly related to two theorems proposed in this annex.
a)	 The property that most interests us and that generally makes power laws special 

is that they describe scale free phenomena. A variable undergoes a scale transfor-
mation of the form x → Cx. If x is transformed, we then obtain:

f(x) = kCαxα = Cαf(x) 						                      (4.30)

provided that given initial power law function is f(x) = kxα. Changing the scale of 
the independent variable thus preserves the functional form of the solution but 
with a change in its scale. This is an important property in our case. Scale-free 
behaviour strongly suggests that the same mechanism is at work across differ-
ent sectors of the economy, the industrial structure of which remains constant 
over a relatively long period of time, measured with any time measurement (i.e., 
seconds, minutes, hours, days, years). A useful example that should be appealing 
for economists is price. We say that price is a homogenous function of degree zero 
with respect to income. 

b)	 A power law is just a linear relationship between logarithms (Breisinger et al., 
2009) of the form:

log f(x) = –α log (x) + log k.	                  (4.31)

c)	 Power law also has excellent aggregation properties43. The property of being dis-
tributed according to a power law is conserved under addition, multiplication, 
polynomial transformation, min, and max. The general rule is that when combin-
ing two power law variables, the fattest power law (i.e., the one with the smallest 
exponent) dominates. This property could be helpful for empiricist researchers 
using this form of function.

Let X1,...,Xn be independent random variables, and k, a positive constant. Let 
αx be also the power law exponent of variable X. Following Gabaix (2008), Jessen 
and Mikosch (2006), we have the so-called inheritance mechanism for power law:

),....,min(
2121 ..... nn XXXXXX    	 (4.32)

),....,min(
2121 *.....* nn XXXXXX    	 (4.33)

),....,min()
2121 .....,max( nn XXXXXX    	 (4.34)

43 The interested reader is recommended to see the works of Jessen & Mikosch (2006) or Gabaix 
(2008). As an example of relative facilities of proofs, if xkxxXP  )( kkk
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).,...()
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𝛼𝛼𝑘𝑘𝑘𝑘 = 𝛼𝛼𝑥𝑥 	 (4.36)
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Thus, if we have two variables X and Y with different exponents, this property 
holds when Y is normal, lognormal, or exponential, in which case αY = ∞. Hence, 
multiplying by normal variables, adding non-fat tail noise, or summing over 
independent and identically distributed (i.i.d.) variables preserves the exponent.

This is a reason for hope for empiricists, that power law exponents can be mea-
sured even if the data are noisy. Although noise affects statistics (moments), it will 
not affect the PL exponent. The problem of missing data may not affect informa-
tion contained inside data, either.

3. Statistical Complexity of a SAM
A social accounting matrix represents an economic table aggregating information 
about complex interchanges within different sectors and/or institutions. These inter-
changes have been described in Figure 1 where a general scheme of income flow in the 
economy was described. In economics, the main purpose of human activity is increas-
ing income, the principal source of well-being. Changes in that income are usually 
assessed through gross domestic product growth (GDPG). However, this GDPG is itself 
an aggregate accounting of income growth from different sectors and institutions. 
Since a SAM is built under the principle of double entry bookkeeping, income, and 
expense totals should balance. This aspect has been previously alluded to. We remain  
within the Walrasian economy44, which rules out that expenses growth is absolutely 
co-integrated, in the context of Granger time series analysis, with incomes or wealth, 
over any time period.

As earlier suggested, the economic system described is defined by different inter-
active subsystems, each represented by respective actors and characterized by opti-
mizing behaviour. Households, which tend to maximize a certain utility function, 
remain the owner of factors of production and are the final consumer of produced 
commodities; firms maximize profits by optimal renting of these factors from house-
holds for the production of goods and services. In this model, government has the 
passive role of collecting and disbursing taxes. Furthermore, the economy analysed 

44 However, according to recent research, power law consistency with equilibrium theory has, so 
far, failed to address this. Nevertheless, such consistency is expected for both theories (Doyne, & 
Geanakoplos, 2009)
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is small and open, and entirely prone to world fluctuations, owing to, among other 
things, the country’s status of ‘price taker’ from the international market. 

Furthermore, as already noted, due to different and sometimes contradictory 
sources of collected statistical information, a SAM cannot be balanced. Such statis-
tical data may display, as partially coming from statistical surveys, systematic and 
stochastic errors, thus missing some normal Gaussian properties. 

A Proof of SAM Power Law Distribution Properties 
For the next step, we provide propositions evidenced by the above properties of power 
law functions and by other recent works in econophysics (e.g., Stanley et al., 1998). 

Proposition 1. Under general Walrasian conditions,45 the present level of secto-
rial (or institutional) income or expense total is a linear function of cumulated past 
and present sectorial or institutional wealth (income) or expenses growth rates of the 
global economy.

Proposition 2. Income (profit) growth rate follows exponential law within sectors 
or institutions with similar activity scale while this distribution becomes a power law 
among firms with different activity scales.

The first proposition simply explains a cumulative character of wealth from addi-
tional net incomes over time, in this case, sectorial industry or an institution. The 
property (4.32) guarantees plausibility of this proposition provided the independence 
of growth rates.

The second proposition, follows results found in the case of the U.S. economy 
(Stanley et al., 2001), where firms with the same level of activity display an expo-
nential distribution of income (profit) growth rate while that distribution becomes 
a power law when we confront firms with different levels of activity. Furthermore, 
in this last case, the above authors have noted seven different fractals within that 
distribution.

Assumption 1 (structural stability). We will adopt an economy where factors of 
production are mobile among sectors of production and different scales of sectors are 
not affected by structural differences in factor productivities. To make this assump-
tion more realistic, this means that the level of productivity and of factors within dif-
ferent sectors of the economy are identical enough so that there are no observed factor 
movements towards a given sector over a long period T → ∞. 

Assumption 2 (convergence). A cumulated economic growth rate trend is posi-
tive. This means that if we assume g⋅jt to be any growth rate in the economic or insti-
tutional sector j for period t, we have:




1t
jtg  	 (4.38)

45 Here, we have particularly the principles of market clearance and of income balance in mind. 
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In other terms, positive growth rates always mark an advantage on negative ones 
and economic progress in the long run is guaranteed. This assumption is a stylized 
version of human economic development through history, owing to their natural 
capacity to innovate. 

Theorem 1. For a given non-centralized economy, disaggregated subaccounts of a 
vector (matrix) additively defining micro-elements of an entire system account by row 
or by column (being a cumulative income growth over finite lengths, periods n) display 
by row (expenses) or column (incomes) a power law distribution.

Proof 46: Let us first provide the demonstration on the income generating side 
of an accounts table and thus consider a non-centralized economy (system) made 
of M sectors and institutions (micro-elements) j (j = 1..M) generating each income 
wijt where i (i = 1...M) means one of the M sectors receiving incomes from one of the j 
sectors during the period tn. Aggregative sectorial income is

.
..1

•


•  Ww
Mj

j  .

Let us consider two free periods of time 0 and t. We have then w.j0 and w.jt , two succes-
sive incomes during two periods, and we defined wealth growth g.j as g.j = w.jt / w.j0, 
meaning a relative growth of wealth at period t. Equivalently, we have the growth rate 
ln(g.). In probabilistic terms, we will assume there is some collection g.j of possible 
wealth growth in a fixed sector i by a finite number of sectors j that each can generate 
with associated probabilities {p.j }. For a fixed sector i, we have 

1
..1

 •


• Pp
Mj

j  	 (4.39)

Let us now introduce maximum entropy formalism to the problem.
Let us consider a continuous case where we have wealth growth g.j and its density 

of probability to be found, f(g.j). We maximize the entropy (Carter, 2011). 
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46 It will suffice to demonstrate the case of, for example, wealth growth and to deduct the case of expen-
diture growth, thanks to Walrasian aspects of our economy or by referring to the co-integrating character of 
both variables on a longer interval of time. 
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where constant k is the average number of inter-sectorial transactions per time step. 
The next step consists of applying the calculus of variations to maximize over a class 
of functions. Thus, solving an external problem of the functional:

∫𝐹𝐹 [𝑧𝑧, 𝑓𝑓(𝑧𝑧), 𝑓𝑓′(𝑧𝑧)]𝑑𝑑𝑑𝑑 	 (4.43)
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We define the Lagrange of the form:
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Finally, we get from conditions of first order:
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where λ0 = 1 + μ.

One can use the normalization (4.41) condition to solve for   00 )ln()(  
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after assuming λ  .00  qq   1.

Rearranging the above terms, we get the density probability functional form:

f(g⋅j) = (λ – 1)(g⋅j)–λ	 (4.44)

This is the sought density probabilities of wealth growth rate of economic sectors 
and institutions. It displays a power law distribution form. 

Next, Theorem 1 above and properties (4.32– 4.36) guarantee that the cumulated 
by the past growth sectorial incomes should continue to display a power law distri-
bution irrespective of which form of transition economy evolves from period t to the 
next period t + 1. In particular, we note that property (4.33) ensures that multiplica-
tive transitory combinations of different growth rates continue to keep the power law 
property of economic sectorial movements unmodified. Assumptions 1 and 2 guaran-
tee that cumulated income growth rates are an increasing function of time, guaran-
teeing increasing sectorial wealth over generations.

The demonstration is proven.
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Theorem 2. Economic growth rate movements of any open economy display power 
law function properties.

Proof: Its proof results from the demonstration of Theorem 1 and the additive 
property (4.32) since the global economic growth rate is derived as a weighted linear 
combination of sectorial growth rates. This ends the demonstration. 
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PART V: Computable General Equilibrium Models



1  A Historical Perspective
Since the 19th century, there has been a methodological discussion in econom-
ics about how one should analyse national economies. Walras (1834) introduced a 
framework he called General Equilibrium Analysis. According to Walras, in a national 
economy “everything affects everything.” The only correct way to analyse it should be 
to treat the national economy as an unbroken entity and to use the tools of general 
equilibrium analysis. Later, many other economists have strengthened the Walras 
orientation. As an example, one can cite the Edgeworth diagram, which enabled 
us to explain the Pareto optimum. However, the work of Arrow and Debreu (1954) 
has constituted the cornerstone of Walrasian equilibrium theory. In fact, by proving 
the existence of the uniqueness of the optimum of Walrasian equilibrium—plus the 
two theorems of welfare—Arrow and Debreu combined abstract general equilibrium 
structure with realistic economic data to solve numerically for the levels of supply, 
demand, and price that support equilibrium across a specified set of markets. This 
allowed Walrasian equilibrium to become an applicable theory. It is worthwhile to 
recall here the contribution of Nash (1950), who introduced anticipation aspects into 
multi-game equilibrium, thereby achieving something like a quasi-Pareto optimum. 

This school of thought is the forefather of the Leontief input-output model of pro-
duction, the social accounting matrix (SAM), and microeconomic-based computable 
general equilibrium models (CGE).

On the other hand, Marshall (1890) criticized Walras and postulated that general 
equilibrium analysis is impossible in practice, because it demands too much infor-
mation. Marshall's claim was that it is enough to separate from the rest of national 
economy the part under investigation and to analyse it within the framework he called 
partial equilibrium analysis. As a motivation, Marshall developed the so called ceteris 
paribus condition, which means “all other things remaining unchanged.” Most post-
Keynesian macroeconomic models belong to this school of thought. Criticism against 
large-scale macro econometric models built in the tradition of the Cowles Commis-
sion approach began in the late 1960s. These misgivings were subsequently reflected 
in the Lucas critique (parameters of models may take into account the reaction effect 
of agents with respect to expectation—rational or not), Sims’s critique (time series 
models), and disenchantment with the model’s Keynesian foundations (IS-LM models 
and the Philips curve) criticised by the Chicago school. 

In response, classical macro econometric modelling progressed in two paral-
lel ways: one, the improvement of the structure of traditional models, particularly 
in terms of specifying the supply-side and forward-looking expectations; and the 
other, strengthening techniques or developing alternative techniques (the so-called 
no economics theory-oriented models), e.g., the LSE approach aided by the advent of 
co-integration analysis, vector autoregressive (VAR) systems, and dynamic stochastic 
general equilibrium (DSGE) models. 
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Walrasian general equilibrium theory made its resurgence while the Keynesian 
model started declining. A major stimulus to early CGE modelling was Stone and 
Brown (1962). As a continuation of Leontiew’s work (1941) — and to a certain degree, 
F. Quesnay’s tableau économique (18th century) — Stone pioneered the development 
of the SAM framework with his 1955 article Input-Output and Social Accounts (1962). 
The general shape of a SAM framework was next described by Pyatt and Thorbecke 
(1976). Then, Pyatt and Roe (1977) published a book giving a detailed description of 
the example of Sri Lanka. Since then, SAMs have been applied in a wide variety of 
(developed and developing) countries and regions, and with a wide variety of goals, 
in particular, as we will see latter, for impact analysis and simulations.

While in the early 1960s CGE models were perceived as precious devises for 
modelling poorer economies (e.g., Adelman et al. (1978), Arrow et al. (1971), de Melo 
(1988)), CGE modelling of developed economies stems from Leif Johansen's 1960 
sectorial growth model (MSG) of Norway as an extension of the Leontief model. The 
model was later extended by Harberger (1959, 1962). Showen, Scarf, and Walley (1984, 
1972, 1992) with the presentation by Scarf (1969) of an algorithm helping to solve the 
model. Similarly, as far as CGE models for developed countries are concerned, since 
the early of 1960's, a model was developed by the Cambridge Growth Project under 
the initiative of Richard Stone in the UK. The Australian MONASH model is the next 
new generation representative of this class. Both models were dynamic (traced vari-
ables through time). Other more recent contributions may draw attention, in particu-
lar those of Jorgenson, using an econometric approach, Mc Kenzie (1959, 1981, 1987), 
Ginsburgh and Waelbroeck (1981, 1976), Ginsburgh and Keyzer (1997), Harris and Cox 
(1983), Bourguignon (1983), Decaluwe and Martens (1987, 1988). Today there are many 
other CGE models from different countries. One of the most well-known CGE models is 
the GTAP (Global Trade Analysis Project) model of world trade, which involves many 
researchers around the world.

Depending on, among other things, targeted time-scope analysis, the macro-
economics school of thought involved, or the approach to model estimation, nowa-
days there are large classes of CGE models. Readers interested in the epistemological 
aspects of CGE models can see—e.g., Xian (1984) Jorgenson (1984, 1998a), Ginsburgh 
and Keyzer (1997), McKenzie (1954) or Mansur and Whalley (1984). However, for the 
clarity of the document, let us now concentrate on two classes of CGE models. The 
first class models the reactions of the economy over a given perspective of time thus 
suggesting comparative static and dynamic CGE models. The second focuses on the 
theoretical aspects of equilibrium, seeing that economic conditions of general equi-
librium are not always fulfilled. 

As far as the first class of models is concerned, many CGE models around the 
world are static; that is, they model the reactions of the economy at only one point in 
time. For policy analysis, a simulation analysis is carried out and outputs are often 
interpreted as showing the reaction of the economy, in some future period, to one or 
more external shocks or policy changes. From the analytical point of view, the results 
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show the difference (usually reported in percent of change) between two conditional 
alternative future states, that is, “what would happen if the policy shock were imple-
mented.” As opposed to dynamic models, the process of adjustment to the new equi-
librium is not explicitly represented in such a model. However, details of the closure 
rule lead modellers to distinguish between short-run and long-run equilibriums. For 
example, this will be the case if the hypothesis on whether capital stocks are allowed 
to adjust or not.

Dynamic CGE models, by contrast, explicitly trace each variable through time 
at regular time steps, generally at annual intervals. While this class of model removes 
one of the main criticisms of CGE models, that of being unrealistic, as their analysis is 
based on one-year observations, at the same time, they become more challenging to 
construct and solve—they require, for instance, that future changes are predicted for 
all exogenous variables, not just those affected by a possible policy change. Further-
more, dynamic elements may arise from partial adjustment processes or from stock/
flow accumulation relations—between capital stocks and investment and between 
foreign debt and trade deficits.

Recursive-dynamic CGE models are those that can be solved sequentially, over 
time. They assume that behaviour depends only on current and past states of the 
economy. The construction of this class of models is less complex and such models 
are easier to implement in empirical research than dynamic models.

Alternatively, if agents' expectations depend on the future state of the economy, 
it becomes necessary to solve for all periods simultaneously, leading to full multi-
period dynamic CGE models. Recent publications cover this group of models, known 
as dynamic stochastic general equilibrium (DSGE) as they explicitly incorporate 
uncertainty about the future. It is worthwhile to add that the earliest DSGE models 
were formulated in an attempt to provide an internally consistent framework to inves-
tigate real business cycle (RBC) theory47.

If we consider the second class of models focusing upon the general equilibrium 
aspects, one may consider that most CGE models rarely conform to the theoretical 
general equilibrium model. For instance, the presence of imperfect competition, non-
clearing markets, or externalities (e.g., pollution) will lead the economy to disequilib-
rium conditions.

47  See DSGE: Modern Macroeconomics and Regional Economic Modeling by Dan S. Rickman, Oklahoma 
State University, prepared for presentation in the JRS 50th Anniversary Symposium at the Federal Reserve 
Bank of New York.

http://en.wikipedia.org/wiki/Dynamic_stochastic_general_equilibrium
http://en.wikipedia.org/wiki/Dynamic_stochastic_general_equilibrium
http://dictionary.sensagent.com/General%20equilibrium/en-en/
http://dictionary.sensagent.com/General%20equilibrium/en-en/


2  The CGE Model Among Other Models
We start this section with the next analytical question: How will a tax increase on 
petrol/gasoline impact the Polish economy? A tax of this kind would probably affect 
petrol/gasoline prices and might affect transport costs, car cost, the CPI, and hence, 
wages and employment. Traditional econometric models would have difficulty 
answering this question seeing the complexity of the tax shock response channels 
would imply on the whole economic system. CGE models are useful whenever we 
wish to estimate the effect of changes in one part of the economy upon the rest of the 
economy. They are being used widely to analyse trade policy. More recently, the CGE 
has been a popular device to estimate the economic effects of measures to reduce 
greenhouse gas emissions. Many research centres and central banks (including the 
Polish Central Bank) build stochastic dynamic CGE models which encompass the 
financial sphere of the economy.

A CGE model consists of behavioural equations describing model variables con-
sistent with a relatively detailed database of economic information. The standard CGE 
tends to be neoclassical in spirit by assuming cost-minimizing behaviour by produc-
ers, average-cost pricing, and household demands based on optimizing behaviour. 
Thus, CGE models are built based on the theoretical model of competitive general 
equilibrium. Its original structure was developed during the second half of the 19th 
century by neoclassical economists. Among them, four should be mentioned here, the 
German Gossen (1983), the British Stanley Jevons (1879), the Austrian Menger (1871), 
and the French Walras. Due to the dominance of his contributions to its conceptual-
ization, the model bears the name of the last author, the Walrasian general system.
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3  Optimal Behaviour and the General Equilibrium 
Model

3.1  Introduction

The fact that the model is “computable” means that a numerical solution exists (e.g., 
Arrow-Debreu, 1954; McKenzie, 1959; Ginsburgh and Keyzer, 1997), and “general equi-
librium” refers to simultaneously matching demand and supply on all markets.

In the example below, note the difference between a partial and a general equi-
librium in the traditional way of analysing a market handed down by the Marshall 
and Walras schools. Let us suppose a Cobb-Douglas two-sector economy with two 
commodities Xi two sector inputs L1,K1 (labour and capital sectors) and two sector 
income Yi, with i = 1,2. Then, the partial equilibrium model is defined by the next 
optimal program:

Objective: 

2
1

121

  XXUMax xx  

Market clearance:

Yi = Xi		  i = 1,2

Production:

 

1  i i
i i i iY AL K

Resource constraints:

 

1 2

1 2

L L L
K K K
 

 

In the case of a general equilibrium, we need to add an income balance restriction 
to ensure that all inflows and outflows are balanced.

Income balance:

KrLwXPXP  2211  

with pi (i = 1,2), w, r representing the prices of the two commodities, the sectors labour 
and capital respectively.
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Let us now generalize the above formulation and consider a simple economy with 
m finite number of producers, n finite number of consumers, r commodities, and let 
us suppose that the Walras hypotheses are fulfilled. Thus, under these conditions, let 
us present, below, the behavioural functions of economic representative agents and 
conditions of market equilibrium.

Producer behaviour. Each producer, j (j = 1..m), is confronted with a set of pos-
sibilities of production vj, the general element vj of which is a program of production 
with dimension r, where outputs have a positive sign and inputs a negative sign. The 
objective of each producer is to select, for a given price p (p = 1..r), an optimal program 
of profits pvj.

Consumer behaviour. Each consumer i (i = 1..n) is supposed to have an initial 
endowment of goods wi (outputs or inputs) that the consumer is ready to exchange 
against remuneration by the producer.

Thus, the consumer is confronted with Xi possibilities of consumption of which 
the general element is xi with dimension r. The consumer is never saturated in con-
suming Xi and his endowment wi allows him to survive. For a given price p of dimen-
sion r, consumer i has the objective of maximizing total utility Ui(xi) under his given 
budgetary constraints: 

 
j

ijiji pxpvpw   with ii Xx   

 

with  
j

ijiji pxpvpw   with ii Xx   

 where  
j

ijiji pxpvpw   with ii Xx   

 

 (i = 1,2 …, n; j = 1,2, ..m) is a fraction of profits realized by the producer j and 
transferred to consumer i.
Producer function. m producers maximize individual total profits:

Max 

 

jj vppv ~~ 	 (5.1)

subject to: 

vj∈Vj

Consumer function. n consumers maximize individual total utility:

Max 

 

)~()( iiii xUxU  	 (5.2)

subject to: 

 

jijii vpwpxp ~~~~   	 (5.3)

xi∈Xi

This is definitely a general equilibrium solution ( ij xvp ~,~,~  ) from a decentralized 
system.

Market clearance. Excess demand for r goods is not positive:

0~~  
i

i
j

j
i

i wvx  	 (5.4)
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Commodities with supply excess, i.e., free commodities, have price zero while 
other commodities have a positive price: 

 
i

i
j

j
i

i wvxp 0)~~(~  	 (5.5)

where 

jj vppv ~~  

A general equilibrium solution. This is definitely a general equilibrium solution  
( ij xvp ~,~,~  ) guaranteeing that each of the markets will have realizable equilibrium. 
This, too, is an equilibrium for a decentralized economy since it guarantees compati-
bility of consumer and producer behaviours (Equations 5.1 and 5.2). This is a competi-
tive equilibrium. The price from Equation (5.3) is imposed on all actors of the market.

3.2  Economic Efficiency Prerequisites for a Pareto Optimum

The purpose of this section is to clarify the connection between the general equilib-
rium model and the optimum Pareto state. This will allow us in the next chapter to go 
beyond such an equilibrium and to analyse impact on social welfare. We must then 
check whether or not the three conditions below are fulfilled.
a)	 Equality of marginal rates of technical substitution for different producers. 

Let us limit our generalization to an economy with two goods q1 and q2, and two 
limited inputs x1 and x1, for two respective producers. 

q1 = f1(x11, x12), for producer 1,

q2 = f2(x21, x22), for producer 2,

This means that x1̅ = x11 + x21 and x̅1 = x12 + x22

Let us maximize the quantity produced of q1 under restriction of known quan-
tity q2̅. 
Using the Lagrange multiplier, we have:

L = f1(x11, x12) + λ[f2(x1̅ – x11, x2̅ – x12) – q2̅]

Finally, we get:
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The Pareto criterion having been satisfied, it becomes impossible to increase 
q1 without decreasing q2 and vice versa.

b)	 Marginal rate of substitution of products for different consumers. Let 
U = f(q1, q2) be the total utility of any consumer and let q1 and q2 be the quantities 
consumed of two products. Assuming a constant level of total utility, the next 
relations follow:

2

1

1

2

2
2

1
1

q
U
q
U

TmSP
dq
dq

dq
q
Udq

q
UdU

















 

where

2

1

1

2

2
2

1
1

q
U
q
U

TmSP
dq
dq

dq
q
Udq

q
UdU

















 and

2

1

1

2

2
2

1
1

q
U
q
U

TmSP
dq
dq

dq
q
Udq

q
UdU

















 are marginal utilities of the two goods.
As for the first condition, limiting our generalization to two consumers and 

two products which supply them, then one can pose:

U1 = f1(q11, q12)

and

U2 = f2(q21, q22)

U1 and U2 represent levels of utilities for the two consumers. The quantities q1, 
q2 are, respectively, consumed by consumer one and two. Thus, maximizing the 
utility of consumer 1 under the restriction of a given quantity of consumer 2 and 
using the Lagrange multiplier, we obtain:

L = f1(q11, q12) + λ[f2(q1̅ – q11, q2̅ – q12) – U̅
2

and finally:
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Thus, the Pareto criterion is satisfied: it is impossible to increase U1 without 
decreasing U2 and vice versa.

c)	 About the marginal rate of transformation. The marginal rate of transforma-
tion of products is a measure in a global economy (and in absolute value) of how 
much supply of one product will increase as a consequence of an infinitesimal 
decrease in the supply of a second product. 
We have:

TmTP
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Here the numerator and denominator of the second equality explain marginal 
physical productivities of inputs. To summarize conditions of attainment of the Pareto 
optimum or economic efficiency, we must have simultaneously fulfilled the three fol-
lowing prerequisites:

1.	 TmST1 = TmST2 = 
2

1
21 r

rTmSTTmST   	 (ri is the price of the input i)

2.	 TmSP1 = TmSP2 = 
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1
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pTmSPTmSP  	 (pi is the price of the product i)

3.	 TmTP = 
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p
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pTmSPTmSP  	 (cmi is the marginal cost of the product i)

	 In the competitive market case, these three conditions (1, 2, 3 above) are simulta-
neously fulfilled, and we have:

4.	 TmTP = TmST1 = TmST2 = 
 

2

1
21 p

pTmSPTmSP 

At the same time, this is a socially optimum Pareto. Resource allocation is optimal 
and leads to equality between marginal rate of substitution of products TmSP of con-
sumer and the marginal rate of transformation between products TmTP inside the 
economy. Out of this optimal point, better for an individual would mean worse for 
another. In this context, a competitive market not only guarantees economic efficien-
cies but also social equity. We shall come back later to this aspect when we present 
some particular assumptions, shifting the economy from competitive market condi-
tions towards a disequilibrium.



4  From a SAM to a CGE Model: a Cobb-Douglas 
Economy

4.1  CGE Building Steps

The CGE we want to present below belongs to the class of models described by Dervis 
et al. (1982) and remains similar to those reported by Robinson et al. (1990) and 
Devarajan et al. (1983). Thus the model is SAM based, which means that the SAM 
serves to identify the agents in the economy and provides a database with which the 
model is calibrated. As such, the modelling approach follows the influential Pyatt’s 
SAM Approach to Modelling (Pyatt, 1988). In particular, since the model contains the 
important assumption of the law of one price, prices are common across the rows of 
the SAM. The SAM also provides an important organizational role since the groups of 
agents identified by the SAM structure are also used to define sub-matrices of the SAM 
for which behavioural relationships need to be defined. The model concerns a real 
economy without monetary sector. 

As displayed by Figure 2, generating a CGE model proceeds in twelve steps (e.g., 
Decaluwé et al. 2001). However, since some of these steps are concerned mainly with 
data collection and processing, we describe below the six key steps directly related to 
model construction. 

The first stage is the identification of the behavioural relationships. Since in the 
previous steps collected statistical data have been checked for their internal consis-
tency with respect to macroeconomic theory48, these are defined by reference to the 
sub-matrices of the SAM within which the associated transactions are recorded.

The second stage is formal and involves a further definition of the components 
of the transactions recorded in the SAM between respective sellers (rows) and buyers 
(columns). Thus, this step gives mathematical substance to behavioural relationships.

In the third stage, an algebraic statement of the general equilibrium model is pro-
vided. The equations of the model are succinctly presented in Figure 2, where stan-
dard accounts of the model’s equations and variables are presented, too. 

In the fourth stage, there is a discussion on macroeconomic closure rules and the 
choice of the most appropriate ones in the case of a modelled economy. This stage 
recognizes the fact that in CGE models, the number of variables is always higher than 
the number of equations, and exceeding variables must be rendered exogenous via 
appropriate macroeconomic theory. 

48 However, as will be demonstrated by the extended input-output table or the social accounting 
matrix for taking into account environmental aspects in the economy, a SAM displays new internal 
consistencies, associating economy with environment. 
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The fifth stage consists of determining the numerical parameters of the model 
through the calibration technique. Then, some parameters not directly available 
must be derived from equations from the second stage so that the whole system of 
equations becomes determined. At this point, the application of the non-extensive 
entropy econometrics approach will reveal advantages over the traditional calibra-
tion technique. As shown in the preceding chapters, that new approach is conceptu-
ally better to solve inverse problems, nonlinear (e.g., the CES models) or not (e.g., the 
Cobb-Douglas models).

The last stage consists of replication (reproduction) of the initial situation through 
the already built model. When the model exactly replicates initial variable values con-
tained within the SAM49, the modeller can then provide various simulations to assess 
the macroeconomic impact of different shocks.50

Behavioural relationships. The SAM accounts reflect the agents’ behaviour 
related to different transactions that took place during a given period of time. A 
behavioural model is defined to describe the agent achieving each transaction posted 
in the SAM accounts. These behavioural relationships are defined by a set of linear 
and nonlinear functions reflecting the way agents involved in the model will respond 
to exogenous changes in the parameters and/or variables of the model. Next, the ‘law 
of one price’ should apply for each row of the SAM (McDonald, 2007), but this is not 
true in the present case. 

49  This means that we have retained here the hypothesis that the SAM constitutes a basis for process-
ing data.
50  This figure is an adaptation of Decalue et al. (2001) and Scot Mc Donald et al. (2007).

Figure 2: The twelve steps for building a standard computable general equilibrium model51
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Households. Households maximize utility by choosing the bundles of consump-
tion commodities through the Cobb-Douglas utility function type. Consumption 
commodities represent a set of composite goods and services from domestically pro-
duced and imported commodities. To reflect the hypothesis that home-produced and 
imported goods and services are imperfect substitutes, the above composite commod-
ities are formally expressed as a Constant Elasticity of Substitution (CES) function. 
The optimal ratios of imported and domestic goods and services are set up through 
their relative prices. On the basis of the existence of product differentiation, Arming-
ton (1969) proposed the CES relation under the assumption of imperfect substitution 
(see Devarajan et al. (1983). According to this assumption, the same generic multi-
regional commodity is not perceived in the same way by different consumers. For 
instance, for a Polish consumer, Arabica coffee from Kenya may present a different 
taste from Arabica coffee from Brazil for various reasons. One assumes in this model 
the country to be a price taker for all imported goods and services.

Domestic production. A two-stage nested technology is used in the domestic 
production process. At the first level aggregate, one combines intermediate inputs 
with aggregate primary inputs, then generates the outputs of activities at the basic 
prices. Depending on the production technology chosen, the proportion of aggregate 
intermediates and aggregate primary inputs varies with the (composite) prices in the 
case of a CES specification while in the case of a Leontief model aggregate, intermedi-
ates and primary inputs are in fixed proportions, then reflecting a homogenous rela-
tion of degree one. The second level aggregate uses Leontief technology to generate 
intermediate input demands in fixed proportions with respect to aggregate intermedi-
ate inputs of each sector activity. The intermediate input commodity is a composite 
product which mixes domestic and imported raw materials. Also at next second level, 
primary inputs combine to generate aggregate value added through the Cobb-Doug-
las or CES technology. Once again, the relative factor prices determine optimal ratios 
of primary inputs. Each activity produces one aggregated commodity. Hence, each 
vector of goods and services demanded corresponds to one vector of activity outputs. 

The vector of home commodities demanded is determined by the home demand 
(including self-consumption by households) and export, in both cases for home-pro-
duced commodities. Assuming imperfect transformation between home demand and 
export demand, formally explained by a Constant Elasticity of Transformation (CET) 
function, the relative prices on the alternative markets determine the optimal distri-
bution of home-produced goods and services between home and export markets. In 
accordance with the country’s position on the world export market, the model can be 
specified for a small country—and thus a price taker—or for a country with a domi-
nant position—and thus a price-maker country—on all export markets. In fact, for 
a price-giver country, selected export commodities can be deemed to influence the 
world price. 

The remaining behavioural relationships constructed on the basis of SAM accounts 
remain generally linear. Those concern principally inter-institution exchanges. Thus, 



146   From a SAM to a CGE Model: a Cobb-Douglas Economy

we have tax rates, i.e., transfers from households or enterprises to government; social 
allocations, i.e., secondary distribution of income; and reciprocal transfers between 
enterprises and households or between local institutions and the rest of the world. To 
this list, which is not exhaustive, one can also add fixed rate of savings or investment. 

4.2  The Standard Model of Transaction Relationships

In the standard model description below, we follow—for clearer presentation—symbol 
indexes found in McDonald and Thierfelder (2007) unless the context requires some 
changes. The transaction relationships are presented in Fig 3. The prices of domesti-
cally consumed (composite) commodities are defined as PQDc. This price is weighted 
prices of domestic and imported price at CIF (cost insurances and freight) value to 
which are added indirect taxes, e.g., value added tax (VAT). The quantities of com-
modities demanded domestically are, as expected, divided between intermediate 
demand, QINTDc, and final demand, with final demand further subdivided between 
transactions by households, QCDc, enterprises, QENTDc, government, QGDc, invest-
ment, QINVDc, and stock changes, dstocconstc. When no analytical need is explained, 
these last two categories of final demand are grouped together under investment. 
The value of total domestic demand, at purchaser prices, is therefore PQDc *QQc. 
As already explained, export demand, QEc, as an entry in the commodity row is not 
taken into account here since the domestic prices of exported commodities, PEc = 
PWEc * ER, suggest a separate row for export commodity according to the law of one 
row one price. Here PWEc means world prices and ER exchange rate. Abbreviations 
are merely a way to save space in the table. Price of exported commodities is addition-
ally affected by export duties, TEc, which are entered into the commodity columns. 
Commodity supplies come from domestic producers who receive the prices, PXCc, for 
each commodity c. with the total sectorial domestic production of commodities being 
denoted QXCc. Commodity imports, QMc, are valued carriage insurance and freight 
(CIF) paid, in a way that the domestic price of imports, PMc, is defined as a world price, 
PWMc, times the exchange rate, ER, plus an ad valorem adjustment for import TMc. 

All domestically consumed commodities are subject to a variety of indirect taxes, 
such as sales taxes, TSc, and excise taxes, TECc. Other taxes can be readily added.

We assume that each activity produces a unique output QXa. Domestic produc-
tion activities receive average prices for their output, PXa, being an aggregated price 
of intermediary input price and primary factors price. This means that in addition to 
intermediate inputs, activities also purchase primary inputs, FDfa, for which they pay 
average prices, WFf. The model allows the prices of each factor to differ among activi-
ties. Some or all activities pay production taxes, at the rates TXa, proportionately to 
the value of activity outputs. 
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The model allows for the domestic use of both domestic and foreign owned 
factors of production and for payments by foreign activities for the use of domestically 
owned factors. Factor incomes, therefore, accrue from payments by domestic activi-
ties and foreign activities, factworf, where payments by foreign activities are assumed 
exogenously determined and are denominated in foreign currencies. 

After allowing for depreciation, deprecf, and the payment of factor taxes, TFf, the 
residual factor incomes, YFDISTf, are divided between domestic institutions (house-
holds, enterprises, and government) and the rest of the world in fixed proportions. 
Households receive incomes from factor rentals and/or sales, inter-household trans-
fers, hohoconsthh, transfers from enterprises, hoentconsth, and government, hogov-
consth, and remittances from the rest of the world, howorh, where remittances are 
defined in terms of the foreign currency. 

Household expenditures consist of payments of direct/income taxes, TYh. The 
household income after tax deduction is then posted to inter-household transfers 
and consumption expenditures, with the pattern of consumption expenditures deter-
mined by the household utility functions. The residual household income is posted to 
savings, where the saving rate, SHHh, is an exogenously fixed coefficient. 

The enterprise account receives income primarily from capital returns in the 
form of retained profits. Depending on the scale and field of activity, the enterprise 
may receive subsidies from government, entgovconst, or transfers from the rest of the 
world, entwor.

Expenditures then consist of the payment of direct/income taxes to government, 
TYE, transfers of dividends, and other remittances to households, hoentconsth. Enter-
prises may transfer to the rest of the world a fraction of their profits or pay for foreign 

Figure 3:The standard model transaction relationships.

Source: PROVIDE project, 2009 Enterprises
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factor. Residuals which are the difference between income YE and expenditures EENT 
constitute the source of savings for enterprises. 

Government. Government income comes primarily from direct and indirect taxa-
tion of factors, commodities, and from various penalties related to public adminis-
tration. Thus, incomes accrue from the various tax instruments (import and export 
duties; sales, production, and factor taxes; and direct taxes), that can all vary due to 
changes in the values of production, trade, and consumption. The government may 
receive transfers (in foreign currency) from the rest of the world, govwor, as a conse-
quence of various international conventions.

Expenditures consist of transfers to enterprises for subsidies of some produc-
tive activities. Other transfers concern the secondary distribution of income by gov-
ernment and are oriented toward households. Transfers may concern the rest of the 
world, particularly in the form of salary packages to nationals residing out of the 
country. In these models, all transfers to different domestic institutions are fixed in 
real terms but may vary in nominal terms with consumer prices. There is an analo-
gous treatment of government savings as in the case of the enterprise, i.e., the internal 
balance, which is defined as the difference (residual) between government income, 
YG, and committed government expenditure, EG. The quantities of commodities con-
sumed by the government are fixed in real terms, and hence government consump-
tion expenditure will vary with commodity prices. In some circumstances, it can be 
realistic to endogenize government consumption behaviour for the determination of 
government consumption expenditure. 

Domestic investment. Domestic investment demand consists of fixed capital 
formation, QINVDc, and stock business changes, dstocconstc. The departure point is 
that in an open economy model (an economy with foreign trade and capital flows), 
private investment plus governmental borrowing must equal private savings plus 
foreign investment. The value of fixed capital formation will vary with commodity 
prices while the volume of fixed capital formation can vary both as a consequence of 
the volume of savings changing or changes in exogenously determined parameters. 
In this basic version of the model, domestic savings is made up of savings by house-
holds, enterprises, the government (internal balance), and foreign savings, i.e., the 
balance on the capital account or external balance, CAPWOR. 

Savings and capital accounts. The various closure rules available within the 
model allow for alternative assumptions about the determination of domestic savings. 
One could make assumptions about, for instance, flexible vs. fixed savings rates 
for households or flexible vs. fixed exchange rates for the value of foreign savings. 
Foreign savings come out as a discrepancy between foreign incomes and expendi-
tures. The incomes to the rest of the world account, i.e., expenditures by the domestic 
economy towards the rest of the world, consist of the values of imported commodities 
and factor services. On the other hand, expenditures by the rest of the world account, 
i.e., incomes to the domestic economy from the rest of the world, consist of the values 
of exported commodities and net transfers by institutional accounts. The difference 
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between these incomes and expenditures represent the capital account, the value of 
which depends on a variable exchange rate. 

Prices. As in any standard model, the supply prices of the composite commod-
ities PQSc are defined as the weighted averages of the domestically produced and 
consumed commodities PDc and the domestic prices of imported commodities PMc. 
Domestic prices of imported commodities are defined as the products of world prices 
of commodities PWMc and the exchange rate ER increased by ad valorem import 
duties TMc and by a consumption tax applied to domestic commodities, such as sales 
taxes TSc and excise taxes TEXc. These weights are updated in the model through 
first order conditions for optima. The above average prices will give the composite 
consumer price PQDc. 

The producer prices of commodities PXCc are defined as the weighted averages of 
the prices received for domestically produced and sold commodities PQSc and export 
PEc markets. These weights are updated in the model through first order conditions 
for optima. Given that the country is by hypothesis small, the prices received on the 
export market are defined as the world price of exports PWEc and the exchange rate 
ER less any export duties due, which are defined by ad valorem export duty rates TEc.

The average price per unit of output received by each activity PXa is defined as 
the weighted average of the domestic producer prices. After paying indirect/produc-
tion/output taxes TXa, this is divided between payments to aggregate value added 
PVAa, i.e., the amount available to pay primary inputs and aggregate intermediate 
inputs PINTa. Total payments for intermediate inputs per unit of aggregate intermedi-
ate input are defined as the weighted sums of the prices of the inputs PQDc. Let us 
recall that input prices are explained in composite price since imported commodities 
are demanded as intermediate inputs. 

General Equilibrium conditions. As already mentioned several times, total 
demand for the composite commodities, QQc, consists of demand for intermediate 
inputs, QINTDc, consumption by households, QCDc, enterprises, QENTDc, and gov-
ernment, QGDc, gross fixed capital formation, QINVDc, and stock changes, dstocco-
nstc.

Total supply, that is, supplies from domestic producers, QDc, plus imports, QMc, 
meets these demands; equilibrium conditions ensure that total supply and demand 
for all composite commodities must balance. Commodities are delivered to both the 
domestic and export, QEc, markets subject to equilibrium conditions that require 
all domestic commodity production, QXCc, to be either domestically consumed or 
exported.

As far as equilibrium of factor market WF is concerned, supply must balance with 
demand. In the case of the hypothesis of an inter-sector non-mobility of factors, equi-
librium will have a sector character. The next balance concerns the current-account 
balance for the rest of the world in foreign currency. It implies that import spend-
ing plus factors to the rest of the world must balance with export income, plus rev-
enues, institutional transfers from the rest of the world, and foreign savings. Next, 
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equilibrium concerns the government balance, which means that government income 
YG must balance with government expenditures EG plus government savings GSAV. 
Finally, the savings-investment relation must balance, which means that non-govern-
ment savings, plus government savings and foreign savings, must balance with fixed 
investment plus stock change.

Standard Mathematical formulation. Standard mathematical formulation of a 
CGE model is presented in almost each presentation related to this class of model, and 
interested readers can refer to Lofgren et al. (2000) or Herault (2006) amongst others. 
However, in the present model, we add some changes concerning the estimation of 
behavioural parameters to react to one of the main criticisms of CGE models. Produc-
tion relationships by activities are defined by a series of nested Constant Elasticity of 
Substitution (CES) production functions. In the standard model, there is, however, 
additional limits imposed by economic meaningfulness and the availability of empiri-
cal data that allow for the inclusion of information (elasticity of substitution) about 
the possibilities for substitution between and within sub-groups of factors. This point 
is one of the repeated criticisms of CGE models since, in this particular case, differ-
ent modellers should find different outputs, as the selection of elasticity parameters 
is arbitrary. In the present work, we bypass this problem thanks to a new maximum 
entropy approach introduced in the first parts of this document. The same procedure 
will be carried out for the constant elasticity of transformation between domestic and 
export product or Armington elasticity of substitution between domestic product and 
imports. Coming back to activity output, it is worth reminding that it is a CES aggre-
gate of the quantities of aggregate intermediate inputs QINT and value added QVA 
while aggregate intermediate inputs are a Leontief aggregate of the (individual) inter-
mediate inputs. Furthermore, aggregate added value is a CES aggregate of the quanti-
ties of ‘primary’ inputs demanded by each activity, where the primary inputs can be 
natural factors—types of labour, capital, and land. In the traditional model, optimal 
combinations of each natural and/or aggregate in each CES aggregate are determined 
by first order conditions based on relative prices.



5  Estimating the CGE Model through the Maximum 
Entropy Principle

5.1  Introduction

In their reference work, Arndt et al. (2002) present a new approach to estimating 
parameters of a CGE model through maximum entropy. That approach is pursued 
here. CGE models are frequently criticised for resting on weak empirical foundations 
(e.g., Shoven and Whaley, 1992). Whatever class of CGE model is in use, it displays 
consistent drawbacks, such as the lack of efficient methodology for the estimates 
of behavioural parameters (e.g., trade parameters), less realistic economic assump-
tions (e.g., representative agent), less flexibility in implementing the monetary sector, 
imperfect competition, and the impossibility of inferring through interval confidence. 
In Social Accounting Matrix (SAM)-based CGE model estimation, problems related 
to calibration to a benchmark period, the often not updated information lying in 
the input-output matrix—the principal part of a SAM—and various other criticisms, 
appear in the economic literature. Nevertheless, as is often underscored there, 
the problem of estimates of behavioural parameters is common to competing time 
series econometric models unable to predict future agent behaviour (see the Lucas 
critique, 1976). Rational expectation-based models (Muth, 1961 and Kydland et al., 
1977), like the dynamic stochastic general equilibrium models (DSGE) (Kydland et al., 
1982), have tried to overcome the problem. Nevertheless, the DSGE models continue 
to display conceptual drawbacks from different sources, like the limited knowledge 
about the data generating system—and its future evolution—to which parameters are 
related (Evans and G. Ramey (2006), Tovar (2009)). Additionally, Sims (1987) reports 
additional drawbacks to the 'Lucas critique' in the context of rational expectations. 
Most of time, this may suggest that through the model with full information, we will 
deal with an over-parameterized, non-ergodic inverse problem, which traditional 
econometric approaches have failed to handle. 

Next, in most developing countries, the alternative macro econometric models 
display serious weakness owing to scarce statistical data over large periods of time 
leading to technical problems of estimation (the degree of freedom) (Arndt, 2002).

Authors, such as Guerrien (2000) have expressed their scepticism about the 
usefulness of CGE models. Bernard Guerrien vigorously points to the less realistic 
economic assumptions such as the maximizing utility representative agent, perfect 
competition (Arrow-Debreu frame) or even imperfect monopoly markets; all these 
neo-classical concepts are described as fictive reality. The above criticisms have put 
into question the last strength of CGE models, that of being built on microeconomic 
foundations. Technical approaches to respond to most of the above criticisms have 
been attempted over the last two decades. After a thorough comparison between 
CGE and competing macro or microeconomic models (fixed-price models, dynamic 
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optimisation/optimal control models, macro econometric models), authors such as 
Capros (Capros et al., 1990) suggest that all these models are complementary. More 
interestingly, the same authors provide useful insights into a future model that could 
address the cited shortcomings of current models. 

Reconciling opposing models built upon contradictory assumptions would con-
stitute too great a challenge. An acceptable solution should probably consist in setting 
up a model with only limited and realistic assumptions, basically combining common 
advantages of a CGE and a macro econometric equilibrium model. 

This seems to be in line with two groups of authors in their recent works. One is 
by Robinson (Arndt et al., 2001, Go et al., 2015) who proposed a parameter estima-
tion for a CGE using Shannon-Gibbs maximum entropy econometrics. These authors 
list additional qualities in comparison to the classical approach. One may cite the 
incorporation into the model of prior information related to present or past periods, 
thereby introducing dynamic elements into the system; the rationale for using entropy 
econometric formalism is the already cited quality of performing well in the absence 
of copious data. Last, the approach gives quantified information on the capacity of 
the model to reproduce a statistical record and computes statistical significance of 
parameter estimates.

The second work is by Francois (2001) who tries to overcome the problem of cal-
ibration: during the estimation process, the base period values are used to set up 
initial variable levels for the next steps of numerical estimation. However, numeri-
cal, successive approximations at the end can generate important deviations from the 
true values particularly when numerical processes imply multiplicative intermediary 
errors. 

In this chapter, we try to extend the approach of Robinson (Arndt et al., 2002) to 
one of non-extensive entropy to estimate behavioural parameters for a CGE model. 

The above authors have emphasized that the maximum entropy approach is 
similar to the econometric approach of Jorgenson (1984, 1998a) in different aspects. 
To a certain extent, the full historical record can be employed and statistical tests for 
estimated parameter values are available. Furthermore, as pointed out in different 
works (e.g., Golan et al., 1996), the ME approach can be applied in the absence of 
copious data. The ME approach allows one to use all available data, take into account 
all relevant constraints, employ prior information about parameter values, and apply 
variable weights to alternative historical targets. Available information does not need 
to be complete or even internally consistent. The philosophy of the ME approach is to 
use all available information while avoiding the use of information not available, for 
example, strong assumptions about the distribution of error terms.
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5.2  Estimation Approach

In line with the preceding section, here the central question is why propose a 
maximum entropy econometrics related approach among many other econometrics 
techniques conceived for modelling large scale macroeconomic phenomena. On this 
point, it is worthwhile to refer, among a vast literature on the subject, to the review 
work of the Nobel laureate C. A. Sims (2007) on Bayesian methods applied in econo-
metrics, in which he explains Why Econometrics Should Always and Everywhere Be 
Bayesian and then rejects frequentist asymptotics-based econometrics techniques. 
However, the above author did not allude to the maximum entropy econometrics 
approach as a competitive approach to Bayesian models51. According to Sims, the 
Bayesian approach uses the “Bayes rule” to incorporate the present beliefs (prior) 
about the phenomenon and to update this information with new facts at hand (data). 
Thus, following this author, unlike the frequentist-related econometrics methods, 
“Bayesian Inference is a way of thinking, not a basket of ‘methods’” (Sims, 2007).52 
It becomes interesting now to compare the Bayesian approach with the maximum 
entropy approach. Both approaches use priors and data to produce model posteriors. 
Nevertheless, beyond this similitude, the approaches are conceptually different. 

Basically, applying Bayesian theorem means (Jaynes, 1988) just computing a 
probability and not a probability distribution. It follows that the Bayes theorem does 
not make any reference to sample space or hypothesis space. In empirical application 
of the Bayesian approach, we need to go beyond the “exploratory phase” to the point 
where a certain structure (the likelihood) of the model can be assessed through addi-
tional model distribution hypotheses. 

On the contrary, the maximum entropy53 approach requires us to define a hypoth-
esis space which sets down the possibilities to be further considered. Thus, in the 
exploratory phase of the problem, one can apply the entropy principle to solve a 
problem. In recent work, Giffin (2009) compared through illustrative computa-

51 Nevertheless, he pointed out that the Shannon mutual information approach has a more limited 
estimating capacity than the Bayesian one.
52 Jaynes [59] underscores the importance of this debate: “The recent literature has many attempts 
to clarify the relation of these principles.” Williams (1980) sees Bayes’s theorem as a special case of 
MAXENT while van Campenhout & Cover (1981) see MAXENT as a special case of Bayes’s theorem. 
In our view, both are correct as far as they go, but they consider only special cases. Zellner (1987) 
generalizes Williams’s results: “Thus Williams considers the case where we have a set of possibilities 
(H1 .. Hn), and some new information E confines us to a subset of them. Such primitive information 
can be digested by either Bayes’ theorem or MAXENT, leading, of course, to the same result; but Bayes’ 
theorem is designed to cover far more general situations. Likewise, van Campenhout & Cover consider 
only the Darwin-Fowler scenario; MAXENT is designed to cover more general situations, where it does 
not make sense to speak of ‘trials’”.
53 To be more precise, we have in mind the method of relative Entropy (or cross-entropy) of which 
maximum entropy can be seen as a particular case.
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tions relative entropy, maximum entropy, and the Bayes rule in the environment of 
moments and data. Giffin underscored his finding related to the relationship between 
these three approaches. Only relative entropy can solve a problem by the simulta-
neous processing of data and moments—what Bayes and Maximum entropy alone 
cannot handle. 

An interesting comparison between the Bayesian approach and the generalized 
maximum entropy approach (GME) is presented in Golan et al. (1996). As reported 
in these authors’ work, Casella and Strawdermann (1981) used a simple example of 
recovering a bounded mean from a single observation x = β + e, where e ~ `N(0,1) and 
β ⊂ [–c, c] are unknown to recover an image of β from x. They first specified a discrete 
distribution with equal mass on points –c and c, using the normal likelihood func-
tion and provided the Bayesian posterior mean—under the squared error loss—of the 
form:

B̂
β = c tanh(cx)

The above authors in Golan et al. (1996) performed the estimation of the same 
model using the generalized maximum entropy estimator and found the following 
GME solution:

B̂
GME = c tanh(–cλ)

where λ is the optimal Lagrange multiplier on the model constraint. 
Authors showed that both estimators are related in mathematical formula-

tion. Their estimates are equal only if λ = –x, which occurs when x = 0. In this basic 
example, we notice that the Bayesian solution is directly influenced by the observa-
tion data x while the GME solution, by the optimal Lagrange multiplier λ. Thus, the 
two formula illustrate not only the mutual consistency of both estimators but also a 
rich source of their confusion in scientific literature. The fact that the GME solution 
is a function of the optimal λ is of high interest as this parameter is a function of 
the whole model, including the moments and the maximum entropy objective func-
tion. In the case of the generalized cross-entropy (GCE) technique, the advantage of 
that parameter for defining the optimal solution of a model is much more evident. 
In such a case, the optimal λ displays a direct relationship with the prior, the data, 
the stochastic random disturbance, and the maximum entropy intrinsic properties. 
This may explain why the GCE approach seems to be preferred for solving stochastic 
ill-behaved inverse (non-ergodic) problems. To be more precise, the more constrain-
ing data are consistent with the model, the greater the value of λ (absolute value), 
and the less uniform the maximum cross-entropy probability distribution. Unlike 
the Bayes approach, the GCE approach does not need any imaginative theoretical 
hypothesis to create a solution space closed-form. Golan (et al.) [61] comparing per-
formances of different classes of econometric estimator in the case of ill-conditioned 
problems underscored the highest solution stability provided by the GCE technique. 
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In fact, unlike other estimators, the penalty for using wrong prior information is 
much smaller relative to competitive estimators, including the Bayesian estimator. 
According to the above explanations, such superiority results from a diversified rela-
tionship between the optimal λ and other constraints (data, stochastic random dis-
turbance, and the maximum entropy objective function): the GCE estimates should 
not go far from the true parameters if only one constraint—in this case the prior—is 
violated. This result points to the GCE as the best estimation approach, at least in the 
case of stochastic ill-behaved inverse problems, as has been confirmed in a recent 
study (Bwanakare, 2014) which estimated parameters of three classes of constant 
elasticity of substitution models. The performance—measured on the parameter error 
variance coefficient—of the Tsallis related non-extensive cross-entropy estimator was 
much higher in comparison with the traditional econometric techniques (LS, ML, 
GMM, and NLS). 

The number of authors who have tried to link CGE models with the cross-entropy 
econometrics approach is still limited (e.g., Arndt et al., 2002, Judge and Mittelham-
mer, 2012, and Go et al., 2015). In Arndt (2002) and Go et al. (2015), the authors start 
by viewing a classic, static CGE model in the following form:

F(X,Z,B,δ) = 0	 (5.6)

where: 
F: an I-dimensional vector valued function, 
X: an I-dimensional vector of endogenous variables, usually prices and quantities, 
Z: a vector of exogenous variables such as endowments and tariff rates, 
B: a K-dimensional vector of behavioural parameters such as unknown constant elas-
ticity of substitution parameters, 
δ: a second vector of behavioural parameters whose values are uniquely implied by 
the choice of B, the exact form of F, and data for the base year. 

The elements of F capture production and consumption behaviour which is coherent 
in terms of economics as well as macroeconomic constraints. After parameter cali-
bration and estimation, static CGE analysis proceeds by changing the vector of exog-
enous variables, Z, and examining through simulation the resulting vector of endog-
enous variables, X, which satisfies Equation (5.6).

In the entropy estimation formulation proposed by the above authors, the static 
model attempts to track the historical record over T (t = 1,2,…,T) time periods. The 
Z vector is partitioned into exogenous variables observable from historical data, Zt

0, 
and exogenous variables not observable from historical data, Zt

u. The vector Zt
0 would 

typically contain historical data on elements such as tax rates, endowments, world 
prices, and government spending. The vector Zt

u might contain rates of technical 
change, implicit or unknown tax or subsidy rates. These variables and other items are 
not available from the historical record and must be estimated. Due to calibration to 
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the base year and the restrictions imposed on the function, F, a unique relationship 
between δ and B exists which permits the model in Equation (5.6) to reproduce the 
base year, conditional on the choice of behavioural parameters B,

δ = Φ(Zt', B)	 (5.7)

Note that the full vector Zt′ is assumed observable in the base year, labelled 
year t′. Estimation occurs in the context of the CGE model, and then we have the next 
relationship:

F(Xt, Zt
0, Zt

u, B, δ) =0, ∀t∈T	 (5.8)

having to hold for estimated values B and Zt
u, imposed values Zt

0, and calibrated 
values δ. The outputs from such a solved problem lead to a predicted historical time 
path for variables of interest. These time series outputs can be compared with actual 
historic time paths in the following way:

Yt = G(Xt, Zt
0, Zt

u, B, δ) + et	 (5.9)

where:
Yt : is an N-dimensional vector of historical targets defined inside the social account-
ing matrices, 
G: is a functional producing the vector of model predicted values for the targets, 
et: is an N-dimensional vector representing the discrepancy between historical targets 
representing the unknown data generating system F and predicted values evaluated 
by the functional G, using sample information. Calibration to the base year implies 
that et′ = 0.

After reparametrization of parameters B, et, Zt
u, on defined support spaces according 

to the methodology explained earlier, the authors propose to set up a Gibbs-related 
cross-entropy (CE) model to be minimized under restrictions presented above. Since 
we specify prior distributions on parameters, the objective contains the two terms, 
precision and prediction (Golan et al., 1996), and each term can be given a weighting 
factor, α1 and α2. This CE formulation may be written as follows:
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Subject to:

F(Xt, Zt
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u, B, δ) =0,    ∀t∈T

Yt = G(Xt, Zt
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u, B, δ) + et     ∀t∈T

δ = Φ(Zt', B)



� Estimation Approach   157

Bk =  rpMin , 


















    tnj

tnj
T

t

N

n

J

j
tnj

K

k

M

m km

km
km s

r
r

q
pp loglog

1 1 1
2

1 1
1    pkm vkm    ∀k∈K

etn =  rpMin , 


















    tnj

tnj
T

t

N

n

J

j
tnj

K

k

M

m km

km
km s

r
r

q
pp loglog

1 1 1
2

1 1
1    rtnj wtnj    ∀t∈T, n∈N

 rpMin , 


















    tnj

tnj
T

t

N

n

J

j
tnj

K

k

M

m km

km
km s

r
r

q
pp loglog

1 1 1
2

1 1
1    pkm = 1    ∀k∈K

 rpMin , 


















    tnj

tnj
T

t

N

n

J

j
tnj

K

k

M

m km

km
km s

r
r

q
pp loglog

1 1 1
2

1 1
1    rtnj = 1    ∀t∈T, n∈N.

Once again, the CE formulation in Equation (2.22) corresponds to the Kullback-Liebler 
measure of deviation of the estimated weights from the prior. The constrained opti-
mization problem in Equations (2.23–2.24) chooses distributions for parameters and 
error terms that are closest to the prior distributions, using an entropy metric, and 
satisfies the full set of conditions required by a CGE model. In addition, the model 
endogenously calibrates itself to the base year. 

The cited authors (Arndt et al., 2002) provide a case study on Mozambique.
Now, to extend the above approach to non-ergodic systems, we replace the objec-

tive function in (2.22) by the previously introduced criterion function of the form54:
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subject to the same restrictions as above in (5.10).
In this case, we have then assumed a higher complexity of statistical data-gener-

ating system, and/or other kinds of systematic errors to which collected data might be 
prone. This case recalls characteristics of power law discussed in previous chapters. 
The value of the Tsallis parameter q will inform us about the complexity of the system, 
as we already know.

The CGE outputs presented at the end of this chapter only limit entropy applica-
tion to functions related to estimating behavioural parameters of constant elasticity 
of substitution. Further research on the methodology presented by the above authors 
could be of high interest. In particular, testing the proposed non-extensive relative 
entropy above, under the hypothesis of power law characteristics of macroeconomics 
remains urgent. In fact, in a recent publication, Bwanakare [62] has shown that trade 
functions used in CGE models may belong to the class of power law (Levy’s process) 

54  Note that there are two forms of Tsallis-Kullback-Leibler relative entropy. The one presented here 
comes from Bregman. Thus, it does not require escort distribution in the constraining block.
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distribution. The implication is that not taking this into account by the Shannon-
based entropy could lead to significant estimation errors. To prove this, we are going 
to provide below an example showing that only estimation of trade parameters of a 
CGE model under power law hypothesis leads to adequate outputs. 

5.3  Application: Non-Extensive Entropy and Constant Elasticity of 
Substitution-Based Models 

The example below shows the possibility of carrying out robust estimation of a sto-
chastic constant elasticity of substitution (CES)-based model through the Tsallis 
entropy econometrics technique. The estimator properties for Tsallis entropic form 
have been suggested in Part II of this book, in the section devoted to the parameter 
confidence interval area-based statistical inference.

The technique presented below has been suggested by Bwanakare (2014) or more 
recently in Bwanakare (2016). This extended the results through the case study of 
eight CES production (CESP) models of seven countries. While the proposed approach 
could be generalized to a large class of nonlinear models, the example focuses on CGE 
trade models, the parameters of which are usually obtained through a calibration 
technique. The CES-based models remain intractable while trying to analytically esti-
mate their parameters. In empirical research, various nonlinear approximation tech-
niques, like the k-th order Taylor polynomial technique, are applied and completed by 
approaches that use least square methods. As will be shown below, such approaches 
do not conceptually fit this type of non-ergodic model and estimated parameters 
should remain biased and inefficient. In this document, we suggest a power law (PL)-
driven estimation approach, thus moving away from a Gaussian ergodic hypothesis to 
more general Levy, unstable time (or space) processes, characterized by tail queues, 
long memory, complex correlation, and plausible convergence to the Gaussian central 
theorem limit. Once again, as in the case of a labour demand model presented at 
the end of Part II, the estimation procedure presented could be seen as a generaliza-
tion to non-ergodic systems from the work of Kullback-Leibler on information diver-
gence (Kullback, 1951 and Golan et al., 1996) on entropy econometrics. Technically, 
we minimize the Tsallis non-extensive relative entropy criterion function under con-
sistency moment-constraints—incorporating the reparameterized CES function—and 
regular normality conditions. As such, the approach then encompasses the Bayesian 
information processing rule while remaining, however, fundamentally based on the 
second law of thermodynamics55.

55  For those interested, a vast literature on the subject can be found at: http://polymer.bu.edu/~hes/
econophysics/
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5.3.1  Power Law and the Constant Elasticity of Substitution (CES) Function

A half century ago, Arrow, Chenery, Minhas, and Solow (1961) proposed a new math-
ematical function which simultaneously displays the property of homogeneity, con-
stant elasticity of substitution (CES) between factors of production. Additionally, this 
function presents the possibility of differentiating elasticity of substitution for differ-
ent industries, sectors, or countries (Klump and Papageorgiou, 2008), thereby gener-
alizing the Cobb-Douglas model. The model was later expanded to other case studies 
where the system optimally aggregates its components according to some parameters 
to be specified below. Following Bwanakare (2014), we develop the proposed entropy 
formalism using a classical CESP explaining the gross domestic product (VAt) by two 
classical factors: labour (Lt) and capital (Kt). 

The next two cases of the CGE trade model class have been presented in Bwanak-
are (2014). Let us recall below a CESP mathematical form:

   teLKVA ttt
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or one of its generalized formulations as:
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where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  with 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  and 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 	 (5.14)

and

τe constant elasticity of substitution between factors, εt stands for the random dis-
turbance with unknown distribution. In (5.12), α stands for the shift parameter; the 
parameter δ belongs to the zero-one interval and represents the share (distribution) 
of the sold quantities of both distributed factors. Parameter v reflects the degree of 
changing returns of VAt to scale. The higher the value of ρ, the higher the degree of 
substitution between factors. The case of τe converging to 0 suggests perfectly substi-
tutable factors. The generalized form (5.13) suggests a case of more than two inputs 
Xi, i = 1,2,...,n.

Let us now focus on a useful connection between the CES class of functions and a 
power law (PL). In fact, to better display that relation, let us aggregate components of 
model (5.12) into one variable. Then, we get a generic case of a PL of the form:

  tekva p
tt





  1 = tekt

  	 (5.15)

where, in this case, the endogenous variable vat is the product per capita. Parameter β 
represents a general level of technology. The variable kt stands for a capital coefficient. 
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The exponent η belongs within the interval (–1, +∞) and defines a per head product 
elasticity with respect to the capital coefficient. It is evident that the above rela-
tion (5.15) can be compared with the relation (2.30) or the achieved tail queue-related 
Tsallis non-extensive entropy relation (2.31). The random term ε1, itself, is assumed to 
follow PL structure. Index t means time period. Thus, such PL relationships with the 
class of CES function seem to engender potential implications on economic grounds, 
including extensions to the real demand side of the economy. A PL displays interest-
ing properties which may explain its ubiquity at different complexity levels in natural 
and human organizations. For a survey on the inheritance mechanism and other 
properties of a PL (Gabaix, 2008). Once again, for the direct relationships between 
a PL and non-extensive Tsallis entropy, refer to Tsallis (2009). The proposed model 
generalizes the statistical theory of information approach to non-ergodic systems 
where q is different to unity. Let us underscore the fact that many findings of recent 
decades seem to confirm a domination of such systems in the physical real world. 
Even if we do not intend to set up a philosophical discussion here, a large number 
of econo-physical contributions of recent years seem to confirm the ubiquity of non-
ergodic law in social sciences (e.g., Bottazi et al., 2007, Ikeda et al., 2008, Mantagna 
et al., 1999). Under such a hypothesis, this could constitute a serious drawback for 
other competing entropy or econometrics techniques when trying to efficiently model 
a certain class of phenomena. 

The model estimation. We follow the same procedure as in previous examples 
when we searched to minimize the cross-entropy criterion function under a priori 
moments, including the one concerning the economic model in question. Below, we 
directly present the model under the reparameterized form of parameters. Then, if we 
additionally use an escort distribution in moments, the Tsallis cross-entropy econo-
metric model can be stated as:
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1
2



I

Ii ib
  

= 1	 (5.19)

1
2

 

H

Ih hw


  = 1	 (5.20)

For reasons of formal presentation, the criterion function (Equation 5.16) does not 
include probabilities wh, explaining degree of economy changing to scale and bi, the 
parameter of distribution between factors.

In order to improve the estimated parameter quality—in the Bayesian sense—
additional constraining data can be added to (5.17–5.20). In the case of a CES model, 
some economic theory exists. For instance, we can predict sign value domain varia-
tion for each parameter. Then we get:

0 ≤ α = Ga < ∞	 (5.21)

–1 ≤ ρ = Zp ≤ ∞	 (5.22)

0 ≤ δ = Tb ≤ 1	 (5.23)

Where α, ρ, δ in Equation 1a stand for the original, “before-reparameterization,” 
parameters. The set G, Z, T stand for the above original parameter support space 
with the corresponding weight-probabilities a, p, b defining output posteriors. G, Z, 
T support spaces are defined in the same way as, e.g., Equation 2.45–2.46. Here we 
just present how we have specified this particular model and not a general rule of 
specification. Note that depending on error distribution, the weights α, β introduced 
in the above dual objective function may exercise a significant impact on the model 
optimal outputs, respectively, as precision and prediction weight. Indeed, the entropy 
model encompasses statistical losses in the parameter solution space (precision) and 
in the sample solution space (prediction). As can be easily shown, Lagrange multipli-
ers stand for implicit nonlinear function of the weights (α, β) imposed in the gener-
alized cross-entropy criterion function. Changes in weights alter the corresponding 
optimal solution value. In general, as in most constrained optimization problems, 
smaller Lagrange multipliers for a q cross-entropy formulation imply smaller impact 
of constraints on the objective, in particular for the Tsallis q around unity, i.e., the 
Gaussian case.

Model outputs. Outputs presented below constitute an important component 
of the findings in this book. They underscore, more than in previous applications 
where, generally, outputs from Tsallis entropy fit with those of Shannon entropy, 
i.e., an illustration of convergence case to Gaussian model. Here, things will change 
and power law will point out its form. Because of its importance, many details of the 
model outputs already presented by Bwanakare (2014) will be reported in this section 
plus new outputs from two additional country case studies. Thus, based on the data 
source of Table 22, let us present outputs of the three CGE trade models: the produc-
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tion function CESP (already developed through the above sections), the CECS (con-
stant elasticity of commercial substitution function, known as the Armington model), 
and the CET (constant elasticity of technical transformation). The reasons for present-
ing these three models of the same class of function are the following: the CES model 
displays causality relationships; the CECS remains a quasi-identity equation since it 
is just missing a quasi-constant variable (the indirect taxes) to constitute an identity; 
and the CET model remains an identity equation, the covariate values of which sum 
up to the explained value of the model. Statistical data in Table 21 illustrate that situ-
ation. Due to a low level of precision, the traditional regression techniques may not 
be relevant in separating the three cases presented above. We compare the outputs 
from non-extensive cross-entropy (NCEE) with those from the traditional estimation 
techniques: the nonlinear least squares (NLS), the generalized methods of moments 
(GMM), and the maximum likelihood approaches (Green, 2003). Model data first have 
been dimensioned at logarithmical scale for computational purposes. The computa-
tions of the NCEE model were carried out with the GAMS code (General Algebraic 
Modelling System). Those with the NLS technique were done with Microsoft Excel. 
Computations by the GMM and ML approaches were executed with a special code 
from the open source GRETL. Let us first recall the mathematical formulation of the 
next two CES model classes. A CECS function aggregating interior economic absorp-
tion with two business components (locally produced commodities demand (DO) and 
imports (M) has the following analytical form:

   
1

1
  ttt MDOC  	 (5.24)

where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ with 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  and 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 

and
τe constant elasticity of substitution, εt stands for random disturbances with unknown 
distribution.

The last model CET is analytically formulated in the following way:

   
1

1
  ttt DMOexMO  	 (5.25)

where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  with –∞ 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  –1and –∞𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 0	 (5.26)

and
ext, DMOt stand for exports and domestically marketed outputs, respectively. The rest 
of the symbols have the same meaning as in the previous models. The higher the value 
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of ρ, the higher the degree of transformation. When that parameter converges to –∞ 
we are dealing with a case of perfectly complementary products, which refers to Leon-
tief technology. The case of ρ converging to –1 suggests perfectly substitutable prod-
ucts. In this study, priors were initiated from NLLS outputs. As known, such priors are 
not deterministically fixed. They are updated according to the Bayesian information 
processing rule. For simulation purposes, different q-Tsallis parameter values were 
computed from unity to its admissible56 highest values minimizing the criterion func-
tion. In all models, an a priori parameter support space for reparameterization varies 
between –5.0 and +5.0. The same prior space has been retained for the error distur-
bance with amplitude varying between –3 and +3, so it conforms to the three sigma 
rule owing to Chebychev’s inequality (Pukelsheim, The Three Sigma Rule, 1994). Both 
spaces are symmetric around zero. This prevents the estimated parameters from a 
bias. All the recent works on these subjects (Bwanakare, 2016) seem to confirm that 
besides the NCEE approach, the NLS remains much better than the remaining econo-
metric methodologies (GMM and ML techniques) for solving this kind of nonlinear 
inverse problem. Then, in the next model we limit ourselves to the presentation of 
the model outputs from the NCEE and NLS techniques. Tables 18 and 19 compara-
tively display the outputs from NCEE and NLS, respectively, for the three models. The 
NCEE estimator super-consistency for all three models can be noticed despite the 
small sample. The NLS approach seems better than the GMM procedure as shown in, 
e.g., Bwanakare (2016). The ML has produced, as theoretically expected, much poorer 
outputs. Output performance is displayed through error curves in Figures 4 to 9.

5.3.2  Parameter Outputs of the Tsallis Relative Entropy Model

Nonlinear LS estimation outputs. Using traditional nonlinear least square methods, 
we have linearized the Equations (1a, 1c, and 1d) before applying the Taylor develop-
ment and the LS approaches.

The NCEE outputs are accurate for all estimated models, and performances of 
the rest of the econometric approaches seem to be much less competitive. Having 
used a twelve-year sample in this model, the power law clearly seems to constitute the 
data generating system. Let us thus comment on these NCEE outputs on the empiri-
cal side. The estimated parameters reflect long-run optimal equilibrium values of 
the system. Since we are dealing with the aggregated accounts of 27 EU countries, 
the values of estimated parameters seem to reflect our expectations. In particular, in 
the case of the CESP production model, the estimated parameter p with an estimate 

56 In fact, its interval covers Gaussian (1 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  q 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  5/3) and stable laws (e.g., Levy’s) attractors for 
(5/3 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  q 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  3).



164   Estimating the CGE Model through the Maximum Entropy Principle

around zero suggests a convergence of the analysed function to the classical Cobb-
Douglas function, displaying in the present case constant returns to scale. A long-run 
optimal equilibrium share parameter δ between factors shows a lower proportion of 
labour of around 16.3% with respect to capital share (83.7%). In 2010, this proportion 
was around 57% for labour. Thus, according to these outputs, long-run optimal pro-
duction will require much less labour demand, around 16%. For the models CET and 
CECS, the estimated parameters show, in the long-run, a quasi-perfect substitutability 
and a balanced share between local and foreign commodities. Expected free trade 

Table 18: Outputs from the NCEE: dependent var: C(t), MO(t), VA(t).

Exogenous var:  A  δ  p  v I(Pr) CV

CESP(L(t), K(t))  1.866  0.163  0.001  1.000 0.99 0.006

CET(DO(t),Ex(t)) 2.000 0.5 -1.0001 0.999 4.271E-7

CECS(C(t),M(t)) 2.000 0.499 pu -0.985 0.999 2.705E-5

q Tsallis parameter (weight αi=0.05) = 2.333 (CECP)

q Tsallis parameter (weight αi=0.05) = 1.0001 (CECS)

q Tsallis parameter (weight αi=0.05) = 1.0001 (CET)

Table 19: Outputs from the NLS, models CESP, CET, CECS: dependent var: C(t), MO(t), VA(t)

Exogenous var:  A  δ  p  v R2

CESP(L(t), K(t))  1.995  0.282  3.046  0.993  

Parameters T-value) 48.89 6.61 1.49 6.61 0.88

CET(DO(t),Ex(t)) 2.008 0.497 -0.954   

Parameters T-value 558.120 1551.353 -292.532  0.999

CECS (C(t), M(t)) 2.147 0.477 -0.532   

Parameters T-value 6.257 13.073 -1.554  0.83

Table 20: Outputs from the NCEE: dependent var: GDP(t)

COUNTRY  A  δ  p  Q EC n

Belgium 2.326 0.15 - 3.524398E-77/3 0.027 18

USA_sic33 0.777 0.057 -9.84248E-5 7/3 3.373000E-4 20



�Application: Non-Extensive Entropy and Constant Elasticity of Substitution-Based Models    165

barriers and a closer level of productivity among world business partners could advo-
cate in favour of such outputs. For simulation purposes, different Tsallis-q parameter 
values were computed over the domain of definition of q∈ [1, 3] which covers the 
Gaussian basin of attraction [1 < q < 5/3] and Levy’s attractors law [5/3 < q < 3]. The 
q-parameter has been incremented by a step of 0.25 starting from unity (the Shannon 
entropy point). These different values of q generated the model error disturbances 
which allowed the computation of the error coefficient variation (CV). The index CV is 
obtained by dividing the model standard error by the average value of the dependent 
variable. All the above models present an error coefficient variation (CV) of around 
zero. The Tsallis Information Index (Bwanakare, 2014) presented in Part II of this 
book is around unity for the three models, suggesting relatively close to zero informa-
tion divergence between priors and posteriors, under given model restrictions. We 
would have expected optimal solutions for q less than 5/3 or, in the worst case, less 
than 2 for theoretical and empirical evidence. This is the case for the two commer-
cial CET and CECS models where q is almost equal to unity, suggesting a Gaussian 
distribution. For the CESP production model, minimum LS errors are obtained for q 

Table 21: Outputs from the NLS: dependent var: GDP(t)

Exogenous var:  A  δ  p  v R2

Belgium 11,85713 1,82255 2,833935 0,867049 0.999

USA_sic33 0,00038 4,85717 0,061815 1,054080 0.999

Table 22: Aggregated data (chain-linked volumes at 2005 exchange rates) for models (in 1000 billion 
euro).

year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

VA_mld 7,82 8,136 8,427 8,578 8,978 9,294 9,76 10,28810,2889,777 10,14910,412

K_mld 3,287 3,42 3,55 3,641 3,86 4,02 4,265 4,528 4,476 4,105 4,336 4,444

L_mld 4,427 4,606 4,76 4,819 4,99 5,149 5,374 5,63 5,683 5,554 5,691 5,834

MO 8,691 9,026 9,212 9,325 9,442 9,689 9,877 10,21110,55010,62110,16210,359

DMO 5,719 5,693 5,751 5,792 5,846 5,813 5,773 5,711 5,795 5,797 5,924 5,693

export 2,971 3,333 3,461 3,533 3,596 3,876 4,104 4,500 4,754 4,825 4,238 4,666

Imports 2,938 3,272 3,361 3,414 3,526 3,796 4,029 4,411 4,672 4,727 4,153 4,551

Source: http://appsso.eurostat.ec.europa.eu/nui/setupModifyTableLayout.do

http://appsso.eurostat.ec.europa.eu/nui/setupModifyTableLayout.do
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Figure 4: Error term for NLS, cross-entropy and GMM estimated models (CECS model).

Figure 5: Error term for NLS, cross-entropy and GMM estimated models (CET model).
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Figure 6: Error term for NLS, cross-entropy and GMM estimated models (CESP model).

Figure 7: Model disturbance (CV) curve as a function of q, for [1<q<2.6] (model CESP).
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around 7/3 (see Figure 6). However, comparable outputs from Borges (2004) exist. He 
found cumulative distribution of the scaled gross domestic product of 167 countries 
around the world for the year 2000 corresponding to q = 3.5. Figure 7 and 8 display 
a convex space defining different optimal CV values owing to different simulated 
q-Tsallis parameters for the CESP model. Minimum CV corresponds to the minimum 
of information divergence or of the sum of geometrical error of least squares. To verify 
the Tsallis related model outputs, we have computed a classical S-K-L cross-entropy 
econometric model which has produced for all the three models, as expected, the 

Figure 9: Model random error coefficient for SIC 33: the USA Primary Metals production NCEE model.

Figure 8: The Tsallis q-parameter related model error for the Belgium model (q between 1 and 3).
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same values as those obtained from Tsallis formalism for q equal to unity. Such trivial 
results have not been reported in the above output tables. In the case of the CESP 
model, we found for q converging to unity a CV of 85.3% in the case of K-L, against 
0.06% for an optimal q equal to 2.331. Thus, this point shows the advantage of model-
ling with non-extensive entropy rather than Shannon entropy, reduced to q equal to 
unity. Finally, in Tables 20 and 21 model outputs are limited to two CESP outputs of 
Belgium and the USA Primary Metals production model. Contrary to all the models 
that have been presented in this section, this last USA study treats a space model, 
already discussed in Green57. As expected, the outputs from the NCEE reveal a higher 
precision than those from the NLS approach. In spite of a high coefficient of deter-
mination displayed R2, economic theory related signs and space area of parameters 
remain inappropriate in the case of NLS outputs.

5.4  Conclusions

The present example has presented the rationale of the proposed Tsallis cross-entropy 
approach for unstable, nonlinear econometric models in a more elegant way than in 
the preceding applications. Though the experiment was limited to three different CES 
models with respect to their stochastic forms, a large class of economic and finan-
cial models could fall into this category. Only outputs produced by Tsallis formalism 
reflect these stochastic differences a priori known. The Tsallis entropy super-conver-
gence estimator should only be explained, even in this unique but complex experi-
ment, by the data generating Pl distribution. More investigation, particularly on the 
ARFIMA class of models, is needed to confirm the above findings and the importance 
of the PL approach in econometrical modelling.

Bibliography – Part V
Adelman, I., & Robinson, S. (1978). Income Distribution Policy in Developing Countries: A Case Study 

of Korea. Stanford: Stanford University Press.
Armington, P.S. (1969). A theory of demand for products distinguished by place of production. IMF 

Staff papers 16, pp. 159–76.
Arndt C., Tarp, F., Robinson, S., Jensen, H.T., & Cruz, A. (2001). Parameter estimation for a 

Computable general equilibrium model: A maximum entropy approach. Washington: Working 
Paper, International Food Policy Research Institute.

57  See Green (2003).



170   Estimating the CGE Model through the Maximum Entropy Principle

Arndt C., Finn, T., Sherman, R., Jensen, H.T., & Cruz, A. (1998). Social Accounting Matrices for 
Mozambique 1994 and 1995. Washington, D.C. 20006 U.S.A.: Working Paper, International 
Food Policy Research Institute.

Arrow, K.J., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. 
Econometrica, 22, 265–90.

Arrow, K.J., & Hahn, F.H. (1971). General Competitive Analysis. San Francisco: Holden Day.
Arrow, K.J., Chenery, H.B., Minhas, B.S., & Solow, R.M. (1961). Capital-Labor Substitution and 

Economic Efficiency. The Review of Economics and Statistics, 43(3), pp. 225–250.
Bento, A.M., & Jacobsen, M. (2007). Ricardian rents, environmental policy and the ‘double-dividend’ 

hypothesis. J. Environ. Econ. Manag., 53 (1), pp. 17–31.
Bottazzi G., Cefis, E., Dosi, G., & Secchi, A. (2007). Invariances and Diversities in the Patterns of 

Industrial Evolution: Some Evidence from Italian Manufacturing Industries. Small Business 
Economics, 29(1), pp. 137–159.

Bourguignon, F., Michel, G., & Miqueu, D. (1983). Short Run Rigidities and Long Run Adjustments in 
a Computable General Equilibrium Model of Income Distribution and Development. Journal of 
Development Economics, pp. 1–2.

Bwanakare, S. (2014). Non-Extensive Entropy Econometrics: New Statistical Features of Constant 
Elasticity of Substitution-Related Models. Entropy, pp. 2713–2728.

Bwanakare, S. (2016). Non-Extensive Entropy Econometrics and CES production Models: Country 
Case Study. Journal of the International Association for Official Statistics (IAOS). Retrieved from: 
http://content.iospress.com/articles/statistical-journal-of-the-iaos/sji1021

Capros, P., Karadeloglou, P., & Mentzas, G. (1990). An empirical assessment of macroeconometric 
and CGE approaches in policy modeling. Journal of Policy Modelling, 12 (3), pp. 557–585. 
doi:http://dx.doi.org/10.1016/0161-8938(90)90013

De Melo, J. (1988). Computable General Equilibrium Models for Trade Policy analysis in Developing 
Countries: A Survey. Journal of Policy Modeling, 4, pp. 469–503.

Decaluwe, B., & Martens, A. (1988) CGE Modeling and Developing Economies: A Concise Empirical 
Survey of 73 Application to 26 Countries. Journal of Policy Modeling 10:4.

Decaluwé, B., Martens, A., & Savard, L. (2001). La politique économique du développement et les 
modèles d'équilibre général calculable. Montréal, Canada: Les Presses de l’Université de 
Montréal.

Devarajan, S., & Robinson, S. (1983). Selected Bibliography on Computable General Equilibrium 
Models of Developing Countries. Harvard and U.C. Berkeley: Mimeo.

McDonald, S., Thierfelder, K., Robinson, S. (2007). Globe: A SAM Based Global CGE Model using 
GTAP Data. Retrieved from www.usna.edu/EconDept/RePEc/usn/wp/usnawp14.pdf

Evans, G.W., & Ramey, G. (2006). Adaptive Expectations, Underparameterization and the Lucas 
Critique. Journal of Monetary Economics, 53, pp. 249–264.

Francois, J. (2001). Flexible Estimation and Inference Within General Equilibrium Systems. Discussion 
Paper. 0129. Adelaide 5005, Australia: Adelaide University.

Frasera, L., & Waschik, R. (2013). The Double Dividend hypothesis in a CGE model: Specific factors 
and the carbon base. Energy Economics, 39, pp. 283–295.

Gabaix, X. (2008). Power laws in economics and finance. Retrieved from:  
http://www.nber.org/papers/w14299

Giffin, A. (2009). From Physics to Economics: An Econometric Example Using Maximum Relative 
Entropy. Physica A: Statistical Mechanics and its Applications, pp. 1610–1620.

Ginsburg, V., & WaeIbroeck, J. (1981). Activity Analysis and General Equilibrium Modelling, 
Amsterdam North-Holland. Amsterdam: North-Holland.

Ginsburgh, V., & Keyzer, M. (1997). Structure of Applied General Equilibrium Models, MIT Press. 
MIT Press.



� Bibliography – Part V   171

Ginsburgh, V., & WaeIbroeck, J. (1976). Computational Experience with a Large General Equilibrium 
Model in computing equilibria. Amsterdam North-Holland.

Go, D.S., Lofgren, H., Ramos, F.M., & Robinson, S. (2014). Estimating Parameters and Structural 
Change in CGE Models Using a Bayesian Cross-Entropy Estimation Approach. Retrieved from 
https://www.gtap.agecon.purdue.edu/resources/download/7136.pdf

Go, D.S., Lofgren, H., Ramos, F.M., & Robinson, S. (2015). Estimating parameters and structural 
change in CGE models using a Bayesian cross-entropy estimation approach. Policy Research 
working paper no. WPS 7174.

Golan, A., Karp, L.S., & Perloff, J.M. (1996). Esimating a mixed strategy employing maximum entropy. 
Working paper, California Agricultural Experiment Station. California.

Golan, A., Judge, G., & Miller, D. (1996). Maximum Entropy Econometrics: Robust Estimation with 
Limited Data, Chichester, England: Wiley.

Gossen, H.H. (1983). The laws of human relations and the rules of human action derived therefrom. 
Cambridge: MIT Press.

Green, W. (2003). Basics of Econometrics. NY: Hall Prencite, 5th edition.
Guerrien, B. (2000). Dictionnaire d’analyse économique. Paris, France: La Decouverte.
Harberger, A.C. (1959). The Corporation Income Tax: An Empirical Appraisal. Tax Revision 

Compendium 1, pp. 231–240.
Harberger, A.C. (1962). The Incidence of the Corporation Income Tax. Journal of the Political 

Economy. 70, pp. 215–240.
Harris, R., & Cox, D. (1983). Trade, Industrial Policy and Canadian manufacturing. Canadian journal of 

economics.
Herault, N. (2006, March). Building And Linking A Microsimulation Model To A CGE Model For South 

Africa. South African Journal of Economics, 74(1), pp. 34–58.
Ikeda, Y., & Souma, W. (2008). International Comparison of Labour Productivity Distribution. (Cornell 

University Library) Retrieved from arXiv:0812.0208v4
Jaynes, E.T. (1988). Maximum-entropy and Bayesian methods in Science and Engineering, Vol. One: 

Foundations. Boston, USA: G.J. Erickson and C.R. Smith, Kluwers Accademic Publishers.
Jevons, W.S. (1879). The Theory of Political Economy. London: Macmillan.
Jian, X. (2000). An Environmentally Extended Social Accounting Matrix, Environmental and Resource 

Economics. 16(4), pp. 391–406.
Jorgenson, D.W. (1984). Econometric Methods for General Equilibrium Analysis In Applied General 

Equilibrium Analysis. Cambridge: H. Scarf and J. Shoven, Eds., Cambridge University Press.
Jorgenson, D.W. (1998a). Growth. Volume 1: Econometric General Equilibrium Modeling. Cambridge: 

The MIT Press.
Judge, G.G. & Mittelhammer, R.C. (2012). An Information Theoretic Approach to Econometrics. 

Cambridge, UK: Cambridge University Press.
Klump, R., & Papageorgiou, C. (2008). The CES Production Function in the Theory and Empirics of 

Economic Growth. Journal of Macroeconomics, 2, pp. 599–600.
Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. Annals of Mathematical 

Statistics, 22, 79–86.
Kydland, F.E., & Prescott, E.C. (1982). Time to Build and Aggregate Fluctuations. Econometrica, 50 (6), 

pp. 1345–1370. doi:10.2307/1913386. JSTOR 1913386
Kydland, F., & Prescott, E.C. (1977). Rules Rather than Discretion: The Inconsistency of Optimal 

Plans. Journal of Political Economy, pp. 473–492. doi:10.1086/260580
Leontief, W. (1941). The Structure of American Economy, 1919–1929. Cambridge: Harvard University 

Press.
Lofgren, H., Harris, R.L., & Robinson, S. (2000). A Standard Computable General Equilibrium (CGE) 

Model in GAMS. Washington: Intl Food Policy Res Inst.



172   Estimating the CGE Model through the Maximum Entropy Principle

Lucas, R. (1976). Econometric Policy Evaluation: A Critique. 1, 19–46. doi:10.1016/
S0167–2231(76)80003–6

Mansur, A., & Whalley, J. (1984). Numerical Specification of Applied General Equilibrium Models: 
Estimation, Calibration, and Data in Scarf and Shoven. Applying General Equilibrium Analysis, 
pp. 69–127.

Mantegna, R.N., & Stanley, H.E. (1999). Introduction to Econophysics: Correlations and Complexity in 
Finance. Cambridge: Cambridge University Press.

Marshall, A. (1890). Principles of Economics. London: Macmillan.
McKenzie, L.W. (1959). On the Existence of General Equilibrium for a Competitive Economy. 

Econometrica, 1, pp. 54–71. doi:10.2307/1907777. JSTOR 1907777
McKenzie, L.W. (1981). The Classical Theorem on Existence of Competitive Equilibrium. Econometrica, 

4, pp. 819–841. doi:10.2307/1912505. JSTOR 1912505
McKenzie, L.W. (1987). Turnpike theory. The New Palgrave: A Dictionary of Economics, pp. 712–720.
McKenzie, L.W. (1954). On Equilibrium in Graham's Model of World Trade and Other Competitive 

Systems. Econometrica, 2, pp. 147–161.
Muth, J.F. (1961). Rational Expectations and the Theory of Price Movements. Econometrica, 3, pp. 

315–335. doi:10.2307/1909635
Nash, J.F. (1950). The Bargaining Problem. Econometrica, 2, pp. 155–162. doi:10.2307/1907266.

JSTOR1907266
Pearce, D. (1991). The Role of Carbon Taxes in Adjusting to Global Warming. The Economic Journal 

(101), pp. 938–948.
Pukelsheim, F. (1994). The Three Sigma Rule. American Statistical Association, 2, pp. 88–91.
Pyatt, G., & Thorbecke, E. (1976). Planning Techniques for a Better Future. Geneva, Switzerland: 

International Labour Office.
Pyatt, G. (1988). A SAM approach to modeling. Elsevier, Journal of Policy Modeling, 10(3), pp. 

327–352.
Pyatt, Graham, & Roe, A. (1977). Social Accounting Matrices for Development Planning: With Special 

Reference to Sri Lanka. Cambridge: Cambridge University Press.
Sasmaz, M.U. (2016). Validity of double dividend hypothesis in EU–15 countries. Global Journal on 

Humanities & Social Sciences, pp. 30–36.
Scarf, H. (1984). The Computation of Equilibrium Prices. Cambridge: (H. Scarf and J. Shoven, Eds.), 

Cambridge University Press.
Scarf, H. (1969). An Example of an Algorithm for Calculating Equilibrium Prices. American Economic 

Review, 59.
Shoven, J.B., & Whalley, J. (1972). A General Equilibrium Calculation of the Effects of Differential 

Taxation of Income from Capital in U.S. Journal of Public Economics 1 (3–4), pp. 281–321.
Shoven, J.B., & Whalley, J. (1992). Applying General Equilibrium. New York: Cambridge University 

Press.
Sims, C.A. (1987). A Rational Expectations Framework for Short-Run Policy Analysis. New Approaches 

to Monetary Economics, pp. 293–308.
Sims, C.A., 1987. A rational expectations framework for short-run policy analysis. In: Barnett, W.A., 

Singleton, K.J. (Eds.), New approaches to monetary economics. Cambridge University Press, 
Cambridge, UK, pp. 293–308.

Sims, C.A. (2007). Bayesian Methods in Applied Econometrics, or, Why Econometrics Should Always 
and Everywhere Be Bayesian. Princeton : Princeton University.

Stone, R. (1955). Input-Output and the Social Accounts. New York: J. Wiley.
Stone, R., & Brown, A. (1962). A computable model for economic growth. Cambridge, UK: Cambridge 

Growth Project.



� Bibliography – Part V   173

Taheripour, F., Khanna, M., & Nelson, C.H. (2008). Welfare impacts of alternative public policies 
for agricultural pollution control in an open economy: a general equilibrium framework. Am. J. 
Agric. Econ., 90(3), pp. 701–718.

Takeda, S. (2007). The double dividend from carbon regulations in Japan. J. Jpn. Int. Econ., 21, pp. 
336–364.

Tovar, C. (2009). DSGE Models and Central Banks. Economics, 3 (2009–16)(1).  
doi:10.5018/economics-ejournal.ja.2009–16

Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. 
Berlin: Springer.

Walras, L. (1874). Éléments d’économie politique pure, ou, Théorie de la richesse sociale. Lausanne: 
L. Corbaz & Cie.





Part VI: From Equilibrium to Real World 
Disequilibrium: An Environmental Model



1  Introduction
Through the use of adequate mathematical tools, recent works have attempted to 
better adapt the theoretical general equilibrium framework to realities examined by 
different schools of thought in economics where conditions of imperfect competition 
are taken into account. In many situations, a benchmark device allowing for assess-
ing deviation from the theoretical optimal equilibrium is the concept of market effi-
ciency in the Pareto context58. Standard macroeconomic theory holds that the condi-
tions leading to disequilibrium are market failure, market imperfections, the search 
for non-economic targets, and international business. Let us briefly describe these 
four factors. Market failure takes place in the presence of public goods or externali-
ties in production or consumption or when some economic agents are in possession 
of imperfect information. The common attribute of these market anomalies is their 
ability to appear even in the presence of perfect competition over all markets. When 
these market distortions are not removed, the economy moves from a socially optimal 
trajectory of welfare in the sense of Pareto. Externalities, as a cause of market failure, 
will be examined later in the context of the environmental economy.

Imperfect markets are related to the supply-and-demand side of commodity and 
factor markets. It is generally admitted that the level of market concentration of a 
given business is a good indicator of market imperfection. In the case of commodity 
supply, imperfect competition will shift down production and consumer utility. In the 
case of factor markets, imperfections lead to lost productivity.

As far as searching for non-economic targets is concerned, the role of government, 
usually deemed to help in correcting market failures or imperfections, can have a 
distorting role. Thus, government will search for non-economic targets59 of various 
attributes like ethical values, political agenda of politicians in connection with the 
political business cycle, and lobbying interests with the problem of rent seeking. The 
common attribute of these non-economic targets is that they lead to social efficiency 
losses.

International business policy may lead to economic inefficiency on the side of 
commodity or production factor. Thus, one can point to, for instance, the impact of 
fiscal or monetary policies as regulators of relative prices and market competition. 
These policies would thus create market distortion and lead to disequilibrium.

58  However, J.M. Buchanan (Nobel Prize, 1986) presents a controversial point of view on the subject. 
See, e.g., Alain Marciano, “Why Markets Do Not Fail”; Buchanan on voluntary cooperation and exter-
nalities (Nov. 2010); or A.H. Barnett and Bruce Yandle, “The End of the Externality Revolution” (2005).
59  For this vast subject see: Downs, Economics Theory of Democracy (1957); T. Buchanam, The Theo-
ry of Public Choice (1972); W.D. Nordhaus, political business cycle (1975); Breton, A. and Wintrobe, R., 
The Logic of Bureaucratic Conduct: An Economic Analysis of Competition, Exchange, and Efficiency 
in Private and Public Organizations (1982); W.A. Niskanen, Bureaucracy and Public Economics (1971).
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The next section presents the case of pollution as an externality exemplifying 
market failure in the economy. Later, we will balance an environmentally extended 
and unbalanced social accounting matrix. Let us first show, below, the impact of pol-
lution on economic equilibrium.

Economic efficiency, perfect competition, and externalities. To show how 
externality generated by private activity disrupts the economy from equilibrium, let 
us take the case of two producers, the first generating pollution (for instance, indus-
try) and the second being affected by it (for instance, agriculture). 

First, let us rewrite below the definition of the marginal rate of transformation of 
products of the economy: 

TmTP =
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where qj explains a quantity produced by producer j (j=1,2), and cmj the marginal cost 
for each producer j.

Now, suppose producer 2 (industry) generates a negative externality that affects 
producer 1 (agriculture).

In this case, production function of producer 1 has to be rewritten as:

q1 = f1(x1, q2)

The marginal physical productivity of the input used by producer 1 is, therefore:
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The second side of the formula above represents externality and has, for this 
case, a negative value, since δq1/ δq2

≺  ≻ 0. Thus, from the above definition of TmTP, 
we see that:

Cm1(E) ≺  ≻  Cm1

This shows that the negative externality from producer 2 increases the marginal 
cost of producer 1 to a new, higher level, that is:
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with TmTP(E) ≺  ≻  TmTP. We note that when δq1/ δq2≺  ≻ 0, we then have positive exter-
nalities (e.g., public goods). This case will not be dealt with here.
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In economic terms, if there is a negative externality on good 1 from good 2, for an 
increase in the production of unit 1 good, at the level of the total economy, we must 
accept losing more production of good 2. Thus, optimal conditions are no longer valid.



2  Extending to an Environmental Model
Let us start by giving hypotheses for the model. The first hypothesis states that pol-
lution is treated as a collective good associated with private production. This means 
it enters inside the utility function of all agents. The second hypothesis has pollu-
tion being treated in the model as a factor of production since it can be substituted 
for classical inputs through pollution abatement activities as alternative uses. Thus 
abatement activities might be regarded as an opportunity cost for productive inputs 
in the context of general equilibrium. The third and last hypothesis is that the model 
is of general equilibrium.

The model relations. The objective is to maximize utility of representative con-
sumer 1, that is:

U1(Xi1, E)

under constraints:
a)	 the utility of each consumer j other than 1 is predetermined and is at least equal 

to U1A; that is:

Uj(Xij, E) ≥ UjA

i=1…n
J=2…m.

b)	 production functions of all enterprises k are already predefined, i.e.,

Yk = Fk(Lik, Ek) ≥ UjA

K=1…h,
i=1…n.

c)	 the general equilibrium constraint is:

i

h

k
ik

m

ij RLX 
1

 

where:
Lik: inputs involved in production by enterprises,
Xij: consumed goods,
Ri: available resources inside the economy,
Ek: externalities or pollution as an input.

To solve for the above model, we need to formulate its Lagrange as follows:
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where αj, μk and ωi are Lagrange multipliers.
Deriving the model for the first order conditions with respect to independent vari-

ables Lik Xij and Ek, and checking for the second order, we finally obtain the following 
two optimum conditions:
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The first condition says that firms will carry out production activity up to the level 
where marginal productivity of pollutant emission (lhs of cond. 1) equals marginal 
cost of that emission (rhs of cond. 1), i.e., the social loss of utilities associated with 
production.

The second condition means that weighted marginal utilities of consumers j must 
equalize weighted marginal productivity of firms k, for any consumed good Xi or used 
input Li.

Criterion of externality internalization. The optimum presented above repre-
sents the social and economic optimum as defined by equalization of marginal profit 
of producers (mpp) with social marginal cost (smc) of pollution owing to production 
activity. The principle polluter-payer results when smc ≥ mpp. The next figure dis-
plays the essence of the above formula.

Figure 10: Optimal Pigovian tax
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Without environmental regulations, the market equilibrium is xo. As shown in 
Figure 10, the welfare loss in such equilibrium is represented by the box CDF, where 
the marginal social costs (MCsoc) exceed the marginal benefits of consumption (MB(x)) 
for all units consumed in excess of xp. Tx is a tax which is equal to the marginal envi-
ronmental damage (MED). It would make recovery of the social damages CDF pos-
sible. It is represented by a grey area.

Before ending this section, it is worthwhile to add that, apart from taxes, there 
are many other environmental policy instruments such as efficiency targets, quotas, 
and tradable permits. 

2.1  The Model of Carbon Tax

The following models include carbon tax policy within sector activity and institutions 
and show the uniqueness of the solution in the context of the much revisited CGE 
model. 

Production of goods:
Production function adopted here is the one taken from Cobb-Douglas technology for 
the production of two goods (good 1 and good 2) with capital, labour, and the environ-
mental pollution input poll.

POLLtax
i ekAnx ii   1  

Tax on Pollution POLLtax
Let us define pollution from the production in the following way: 

POLLtaxi = Etax· xi

Etax: tax on pollution per one unit, one unit of goods used or consumed.

Demand for production factors:
The cost function with tax can be presented as follows:

ϕi(w, r, xi) = wni + rki + TAXPOLL · Pi · xi

w = return to labour, r = return to capital, and ni and ki the amount of labour and 
capital, respectively. TAXPOLL is the tax rate per unit of pollution. Given this level 
of return, optimal inputs that minimize the above function for the production of xi 
become:
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Supply of goods:
With perfect competition, the price of a good equals the marginal cost of production: 
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Households:
The income of households is defined as expected: 

m = wn + rk + taxtransfer

and the budget restriction is:

m = p1c1 + p2c2

Utility function:
Let us assume the household/households to have the classical Cobb-Douglas utility 
function but where pollution is added as a separate term; that is:

  POLLeccHU    1
21  

β states how the households value their consumption of good 1 and good 2. 
γ is the parameter that states how the households value pollution. If γ is negative the 
households are assumed to dislike pollution. 

Demand:
When we combine the budget restriction and the utility function of the household, we 
can derive the demand function for the different goods: 
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Equilibrium conditions:
We have two equilibriums to be formulated below: one concerns the goods market 
and prices and the other the factor market. 
Goods market:
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The supply (i.e., the production) should equal the demand (i.e., the consumption of 
households):

x1 =  
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p
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Ceteris paribus, the price equals marginal cost of production: 
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Factor market:
The supply (i.e., the households’ total resources) should equal the demand for the 
different factors, and then we have an optimal factor market:
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We then have six equations and six endogenously determined variables x1, x2, p1, 
p2, w and r. This means that such an extended CGE model has a solution.

2.2  Carbon Tax Model and Double-Dividend Hypothesis

Pigou (1932) suggested imposing a tax per unit of pollution at a rate tα, equal to the 
marginal external damages per unit of pollution. Carbon tax means that not only the 
level of taxes depends upon the consumed quantity of carbon but also on its consumed 
quality. The targeted objective being the reduction of more polluting energy (e.g., that 
which results in CO2) in favour of cleaner energy technologies. At the same time, such 
a strategy allows for an interiorizing of negative externalities through introduction of 
an ad hoc tax that is socially equitable. Accordingly, such a tax policy should help in 
recovering lost macroeconomic equilibrium and social Pareto optimum welfare under 
the free market hypothesis. However, like any tax, a carbon tax should negatively 
impact economic growth. 

Thus, this leads to a fundamental question as to whether or not the above men-
tioned positive effects are sufficient to explain its introduction. Tullock (1967) raised 
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the possibility that government revenue would be “free,” while Terkla (1984) esti-
mated the amount of revenue and the efficiency gains from using it. For Lee and 
Misiolek (1986), the whole benefit of imposing a pollution tax depends on whether it 
raises revenue. We now show how this emphasis on revenue continues in the double-
dividend literature.

David Pearce (1991) is probably the first writer to use the term double-dividend: 

Governments may then adopt a fiscally neutral stance on the carbon tax, using revenues to 
finance reductions in incentive-distorting taxes such as income tax or corporation tax. This “dou-
ble-dividend” feature of a pollution tax is of critical importance in the political debate about the 
means of securing a “carbon convention.” 

Thus, the idea is that budgetary income from a carbon tax will be used to reduce 
other taxes so that one will get positive effects not only with respect to environmental 
targets but also economic targets. 

Validity of the hypothesis (strong form)
The validity of the double-dividend hypothesis cannot logically be settled as a general 
matter. For instance, the environmental tax may have its own distorting effects on 
labour supply and, therefore, can have the same excess burden as a tax on labour 
income. Each proposal must be evaluated individually. This evaluation must fully 
specify the policies already in place as well as the reform under consideration. 



3  Compensatory and Equivalent Variations: Two 
Types of Welfare Measurement
The next two questions will help us understand the difference between compensatory 
and equivalent variations: If relative price of two given commodities had to change, 
what would the change in income be if we needed to maintain the consumer at the 
same welfare level given this new situation? If relative price did not change, what 
would the equivalent change in income be that could produce the same impact as the 
relative price?

A)	 Compensatory and equivalent variations. Let us adopt the Cobb-Douglas 
behavioural function and define a utility function as follows:

U = q
1

γ q
2
1–γ

U: level of direct utility;
q

1
: consumed quantity of good 1;

q
2
: consumed quantity of good 2; 

γ : utility elasticity with respect to consumed good 1
1–γ : utility elasticity with respect to consumed good 2.

B)	 Indirect utility. Functions q
1
 and q

2
, which maximize utility, have the form:

2
2

1
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p
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






 

where p1 and p2 are prices of goods and YM nominal income of consumers.
Replacing the above functions in the function of direct utility leads to the 

indirect utility function presented below:

  1
21 pp

HYMUI  

with

H = γ γ (1–γ)1–γ

To facilitate the interpretation of indirect utility UI, let us recall that:

H
pp  1

21  

is the composite price of a commodity basket when direct utility is equal to U.
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In the case of perfect competition, elasticity γ corresponds to the fraction of 
bought commodity.

C)	 Compensatory and equivalent variations. If we assign an index “0” to the ref-
erence situation and index “1” to the new situation, then one may compare two 
welfare states in two manners:

a)   1
2
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0
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)()( pp
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where UI0 means the level of indirect utility at the reference situation.

b)   1
2

1
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1

1
1

)()( pp
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in the case of the new situation.
For further derivations, let us choose here, as a base of comparison, the new 

situation:
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and, converting the above quantity into nominal values, we get compensatory 
variation CV:
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If CV < 0, then we have welfare improvement.
In simulation exercises through CGE models, the government first introduces a 

carbon tax to targeted polluting sectors. Simultaneously, it will reduce factor taxes in 
distorting production sectors. The next step is observing changes in price and on the 
household real income level. On this basis, one derives the compensatory variation 
CV presented above. 
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4  A Theoretical Example: CGE Model and 
Double-Dividend (DD)-Oriented Policies
In this section we will present a theoretical non-extensive cross-entropy (NCE) model 
to estimate parameters of an environmentally extended CGE model to assess impact 
of the DD hypothesis. The main issue to be underscored remains the rationale for 
applying the NCE approach in place of the traditional Kullback-Leibler cross-entropy 
model (Go et al., 2015). The response lies in the statistical properties of power law-
related NCE. Due to the estimated parameters of constant elasticity of production 
models, outputs from both techniques must diverge with a higher performance in the 
case of NCE estimator (see V.5.3 for details). Both solutions will be similar only when 
the modelled phenomena display Gaussian distribution.

As presented earlier in this part of the book, the negative externalities result-
ing from pollution is one of the economy-distorting factors that prevents reaching a 
general equilibrium and Pareto optimum. Pearce (1991) proposed a model to generate 
double positive impact by introducing a tax imposition on pollutant activities. Once 
again, the first positive impact results in reducing pollutants through the increase 
of their production cost. If we use income generated by the tax imposition on pol-
lutant goods to reduce tax in other sectors, a DD may result. This section presents a 
theoretical CGE model in the context of DD hypothesis testing. The proposed model 
can enable assessing to what extent the carbon tax can be identified as an impor-
tant factor affecting the size of the DD, identifying the existence of a strong DD in the 
economy, or highlighting the weight of certain factors in affecting the presence and 
size of the DD.

This CE formulation may be written as follows:
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	 (5.11a)

Subject to:

F(Xt
E, Zt

0E, Zt
uE, BE, δE) =0,    ∀t∈T

δE = P(Zt
E, BE)

Yt
E = G(Xt

E, Zt
0E, Zt

uE, BE, δE) + et     ∀t∈T
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The above formulation (5.11a) is the same as the one presented in Part V (Equa-
tion 5.11), the only difference being the introduction in the model of an environmental 
sector. Consequently, this suggests the extension of the pre-existing model by adding 
environmental relations, as shown in the above optimization system where variables 
and parameters bear the superscript “E”.

Depending on the target of the environmental model, the above CGE block F(..) = 0 
will include additional endogenous variables (e.g., emitted CO2, the dirty commod-
ity, and its prices), exogenous variables like the environmental tax, the behavioral 
parameters like the elasticity of the environmental input, etc.

For example, to show the impact of the DD policy, one can add in the above CGE 
system F(..) = 0 the next equations, see (Sasmaz, 2016)60 for counterfactual simulation 
purposes:

CO2t = α1t + β1envtaxt + β2GDPt + β3eneconst + ζ1t	 (6.1)

U nempt = α2t + β4envtaxt + β5GDPt + ζ2t 	 (6.2)

Where CO2t (Equation 6.1) is an endogenous variable which depends on the environ-
mental tax rate envtaxt, the overall level of gross domestic production GDPt, and the 
level of energy consumption eneconst. Likewise, the endogenous variable U nempt 
(Equation 6.2) explains the rate of unemployment which depends on the envtaxt and 
the GDPt. The index of time t is related to the targeted time series elements of the 
environmentally extended social accounting matrices Yt

E. Parameters α1t and α2t are 
the constants. Parameters βj (with j = 5) explain the long-run marginal change of the 
respective endogenous variable induced by a unit change of the explicative variable. 
Indeed, parameter interpretation in the model explains a long-run marginal change 
since we are dealing with an entropy model, the estimates of which will be generated 
by the maximum entropy principal rule under the CGE constraints. As noted in the 
previous section where the question was posed as to whether or not the maximum 
entropy solution is Pareto optimum, the obtained model solution may be different 

60  Note that author has checked the DD hypothesis through an econometric panel data model.
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from the solution of the traditional CGE optimal computation, which is not based 
upon a probabilistic distribution. 

Besides the proposed illustrative model in (6.1–6.2), there exists a large formula-
tion of the DD policy—oriented through CGE models (e.g., (Frasera & Waschik, 2013) 
(Takeda, 2007), (Taheripour, Khanna i Nelson, 2008), (Bento & Jacobsen, 2007)). As 
an interesting case study, Fraser and co-author presented in (Frasera & Waschik, 
2013) a CGE model to assess a DD hypothesis where three taxes were examined: tax 
on the production of energy goods, on the production of carbon, and on the usage of 
carbon. To show the existence of DD for each tax revenue raised, authors proposed 
to offset pre-existing distortions in the CGE model through an endogenous tax that 
adjusts to keep constant government revenue. Finally, the author’s outputs led to the 
existence of a strong DD associated with the existence of specific (immobile) factors 
in the production of energy goods. Note that these outputs were generated through a 
traditional CGE model. 
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5  Conclusions
In this section we have presented a theoretical NCE general formulation model in the 
case of general economic disequilibrium owing to, for example, environmental dis-
tortions. At the same time, the principal aspects of the empirical literature on the 
DD hypothesis has been presented. This represents a useful device for environmental 
economists who find in it a way to kill two birds with one stone, that is, reducing the 
carbon emission while creating better conditions for a balanced economic growth. 

Future implementation of a PL-related NCE approach to estimate a CGE model, 
in general, and an environmentally extended CGE model, in particular, could reveal 
significant results. Indeed, the capacity of the PL-related NCE approach to handle 
non-linear inverse problem systems present in some sub-systems of the CGE model 
should produce positive outcomes.
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The purpose of this book is to present a non-extensive entropy econometrics tech-
nique as a new, robust devise of economic ill-behaved inverse problem modelling 
when traditional econometrical approaches may not work. Particular attention has 
been paid to national accounts tables supposed to display an endogenous general 
equilibrium of the economy. Non-extensive entropy related power law has proven 
to ubiquitously describe a large variety of phenomena, including those of finan-
cial markets. This book has tried to show that economic phenomena should also be 
described by this same law which generalises Shannon entropy and thus displays 
more stable solutions, including those beyond the Gaussian framework. 

Nevertheless, for a new approach to disserve attention, it should be consistent 
with an existing theory and be proven to lead to new empirical advantages. Conse-
quently, the second part of this study has been devoted to the main theoretical tech-
niques for solving inverse problems. In particular, starting with the Kullback-Leibler 
statistical information definition, we have presented the principal inverse problem 
solution techniques—and their limits—before characterizing Tsallis entropy with 
respect to its higher generalizing qualities. Next, based on recent Shannon entropy 
econometrics techniques, we have proposed a non-extensive entropy econometrics 
approach which encompasses the Gibbs-Shannon entropy case. In terms of their 
probabilistic definition, both econometrical techniques are characterized by corre-
sponding functional forms in criterion function. In both cases, constraining parts are 
based on the Bayesian method of moments. Nevertheless, due to the non-extensivity 
of Tsallis entropy, that aspect is magnified through a particular treatment of con-
straining moment equations, such as the use of escort distribution. Up to now, those 
forms of restriction have been used in statistical thermodynamics, so their successful 
transfer to entropy econometrics—then to the social sciences in general —constitutes 
the first intermediary result of this book. This is sufficiently important, seeing that, 
on statistical thermodynamics grounds, the discussions concerning the applicability 
conditions of different forms of restrictions are not yet closed. On the other hand, one 
cannot exclude that their application in social science could help in better under-
standing their use in statistical thermodynamics. In spite of sparse literature, the 
second intermediary result remains the formal connection of Shannon-Gibbs based 
Kullback-Leibler statistical theory of information to the proposed Tsallis non-exten-
sive entropy econometrics. As mentioned in later sections of the book, such a link 
represents a key element for empirical investigations since it will enable measuring 
divergence between hypotheses when non-ergodic phenomena are analysed. 

Until now, econophysicists have applied non-extensive entropy to high frequency 
phenomena. This book, through a probabilistic and dynamic characterization of 
power law—using scaling processes—puts forward the possibility of non-extensive 
entropy econometric modelling with low-frequency data, for instance, annual sta-
tistical series. This is significant since we then open the possibility of modelling with 
data reflecting real world economic practices. A central achievement of this work 
remains the proposed and demonstrated theorem linking economics to statistical 
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thermodynamics through the inheritance properties of PL. We then endeavoured to 
build a stronger bridge between these two disciplines. 

When the non-extensive entropy procedure is used to update and forecast input-
output tables, outputs remain similar to those obtained using traditional approaches, 
such as Shannon entropy or the RAS method. If our purpose had been to prove that 
the proposed new Tsallis entropy-based approach worked, obtaining similar outputs 
would have been sufficient. However, our target was more ambitious. We needed to 
show the superiority of the new approach. At least two reasons are behind this limited 
achievement. The first is that the structure of input-output-based tables may reflect 
Gaussian law, i.e., the convergence limit of power law. Consequently, Shannon and 
Tsallis entropies should display the same outputs. This is what has occurred in our 
study. As far as the RAS approach is concerned, achieving a higher performance by 
entropy techniques would have required, according to the existing literature, a higher 
number of consistent restrictions or stochastic modelling conditions. We have pre-
sented an example with powerful results when we were forecasting an aggregated 
input-output table of 27 EU countries. This interesting but time-consuming research 
disserves further investigation to better set modalities and conditions of each of the 
above rival approaches. In the context of these input-output table-based models, the 
next principal finding of this work remains the new proposed non-extensive entropy 
econometrics technique for estimating a large class of nonlinear stochastic models 
considered non-tractable. We have particularly in mind a large class of non-stationary 
or long memory econometric models, the data of which, at first glance, could corre-
spond with an unknown time scaling intermediary level of power law. 

The above findings were necessary to show the possibilities of extending gen-
eralized non-extensive Tsallis entropy to low frequency econometric models and, in 
general, to expand the estimation possibilities of econometric modelling, including 
static or dynamic CGE models and their extensions. Since data aggregating level—as 
evidenced by recent literature—may correspond to a certain probabilistic family of 
law, this fact could represent a paradigm shift in many fields, including applied sta-
tistics and econometrics.
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Appendix 

Annex C. Computational Aspects of Using GAMS

1.1  Introduction to GAMS

During this presentation, we have solved most of problems using the GAMS (General 
Algebraic Modelling System) code available on the site www.gams.com. A free student 
version is available on that site. Different commercial copies for different system 
platforms are available, too. In early 2003, a new GAMS User Guide was released, 
expanding on the earlier Guides by Brooke, Kendrick, and Meeraus and, later, Ramen. 
Succinctly speaking, GAMS is a language for setting up and solving mathematical 
programming optimization models. It is a compact language simultaneously allow-
ing one to specify the structure of an optimization model, specify and calculate data 
for the model, solve the model, conduct report writing on a model and perform a 
comparative static analysis. Any introductory GAMS user guide provides the different 
steps in programming in that language. 

Steps of programming in GAMS:
1.	 Variable specifications
2.	 Equation specifications

a. declaration
b. algebraic structure specification

3.	 Model statement
4.	 Solve statement

To be more complete, an example of GAMS programming, presented by Dhazn Gillig 
& Bruce A. McCarl (Department of Agricultural Economics, Texas A&M University) at 
http://agecon.tamu.edu/faculty/mccarl/mccarl.htm is included below. 

1.2  Formulation of a Simple Linear Problem in GAMS

a) Mathematical model:
Maximize 109X1 90X2 115X3

Subject to X1 X2 X3 ≤ 100

6X1 4X2 8X3 ≤ 500

X1 X2 X3 ≥ 0 (non-
negative)

 Open Access. © 2017 Second Bwanakare, published by De Gruyter.  This work is licensed 
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.  

http://www.gams.com
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b) Structure of the program:
VARIABLES

Z		  Variable Z	 ;

POSITIVE VARIABLES
X1		  Variable X1	
X2		  Variable X2	
X3		  Variable X3	 ;

EQUATIONS
Equation1		  Equation 1	
Equation2		  Equation 2	
Equation3		  Equation 3	 ;

Equation1..
Z =E= 109*X1 + 90*X2 + 115*X3		 ;

Equation2
X1 + X2+ X3 =L= 100			   ;

Equation3
6*X1 + 4*X2 + 8*X3 =L= 500		  ;

MODEL Example1 /ALL/;

SOLVE Example1 USING LP MAXIMIZING Z;

As is easy to observe, the sequences of solving the above linear program problem 
are ordered according to the above GAMS programming steps.

1.3  Application to Maximum Entropy Models 

1.3.1  The Jaynes Unbalanced Dice Problem

This problem has been presented in Part II of this book and outputs displayed in 
Table 2.1. Here we present a code in GAMS (see Golan et al.,1996) for solving such a 
simple unidimentional problem. 
*Derivation of probability structure of unfair dice with the GAMS code:
  SET
         i index/1*6/
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parameter
         x(i) support/1 1
                      2 2
                      3 3
                      4 4
                      5 5
                      6 6/;
POSITIVE VARIABLE P(i) probabilities;
VARIABLE OBJ objective;
EQUATIONS
         OBJECTIVE    entropy objective
         ADD          additivity constraint
         CONSIST      consistency equation;
OBJECTIVE..OBJ =E= -sum(i, P(i)*log(1.e-9+P(i)));
ADD..SUM(i, P(i)) =E= 1;
CONSIST..SUM(i,(x(i)*P(i))) =E= 4.5;
Model classoc/ALL/;
Solve classoc maximizing OBJ using NLP;
DISPLAY P.L;
DISPLAY OBJ.L;

1.3.2  Non-Extensive Entropy Econometric Model 

This is a more complex example written by S. Bwanakare (2009) for real world prob-
lems, in this case a labour demand model for the Polish economy. More explanations 
are provided in the following introductory text of the program 

$ontext
Generalized Maximum Entropy Parameter estimation of a labour demand economet-
ric model for Podkarpacki province. Moving along rationale expectation mainstreams, 
this model estimates long-run and short-run impact of demand labour determinants. 
However, since this model belongs to the class of ARDL (autoregressive distributed lag) 
model, exogenous variables are not independent of the error term. Additionally, due 
to the small data sample available for the Podkarpacki district, assumptions concern-
ing random term distribution becomes unknown. Then, estimation of parameters using 
classical methods (like the LS) become ineffective. The model below exploits the Gener-
alized Maximum Entropy principle to estimate parameter of the labour demand model.

$offtext
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SET
    M index /1*5/
    J index /1*5/
    t index/1*9/
    k index /lnLt,lnYt,lnLt_1,t,ao/
    xk(k) index /lnYt,lnLt_1,t,ao/
;
table data(k,T)

	 1	 2	 3	 4	 5	 6	 7	 8	 9
LnLt	 0.0049	 0.0062	 0.0026	 -0.0163	 -0.0373	 -0.0137	 -0.0112	 0.0001	 0.0051
LnYt	 0.0936	 0.0875	 0.0626	 0.0301	 0.0343	 0.0245	 0.014	 0.0212	 0.0343
LnLt_1	 4.5126	 4.6013	 4.6826	 4.7426	 4.7890	 4.8606	 4.8988	 4.9240	 4.9451
t	 1	 2	 3	 4	 5	 6	 7	 8	 9
ao	 1	 1	 1	 1	 1	 1	 1	 1	 1

display data;
*$offtext ;
Positive variables
         P(xk,M) parameter probabilities
         W(T,j) error probabilities
         sigm standard error on parameters
         q  parameter tsallis   ;
parameter
        V(t,j) support space for error
        Par(xk) parameter estimates
*        sigm standard error on parameters
        X(T,xk) explanatory variables
        Y(T,*) dependent variables
        XY(T,k) all variables
        kurt(k) forth moment

*        epsilon positive small real
        sigmaa(xk) standard error on all variables
         sigmaa(xk) sample standard error
                            /lnYt    0.0
                             lnLt_1  0.0
                               t     0.050 /
          Z(M) parameter support /1 -1.000
                                                   2 -0.500
                                 	        3   0



202   Appendix 

                                                  4   0.500
                                 	       5  1.000/;

                             v(t,"1")  =-3*sigmaa("lnYt") ;
                             v(t,"2")  = -1*sigmaa("lnYt");
                             v(t,"3") =  0*sigmaa("lnYt");
                             v(t,"4") =  1*sigmaa("lnYt");
                             v(t,"5") =  3*sigmaa("lnYt") ;
                             v(t,"1") =-3*sigmaa("lnLt_1");
                             v(t,"2") = -1*sigmaa("lnLt_1");
                             v(t,"3") =0*sigmaa("lnLt_1");
                             v(t,"4") = 1*sigmaa("lnLt_1");
                             v(t,"5") = 3*sigmaa("lnLt_1") ;
                             v(t,"1") =-3*sigmaa("t");
                             v(t,"2") = -1*sigmaa("t");
                             v(t,"3") =0*sigmaa("t");
                             v(t,"4") = 1*sigmaa("t");
                             v(t,"5") = 3*sigmaa("t") ;

Display v;
           W.l(t,"1")=1/72 ;
           W.l(t,"2")=27/72 ;
           W.l(t,"3")=16/72 ;
           W.l(t,"4")=27/72 ;
           W.l(t,"5")=1/72;
 parameter
         epsilon /0.0001/ ;
          W.lo(t,j)=epsilon ;
          W.up(t,j)=1 ;
          p.lo(xk,m)=epsilon;
          p.UP(xk,m)=1 ;
*          q.lo=epsilon;
Variable OBJ objective ;
Y(t,"lnLt") = data("lnLt",t);
X(t,"lnYt") =data("lnYt",t);
X(t,"lnLt_1") =data("lnLt_1",t);
X(t,"t") =data("t",t);
X(t,"ao") =data("ao",t);
q.l=1.5;
display Y, X;
Equations
         OBJECTIVE objective function
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         ADD1(xk)   parameter additivity constraints
         ADD2(T)   error additivity constraints
         CON(T)    consistency constraints;
OBJECTIVE..OBJ =E= sum(xk, sum(M, (P(xk,M)-P(xk,M)**q)/(q-1))+sum(T,Sum(J, 
(W(T,j)-(W(T,j)**q)/(q-1)))));
ADD1(xk)..sum(m, P(xk,M)) =E=1;
ADD2(T)..sum(J, W(T,J)) =E=1;
CON(T)..sum(xk, X(T,xk)*sum(M, [(P(xk,M)**q)/sum(M, (P(xk,M)**q)]*Z(M))) 
+sum((J,[W(T,j)**q)/sum((J,W(T,j)**q)]*V(t,j)) =E=Y(T,"lnLt");
=E=Y(T,"lnLt");
Model labour /ALL/;
labour.optfile = 1 ;
labour.HOLDFIXED = 1 ;
labour.scaleopt=1 ;
option NLP = minos5;
Solve labour maximising OBJ using NLP;
PAR(xk) = sum(M, P.L(xk,M)*Z(M));
DISPLAY PAR,q.l;
*in sample teoretical yy
parameter
 
logLL(T) in sample pronostical Y ;
logLL(T) = sum(xk, X(T,xk)*Par(xk)) ;
display logLL;
parameter
god goodness coefficient
S(xk) parameter information index
et(T) estimation of random term;

S(xk)=(1-sum(m,P.L(xk,M)**q.l))/(q.l-1)*(1-q.l)/[5**(1-q.l)-1];
et(T)= data("lnLt",T)-logLL(T);
god=obj.l*(1-q.l)/(11*[5**(1-q.l)-1]);
 
display obj.l,god, et, S, p.l,w.l;
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Annex D. Recovery of Pollutant Emissions by Industrial Sector and 
Region: an Instructional Case 

1.1  Introduction

In this section, we are going to present a case that, unlike the case studies carried 
out in previous parts of the monograph, shows the limits of the entropy economet-
rics approach when some initial conditions are not fulfilled while dealing with an 
inverse problem. Thus, the example illustrates what should not be done to reach reli-
able model estimates. This is important for the less experienced modellers who try to 
recover information on the basis of this theory. In this instance, we see that an impor-
tant property of respective continuity of probability measures of two hypotheses, as 
those were defined in part II of the book, is missing. In such a case, more statistical 
data should be collected to allow for an inference based on regular conditions. In this 
example, we use a GAMS code. 

1.2  Recovery of Pollutant Emission by Industrial Sector and 
Region: the Role of the Prior61

Suppose we dispose of information on aggregated greenhouse emissions simultane-
ously at the regional and sectorial level. In Table 23 below, we can depict this total 
information in the last column and last row, respectively. It is important to underscore 
here that these two pieces of information are from two different sources and, plau-
sibly, were initially collected for different purposes. Thus, we have to join these two 
pieces with the hope of recovering the real distribution state of pollutant emission 
by industrial sector and region. In this example, there is an additional complication 
related to the impossibility of comparing these two totals. In fact, values in the last 
column constitute an unknown aggregate of standardized quantities of different pol-
lutants with different units of measure. Inversely, in the last row, available statistical 
data of aggregates have been converted into tons of CO2 equivalent. Suppose, in this 
problem, we are asked to recover the regional and sectorial level of greenhouse emis-
sions in tons of CO2 on the basis of the above availability of statistical data.

If column and row totals were explained in the same unit of measure, we would 
then have to deal with a direct extension of the Jaynes dice problem (see Table 1 in 
Part II) from one to two-dimensional discrete space. In this context, finding a unique 
optimal solution for such a problem requires finding an equation system with a 

61  For a complete solution of this problem, we send the reader to: Acta Physica Polonica A 2015, 127, 
A-13. [CrossRef]

http://dx.doi.org/10.12693/APhysPolA.127.A-13
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closed form. Additional and consistent a priori information is required to enable an 
optimization entropy device moving from uniform distribution toward an optimal, 
global solution. For a researcher unacquainted with solving this kind of problem, the 
present example aims at revealing the limitations of the maximum entropy principle 
when minimum conditions are not fulfilled. In this example, the a priori is uniformly 
distributed information of pollutant emissions by industrial sector and region. Doing 
so, we try then to solve the problem using the well-known principle of insufficient 
reason already discussed in the introduction of this work.

As already observed, in the present problem, we have in column and row totals 
different units of measure. In this case, we suggest introducing a scaling factor  (as an 
additional new a priori) in consistency equations of the model, theoretically allowing 
the table to then balance. 

The Model
According to what has been said above and then without a priori information about 
the system, we propose applying non-extensive maximum entropy in the criterion 
function under traditional restrictions such as moments and normality conditions. 
The model takes the following usual form:
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where:
Yi: means total by row i, 
Xj: means total by column j,
pij: probabilistic structure of greenhouse emissions by region
xij: quantity of pollutant emission inside cells.

In this problem, we dispose of up to 122 points to be estimated (then including an 
additional 17 scaling factors c(i)) and only 23 observation points. Naturally, we are 
dealing with an inverse problem that we know how to solve from theoretical and 
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empirical models encountered earlier in this work. Outputs from derivations are 
shown in Table 24. Only a limited part of the information has been recovered. In fact, 
column totals have been accurately recovered, and line totals seem, to some extent, to 
conform to our expectations. In fact, we see that predominant regions in greenhouse 
gas emissions, like Mazowieckie, Slaskie, seem to produce the highest levels of pol-
lutants.

As already known, adding a new piece of a priori information far from uniform 
distribution and consistent with properties of the system would significantly improve 
the quality of prediction of these emission quantities. Additionally, as has been 
observed in the case of forecasting input-output systems (Part III), entropy estimators 
belong to the family of Stein estimators. As such, smaller probabilities are shrunk 
and higher probabilities then dominate in the space of solutions. Fortunately, adding 
more a priori information in the model enhances parameter precision and then allows 
for recovering the influence of smaller events.

Table 24: Total pollutant emission by industrial sector and region (post entropy estimation).

  indusener indutrans trans procind agr dech aut Total

lod 445.943 0.00E+00 0.00E+00 0.00E+00 92.881 0.00E+00 0.00E+00 538.824

maz 25838.76 0.00E+00 15494.79 3373.983 2457.911 1027.966 0.00E+00 48193.4

mal 10463.45 1201.047 760.303 0.00E+00 993.605 4634.521 10796 28848.92

sla 7265.899 1201.05 10.309 0.00E+00 0.00E+00 0.00E+00 44955.66 53432.92

lub 26102.65 1201.046 2023.227 0.00E+00 0.00E+00 0.00E+00 0.00E+00 29326.92

pod 11110.19 1201.047 1.773 0.00E+00 2289.638 0.00E+00 0.00E+00 14602.65

podl 7888.465 2031.926 20.356 0.00E+00 753.312 0.00E+00 942.165 11636.22

swi 3001.472 1171.582 1934.917 0.00E+00 2240.56 0.00E+00 298.363 8646.894

lubu 372.657 3300.148 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3672.805

wiel 2985.15 2914.626 0.00E+00 23710.43 15831.89 2197.649 7562.365 55202.12

zac 9952.093 691.237 1130.836 1792.583 2400.436 1352.623 250.21 17570.02

dol 21697.25 1443.422 9855.435 0.00E+00 2401.033 224.241 995.144 36616.52

opo 7448.701 827.828 3820.23 0.00E+00 317.823 0.00E+00 0.00E+00 12414.58

kuj 25001.55 0.00E+00 1.17 0.00E+00 2401.077 0.00E+00 993.112 28396.91

pom 20794.83 0.00E+00 5.611 0.00E+00 2400.832 0.00E+00 993.983 24195.26

war 0.00E+00 15284.04 1384.048 0.00E+00 0.00E+00 0.00E+00 0.00E+00 16668.09

Total 180369 32469 36443 28877 34581 9437 67787  

Source: own calculation.
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