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Preface to ”Frontiers of Asset Pricing”

The famed Capital Asset Pricing Model (CAPM) of Sharpe, Lintner, Mossin, and Black in the

1960s proposed an equilibrium theory wherein the expected return of an asset is a function of beta

risk associated with the expected return of the market portfolio. The CAPM was a pathbreaking

model derived from Markowitz portfolio theory and Tobin equilibrium pricing advances.

Unfortunately, in the 1990s, Fama and French published a series of widely-cited papers that

documented little or no relation between beta risk and average U.S. stock returns. Concluding that

the CAPM was dead, they proposed a number of empirically-based models incorporating long/short

portfolio returns as multifactors. Their multifactor models supplanted the CAPM. Subsequently,

researchers proposed similar models with different multifactors. However, as Cochrane has opined,

a factor zoo has developed. Nowadays intense competition exists in terms of alternative multifactors

and models.

James W. Kolari and Seppo Pynnonen

Editors
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Non-Parametric Statistic for Testing Cumulative Abnormal
Stock Returns

Seppo Pynnonen

Department of Mathematics and Statistics, University of Vaasa, P.O. Box 700, FI-65101 Vaasa, Finland;
sjp@uwasa.fi; Tel.:+358-21-449-8311

Abstract: Due to the non-normality of stock returns, nonparametric rank tests are gaining accceptance
relative to parametric tests in financial economics event studies. In rank tests, financial assets’ multiple
day cumulative abnormal returns (CARs) are replaced by cumulated ranks. This paper proposes
modifications to the existing approaches to improve robustness to cross-sectional correlation of
returns arising from calendar time overlapping event windows. Simulations show that the proposed
rank test is well specified in testing CARs and is robust towards both complete and partial overlapping
event windows.

Keywords: finance; economics; event study; clustered event days; cross-sectional correlation;
cumulated ranks; rank test; standardized abnormal returns

JEL Classification: G14; C10; C15

1. Introduction

Efficient markets has been and still is a cornerstone of asset pricing theory. Empirical
work in this regard is largely concerned with the adjustment of security prices to relevant
information. Fama (1970, 1991) refine relevant information into three hierarchical subsets
of weak form, semi-strong form, and strong form Fama (1970), or equivalently, return
predictability, event studies, and private information Fama (1991). Event studies investigate
the effect of unexpected economic events on asset prices. Therefore, event studies can
give the most direct evidence on market efficiency (c.f. Fama 1991, p. 1577). For this
purpose, asset price data available from financial markets can be used with appropriate
statistical testing methodology, reliability of which is central in inferences. In order to foster
this, the current paper aims to fill the gap in existing (non-parametric) statistical testing
by proposing non-parametric rank tests that are robust to cross-sectional dependency of
asset returns in more general circumstances than the existing ones. Otherwise, refer to
(Campbell et al. 1997, chp. 4) as an excellent introduction to event studies and related
statistical methods.

Regarding methodology, standardizing returns by their respective standard devia-
tions homogenizes data and has proven to improve testing performance. Because of this
improvement, standardized return based tests by Patell (1976) and Boehmer et al. (1991)
(BMP) have gained popularity over conventional non-standardized tests in testing event
effects on mean security price performance. Harrington and Shrider (2007) found that
in a short-horizon testing of abnormal returns (i.e., systematic deviation from expected
behavior), one should always use methods that are robust to cross-sectional variation in the
true abnormal returns.1 They found that BMP is a good candidate for robust, parametric
tests in conventional event studies.2

A major problem in statistical tests of returns is that the returns are not normally
distributed (Fama 1976). Not surprisingly, non-parametric rank tests introduced by Corrado
(1989, 2011); Corrado and Zivney (1992); Campbell and Wasley (1993) and Kolari and

JRFM 2022, 15, 149. https://doi.org/10.3390/jrfm15040149 https://www.mdpi.com/journal/jrfm1
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Pynnonen (2011), among others, dominate parametric tests both in terms of better size
and power (e.g., see Campbell and Wasley 1993; Corrado 1989; Corrado and Zivney 1992;
Kolari and Pynnonen 2011; Kolari and Pynnönen 2010; Luoma 2011). Furthermore, rank
tests by Corrado and Zivney (1992) and Kolari and Pynnonen (2011) that utilize event
period re-standardized returns have proven to be robust to event-induced volatility (Kolari
and Pynnonen (2011); Kolari and Pynnönen (2010)), cross-correlation due to event day
clusterings (Kolari and Pynnönen 2010), and autocorrelation (Kolari and Pynnonen 2011).
These studies are consistent with the view stated in the epilogue of Lehmann (2006): “Rank
tests apply often to relatively simple solutions, such as one-, two-, and s-sample problems,
and testing for independence and randomness, but for these situations they are often the
method of choice”. (Lehmann 2006, p. v). In addition, the results of rank tests are invariant
to monotone transformations of the underlying returns; that is, whether the returns are
defined as simple, continuously compounded log returns.

Existing rank based tests, however, are not robust to cross-sectional correlation if
the event days are partially overlapping in calendar time. This partial clustering occurs
when events are in calendar time scattered within an event window more or less randomly
rather than clustered on the same calendar day (i.e., complete clustering as in Kolari and
Pynnönen 2010). Figure 1 illustrates the various degrees of clustering in terms of three
stocks. Panel A depict the non-clustered case, Panel B the partial clustering, and Panel C
the complete clustering. In the complete clustering the event days are the same in calendar
time, while in the partial clustering the event days may or may not be the same in calendar
time but the event windows are more or less overlapping. In the non-clustered case the
event windows are completely separate in calendar time. In this case all event effects can
be investigated utilizing cross-sectional independence assumption of returns. In complete
clustering cross-sectional correlation of returns must be fully accounted for. In the partial
case the correlation can bias the results depending on the degree of overlapping. For
example in the case of Panel C if the interest is only on the event day effect, as all the
event days are different, there is no biasing effect by the correlation. On the other hand, if
cumulative return effect over the whole event window is of interest, correlation of returns
on the overlapping affects the joint behavior of the cumulative returns.

Jaffe (1974) is probably the first paper in event study testing to address the potential
biasing effect of cross-sectional correlation due to clustered events. Table 2 of Kolari and
Pynnönen (2010) explicitly addresses the issue by showing that already a virtually trivial
cross-sectional correlation, such as 0.05, can severely bias testing for event effects towards
material over-rejection. The present paper seeks to fill this gap of accounting for cross-
sectional correlation in non-parametric even study testing also with partially clustered
event days.

The paper is organized as follows. Section 2 reviews some related key literature.
Section 3 defines the main concepts and derives some distributional properties of rank
statistics. Section 4 introduces the new transformed rank test. Section 5 reports simulation
results, and Section 6 concludes.
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Figure 1. Event Windows Clustering.

2. Review of Related Literature

Patell and BMP parametric tests are straightforward tests of cumulative abnormal
returns (CARs) over multiple day windows. With the correction suggested by Kolari and
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Pynnönen (2010), these tests are useful in the case of completely clustered event days, and
with the correction suggested by Kolari et al. (2018) when event days are either completely
or partially clustered. By construction, the Corrado (1989) non-parametric rank test applies
for testing single day event returns. Testing for CARs with the same logic implies the need
of defining multiple-day returns that match the number of days in the CARs, (see (Corrado
1989, p. 395); (Campbell and Wasley 1993, footnote 4)). In practice this approach is carried
out by dividing the estimation period and event period into intervals matching the number
of days in the CAR. Unfortunately, this procedure is not useful for a number of reasons.
Foremost among these is that it does not necessarily lead to a unique testing procedure.
In addition, the abnormal return model should be re-estimated for each multiple-day CAR
definition. Furthermore, for a fixed estimation period, as the number of days accumulated
in a CAR increases, the number of multiple-day estimation period observations reduces
quickly impractically low and thus would weaken the abnormal return model estimation
(c.f., Kolari and Pynnönen 2010). Kolari and Pynnonen (2011) solve these issues in their
generalized rank test approach.

On the other hand, Campbell and Wasley (1993) recommend using the Corrado (1989)
rank test to test cumulative abnormal returns by simply accumulating the respective ranks
to constitute cumulative ranks (see also Hagnäs and Pynnonen 2014). This practice is
adopted in the Eventus� software Cowan (2007) and is probably, for the time being, the
most popular procedure for multiple day applications of rank tests. An advantage is that
this proceure implicitly accounts the cross-sectional correlation in the case of the complete
clustering.

In spite of these attractive properties, the cumulative ranks test does not account for
cross-sectional correlation due to calendar time partially overlapping event windows, i.e.,
the case of partial clustering. As referred above, even a small (positive) correlation biases
the standard errors downwards leading to over-rejection of the null hypothesis of no event
effect. Contributing to the event study literature, this paper proposes an adjustment for the
standard errors that corrects the bias in non-parametric testing.

3. Distributional Properties of Ranks

We begin by fixing some notations and an underlying assumption to facilitate our
theoretical discussion.

Assumption 1. Stock returns rit for firm i are weak white noise continuous random variables and
are cross-sectionally independent over non-overlapping calendar days, or,

E[rit] = μi for all t
var[rit] = σ2

i for all t
cov[rit, riu] = 0 for all t �= u

rit and rju are independent whenever i �= j and t �= u.

(1)

It is a stylized fact that the variances of the returns are time varying and that there
is mild autocorrelation. The time varying volatility problem can be partially captured in
terms of GARCH-modeling. However, typical GARCH-processes satisfy Assumption 1.

Let ARit = rit −E[rit] denote the abnormal return of security i on day t, and following
commonly used notations (e.g., Brown and Warner 1985, p. 6), let day t = 0 indicate the
event day. Days from t = T0 + 1 to t = T1 represent the estimation period relative to the
event day, and days from t = T1 + 1 to t = T2 represent the event window. The cumulative
abnormal return (CAR) from τ1 to τ2 with T1 < τ1 ≤ τ2 ≤ T2, is defined as

CARi(τ1, τ2) =
τ2

∑
t=τ1

ARit. (2)

The time period from τ1 to τ2 is called in the following as a CAR window or CAR period.

4
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Standardized abnormal returns are defined as

SARit =
ARit
SARi

, (3)

where

SARi =

√√√√ 1
T1 − T0 − 1

T1

∑
t=T0+1

AR2
it. (4)

Furthermore, for the purpose of accounting the possible event induced volatility, the re-
standardized abnormal returns are defined as in Boehmer et al. (1991) (see also, Corrado
and Zivney 1992), or

SAR′
it =

{
SARit/SSARt , T1 < t ≤ T2

SARit, otherwise,
(5)

where

SSARt =

√
1

n − 1

n

∑
i=1

(SARit − SARt)2 (6)

is the time t cross-sectional standard deviation of SARit, SARt =
1
n ∑n

i=1 SARit, and n is the
number of stocks in the portfolio. In addition, let Kit denote the rank numbers of abnormal
returns, where Kit ∈ {1, . . . , T}, t = T0 + 1, . . . , T2, T = T2 − T0, and i = 1, . . . , n.

If the available observations in the estimation period vary from one series to another,
it is convenient to use standardized ranks with zero mean and unit variance. To do this, we
compile the known results of rank statistics (e.g., Lehmann 2006, Appendix, Section 1) as
described below.

Result 1. Let Kit denote the rank numbers as defined above, then

E[Kit] = (T + 1)/2 (7)

var[Kit] = (T2 − 1)/12 (8)

cov[Kis, Kit] = −(T + 1)/12, (s �= t). (9)

Definition 1. Standardized ranks are defined as

Uit =
Kit − 1

2 (T + 1)√
(T2 − 1)/12

. (10)

(c.f., Hagnäs and Pynnonen 2014).
By Result 1, we obtain:

Result 2.

E[Uit] = 0 (11)

var[Uit] = 1 (12)

cov[Uis, Uit] = −1/(T − 1). (13)

Next, we define cumulative standardized ranks for individual stocks.

Definition 2. The cumulative standardized ranks of a stock i over the event days window form τ1
to τ2 are defined as

Ui(τ1, τ2) =
τ2

∑
t=τ1

Uit, (14)

5
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where T1 < τ1 ≤ τ2 ≤ T2.

From Result 2 and utilizing the variance-of-the-sum formula, var[Ui(τ1, τ2)] = ∑τ2
t=τ1

var[Uit] + ∑s �=t cov[Uis, Uit], we obtain:

Result 3.

E[Ui(τ1, τ2)] = 0 (15)

var[Ui(τ1, τ2)] =
τ(T − τ)

T − 1
, (16)

where i = 1, . . . , n, T1 < τ1 ≤ τ2 ≤ T2, and τ = τ2 − τ1 + 1.

Rather than investigating individual (cumulative) returns, the practice in event studies
is to aggregate individual returns into equally-weighted portfolios such that:

Definition 3. The average cumulative standardized ranks are defined as the equally weighted
portfolio of individual cumulative standardized ranks defined in (14), i.e.,

Ū(τ1, τ2) =
1
n

n

∑
i=1

Ui(τ1, τ2) =
τ2

∑
t=τ1

Ūt, (17)

where T1 < τ1 ≤ τ2 ≤ T2 and

Ūt =
1
n

n

∑
i=1

Uit (18)

is the time t average of standardized ranks.

The expected value of Ū(τ1, τ2) is the same as that of the cumulative ranks of individual
securities, or

E[Ū(τ1, τ2)] =
1
n

n

∑
i=1

E[Ui(τ1, τ2)] = 0.

If the event days are not clustered the cross-sectional correlations of the return series are
zero (or at least negligible). Under the cross-sectional independence and by Equation (16),
the variance of Ū(τ1, τ2) is

σ2
τ = var[Ū(τ1, τ2)] =

τ(T − τ)

(T − 1)n
. (19)

Then by the central limit theorem

Z =

(
(T − 1)n
τ(T − τ)

) 1
2
Ū(τ1, τ2) ∼ N(0, 1) as n → ∞. (20)

The situation is more complicated if the event days are partially overlapping in
calendar time which implies cross-sectional correlation. Recalling that the variances of
Ui(τ1, τ2) given in Equation (16) are constants (independent of i), we can write the cross-
sectional covariance of Ui(τ1, τ2) and Uj(τ1, τ2) as

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ(T − τ)

T − 1
ρij(τ1, τ2), (21)

where ρij(τ1, τ2) is the cross-sectional correlation of Ui(τ1, τ2), and Uj(τ1, τ2), i, j = 1, . . . , n.
Utilizing this result and the variance-of-the-sum formula, the variance of Ū(τ1, τ2) in (17)
becomes:

6
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Result 4.

var[Ū(τ1, τ2)] =
1
n2

n

∑
i=1

var[Ui(τ1, τ2)] +
1
n2

n

∑
i=1

n

∑
j �=i

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ(T − τ)

(T − 1)n
(1 + (n − 1)ρ̄n(τ1, τ2)), (22)

where

ρ̄n(τ1, τ2) =
1

n(n − 1)

n

∑
i=1

n

∑
j=1
j �=i

ρij(τ1, τ2) (23)

is the average cross-sectional correlation of cumulated ranks.

Cross-sectional dependence affects the asymptotic distribution of the statistic in Equa-
tion (20). However, as discussed in (Lehmann 1999, Scttion 2.8), it is frequently true that
the asymptotic normality holds provided that the average correlation, ρ̄n(τ1, τ2), tends to
zero rapidly enough such that

1
n

n

∑
i �=j

ρij(τ1, τ2) = (n − 1)ρ̄n(τ1, τ2) → γ as n → ∞, (24)

where γ is some finite constant. Under this condition the limiting distribution of Z-statistic
in (20) becomes N(0, 1 + γ).

Otherwise, from practical point of view, the crucial result of Formula (22) is that
the only unknown parameter to be estimated is the average cross-sectional correlation
ρ̄n(τ1, τ2). Hagnäs and Pynnonen (2014) discuss approaches to account implicitly for this
average correlation in cumulated ranks tests when all events share the same calendar day,
i.e., the case of complete clustering. These implicit approaches, however, do not work in
the case of partial clustering. Therefore, by utilizing the procedure developed in Kolari et al.
(2018), this paper proposes a method to estimate explicitly the cross-sectional correlation,
ρ̄n(τ1, τ2), and thereby solve the cross-sectional correlation problem in the case of the partial
clustering.

4. Correlation Robust Test for Cumulated Ranks

Following Kolari et al. (2018), let τij, 0 ≤ τij ≤ τ denote the number of calendar
days stocks i and j share in common within the event windows. By independence in
Assumption 1, the correlation, cor

[
Uiu, Ujv

]
, of the standardized ranks Uiu and Ujv is zero

whenever the underlying calendar days of the relative event days, u and v, differ and can
be non-zero when the calendar days are the same. Denoting these non-zero correlations
(which are also covariances) by ρij, we get

cov
[
Ui(τ1, τ2), Uj(τ1, τ2)

]
=

τ2

∑
u=τ1

τ2

∑
v=τ1

cor
[
Uiu, Ujv

]
= τijρij.

Combining this with (21), we obtain

ρij(τ1, τ2) =

(
T − 1
T − τ

)
τij

τ
ρij. (25)

We can assume that the overlapping window lengths, τij, and the cross-sectional
correlations, ρij, are not dependent on each other so that ∑i �=j τijρij = n(n − 1)τ̄ρ̄, where τ̄

7
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is the average number of overlapping calendar days, and ρ̄ is the average cross-sectional
correlation of Ui and Uj.3 Consequently, we can rewrite (22) as

var[Ū(τ1, τ2)] =
τ(T − τ)

(T − 1)n
(1 + (n − 1)δρ̄), (26)

where δ = τ̄(T − 1)/(τ(T − τ)) adjusts the average correlation by the fraction of overlap-
ping calendar days within the event window.

It is notable that, even though the average cross-sectional correlation, ρ̄, in Equa-
tion (26) is based on n(n − 1)/2 correlations, it can be computed without estimating
individual correlations by utilizing the method introduced by Edgerton and Toops (1928).
Instead of n(n − 1)/2 individual correlations, it turns out that one needs to compute only
n + 1 variances, which is a computational problem of order n viz-a-viz of order n2 with av-
eraging the correlations. To illustrate the idea, consider n random variables xj, j = 1, . . . , n
and define the standardized variables zj = xj/σj. Next let z̄ = ∑j zj/n denote the average
of the variables. Then because var

[
zj
]
= 1 and cov

[
zj, zk

]
= cor

[
zj, zk

]
= ρjk, variance of z̄

becomes σ2
z̄ = var[z̄] = (1 + (n − 1)ρ̄)/n, we obtain

ρ̄ = (nσ2
z̄ − 1)/(n − 1). (27)

Hence, to estimate the average cross-sectional correlation, all we need are estimates of n
standard deviations of the x-variables and the variance of z̄. Finally, for large n, Equa-
tion (27) shows that ρ̄ ≈ σ2

z̄ .
Because in our case the calendar days of different stocks are only partially overlapping,

we estimate the variance of the average utilizing the clustering robust estimation technique
(e.g., see Cameron et al. 2011) suggested in Kolari et al. (2018).

Following Kolari et al. (2018), denote the calendar days of the returns in the combined
estimation and event window as t = 1, . . . , L, which implies that L becomes the number of
clusters equaling the number of separate calendar days on which returns are available in
the combined estimation and event windows. Let nt denote the number of stocks having
returns on calendar day t and define

Ut =
nt

∑
k=1

Ukt. (28)

Then

U2
t =

nt

∑
k=1

U2
kt +

nt

∑
i �=j

UitUjt, (29)

so that
nt

∑
i �=j

UitUjt = U2
t −

nt

∑
k=1

U2
kt. (30)

Summing these up over the calendar days in the combined estimation and event window,
we have

L

∑
t=1

nt

∑
i �=j

UitUjt =
L

∑
t=1

U2
t −

L

∑
t=1

nt

∑
k=1

U2
kt. (31)

Taking the average, we get an estimator for the average correlation

ˆ̄ρ =
1
M

L

∑
t=1

nt

∑
i �=j

UitUjt, (32)

where

M =
L

∑
t=1

nt(nt − 1) (33)
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is the number of the cross-product terms. It is notable that days for which there is available
only one return drop automatically out (if nt = 1 for all t, then ˆ̄ρ = 0). The potentially
tedious computation over all cross-products can be materially simplified by utilizing the
right-hand- side of Equation (31). By Result 2 the variances of standardized ranks are all
equal to one and means equal zero. Therefore, arranging the terms of the rightmost sum of
Equation (31) to correspond to variance representations, the (double) sum becomes equal
to ∑L

t=1 nt, i.e., the total number of observations.4 Thus, the only component we need to
compute is the first sum of squares on the right-hand-side of (31). Therefore, similar to
the illustration of computing the average correlation above, the computational effort of
computing the average correlation is again of order n (rather than n2). Finally, we get:

Result 5. A computationally efficient form of the average correlation in (32) is

ˆ̄ρ =
N
M

(s2
U − 1), (34)

where N = ∑L
t=1 nt is the total number of returns, M is given by (33), and

s2
U =

1
N

L

∑
t=1

U2
t (35)

with Ut given in Equation (28). Variance, s2
U, is a clustering robust variance estimator of standard-

ized ranks in the presence of intra-cluster correlation (cf. e.g., Cameron et al. 2011).

As noted earlier, ˆ̄ρ = 0 if all nt = 1.
Given the estimator of the average cross-sectional correlation, ρ̄, we can define an

appropriate cross-sectional correlation robust test for the null hypothesis of zero cumulative
abnormal returns

H0 : μ(τ1, τ2) = E[CAR(τ1, τ2)] = 0. (36)

The test can be defined in terms of the cumulated ranks using the z-ratio

zτ =
Ū(τ1, τ2)

στ

√
1 + (n − 1)δ ˆ̄ρ

, (37)

where στ is the square root of Equation (19), i.e., the variance

σ2
τ =

τ(T − τ)

(T − 1)n

of Ū(τ1, τ2) for completely non-overlapping event windows in calendar time [i.e., when
ρ̄ = 0 in Equation (26)], and τ = τ2 − τ1 + 1 is the length of the window of cumulated
abnormal returns.

In event studies, the combined length, T, of the estimation and event period remains
fixed, while the number of event firms, n, defines the sample size, thereby being the
dimension increased when dealing with the asymptotic distribution of associated test
statistics.

Given that the condition in Equation (24) holds for ˆ̄ρ, the null distribution of zτ is
asymptotically normal with zero mean and unit variance.

Kolari and Pynnonen (2011) propose replacing the cumulative ranks in Definition 2
by a single rank number which is based on standardized cumulative abnormal returns
(SCARs)

SCARi(τ1, τ2) =
CARi(τ1, τ2)

SCARi(τ1,τ2)
(38)

in which SCARi(τ1,τ2)
is the standard deviation of CARi(τ1, τ2) (for details, see Kolari and

Pynnonen 2011). Their approach again accounts implicitly for cross-sectional correlation
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due to completely overlapping event days. Here, we extend the approach to cover the
partial overlapping case. Rather than using the scaled ranks defined in Kolari and Pyn-
nonen (2011), we use the standardized ranks of Definition 1. Subsequently, denoting the
standardized rank of SCARi(τ1, τ2) by Ui0, we can base the rank test for testing the null
hypothesis of zero cumulative abnormal returns in Equation (36) on the average ranks

Ū0 =
1
n

n

∑
i=1

Ui0. (39)

If the event periods are completely non-overlapping, Ui0s are independent with zero
mean and unit variance (see Definition 1), in which case the null distribution of Ū0 has
zero mean and variance 1/n. However, if the event days are partially overlapping, the
components of Ū0 absorb the cross-sectional correlation over the CAR-window. The
correlation that inflates the variance is inherited from the cross-sectional correlations of
SCARis. Kolari et al. (2018) show that the variance inflation factor is of the form (1 + (n −
1)νρ̄) as in Equation (26) with the exception that δ is replaced by ν = τ̄/τ, the ratio of the
average number of overlapping calendar days within the CAR-window to the window
length. With this correction the variance of Ū0 becomes var[Ū0] = (1 + (n − 1)νρ̄)/n.
We can estimate the average cross-sectional correlation, ρ̄, as in Equation (32) utilizing
only the estimation period in computing s2

U . For this approach, the standardized ranks in
Definition 1 are redefined for the estimation period abnormal returns. Alternatively one
can estimate the cross-sectional correlation exactly as in Result 5. Both approaches will
produce essentially the same result in most cases. With the estimated average correlation,
we get a cross-sectional correlation robust generalized rank test statistic

zτ,grank =

√
n Ū0√

1 + (n − 1)ν ˆ̄ρ
, (40)

where ν = τ̄/τ. Again, given that the condition in Equation (24) holds for ˆ̄ρ, the null
distribution of zτ,grank is asymptotically normal with zero mean and unit variance.

5. Simulation Results

We generate artificial returns utilizing the Fama and French (2015) five-factor model
(FF5),

(rit − r f )t = αi + βi,mkt(rm − r f )t + βi,smbSMBt + βi,hmlHMLt + βi,rmwRMWt + βi,cmwCMWt + εit, (41)

where rm − r f is the market excess return over the risk-free rate r f , SMB, HML, RMW, and
CMW are common market factors proposed by Fama and French. We utilize daily data
from 2 January 1990 through 30 October 2020 (7770 daily returns) to generate 20,000 initial
daily return series for this sample period. The regression coefficients for each stock are
generated from multivariate normal distribution with mean vector (0, 1, 0.5, 0.5, 0.5, 0.5)
and covariance matrix σ2

i (X′X)−1, in which σ2
i is the variance of the error term ε. The stock

specific σ2
i values are generated by drawing σis, the standard deviations, independently

from a uniform distribution U(1, 3). This corresponds to a range of annual volatilities
roughly from 10 percent to 48 percent. The (X′X) matrix is the cross-product matrix of the
Fama-French 5-factor regression model.5 The (7770) error terms εit for stock i is generated
independently from the normal distribution N(0, σ2

i ).
In the simulations we define the abnormal returns with respect to the market model as

ARit = (ri − r f )t − (α̂i + β̂i(rm − r f )t), (42)

where α̂i and β̂i are ordinary least squares (OLS) estimates. Therefore, missing common
factors introduce cross-sectional correlation between the abnormal returns. The event
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period is ±10 trading days around the event day t = 0, and the estimation period consists
of 250 days prior the event periods, i.e., relative days −260, . . . ,−11.

In forthcoming experiments we focus on the effect of cross-sectional correlation on
the size of the test. Other issues, such as event induced volatility are well documented
for example by Kolari and Pynnonen (2011); Kolari and Pynnönen (2010). Utilizing the
base design initiated by Brown and Warner (1985), we generate 1000 samples of randomly
selected 50 stocks (the returns of which are generated by the FF5 model in Equation (41))
with four over-lapping event days scenarios. In the first case of non-overlapping event days,
the returns are cross-sectionally independent. In the second case of completely overlapping
events, all firms share the same event day (calendar time), and in the third and fourth
scenarios the event days are randomly scattered across 5 and 10 concecutive calendar days,
i.e., one and two weeks of trading days, respectively.

We report two-tailed rejection rates for the null hypothesis of no event-effect across
different event windows of ±1, ±2, ±5, and ±10 around the event day, i.e., window lengths
τ = 1, 3, 5, 10, and 21 days. In addition to statistic zτ in Equation (37) we report results for
the more traditional rank based test proposed by (Campbell and Wasley 1993, p. 85):

zcw =
∑τ2

t=τ1
k̄t√

τsk̄
, (43)

where
k̄t =

1
n ∑

i=1
(Kit −E[Kit]) (44)

with E[Kit] = (T + 1)/2 and

s2
k̄ =

1
T

T2

∑
t=T0+1

k̄2
t . (45)

Furthermore, we report results for traditional parametric (cross-sectional correlation
non-robust) t-statistics popular in event studies (e.g., see (Campbell et al. 1997, chp. 4)),

tτ =
CAR(τ1, τ2)

s.e(CAR)
, (46)

where CAR(τ1, τ2) is the sample average of CARi(τ1, τ2) defined in (2), and s.e.(CAR) is
the related standard error. Under independence, the null distribution of tτ is asymptotically
standard normal.

Table 1 summarizes the test statistics and their major features.
Table 2 reports the simulation results of the two-tailed rejection rates of the null

hypothesis of no abnormal return at the 5% nominal rejection rate. The results are clear-cut.
Panel A of the table reports the non-overlapping case with zero cross-sectional correlation.
As expected, all statistics reject close to the nominal rate. Panel B reports results of complete
overlapping. That is, all events share the same calendar day; hence, returns are prone
to cross-sectional correlation. The new zτ , zτ,grank, and the more traditional cumulative
ranks statistic, zcw, that account for cross-sectional correlation, reject reasonably close to the
nominal rate up to event windows ±5 and exhibit some over-rejection on the longest event
window ±10, i.e., 21 days. Not surprisingly, the parametric, non-cross-correlation robust
statistic, tτ , incrementally over-rejects as event windows increase in length. Panel C reports
partial overlapping with events clustered randomly within 5 trading days (about a week).
For event day testing also the a priori non-robust statistics perform well by rejecting at the
nominal rate. However, they start to incrementally over-reject as the event window grows
longer. The a priori partial overlapping robust statistics, zτ and zτ,grtank, reject close to the
nominal rate up to the event window lengths of 5 days and over-reject to some extent for
the longest event windows of 11 and 21 days, albeit far less than the non-robust statistics of
zcw and tτ . The results are pretty much similar with the decreased overlapping in Panel D.
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Thus, we conclude that accounting for cross-sectional correlation is crucial to avoid biased
inferences in statistical testing, not only due to complete overlapping of event windows,
but also for partially overlapping cases. Regarding the latter, this paper has introduced two
new test statistics that account for these cases.

Table 1. Test statistics and their key features.

Robustness Due to

Event Correlation Caused by

Statistic Type Volatility Complete Ovrlp Partial Ovrlp

zτ = Ū(τ1,τ2)

στ

√
1+(n−1)δ ˆ̄ρ

, Equation (37) non-parametric yes yes yes

zτ,grank =
√

n Ū0√
1+(n−1)ν ˆ̄ρ

, Equation (40) non-parametric yes yes yes

zcw =
∑

τ2
t=τ1

k̄t

τsk̄
, Equation (43) non-parametric no yes no

tτ = CAR(τ1,τ2)
s.e(CAR) , Equation (46) parametric yes no no

Table 2. Rejection rates of the null hypothesis of no event effect at the nominal 5% level when the
events are no-overlapping, partially overlapping, and completely overlapping.

CAR Window Length

1 3 5 11 21
Event Day (−1,+1) (−2,+2) (−5,+5) (−10,+10)

Panel A: Non-clustered events

zτ 0.048 0.054 0.050 0.052 0.064
zτ,grank 0.048 0.052 0.053 0.058 0.053
zcw 0.052 0.050 0.051 0.052 0.063
tτ 0.045 0.035 0.049 0.052 0.048

Panel B: Events clustered on the same trading day

zτ 0.059 0.051 0.059 0.064 0.072
zτ,grank 0.064 0.055 0.065 0.067 0.082
zcw 0.059 0.052 0.061 0.064 0.075
tτ 0.087 0.091 0.096 0.085 0.110

Panel C: Events clustered on 5 consecutive trading days

zτ 0.056 0.055 0.059 0.086 0.076
zτ,grank 0.056 0.057 0.066 0.083 0.075
zcw 0.050 0.075 0.093 0.127 0.129
tτ 0.045 0.063 0.077 0.112 0.102

Panel D: Events clustered on 10 consecutive trading days

zτ 0.056 0.055 0.059 0.086 0.076
zτ,grank 0.064 0.046 0.064 0.065 0.082
zcw 0.059 0.062 0.091 0.116 0.133
tτ 0.065 0.057 0.056 0.089 0.105

6. Summary and Conclusions

This paper proposed two variants of a new non-parametric rank based test statistic for
testing cumulative abnormal returns in short-run event studies. The statistics are robust
to event-induced volatility and cross-sectional correlation due to complete or partially
overlapping event windows. This latter source of cross-sectional correlation is not taken
into account by the existing non-parametric test statistics. Simulation results indicate that,
unlike typically utilized test statistics, the proposed statistics reject the null hypothesis
of no event effect close to the nominal significant level in the partially overlapping case.
We conclude that accounting cross-sectional correlation is crucial to avoid biased inferences,
not only due to complete overlapping of event windows but also for partial overlapping
cases. The non-parametric test statistics proposed in this paper serve this purpose. A major
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limitation of utilizing non-parametric tests in financial economics is that they seem to
play mainly side roles. For example, (Campbell et al. 1997, Sction 4.7) note that non-
parametric tests are typically used in conjunction with parametric tests to check robustness
of conclusions based on parametric tests. Even so, it should be noted that robustness checks
are incrementally demanded in modern empirical financial research. Non-parametric
methods can be the tools of choice in completing the task.
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Notes

1 For discussion of true abnormal returns, see Harrington and Shrider (2007).
2 We define conventional event studies as those focusing only on mean stock price effects. Other types of event studies include (for

example) the examination of return variance effects (Beaver (1968); Patell (1976)), trading volume (Beaver (1968); Cambell and
Wasley (1996)), accounting performance (Barber and Lyon (1997)), and earnings management procedures (Dechow et al. (1995);
Kothari et al. (2005)).

3 The equation follows by setting ∑(x − x̄)(y − ȳ) = ∑ xy − nx̄ȳ to zero, so that ∑ xy = nx̄ȳ.
4 That is,

L

∑
t=1

nt

∑
k=1

U2
kt =

L1

∑
t=t1

U2
1t +

L2

∑
t=t2

U2
2t + · · ·+

Ln

∑
t=tn

U2
nt =

n

∑
i=1

Li

∑
t=ti

U2
it,

where ti, ti + 1, . . . , Li indicate observations on stock i with Ti = Li − ti + 1, the number of observations. By Result 2 var[Uit] = 1,
so that ∑Li

t=ti
U2

it = Ti. Hence, ∑L
t=1 ∑nt

k=1 U2
kt = ∑n

i=1 Ti = N = ∑L
t=1 nt.

5 Factor returns have been downloaded from the French data library. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html, accessed on 15 November 2021.
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Abstract: In a recent book, Kolari et al. developed a new theoretical capital asset pricing model
dubbed the ZCAPM. Based on out-of-sample cross-sectional tests using U.S. stocks, the ZCAPM con-
sistently outperformed well-known multifactor models popular in the finance literature. This paper
presents further evidence that expands their sample period from 1927 to 2020. Results are provided
for the subperiods 1927 to 1964 and 1965 to 2020. Our results corroborate those of KLH. In cross-
sectional tests, the ZCAPM outperforms the CAPM as well as the Fama and French three-factor
model and Carhart four-factor model. Outperformance is found in terms of both higher goodness
of fit and the statistical significance of factor loadings. Interestingly, the earlier subperiod results
highlight problems with the endogeneity of test assets in cross-sectional tests of multifactor models.

Keywords: asset pricing; zero-beta CAPM; return dispersion; expectation-maximization (EM)
regression; latent variable

1. Introduction

This paper extends the recent work by Kolari et al. (2021) (hereafter KLH) in which they
developed a new theoretical model of capital asset prices dubbed the ZCAPM. The authors
derived the ZCAPM from Black’s (1972) renowned zero-beta CAPM as a special case based
on two unique efficient and inefficient orthogonal portfolios. This special case enabled
the derivation of an alternative specification of the zero-beta CAPM. The ZCAPM is a
parsimonious two-factor model comprised of beta risk associated with average market
returns and zeta risk related to the cross-sectional return dispersion of assets in the market.1

Based on the theoretical ZCAPM, an innovative empirical ZCAPM was developed using
expectation–maximization (EM) regression methods.2

Subsequent empirical tests by KLH demonstrated that the ZCAPM is a superior asset
pricing model that outperforms the CAPM as well as popular multifactor models, including
the Fama and French (1992, 1993, 1995, 2015, 2018, 2020) three-, five-, and six-factor models
in addition to the Carhart (1997), Hou et al. (2015), and Stambaugh and Yuan (2017) four-
factor models. In their empirical tests of U.S. stock returns, out-of-sample Fama and
MacBeth (1973) cross-sectional regression tests were conducted for the sample period 1965
to 2018. The ZCAPM consistently outperformed the aforementioned models in terms of
both goodness-of-fit and statistical significance of zeta risk factor loadings. In some test
asset portfolios, the empirical ZCAPM was able to achieve cross-sectional R2 estimates
as high as 95 percent and normally had values exceeding 70 percent: this goodness-of-
fit is near perfect. It means that estimated risk parameters in an earlier period almost
completely explain out-of-sample (next month) returns in the cross section of average
stock returns. By comparison, other popular multifactor models typically had R2 values
noticeably lower than the ZCAPM in different test asset portfolios and sample periods.
Regarding the statistical significance of factor loadings, zeta risk loadings associated with
cross-sectional return dispersion in the ZCAPM almost always had t statistics in the range of
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3 to 6. However, factors in popular multifactor models did not reach this level of statistical
significance in cross-sectional tests. These findings are important in light of the recent
work by Harvey et al. (2016) and Chordia et al. (2020), who found that factor loadings
should attain t statistics of three or more to avoid false discoveries in asset pricing studies.
The ZCAPM was the only model that passed the recommended validity tests.

Where does the ZCAPM fit into the prior literature? From a theoretical perspective, it
is based on the general equilibrium framework of the capital asset pricing model (CAPM)
of Treynor (1961, 1962), Sharpe (1964), Lintner (1965), and Mossin (1966). It applies the foun-
dational mean–variance Markowitz (1959) portfolio theory and the Tobin (1958) equilibrium
pricing methods to derive an alternative form of Black’s zero-beta CAPM. Compared to
extant asset pricing models that have been tested in the literature, the empirical ZCAPM is a
new econometric model based on EM regression and mixture model methods. No previous
asset pricing studies employ these methods in the estimation of factor models. The two
factors in the empirical ZCAPM have precedent in the financial literature. Mean market
returns are used to estimate beta risk. In addition, cross-sectional return dispersion is used
to estimate zeta risk. Regarding this factor, a limited number of studies by Jiang (2010),
Demirer and Jategaonkar (2013), Garcia et al. (2014), and Chichernea et al. (2015) augmented
the market model form of the CAPM with a return dispersion factor. However, they used
standard ordinary least squares (OLS) regression methods to estimate a coefficient related
to return dispersion, rather than EM regression in a mixture model. The ZCAPM is different
in its empirical estimation of this coefficient in that it explicitly models both positive and
negative sensitivity to changes in return dispersion over time. A signal variable denoted
Djt = +1,−1 for asset j at time t (e.g., one day) is introduced to capture the potential
two-sided effects of return dispersion on asset returns. As cross-sectional return dispersion
increases in the population of assets at a point t in time, assets in the upper part of the
distribution of returns experience increasing returns, and conversely those in the lower
part of the distribution experience decreasing returns. If the return dispersion decreases,
the opposite return effects occur for assets in the upper and lower parts of the distribution
of returns. Since Djt is a latent, unobservable variable, KLH estimated its probability using
EM regression. This probability is multiplied by the coefficient on the return dispersion
to obtain an estimate of the zeta risk, which is different from other previous studies that
incorporated a return dispersion factor.

It is important to distinguish between cross-sectional return dispersion from time-
series return dispersion. An example of the latter is the work of Bekaert et al. (2012),
who employed the time-series standard deviation of returns for stocks as a factor in an
asset pricing model. They used daily returns in a one-month period to compute monthly
time-series standard deviations of returns for individual stocks and then averaged this
idiosyncratic risk metric for N firms in the market to compute an aggregate idiosyncratic
variance measure. Numerous studies have utilized a time-series market volatility factor,
including those of Ang et al. (2006b, 2009), Adrian and Rosenberg (2008), Da and Schaum-
burg (2011), Chang et al. (2013), Bansal et al. (2014), Bollerslev et al. (2016), and Chen et al.
(2021), among others.3 Relevant to the ZCAPM, cross-sectional return dispersion is quite
different from time-series dispersion. Earlier work by Jiang (2010) showed that, for U.S.
stock returns in the period of 1963 to 2005, these two measures of return volatility are
uncorrelated with one another in many sample periods. This evidence led Jiang to conclude
that time-series and cross-sectional return dispersion are different market risk measures.
Hence, the ZCAPM extends the small set of studies that incorporate cross-sectional return
dispersion in an asset pricing model but has little or no connection to the larger body of
time-series volatility studies.

The present study contributes further evidence on the ZCAPM. First, using U.S. stock
return series available on Kenneth French’s data library website4, we extend the analysis
period back to the 1928 to 1964 period. Second, we update their analyses to the period
1965 to 2020. ZCAPM results are benchmarked against the CAPM as well as the Fama
and French (1992, 1993, 1995) three-factor model and Carhart (1997) four-factor model.
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We do not test other multifactor models for which factors and test asset portfolios are
not available on French’s website. Test assets include 25 size and book-market equity
ratio (BM) sorted, 25 size and momentum sorted, and 40 industry portfolios. We report
results for out-of-sample, cross-sectional Fama and MacBeth tests. In general, our results
support those of KLH. The empirical ZCAPM outperforms the CAPM as well as three-
and four-factor models, in some cases by large margins. Zeta risk loadings are highly
significant, with t statistics exceeding the recommended three hurdle rate in all cases. While
multifactor loadings in the three- and four-factor models have t statistics exceeding 3.0 in
the 1928 to 1964 subperiod, they generally do not in the more recent 1965 to 2020 subperiod.
Additionally, we find that estimated zeta risk premiums are economically meaningful with
a range from 0.47 percent to 1.29 percent per month per unit estimated zeta coefficient.

Graphical analyses of the ZCAPM, CAPM, and three- and four-factor models are
also provided. In these cross-sectional analyses, fitted (or predicted) one-month-ahead
excess stock returns are compared to realized (or actual) excess stock returns of test asset
portfolios. Hence, these analyses are out-of-sample investable strategies. In general, we
find that the ZCAPM outperforms other models. When industry portfolios are included
in the test assets, the ZCAPM outperforms other models by considerable margins. These
analyses demonstrate a major problem in testing the three- and four-factor models with
endogenous test asset portfolios created from sorts on the same firm-level variables (i.e.,
size and BM) used to construct the size and value factors. In the earlier period of 1928
to 1964, this endogeneity problem worsened relative to the more recent 1965 to 2020
period due to smaller sample sizes of stocks, as the data go back in time. Our results
support Lewellen et al. (2010), Daniel and Titman (2012), and others who have advocated
for combining exogenous industry portfolios with other portfolios in asset pricing tests.
In sum, our graphical analyses confirm the findings of KLH in support of the ZCAPM
over the CAPM as well as three- and four-factor models, using long/short zero-investment
portfolios as multifactors.

We conclude from these findings that the ZCAPM dominates other popular asset
pricing models. Given that size, BM, and momentum sorted portfolios as test assets
are exogenous to the ZCAPM’s mean market return and return dispersion factors, this
dominance is remarkable. Further research is recommended for applying the ZCAPM to
different countries and asset classes (e.g., bonds, commodities, and real estate) to assess
its performance relative to the existing asset pricing models. Additionally, applications to
event studies, mutual and hedge funds, investment analysis, and other areas of finance
are recommended.

The plan of this study is as follows. Section 2 overviews the ZCAPM. Section 3
describes our methodology, including data and empirical tests. Section 4 presents the
empirical results. The last Section 5 gives the conclusion.

2. Overview of the ZCAPM

Here, we overview the theoretical ZCAPM and its companion empirical ZCAPM.
Again, Kolari et al. (2021) (KLH) derived the ZCAPM as a special case of Black’s zero-beta
CAPM.5 In their derivation, they focused on two orthogonal portfolios on the boundary of
the mean–variance investment parabola—one that is efficient and one that is inefficient—
with the same time-series variance of returns. Formulas of the expected returns for these
two portfolios are written based on new insights concerning the mean–variance parabola.
Upon substituting these expected returns into the zero-beta CAPM, the theoretical ZCAPM
is obtained. Subsequently, the authors proposed a novel empirical ZCAPM for estimation
purposes, using real world data. Unlike prior asset pricing models that use ordinary
least squares (OLS) regression for estimation, the empirical ZCAPM utilizes expectation–
maximization (EM) regression methods. In the forthcoming discussion, we abbreviate
the derivations in the work of KLH to conserve space and highlight the main ideas of
the theoretical and empirical ZCAPM. Readers interested in more details are referred to
their book.
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2.1. Theoretical ZCAPM

KLH mathematically proved two new insights about the Markowitz mean–variance
investment parabola. First, they provided two mathematical proofs6 to show that the width
or span of the parabola is largely determined by the cross-sectional standard deviation
of returns of all assets’ returns. Second, given that this return dispersion defines the width
of the parabola, the mean return of all assets should lie somewhere in the middle of the
parabola on its axis of symmetry. The latter finding implies that the mean market portfolio
used to proxy the market portfolio is inefficient. Regardless of whether all assets are equal-
or value-weighted to form portfolios, the market portfolio in the CAPM, which lies on
the efficient frontier, is far above the mean market portfolio that is located on the axis of
symmetry. Consistent with the Roll (1977) critique, because the CAPM cannot be tested
without an efficient portfolio, previous empirical tests of the CAPM using the mean market
model returns to proxy market portfolio returns are invalid. The CAPM cannot be declared
dead because it was never legitimately tested using efficient portfolios (see Fama and
French 1996, 2004).

Figure 1 illustrates the return dispersion and mean market return characteristics of
the mean–variance parabola. The x-axis is the time-series variance of returns for an asset
or portfolio denoted as σ̃2

P. In a one-day period of time, this variance can be measured by
computing returns in, say, 10 min intervals during the day. On the y-axis is the expected
returns of assets. The cross-sectional variance of returns of all assets in the market during
the day is denoted as σ̃a. Naturally, the mean market return denoted E(R̃a) must be located
in the middle of the cross-sectional distribution of asset returns. In turn, it must be true that
E(R̃a) ≈ E(R̃G), where the latter is the expected return on the global minimum variance
portfolio G. Clearly, the mean market portfolio a is located far below the efficient frontier
in Figure 1.

G

I*

ZI*

0

Figure 1. Geometric approach of the theoretical ZCAPM based on the Markowitz mean–variance
investment parabola.

Next, KLH used this framework to identify two unique portfolios, I∗ and ZI∗, that
are uncorrelated with one another. These portfolios have the same time-series variance
of returns or total risk, i.e., σ̃2

I∗ = σ̃2
ZI∗ .7 Notice that portfolio I∗ is on the efficient frontier,

18



JRFM 2022, 15, 137

and portfolio ZI∗ is inefficient on the parabola’s lower boundary. A new geometry is
introduced in this analysis. In the CAPM, the market portfolio M is geometrically located
at the tangent point from a ray extending from the riskless rate to the efficient frontier.
In the ZCAPM, portfolios I∗ and ZI∗ are located by moving along the axis of symmetry at
the expected rate E(R̃a) and then up or down, respectively, by the cross-sectional return
dispersion σ̃a. Using this geometry, KLH defined the expected returns for portfolios I∗ and
ZI∗ as follows:

E(R̃I∗) ≈ E(R̃a) + f (θ)σa (1)

E(R̃ZI∗) ≈ E(R̃a)− f (θ)σa, (2)

where f (θ) is a complex expression approximately equal to one (due to almost completely
random risky asset returns8).

Assuming f (θ) = 1, KLH substituted the expected returns for portfolios I∗ and ZI∗

into Black’s zero-beta CAPM to derive the theoretical ZCAPM without a riskless asset.
The zero-beta CAPM specifies the expected return for the ith asset as

E(R̃i) = E(R̃ZM) + βi,M[E(R̃M)− E(R̃ZM)] (3)

E(R̃i) = βi,ME(R̃M) + (1 − βi,M)[E(R̃ZM)], (4)

where βi,M is the sensitivity or beta risk of asset i’s return with respect to the excess return
of the expected market portfolio return, E(R̃M) and its zero-beta (uncorrelated) portfolio
expected return, or E(R̃ZM). The latter is the borrowing rate in Black’s model, unlike the
riskless rate R f in the CAPM.9

For portfolios I∗ and ZI∗, their expected returns are

E(R̃I∗) = β I∗ ,ME(R̃M) + (1 − β I∗ ,M)E(R̃ZM) (5)

E(R̃ZI∗) = βZI∗ ,ME(R̃M) + (1 − βZI∗ ,M)E(R̃ZM), (6)

where β I∗ ,M and βZI∗ ,M are beta risks of portfolios I∗ and ZI∗ associated with market
portfolio M, respectively. Solving these equations10, we obtain the general form of the
zero-beta CAPM:

E(R̃i) = βi,I∗E(R̃I∗) + (1 − βi,I∗)E(R̃ZI∗), (7)

where βi,I∗ = (βi,M − βZI∗ ,M)/(β I∗ ,M − βZI∗ ,M). As observed by Roll (1980), the above ex-
pression shows that the zero-beta CAPM can be specified in terms of any efficient portfolio
and its orthogonal zero-beta (inefficient) counterpart on the mean–variance parabola. Here,
KLH re-wrote the zero-beta CAPM using the unique portfolios I∗ and ZI∗.

Upon substituting E(R̃I∗) and E(R̃ZI∗) in Equations (1) and (2) into Equation (7),
the theoretical ZCAPM can be specified as follows:

E(R̃i) = βi,I∗E(R̃I∗) + (1 − βi,I∗)E(R̃ZI∗)

= E(R̃ZI∗) + βi,I∗ [E(R̃I∗)− E(R̃ZI∗)]

= E(R̃a)− σa + βi,I∗{[E(R̃a) + σa]− [E(R̃a)− σa]}
= E(R̃a) + (2βi,I∗ − 1)σa

E(R̃i) = E(R̃a) + Z∗
i,aσa, (8)

where Z∗
i,a = 2βi,I∗ − 1.
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Adding a third riskless asset rate R f , and again using the definitions of E(R̃I∗) and
E(R̃ZI∗) in Equations (1) and (2), the expected return of the ith asset is

E(R̃i) = wI∗E(R̃I∗) + wZI∗E(R̃ZI∗) + w f R f

= wI∗ [E(R̃a) + σa] + wZI∗ [E(R̃a)− σa] + w f R f

= (wI∗ + wZI∗)E(R̃a) + (wI∗ − wZI∗)σa + w f R f , (9)

where I∗, ZI∗, and f are orthogonal assets with corresponding weights wI∗ , wZI∗ , and w f
that sum to one with both long and short positions in the assets allowed. By rearranging
terms and using Equation (9), the final form of the theoretical ZCAPM becomes

E(R̃i)− R f = (wI∗ + wZI∗)[E(R̃a)− R f ] + (wI∗ − wZI∗)σa (10)

E(R̃i)− R f = βi,a[E(R̃a)− R f ] + Z∗
i,aσa, (11)

where beta risk coefficient βi,a = wI∗ + wZI∗ measures the sensitivity of the ith asset’s
excess returns to average market excess returns of all assets, and zeta risk coefficient
Z∗

i,a = wI∗ − wZI∗ measures the sensitivity of an asset’s excess returns to the market return

dispersion of all assets.11 KLM used the notation βi,a to denote beta risk with respect to the
average returns on the portfolio of n assets in the market. This beta is distinguished from
CAPM market beta βi,M with respect to the market portfolio (typically denoted simply
as βi).

Returning to the mean–variance parabola, it is interesting that beta risk and zeta
risk in the theoretical ZCAPM can be used to describe its architecture, including not only
boundary portfolios, but locations of assets and portfolios within the parabola. Assets
and portfolios with positive (negative) zeta risk lie in the upper (lower) portion of the
investment parabola. On any zeta risk curve in the parabola, as beta risk increases, the time-
series variance of returns increases. As shown in Kolari et al. (2021, Figure 10.1, p. 272
and Figure 10.2, p. 274), an interlocking web of beta and zeta risks result that shape the
parabola with zeta risk increasing vertically and beta risk increasing horizontally. Hence,
the parabola contains a risk structure based on the systematic risks of assets with respect
to average market returns and market return dispersion. Interestingly, in Chapter 10 of
their book, KLH confirmed this architecture using out-of-sample (next month) empirical
evidence for U.S. stock portfolios. Portfolios along the highest zeta risk curve comprise
the efficient frontier.12 Additionally, the mean market portfolio a lies approximately on the
axis of symmetry of the parabola. Supporting this conjecture, in Chapter 9 of their book,
KLH constructed relatively efficient portfolios and showed that the CRSP market index lies
along the axis of symmetry of the parabola.

2.2. Empirical ZCAPM

Figure 2 shows how assets in the upper and lower portions of the mean–variance
parabola are affected over time in response to changes in the mean market returns and cross-
sectional return dispersion of all assets in the market.13 Comparing t = 1 to t = 2, when
the average market returns do not change, we see that asset returns in the upper (lower)
portion of the parabola experience increasing (decreasing) returns as the return dispersion
increases. At t = 3, the return dispersion decreases, which tends to decrease (increase)
the asset returns in the upper (lower) portion of the parabola. Of course, as mean market
returns decrease in this period, all asset returns decrease in concert with lower mean market
returns. In period t = 4, mean market returns increase but the return dispersion changes
little, if at all. In this period, all assets’ returns tend to increase under these conditions.
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. . . .

t = 1

t = 3
t = 2

t = 4

Figure 2. As the investment parabola moves over time t, its level and width change. The level
changes with average market returns, and the width changes with cross-sectional return dispersion
of all assets in the market. Assets in the upper (lower) half of the parabola experience opposite return
effects of changing return dispersion, whereas as all assets’ returns move up and down in concert
with the average market returns.

How did KLH empirically model the time-series behavior of the mean–variance
parabola depicted in Figure 2? The positive and negative effects of return dispersion on
asset returns in the upper and lower portions of the parabola need to be taken into account.
To solve this problem, they introduced a dummy signal variable denoted Dit for each ith
asset. The following novel empirical ZCAPM is proposed:

R̃it − R f t = αi + βi(R̃at − R f t) + ZiDitσ̃at + ũit, t = 1, · · · , T (12)

where Rit − R f t is the excess return for the ith asset over the riskless rate at time t, βi
measures sensitivity to excess average market returns equal to Rat − R f t, Zi measures
sensitivity to return dispersion σat, Dit is a signal variable with values +1 and −1 represent-
ing positive and negative return dispersion effects on stock returns at time t, respectively,
and uit ∼ iid N(0, σ2

i ). No previous studies modeled two-sided return dispersion risk using
positive and negative risk loadings. A previous study by Ang et al. (2006a) estimated
downside and upside market betas, i.e., β− and β+, using excess market returns over time,
below and above the mean market return, but did not introduce a dummy variable in their
analyses. Similarly, Lettau et al. (2014) found that the cross section of currency returns can
be explained by downside market beta risk. More recently, Bollerslev et al. (2016) proxied
good and bad stock return volatility by utilizing a relative difference in the semi-variance
measure but again did not use a dummy variable approach to simultaneously model their
effects to predict returns.

Departing from previous literature, signal variable Dit is modeled by KLH as an
unknown or latent (hidden) variable. They defined Dit as an independent random variable
with the following two-point distribution:

Dit =

{
+1 with probability pi

−1 with probability 1 − pi,
(13)

where pi (or 1 − pi) is the probability of a positive (or negative) return dispersion effect,
and Dit are independent of uit.14
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To estimate the empirical ZCAPM’s parameters θi = (βi, Zi, pi), KLH employed the
expectation–maximization (EM) algorithm of Dempster et al. (1977) (See also Jones and
McLachlan 1990; McLachlan and Peel 2000; McLachlan and Krishnan 2008). Their book
gives detailed step-by-step estimation procedures. Unlike any previous asset pricing model,
the empirical ZCAPM can be characterized as a probabilistic mixture model with two
mixture components. Each component itself is a two-factor regression model (see Equations
in Note 14). Hidden dummy variable Dit determines the operative regression model.

Notice that the coefficient of the return dispersion in regression Equation (12) is a
random variable Zi,aDi,t with two possible values, +Zi,a or −Zi,a, based on the sign of
signal variable Di,t. Here, the signal variable has mean E(Dit) = 2pi − 1 and variance
Var(Dit) = 4pi(1 − pi). They separate the mean from the random coefficient Zi,aDit associ-
ated with σat as follows:

Zi,aDit = Zi,a(2pi − 1) + Zi,a[Dit − (2pi − 1)]. (14)

Thus, using definitions Z∗
i,a = Zi,a(2pi − 1) and u∗

it = Zi,a[Dit − (2pi − 1)]σat + uit, the
marginal form of the empirical ZCAPM relation (12) becomes

Rit − R f t = βi,a(Rat − R f t) + Z∗
i,aσat + u∗

it, t = 1, · · · , T. (15)

where the term Z∗
i,aσat results from integrating out the probability distribution of the

unobservable signal variable in the term Zi,aDitσat in model (12). Regression parameter Z∗
i,a

represents the zeta risk loading in the theoretical ZCAPM as specified in Equation (11).
It should be mentioned that there is no mispricing error term (i.e., αi = 0) in empirical

ZCAPM relation (15). In tests using U.S. stock returns, KLH found that introducing an
αi term did not lower the residual variance and therefore did not improve in-sample
data fitting. In the present study, the α term is not needed, as we test the empirical
ZCAPM using standard Fama and MacBeth (1973) cross-sectional regression analyses, to
be discussed shortly.15

The positive or negative sign of zeta risk loading Z∗
i,a is determined by the probability

pi of signal variable Dit in sample period t = 1, · · · , T. If pi > 1/2 (or < 1/2), Z∗
i,a has a

positive (or negative) sign. By way of interpretation, Z∗
i,a measures the average increase or

decrease in asset returns in response to a one unit change in market return dispersion σat.
Setting the empirical ZCAPM apart from other studies that include a return dispersion

factor cited earlier in Section 1, the variance of the error term u∗
it in relation (15) is not

constant. This heterogeneity of error variance can be defined as follows:

Var(u∗
it) = 4 pi(1 − pi) Z2

i,a σ2
at + Var(uit). (16)

Due to this property, other studies incorporating return dispersion as a factor are mis-
specified.

KLH provided Matlab, R, and Python programs for EM estimation of the empirical
ZCAPM at GitHub (https://github.com/zcapm (accessed on 1 September 2021)): Programs
to run cross-sectional Fama and MacBeth regression tests are provided also. In this study,
we employ their R programs due to the faster estimation speed relative to the Matlab and
Python programs.

3. Cross-Sectional Tests

3.1. Data

U.S. stock returns for all common stocks on the Center for Research in Security Prices
(CRSP) database are used. Daily stock returns are gathered for two subperiods: (1) January
1928 to December 1964, and (2) January 1965 to December 2020. CRSP value-weighted
index returns and 30-day U.S. Treasury bill rates, in addition to size, value, and momentum
factors, are downloaded from Kenneth French’s online database website.
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We compute the return dispersion factor for the ZCAPM as the daily cross-sectional
standard deviation of returns of all stocks in the market:

σat =

√
n

n − 1

n

∑
i=1

wit−1(Rit − Rat)
2, (17)

where n is the total number of stocks, wit−1 is the previous day’s market vale weight for the
ith stock, Rit is the return of the ith stock on day t, and Rat is the value-weighted average
return of all available stocks in the country on day t.

To benchmark the performance of the ZCAPM in our empirical tests, we employ the
following asset pricing models:

• CAPM in market model form (See Sharpe 1963; Fama 1968). with an excess market
return factor (MKT-RF) defined as the value-weighted CRSP return minus the U.S.
Treasury bill rate;

• The Fama and French (1992, 1993, 1995) three-factor model based on augmenting
the CAPM with a size factor (viz. small minus large firms’ stock returns denoted
as SMB) and a value factor (viz. high value minus low value firms’ stock returns
denoted HML);

• The Carhart (1997) four-factor model based on augmenting the three-factor model
with a momentum factor (viz. stocks with high past returns minus stocks with low
past returns denoted MOM).

French’s website contains construction details for the multifactors SMB, HML, and
MOM. As defined there, based on portfolio deciles, SMB is the average return on the three
small portfolios minus the average return on the three big portfolios. HML is the average
return on the two value portfolios minus the average return on the two growth portfolios.
Additionally, MOM is the average return on the two high prior return portfolios minus the
average return on the two low prior return portfolios.

Descriptive statistics for our data are provided in Table 1. Compared to the market,
size, value, and momentum factors, the magnitude of the cross-sectional return dispersion
is much larger at 1.56 percent, compared to a range of only 0.003 percent to 0.03 percent
for the other factors. In addition, with the exception of return dispersion, notice that the
standard deviations of factors are quite large relative to their mean values; hence, these
factors can fluctuate widely over time.

Table 1. Descriptive statistics for U.S. stock returns in the sample period of January 1928 to Decem-
ber 2020.

Panel A. 1928 to 1964

90 Portfolios MKT-RF SMB HML MOM Ret Disp

Mean 0.09 0.03 0.003 0.02 0.02 1.56
Std dev 1.80 1.16 0.66 0.68 0.79 0.86

Panel B. 1965 to 2020

90 Portfolios MKT-RF SMB HML MOM Ret Disp

Mean 0.07 0.03 0.007 0.01 0.03 1.79
Std dev 1.21 1.03 0.54 0.55 0.76 0.60

Table 1 gives the means and standard deviations of returns for test asset portfolios
and asset pricing factors also. The 90 test assets are formed by combining 25 size and
book-to-market ratio (BM) portfolios, 25 size and momentum portfolios, and 40 industry
portfolios. Two subperiods are used: (1) January 1928 to December 1964, and (2) January
1965 to December 2020.
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3.2. Cross-Sectional Regression Tests

We provide two different cross-sectional regression tests. The first test is based on
the standard two-step Fama and MacBeth (1973) regression analyses. Step one estimates
the time-series regression equation for the asset pricing model, using daily returns in a
one-year period for each of the test asset portfolios. Estimated factor loadings for beta and
zeta coefficients are retained for use in the next step. Step two is a cross-sectional regression
with one-month-ahead returns for test asset portfolios as the dependent variable and beta
and zeta risk factor loadings from the previous year as the independent variables. This
procedure is rolled forward one month at a time until the end of the sample period. This
procedure represents an investable strategy in the sense that an investor could implement
it in the real world. Out-of-sample returns are related to prior risk parameter estimates to
assess the validity of models. No tampering or manipulation is possible in this setup. In this
regard, Simin (2008, p. 356) commented that the use of step-ahead (e.g., one-month-ahead)
returns in this procedure to assess the predictive ability of asset pricing models mitigates
a number of evaluation problems, including data snooping, the use of R2 as a measure
of goodness-of-fit, and efficiency issues. Likewise, Ferson et al. (2013) argued that the
practical value of asset pricing models should be assessed using out-of-sample tests as in
the two-step Fama and MacBeth procedure discussed above.

In the second step of the Fama–MacBeth procedure, we run the following cross-
sectional regression to test the empirical ZCAPM based on estimates of beta and zeta
risk coefficients (or loadings) from time-series regression (15):

Ri,T+1 − R f T+1 = λ0 + λββ̂i + λZ∗ Ẑ∗
i + uit, i = 1, ..., N, (18)

where λβ and λZ∗ are coefficient estimates of the market price of beta risk (associated
with sensitivity to mean market returns) and the market price of zeta risk (associated
with sensitivity to cross-sectional market volatility or return dispersion) in percent terms,
respectively, and the other notation is as before. According to Ferson (2019), estimated
risk premiums λβ and λZ∗ approximate mimicking portfolio returns that are long stocks
with higher betas or zetas and short stocks with lower betas or zetas. As observed by
Cochrane (2005, pp. 250–51), t-statistics associated with estimated factor prices λ̂k using
the monthly rolling approach are corrected for cross-sectional correlation of residual errors
(and therefore, are similar to Shanken (1992) corrected OLS standard errors).

It should be noted that beta loadings (β̂i) are time invariant for the most part with
similar values, using daily or monthly returns. The reason for this invariance is that they
are benchmarked to one corresponding to the beta risk of the average market return of all
assets. By contrast, KLH noted that zeta risk loadings (Ẑ∗

i ) are time variant (i.e., the holding
period can affect their estimated values) due to not being benchmarked to one. By way of
interpretation, the estimated market price λZ∗ related to the return dispersion measures the
risk premium per unit zeta risk. Given that time-series regression (15) is used to estimate
risk parameters with daily returns, and the cross-sectional regression Equation (18) uses
one-month-ahead excess returns as the dependent variable, Ẑ∗

i can be rescaled from a daily
to monthly basis as follows:

Ri,T+1 − R f T+1 = λ0 + λββ̂i + λZ∗ Ẑ∗
i NT+1 + uit, i = 1, ..., N, (19)

where NT+1 is the number of trading days in month T + 1 (i.e., 21 days), Z∗
i NT+1 is the

monthly estimated zeta risk, and λZ∗ is the monthly risk premium associated with zeta
risk. This rescaling does not change the risk premium λ̂Z∗ per unit zeta risk.16

Another important statistic in the cross-sectional regressions is the R2 estimate. Follow-
ing Jagannathan and Wang (1996) and Lettau and Ludvigson (2001, footnote 17, p. 1254),
we compute this goodness-of-fit measure by using the R2 statistic from a single regression
approach. Using the 1928 to 1964 (1965 to 2020) subperiod, we obtain 444 (672) monthly
estimates of λ̂k for each test asset portfolio as we roll forward month by month to the end of
the analysis subperiod. We also have the same number of one-month-ahead realized excess
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returns for each portfolio. After taking the averages of the λ̂ks and realized excess returns
for each portfolio, the average realized excess returns for the n portfolios are regressed on
the average λ̂ks to obtain an estimate of R2.

The above discussion of R2 estimation leads to a second cross-sectional test. In this
test, we compute the one-month-ahead average realized excess returns for the n portfolios
as before. Additionally, we compute the one-month-ahead average fitted excess returns
for each portfolio. To do this, for each portfolio, the empirical ZCAPM is estimated, and βi
and Z∗

i risk parameters are retained. In the next month T + 1, these risk parameters are
multiplied by estimated factor prices of risk, or λks to compute the fitted excess return for
each portfolio. Rolling forward month by month to the end of the subperiod, a series of
fitted excess returns are available to compute the average fitted excess return. Finally, plots
of average realized excess returns (x-axis) and average fitted excess returns (y-axis) for the
n portfolios are created. If the model works perfectly, all points will lie on a 45-degree line
from the origin.

4. Cross-Sectional Regression Results

Tables 2 and 3 report the results for the out-of-sample Fama and MacBeth cross-sectional
regression tests in subperiods 1928 to 1964 and 1965 to 2020, respectively.

Table 2. Out-of-sample Fama–MacBeth cross-sectional regressions for U.S. stocks: January 1928 to
December 1964.

Panel A: 25 Size and BM Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 2.57 −0.73 0.00
(4.89) (−2.12)

Three-factor 1.86 −1.05 1.37 1.24 0.79
(4.71) (−2.65) (5.44) (5.19)

Four-factor 1.82 −1.12 1.25 1.37 −1.44 0.92
(5.20) (−2.88) (5.07) (5.25) (−2.84)

ZCAPM 1.42 −0.18 0.92 0.98
(3.80) (−0.54) (6.19)

Panel B: 25 Size and Momentum Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 4.64 −2.68 0.07
(4.60) (−3.38)

Three-factor 3.47 −3.27 1.57 3.28 0.85
(5.07) (−4.86) (4.62) (3.68)

Four-factor 4.46 −4.17 1.44 3.22 0.22 0.94
(5.89) (−5.68) (4.32) (3.93) (0.76)

ZCAPM 1.73 −0.39 1.29 0.98
(3.44) (−0.93) (10.22)

Panel C: 90 Total Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 2.86 −0.95 0.00
(5.62) (−2.88)

Three-factor 1.92 −1.27 1.65 1.33 0.59
(5.45) (−3.70) (6.80) (4.48)

Four-factor 1.97 −1.33 1.57 1.41 −0.05 0.59
(5.36) (−3.73) (6.62) (4.83) (−0.20)

ZCAPM 1.65 −0.28 1.00 0.95
(5.18) (−1.06) (9.53)

The portfolio MKT in the ZCAPM is the value-weighted mean market portfolio rather than a proxy for the market
portfolio M as in the CAPM.
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Table 3. Out-of-sample Fama–MacBeth cross-sectional regressions for U.S. stocks: January 1965 to
December 2020.

Panel A: 25 Size and BM Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CCAPM 2.18 −1.41 0.72
(8.82) (−6.11)

Three-factor 2.45 −1.75 0.36 0.26 0.83
(10.78) (−7.93) (2.46) (1.93)

Four-factor 2.45 −1.77 0.36 0.23 −0.43 0.86
(10.43) (−7.79) (2.50) (1.74) (−1.47)

ZCAPM 1.48 −0.77 0.47 0.98
(5.82) (−3.25) (4.00)

Panel B: 25 Size and Momentum Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CCAPM 1.53 −0.78 0.38
(6.90) (−3.52)

Three-factor 1.81 −1.23 0.54 0.03 0.76
(7.77) (−5.41) (3.75) (0.11)

Four-factor 2.06 −1.42 0.52 −0.20 0.47 0.80
(9.05) (−6.70) (3.61) (−0.91) (2.48)

ZCAPM 0.87 −0.19 0.69 0.93
(4.06) (−0.85) (6.07)

Panel C: 90 Total Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 1.82 −0.94 0.26
(9.06) (−4.45)

Three-factor 1.52 −0.93 0.57 0.26 0.48
(9.42) (−5.04) (3.72) (1.85)

Four-factor 1.58 −0.97 0.53 0.23 0.26 0.54
(9.91) (−5.37) (3.37) (1.82) (1.39)

ZCAPM 1.22 −0.43 0.63 0.87
(6.81) (−2.29) (8.50)

The portfolio MKT in the ZCAPM is the value-weighted mean market portfolio rather than a proxy for the market
portfolio M as in the CAPM.

4.1. Subperiod 1928 to 1964

The cross-sectional regression results for the 1928 to 1964 subperiod based on three
different test asset portfolios are shown in Panels A to C in Table 2. In Panel A for the
25 size and BM portfolios, we see that the CAPM performed the worst with virtually no
explanatory power at R2 = 0 and a marginally significant negative market price for beta
λ̂β = −0.73 (t = −2.12). Since beta risk should be positively priced in the CAPM, our
results confirm those of Fama and French (1992, 1993, 1995) and many others that do not
support the CAPM. By contrast, the best performing models are the four-factor model and
ZCAPM with estimated R2 values of 92 percent and 98 percent, respectively. In assessing
the relative performance of different models, it is important to recognize that the three- and
four-factor models use endogenous test asset portfolios; that is, size, BM, and momentum
test asset portfolios are constructed from the same firm-level characteristics as the respective
factors. Notably, these firm-level characteristics are exogenous to the ZCAPM, which makes
the almost perfect goodness-of-fit of the ZCAPM quite remarkable.

In terms of the significance of factor loadings, again the ZCAPM outperforms the
other models. The λ̂Z∗ market price of zeta risk loadings is 1.29 percent per month with a
very high t-statistic of 6.19. The t-statistics for λ̂SMB and λ̂HML are very high also in the
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range of 5.07 to 5.44. As discussed earlier, Harvey et al. (2016) and Chordia et al. (2020)
recommended that asset pricing factors have t statistics greater than 3.0 to avoid false
discoveries. Our findings suggest that the size and value factors of Fama and French are
not false discoveries. This inference holds for the return dispersion factor in the ZCAPM
also. The estimated market price of momentum risk loadings λ̂MOM with t = −2.98, which
is borderline significant relative to the threshold hurdle rate. However, its market price
has a negative sign that is difficult to explain (i.e., higher risk should imply higher risk
premiums). Even so, adding momentum to the three-factor model noticeably boosts its
goodness-of-fit from 79 percent to 92 percent in the four-factor model.

The results in Panel B for the 25 size and momentum portfolios are similar to those
in Panel A. Again, the ZCAPM has almost perfect goodness-of-fit at a 98 percent R2

estimate, and λ̂Z∗ has the highest t statistic of all factors tested. Regarding the latter, the t
statistic equals 10.22, which is extremely high. No previous studies to our knowledge have
reported a t statistic this high in cross-sectional regression tests. As before, the four-factor
model outperforms the three-factor model, and the CAPM does the worst in terms of very
low goodness-of-fit.

Lastly, Panel C contains the results for 90 combined portfolios including 40 industry
portfolios. These results mitigate endogeneity problems by incorporating exogenous
industry test assets. Upon doing so, the three- and four-factor models’ performance
diminishes substantially compared to Panels A and B. Now their R2 values only reach
59 percent, which is far below that of the ZCAPM with near perfect goodness-of-fit at
95 percent. While the t statistics for λ̂SMB and λ̂HML are high in the range of 4.48 to 6.80,
they are well below that of the market price of zeta risk λ̂Z∗ at 9.53.

Another finding in Panels A to C of Table 2 is that the intercept term λ̂0 is somewhat
lower for the ZCAPM compared to the other models. This pattern is most clearly seen
in Panel B, wherein λ̂0 = 1.73 percent per month (t = 3.44) for the ZCAPM, compared
to estimates in the range of 3.47 percent to 4.64 percent for the other models. This lower
mispricing error further supports the ZCAPM.

In sum, the ZCAPM outperforms the popular three- and four-factor models, even when
endogenous test assets are used (which are exogenous to the ZCAPM factors). Consistent
with earlier studies, the CAPM performs poorly in cross-sectional tests. When exogenous
industry portfolios are added to the test assets, the ZCAPM outperforms other models by a
large margin. The latter results are the most reliable and highlight the dominance of the
ZCAPM, compared to often-used multifactor models.

4.2. Subperiod 1965 to 2020

In Table 3, we repeat the cross-sectional analyses in Table 2 for the subperiod 1965
to 2020. The results are similar to those in the earlier subperiod, with the exception that
the three- and four-factor models’ performance diminishes noticeably. For example, these
models now have R2 values of 83 percent and 86 percent, compared to 72 percent and
92 percent in Panel A of Table 2. None of the t statistics for these multifactor models
breaks the recommended 3.0 threshold—namely, they range from 1.74 to 2.50. In addi-
tion, the market price of momentum loadings λ̂MOM is insignificant with a negative sign.
By contrast, the ZCAPM has a near perfect R2 value of 98 percent, and the market price of
zeta risk loadings λ̂Z∗ is highly significant with t = 4.00. The CAPM performs better in
this subperiod with R2 = 72 percent, but the market price of beta risk is again significantly
negative at λ̂β = −1.41 percent (t = −6.11).

In Panel B, the results using 25 size and momentum portfolios are little changed.
The ZCAPM continues to outperform the multifactor models, even with endogenous
assets (that are exogenous to the ZCAPM). Now the market prices of size loadings λ̂SMB
have t statistics exceeding the 3.0 threshold at 3.75 and 3.61 in the three- and four-factor
models. The market price of momentum loadings λ̂MOM is positive and significant at
t = 2.48, but falls below the 3.0 threshold. Recall that it was negative and significant in the
earlier subperiod for the 25 size and BM portfolios. So here, we see some instability in the
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momentum factor results over time. By comparison, the ZCAPM’s λ̂Z∗ = 0.47 percent has
t = 6.07, which is much higher than the size loadings. As in Panel A, the goodness-of-fit of
the ZCAPM surpasses the other models by a larger margin than in the earlier subperiod.
These results suggest that the earlier subperiod has greater endogeneity problems than the
later subperiod due to smaller sample sizes as you go back in time before 1965. Hence,
the earlier subperiod findings underscore the endogeneity problem in the three- and four
factor models.

Finally, Panel C provides the results for the 90 combined portfolios with industry port-
folios included. As before, the inclusion of exogenous test assets reduces the performance
of the multifactor models. The ZCAPM has R2 = 87 percent and t = 8.50 with respect to
the market price of zeta risk λ̂Z∗ = 0.63 percent, which exceeds the R2 values of the three-
and four-factor models at 0.48 percent and 0.54 percent, respectively, and t-statistics of
3.72 and 3.37 for λ̂SMB at 0.57 percent and 0.53 percent. The market prices of value and
momentum loadings are insignificant at the 5 percent level in these test assets. The inability
of these factors to consistently be significant from over time and across test assets suggests
that they are false discoveries. Only the size factor continues to pass the 3.0 threshold, even
when exogenous assets are included in the test assets.

We should mention that previously cited studies that incorporated a return dispersion
factor in an OLS time-series regression model obtain much weaker and ambiguous findings
than the EM ZCAPM regression model with a dummy latent variable. Unlike the present
study, Verousis and Voukelators (2015) found that return dispersion loadings are negatively
priced. Other studies by Jiang (2010), Demirer and Jategaonkar (2013), Garcia et al. (2014),
and Chichernea et al. (2015) reported positive prices of return dispersion loadings, but the
significance levels did not consistently exceed the 3.0 threshold. In this regard, because they
used in-sample cross-sectional tests rather than out-of-sample tests as in the present study,
their results cannot be directly compared to our results.

Another noteworthy finding is that, as in the earlier subperiod, the intercept terms λ̂0
for the ZCAPM are lower than those for the other models in Panels A to C in Table 3. We
infer that this is likely due to the better goodness-of-fit of the ZCAPM compared to the
other models.

In sum, the ZCAPM outperforms the CAPM and commonly used multifactor models
in terms of both goodness-of-fit and significance of return dispersion factor loadings. Dif-
ferences in performance are greater, using exogenous industry assets, which call attention
to the endogeneity problem in using tests assets sorted on firm-level characteristics that are
used to construct long-short, zero-investment factors. We infer that our results corroborate
those in KLH—that is, the ZCAPM consistently dominates multifactor models in out-of-
sample cross-sectional regression tests. According to KLH, the return dispersion factor
outperforms multifactors due to the fact that the latter are actually rough return dispersion
measures that capture different slices within the total return dispersion. The size factor is
long small stocks’ returns and short big stocks’ returns, and so captures a portion of the
total return dispersion. Sometimes, multifactors switch from positive to negative market
prices of risk in cross-sectional tests; for example, the market prices of momentum factor
loadings switch from negative in the earlier subperiod to negative in the later subperiod in
Tables 2 and 3, respectively. The reason for this erratic pricing behavior is that momentum
was capturing negative zeta risk in the earlier subperiod and positive zeta risk in the later
subperiod. Surely, momentum is a return dispersion measure, as it is defined as past winner
stocks’ turns minus past loser stocks’ returns. These multifactors can shift around within
the total return dispersion of stocks over time and at times become insignificant, which is
what we find in our results in Tables 2 and 3. Because multifactors are proxies for different
slices of return dispersion, they are related to the ZCAPM. As the theoretical ZCAPM posits,
return dispersion is needed to span the return and risk dimensions of the mean–variance
Markowitz investment parabola. To locate efficient and orthogonal inefficient portfolios
per Black’s zero-beta CAPM, the return dispersion is a critical asset pricing factor that is
needed to augment the mean market return factor.
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4.3. Cross-Sectional Fitted and Realized Excess Returns

Fama and MacBeth (1973, p. 613) observed that: “As a normative theory the model
only has content if there is some relation between future returns and estimates of risk
that can be made on the basis of current information”. Following this logic, Lettau and
Ludvigson (2001) and other researchers typically generated graphs of cross-sectional fitted
excess returns and realized excess returns for different test asset portfolios. We discussed
details for computing these out-of-sample returns in the previous section. We next display
in Figures 3–10 illustrations of the relation between actual and fitted excess returns.

In Figures 3–6 corresponding to the earlier subperiod, we provide the cross-sectional
results for the CAPM, three-factor model, four-factor model, and ZCAPM. In Figure 3,
the CAPM demonstrates no relation between past beta estimates (used to compute future
fitted excess returns) and future realized excess returns. The three- and four-factor models
in Figures 4 and 5, respectively, do a much better job. Even so, they have difficulties
with portfolios with average realized excess returns greater than about 4 percent per
month. For these higher risk portfolios, fitted excess returns tend to underestimate the
realized excess returns. We infer that some portion of risk is left out of these models
which explains this downward bias. By contrast, the ZCAPM in Figure 6 correctly prices
these higher risk portfolios. Hence, the ZCAPM more completely measures risk than the
multifactor models. Additionally, and of major importance as a normative theory, based on
the ZCAPM, portfolios fall fairly close to the 45-degree line from the origin for fitted and
realized excess returns.

Turning to Figures 7–10 related to the later subperiod, we find similar patterns in fitted
versus realized excess returns. In Figure 7, the CAPM does better than in the previous
subperiod but a markedly flat relation is obvious that fails to capture a linear relation
between risk and return. The three- and four-factor models in Figures 8 and 9, respectively,
do a much better job than the CAPM but again have difficulties with underestimating
the fitted excess returns of high return (risk) portfolios. In Figure 10, the ZCAPM clearly
demonstrates a closer fit between fitted and realized excess returns than the other models
in the cross section of average stock returns. Additionally, the ZCAPM better prices high
return (risk) portfolios.

Figure 3. Out-of-sample cross-sectional relationships for the CAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1928 to December 1964.
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Figure 4. Out-of-sample cross-sectional relationships for the Fama and French three-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1928 to December 1964.

Figure 5. Out-of-sample cross-sectional relationships for the Fama and French four-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1928 to December 1964.
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Figure 6. Out-of-sample cross-sectional relationships for the ZCAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1928 to December 1964.

Figure 7. Out-of-sample cross-sectional relationships for the CAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1965 to December 2020.
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Figure 8. Out-of-sample cross-sectional relationships for the Fama and French three-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1965 to December 2020.

Figure 9. Out-of-sample cross-sectional relationships for the Fama and French four-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1965 to December 2020.
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Figure 10. Out-of-sample cross-sectional relationships for the ZCAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1965 to December 2020.

In sum, confirming Fama and French (1992, 1993, 1995) and others, graphical results
for the CAPM suggest that there is no relation between the one-month-ahead fitted ex-
cess returns based on market beta risk and realized excess returns in the cross section of
the average stock returns. Fama and French’s three-factor model noticeably boosts the
goodness-of-fit compared to the CAPM. Additionally, Carharts’ four-factor model further
improves the goodness-of-fit, especially in the earlier subperiod of 1928 to 1964. When
industry portfolios are added to the test assets, the performance of the three- and four-
factor models decreases considerably, whereas the ZCAPM continues to perform quite well.
Graphs of average fitted and realized excess returns show that test asset portfolio returns
fall closer to the 45-degree line from the origin for the ZCAPM, compared to the multifactor
models. Unlike the ZCAPM, the latter multifactor models have difficulty in pricing higher
return (risk) portfolios. Thus, the ZCAPM outperforms other models in cross-sectional
analyses of stock returns.

5. Conclusions

This study extended the previous work by Kolari et al. (2021) (KLH) on tests of a
new asset pricing model derived as a special case of Black’s (1972) zero-beta CAPM,
dubbed the ZCAPM. KLH investigated U.S. stock returns in the sample period 1965 to
2018. After reviewing the theoretical and empirical versions of the ZCAPM, we expanded
their analyses by taking into account the earlier subperiod 1928 to 1964 as well as the
later subperiod of 1965 to 2020. Standard out-of-sample Fama and MacBeth (1973) cross-
sectional regression analyses were applied to a variety of test asset portfolios, including
25 size and BM portfolios, 25 size and momentum portfolios, and 90 combined portfolios
with 40 industry portfolios. We benchmarked the ZCAPM results against the CAPM with a
single market factor, the Fama and French (1992, 1993, 1995) three-factor model augmented
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with size and value factors, and the Carhart (1997) four-factor model augmented with a
momentum factor.

Our results corroborate those in KLH that the ZCAPM consistently dominates multi-
factor models, especially when using exogenous industry portfolios. Our CAPM results
are similar to previous authors that find little or no support for the hypothesized posi-
tive relation between beta and average returns. The three- and four-factor models did
much better than the CAPM but primarily showed strength using endogenous test asset
portfolios based on size and momentum characteristics that are contained in the size and
momentum factors. Even so, the ZCAPM outperformed these popular multifactor models.
Interestingly, multifactor models did better in the earlier subperiod in all likelihood due to
the smaller sample sizes of stocks relative to the later subperiod; that is, smaller sample
sizes exacerbate the endogeneity problem in cross-sectional tests. When using exogenous
industry portfolios, the multifactor models’ performance declined substantially, whereas
the ZCAPM continued to perform quite well in both earlier and later subperiods.

We conclude that, similar to the findings of KLH, the ZCAPM consistently outper-
formed multifactor models. A key reason for this outperformance is that the cross-sectional
standard deviation of all stock’s returns more comprehensively captures the return dis-
persion than the selected multifactors that are themselves rough measures of the return
dispersion. While popular multifactors show significance in our tests, and can surpass the
recommended 3.0 t-statistic thresholds in terms of the market prices of factor loadings in
some test asset portfolios, their results tend to be inconsistent across subperiods and test
asset portfolios. By contrast, t statistics associated with the market price of return dispersion
loadings in the ZCAPM always exceed 3.0 in different subperiods and test asset portfolios.
Additionally, near perfect goodness-of-fit was achieved by the ZCAPM for portfolios sorted
on firm-level characteristics, even though these characteristics are exogenous to the mean
market return and cross-sectional return dispersion factors of the ZCAPM.

Cochrane (2011, p. 1061) observed that, “. . . the world would be much simpler if
betas on only a few factors, important in the covariance matrix of returns, accounted for a
larger number of mean characteristics”. The ZCAPM embodies a parsimonious two-factor
model with mean market return and return dispersion factors. Regarding the latter return
dispersion factor, the ZCAPM takes into account long/short, zero-investment factors based
on firm-level characteristics that themselves are rough measures of total return dispersion.
Future research is recommended on different countries17 as well as other asset classes,
including bonds, commodities, real estate, etc. Moreover, further work on applications
to other areas of finance is recommended, such as investment analysis, the cost of equity,
event studies, etc.
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Notes

1 Numerous authors link return dispersion to economic fundamentals, including the business cycle, economic uncertainty,
and macroeconomic shocks, including Loungani et al. (1990), Christie and Huang (1994), Bekaert and Harvey (1997, 2000),
Connolly and Stivers (2003), Stivers (2003), Pastor and Veronesi (2009), Angelidis et al. (2015), and others.

2 See seminal work by Dempster et al. (1977) on the development of EM regression as well as applications in other areas of finance
by Harvey and Liu (2016) and Chen et al. (2017). Wikipedia provides an excellent overview of EM regression and further citations
to statistics literature.

3 These studies compute a variety of market volatility factors, including the time-series volatility index (VIX) of the Chicago Board
of Options Exchange (CBOE), time-series variance of market returns, and volatility-of-volatility metrics. See (Ferson 2019, chp. 34)
for an excellent discussion of studies using time-series volatility factors in the asset pricing literature.

4 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library (accessed on 1 September 2021)
5 See also their earlier work in Liu et al. (2012) and Liu (2013).
6 One proof uses random matrix mathematics, and the second proof is based on Markowitz mathematical methods.
7 This result was proved by KLH by means of two different geometric methods, including the Roll’s (1980) well-known geomet-

ric approach.
8 By contrast, the riskless rate is constant and therefore nonrandom.
9 In early CAPM studies, such as that of Black et al. (1972), it was found that E(R̃ZM) > R f , which implied that security market

line (SML) had a higher intercept and lower slope than the theoretical CAPM.
10 To do this, KLH use the latent variable approach in conditional asset pricing (see Gibbons and Ferson 1985; Ferson and Locke 1998).
11 The following conditions hold: (1) assuming all funds are invested in either I∗ or ZI∗, then β I∗ ,a = βZI∗ ,a = 1 and Z∗

I∗ ,a = 1 or
Z∗

ZI∗ ,a = −1, respectively; (2) assuming no riskless asset, Equation (11) reduces to Equation (8) (i.e., βi,a ≡ wI∗ + wZI∗ = 1); and
(3) assuming the restriction w f > 0 (i.e., no borrowing at the riskless rate is allowed), then βi,a < 1.

12 The market portfolio M lies on the efficient frontier at the tangent point of a ray from the riskless rate.
13 This diagram is based on Figure 3.3 in Kolari et al. (2021, p. 68).
14 More specifically, KLH defined T+ = {t : 1 ≤ t ≤ T, Dit = +1} and T− = {t : 1 ≤ t ≤ T, Dit = −1} as sets of time indices

associated with positive and negative signs of the signal variable. As such, the empirical ZCAPM Equation (12) becomes a two
equation model:

Rit − R f t = βi,a(Rat − R f t) + Zi,aσat + uit, t ∈ T+
Rit − R f t = βi,a(Rat − R f t)− Zi,aσat + uit, t ∈ T−,

where first equation has probability pi, and the second equation has probability 1 − pi.
15 As we will see, the goodness-of-fit of the empirical ZCAPM was exceptional, with estimated adjusted R2 values as high as 98

percent in some tests. These results imply that the absence of a time-series αi term in the empirical ZCAPM did not affect the
cross-sectional results.

16 Without recaling Z∗
i to a monthly basis, estimates of λZ∗ would be much larger and not comparable to λβ estimates related to

beta loadings.
17 See the working paper by Kolari et al. (2021) on international stock market tests of the ZCAPM in Canada, France, Germany,

Japan, the United Kingdom, and the United States.
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Abstract: We revisited the issue of return predictability in three major developed markets (USA, UK
and Japan) using a unique dataset from the Wharton Research Data Services database and a com-
prehensive set of traditional and recent statistical methods. We specifically employed a variety of
traditional linear and nonlinear tests, latest multiple-break unit root tests and spectral analysis to
test the efficient market hypothesis. Our results show that these stock markets generally are ineffi-
cient. We further explored whether the departure from market efficiency can be used to generate
profitable trades and found that abnormal returns exist in all three markets. We found evidence of
abnormal returns associated with the break dates identified in the models which are correlated with
major historical events around the world. Our findings have important implications for investors
and policymakers.

Keywords: efficient market hypothesis; unit root; spectral analysis; abnormal returns

1. Introduction

The efficient market hypothesis (EMH), introduced by Eugene Fama in 1970, states
that financial asset prices entirely reflect all available information, making it impossible for
investors to beat the market. The EMH posits that stock prices are sensitive to every bit of
information in the market and that movements of stock prices are unpredictable. Therefore,
there should not be a momentous difference between the optimal forecast and actual stock
prices, and the probability of making abnormal profits in the stock market is asymptotically
zero. The theory has attracted many supporters as well as critics. Shiller (1981) documented
that stock price variation should not be explained by fundamentals. Some of the results
which show little alpha (risk-adjusted return) and no persistence were published by Carhart
(1997), Lettau and Van Nieuwerburgh (2008), Fama and French (2010), Busse et al. (2010),
Bertone et al. (2015), etc. Richard Thaler, a Nobel laureate in Economics in 2017, has helped
reignite this debate. Thaler, one of the founders of “behavioral finance”, has put the notion
of the EMH in doubt and provided scientific explanations for the existence of irrational
market behaviors. The empirical evidence is mixed, and the research community is “torn”
between the EMH and behavioral finance camps (Verheyden et al. 2015).

A review of the EMH in developed markets reveals a widespread but not definitive
consensus that markets tend toward efficiency, although there are periods of informational
inefficiency and periods of speculative bubbles (behavioral finance) (e.g., French and Roll
1986; De Long et al. 1990). Carhart (1997) showed that the performance of mutual funds
does not reflect superior stock-picking skills. Fama and French (2010) showed that few
mutual funds produce returns sufficient to cover their costs. Busse et al. (2010) found that
an investment manager’s superior risk-adjusted returns are indistinguishable from zero.
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Finally, Bertone et al. (2015) showed that the US market had become significantly more
efficient even during very short-term intervals. More recently, Durusu-Ciftci et al. (2017)
argued that the evidence for the EMH is mixed. One reason is that traditional tests ignore
the presence of structural breaks, leading to invalid statistical inferences. Another potential
issue is that traditional unit root tests only allow for one of two breaks in the data—a
problem that can be overcome by some of the multiple-break unit root tests employed in
our study.

Our research contributes to the literature by testing market efficiency in three major
developed markets, the USA, the UK and Japan, for the first time—to our knowledge—
using unique authoritative stock price indices provided by the WRDS. Our study also
complements those that examine this topic for major stock markets, especially the study of
the US, UK and Japanese stock markets by Urquhart and McGroarty (2016), Urquhart and
Hudson (2013), Borges (2010) and Narayan and Smyth (2007). However, we employed a
number of recent and powerful statistical tests to study this issue. Specifically, in this paper,
we utilized highly regarded tests such as those used by Elliott et al. (1996), Ng and Perron
(2001) and Brock et al. (1996, BDS) which had not been widely used in this line of research
in addition to the highly popular traditional statistical tests such as the BDS and variance
ratios. Further, we took advantage of the latest multiple-break unit root tests by Lumsdaine
and Papell (1997, LP), Lee and Strazicich (2003, LS), Narayan and Popp (2010, NP) and
Ender and Lee (2012, EL).1 To increase the robustness of our results, we adopted recent
spectral tests commonly found in the electrical engineering literature to further assess the
EMH in the three developed markets in question. The final novelty of our study is the
analysis of abnormal returns. Specifically, we explored whether the departure from market
efficiency can be used to generate profitable trades.

By way of preview, we found that the three stock market indices in our study exhibit
mean reversions. The rather surprising finding of market inefficiency (contradicting many
prior findings of market efficiency for highly developed markets) may indicate more pro-
nounced information asymmetry, limited competition and not fully developed financial
and banking systems within these countries. The paper is organized as follows. Section 2
presents a brief review of the related studies. Section 3 discusses the data and the method-
ology. Section 4 discusses the empirical results. Section 5 provides some discussions of the
findings. Finally, Section 6 concludes the study with some remarks.

2. Brief Literature Review

Numerous studies have explored the predictability of equity returns. Early studies
documented that macroeconomic and financial variables are useful predictors of equity
returns. For example, Fama and Schwert (1977) found a positive relationship between
inflation and expected returns. Chen et al. (1986) showed that term spread, expected and
unexpected inflation, industrial production and credit spread can explain the variations of
equity returns in the US dividend yields (or dividend/price ratios) and also demonstrate
the strong predictive power of equity returns (e.g., Shiller 1982; Bekaert and Hodrick 1992;
Campbell and Hamao 1992; Solnik 1993; Campbell and Shiller 1988; Fama and French 1988;
Ang and Bekaert 2007; Golez and Koudijs 2018). Interest rates, documented by Ang and
Bekaert (2007) and Rapach et al. (2013), are reliable predictors of equity returns. Size and
book-to-market ratio along with the market factor, presented by Fama and French (1992,
1993), are also important variables to predict equity returns. Examining firms’ fundamentals
and equity prices in the USA, Bhargava (2014) found that the following variables were
important predictors: earnings per share, total assets, long-term debt, dividends per share
and unemployment and interest rates.

Other studies incorporate liquidity to explore its relationship with equity returns
(e.g., Amihud 2002; Bekaert et al. 2007). Amihud (2002) found a positive relationship
between expected returns and contemporaneous unexpected illiquidity. Bekaert et al.
(2007) documented that local market liquidity is an important determinant of equity returns
in emerging markets. Another line of research examines the effect of investor sentiment
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on equity returns (e.g., Baker and Wurgler 2006, 2007). Baker and Wurgler (2006, 2007)
documented a negative relationship between investor sentiment and subsequent equity
returns. Nyberg and Pönkä (2016) documented the predictability of other equity market
returns with the information from the US market.

A number of studies most related to our current research include the following studies.
Golez and Koudijs (2018) combined the annual stock market data for the Netherlands/UK
(1629–1812), the UK (1813–1870) and the USA (1871–2015) and showed that dividend
yields are stationary and consistently forecast returns over both short and long horizons.
Goetzmann et al. (2001) estimated a new index for the New York stock market between 1815
and 1925. They found little evidence for return predictability, but data limitations forced
them to approximate dividends for the period before 1870. Mitra et al. (2017) examined
the efficiency of 31 stock index series spanning 26 countries across the world. They found
periods of departure from the martingale difference hypothesis among the stock index
series around the world. The results are consistent with the adaptive market hypothesis
whereby stock markets remain efficient most of the time but there are periods when markets
become inefficient. Urquhart and Hudson (2013) also empirically investigated the adaptive
market hypothesis for the US, UK and Japanese markets using very long-run data. Daily
data were divided into five-yearly subsamples and subjected to linear and nonlinear tests
to determine how the independence of stock returns had behaved over time. Their results
from the linear autocorrelation, runs and variance ratio tests reveal that each market shows
evidence of being an adaptive market, with returns going through periods of independence
and dependence. However, results from nonlinear tests show strong dependence for every
subsample in each market. Urquhart and McGroarty (2016) examined the adaptive market
hypothesis in S&P 500, FTSE 100, NIKKEI 225 and EURO STOXX 50 by testing stock return
predictability using daily data from January 1990 to May 2014. Their results show that
there are periods of statistically significant return predictability, but also periods of no
statistically significant predictability in stock returns. Narayan and Smyth (2007) showed
evidence on the random walk hypothesis in G7 stock price indices using unit root tests
which allow for one and two structural breaks in the trend. Evidence of mean reversion
only exists for the stock price index of Japan. In short, no consensus has been reached.

3. Data and Methodologies

Our dataset was obtained from the Wharton Research Data Services (WRDS) country
price index database. A major advantage of using this database is that all price series have a
consistent data format. Our sample contained daily data for 23 major stock market indices
in the USA, the UK and Japan. The indices were market capitalization-weighted, adjusted
for stock splits and dividends. Compustat Global—Security Daily was used to construct
the indices. The portfolio was rebalanced annually at the end of the last trading day of June
for each country. Observations were removed if the market capitalization was not positive
or if the exchange information was missing. For firms with multiple issues, the issue with
the largest market capitalization was chosen. Additionally, a security had to be in the top
50% of the market capitalization of that country and traded at the stock exchanges located
within the country in question. The currency of the security price had to be consistent with
its ISO currency code. Lastly, only common ordinary shares were included in the indices.
We extracted the country price indices for the USA, the UK and Japan in monthly frequency.
In this study, our sample period for the USA spanned from January 1926 to December
2016, while the sample period for the UK and Japan started in December 1989, ending in
December 2015. We employed a battery of tests typically used in the literature as well as a
number of recent methods.2

Among the most important tests for market efficiency (i.e., random walk) are unit root
tests. The weak-form efficient market hypothesis states that stock prices move in a random
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walk fashion, or that past prices cannot be used to predict future prices. The random walk
model is commonly specified as follows:3

yt = μ + yt−1 + εt

where yt is the log of price or stock index return in a number of studies, μ is the drift
term and εt is the random disturbance term. To evaluate this hypothesis, we examined
the returns on the country price indices and tested for independence of their return series.
To test the random walk hypothesis it is necessary to examine the existence of a unit root
in a return series. More specifically, we conducted traditional, highly regarded unit root
tests and more recent single- as well as multiple-break unit root tests.4 We first used the
following highly popular unit root tests in this study: augmented Dickey–Fuller (ADF),
Phillips–Perron, Elliott–Rothenberg–Stock and Ng–Perron tests. We then employed the
Zivot and Andrews (1992) test as a single-break unit root test. For multiple-break unit
root tests, we utilized the models developed by Lumsdaine and Papell (1997), Lee and
Strazicich (2003), Narayan and Popp (2010), Ender and Lee (2012). Finally, we computed
the abnormal returns for each price index using the structural break information found in
those tests.

3.1. Unit Root Tests

ADF test (1981): This is our baseline test which evaluates if a series is stationary
or random-walk (unit root), mainly for comparison purposes. The null hypothesis of
a unit root is rejected if the test statistic is less (or more negative) than their associated
critical values:

yt = a0 + γ1yt−1 + θt +
k

∑
i=2

βiyt−i + εt

where yt in our setting is the stock index return in month t. The null hypothesis is γ1 = 1,
a unit root in the return series. One problem with the ADF method is the selection of lag
length (Schwert 1989). We, therefore, used Akaike’s information criterion to select the
optimal lag length (to ensure that the residual was white noise) to mitigate this issue. We
also performed the Phillips and Perron (1988, PP) test, a more powerful test than the ADF
test (Dickey and Fuller 1981), but with better size distortions.

ERS test (1996): This is basically a modified ADF test where Elliot, Rothenberg and
Stock (ERS) show that their DF-GLS test has the power function close to the point optimal
test which has better power properties. This test not only provides a higher power than
the ADF and PP tests, but can also distinguish persistent stationary processes from nonsta-
tionary processes. The test has the same null hypothesis as the ADF test, and its results are
interpreted similarly. To our knowledge, this was the first time the ERS tests were used to
examine the market efficiency hypothesis, at least for our sample of countries.

Ng–Perron test (2001): Using the procedure in the ERS test to create efficient versions
of the modified PP tests of Perron and Ng (1996), Ng and Perron (2001) showed that these
tests do not have the same serious size distortions as the PP tests (used in many studies
reviewed in the paper) for errors with large autoregressive and moving average roots. As a
result, they can give a much higher power than the PP tests. Ng and Perron constructed
four test statistics which are based on the PP tests (MZα and MZt statistics), the Bhargava
(1986) (MSB) statistic and the ERS point optimal statistic (MPT). We used the modified
AIC for lag selection as suggested by the authors to maximize the power. Interpretations
of results for these tests are similar to those of the ADF tests discussed above. To our
knowledge, this was the first time these tests were used to examine the market efficiency
hypothesis for our sample of countries.
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3.2. Multiple-Break Unit Root Tests

Perron (1989) showed that structural change and unit roots are intimately related,
and it is important to note that conventional unit root tests (as performed in many of the
reviewed studies) are biased toward a false unit root null when the data are trend-stationary
with a structural break. This observation has led to the development of a large amount of
literature with unit root tests that remain valid in the presence of a break. One of the novel
contributions of our study is the inclusion of multiple-break unit root tests by Lumsdaine
and Papell (1997, LP), Lee and Strazicich (2003, LS), Narayan and Popp (2010, NP) and
Ender and Lee (2012, EL). The main limitation of a unit root test, according to Zivot and
Andrews (1992), is that it allows only for one break in the data and has a lower power than
the tests described below. While Perron (1989) specified an a priori fixed break date, the ZA
tests can endogenously determine a break date from the data.

Lumsdaine and Papell (1997): Improving on ZA, the LP multiple unit root tests allow
for more than one (unknown) breakpoint in either the trend, the intercept or both the trend
and the intercept of the data. We used two, four and six lags for the base model as well as
automatic lag selections using the AIC and the BIC.5 The null hypothesis is that there is a
unit root in the data. Thus, if the null hypothesis is rejected, the return series is predictable,
and vice versa. It should be noted that these are computationally intensive methods when
two or more breaks are selected if the dataset is fairly large (more than 500).

Lee and Strazicich (2003) showed that their model outperforms that of Lumsdaine and
Papell (1997, LP) in simulations and that, unlike the LP unit root test, rejection of the null
unambiguously implies a stationary trend or return predictability in our case. They also
showed that the power of the tests increases substantially when two or more breaks are
taken into account. It is a minimum Lagrange multiplier test for testing the presence of a
unit root with two structural breaks. We employed both the “Crash” model to allow for a
sudden change in level but no change in the trend and the “Break” model to account for
simultaneous changes in the level and the trend. The location of breakpoints is determined
endogenously by conducting a grid search to locate the minimum t-statistics. We used a
10% trimming of data points at each end of the series. The critical values for the test were
provided by Lee and Strazicich (2003). It is important to note that the critical values for the
model with breaks in the intercept and the trend are dependent on break locations.

Narayan and Popp (2010): This has been one of the most cited tests in recent years.
Narayan and Popp showed that their model outperforms those of LP and LS. Furthermore,
NP possesses a more stable power and correct size. Further, the NP test accurately recog-
nizes the break date. Since break dates are endogenously determined within the model, this
test requires no prior knowledge for possible timings of structural breaks. In our study, we
considered two different models, with the first model allowing two structural breaks (level)
and the second model allowing two structural breaks (level and trend). The interpretation
of the model is similar to those of LP and LS. To our knowledge, the NP test has not been
used to study the stock market indices of our three countries.

Ender and Lee (2012): This test, also known as the Fourier unit root test, is one of the
latest tests within this class. EL surpasses the aforementioned multiple-break unit root
test by reducing specification errors about break dates and their forms (gradual or sharp),
leading to an increase in the power of tests. The test uses trigonometric functions to capture
deviations greater than the average of the dependent variable and takes into account
multiple structural breaks. A major advantage of these tests is that there is no need to know
a priori the break dates, the exact number of breaks and the form of breaks. EL utilizes a
dynamic (time variant) deterministic intercept term consisting of sine and cosine functions
to determine the essence of the process or whether there is a breakpoint or nonlinear trend.
EL employs a specific data-generating regression model with the smallest residual sums
of square at the most appropriate frequency, as well as a more precise approximation
including multiple frequencies.

43



JRFM 2022, 15, 162

3.3. Spectral Analysis

A series of tests employed in this study are the recently available spectral tests com-
monly used in electrical engineering.6 We first examined the periodogram for each country
to help identify the dominant periods, cyclical properties or periodicities across different
frequencies (high and low) in a series. We looked for peaks or hidden periodic components
in the data. If a series seems very smooth, for example, then the values of the periodogram
for low frequencies will be large relative to its other values, and vice versa. For a random
walk series, all sinusoids should be of similar importance, and the periodogram will vary
randomly around a constant. On the other hand, if a series exhibits very pronounced
spectra at higher frequencies, this may indicate that the series is driven by dynamics or
transient features that frequently come and go. In this case, we would typically consider
this time series as stationary (we would typically classify it as nonstationary if spectra
are more prominent near zero frequency). Further, we employed Fisher’s G-test to check
for the proportion of intensity represented at each specific frequency to determine if the
observed peak at that frequency is random or not. Particularly, this test reveals if the series
in question is white noise (i.e., a stationary process) in the sense that its maximum ordinate
is not significant enough. Finally, utilizing a normalized integrated spectrum, we tested the
hypothesis if observations from each of series follow a white noise process.

3.4. Abnormal Returns

Another novel feature of our work is the analysis of abnormal returns. We explored in
this section whether a departure from market efficiency can be used to generate profitable
trades. Since the stock markets in our study were found to be inefficient, it was interesting
to explore their abnormal returns. To do this, we split the sample period by the multiple
structural breaks identified in these tests into subsample periods. The random walk
model and a rolling 36-month estimation period were used to compute the 1-month-ahead
predicted return (ŷt+1):

yt = c + εt

ŷt+1 = ĉ =
1
36 ∑(yt + yt−1 + · · ·+ yt−35)

where yt is the return in month t, c is the constant and ŷt+1 is the predicted return in month
t + 1.

We then subtracted the predicted return from the realized return in each month to
calculate the abnormal return (AR):

ARt+1 = yt+1 − ŷt+1.

Summing up the monthly abnormal returns is the cumulative abnormal return (CAR)
in a subsample period:

CAR =
T

∑
t=36

ARt+1.

The importance of a structural break and its impact on abnormal profits should not be
overlooked as the existence of significant abnormal returns may suggest that the market in
question is inefficient.

3.5. Other Tests

Variance ratio tests: This test, after Lo and MacKinlay (1988), has been shown to be
more powerful and reliable than the ADF tests and is robust to heteroscedasticity. It is
based on the notion that if a series follows a random walk process, then the variance of
its qth period difference should be q times the variance of its 1-period difference. If the
variance ratio test statistic is greater than 1, then the series is positively correlated. We
chose two, four, eight and 16 periods as these periods are typically chosen in the literature.
The variance ratio of the Lo and MacKinlay tests whether the variance ratio is equal to 1 for
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a particular holding period. For each country, we presented its variance ratio, its Chow and
Denning (1993) joint maximum z-statistic (since we chose more than one period) and its
associated p-values (we did not report the individual test statistics as they are qualitatively
similar). The null hypothesis of random walk is rejected if the p-value for the z-statistic
is small (i.e., less than 0.05 for a 5% significance level). We noted that for a given set of
test statistics, the random walk hypothesis is rejected if any one of the variance ratios is
considerably dissimilar to one. The results of this test are not reported to conserve space as
they are similar to those obtained using the Lo and MacKinlay tests.

BDS test (1996): This is perhaps the most popular (nonlinear) test for detecting serial
dependence in time series data, after Brock et al. (1996). A number of studies have
found evidence of the movement of asset returns. The BDS tests the null hypothesis of
independent and identically distributed (IID) process against an unknown alternative.
The test is estimated for different embedding dimensions (m) and distances (e). The null
hypothesis of randomness is rejected if the BDS statistic exceeds 2 for a 95% confidence
and 3 for a 99% confidence. For ease of interpretation, we presented results using different
dimensions (m = 2–6) and e = 0.5. The distance e was selected to make sure a certain
fraction of the total number of pairs of points in the sample lie within e of each other as this
approach is most invariant to the distribution of the series in question. Furthermore, we let
e vary from 0.50 to 2 (the higher this value, the lower the power of the test). The results
for the tests where e was higher than 0.5 are not reported as they are similar to those of
the baseline case. As a further robustness test, especially when dealing with shorter series,
we also chose the option of calculating bootstrapped p-values for the test statistic using
various repetitions to increase the accuracy of the p-values (the results are not shown as
they are qualitatively similar to those from the standard tests).

4. Empirical Results

Table 1 presents the summary statistics of the data7. As found in many prior studies,
all the return series for the USA, the UK and Japan were not normally distributed, based on
their associated Jarque–Bera statistics. We also examined the correlation matrix (results not
shown) and observed that these return series are positively (and statistically significant)
related,8 similar to those found in other developed markets in several prior studies. The
rather high kurtosis numbers suggest the higher likelihood of extreme returns in the data
for all the three countries. The skewness numbers indicate high volatility, with some
extreme gains for the USA and losses for the UK and Japan.

Table 1. Descriptive statistics.

USA UK Japan

yUS yUK yJP

Mean 0.0062 0.0070 0.0013
Median 0.0091 0.0116 0.0011

Max. 0.4222 0.1129 0.1843
Min. −0.2994 −0.1306 −0.2012

Std. dev. 0.0542 0.0405 0.0567
Skewness 0.2928 −0.4591 −0.0535
Kurtosis 12.4360 3.6832 3.8240

Jarque–Bera 4063.0700 *** 17.0834 *** 9.0045 **
p 0.0000 0.0002 0.0111

NOB 1092 313 313
Notes: This table reports the descriptive statistics of monthly returns, y, on the country price indices for the USA,
the UK and Japan. The sample period for the USA spanned from January 1926 to December 2016, while the
sample period for the UK and Japan started in December 1989 to December 2015. Notations ** and *** indicate 5%
and 1% significance levels, respectively.

Table 2 shows the results for simple unit root tests. At the 1% level of significance, the
ADF and Phillip–Perron tests unanimously rejected the random walk hypothesis. Table 3
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displays the results for the ERS tests which also rejected the null hypothesis. It is interesting
to note that the random walk hypothesis was rejected by only two of the four tests for
the USA, the UK and Japan indicated in Table 4 (Ng–Perron). Table 5 reports the Zivot–
Andrews test results. Again, the unit root or the random walk hypothesis was rejected at
the 1% significance level. These results are in line with some of the prior reviewed studies
but are in stark contrast to those obtained by Narayan and Smyth (2007), except for Japan
whose price series was found to be stationary. It is possible that their tests (LS, LP, Perron,
Zivot and Andrews) suffer from the same problems as those discussed by Narayan and
Popp (2010) and Ender and Lee (2012) which are performed in our study. While the test
found a structural break in April 2000 for the US, in March 2009 for the UK and in March
2007 for Japan, these results should be interpreted with extreme caution (Perron 1989).9

Table 2. Unit root tests: Augmented Dickey–Fuller and Phillip–Perron Tests.

USA UK Japan

ADF Test Phillips–Perron Test ADF Test Phillips–Perron Test ADF Test Phillips–Perron Test

a0 0.0046 0.0046 0.008795 * 0.008795 * −0.0077 −0.0077
(0.1585) (0.1585) (0.0585) (0.0585) (0.2334) (0.2334)

γ1 −0.9163 *** −0.9163 *** −0.9444 *** −0.9444 *** −0.9034 *** −0.9034 ***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

θ 0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000
(0.7117) (0.7117) (0.5508) (0.5508) (0.1158) (0.1158)

Adj. R2 0.4572 0.4572 0.4696 0.4696 0.4480 0.4480
NOB 1092 1092 313 313 313 313

Notes: ADF denotes the augmented Dickey–Fuller test. For details, please see Dickey and Fuller (1979) and
Phillips and Perron (1988). The model specification for the ADF and Phillips–Perron tests is: yt = a0 + γ1yt−1 +

θt + ∑
p
i=2 βiyt−i + εt, where yt is the stock index return in month t. The null hypothesis is γ1 = 1, a unit root in

the return series. p-values are in the parentheses. Notations *, ** and *** denote 10%, 5% and 1% significance
levels, respectively.

Table 3. Unit root tests: Elliott–Rothenberg–Stock test.

USA UKA Japan

Elliott–Rothenberg–Stock test statistic 0.6490 *** 0.7920 *** −15.398 ***
Test critical values: 1% level 3.9600 3.9915 −3.4712
Test critical values: 5% level 5.6200 5.6374 −2.9076

Test critical values: 10% level 6.8900 6.8770 −2.6008
NOB 1092 313 313

Notes: The equations of unit root testing by Elliott et al. (1996) are specified as follows: yt = dt + Ut,
Ut = αUt−1 + vt, where yt is the stock index return, dt is a deterministic component, vt is an unobserved stationary
error with zero mean, and its spectral density at frequency of zero is a positive value. In the GLS-detrended series,
ỹt ≡ yt − ϕ̂′Zt, ϕ̂ minimizes S(α, ϕ) =

(
yα − ϕ′Zα

)′(yα − ϕ′Zα
)
, where Zt is a set of deterministic components

and α =
(
1 + c

T
)
. The null hypothesis of a unit root is α = 1, while the alternative hypothesis is α = α. The

likelihood ratio statistic is defined as L = S(α)− S(1), where S(α) = minϕS(α, ϕ). The statistic of a feasible point
optimal test is PT = [S(α)− S(1)]/S2

AR. S2
AR is the autoregressive estimate of the spectral density at zero frequency

of vt. S2
AR = σ̂k/

(
1 − β̂(1)

)2
. In an augmented Dickey–Fuller equation, yt = dt + γ1yt−1 + ∑k

i=2 βiyt−i + εtk,
β̂(1) = ∑k

i=2 β̂i and σ̂2
k = (T − k)−1 ∑T

t=k+1 ε̂2
tk , where T is the total of time periods and k is the lag length. Notation

*** denotes a 1% significance level.
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Table 5. Single-break unit root tests: Zivot–Andrews test.

USA UK Japan

Zivot–Andrews test statistic −14.17325 *** −16.8966 *** −16.26222 ***
1% critical value −5.57 −5.34 −5.57
5% critical value −5.08 −4.93 −5.08

10% critical value −4.82 −4.58 −4.82
Breakpoint April 2000 March 2009 March 2007

NOB 1092 313 313
Notes: Zivot and Andrews (1992) modified three models developed by Perron (1989), the crash model (model A),
the changing growth model (model B) and the changes in the level and slope of the trend function (model C), to
endogenously determine a breakpoint from the data. The following are the modified models: Model A: yt = μ̂A +

θADUt
(
λ̂
)
+ β̂At + α̂A yt−1 + ∑k

j=2 ĉA
j yt−j + ε̂t, model B: yt = μ̂B + β̂Bt + γ̂BDT∗

t
(
λ̂
)
+ α̂B yt−1 + ∑k

j=2 ĉB
j yt−j + ε̂t,

model C: yt = μ̂C + θ̂C DUt
(
λ̂
)
+ β̂Ct + γ̂C DT∗

t
(
λ̂
)
+ α̂C yt−1 + ∑k

j=2 ĉC
j yt−j + ε̂t, where yt in our setting is the

stock index return in month t, λ = TB/T, TB is the breakpoint, T is the total of time periods, DUt(λ) = 1 if t > Tλ
and zero otherwise and DT∗

t (λ) = t − Tλ if t > Tλ and zero otherwise. Notation ∧ is the estimated value of
the break function. The null hypothesis of a unit root is α = 1. The test statistic is tα̂i (λ), and i = A, B, C. λ

was chosen to minimize the one-sided t-statistic for testing the unit root (i.e., αi = 1). Notation *** denotes a 1%
significance level.

Table 6 presents the results of the LP multiple-break unit tests with two lags and two
breaks as typically suggested in the econometric literature. First, the null hypothesis of
a unit root (with two or more breaks) was rejected by both tests at the 1% significance
level for the USA, the UK and Japan.10 Table 9 reports the findings for Narayan and Popp.
Again, the unit root or the random walk hypothesis was rejected at the 1% significance
level. The test also found two breaks. Similarly, the LS test rejected the random walk
hypothesis, as shown in Tables 7 and 8. It is interesting to note that LS only found one break
for the US and two breaks for the UK and Japan and that the break dates in LS and LP are
quite different—a well-documented phenomenon in the literature. The NP test (Table 9)
appears to do a better job in capturing breaks in all the three series which occurred around
the financial crisis starting in 2007. The NP results also unambiguously rejected the null
hypothesis, based on model 1 (break in the level, not reported) and model 2 allowing for
breaks in both the level and the trend (shown in the table). These break dates found in
the LP and NP tests were later used in the final part of our paper to study the associated
abnormal returns in these countries. Finally, the findings for EL presented in Table 10 are
similar to those of LP, LS and NP. Note that EL, while allowing for an unknown number
of breaks, does not report the number of breaks. The optimal lags chosen to minimize the
residual sum of squares were six, seven and two for the US, the UK and Japan, respectively.
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Table 6. Multiple-break unit root tests: Lumsdaine–Papell test.

USA UK Japan

μ 0.0037 0.0161 −0.0204
(0.7498) (2.4993) (−1.9811)

β 0.0000 −0.0001 0.0003
(0.6149) (−1.8426) (2.2255)

θ −0.0108 0.0395 −0.0505
(−1.4678) (3.4249) (−2.992)

γ 0.0000 −0.0007 0.0006
(1.4546) (−3.0054) (1.7457)

ω −0.025 0.0499 −0.0508
(−2.6197) (3.8389) (−3.0221)

ψ 0.0000 0.0005 −0.0006
(0.5755) (1.7308) (−1.7839)

α −1.0284 *** −1.0022 *** −0.9501 ***
(−14.094) (17.655) (−16.6473)

NOB 1092 313 313
Number of breaks 2 2 2

First break March 1968 March 2003 February 2000
Second break April 2000 February 2009 January 2006

Notes: The model specification for the Lumsdaine and Papell (1997) test is as follows: yt = μ + βt + θDU1t +

γDT1t + ωDU2t + ψDT2t + αyt−1 + ∑k
i=2 cyt−i + εt, where yt in our setting is the stock index return in month

t, DU1t (DU2t) is an indicator dummy for a mean shift at TB1 (TB2), the time breakpoint, and DT1 (DT2) is
the corresponding trend shift variable. The null hypothesis is α = 1, a unit root in the return series. Given

that δ1 = TB1/T and δ2 = TB2/T, the test statistic is defined as t̂(δ1, δ2) =⇒
∫ 1

0 w∗(s)dw(s)/
[∫ 1

0 w∗(s)2ds
]( 1

2 ) ,

where w(s) is a Wiener process. T-statistics are in brackets. Notation *** denotes a 1% significance level.

Table 7. Multiple-break unit root tests: Lee and Strazicich test: the crash model.

USA UK Japan

μ −0.0120 *** 0.0010 0.0023
(−6.1079) (0.4163) (0.7139)

δDU1 −0.0445 0.0655 0.1313
(−0.8311) (1.5284) (2.2769)

δDU2 0.0630 0.0629
(1.4687) (1.1020)

φ −0.9113 *** −0.5163 *** −0.7294 ***
(−10.9841) (−5.9937) (−8.4737)

Minimum test stat. (tau) −10.9841 −5.9937 −8.4737
Test critical values: 1% level −3.7980 −4.2264 −4.2264
Test critical values: 5% level −3.2300 −3.6356 −3.6356

Test critical values: 10% level −2.9250 −3.2995 −3.2995
Breakpoint June 1981 September 2003 March 1993

February 2010 April 2003
NOB 1092 313 313

Notes: The specification for the crash model in the Lee and Strazicich (2003) test is as follows: yt = δ′Zt + φS̃t−1 +

μt, S̃t = yt − ψ̃x − Zt δ̃, ψ̃x = y1 − Zt δ̃, where Zt is a set of exogenous variables, Z′
t = [1, t, DU1t, DU2t] and δ′ is a

set of coefficients [δ1,δ1,δDU1, δDU2]. The null hypothesis is φ = 1, a unit root in the return series. T-statistics are in
brackets. Notation *** denotes a 1% significance level.
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Table 8. Multiple-break unit root tests: Lee and Strazicich test: the break model.

USA UK Japan

μ −0.0161 *** −0.0508 *** −0.0339 ***
(−7.0990) (−11.2039) (−6.5624)

δDU1 −0.0192 −0.2457 *** 0.0995
(−0.3569) (−5.9904) (1.7233)

δDU2 −0.0983 −0.1006
(−2.5119) (−1.7423)

δDT1 0.0124 0.1138 −0.0481 *
(2.4237) (8.4136) (−4.8467)

δDT2 −0.0273 0.0965
(−2.2535) (7.0711)

φ −0.9139 *** −1.0956 *** −0.8416 ***
(−10.9961) (−13.7221) (−11.0827)

Minimum test stat. (tau) −10.9961 −13.7221 −11.0827
Test critical values: 1% level −4.4612 −5.6458 −5.5177
Test critical values: 5% level −3.9240 −4.9246 −5.0260

Test critical values: 10% level −3.6492 −4.6474 −4.7586
Breakpoint November 2005 August 2008 November 2005

September 2009 March 2010
NOB 1092 313 313

Notes: The specification for the break model in the Lee and Strazicich test is as follows: yt = δ′Zt + φS̃t−1 + μt,
S̃t = yt − ψ̃x − Zt δ̃, ψ̃x = y1 − Zt δ̃, where Zt is a set of exogenous variables, Z′

t = [1, t, DU1t, DU2t, DT1t, DT2t]
and δ′ is a set of coefficients [δ1, δ1, δDU1, δDU2, δDT1, δDT2]. The null hypothesis is φ = 1, a unit root in the return
series. T-statistics are in brackets. Notations *** and * denote 1% and 10% significance levels.

Table 9. Multiple-break unit root tests: Narayan and Popp test.

USA UK Japan

Narayan and Popp test statistic 12.666 *** 17.534 *** 16.397 ***
1% critical value 5.287 5.318 5.318
5% critical value 4.692 4.741 4.741

10% critical value 4.396 4.430 4.430
Breakpoint July 2007 June 2008 August 2008

January 2009 September 2008 April 2009
NOB 1092 313 313

Notes: This table reports the test statistic of the model with a break and a trend in the paper by Narayan and
Popp (2010). The null hypothesis is a unit root in the return series. The test is based on the following process:
yt = dt + Ut, Ut = tt−1 + εt, εt = ψ∗(L)εt = A∗(L)B(L)−1et, where yt is the return series with a deterministic
component dt and a schochastic component Ut, et is iid

(
0, σ2) with A∗(L) and B(L) being polynomial lags of

order p and q lying outside the unit circle. Model 1 in the paper by Narayan and Popp (2010) allows for two
breaks in the level. Model 2 (shown) allows for two breaks in the level and the trend. Notation *** denotes a 1%
significance level.
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Table 10. Multiple-break unit root tests: Ender and Lee test.

USA UK Japan

Ender and Lee test statistic 10.299 *** 4.175 ** 8.144 ***
1% critical value 4.560 4.610 3.730
5% critical value 4.030 4.070 3.120

10% critical value 3.770 3.790 2.830
Chosen lag 6 7 2
Frequency 1 1 5

NOB 1092 313 313
Notes: Ender and Lee test (2012) is a modification of the DF test in which d(t) or the time-dependent deterministic
term is added to the test regression: Y(t) = d(t) + αYt−1 + et and et is iid

(
0, σ2), where Y is the stock re-

turn. The unit root null hypothesis of α = 1 is tested by approximating d(t) with the following Fourier function :
d(t) = φ0 + φsin · sin(2πkt/T) + φcos · cos(2πkt/T) + εt, where εt = αet−1 + ut, k is the single frequency compo-
nent and measures the amplitude and displacement of the sinusoidal component of d(t), t = 1, 2, . . . , T. The
above equation is estimated for all integer values of k which lie between the interval [1, 5] and selecting the
estimation which produces the lowest residual sum of squares. Notations *** and ** denote 1% and 5% significance
levels, respectively.

The results from the normalized integrated spectrum tests are shown in Figure 1
(USA), Figure 2 (UK) and Figure 3 (Japan). The null of stationarity was rejected at the
5% significance level in all the three return series as the statistics fell within the two
bands. Fisher’s G-tests and periodograms for each country, not shown to save space, are
qualitatively similar.

Figure 1. Spectral tests: Normalized integrated spectrum for the USA. Note: This test evaluates the
null hypothesis that the data are stationary (white noise). It is based on the normalized integrated

spectrum with the following statistic: Up = ∑
p
k=1 I

∑n/2
k=1 I

(wq)
(wq)

, where I (ω(i)) is the ith maximum. The test

statistic (vertical axis) is plotted against its frequency (horizontal axis). If the deviations of the statistic
from the p/(n/2) line do not exceed ±a

√
2/n, the null will not be rejected, where a is set equal to

1.36 for 95% confidence.
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Figure 2. Spectral tests: Normalized integrated spectrum for the UK. Note: This test evaluates the
null hypothesis that the data are stationary (white noise). It is based on the normalized integrated

spectrum with the following statistic: Up = ∑
p
k=1 I

∑n/2
k=1 I

(wq)
(wq)

, where I (ω(i)) is the ith maximum. The test

statistic (vertical axis) is plotted against its frequency (horizontal axis). If the deviations of the statistic
from the p/(n/2) line do not exceed ±a

√
2/n, the null will not be rejected, where a is set equal to

1.36 for 95% confidence.

Figure 3. Spectral tests: Normalized integrated spectrum for Japan. Note: This test evaluates the
null hypothesis that the data are stationary (white noise). It is based on the normalized integrated

spectrum with the following statistic: Up = ∑
p
k=1 I

∑n/2
k=1 I

(wq)
(wq)

, where I (ω(i)) is the ith maximum. The test

statistic (vertical axis) is plotted against its frequency (horizontal axis). If the deviations of the statistic
from the p/(n/2) line do not exceed ±a

√
2/n, the null will not be rejected, where a is set equal to

1.36 for 95% confidence.

Table 11 reports the mean abnormal returns and the cumulative abnormal returns
for the USA, the UK and Japan. To conserve space, we presented these statistics for a
sample period with two structural breaks identified by the Lumsdaine–Papell test and
the Narayan and Popp test. The two structural breaks identified using the Narayan
and Popp test coincide with the recent global financial crisis period. Table 11a,b show
that the mean abnormal return in most of subsample periods for the USA, the UK and
Japan is close to zero. However, significant cumulative abnormal returns are found for
the USA, the UK and Japan, lending support for market inefficiency. Interestingly, the
cumulative abnormal returns were all positive (negative) for Japan (UK) in these subsample
periods. The cumulative abnormal returns in the subsample periods ranged from 14.64% to
81.02% for Japan, whereas they were between −4.05 and −64.51% for the UK. The positive
(negative) cumulative abnormal returns for Japan indicated that the stock market in Japan
(UK) consistently outperformed (underperformed) the random walk model.
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Table 11. Abnormal and cumulative abnormal returns for the USA, the UK and Japan. (a) Sample
period split by breakpoints identified by the Lumsdaine–Papell test. (b) Sample period split by
breakpoints identified using the Narayan and Popp test.

(a)

USA
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Jan. 1926–Feb 1968 Mar. 1968 Apr. 1968–Mar. 2000 Apr. 2000 May 2000–Dec. 2016

Mean Ab. Ret −0.0010 0.0007 0.0018
(0.0671) (0.0447) (0.0405)

Cum. Ab. Ret −0.4511 0.2281 0.2924
NOB 470 348 164

UK
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Feb. 2003 Mar. 2003 Apr. 2003–Jan. 2009 Feb. 2009 Mar. 2009–Dec. 2015

Mean Ab. Ret −0.0042 −0.0190 −0.0029
(0.0393) (0.0441) (0.0313)

Cum. Ab. Ret −0.5166 −0.6451 −0.1334
NOB 123 34 46

Japan
Subsample period 1 First breakpoint subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Jan. 2000 Feb. 2000 Mar. 2000–Dec. 2005 Jan. 2006 Feb. 2006–Dec. 2015

Mean Ab. Ret 0.0077 0.0238 0.0093
(0.0572) (0.0407) (0.0508)

Cum. Ab. Ret 0.6635 0.8102 0.7698
NOB 86 34 83

(b)

US
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Jan. 1926–Jun. 2007 Jul. 2007 Aug. 2007–Dec. 2008 Jan. 2009 Feb. 2009–Dec. 2016

Mean Ab. Ret −0.0003 N/A −0.0014
(0.0567) N/A (0.0304)

Cum. Ab. Ret −0.2935 N/A −0.0800
NOB 942 N/A 59

UK
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–May 2008 June. 2008 Jul. 2008–Aug. 2008 Sep. 2008 Oct. 2008–Dec. 2015

Mean Ab. Ret −0.0008 N/A −0.0008
(0.0368) N/A (0.0321)

Cum. Ab. Ret −0.1555 N/A −0.040538
NOB 186 N/A 51

Japan
Subsample period 1 First breakpoint Subsample period 2 Second breakpoint Subsample period 3

Dec. 1989–Jul. 2008 Aug. 2008 Sep. 2008–Mar. 2009 Apr. 2009 May 2009–Dec. 2015

Mean Ab. Ret 0.0008 N/A 0.0051
(0.0525) N/A (0.0513)

Cum. Ab. Ret 0.146402 N/A 0.2248
NOB 188 N/A 44

Notes: A rolling 36-month estimation period was used to compute the 1-month-ahead predicted return from
the random walk model. Each month, the predicted return is subtracted from the realized return to obtain an
abnormal return. The cumulative abnormal return is the sum of abnormal returns in a subsample period. The
following are the specifications of the random walk model, predicted return (ŷ), abnormal return (AR) and
cumulative abnormal return (CAR): yt = c + εt, ŷt+1 = ĉ = 1

36 ∑ (yt + yt−1 + · · ·+ yt−35), ARt+1 = yt+1 − ŷt+1,
CAR = ∑T

t=36 ARt+1. If a subsample period is shorter than 36 months, predicted return, abnormal return and
cumulative abnormal return are not computed. The standard deviation of abnormal returns is in parentheses.
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Table 11a also shows that the cumulative abnormal return for the USA was −45.11%,
22.81%, and 29.24% in the periods between January 1926 and February 1968, April 1968 and
March 2000, May 2000 and December 2016, respectively. In Table 11b, we find cumulative
abnormal returns of −29.35% and −8% for the USA during the periods of January 1926 to
June 2007 and February 2009 to December 2016, respectively. The presence of significant
cumulative abnormal returns again suggests that the US stock market is not efficient.
Overall, our empirical evidence implies that abnormal profits can be exploited if structural
breaks are correctly identified and appropriate trading strategies are implemented. The
importance of a structural break and its impact on abnormal profits cannot be overlooked.

It is important to note that the structural breaks found correspond to major historical
economic events. For example, 1968 is the year of economic crisis in the USA (Collins 1996):
the Bretton Woods Agreement caused the balance of payments deficit in the USA. In March
1968, foreign investors started selling US dollars to buy gold, which led to the crack of
the Bretton Woods Agreement. In April 2000, the NASDAQ Composite Index plummeted
10% (Johansen and Sornette 2020). When the UK joined the Iraq War in March 2003, the
FTSE 100 Index hit bottom at 3272. In January 2009, the UK entered the recession, and
the unemployment rate rose in February 2009. For Japan, the recession of the Japanese
economy started in the 1990s and continued to 2002. The Nikkei 225 Index rose above
20,000 yen in March 2000 because of the dot.com spillover effect from the USA. In the same
month, news that Japan had entered a recession led to a global selloff which adversely
affected technology stocks. In January 2006, Japan continued its expansion which started
in 2002.

5. Discussion

The overall findings of mean reversions in our study may suggest that stock index
prices behave in an ergodic manner. Horst and Wenzelburger (2008) showed in a theoretical
model that financial market dynamics is ergodic if the interaction between households
is sufficiently weak. In this case, market shares settle down to a unique equilibrium.
However, when ergodicity no longer holds (if the interactive complementarities in the
financial market are “too powerful”), “history matters” and the long-run market shares of
competing financial mediators are path-dependent.

Our results also lend support to the existence of “market anomalies” or “behavioral
finance” as discussed in earlier sections of the paper. Even in an imperfectly efficient market,
Grossman and Stiglitz (1980) showed that there still exist opportunities for abnormal
investment returns due to superior information gathering by some analysts. Lo and
MacKinlay (1988) demonstrated that the serial correlation of share prices is significantly
significant. Therefore, there is a possibility of short-term returns on share prices when
investors realize that share prices move consequently in the same direction. Studying the
American market with high-frequency data for the S&P 500 index, Peters (1994) found
a persistent time series with strong autocorrelation. Findings from other recent studies,
discussed in the literature review, are also consistent with our present results.

What may be the reasons for the mixed empirical evidence for the efficient market
hypothesis?11

We do not have a solid answer but believe that the conflicting findings may be a result
of discrepancies in the datasets used in prior studies. From our prior experience, estimation
results using data from the same stock indices obtained from different databases can
sometimes be quite dissimilar, perhaps due to various methodologies used in constructing
the data series. Econometric methods employed in a given study can also play a role.
Bhargava (2014) demonstrated that certain approaches in testing for random walk (such as
those by Lo and Andrew’s variance ratio and related tests) can lead to erroneous results. Our
study, we believe, mitigated some of these shortcomings by employing a comprehensive
battery of highly regarded tests on an authoritative database. It is surprising that this was
the first time, to our knowledge, data from the WRDS stock price indices were used to
examine this issue.
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6. Concluding Remarks

The main rationale for our research was that previous studies had found mixed results
with regard to the efficient market hypothesis. We set out to explore this topic for the USA,
the UK and Japan with a recent dataset and improved statistical methods. We contributed
to the existing literature by employing a comprehensive battery of tests including several
high-power multiple-break unit root and novel spectral tests. We further computed the
abnormal returns using the break dates captured in the models. We then linked those
abnormal profits to their associated economic events. We found that stock market indices
in the USA, the UK and Japan are generally not efficient. While our results are in line
with a number of recent studies, they do not support the findings of several earlier studies
reviewed in the paper. Therefore, definitive empirical evidence for mean reversions in
highly developed markets remains elusive. It will be interesting to extend the present study
to include market indices in other advanced countries in future studies. Finally, based on
the findings in this study, it may be concluded that investors could possibly be able to earn
arbitrage profits due to market inefficiency even in highly developed stock markets.
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Notes

1 These tests allow for more than one structural break in the data and, if not accounted for, can lead to misleading results
(Lumsdaine and Papell 1997; Lee and Strazicich 2003; Narayan and Popp 2010; Ender and Lee 2012).

2 We strongly suggest the readers refer to the original papers for detailed derivations of the models and test statistics. Due to space
limitations and the large number of tests examined in this study, it is not practical to discuss each of them in detail.

3 There is another model based on the ergodic theorem stating that past and present probability distributions define the probability
distribution, which will help forecast future market prices. The ergodic principle posits that the future is predetermined by the
existing variables such as market fundamentals. Therefore, it is possible to forecast the future by analyzing the present and past
data. If the system is nonergodic, on the other hand, the probability distributions of past and present do not provide a statistically
reliable estimate for the probability of future events. A reviewer commented that stock prices appear to be random, yet they are
“chaotic” in reality. This presents a challenge for the random walk model. Klinkova and Grabinski (2017) and Grabinski and
Klinkova (2019) showed that using arithmetic means in chaotically varying quantities does not always yield results to random
variations and that the “ultimate” financial model is not possible. Furthermore, ergodicity can be assumed in random variations
but, generally, not in chaotic ones.

4 We selected high-impact and widely cited tests (most of which were originally published in elite journals in the fields of
econometrics, statistics, finance and economics) to be used in our study to avoid the “kitchen-sink” approach.

5 To conserve space, we reported the results for two lags since the results were essentially the same for any of these methods.
6 Please refer to Wei (2018) and Ronderos (2014) for detailed discussions of the tests in this section.
7 To conserve space, we did not report the results from all the tests conducted in this study discussed in the Data and Methodologies

section, especially when the vast majority of the findings were similar. Rather, we focused on the more interesting and important
test results. In addition to the reported tests, we completed a variety of older random walk tests such as the Brock et al. (1996),
various versions of variance ratio, runs and autocorrelation tests as in several of the reviewed articles and found the results were
essentially unchanged (and did not report them in the Results section). The complete results are available from the authors
upon request.
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8 The correlation coefficients between the WRDS indices and those of Compustat are between 0.95 and 0.98 for the countries in
our sample.

9 An anonymous reviewer noted that one typically wants to show that the measured results are stronger with a statistical
significance when there is a null hypothesis or placebo. In many cases, the null hypothesis is also a result of observation. As such,
it has a distribution. Including both distributions, consequently, changes the way one proves statistical significance. In a recent
study, Tormählen et al. (2021) showed that in order to obtain identical significance, it may be necessary to perform twice as many
experiments than in a setting where the placebo distribution is ignored. They also showed that statistical significance may be
inaccurate due to “misuse” of the central limit theorem.

10 The specification with three and more structural breaks was tested. However, our statistical software only found two breaks.
Furthermore, the results remained similar regardless of the number of lags employed.

11 We thank an anonymous referee for his/her many stimulating questions, including this one.
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Abstract: This paper investigates the performance and characteristics of survivor stocks in the S&P
500 index. Using both in-sample and out-of-sample comparisons, survivor stocks outperformed this
market index by a considerable margin. Relative to other S&P 500 index companies, survivor stocks
tend to be small-value stocks that exhibit high profitability and invest conservatively. Surprisingly,
survivor stocks tend to be loser stocks with negative exposure to the momentum factor. Further
analyses show that the volatility of the survivor stocks portfolio is less exposed to tail risks and
responds less to shocks in the innovation process.
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1. Introduction

The purpose of this paper is to investigate the performance of long-run survivor stocks
in the S&P 500 index and their characteristics. We make use of Standard & Poor’s 2 March
2007 announcement and use the CRSP database to retrieve data for all survivor firms
that exist until December 2019 but may have dropped out of the S&P 500 index in the ex
post 2 March 2007 announcement period. We refer to this stock portfolio as all survivors.
The statistical properties of this survivor portfolio are compared to the S&P 500 index.
Additionally, we examine the survivor portfolios’ outperformance relative to the index
in general as well as risk-adjusted performance. Treating the ex ante March 2007 period
as in sample and the ex post March 2007 period as out of sample, we further investigate
whether a structural change occurred in the performance of survivor stocks in the ex post
announcement period. In addition, we replicate our analysis using publicly available data
retrieved from Yahoo. Lastly, in an effort to gain a deeper understanding of the performance
of our survivor stocks portfolio, we explore the dynamics of factor exposures across time.

Our paper contributes to the academic literature in a number of ways. The S&P
500 index is widely considered to be an important gauge of the U.S. equity market and is
prominently quoted in stock markets around the world (Gnabo et al. 2014). Being elected to
join the constituent companies in the S&P 500 index is quite a feat: while there are more than
4000 listed companies in the U.S. stock market1, only approximately 10% of these companies
achieve membership in the S&P 500 stock index. Moreover, a company must pass the
following battery of criteria to be selected by the Index Committee:2 (1) primarily U.S. based,
(2) market capitalization exceeding $8.2 billion, (3) highly liquid shares3, (4) public trading
of 50% or more of its outstanding shares, (5), positive earnings in the most recent quarter,
and (6) a positive sum for the previous four quarters’ earnings. Only very successful
companies can fulfill these strict requirements. According to Chen and Lin (2018), member
companies benefit from reductions in financial constraints, and a lower cost of equity,
among other advantages.4 Unfortunately, over time, most companies eventually do not
pass these criteria and are dropped from the index. Particularly relevant to the present
study, on 2 March 2007, Standard & Poor published the list of companies that have been
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in the S&P 500 index since March 1957. Remarkably, only 17% of the original constituent
companies survived over 50 years. These long-run survivors represent less than 2% of
all listed stocks in the U.S. To our knowledge, no previous study investigates both the
performance and characteristics of these exceptionally successful companies.

Long-run survivors in this well-known market index are exceptional in terms of
fulfilling strict criteria for membership. Survivor companies remained profitable despite
many economic shocks that periodically occurred over time. The closest published study to
the present work is Siegel and Schwartz (2006), who investigated the long-term returns of
the original S&P 500 constituent companies from March 1957 to December 2003. The authors
found that the buy-and-hold returns of the original 500 companies outperformed the returns
on the continually updated S&P 500 index used by investment professionals. Their study
contradicted earlier research by McKinsey & Company’s Foster and Kaplan (2001), who
documented that new companies added to the S&P 500 index generated higher returns than
the original companies. In their study, the performance of three portfolios was examined:
(1) a survivor portfolio of 125 original companies that remained intact (except possibly for
a name change) from 1957 to 2003, (2) a portfolio of direct descendants consisting of the
shares of companies in the survivors portfolio plus the shares issued by companies that
acquired an original S&P 500 company, and (3) a portfolio of total descendants including
all companies in the direct descendants portfolio and all the spin-offs and other stocks
distributed by the companies in the portfolio of direct descendants. Their results indicated
that differences in average returns between these portfolios were negligible.5 Our approach
to identifying survivor stocks differs from theirs by using those companies announced as
survivor companies by Standard & Poor on 2 March 2007. Additionally, we expand their
sample period beyond 2003 to encompass the 2008–2010 global financial crisis. In doing so,
as proposed in Harvey et al. (2016), our analyses take into account multiple testing hurdles.

Numerous studies have investigated companies in the S&P 500 index. Chan et al.
(2013) explored the long-term effects of S&P 500 index additions and deletions on sample
stocks from 1962 to 2003. The authors documented significant long-term price increases
for both categories of stocks, with deleted stocks outperforming added stocks. As already
noted, they found that firms added to the S&P 500 index gain a competitive edge in
terms of reductions in financial constraints and the cost of equity. Platikanova (2016)
examined revisions in cash holdings and the market valuation of investment opportunities
of 475 firms added to the S&P 500 in the 1980–2010 period. They found a larger decrease in
cash for index inclusions in sectors with high financial dependence. Shankar and Miller
(2006) investigated market reactions to S&P 600 index inclusions and deletions. They
observed significant announcement effects in terms of price increases, trading volume,
and institutional ownership. Afego (2017) provided an excellent literature survey on the
effects of changes in stock index composition. He argued that the vast majority of studies
in this research area focused on price and volume effects for S&P 500 index firms due to
the enormous value of investment assets directly benchmarked to the index. The survey
revealed that S&P 500 stocks face significant short-term price pressures due to exceptionally
high trading volumes by tracker funds with an estimated $2.2 trillion in directly-linked
funds. Finally, Chen and Lin (2018) documented that companies in the S&P 500 index
gain a competitive advantage over non-S&P 500 industry competitors in terms of positive
stock valuation effects at the expense of competitors. Index inclusion is associated with
both a decrease in the cost of equity and an increase in capital investment for newly added
firms. Our study contributes to this literature by focusing on what we can learn from those
companies that survived in the S&P 500 over a long period of time.

Interestingly, we find that the risk-adjusted average excess return of our portfolio
of survivor stocks is 5.16% per annum after controlling for the excess returns of the S&P
500 index. This finding supports Siegel and Schwartz (2006), who documented that the
original S&P 500 constituent stocks outperformed the index. Our findings indicate that this
outperformance is even more pronounced after controlling for market risk. Relative to the
S&P 500 index, we find that survivors tend to be on average small-value stocks that exhibit

60



JRFM 2022, 15, 95

high profitability and conservative capital investment. Moreover, survivor stocks’ returns
are negatively correlated with momentum returns, which suggests that their returns more
closely mimic losers rather than winners in momentum portfolios. During the financial
crisis of 2008 and 2009, survivor stocks earned higher profits, invested more aggressively
in capital, and decreased in size over time relative to the S&P 500 index. Additionally, the
value characteristic of survivor stocks appears to be sample specific to the post-financial
crisis period. We infer that survivor companies were better able to withstand the stresses of
economic downturns than other S&P 500 index firms.

Using Standard & Poor’s announcement on March 2007 as a structural break, we fur-
ther explore whether survivor companies thereafter experienced a decrease in performance
as measured by their average excess returns until December 2019. Since the evidence does
not support this pattern, our results again support Siegel and Schwartz (2006). We further
investigate the volatility process of the survivor stock portfolio as opposed to the S&P
500 index. We find that the volatility of the survivor stocks portfolio responds less to shocks
in the return-generating innovation process than the index. This finding is surprising given
the small fraction of survivor stocks in the index. Moreover, we find that the portfolio
of survivor stocks is less exposed to fat tails than the index, such that investors are less
exposed to extreme events. Finally, replicating the analyses using publicly available data
for survivors on Yahoo Finance, our results using CRSP data to construct the survivors
portfolio are corroborated. Based on the empirical evidence, we conclude that survivor
stocks are different from other stocks in the S&P 500 index with remarkable resilience to
withstand economic downturns and coincident stock market collapses.

The next section describes the data. Section 3 discusses our methodological approach.
Section 4 provides the empirical results. The last section concludes.

2. Data

On 2 March 2007, Standard & Poor, the world’s leading index provider, released the
list of survivor companies in the S&P 500 index from March 1957 to March 2007. The list is
publicly available on the internet.6 Interestingly, only 86 original constitute firms of this
well-known market index survived over the past 50 years, which corresponds to 17.20%
of the 500 original constitute firms.7 We begin our data collection as follows: (i) use the
survivor list of company names; (ii) search the corresponding stock ticker; and (iii) employ
the CRSP database to match the stock ticker with corresponding stock returns.8 For these
86 survivor companies, we identified available data associated with 92 stocks. Table A1 in
the Appendix A lists the firm names. The number of stocks over time is plotted in Figure 1.
Using survivor stocks, we compute an equal-weighted average portfolio denoted as the all
survivors portfolio (RETALL

SURVIVOR).9

This figure illustrates the number of available survivor stock observations over time
using the CRSP database. Additionally, we retrieve monthly data for the Fama and French
(2018) risk factors (viz., six-factor model) and Treasury bill rate from Kenneth French’s
website. Since data for the profitability factor (RMW) and investment factor (CMA) are not
available before July 1963, we download data series for the size (SMB) and value (HML)
factors as well as RMW and CMA factors from July 1963 to November 2019. Table 1 provides
descriptive statistics for portfolios RETALL

SURVIVOR, SMB, HML, RMW, CMA, and the S&P
500 index. As shown there, the average gross return of RETALL

SURVIVOR is 40 basis points
per month higher than the average gross return of the S&P 500 index. The survivor stock
portfolio exhibits a monthly standard deviation of returns equal to 3.94%, which is slightly
lower that of the S&P 500 index at 4.27%. Relevant to these comparisons, it is important
to bear in mind that the number of stocks in RETALL

SURVIVOR (viz., 67) is considerably lower
than the S&P 500 index.
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Figure 1. Evolution of survivor stocks in the sample period.

Table 1. Descriptive portfolio statistics.

RETALL
SURVIVOR S&P 500 SMB HML RMW CMA UMD

Mean 1.05 0.65 0.21 0.26 0.26 0.26 0.66
Median 1.28 0.91 0.09 0.25 0.22 0.11 0.71

Maximum 15.25 16.30 18.05 12.60 13.38 9.56 18.36
Minimum −18.67 −21.76 −14.86 −14.11 −18.48 −6.86 −34.39
Std. dev. 3.94 4.27 3.02 2.87 2.17 1.99 4.19
Skewness −0.36 −0.44 0.33 0.01 −0.33 0.32 −1.28
Kurtosis 5.22 4.87 6.02 5.39 15.38 4.61 13.19

This table reports the descriptive statistics of the survivor stocks portfolio, the S&P
500 index, and the Fama and French (2018) risk factors. The sample period is from July
1963 to December 2019. The figures are given in terms of percentages.

3. Statistical Analysis

3.1. Risk Adjustments and Survivor Stock Portfolio Characteristics

Here, we investigate the outperformance of the all survivors portfolio relative to the
S&P 500 index. For this purpose, we regress RETALL,excess

SURVIVOR,t on the excess returns of the
S&P 500 index denoted RETexcess

S&P500,t as follows:

RETALL,excess
SURVIVOR,t = α + β·RETexcess

S&P500,t + ut. (1)

Table 2 reports the regression estimates, which confirm that survivor stocks outper-
formed the S&P 500 index by a large margin. RETALL,excess

SURVIVOR,t generated an average return
of 5.16% per annum in excess of RETexcess

S&P500,t, with a t-statistic equal to 7.11 that is significant

at any level.10 The loading on RETexcess
S&P500,t is slightly less than unity, such that on average

survivor stocks do not exhibit higher betas than the S&P 500 index.
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Table 2. Regression estimates for all survivors using different asset pricing models.

Alpha S&P 500 SMB HML RMW CMA UMD R2

0.43 ***
(7.11)

0.86 ***
(60.11) 0.84

0.32 ***
(5.97)

0.89 ***
(68.02)

0.08 ***
(4.63)

0.26 ***
(13.39) 0.88

0.21 ***
(4.10)

0.92 ***
(72.51)

0.15 ***
(8.39)

0.16 ***
(6.61)

0.26 ***
(10.41)

0.20 ***
(5.36) 0.90

0.26 ***
(5.16)

0.91 ***
(72.56)

0.15 ***
(8.75)

0.13 ***
(5.09)

0.27 ***
(11.31)

0.22 ***
(6.14)

−0.07 ***
(−6.11) 0.90

*** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t on the excess

returns of the S&P 500 index as well and different asset pricing models. Ordinary t-statistics
are reported in parentheses. The figures are given in terms of percentages. The sample
period is from July 1963 to December 2019.

Can the outperformance of the survivor stocks be explained by exposures to the
Fama and French (1993, 2015, 2018) risk factors? To address this question, we regress
RETALL,excess

SURVIVOR,t successively on the Fama and French (1993, 2015, 2018) three-, five-, and
six-factor models defined, respectively, as follows:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + ut, (2)

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt . . . + β4·RMWt + β5·RMWt + ut (3)

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt . . . + β4·RMWt + β5·CMAt + β6·UMDt + ut. (4)

The estimated regression results for these models are reported in rows two to four
in Table 2. Several findings are worth noting. First, regardless of the asset pricing model,
survivor stocks outperform the S&P 500 index. The economic magnitude of risk-adjusted re-
turns, as measured by the regression intercepts, varies from 21 to 32 basis points per month
with t-statistics between 4.10 and 5.97, indicating significance at any level. Predictably,
the variation in the excess returns of the S&P 500 index explains 84% of the variation in
the excess returns of the survivor stock portfolio. Controlling for various risk factors only
marginally increases the R-squared value. Second, the positive loading on the size factor
implies that the survivor stocks tend to be smaller stocks. However, this finding needs to be
interpreted relative to the S&P 500 index; that is, survivor stocks are relatively smaller than
the average index stock. Third, statistically significant exposures with respect to the value,
profitability, and investment factors imply that survivor stocks tend to be value stocks that
are profitable and invest conservatively. Fourth, and last, an unexpected finding is that the
statistically significant loading on the momentum factor is negative in sign. Consequently,
survivor stocks tend to have returns more correlated on average with loser than winner
stocks. In view of the previously discussed S&P 500 index listing requirements, this finding
is surprising.

To further investigate survivor stocks’ characteristics relative to S&P 500 index compa-
nies, we employ a simultaneous equation model wherein RETALL,excess

SURVIVOR,t and RETexcess
S&P500,t

are modeled in the following system of equations:

RETALL,excess
SURVIVOR,t = α1 + β1,1·RETexcess

CRSP,t + β1,2·SMBt + β1,3·HMLt . . .+β1,4·RMWt + β1,5·CMAt + β1,6·UMDt + u1,t (5)

RETexcess
S&P500,t = α2 + β2,1·RETexcess

CRSP,t + β2,2·SMBt + β2,3·HMLt . . .+β2,4·RMWt + β2,5·CMAt + β2,6·UMDt + u2,t. (6)

Due to the high contemporaneous correlation between RETALL,excess
SURVIVOR,t and RETexcess

S&P500,t,
we use seemingly unrelated regression (SUR) to estimate system (5) and (6). If a set of
equations has contemporaneous cross-equation error correlation (i.e., the error terms in
the regression equations are correlated), SUR addresses this issue by using a two-step
estimation procedure that explicitly models the cross-equation error correlation. Since the
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correlation between RETALL,excess
SURVIVOR,t and RETexcess

S&P500,t is manifested in COV(u1,t, u2,t) �= 0,
SUR appears to be an adequate econometric model. In the previous analysis, we examined
the average characteristics of survivor stocks relative to the underlying S&P 500 index.
Using these equations, we conduct similar analyses but employ an overall market index
proxied by the excess returns of the value-weighted CRSP index. The latter index is typically
used in tests of the Fama and French (1993, 2015, 2018) asset pricing models.

The results are reported in Table 3. First, while the t-statistic associated with α̂1
is statistically not different from zero, the t-statistic corresponding to α̂2 is significantly
negative at any statistical level. Hence, this evidence suggests that the outperformance of
survivor stocks is driven by the underperformance of the S&P 500 index relative to the
more general CRSP index. Second, the point estimator β̂2,2 = 0.16 with a corresponding
t-statistic of −30.46 confirms that stocks in the S&P 500 index tend to be large relative to
those in the CRSP index. Since the t-statistic of β̂1,2 corresponding to −0.00 suggests that
survivor stocks are not small stocks relative to the CRSP index, our evidence can only
be interpreted to mean that survivor stocks are smaller relative to the average stock in
the S&P 500. Third, even though the positive exposures with respect to HML, RMW, and
CMA suggest that the average stock in the S&P 500 index tends to be a value firm that is
profitable and invests conservatively, the exposures to these risk factors are very low in
the range of only 0.02 to 0.06. By contrast, survivor stocks exhibit exposure with respect to
these risk factors that are considerably larger in terms of their economic magnitudes with a
range from 0.15 to 0.35 and t-statistics significant at any level.11 Survivor stocks appear to
perform better on all of these metrics. Fourth, and last, a surprising finding is that survivor
stocks are, on average, considerably more exposed to loser stocks than the S&P 500. The
exposure of the survivor stocks portfolio to the momentum factor is −0.09 as opposed to
−0.02 for the S&P 500 index with respect to the momentum factor.

Table 3. Further asset pricing regression tests of all survivors.

Dependent var. Alpha CRSPexcess SMB HML RMW CMA UMD R2

RETALL,excess
SURVIVOR

0.03
(0.60)

0.91 ***
(74.79)

−0.00
(−0.00)

0.15 ***
(6.04)

0.33 ***
(13.98)

0.26 ***
(7.49)

−0.09 ***
(−7.70) 0.91

RETexcess
S&P500

−0.25 ***
(−15.81)

1.00 ***
(262.94)

−0.16 ***
(−30.46)

0.02 ***
(3.08)

0.06 ***
(7.89)

0.04 ***
(3.48)

−0.02 ***
(−5.16) 0.99

*** Statistically significant on a 1% level.

This table reports regresses RETALL,excess
SURVIVOR,t and RETexcess

S&P500 on the excess returns of the
CRSP index as well as other risk factors in Fama and French’s (2018) six-factor model. Ordi-
nary t-statistics are reported in parentheses. The figures are given in terms of percentages.
The sample period is from July 1963 to December 2019.

3.2. Out-of-Sample Performance

It is important to recognize that our analysis incorporates information that the naïve
investor did not know before March 2007 when Standard & Poor released the list of
survivor S&P 500 index companies since March 1957. Here, we consider the out-of-sample
question: What has been the performance of the survivor portfolio since March 2007?
To explore whether survivors continued to outperform the S&P 500 index in the ex post
announcement period, we add a binary dummy variable (denoted as xt) to the regression
models formulated in Equations (2)–(6) as follows:

RETALL,excess
SURVIVOR,t = α + d·xt + β·RETexcess

S&P500,t + ut (7)

RETALL,excess
SURVIVOR,t = α + d·xt + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + ut (8)

RETALL,excess
SURVIVOR,t = α + d·xt + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt . . .+β4·RMWt + β5·CMAt + ut (9)

RETALL,excess
SURVIVOR,t = α + d·xt + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt . . .+β4·RMWt + β5·CMAt + β6·UMDt + ut (10)
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where xt is a binary dummy variable with value equal to 0 in the pre-announcement period
July 1963–March 2007 and 1 in the post-announcement period April 2007–November 2020.
If risk-adjusted returns in the ex post March 2007 period, as measured by the sum α + d,
are statistically significantly lower, we expect that the t-statistic for parameter d will be
significantly negative. The results in Table 4 show that the parameter estimate d̂ is negative
in all model specifications but with an economic magnitude close to zero and, in most
model specifications, statistically not different from zero. These findings suggest that, even
in the post-announcement period, survivors continued to outperform the S&P 500 index.

Table 4. Out-of-sample performance of all survivors.

Alpha Dummy S&P 500 SMB HML RMW CMA UMD R2

0.50 ***
(7.33)

−0.32 **
(−2.22)

0.86 ***
(60.33) 0.84

0.35 ***
(5.67)

−0.12
(−0.91)

0.89 ***
(68.01)

0.08 ***
(4.58)

0.25 ***
(13.22) 0.88

0.23 ***
(4.08)

−0.12
(−1.00)

0.92 ***
(72.52)

0.15 ***
(8.34)

0.16 ***
(6.51)

0.26 ***
(10.41)

0.20 ***
(5.37) 0.90

0.30 ***
(5.33)

−0.19 *
(−1.65)

0.91 ***
(72.66)

0.15 ***
(8.68)

0.12 ***
(4.90)

0.27 ***
(11.33)

0.22 ***
(6.17)

−0.08
***

(−6.25)
0.90

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t on the excess

returns of the S&P 500 index as well as different asset pricing models. The regression
models include a dummy variable denoted d with a value of 0 in the period from July
1963 to March 2007 and a value of 1 in the period April 2007–December 2019. Ordinary
t-statistics are reported in parentheses. The figures are given in terms of percentages. The
sample period is from July 1963 to December 2019.

3.3. Time-Varying Factor Exposures

To better understand the risk determinants of survivor stocks’ returns, we estimate
the Fama and French (2018) six-factor model:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut, (11)

where a 60 month window is used to estimate the parameter vector β̂t = (α̂, β̂1, β̂2, . . . , β̂6),
and the estimation window is rolled forward one month at a time to the end of our sample
period. This approach enables observation of trends over time in the estimated parameters.

In Figures 2–7, we report the time-varying factor exposures based on Fama and
French’s six-factor model from July 1968 to November 2020. From casual inspection of
Figure 2, we see that the survivor portfolio’s exposure to excess S&P 500 index returns
is stable over time with beta close to unity. By contrast, Figure 3 shows that exposure to
the size factor increases over time and exhibits noticeable volatility. We infer that, while
survivor stocks in the S&P 500 index are large companies, as time passes, these companies
become smaller with respect to this market index. This intertemporal pattern is consistent
with Taleb (2012), who observed that “ . . . in spite of what is studied in business schools
concerning ‘economics of scale’, size hurts you at times of stress; it is not a good idea to be
large during difficult times.” (Taleb 2012, p. 279). Even though survivor companies engaged
in mergers and acquisitions over time (Siegel and Schwartz 2006), our findings suggest
that survivor companies grew smaller in size relative to the S&P 500 index in general.
Visual inspection of Figure 2 shows a clear linear trend of the survivor stock portfolio’s
exposure against the size factor, which reaches its peak in May 2007. This peak occurred
shortly before the early phase of the financial crisis starting in the beginning of August
2007 with the seizure in the banking system precipitated by BNP Paribas announcing that
it was ceasing activity in three hedge funds operating with U.S. mortgage debt. When
stock prices collapsed in the wake of the financial crisis, the market capitalization of those
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firms remained relatively stable. This pattern is implied by the sharp decrease from a
positive exposure against the size factor in May 2007 until reaching its minimum with
the economically largest negative exposure against the size factor in May 2012. A similar
pattern can be seen after the stock market crises of 1972, 1987, and 1997. From an investment
point of view, this finding suggests that survivor stocks may serve as safe havens in times
of turmoil because their market capitalizations increase relative to the S&P 500.

Figure 2. Dynamic evolution of market factor beta exposure of survivors over time.

This figure plots the dynamic evolution of excess returns of the survivor stock portfo-
lio’s time-varying market beta exposure (i.e., β1) based on the following regression equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors in the Fama and French (2018) six-factor model. This model is
estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.

This figure plots the dynamic evolution of excess returns of the survivor stock portfo-
lio’s time-varying size beta exposure (i.e., β2) based on the following regression equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors of the Fama and French (2018) six-factor model. This model is
estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.
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Figure 3. Dynamic evolution of size factor beta exposure of survivors over time.

Figure 4. Dynamic evolution of value factor beta exposure for survivors over time.
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Figure 5. Dynamic evolution of profitability factor beta exposure for survivors over time.

Figure 6. Dynamic evolution of investment factor beta exposure for survivors over time.
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Figure 7. Dynamic evolution of momentum factor beta exposure for survivors over time.

Regardless of our findings in Table 2 that survivors tend to be value stocks on average,
as shown in Figure 4, survivor companies experience dynamic changes in their value
factor exposures. For example, from the early 1990s to 2007, survivor companies were on
average value companies relative to the S&P 500 index.12 However, in 2007 the loading
on the value factor drops dramatically and thereafter continues to decrease throughout
the financial crisis. From 2007 to 2015, survivor stocks were on average growth stocks.
We observe a similar pattern in the mid-to-late 1980s. In sum, our findings suggest that
survivor companies may be a safe haven in times of economic stress. These stocks benefit
from long-term growth trends that are independent of economic cycles and tend to perform
well in periods of economic downturns.

This figure plots the dynamic evolution of the excess returns of the survivor stock portfolio’s
time-varying value beta exposure (i.e., β3) based on the following regression equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors of the Fama and French (2018) six-factor model. This model is
estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.

Extending our analyses, in Figure 5, we show that survivor companies become more
profitable relative to S&P 500 index companies over time. The time-varying profitability
factor exposure is on average negative until the end of the 1990s and thereafter increases
and becomes positive on average.

This figure plots the dynamic evolution of excess returns of the survivor stock portfo-
lio’s time-varying profit beta exposure (i.e., β4) based on the following regression equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors of the Fama and French (2018) six-factor model. This model is
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estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.

Unlike the profitability factor, the time-varying exposure against the investment factor
plotted in Figure 6 exhibits a pattern similar to the time-varying value factor. While survivor
stocks invested more aggressively relative to S&P 500 index companies in the beginning
of the sample period, they tended to invest more conservatively relative to S&P 500 index
companies in the later years. In this regard, during the financial crisis starting in 2008, the
average investment factor exposure was −0.11 from June 2007 to June 2009; by comparison,
the average exposure of the S&P 500 companies was 0.36 in this period. We infer that
survivor companies were profitable firms in good financial position, which enabled them
to invest more aggressively than the average company in the S&P 500 index. Companies
that are profitable in times of economic stress and increase investment are attractive from
the perspective of investors. While these stocks were on average value stocks in the crisis
period, they became growth companies after June 2009.

This figure plots the dynamic evolution of excess returns of the survivors stock port-
folio’s time-varying investment beta exposure (i.e., β5) based on the following regression
equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors of the Fama and French (2018) six-factor model. This model is
estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.

Lastly, in Figure 7, we plot the time-varying momentum factor exposure of the survivor
portfolio. Surprisingly, we find that, for 69% of the sample observations, the exposure
against the momentum factor is negative. This negative sign in conjunction with the
increasingly positive loading for profitability suggests that survivor companies are stocks
that generate returns mimicking stocks with low cumulative returns in the past 12 months
despite high profitability levels. This finding is interesting in view of the fact that the
profitability factor is positively correlated with momentum, which implies that profitable
firms tend to be winner stocks. Our findings indicate that survivor firms are the exceptions
as their returns co-move with profitable loser stocks.

This figure plots the dynamic evolution of excess returns of the survivor stock portfolio’s
time-varying momentum beta exposure (i.e., β6) based on the following regression equation:

RETALL,excess
SURVIVOR,t = α + β1·RETexcess

S&P500,t + β2·SMBt + β3·HMLt + β4·RMWt + β5·CMAt + β6·UMDt + ut

where RETexcess
S&P500,t is the excess return on the S&P 500 index, and SMB, HML, RMW, CMA,

and UMD are the risk factors of the Fama and French (2018) six-factor model. This model is
estimated iteratively on a monthly basis using a rolling time window of 60 months. The
sample is from July 1968 to December 2019.

3.4. Conditional Volatility

Does uncertainty in the survivor stocks portfolio differ from S&P 500 stocks? Since
the survivor stocks portfolio contains relatively few stocks that are small compared to S&P
500 stocks, one might expect that the survivor stocks exhibit more pronounced responses
to volatility shocks and are more exposed to tail risks. To explore this issue, we estimate
Exponential Generalized Conditional Heteroskedasticity (EGARCH) models for both the
excess returns of S&P 500 and survivor stocks as follows:

Rexcess
i,t = μi + εi,t,

εi,t = ζi,tσi,t,
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where Rexcess
i,t is the excess return at time t, i = {S&P 500t, all survivorst}, μi denotes the

intercept term of the mean equation, and εi,t is the residual term at time t. The equation for
the variance is:

ln
(

σ2
i,t

)
= ci + αi

∣∣∣∣ εi,t−1

σi,t−1

∣∣∣∣+ βi ln
(

σ2
i,t−1

)
+ γi

εi,t−1

σi,t−1
,

where σ2
i,t is the conditional variance at time t, and the parameter vector θBTC = (μi, ci, αi,

βi, γi) is estimated using maximum-likelihood estimation. As observed earlier from Table 1,
given that both return series exhibit high kurtosis, we assume that the innovation process
follows a fat-tailed t-distribution (i.e., ζBTC,t|Ωt−1 ∼ t(v) with v degrees of freedom).13

Our sample period is from July 1963 to November 2020.
Table 5 reports our findings. First, using maximum-likelihood estimation accounting

for fat-tailed data via the t-distribution supports our earlier finding—namely, the average
excess returns of the survivor portfolio are economically larger than the average excess
returns of the S&P 500 index. Second, the estimated alpha in the conditional variance equa-
tion of the S&P 500 index equals 0.20, which is almost twice as high as the corresponding
alpha for the survivor portfolio. Both alpha estimates are statistically significant at the 5%
level. This finding suggests that, despite their smaller size and numbers, the volatility of
survivor stocks responds less than S&P 500 stocks to shocks in the data generating inno-
vation process. Third, beta and gamma estimates in the variance equations are very close
to each other for both portfolios, which suggests that both volatilities respond similarly
to bad news in the data generating innovation process and to the long-run conditional
variance. Fourth, we observe that portfolio returns of survivor stocks are less exposed
to fat tails than other S&P 500 stocks, as the estimated degrees of freedom for Student’s
t-distribution is higher for the former portfolio. We infer that survivor stocks are less
exposed to extreme events.

Table 5. Estimating volatility processes.

μ c α β γ v

S&P 500 0.39 ***
(2.77)

0.11
(1.28)

0.20 ***
(2.97)

0.90 ***
(28.26)

−0.16 ***
(−3.99) 9.53

All
survivors

0.69 ***
(5.23)

0.13 *
(1.92)

0.11 **
(2.09)

0.92 ***
(36.31)

−0.19 ***
(−5.39) 10.95

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

This table reports the estimates for the EGARCH model with mean equation:

Rexcess
i,t = μi + εi,t

εi,t = ζi,tσi,t,

where Rexcess
i,t is the excess return of at time t, i = {S&P 500t, all survivorst}, μi denotes the

intercept term of the mean equation, and εi,t is the residual term at time t. The equation for
the variance is:

ln(σ2
i,t) = ci + αi

∣∣∣∣ εi,t−1

σi,t−1

∣∣∣∣+ βi ln
(

σ2
i,t−1

)
+ γi

εi,t−1

σi,t−1
,

where σ2
i,t is the conditional variance at time t, and the parameter vector θBTC = (μi, ci,

αi, βi, γi) is estimated using maximum-likelihood estimation. The models assume that
the innovation process follows a fat-tailed t-distribution (i.e., ζBTC,t|Ωt−1 ∼ t(v) with v
degrees of freedom). The z-statistics are given in parentheses. The sample period is from
July 1963 to December 2019.
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4. Robustness Checks

4.1. The Multiple Testing Problem

Using a multiple testing framework to derive threshold levels for testing statistical
significance, Harvey et al. (2016) re-evaluated 296 cross-sectional asset pricing phenomena.
Their findings showed that 27% to 53% are likely false discoveries. Following these authors,
we use the higher cut-off corresponding to 3.39 for testing statistical significance. Our main
results in Tables 2–4 remain statistically significant. For instance, irrespective of which asset
pricing model is used for risk adjusting the survivor portfolio, the regression intercepts
reported in Table 2 exceed 3.39 by a large margin. In this respect, the lowest t-statistic of
4.10 is generated when using the Fama and French (2015) five-factor model.14

4.2. Replication Using Publicly Available Data

Hou et al. (2020), who conducted an extensive replication of 452 asset pricing anoma-
lies, found that approximately 80% of these anomalies fail scientific replication. Subse-
quently, the authors recommended scientific replications of test results. To address this
issue, we replicate our analyses using publicly available data from Yahoo.15 Matching the
data from Standard & Poor’s announcement on 2 March 2007 with the database provided
by Yahoo, we find data available for 71 stocks. Among these stocks, we excluded Raytheon
Technologies Corporation (RTX) due to extreme outliers in the sample period.16 Descriptive
statistics for the final sample of 70 survivor stocks are shown in Appendix A Table A2.
In Appendix A Figure A1, we plot the evolution of available survivor stocks over time
(i.e., survivors are added as Yahoo Finance stock data becomes available from the earliest
date of February 1962). Among these stocks, 14 survivor stocks had complete return series
available from February 1962 to November 2020.17 The final sample of 70 observations are
used to form the replicated all survivors portfolio (denoted RETALL

SURVIVOR) which is equal
weighted. As before, we retrieved data for the Fama and French (2018) risk factors (viz.,
six-factor model) and Treasury bill rate from Kenneth French’s website. Since data for the
profitability factor (RMW) and investment factor (CMA) are not available before July 1963,
we retrieve data for the size factor (SMB), value factor (HML), RMW, and CMA from July
1963 to December 2019. Descriptive statistics for portfolio RETALL

SURVIVOR, SMB, HML, RMW,
CMA, and the S&P 500 index are provided in Table A3. Next, we run the same regressions
as in Equations (1)–(4). The results are reported in Table A4. Again survivor stocks outper-
formed the S&P 500 index by a considerable margin. RETALL,excess

SURVIVOR,t generated an average
return of 5.88% per annum in excess of RETexcess

S&P500,t, with a t-statistic equal to 7.01 that is
significant at any level.

The loading on RETexcess
S&P500,t is slightly less than unity, such that on average survivor

stocks do not exhibit higher betas than the S&P 500 index. Employing different variations
of the Fama and French (1993, 2015, 2018) does not change our results. Here, the economic
magnitudes of risk-adjusted returns, as measured by the regression intercepts, varies
from 27 to 40 basis points per month with t-statistics between 4.50 and 6.31 indicating
statistical significance at any level. Note that variation in the excess returns of the S&P
500 index explains 83% of the variation in the excess returns of the survivor stock portfolio.
Controlling for various risk factors negligibly increases the R-squared value. Second, the
positive loading on the size factor implies that the survivor stocks tend to be smaller
stocks. Third, statistically significant exposures with respect to the value, profitability, and
investment factors imply that our replicated portfolio of survivor stocks is, on average,
exposed to value stocks that are profitable and invest conservatively. Finally, we find a
statistically significantly negative loading on the momentum factor. As a consequence,
survivor stocks tend to have returns more correlated on average with loser than winner
stocks. In sum, our results strongly confirm the key findings of our previous analysis based
on CRSP data.
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4.3. Survivor Stocks’ Characteristics Relative to S&P 500 Index

Next, to further investigate survivor stocks’ characteristics relative to S&P 500 index
companies, we employ the simultaneous equation model in Equations (5) and (6). Based on
SUR econometric estimation, the results are reported in Table A5. First, while the t-statistic
associated with α̂1 is statistically not different from zero, and the t-statistic corresponding
to α̂2 is significantly negative at any statistical level. This result implies that the outperfor-
mance of survivor stocks is driven by the underperformance of the S&P 500 index relative
to the more general CRSP index. Second, the t-statistic of β̂1,2 equal to −1.81 suggests that
survivor stocks are not small relative to the CRSP index, implying that survivor stocks
are smaller relative to the average stock in the S&P 500. Third, survivor stocks exhibit
exposures with respect to HML, RMW, and CMA that are considerably larger than the ones
of the S&P 500′s in terms of their economic magnitudes with a range from 0.15 to 0.35 with
t-statistics significant at any level. We infer survivor stocks appear to perform better on
all of these metrics. Fourth, and last, survivor stocks are, on average, considerably more
exposed to loser stocks than the S&P 500. The exposure of the survivor stocks portfolio to
the momentum factor is −0.12 as opposed to −0.02 for the S&P 500 index with respect to
the momentum factor. Again, our replicated portfolio of survivor stocks strongly supports
the key results of our main analysis.

Further, we address the question: What has been the performance of the survivor
portfolio since March 2007? To investigate if our replicated portfolio of survivors continued
to outperform the S&P 500 index in the ex post announcement period, we again employ
Equations (7) to (10) using our replicated survivor portfolio drawn from the Yahoo database.
The results are reported in Table A6. Once again, the parameter estimate d̂ is negative in all
model specifications but with an economic magnitude close to zero and statistically not
different from zero. These findings suggest that, even in the post-announcement period,
our replicated portfolio of survivors continued to outperform the S&P 500 index. Finally,
we explore the conditional volatility of our replicated portfolio of survivor stocks. The
results, as reported in Table A7, clearly support earlier evidence in Section 3.4.

4.4. Equal-Weighted Market Factor

As mentioned earlier, we have valid reasons to use equal-weighted portfolios in our
current study. Value weighting would distort the overall portfolio return distribution
because market capitalization as a financial variable is pareto distributed, implying that
if value-weighted portfolios were used, a very small number of stocks would receive
extraordinarily high weights. In our study, we are interested in the revealing potential
common links among survivor stocks. A valid question that may arise is, however, could
the outperformance of survivor stocks be an artefact of using equal-weighted stocks in the
portfolio? To explore this issue, we download 49 equal-weighted industrial portfolios from
Kenneth French website, compute the simple average return and subtract the U.S. risk free
rate.18 We use this portfolio as proxy for an equal-weighted U.S. market factor in excess
form. Again, we make use of a multiple equation model as in Section 3, that is, we estimate

RETALL,excess
SURVIVOR,t = α1 + β1,1·RETexcess

EQUAL,t + β1,2·SMBt + β1,3·HMLt + β1,4·RMWt+β1,5·CMAt + β1,6·UMDt + u1,t (12)

RETexcess
S&P500,t = α2 + β2,1·RETexcess

EQUAL,t + β2,2·SMBt + β2,3·HMLt + β2,4·RMWt+β2,5·CMAt + β2,6·UMDt + u2,t (13)

where RETexcess
EQUAL,t is our proxy for an equal-weighted U.S. market factor in excess form

and all other notation is as before. The results are reported in Table A8. We observe from
Table A8. that the survivor stocks portfolio generates a risk-adjusted payoff of 27 basis
points per month, whereas the S&P 500 underperforms the equal-weighted portfolio by
28 basis points per month. Testing the parameter difference (α̂1 − α̂2) = 0.56 for statistical
significance, gives us a value of 57.03 for the estimated test statistic. Since the test statistic
is under the null hypothesis distributed as chi-square with one degree of freedom with
corresponding critical value of 3.84 for a 5% significance level, we can reject the null
hypotheses (p-value 0.0000). Hence, the outperformance of the survivor stock portfolio
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is not driven by equal-weighting the stocks in the survivor portfolio. Another interesting
issue which we observe from Table A8 is that the loading against the size factor is less
negative for the survivor stocks portfolio even after controlling for the equal-weighted
excess market factor. Next, testing the parameter difference (β̂1,6 − β̂2,6) = −0.10 for
statistical significance gives us a value of 33.12 for the estimated test statistic. Since the test
statistic is under the null hypothesis distributed as chi-square with one degree of freedom
with corresponding critical value of 3.84 for a 5% significance level, we can reject the null
hypotheses (p-value 0.0000). Hence, the survivor stock portfolio is relatively less exposed
to winner stocks than the average S&P 500 firm which confirms our earlier findings.

4.5. Additional Robustness Checks

In our analysis, we followed the mainstream literature in using ordinary t-statistics
(e.g., Fama and French 2015, 2017, 2018). One may wonder whether our results hold
when accounting for heteroskedasticity and autocorrelation consistent (HAC) t-statistics.19

To address this issue, we employ the HAC covariance matrix estimator proposed from
Newey and West (1987) accounting for a lag order of l = 1 and replicate the main results
from Table 4. The results are reported in Table A9. We observe from Table A9 that the
results do not change. Hence, we infer that our results are robust with respect to potential
autocorrelation and heteroskedasticity in the data.

5. Conclusions

On 2 March 2007, Standard & Poor released a list of companies that had been in the
S&P 500 index since March 1957. Over this 50 year period, only 86 companies survived
index membership requirements. Companies listed in the S&P 500 index are special in
the sense that they are leading companies influential to the U.S. and global economies.
A number advantages accrue to members, including reductions in financial constraints,
the cost of equity, and other shadow costs, among others. Due to relatively high hurdles
for membership, most companies drop out of the index over time. This study sought to
investigate the performance and characteristics of survivor stocks in the S&P 500 index. Due
to data availability, our survivor stocks covered the period from July 1963 to December 2019.

We found that survivor stocks outperformed the S&P 500 index by a large margin
in this sample period. Their outperformance was unchanged after taking into account
checks revealed that this phenomenon is not sample period specific. Relative to S&P
500 companies, survivor stocks tend to be, on average, small-value stocks that exhibit
high profitability and invest conservatively. A surprising finding was that survivor stocks
also tend to be loser stocks with negative exposure to the momentum factor. Further
analyses revealed that survivor stocks decreased in size over time relative to other S&P 500
companies. Additionally, the value characteristic of survivor stocks shifted to be consistent
with growth in periods of economic distress. Unlike other index stocks, survivors were
relatively profitable and increased capital investments in times of economic stress. In
this regard, survivors’ returns were less exposed to fat tails than other S&P 500 stocks.
Further analyses revealed that the survivor stock portfolio outperformed the S&P 500 index
even in the post-March 2007 period after the public announcement by Standard & Poor’s
list of 50 year survivor companies. Additionally, replicating the survivor portfolio using
publicly available data corroborated our findings. We conclude that survivor stocks are
different from other stocks in the S&P 500 index, with remarkable resilience to withstand
economic downturns and coincident stock market collapses. Comparative research is
recommended on survivor stocks in other major stock markets around the world. Are
survivor characteristics local or global in nature? Moreover, future research is encouraged
to explore the return evolution for firms exiting the S&P 500. Since this is beyond the scope
of this paper, this issue is left for future research.
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Appendix A

Figure A1. Evolution of survivor stocks in the sample period.

This figure illustrates the number of available survivor stock observations over time
using the Yahoo database.

Table A1. Survivor firms based on the CRSP database.

1 AMERICAN WATER WORKS & ELEC INC
2 WEST PENN ELECTRIC CO
3 ALLEGHENY POWER SYSTEMS INC
4 ALLEGHENY ENERGY INC
5 ALLIED CHEMICAL & DYE CORP
6 ALLIED CHEMICAL CORP
7 ALLIED CORP
8 ALLIED SIGNAL INC
9 HONEYWELL INTERNATIONAL INC
10 ARCHER DANIELS MIDLAND CO
11 BURROUGHS ADDING MACH CO
12 BURROUGHS CORP
13 UNISYS CORP
14 COCA COLA CO
15 CONSOLIDATED GAS CO NY
16 CONSOLIDATED EDISON CO NY INC
17 CONSOLIDATED EDISON INC
18 DETROIT EDISON CO
19 D T E ENERGY CO
20 DU PONT E I DE NEMOURS & CO
21 EATON AXLE & SPRING CO
22 EATON MFG CO
23 EATON YALE & TOWNE INC
24 EATON CORP
25 EATON CORP PLC
26 STANDARD OIL CO N J
27 EXXON CORP
28 EXXON MOBIL CORP
29 ELECTRIC BOAT CO

56 AMERICAN TYPE FOUNDERS INC
57 ATF INC
58 DAYSTROM INC
59 SCHLUMBERGER LTD
60 STANDARD OIL CO CALIFORNIA
61 CHEVRON CORP
62 CHEVRONTEXACO CORP
63 CHEVRON CORP NEW
64 UNION TANK CAR CO
65 TRANS UNION CORP
66 UNITED STATES STEEL CORP
67 USX CORP
68 U S X MARATHON GROUP
69 MARATHON OIL CORP
70 KRAFT HEINZ CO
71 WRIGLEY WILLIAM JR CO
72 AMERICAN HOME PRODUCTS CORP
73 WYETH
74 SOUTHERN CALIFORNIA EDISON CO
75 SCE CORP
76 EDISON INTERNATIONAL
77 ALCOA CORP
78 GOODYEAR TIRE & RUBBER CO
79 HERSHEY CHOCOLATE CORP
80 HERSHEY FOODS CORP
81 HERSHEY CO
82 KROGER GROCERY & BAKING CO
83 KROGER COMPANY
84 DOWDUPONT INC

75



JRFM 2022, 15, 95

Table A1. Cont.

30 GENERAL DYNAMICS CORP
31 GENERAL ELECTRIC CO
32 GENERAL MOTORS CORP
33 GENERAL MOTORS CO
34 INGERSOLL RAND CO
35 INGERSOLL RAND CO LTD
36 INGERSOLL RAND PLC
37 TRANE TECHNOLOGIES PLC
38 INTERNATIONAL BUSINESS MACHS COR
39 FORTUNE BRANDS HOME & SECUR INC
40 TRANSCONTINENTAL OIL CO
41 OHIO OIL CO
42 MARATHON OIL CO
43 PACIFIC GAS & ELEC CO
44 PG & E CORP
45 LOFT INC
46 PEPSI COLA CO
47 PEPSICO INC
48 PHILIP MORRIS & CO LTD
49 PHILIP MORRIS INC
50 PHILIP MORRIS COS INC
51 ALTRIA GROUP INC
52 PHILLIPS PETROLEUM CO
53 CONOCOPHILLIPS
54 EASTMAN KODAK CO
55 AMERICAN TYPE FOUNDERS CO

85 DUPONT DE NEMOURS INC
86 MELVILLE SHOE CORP
87 MELVILLE CORP
88 CVS CORP
89 CVS CAREMARK CORP
90 CVS HEALTH CORP
91 GENERAL MILLS INC
92 MCGRAW HILL PUBLISHING INC
93 MCGRAW HILL INC
94 MCGRAW HILL COS INC
95 MCGRAW HILL FINANCIAL INC
96 S&P GLOBAL INC
97 KIMBERLY CLARK CORP
98 PHELPS DODGE CORP
99 HERCULES POWDER CO
100 HERCULES INC
101 MINNEAPOLIS HONEYWELL REGULATOR
102 HONEYWELL INC
103 PENNEY J C INC
104 PENNEY J C CO INC
105 COMMONWEALTH & SOUTHERN CORP
106 SOUTHERN CO
107 CATERPILLAR TRACTOR INC
108 CATERPILLAR INC
109 COLGATE PALMOLIVE PEET CO
110 COLGATE PALMOLIVE CO

111 DEERE & CO IL
112 DEERE & CO DEL
113 DEERE & CO
114 BRISTOL MYERS CO
115 BRISTOL MYERS SQUIBB CO
116 BOEING AIRPLANE CO
117 BOEING CO
118 ABBOTT LABS
119 ABBOTT LABORATORIES
120 DOW CHEMICAL CO
121 LOCKHEED AIRCRAFT CORP
122 LOCKHEED CORP
123 LOCKHEED MARTIN CORP
124 WEST VA PULP & PAPER CO
125 WESTVACO CORP
126 MEADWESTVACO CORP
127 WESTROCK CO
128 INTERNATIONAL PAPER & PWR CO
129 INTERNATIONAL PAPER CO
130 PHILADELPHIA ELECTRIC CO
131 P E C O ENERGY CO
132 EXELON CORP
133 PFIZER CHAS & CO INC
134 PFIZER INC
135 COOPER BESSEMER CORP
136 COOPER INDUSTRIES INC
137 COOPER INDUSTRIES LTD
138 COOPER INDUSTRIES PLC
139 PITTSBURGH PLATE GLASS CO
140 P P G INDUSTRIES INC
141 MINNESOTA MINING & MFG CO
142 3M CO

168 PITNEY BOWES INC
169 TEXAS UTILITIES CO
170 TXU CORP
171 ALUMINUM COMPANY AMER
172 ALCOA INC
173 ARCONIC INC
174 HOWMET AEROSPACE INC
175 NORTHROP AIRCRAFT INC
176 NORTHROP CORP
177 NORTHROP GRUMMAN CORP
178 RAYTHEON MANUFACTURING CO
179 RAYTHEON CO
180 CAMPBELL SOUP CO
181 FORD MOTOR CO
182 FORD MOTOR CO DEL
183 COOPER TIRE & RUBBER CO
184 OCCIDENTAL PETROLEUM CORP
185 UNION PACIFIC CORP
186 BURLINGTON NORTHERN INC
187 BURLINGTON NORTHERN SANTA FE CP
188 SEALED AIR CORP
189 CSX CORP
190 NORFOLK SOUTHERN CORP
191 ALLSTATE CORP
192 SANTA FE FINANCIAL CORP
193 NGC CORP
194 DYNEGY INC
195 ITT HARTFORD GROUP INC
196 HARTFORD FINANCIAL SVCS GRP INC
197 QUEST DIAGNOSTICS INC
198 SEALED AIR CORP NEW
199 ROCKWELL COLLINS INC
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143 MERCK & CO INC
144 MERCK & CO INC NEW
145 GALVIN MANUFACTURING CO
146 MOTOROLA INC
147 MOTOROLA SOLUTIONS INC
148 CAROLINA POWER & LIGHT CO
149 CP & L ENERGY INC
150 PROGRESS ENERGY INC
151 CONSUMERS PWR CO
152 CONSUMERS POWER CO
153 C M S ENERGY CORP
154 PUBLIC SERVICE ELECTRIC & GAS CO
155 PUBLIC SERVICE ENTERPRISE GP INC
156 HALLIBURTON OIL WELL CEMENTING
157 HALLIBURTON COMPANY
158 NORTHERN STATES POWER CO MN
159 XCEL ENERGY INC
160 MIDDLE SOUTH UTILITIES INC
161 ENTERGY CORP
162 ENTERGY CORP NEW
163 AMERICAN GAS & ELECTRIC CO
164 AMERICAN ELECTRIC POWER CO INC
165 CONSOLIDATED GAS ELEC LT & PWR
166 BALTIMORE GAS & ELECTRIC CO
167 CONSTELLATION ENERGY GROUP INC

200 DYNEGY INC NEW
201 DYNEGY INC DEL
202 DYNEGY INC NEW DEL

This table reports the firms of the corresponding survivor stocks.

Table A2. Descriptive statistics for survivor stocks.

Ticker/Metric AA ABT ADM AEP ALL ATI BA BMY BURL CAT

Mean 0.90 1.47 1.09 0.92 1.11 1.29 1.44 1.15 2.97 1.36
Median 0.73 1.36 1.09 1.10 1.05 0.36 1.45 1.11 3.63 1.17

Maximum 54.02 22.12 32.08 28.70 30.97 62.50 48.44 43.72 25.24 40.14
Minimum −55.59 −20.74 −27.36 −17.77 −42.78 −50.26 −45.47 −28.87 −26.73 −35.91
Std. dev. 9.98 5.97 7.89 5.73 7.59 16.38 9.59 6.97 8.51 8.40
Skewness −0.02 −0.15 0.12 0.03 −0.72 0.60 0.23 0.08 −0.49 0.03
Kurtosis 7.32 3.65 3.98 4.09 8.28 4.71 5.60 5.86 4.08 4.65

Sample start 1962-02 1980-04 1980-04 1970-02 1993-07 1999-12 1962-02 1972-07 2013-11 1962-02

Ticker/Metric CL CMS COO COP CPB CSX CVS CVX DD DE

Mean 1.15 0.65 1.46 1.10 0.94 1.45 1.18 1.28 1.33 1.41
Median 1.21 0.90 1.05 1.36 0.94 1.55 0.75 1.34 0.66 1.26

Maximum 49.25 41.77 88.45 39.92 33.00 29.11 56.86 36.30 182.16 45.30
Minimum −21.59 −44.17 −52.59 −35.94 −18.76 −31.41 −36.36 −21.46 −67.77 −29.86
Std. dev. 6.74 8.30 13.69 8.29 6.75 7.87 8.51 6.74 12.27 8.44
Skewness 0.76 −0.12 0.56 0.20 0.26 −0.14 0.41 0.35 5.96 0.08
Kurtosis 8.89 9.87 8.26 6.00 4.35 3.89 7.96 4.99 89.80 4.53

Sample start 1973-06 1973-03 1983-02 1982-01 1973-03 1980-12 1973-02 1962-02 1972-07 1972-07

Ticker/Metric DTE ED EIX ETN ETR EXC F GD GDP GE

Mean 0.95 0.98 1.10 1.96 0.98 1.04 1.17 1.44 0.94 0.90
Median 0.95 0.97 1.30 1.98 0.96 1.10 0.53 1.17 0.64 0.37

Maximum 54.18 45.00 25.92 72.89 39.24 30.69 127.38 34.00 99.77 37.20
Minimum −22.41 −52.50 −36.90 −30.33 −24.54 −24.14 −57.88 −27.95 −33.17 −29.84
Std. dev. 5.70 6.07 6.65 8.40 6.84 6.47 11.04 8.10 18.54 7.39
Skewness 1.03 −0.17 −0.69 0.97 0.53 0.08 2.59 0.23 2.98 0.20
Kurtosis 13.92 16.22 6.72 12.15 6.58 4.78 33.33 4.74 18.24 5.39

Sample start 1962-02 1962-02 1973-06 1972-07 1972-07 1973-06 1972-07 1977-02 2017-01 1962-02
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Table A2. Cont.

Ticker/Metric GIS GM GT HAL HIG HON HSY IBM IP IR

Mean 1.24 0.78 0.81 1.08 1.29 1.27 1.48 0.84 0.91 2.72
Median 1.12 0.33 0.37 1.24 1.39 1.40 1.11 0.36 0.50 1.85

Maximum 19.75 28.10 75.56 54.90 103.57 51.05 27.60 35.38 79.83 26.70
Minimum −24.08 −31.87 −41.74 −59.61 −74.82 −38.19 −24.91 −24.86 −37.61 −24.37
Std. dev. 5.65 9.06 10.77 10.83 12.94 8.12 6.45 6.94 8.60 10.65
Skewness 0.08 0.18 0.60 −0.15 1.43 0.06 0.20 0.19 1.04 0.12
Kurtosis 3.99 4.26 8.13 6.24 22.84 6.97 4.85 4.83 13.67 3.31

Sample start 1980-04 2010-12 1962-02 1972-07 1996-01 1970-02 1983-04 1962-02 1962-02 2017-06

Ticker/Metric JCPNQ KHC KMB KO KODK KR LMT MMM MO MRK

Mean −0.15 −0.49 1.22 1.56 9.41 2.04 1.70 0.98 1.81 1.14
Median −0.26 0.12 0.85 1.33 −1.60 1.62 1.33 1.10 1.91 1.05

Maximum 52.91 24.70 33.21 33.22 879.82 214.90 48.26 25.80 195.19 31.34
Minimum −47.83 −30.94 −17.10 −29.55 −72.63 −67.84 −38.81 −27.83 −69.65 −26.62
Std. dev. 11.83 9.02 5.86 6.38 97.98 13.48 8.89 6.06 10.71 6.89
Skewness 0.05 −0.45 0.82 0.18 8.23 7.80 0.22 −0.01 7.94 −0.05
Kurtosis 5.44 4.51 6.31 5.59 73.33 124.80 6.38 4.68 154.67 4.00

Sample start 1973-03 2015-08 1980-04 1962-02 2013-10 1977-02 1977-02 1970-02 1962-02 1970-02

Ticker/Metric MRO MSI NOC NSG OXY PBI PCG PEP PFE PG

Mean 0.92 1.25 1.53 1.36 0.98 1.06 0.85 1.20 1.15 1.04
Median 0.44 1.10 1.67 1.31 0.76 0.54 1.13 0.93 1.05 0.79

Maximum 86.02 30.73 33.88 25.53 72.62 73.04 45.71 36.89 39.67 24.69
Minimum −60.08 −33.49 −35.56 −31.52 −64.63 −48.66 −45.26 −28.41 −24.01 −35.42
Std. dev. 10.55 9.56 8.30 7.55 9.63 10.06 8.45 6.34 7.01 5.48
Skewness 0.91 −0.14 −0.04 −0.07 0.64 0.64 −0.39 0.07 0.28 −0.34
Kurtosis 12.41 3.64 5.16 4.20 14.90 11.64 11.37 6.76 4.77 6.10

Sample start 1970-02 1977-02 1982-02 1982-07 1982-02 1972-07 1972-07 1972-07 1972-07 1962-02

Ticker/Metric PPG PREX ROK SEE SLB SO UIS UNP XEL XOM

Mean 1.39 0.89 1.84 1.69 0.77 1.24 0.81 1.35 0.91 0.98
Median 1.42 0.00 1.93 2.00 0.50 1.28 0.06 1.48 1.18 0.93

Maximum 26.71 52.50 160.92 149.35 39.16 22.57 130.19 34.44 42.13 22.69
Minimum −32.32 −63.83 −57.90 −63.97 −49.47 −14.26 −55.92 −33.43 −58.50 −25.13
Std. dev. 7.29 10.88 11.83 11.41 9.28 4.99 16.10 7.49 6.07 5.31
Skewness 0.06 −0.53 4.96 3.98 −0.20 0.02 1.30 0.05 −0.96 0.03
Kurtosis 4.58 18.46 73.04 61.54 5.76 3.89 12.92 4.77 22.91 4.51

Sample start 1980-04 2012-03 1982-01 1980-04 1982-01 1982-01 1972-08 1980-02 1973-03 1962-02

This table reports the descriptive statistics for all available data on survivor stocks.
The data are downloaded from Yahoo.com and sorted in alphabetical order.

Table A3. Descriptive portfolio statistics for the scientific replication.

RETALL
SURVIVOR S&P 500 SMB HML RMW CMA UMD

Mean 1.13 0.65 0.21 0.26 0.26 0.26 0.66
Median 1.23 0.91 0.09 0.25 0.22 0.11 0.71

Maximum 18.21 16.30 18.05 12.60 13.38 9.56 18.36
Minimum −20.41 −21.76 −14.86 −14.11 −18.48 −6.86 −34.39
Std. dev. 4.38 4.27 3.02 2.87 2.17 1.99 4.19
Skewness −0.31 −0.44 0.33 0.01 −0.33 0.32 −1.28
Kurtosis 5.80 4.87 6.02 5.39 15.38 4.61 13.19

This table reports the descriptive statistics of the survivor stock portfolio, S&P 500 in-
dex, and Fama and French (2018) risk factors. The figures are given in terms of percentages.
The sample period is from July 1963 to December 2019.
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Table A4. Regression estimates for the replicated survivor portfolio using different asset pricing
models.

Alpha S&P 500 SMB HML RMW CMA UMD R2

0.49 ***
(7.01)

0.92 ***
(56.88) 0.83

0.40 ***
(6.31)

0.96 ***
(64.32)

0.05 **
(2.46)

0.30 ***
(13.56) 0.86

0.27 ***
(4.50)

1.00 ***
(67.75)

0.12 ***
(5.87)

0.18 ***
(6.44)

0.27 ***
(9.37)

0.24 ***
(5.65) 0.88

0.34 ***
(5.72)

0.98 ***
(68.03)

0.12 ***
(6.17)

0.13 ***
(4.69)

0.29 ***
(10.37)

0.27 ***
(6.58)

−0.10 ***
(−6.87) 0.89

** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t based on the

Yahoo database on the excess returns of the S&P 500 index as well as different asset pricing
models. Ordinary t-statistics are reported in parentheses. The figures are given in terms of
percentages. The sample period is from July 1963 to December 2019.

Table A5. Multiple equation model analysis of the replicated survivor portfolio.

Dependent
var.

Alpha CRSPexcess SMB HML RMW CMA UMD R2

RETALL,excess
SURVIVOR

0.09
(1.54)

0.98 ***
(67.50)

−0.04 *
(−1.81)

0.15 ***
(5.45)

0.35 ***
(12.32)

0.31 ***
(7.47)

−0.12 ***
(−8.14) 0.89

RETexcess
S&P500

−0.25 ***
(−15.81)

1.00 ***
(262.94)

−0.16 ***
(−30.46)

0.02 ***
(3.08)

0.06 ***
(7.89)

0.04 ***
(3.48)

−0.02 ***
(−5.16) 0.99

* Statistically significant on a 10% level. *** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t based on the Yahoo

database on the excess returns of the S&P 500 index as well as other risk factors in Fama
and French’s (2018) six-factor model. Ordinary t-statistics are reported in parentheses.
The figures are given in terms of percentages. The sample period is from July 1963 to
December 2019.

Table A6. Out-of-sample performance of the replicated survivor portfolio.

Alpha Dummy S&P 500 SMB HML RMW CMA UMD R2

0.56 ***
(7.05)

−0.31 *
(−1.88)

0.93 ***
(57.01) 0.83

0.40 ***
(5.55)

−0.02
(−0.16)

0.96 ***
(64.27)

0.05 **
(2.45)

0.30 ***
(13.41) 0.86

0.28 ***
(4.03)

−0.03
(−0.21)

1.00 ***
(67.70)

0.12 ***
(5.85)

0.18 ***
(6.38)

0.27 ***
(9.37)

0.24 ***
(5.65) 0.88

0.37 ***
(5.43)

−0.12
(−0.92)

0.98 ***
(68.02)

0.12 ***
(6.12)

0.13 ***
(4.54)

0.29 ***
(10.39)

0.27 ***
(6.59)

−0.10 ***
(−6.92) 0.89

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t based on the

Yahoo database on the excess returns of the S&P 500 index as well as different asset pricing
models. The regression models include a dummy variable denoted d with a value of 0 in
the period from July 1963 to March 2007 and a value of 1 in the period April 2007–December
2019. Ordinary t-statistics are reported in parentheses. The figures are given in terms of
percentages. The sample period is from July 1963 to December 2019.
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Table A7. Estimating volatility processes for the replicated survivor portfolio.

μ c α β γ v

S&P 500 0.39 ***
(2.77)

0.11
(1.28)

0.20 ***
(2.97)

0.90 ***
(28.26)

−0.16 ***
(−3.99) 9.53

All
survivors

0.76 ***
(5.44)

0.14 *
(1.79)

0.14 **
(2.40)

0.91 ***
(34.06)

−0.20 ***
(−5.43) 10.69

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

Here, we use Yahoo data and replicate the portfolio of survivor stocks. This table
reports the estimates for the EGARCH model with mean equation:

Rexcess
i,t = μi + εi,t

εi,t = ζi,tσi,t,

where Rexcess
i,t is the excess return of at time t, i = {S&P 500t, all survivorst}, μi denotes the

intercept term of the mean equation, and εi,t is the residual term at time t. The equation for
the variance is:

ln(σ2
i,t) = ci + αi

∣∣∣∣ εi,t−1

σi,t−1

∣∣∣∣+ βi ln
(

σ2
i,t−1

)
+ γi

εi,t−1

σi,t−1
,

where σ2
i,t is the conditional variance at time t, and the parameter vector θBTC = (μi, ci,

αi, βi, γi) is estimated using maximum-likelihood estimation. The models assume that
the innovation process follows a fat-tailed t-distribution (i.e., ζBTC,t|Ωt−1 ∼ t(v) with v
degrees of freedom). The z-statistics are given in parentheses. The sample period is from
July 1963 to December 2019.

Table A8. Multiple equation model analysis of the replicated survivor portfolio and equal-weighted
U.S. equity index.

Dependent
var.

Alpha CRSPexcess SMB HML RMW CMA UMD R2

RETALL,excess
SURVIVOR

0.27 ***
(3.02)

0.87 ***
(40.75)

−0.80 ***
(−20.27)

0.10 **
(2.41)

0.19 ***
(4.35)

0.05
(0.77)

0.00
(0.08) 0.75

RETexcess
S&P500

−0.28 ***
(−5.05)

0.90 ***
(68.29)

−0.85 ***
(−36.06)

−0.05 *
(−1.75)

0.05 *
(1.92)

−0.11 **
(−2.78)

0.11 ***
(7.77) 0.90

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.

This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t based on the Yahoo

database on the excess returns of the S&P 500 index as well as other risk factors in Fama
and French’s (2018) six-factor model. The factor model specification employs the average
excess returns of 49 equal-weighted Fama and French U.S. industrial portfolios as proxy for
the market factor. Ordinary t-statistics are reported in parentheses. The figures are given in
terms of percentages. The sample period is from July 1963 to December 2019.

Table A9. Out-of-sample performance of all survivors with robust t-statistics.

Alpha Dummy S&P 500 SMB HML RMW CMA UMD R2

0.50 ***
(5.99)

−0.32 **
(−2.47)

0.86 ***
(33.76) 0.84

0.35 ***
(4.96)

−0.12
(−0.94)

0.89 ***
(62.46)

0.08 **
(2.36)

0.25 ***
(4.38) 0.88

0.23 ***
(3.30)

−0.12
(−0.99)

0.92 ***
(63.69)

0.15 ***
(6.89)

0.16 ***
(4.99)

0.26 ***
(3.63)

0.20 ***
(5.30) 0.90

0.30 ***
(4.20)

−0.19 *
(−1.71)

0.91 ***
(62.52)

0.15 ***
(7.30)

0.12 ***
(3.86)

0.27 ***
(3.70)

0.22 ***
(6.13)

−0.08 ***
(−2.75) 0.90

* Statistically significant on a 10% level. ** Statistically significant on a 5% level. *** Statistically significant on a 1% level.
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This table reports the results of regressing portfolio RETALL,excess
SURVIVOR,t on the excess

returns of the S&P 500 index as well as different asset pricing models. The regression
models include a dummy variable denoted d with a value of 0 in the period from July 1963
to March 2007 and a value of 1 in the period April 2007–December 2019. Robust t-statistics
using the covariance matrix estimator proposed from Newey and West (1987) with lag
order l = 1 are reported in parentheses. The figures are given in terms of percentages. The
sample period is from July 1963 to December 2019.

Notes

1 See https://fred.stlouisfed.org/series/DDOM01USA644NWDB (accessed on 14 January 2021).
2 As of February 2019 guidance.
3 The value of a stock’s market capitalization traded annually should be at least a quarter million dollars of its shares in each of the

previous six months.
4 Additional possible advantages include reduced information asymmetry due to greater scrutiny by investors, increased investor

recognition as an industry leader, and a decline in shadow costs. See studies by Denis et al. (2003), Chen et al. (2004), Baran and
King (2012), and Chan et al. (2013).

5 For instance, the annualized sample average return varies between 13.63% per annum and 13.75% per annum for the arithmetic
return and equal-weighted portfolios, respectively.

6 See https://www.globalpapermoney.com/s-p-releases-list-of-86-companies-in-the-s-p-500-since-1957-cms-1023 (accessed on 31
January 2022).

7 The question arises how does the non-survivorship manifest itself over time? The so-called Lindy law could explain this
phenomenon. In this regard, Taleb points out that the Lindy effect (or law) corresponds to situations where the conditional
expectation of additional life expectancy increases with time, which requires the survival function of survival time to be that of a
power law. A discussion of this issue is provided in Taleb’s study “Lindy as a Distance from an Absorbing Barrier”, which is
available at https://www.academia.edu/44944654 (accessed on 31 January 2022). Future research could elaborate on this issue
and model the survival, respectively, non-survival functions for companies in the S&P 500. This issue is, however, beyond the
scope of this study and therefore left for future research.

8 As a last resort, the stock name was used to find stock return data in the CRSP database. In this regard, a company could change
names or the same company could have different stocks. It is important to note that companies could have similar names and
one stock could be changed to another one as successor in the CRSP’s dataset. Additionally, ticker symbols for companies can
change. Hence, we used the output produced from the CRSP database for tickers associated with corresponding company names.
Finally, one stock does not necessarily mean one firm in the CRSP database. For instance, a firm could change its stock to be a
different one. Moreover, a stock could also belong to different firms. As an example, firm A spins off into X, Y, and Z different
firms. The original stock (in terms of its permno in CRSP) stays with firm X. However, the core business of firm A is actually in
firm Z. Now firm Z is assigned a new stock (permno). When we have firm Z’s name, and we expand its history, we include the
original stock for firm A. In the dataset, we used (to be more inclusive) the stock for firm A in the past as well as firm Z’s stock.

9 There are good reasons to use equal-weighted portfolios in the present study. Most importantly, market capitalization as a
financial variable is pareto distributed, which means that if value-weighted portfolios were used, a very small number of stocks
would receive extraordinarily high weights. Hence, value weighting would distort the overall portfolio return distribution. This
distortion occurs when variables deviate from the normal distribution. Our sample stocks share one commonality—namely,
survivorship. We are mainly interested in this common link, rather than potential size effects.

10 Because the kurtosis of the regression residuals is 9.87, one could argue that standard t-statistics are not valid for making statistical
inference. If we assume a t-distribution with υ = 4.5 degrees of freedom, the corresponding kurtosis will be 15, which is much
larger than 9.74. Using a 5% significance level, the critical value of this distribution is 2.66. Since the t-statistic of 7.01 well exceeds
2.66, we can safely deduce that our statistical inference is valid.

11 As an example, the survivor stock portfolio’s loading against the profitability factor exceeds the S&P 500′s loading by a factor of
6.5 implying that, on average, survivor stocks are considerably more profitable than the average S&P 500.

12 Peak exposure to the value factor was reached in February 2007 at an economic magnitude of 0.37.
13 Note that excess kurtosis is a stylized fact of financial market data. The use of the Gaussian distribution for modeling the

conditional volatilities may lead to misleading results. For this reason, we employ t-distributions to model the innovation
processes, which explicitly takes into account the fat-tailed data observed here.

14 Importantly, our higher cut-off of 3.39 decreases the likelihood that the performance of the survivor stock portfolio diminished
in the ex post March 2007 period. Note that the t-statistic of −2.22 for our dummy variable in the CAPM model specification
indicated a significant structural break on a common 5% level using standard critical values.
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15 As precedent, Alexander and Dimitriu (2005) used Yahoo Finance. Data providers such as CRSP impose relatively high charges
for data, whereas Yahoo Finance is freely available, thereby expanding research replicability to a larger audience of scholars.
Many universities around the world do not subscribe to CRSP due to costs; in such cases, Yahoo Finance is available.

16 We found that 7.38% of RTX returns exceeded 100% in the sample period from February 1970 to December 2019.
17 These 14 survivor stocks with the longest available data are: Alcoa Corporation (AA), the Boeing Company (BA), Caterpillar Inc.

(CAT), Chevron Corporation (CVX), DTE Energy Company (DTE), Consolidated Edison, Inc. (ED), General Electric Company
(GE), Goodyear Tire & Rubber Company (GT), International Business Machines Corporation (IBM), International Paper Company
(IP), Coca-Cola Company (KO), Altria Group, Inc. (MO), Procter & Gamble Company (PG), and the Exxon Mobil Corporation
(XOM). These companies are very old and were originally established between 1823 and 1925. Ten of these 14 companies were
originally founded before 1900.

18 We would like to thank an anonymous reviewer for suggesting this additional robustness check.
19 We thank an anonymous reviewer for suggesting this additional robustness check.
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Abstract: By employing the modified net buying pressure as a measure of informed option trading,
this study tested whether option trading around quarterly earnings announcements is either direc-
tionally motivated and/or volatility motivated. We found evidence that is consistent with the idea
that option investors have private information prior to positive earnings announcements and use
at-the-money options to exploit their informational advantage. In the post-event period, however,
informed option investors trade by using deep-out-of-the-money and out-of-the-money options. We
documented limited evidence on the volatility-motivated option trading, and our results suggest that
this type of option trading could be motivated by hedging purposes only.

Keywords: earnings; announcements; options; informed trading; net buying pressure; volatility;
direction; at-the-money; out-of-the-money; deep-out-of-the-money
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1. Introduction

The literature reports that option investors trade on the volatility of underlying stock
returns (e.g., Patell and Wolfson 1981; Gharghori et al. 2017; Chen and Wang 2016). Other
studies, however, document that option investors are able to predict the direction of stock
prices prior to major corporate events (e.g., Jin et al. 2012; Atilgan 2014; Chan et al. 2015).

Kang and Park (2008) propose direction-learning hypothesis and volatility-learning hy-
pothesis and provide notable evidence (for KOSPI 200 index options) supporting direction-
learning hypothesis while rejecting the volatility-learning hypothesis. Later Chen and
Wang (2016) extend the study of Kang and Park (2008) by arguing that option investors bet-
ting on the direction of stock returns trade differently from those betting on the volatility of
stock returns. When positive news is expected to increase both stock returns and volatility,
directional (volatility) traders will sell (buy) put options. By contrast, when negative news
is expected to decrease stock returns but increase volatility, directional (volatility) traders
will sell (buy) call options. This exogenous shock, consequently, can have simultaneous,
but offsetting effects on option informed trading measures. Given that the directional
and volatility option investors may trade differently on the same impending news, it is
important to distinguish these two types of option trades.

Except for Kang and Park (2008) and Chen and Wang (2016), prior studies do not
differentiate trading strategies of these two types of option investors.1 To fill this gap in
the literature, this paper examines US option investors’ trading prior to quarterly earnings
announcements with respect to both expected changes in stock returns and the volatility
of stock returns related to the event. We focus on earnings announcements due to the fact
that the two types of option investors are likely to trade around such an event (Patell and
Wolfson 1981; Jin et al. 2012; Atilgan 2014). To separate these two types of option trading
from each other, we employ net buying pressure (NBP), which was initially developed
by Bollen and Whaley (2004) and then modified further by Chen and Wang (2016), as the
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informed option trading measure in our study. Our study also examines at which option
moneyness informed option trading occurs. To investigate this issue, we split our sample
based on the moneyness of the options in an effort to better understand how moneyness
affects option informed trading.

Additionally, Kim and Verrecchia’s (1991, 1994) information-based trading theory
suggests that informed investors trade, not only on private information prior to an event,
but could also trade in the post-event period due to their superior ability in processing
publicly disclosed information from a corporate announcement. Therefore, to test this
conjecture, we also examine the relation between net buying pressures and both stock
returns and stock return volatility during the post-event window.

We found that directional informed trading prior to earnings announcements occurs in
at-the-money (ATM) options. This finding could be due to the relatively higher liquidity and
lower transactions costs of ATM options (Chakravarty et al. 2004). We also found evidence
that option investors trade on stock-return volatility prior to earnings announcements,
particularly in OTM options. A further analysis showed that option investors trade by
using deep-out-of-the-money (DOTM) and out-of-the-money (OTM) call and put options
in the post-event window period.

Our study contributes to the literature in several ways. First, we provide empirical
evidence whether option investors trade on the expected changes in stock returns and/or
on the volatility of stock returns around quarterly earnings announcements. Second, we
provide evidence that option investors have private information on good announcements
prior to this event and have superior ability to process publicly disclosed information.
Third, our study provides a deeper insight by providing empirical evidence about in which
option moneyness these informed option transactions occur.

The remainder of this paper proceeds as follows. The next section reviews the research
design and option informed trading measures. Section 3 describes the sample selection
process. Section 4 presents the empirical results. Section 5 concludes.

2. Research Design

To proxy for demand in the underlying stock equivalent, Bollen and Whaley (2004)
propose net buying pressure (NBP), measured as the difference between the number of
buyer-motivated contracts and the number of seller-motivated contracts, multiplied by the
absolute value of option delta. Bollen and Whaley (2004) identify buyer-motivated options
as trades executed at the price above the midpoint of prevailing bid and ask prices. We
collected option-related data from the OptionMetrics database. This database, however,
does not provide transaction prices of options. Therefore, we used the current midpoint
of bid and ask prices as the proxy for transaction price of an option. We identified an
option trading as a buyer-(seller-) motivated option trading if a current midpoint price of
an option is higher (lower) than its previous midpoint price. This procedure was repeated
for the entire universe of call and put options for US equities. Option net buying pressure
(NBP) measure is calculated as the difference between the number of buyer-motivated
contracts and seller-motivated contracts, multiplied by the absolute value of the option’s
delta. Following Bollen and Whaley (2004), we scaled option net buying pressure measure
by the total trading volume across all options in the class on that day.

To separate directional-motivated option trading effects from volatility-motivated
option trading effects, we used the modified NBP measures proposed by Chen and Wang
(2016). The modified NBP measures allowed us to distinguish between informed trading on
the direction of the underlying asset price and volatility-based informed trading. Following
Chen and Wang (2016), the directional-motivated demands for the kth-moneyness category
of call and put options, respectively, are measured as follows:

NBPDk
C,t =

NBPk
C,t − NBPk

P,t

2
(1)
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NBPDk
P,t =

NBPk
P,t − NBPk

C,t

2
. (2)

where NBPDc (NBPDp) is the difference between the NBPs of calls (puts) and puts (calls)
options divided by 2 categorized by moneyness k over the time interval t, and k ∈ {DOTM,
OTM, ATM}. Similarly, the volatility-motivated demand for the kth-moneyness category
option is measured as follows:

NBPVk
t =

NBPk
C,t + NBPk

P,t

2
(3)

Following Jin et al. (2012), we measured the event window from days −1 to +1 relative
to the announcement day. Option informed trading measures are computed during the
base-, pre-, and post-event windows associated with days −50 to −11 prior to earnings
announcements, days −10 to −1 prior to the event, and days +1 to +5 days after the event,
respectively. Call- and put-option net-buying pressures that are directional during the
base-, pre-, and post-event window are denoted as NBPD_CALL_BASE, NBPD_PUT_BASE,
NBPD_CAL_PRE, NBPD_PUT_PRE, NBPD_CALL_POST, and NBPD_PUT_POST respec-
tively. Call- and put-option net-buying pressures’ volatility during the base-, pre-, and
post-event window is denoted as NBPV_BASE, NBPV_PRE, and NBPV_POST, respectively.

Cumulative abnormal returns (CAR) for the ith stock are computed as follows:

CARit = ∑(ri,t − rm,t), (4)

where the CRSP value-weighted market return, rm,t, was obtained from Kenneth French’s
website. Cumulative abnormal stock returns during the event (post-event) window on
days -1 to +1 (+6 to +90) are denoted as XRET (XRET_POST).

Similar to Jin et al. (2012), to examine whether options traders have private information
on the expected change in stock prices prior to the earnings announcement date or have
better processing skills of publicly disclosed information in the post-event period, we
employed the following regression specifications:

XRET(−1,+1)i = Intercept + αPRENBPD
k
C,i + βPRENBPD

k
P,i + δBASENBPD

k
C,i

+γBASENBPD
k
P,i + μPRESVOLi + θSURPi + ϑSIZEi + ρMBi

+εi

(5a)

XRETPOST(+6,+90)i = Intercept + αPOSTNBPD
k
C,i + βPOSTNBPD

k
P,i

+δBASENBPD
k
C,i + γBASENBPD

k
P,i + XRETi + μPOSTSVOLi

+θSURPi + ϑSIZEi + ρMBi + εi

(5b)

where PRE_SVOL (POST_SVOL) is the logarithm of the volume of stocks traded during
the pre-(post-)event window. If the option trading measures contain information relevant
to expected changes in stock prices, then the estimated coefficients on PRE_NBPDc and
POST_NBPDc should be positively related to XRET and XRETPOST, respectively. SURP is
earnings surprise. Control variables are size (natural logarithm of market capitalization)
and M/B (market to book ratio) of sample firms.

Following Chen and Wang (2016) and Gharghori et al. (2017), we also examined
whether option trading measures of volatility-motivated informed trading are related to
stock return volatility based on the following regression specifications:

STDEVSHORT(−1,+1)i = Intercept + αPRE_NBPVk
i + βBASE_NBPVk

i + εi (6a)

STDEVLONG(+6,+90)i = Intercept + αPOST_NBPVk
i + βBASE_NBPVk

i + εi (6b)

where STDEVSHORT (STDEVLONG) is the standard deviation of the daily market-adjusted
returns in the event window period −1 to +1 (+6 to +90) days. If option volatility trading
measures contain information relevant to expected volatility changes of stocks, then the
estimated coefficients on PRE_NBPV and POST_NBPV should be positively related to
STDEVSHORT and STDEVLONG, respectively.
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3. Data

We obtained equity options and stock-related information from the OptionMetrics
database from 1 January 2005 to 30 April 2016. The database provides daily bid and ask
quotes; open interest; volume; implied volatility; and Greeks, such as delta, gamma, vega,
and theta, for call and put options listed on all option exchanges for underlying US equities.
From this database, we collected the underlying stock-related data for daily stock bids
and ask quotes, closing prices, total returns, trading volume, and outstanding shares. We
collected quarterly earnings announcement dates from 2005 to 2016 from the Research
Insight database. The CRSP market index data were obtained from Kenneth French’s
website. We merged data from these three databases based on whether firms that announce
quarterly earnings during the sample period are optionable.

We selected options (calls and puts) with maturity from 10 to 60 days (Cremers and
Weinbaum 2010; Jin et al. 2012). We observed many observations with zero open interest
and zero volume in the data. Therefore, to address thin trading issues, we removed options
with zero open interest and zero volume from the sample. Net buying pressures for both
call and put options were then calculated based on the available option volume data. We
excluded observations with zero net buying pressures.

Panel A of Table 1 shows the daily average of the number of option contracts during
the pre-, base-, and post-windows. The number of contracts shows that call options, except
for DOTM call options in the pre-window period, are traded more often than put options in
all three window periods. The numbers of daily option contracts traded in the post window
are the largest across option moneyness. On average, daily transaction volumes increase in
the pre-window period and further in the post-window period. The increase in the number
of daily contracts traded in the pre-window period may indicate that informed option
investors trade during these periods. The numbers of net purchases displayed in Panel B
of Table 1 are, on average, negative (except for ATM call and put options in the base- and
pre-window periods and ATM put options in the post-event period), which suggests that
these contracts are seller motivated. Panel C of Table 1 illustrates the net buying pressure
of call and put options across the three windows. As can be seen, investors generally have
net buying positions in call options in the base- and pre-windows, except DOTM calls.
However, in the post-window, investors have selling positions in call options. Somehow,
similar positions are observed for puts; however, the selling level in the post-window for
puts in contrast to calls is high in the categories of OTM and ATM options.

Table 1. Daily average of number of option contracts and net buying pressure.

Panel A. Number of Contracts

BASE PRE POST

CALL PUT CALL PUT CALL PUT

DOTM 3,355,564 3,136,258 3,467,501 3,641,739 7,012,477 6,098,234
OTM 9,445,297 7,006,597 12,213,275 9,500,400 17,278,566 12,767,542
ATM 4,208,167 2,382,670 5,899,880 3,241,505 7,223,099 4,348,246

Panel B. Net Purchases of Contracts

DOTM −1,214,728 −1,115,330 −1,021,626 −1,195,070 −3,681,233 −2,626,351
OTM −1,327,765 −969,565 −895,825 −1,318,548 −4,210,721 −2,346,881
ATM 340,380 141,210 541,999 138,619 −305,685 264,422

Panel C. Net Buying Pressure

DOTM −9052 −1492 −6443 −783 −14,955 −3991
OTM 12,883 14,785 22,587 19,485 −952 −20,464
ATM 7093 −1948 20,287 11,138 −2727 −15,980

This table reports daily average number of option contracts, net purchase of option contracts, and net buying
pressure during the base, pre, and post windows for deep-out-the-money, out-of-the-money and at-the-money call
and put option contracts. Base-, pre-, and post-event windows associated with days −50 to −11 prior to earnings
announcement day, days −10 to −1 prior to the event, and days +1 to +5 days after the event, respectively. The
net buying pressure is calculated as the difference between the number of buyer-motivated contracts, multiplied
by the absolute value of option delta.
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4. Results

4.1. Directional-Motivated Options Trading

Table 2 reports the relation between informed option trading measures during the
pre-event window period and the cumulative announcement return during the event
window (Equation (5a)).2 Each panel reports directional informed trading tests for each
option of moneyness. As prior studies suggest that option investors may trade differently
depending on the quality of an announcement (Chen and Wang 2016), we examined the
effect of pre-event informed option trading measures on good or bad announcements. We
define bad or good news if the cumulative abnormal return during the event window is
negative or positive, respectively. We found that the coefficients on NBPD_CALL_PRE
and NBPD_PUT_PRE for DOTM and OTM options, as reported in Panels A and B, are
not positively related to the cumulative announcement returns. The negative coefficient of
NBPD_CALL_PRE for good news in the OTM option, however, is not consistent with the
informed trading hypothesis. One possible explanation for this conflicting sign is that it
could be related to hedging purposes due to the moneyness of the options. Overall, these
results suggest that informed option investors do not use DOTM or OTM options to trade
on the expected changes on the underlying stocks’ prices.

Panel C of Table 2 examines the relation between the cumulative abnormal announce-
ment period returns and net buying pressures for ATM options. We found that, for
good announcements, the net buying pressures of call options are positively related to
announcement-period returns. This result suggests that informed trading occurs in ATM
options during the pre-announcement period of good announcements. The (in)significant
relationship between announcement return and net buying pressures of ATM options may
suggest that option investors are more (less) likely to trade if the impending earnings
announcement is good (bad) news. These results are consistent with the direction-learning
hypothesis and findings of Kang and Park (2008) that informed investors use options to
trade on the direction of the underlying. Moreover, our finding that option investors are
informed on the good earnings announcement is consistent with the evidence of Whalen
and Collver (2004).

Table 2. Relationship between option NBPDs of calls (puts) and event returns.

Panel A. DOTM All Bad News Good News

NBPD_CALL_PRE 0.018 0.031 −0.027
(0.31) (0.18) (0.12)

NBPD_PUT_PRE 0.017 0.008 −0.001
(0.36) (0.67) (0.98)

NBPD_CALL_BASE 0.012 0.029 *** −0.013 *
(0.12) (0.00) (0.08)

NBPD_PUT_BASE −0.002 −0.003 0.005
(0.85) (0.71) (0.56)

Intercept −0.029 *** −0.206 *** 0.197 ***
(0.00) (0.00) (0.00)

Observations 6134 3067 3067
Adjusted R2 0.0024 0.1222 0.1022

Panel B. OTM

NBPD_CALL_PRE 0.000 −0.002 −0.009 **
(0.96) (0.62) (0.05)

NBPD_PUT_PRE 0.005 −0.001 0.004
(0.37) (0.84) (0.46)

NBPD_CALL_BASE −0.003 0.000 −0.009 ***
(0.20) (0.96) (0.00)

NBPD_PUT_BASE −0.002 0.000 −0.004
(0.55) (0.91) (0.17)

Intercept −0.020 *** −0.185 *** 0.187 ***
(0.00) (0.00) (0.00)

Observations 9543 4775 4768
Adjusted R2 0.0031 0.0975 0.1052
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Table 2. Cont.

Panel C. ATM

NBPD_CALL_PRE 0.002 −0.001 0.008 **
(0.56) (0.84) (0.03)

NBPD_PUT_PRE 0.006 0.001 0.002
(0.17) (0.75) (0.68)

NBPD_CALL_BASE 0.000 −0.001 0.000
(0.93) (0.64) (0.97)

NBPD_PUT_BASE −0.001 −0.003 −0.001
(0.70) (0.32) (0.76)

Intercept −0.041 *** −0.188 *** 0.173 ***
(0.00) (0.00) (0.00)

Observations 4146 2136 2010
Adjusted R2 0.0072 0.0976 0.0923

This table reports results for the effect of net buying pressure of call and put options on the event excess returns
for different moneyness categories. The dependent variable is the cumulative abnormal stock returns (−1, +1).
PRE_NBPD and BASE_NBPD are the option net buying pressure directional measures for days −10 to −2 and
days −50 to −11, respectively. To conserve space, control variables are not reported. Bad news is for negative
announcement returns; good news is for positive announcement returns; p-values are in parentheses; *, **, and ***
denote statistical significance at 10%, 5%, and 1% levels, respectively.

4.2. Volatility-Motivated Options Trading

Figlewski and Frommherz (2017) and Gharghori et al. (2017) argue that transactions
in the options market may be related to expected changes in the volatility of underlying
asset values. To test this conjecture, following Chen and Wang (2016), we employed a
measure of informed option trading based on options transactions—namely net buying
pressure volatility (NBPV). This measure reflects option trading information related to the
volatility (rather than the direction) of underlying asset values. Table 3 reports net buying
pressures of volatility trading prior to announcement dates. The coefficient on NBPV_PRE
is negative and significant for OTM options, suggesting that volatility-based trading by
using OTM options prior to the event is probably hedging motivated. These results are also
consistent with the findings of Kang and Park (2008), who do not find informed trading on
the volatility instead they find option trading on the direction of the underlying.

Table 3. Relationship between option NBPVs and event returns volatility.

Panel A. DOTM All Bad News Good News

NBPV_PRE −0.009 −0.009 −0.008
(0.10) (0.24) (0.27)

NBPV_BASE −0.007 *** −0.011 *** −0.003
(0.00) (0.00) (0.35)

Intercept 0.027 *** 0.028 *** 0.026 ***
(0.00) (0.00) (0.00)

Observations 6234 3118 3116
Adjusted R2 0.0018 0.0034 0.0001

Panel B. OTM

NBPV_PRE −0.003 ** −0.001 −0.005 ***
(0.03) (0.71) (0.01)

NBPV_BASE −0.006 *** −0.005 *** −0.007 ***
(0.00) (0.00) (0.00)

Intercept 0.032 *** 0.032 *** 0.032 ***
(0.00) (0.00) (0.00)

Observations 9684 4849 4835
Adjusted R2 0.0066 0.0044 0.0091
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Table 3. Cont.

Panel C. ATM

NBPV_PRE 0.001 0.000 0.002
(0.43) (0.79) (0.15)

NBPV_BASE −0.002 ** −0.002 −0.001
(0.04) (0.13) (0.14)

Intercept 0.032 *** 0.033 *** 0.032 ***
(0.00) (0.00) (0.00)

Observations 4227 2177 2050
Adjusted R2 0.0007 0.0002 0.001

This table reports results for the effect of net buying pressure of call and put options on the event excess returns
volatility for different moneyness categories. The dependent variable is the volatility of abnormal stock returns
during the event window period (−1,+1). PRE_NBPV and BASE_NBPV are the option net buying pressure
volatility measures for days −10 to −2, and −50 to −11, respectively. Bad news is for negative announcement
returns; good news is for positive announcement returns; p-values are in parentheses; ** and *** denote statistical
significance at 5% and 1% levels, respectively

4.3. Post-Event Options Trading

Prior studies suggest that option investors may have superior skills compared to other
investors to process publicly disclosed information. To test this conjecture, in the spirit of
Jin et al. (2012), we examined whether net buying pressures measured in the post-event
period (+1, +5) are positively related to abnormal stock returns in the post-event period (+6,
+90). Panels A and B of Table 4 show, that for good earnings announcements, net buying
pressures of DOTM and OTM call and put options in the post-event period (+1, +5) are
significantly related to post-event cumulative abnormal stock returns measured during
days +6 to +90 relative to the announcement dates. This significant relation, however, is
absent for ATM options. Thus, we infer that option investors have information-processing
skills with respect to information from earnings announcements and trade by using DOTM
and OTM options on this information.

Table 4. Relationship between option NBPDs of calls (puts) and post-event returns.

Panel A. DOTM All Bad News Good News

NBPD_CALL_POST 0.152 *** 0.144 *** 0.172 ***
(0.00) (0.00) (0.00)

NBPD_PUT_POST −0.114 *** −0.091 *** −0.132 ***
(0.00) (0.00) (0.00)

NBPD_CALL_BASE −0.001 −0.002 0.002
(0.89) (0.86) (0.79)

NBPD_PUT_BASE −0.003 0.015 −0.021 ***
(0.70) (0.14) (0.01)

Intercept −0.002 −0.042 *** 0.001
(0.76) (0.00) (0.86)

Observations 6139 3067 3072
Adjusted R2 0.3865 0.2109 0.3828

Panel B. OTM

NBPD_CALL_POST 0.009 0.003 0.006
(0.91) (0.98) (0.38)

NBPD_PUT_POST −0.016 −0.008 −0.032 ***
(0.86) (0.96) (0.00)

NBPD_CALL_BASE −0.078 *** −0.157 *** 0.002
(0.01) (0.01) (0.45)

NBPD_PUT_BASE −0.014 −0.027 0.000
(0.66) (0.67) (0.94)

Intercept −0.183 *** −0.467 *** −0.002
(0.00) (0.00) (0.80)

Observations 9518 4761 4757
Adjusted R2 0.0034 0.0019 0.2567
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Table 4. Cont.

Panel C. ATM

NBPD_CALL_POST −0.004 −0.014 0.005
(0.97) (0.95) (0.46)

NBPD_PUT_POST −0.020 −0.039 −0.018 **
(0.87) (0.87) (0.04)

NBPD_CALL_BASE 0.003 0.002 −0.001
(0.95) (0.98) (0.63)

NBPD_PUT_BASE −0.033 −0.051 −0.005 *
(0.47) (0.56) (0.08)

Intercept −0.350 *** −0.879 *** 0.014
(0.01) (0.00) (0.17)

Observations 4066 2102 1964
Adjusted R2 0.0015 0.0029 0.2206

This table reports results for the effect of net buying pressure of call and put options on the event excess returns
for different moneyness categories. The dependent variable is the post-event cumulative abnormal stock returns
(+6,+90). POST_NBPD and BASE_NBPD are the option net buying pressure directional measures for days +1 to
+5, and −50 to −11, respectively. To conserve space, control variables are not reported. Bad news is for negative
announcement returns; good news is for positive announcement returns; p-values are in parentheses; *, ** and ***
denote statistical significance at 10%, 5% and 1% levels, respectively.

Table 5 shows the regression results for Equation (6b) relating stock return volatility
to post-event option net buying pressure. The coefficient on NBPV_POST is statistically
insignificant for each category of option moneyness. Thus, we did not find evidence that
options investors trade on expected stock returns volatility in the post-event period.

Table 5. Relationship between option NBPVs and post-event returns volatility.

Panel A. DOTM All Bad News Good News

NBPV_POST −0.007 −0.004 −0.008
(0.19) (0.61) (0.32)

NBPV_BASE −0.009 *** −0.013 *** −0.005 **
(0.00) (0.00) (0.05)

Intercept 0.018 *** 0.019 *** 0.017 ***
(0.00) (0.00) (0.00)

Observation 6208 3103 3105
Adjusted R2 0.0044 0.008 0.0011

Panel B. OTM

NBPV_POST 0.000 −0.005 0.003
(0.99) (0.93) (0.14)

NBPV_BASE 0.017 0.038 * −0.005 ***
(0.12) (0.07) (0.00)

Intercept 0.028 *** 0.035 *** 0.021 ***
(0.00) (0.00) (0.00)

Observations 9642 4825 4817
Adjusted R2 0 0.0003 0.0082

Panel C. ATM

NBPV_POST 0.006 0.012 0.002
(0.88) (0.89) (0.19)

NBPV_BASE 0.005 0.011 −0.001
(0.75) (0.72) (0.26)

Intercept 0.035 *** 0.048 ** 0.021 ***
(0.00) (0.04) (0.00)

Observations 4121 2128 1993
Adjusted R2 −0.0005 −0.0009 0.0006

In this table POST_NBPV and BASE_NBPV are the option net buying pressure volatility measures for days +1
to +5 and −50 to −11, respectively. Bad news is for negative announcement returns; good news is for positive
announcement returns; p-values are in parentheses; *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels, respectively.
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5. Conclusions

Our empirical results suggest that option investors have private information on the
expected direction of the underlying stocks prices prior to good earnings announcements,
and they trade by using ATM options to exploit their private information. This is probably
because ATM options have high liquidity and lower transaction costs compared to the other
option, moneyness. Further results suggest that option investors have the processing ability
of information from publicly disclosed announcements in terms of predicting the direction
of stock returns during the post-event window period. In the post-event period, however,
these investors do not use ATM options, but trade by using OTM and DOTM options.
We found limited evidence that option investors trade on the expected volatility of the
underlying stocks’ prices prior to and after the announcements, and the results suggest that
these transactions could be related to hedging purposes. Overall, our empirical evidence
suggests that informed option traders’ benefit from their private information related to
both the expected direction and volatility of underlying asset values.
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Notes

1 Chen and Wang (2016) document evidence supporting both directional and volatility trading on stock index option in the
Taiwanese option market prior to 2011.

2 To conserve space, we do not report the results for the other variables in the regression model.
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Abstract: We examine the presence of outliers and time-varying jumps in the returns of four major
cryptocurrencies (Bitcoin, Ethereum, Ripple, Dogecoin, Litecoin), and a broad cryptocurrency index
(CCI30). The results indicate that only Bitcoin returns are contaminated with outliers. Time-varying
jumps are present in Bitcoin, Litecoin, Ripple, and the cryptocurrency index. Notably, the presence
of jumps in Bitcoin is significant after correcting for outliers. The main findings point to a price
instability in some major cryptocurrencies and thereby the importance of accounting for large shocks
and time-varying jumps in modelling volatility in the debatable cryptocurrency markets.
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1. Introduction

Cryptocurrencies are decentralised payment systems involving technological innovation
called blockchain. They have attracted much attention on the financial scene as a digital asset
class, capable of offering very high returns and decent diversification benefits when combined
with conventional assets (Bouri et al. 2020). Several studies have focused on Bitcoin and
other major cryptocurrencies in terms of price discovery (Corbet et al. 2019; Chen et al. 2020),
herding (Yousaf et al. 2021), bubble formation (Bouri et al. 2019; Chaim and Laurini 2019),
interconnectedness (Ji et al. 2019), market efficiency (López-Martín et al. 2021; Noda 2021), and
safe-haven ability (Bouri et al. 2020; Das et al. 2020; Dutta et al. 2020; Hatemi-J. et al. 2020). No-
tably, cryptocurrencies are characterised by extreme return volatility that has been the subject
of volatility modelling (Chu et al. 2017; Katsiampa 2017; Tiwari et al. 2019; Walther et al. 2019;
Mostafa et al. 2021), especially using GARCH processes that are capable of parameterising
higher order dependence and time-evolution of conditional volatility. The largest cryptocur-
rency, Bitcoin, is known for extreme return volatility1 and large abrupt price variations in
the form of jumps (Chaim and Laurini 2018). Furthermore, Bitcoin and other major cryp-
tocurrencies tend to jump with geopolitical uncertainty (Bouri et al. 2020). However, there is
no empirical evidence of the presence of outliers in leading cryptocurrencies2 and the scarce
academic literature available considers jump behaviour in the Bitcoin market only, overlooking
the time-varying nature of jumps. Interestingly, large cryptocurrencies such as Ethereum,
Ripple, Litecoin, and Dogecoin3 have attracted significant attention from institutional investors
and business communities. Furthermore, their return volatility tends to exceed that of the
largest cryptocurrency, Bitcoin (see Table 1), which makes them relevant candidates for the
analysis of outliers and time-varying jumps.

In this study, we extend the limited understanding of whether outliers are present in
various cryptocurrencies and whether cryptocurrencies are characterised by time-varying
jumps. To do this, we detect the presence of outliers and then apply GARCH-jump models
capable of uncovering evidence of time-varying jumps in the daily return series.

Our paper is related to a growing strand of literature on the volatility of Bitcoin and
other major cryptocurrencies (e.g., Salisu and Ogbonna 2021; Shahzad et al. 2021) during
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the COVID-19 outbreak, when uncertainty in the global economy and financial markets
spiked and the prices of global equity indices tumbled. Notably, Bitcoin and other major
cryptocurrencies experienced large increases in their prices from the second quarter of 2020
until most of 2021, driven by an accentuated trend towards digitalisation and acceptance of
Bitcoin as a means of payment by large corporations (e.g., Tesla) as well as possibilities of
central banks and emerging economies to adopt cryptocurrencies (Cunha et al. 2021).

Table 1. Descriptive statistics of daily returns.

Mean Min Max
Standard
Deviation

Skewness Kurtosis
PP Test

(p-Value)

Bitcoin 0.2964 −46.473 22.5119 3.9934 −0.81385 11.7148 0.00
Bitcoin (outlier-free) 0.2300 −31.190 19.7621 2.9552 −0.0006 7.5791 0.00

Ethereum 0.3726 −55.0714 41.2405 6.1632 0.000903 7.6691 0.00
Ripple 0.2131 −61.638 102.7463 7.0183 2.053332 33.74518 0.00

Dogecoin 0.3243 −51.4934 151.6211 7.7355 4.287955 76.4462 0.00
Litecoin 0.1675 −44.9012 51.0348 5.6424 0.33125 11.8109 0.00
CCI30 0.2457 −48.4483 19.5679 4.4000 −1.31042 11.4226 0.00

Notes: This table reports the main descriptive statistics for the return series of major cryptocurrencies for the
period 8 August 2015–23 September 2021. Cryptocurrency index (CCI30). Phillips–Perron (PP).

Our contributions are on two fronts. Firstly, we identify potential outliers occurring
in various cryptocurrencies, adding to prior studies that analyse the volatility dynamics
of cryptocurrencies using GARCH-type models without correcting for possible outliers
(e.g., Katsiampa 2017; Chu et al. 2017; Tiwari et al. 2019; Mostafa et al. 2021). Outliers
are generally present in financial variables and can lead to serious distortion of model
specifications, parameter estimation, and volatility forecasting (Grané and Veiga 2010;
Carnero et al. 2012), which makes the detection/removal of outliers an important step
in modelling volatility and in making risk-management inferences. This is very relevant
to cryptocurrencies that are highly subject to price slippage that might induce so-called
outliers. Secondly, we test the presence of time-varying jumps in leading cryptocurrencies4

that are generally characterised by extreme volatility that can be associated with specific
events such as forks, hacks, and thefts. Our examination adds to prior studies that focus on
Bitcoin only and argues that the existence of jumps can substantially impact the structure
of losses and gains related to Bitcoin (e.g., Chaim and Laurini 2018). This is crucial given
that jumps represent an important element of an asset’s risk and are an input into option
pricing models, and thereby can help enhance the accuracy of model prediction.

The rest of the paper is structured in three sections. Section 2 describes the dataset and
methods used to detect outliers and model the time-varying jumps. Section 3 presents and
discusses the empirical results. Section 4 concludes.

2. Data and Methods

2.1. Data

We collected the daily prices of five leading cryptocurrencies (Bitcoin, Ethereum,
Ripple, Dogecoin, and Litecoin) against USD, from cryptomarketcap.com (accessed on 18
November 2021). We also collected price data on a broad cryptocurrency index (CCI30)
from https://cci30.com (accessed on 18 November 2021).

Notably, those five cryptocurrencies were selected from the largest 20 cryptocurrencies
not only because they represent 65% of the market capitalisation of all cryptocurrencies
but also because they have the longest common data sample period that starts from 8 Au-
gust 2015. Accordingly, our sample period is 8 August 2015–23 September 2021, yielding
2239 daily price observations.

Given that our methods require stationary data, we used log return series and the
summary statistics of these return series (Table 1) to exhibit evidence of stationarity as
indicated by the Phillips–Perron (PP) test.
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2.2. Outlier Detection Method

We follow Ané et al. (2008) in detecting the presence of outliers. Let Rt be the log
return on the cryptocurrency on day t, which follows an AR(2)-GARCH(1,1) model:5

Rt = b0 + b1Rt−1 + b1Rt−2 + εt (1)

σ2
t = a0 + a1ε2

t−1 + a2σ2
t−1 (2)

where εt = σtzt which follows Student’s t distribution. It−1 refers to the filtration of infor-
mation at time t − 1.

Rt+1 is considered an outlier if it does not belong to the following interval:

Rt+1 ∈
[

Rt,t+1 ± F
(

1 − α

2

)
σt,t+1

]
where, Rt,t+1 is the one-step ahead return forecast given by:

Rt,t+1 = E(Rt+1/It) = b0 + b1Rt + b2Rt−1

and σ2
t,t+1 denotes the one-step ahead variance forecast defined as:

σ2
t,t+1 = var(Rt+1/It) = a0 + (a1 + a2)σ

2
t

Furthermore, F
(
1 − α

2
)
= P(zt ≤ 1 − α/2) is a fractile of the assumed conditional dis-

tribution.
The above detection procedure is rolled over until the end of the sample period.

Notably, the detection procedure is robust to any model misspecifications (Ané et al. 2008).
Note that a number of recent studies have used this method to detect outliers in

different financial markets. Dutta (2018a), for instance, shows that outliers play a crucial
role in modelling the volatility of the EU emissions market. Another study by Dutta (2018b)
finds similar results for the precious metals market.

2.3. The GARCH-Jump Process

Following the model of Chan and Maheu (2002) and its recent use by Liu et al. (2021)
and Li et al. (2021), the GARCH-jump specification is:

Rt = π + ∑n
i=1 μiRt−i + εt (3)

where Rt is the log return of the cryptocurrency at time t, and εt denotes the error term at
time t. εt has two components:

εt = ε1t + ε2t (4)

where ε1t is defined as:
ε1t =

√
htzt , zt ∼ Student’s t

ht = ω + αε2
1t−1 + βht−1 (5)

and ε2t is a jump innovation that consists of abnormal price movements with E( ε2t|Lt−1) =
0, where Lt−1 designates the information set. Now, ε2t is defined as the discrepancy between
the jump component and the expected total jump size between t–1 and t:

ε2t = ∑nt
l=1 Utl − θλt (6)

where Utl denotes the jump size, which is assumed to be normally distributed with mean
θ and variance d2, ∑nt

l=1 Utl is the jump component, and nt indicates the number of jumps.
nt follows a Poisson variable with an autoregressive conditional jump intensity as:

λt = λ0 + ρλt−1 + γξt−1 (7)
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where λt is the time-varying conditional jump intensity parameter, λ0 refers to a constant
jump intensity, and ξt−1 indicates the intensity residual with λt > 0, λ0 > 0, ρ > 0 and
γ > 0.

The log-likelihood function is:

L(Ω) = ∑T
t=1 log f (Rt|It−1; Ω) (8)

where Ω = (π, μi,ω,α,β, θ, d, λ0, ρ,γ).

3. Empirical Results

3.1. Outliers

The findings from the outlier detection process suggest that extreme observations
occur only in the Bitcoin return series.6 Overall, we have found 16 outliers during the
sample period. We also document that these outliers are mainly present after the soar. It
is worth noting that such outliers could arise due to different significant events or news
including wars, political conflicts, cyberattacks, and economic downturns. Based on these
findings, we consider both the original return series and the outlier-free return series.
Table 1 shows that the standard deviation of Bitcoin returns is reduced by almost 26%
after correcting for outliers, while outlier correction substantially increases the mean return
of Bitcoin. This result suggests that Bitcoin returns are contaminated by more negative
return outliers than positive ones. Additionally, outlier correction reduces the kurtosis and
skewness for Bitcoin. Interestingly, the skewness converges to zero.

3.2. Time-Varying Jumps

The results of GARCH-Jump model are shown in Table 2. The GARCH parameters
are statistically significant, and the sum of α and β indicates a high degree of volatility
persistence. The jump intensity parameters (λ0, ρ, γ) are statistically significant for Bitcoin
and Litecoin, implying time-variability in the jump intensity and evidencing large abrupt
price variations. Taking Bitcoin as an example, the parameter ρ (0.9741) being high and
significant indicates that the time-varying jump intensity is persistent. The γ parameter,
which measures the sensitivity of λt to past shock, ξt−1, is 0.3832, suggesting that a unit
increase in ξt−1 results in a dampened effect (0.3832) on the next period’s jump intensity.

Overall, the jump intensity parameters satisfy the constraints that λ0 > 0, ρ > 0 and
γ > 0, implying that the GARCH-jump model is a proper choice for describing volatility
dynamics and jump behaviour in the cryptocurrency markets. Additionally, the positive
values of ρ and γ for Bitcoin, Litecoin, Dogecoin, Ethereum, and the CCI30 index indicate
that the current jump intensity (λt) is influenced by the most recent jump intensity (λt−1)
and the intensity residuals (ξt−1). The high values of ρ and γ, especially for Bitcoin and
CCI30, suggest a high degree of persistence in the jump intensity. For Ripple returns, only
the parameter of time-varying jump intensity is significant.

The results involving Bitcoin are generally in line with Chaim and Laurini (2018). The
findings of the outlier-corrected data for Bitcoin show that jumps still exist after taking into
account the presence of outliers. The likelihood ratio test suggests that the GARCH-jump
model using Bitcoin outlier-free data outperforms the one using Bitcoin original data (i.e.,
Bitcoin data not corrected for outliers).

These findings suggest cryptocurrencies are not only characterised by time-varying
volatility, but also by extreme price movements, which exceed the current respective market
volatility. Such jump behavior points towards an instable condition in the market and
hence the information on cryptocurrency prices could mislead the investment decisions
(Dutta 2018b). Our analysis is, therefore, important for investors in making proper asset-
allocation decisions.

It is also noteworthy that time dependent jumps may provide early signals of sig-
nificant downturns in cryptocurrency markets. Earlier studies (Chan and Maheu 2002;
Maheu and McCurdy 2004) also document that the conditional expected number of jumps

96



JRFM 2022, 15, 128

in different asset classes tends to increase and that the information on such time-varying
jumps could be used in predicting future market crashes. We thus conclude that the jump
dynamics in cryptocurrency returns could capture the adverse impact of negative news or
events (e.g., COVID-19 pandemic) on their price levels.

Table 2. Estimates of GARCH-jump model.

Bitcoin
Bitcoin

(Outlier-Free)
Litecoin Ripple Dogecoin Ethereum CCI30

π 0.0841 *** 0.0783 *** −0.1179 ** −0.0051 0.2144 ** 0.1159 0.0651 *
μ1 0.0056 −0.0329 −0.0987 * −0.0899 −0.1853 * −0.0661 * −0.5323 ***
μ2 0.0062 0.0547 −0.1123 ** −0.1164 ** 0.2188
ω 0.0107 * 0.0606 0.0831 *** 0.1241 ** 0.0844 0.0700 * 0.0441 **
α 0.1072 *** 0.1068 ** 0.1553 *** 0.1455 *** 0.0981 ** 0.1126 ** 0.0676 ***
β 0.7739 *** 0.7455 *** 0.7249 *** 0.5666 *** 0.7252 *** 0.5165 *** 0.7865 ***
θ −0.0831 −0.0961 0.4438 *** 0.0961 0.1176 −0.0762 −2.1729 ***
d2 2.0400 *** −0.9976 *** 3.8976 *** 2.8903 *** 2.1439 *** 1.6754 *** −3.5208 ***
λ0 0.0699 *** 0.0502 ** 0.0986 *** 0.0346 0.0334 0.1345 *** 0.0014
ρ 0.9658 *** 0.9189 *** 0.7242 *** 0.9054 *** 0.7119 ** 0.8764 *** 0.9958 ***
γ 0.3939 *** 0.2956 *** 0.3001 *** 0.1679 0.3973 ** 0.4138 *** 0.3489 ***

Log-likelihood −3857.14 −3201.57 −723.76 −998.61 −941.54 −788.18 −1922.98

Notes: This table shows the estimated coefficients of the GARCH-jump model, as described in Section 2.3. π and
μ are parameters depicting the conditional mean (see Equation (3)). ω, α, and β are parameters depicting the
conditional variance (see Equation (5)). λ0, ρ, and γ are parameters describing the time-varying jump intensity
(see Equation (7)). θ and d2 are the mean and variance of the jump size, respectively (see Equation (6)). ***, ** and
* indicate statistically significant results at 1%, 5% and 10% levels, respectively.

4. Conclusions

In this paper, we have extended the limited understanding on the presence of outliers
and time-varying jumps in the cryptocurrency markets. The main results show that outliers
exist only in Bitcoin returns, suggesting the importance of accounting for them, and Bitcoin
returns are characterised by time-varying jumps after correcting for outliers. Litecoin is
also characterised by time-varying jumps. The findings complement previous studies
(Katsiampa 2017; Chu et al. 2017; Chaim and Laurini 2018) and point to the presence
of abrupt price variations in some cryptocurrencies, suggesting potential suitability of
including jumps when pricing options on Bitcoin and Litecoin. Given recent evidence on
the importance of jumps for portfolio management, future studies could consider dynamic
portfolio allocation and risk management inferences in the cryptocurrency markets with
time-varying jump risk (Zhou et al. 2019).
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Notes

1 Bitcoin price skyrocketed for most of 2016–2017, then crashed for most of 2018, and then experienced large up and down swings.
2 Thies and Molnár (2018) focus on the Bitcoin market. Using a Bayesian change point model, they show evidence of structural

breaks in the first and second moments of the return distribution.
3 We pay a special attention to Dogeeoin due the influence of Elon Musk’s tweets on the price dynamic of Dogecoin from early

2021 and therefore the possible change in the characteristics of Dogecoin after the soar of its price from that date.
4 Cryptocurrencies can be very prone to jumps due to the presence of hacks and forks.
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5 For Ethereum and CCI30 index, the AR(1)-GARCH(1,1) process appears to be the best fitted model based on the AIC and
BIC values.

6 Quite similar findings are reported by Thies and Molnár (2018) who use a Bayesian change point model and report evidence of
structural breaks in the Bitcoin market.
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Abstract: This paper combines the CRSP market index with multiple factors to create a single multi-
factor market index. Empirical tests of different multifactor market indexes indicate that: (1) Sharpe
ratios substantially increase and GRS test statistics decrease as multifactors are incrementally added
to the CRSP index; and (2) the resultant multifactor market indexes are significantly priced in
cross-sectional tests of associated beta loadings with t-values exceeding 3.0 in most cases.

Keywords: market index; market factor; multifactors; efficient portfolios

1. Introduction

Cochrane (2011) has humorously alluded to the growing list of multifactors in asset
pricing as a “factor zoo”. With so many contenders as factors, what factors should be
used in an asset pricing model? Harvey et al. (2016) investigated over 300 proposed
multifactors in asset pricing models in an effort to discern significant factors versus false
discoveries. In addition, Chordia et al. (2020) examined false factor discoveries in asset
pricing by studying 2 million trading strategies with real data. Both studies recommended
that t-statistics associated with factor loadings in Fama and MacBeth (1973) cross-sectional
regression tests should exceed 3 to avoid false factor discoveries. This higher statistical
hurdle substantially reduces the number of acceptable factors.

Given a smaller set of factors, a multifactor mall problem still remains. For example,
assuming 20 valid factors, a large number of models are conceivable. Which combinations
of factors and models should be used? In this paper, we propose a solution to this problem.
Specifically, we aggregate numerous factors into a single market index. We hypothesize
that the CRSP market index (i.e., market portfolio proxy) can be combined with popular
multifactors to create more efficient aggregate market indexes dubbed multifactor market
indexes. The rationale for these new aggregate indexes is straightforward. If the CRSP
index and investable multifactors provide a well-specified asset pricing model for U.S.
stock returns, then combining them into a single mean-variance efficient portfolio should be
possible. Assuming that a multifactor market index is a linear combination that is efficient,
it should be significantly priced as a single factor in a market beta pricing model. Hence, a
large number of investable multifactors can be incorporated into a single market index to
develop low-dimensional and more parsimonious models. While numerous authors have
proven in theory that a combination of factor-mimicking portfolios is minimum variance
efficient (e.g., Huberman and Kandel (1987); Shanken (1987); Fama (1996); Shanken and
Weinstein (2006); Kan and Zhou (2008), and others), no previous studies to the authors’
knowledge have verified this result in empirical tests. Filling this gap in the literature, we
incrementally combine popular factors with the CRSP index to show that the resultant
aggregate market indexes are increasingly efficient and priced in the cross section of average
stock returns.

To construct efficient multifactor market indexes, we utilize portfolio weights for the
CRSP index and each multifactor based on their relative Sharpe ratios. In this regard, we
incrementally add five prominent multifactors, including size, value profit, investment,
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and momentum, to the value-weighted CRSP index. As expected, Sharpe ratios gradu-
ally increase as more multifactors are incorporated into the CRSP index. For example,
in the sample period July 1963 to December 2016, the CRSP index has a Sharpe ratio of
0.12 compared to 0.34 for a market index combining the CRSP index with the aforemen-
tioned five multifactors. GRS time-series regression tests indicate that market indexes
become gradually more efficient as multifactors are added. Importantly, cross-sectional
Fama and MacBeth regression tests show that multifactor market indexes become increas-
ingly significant as multifactors are incorporated into the CRSP index. We obtain t-values
associated with multifactor market index beta loadings greater than 3.0 for numerous
test asset portfolios, which exceeds the recommended threshold for statistical significance.
Hence, multifactors improve approximations of efficient market portfolio returns in the
sense that multifactor market indexes become significantly priced in the cross-section of
average stock returns.

Further analyses construct an aggregate industry index using our relative Sharpe
ratio weighting procedure. It is well known that industry portfolios are not priced by the
CRSP index and popular multifactors. By contrast, we find that our new industry index
is significantly priced using industry portfolios as test assets. We subsequently combine
industry factors and popular multifactors to form a more general multifactor market index
that garners high t-values typically ranging from 3 to 6 for a variety of test assets, in
addition to insignificant mispricing errors and significant pricing of industry portfolios.

Regarding model selection, we find that the momentum factor continues to be sig-
nificantly priced in cross-sectional tests even when incorporated in multimarket indexes.
Hence, we interpret this evidence to mean that momentum is a possible strong factor.
Of course, as more multifactors are incorporated into multifactor market indexes to boost
their efficiency, the hurdle for strong factors is raised. Future studies may well find that
momentum is not a strong factor in the case of more efficient market multifactor indexes.
More generally, it is likely that few strong factors exist, such that low-dimensional models
are possible.

We conclude that combining multifactors with the CRSP index enables the formation
of single market indexes that are efficient. Unlike many studies that reject market beta
using the CRSP market index and other stock market indexes, multifactor market indexes
lend support for the notion that asset returns are a linear function of a general market
index. An important implication is that asset pricing models incorporating a market factor
can benefit from multifactor market factors. Currently, the CRSP index continues to be
used as the market proxy in most asset pricing models even though it is not priced in
the cross section of stock returns. Multifactor market indexes that are significantly priced
can potentially lead to more parsimonious and robust asset pricing models. Since the
market factor is commonly used in many areas of corporate, investment, and institutional
finance, widespread applications of multifactor market indexes are possible in future
studies. Another implication is that similar efficient aggregate indexes can be constructed
in the real world for investment purposes, thereby benefiting many investors including
those saving for retirement.

Section 2 provides background discussion of multifactor market indexes. Section 3
combines the CRSP index with popular multifactors to form a variety of multifactor mar-
ket indexes based on U.S. stock returns. Descriptive statistics, times-series tests, and
cross-sectional tests of multifactor market indexes are provided, in addition to results
for an aggregate industry factor and discussion of momentum as a possible strong factor.
Section 4 concludes.

2. Multifactor Market Indexes

The Capital Asset Pricing Model (CAPM) of Treynor (1961, 1962), Sharpe (1964),
Lintner (1965), Mossin (1966), and Black (1972) is based on a mean-variance efficient market
portfolio computed as the value-weighted return on all marketable assets. Roll (1977), and
others have shown that this portfolio is a minimum variance portfolio if and only if beta
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associated with the market factor is priced for all assets in this portfolio. Unfortunately,
Fama and French (1992, 1993, 1995, 1996a, 1996b) found that CAPM beta loadings associated
with the market portfolio proxied by the CRSP stock index timates were not significantly
priced in the cross section of average stock returns. In view of this failure, they concluded
that CAPM beta was dead and proposed a three-factor model that augments the CRSP
market factor with largely orthogonal size and value factors defined as zero-investment
portfolios with long and short positions. The success of this multifactor innovation triggered
a plethora of related studies.

Due to the CAPM’s failure as discussed in the previous section, multifactor models
have arisen with theoretical support from Ross’ (1976) arbitrage pricing theory (APT)
and Merton’s (1973) intertemporal capital asset pricing model (ICAPM). Carhart (1997)
added a zero-investment momentum factor to the three-factor model to study mutual fund
performance. Subsequently, Chen and Zhang (2010) advanced another three-factor model
by replacing size and value with profit and investment factors. A related paper was later
published by Hou et al. (2014), which proposed a q-factor model with four factors (viz.,
market, size, investment, and return on equity) grounded in neoclassical investment q-
theory. Similar to the q-factor model, Fama and French (2015) added profit and investment
factors to their three-factor model to create a five-factor model. In addition, Stambaugh and
Yuan (2017) proposed a four-factor model including the market and size factors plus two
mispricing factors (viz., management and performance).1 Hou et al. (2018) added a growth
factor to the q-model. Barillas and Shanken (2018) formed a six-factor model by including
value and momentum factors. Additionally, Fama and French (2018) added momentum
to their five-factor model to form a six-factor model. Subsequently, Fama and French
(2020) proposed cross-section factors developed from Fama–MacBeth regressions as well
as conditional models with time-varying factor loadings. Many other models containing
different factors have been proposed in the asset pricing literature.2 This proliferation of
factors has resulted in a model mall problem. Which model should an academic researcher or
professional investment manager use? Is there a way to condense well-accepted factors
into a more parsimonious model?

Using the notation and discussion in Ferson (1995, 2019), multifactor models of the
expected return on the ith asset take the familiar cross-sectional form:

Et(Ri,t+1) = λ0t +
K

∑
k=1

biktλkt, for all i, (1)

where bi1t, . . . , biKt are time t conditional betas for asset i related to K risk factors, and
λkt are market-wide risk premiums for k = 1, . . . , K risk factors equal to the incremental
expected return per unit type-j beta. The intercept λ0t is the riskless return or expected
zero-beta rate conditionally uncorrelated with the K risk factor loadings if no riskless asset
exists. The conditional betas are estimated from the time-series factor model:

Ri,t+1 = ait +
K

∑
k=1

bijtFk,t+1, for all i, (2)

where Et(μi,t+1Fk,t+1) = Et(μi,t+1) = 0 for all i and k. The model is well-specified when
the factor portfolios form the tangency portfolio (i.e., ait = 0). As proven by many authors,
Equation (2) implies that a combination of K factor-mimicking portfolios is the minimum
variance efficient (see Grinblatt and Titman (1987); Huberman et al. (1987); Jobson and
Korkie (1982); Gibbons et al. (1989); Kan and Zhou (2008), and Ferson and Siegel (2009),
among others).

Extending this literature, MacKinlay (1993) argued that, if a linear combination of
factor portfolios cannot identify the efficient tangency portfolio, there exists an optimal
orthogonal portfolio of N assets, which when combined with K factor portfolios, forms
the tangency portfolio. This unique portfolio is orthogonal to the factor portfolios.3 Using
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this approach, he showed that a bound on the Sharpe ratio exists if the deviation from the
single factor model (e.g., CAPM) can be accomplished by a common component of the
residual variance. In other words, it is possible that the tangency portfolio can be located by
identifying a complete (but limited) set of orthogonal risk factors. This tangency portfolio
has the maximum squared Sharpe measure among all portfolios.

In this paper we employ multifactors to develop more efficient aggregate indexes
of the stock market. The value-weighted CRSP stock market index is used to proxy the
theoretical orthogonal optimal portfolio. We assume that all market information is known
and investors seek the most efficient portfolio based on available information. Given the
long-only portfolio excess return denoted as RL, we add k = 1, . . . , K orthogonal factor
portfolios to form new more efficient portfolios with higher Sharpe ratios. Factor portfolios
are investable zero-investment portfolios.4 We define the corresponding Sharpe ratios as

SL =
μL
σL

Sk =
μk
σk

, k = 1, . . . , K, (3)

where μ is the excess return, and σ is the volatility of the portfolio. Combining the long
portfolio with the first zero-investment (long/short) factor portfolio F1, the aggregate index
return RI is

RI = RL + x1F1, (4)

with variance equal to σ2
L + x2

1σ2
1 and Sharpe ratio

SI =
μL + x1μ1√

σ2
L + x2

1σ2
1

. (5)

The first order condition ∂SI/∂x1 gives

x1 =
S1

SL

σL
σ1

=
S2

1
S2

L

μL
μ1

. (6)

Now the Sharpe ratio for market index I can be written as

SI =
μL + (

S2
1

S2
L

μL
μ1
)μ1√

σ2
L + ( S1

SL

σL
σ1
)2σ2

1

=
(1 + S2

1
S2

L
)μL√

1 + S2
1

S2
L

σL

=

√
1 +

S2
1

S2
L

SL > SL (7)

Thus, this new market index portfolio is more efficient than the long-only portfolio
index. Upon continuing this process by incrementally adding more zero-investment factors
to candidate portfolio P, the market index portfolio’s efficiency is increased. As recognized
by MacKinlay (1993), the number of true risk factors will be limited even for increasing
numbers of assets in the market. Of course, if a candidate market index portfolio is the
tangency portfolio, it is not possible to increase the Sharpe ratio by combining it with
another zero-investment factor.5

It is worthwhile noting that Equation (7) can alternatively be written as

SI =
√

S2
L + S2

I . (8)
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After iteratively adding k = 1, . . . , K factors, the optimized Sharpe ratio is

SF =

√√√√ K

∑
k=1

S2
k =

√
μ′Σ−1μ, (9)

which is the ex post tangency portfolio defined by Gibbons et al. (1989). Note that this
approach does not provide the weight xi in Equation (6) to form efficient portfolio indexes.

In the next section we conduct empirical tests of these concepts. First, long/short
portfolios based on zero-investment portfolios (or factors) are added to the CRSP index to
determine whether more efficient market indexes can be constructed. The market indexes
should become increasingly efficient as zero-investment portfolios are added based on
size, value, profit, capital investment, and momentum. We also form a market index that
incorporates both the aforementioned multifactors plus zero-investment portfolios that
are long industry portfolios and short Treasury bills. Second, we perform time-series and
cross-sectional tests of multifactor market indexes to determine if they are significantly
priced and therefore efficient.

3. Empirical Tests

Here we report the empirical results for multifactor market indexes based on the
following popular risk factors: market (CRSP index), size (SMB), value (HML), profit
(RMW), capital investment (CMA), and momentum (MOM). Further analyses incorporate
zero-investment industry portfolios as well. Monthly returns for the value-weighted
CRSP market index, zero-investment multifactors, industry portfolios, and Treasury bills
are downloaded from Kenneth French’s website.6 Using the weighting procedure in the
previous section, we construct multifactor market indexes that combine the CRSP index
with five multifactors.

Because factors are not uncorrelated, we orthogonalize them as follows. Denoting the
current market index return as R(IK) (e.g., CRSP index) and the multifactor return (e.g.,
size factor) to be added to this market index as Fk+1, we regress Fk+1 on the excess market
return R(IK,t)− R f ,t over t sample period months:

Fk+1,t = αk+1 + βk+1[R(IK,t)− R f ,t] + εk+1,t. (10)

The orthogonalized multifactor is Fnew
k+1,t = Fk+1,t − βk+1[R(IK,t)− R f ,t]. The portfolio

IK+1 return combining the previous portfolio IK return plus the multifactor portfolio
return is:

R(IK+1,t) = R(IK,t) + xk+1Fnew
k+1,t. (11)

After substituting Fnew
k+1,t and rearranging terms, we have:

R(IK+1,t) = R f ,t + (1 − xk+1βk)[R(IK,t)− R f ,t] + xk+1Fk+1,t. (12)

This equation decomposes the new multifactor market index return R(IK+1,t) into the
riskless rate plus weighted premiums for the previous index excess return R(IK,t)− R f ,t
and newly-added zero-investment factor return Fk+1,t. Notice that the estimated βk+1
coefficient in Equation (10) affects the relative weights in the construction of return series
R(IK+1,t). As noted by an anonymous referee, errors in estimated coefficients will affect
these weights and, in turn, multifactor market index returns. This potential bias is beyond
the scope of the present research and is therefore left for future research.

To determine the weight xk for the new factor in this multifactor market index,
we apply Equation (6). These steps are repeated to incrementally add the five popu-
lar long/short factors Fk+1 (k + 1 = 2, . . . , 6) to each successive market index IK+1,t in
month t to create five new market indexes with respective monthly return series R(IK+1,t)
(i.e., R(I2, t), . . . , R(I6, t) ). The return series R(IK,t) = R(I1, t) is the CRSP index.
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3.1. Descriptive Statistics

Based on the sample period from July 1963 to December 2016, descriptive statistics in
Table 1 are provided for the CRSP index (denoted I1), five multifactors (i.e., SMB, HML,
RMW, CMA, and MOM), and multifactor market indexes combining the CRSP index with
various multifactors (denoted I2 to I6). The familiar CRSP index (I1) has mean excess
returns of 0.51 percent per month, standard deviation of 4.42 percent, and Sharpe ratio of
0.12. With the exception of momentum, the descriptive statistics for the multifactors are not
too different from one another. Momentum (MOM) has a noticeably higher mean return
of 0.66 percent per month compared to the excess return on the CRSP index, whereas the
other multifactors have mean returns less than the excess return on the CRSP index in the
range of 0.24 percent to 0.37 percent.

Table 1. Descriptive statistics for the CRSP index, five multifactors, and market indexes combining
the CRSP index with various mult-factors and industry portfolios: July 1963–December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides
descriptive statistics for monthly excess returns (over the Treasury bill rate) on the value-weighted
CRSP index, zero-investment portfolio returns of five popular multifactors, and excess returns of
seven market indexes combining CRSP index excess returns with these multifactors in addition
to industry excess returns. We downloaded the following multifactors and industry returns from
Kenneth French’s website: size (SMB), value (HML), profit (RMW), capital investment (CMA),
momentum (MOM), and 30 industries. Multifactor market indexes are formed using the following
steps. First, the size (SMB) factor monthly returns are regressed on CRSP index (I1) excess returns
over the Treasury bill rate. The residual term from this regression is utilized as the orthogonalized
factor. Second, this orthogonalized size factor is added to the CRSP index using Equation (11) to
compute the return for the new multifactor market index I2 as R(I2) = R(I1) + x1SMB. Third, value
(HML) factor returns are regressed on the new R(I1) + x1SMB portfolio excess returns to obtain the
orthogonalized value factor. This residual value factor is added to the CRSP + SMB portfolio to get
market index I3 = CRSP + x1SMB + x2HML. Fourth, the last step is repeated to sequentially create
market index I4 = CRSP + x1SMB + x2HML + x3RMW, market index I5 = CRSP + x1SMB + x2HML +
x3RMW + x4CMA, and market index I6 = CRSP + x1SMB + x2HML + x3RMW + x4CMA + x5MOM.
We drop the CMA multifactor to form market index I7 = CRSP + x1SMB + x2HML + x3RMW +
x5MOM. Lastly, 30 industry excess returns are added to create market index I8. For comparison
purposes, mean excess returns, standard deviations of returns, and Sharpe ratios for multifactors and
different market indexes are computed.

Portfolios Mean Std. Dev. Sharpe Ratio

I1 = CRSP 0.51 4.42 0.12
SMB 0.27 3.04 0.09
HML 0.37 2.81 0.13
RMW 0.24 2.23 0.11
CMA 0.31 2.01 0.15
MOM 0.66 4.22 0.16

I2 = CRSP + SMB 0.64 4.94 0.13
I3 = CRSP + SMB + HML 1.71 8.10 0.21

I4 = CRSP + SMB + HML + RMW 2.66 10.09 0.26
I5 = CRSP + SMB + HML + RMW + CMA 2.98 10.69 0.28

I6 = CRSP + SMB + HML + RMW + CMA + MOM 4.49 13.13 0.34
I7 = CRSP + SMB + HML + RMW + MOM 4.22 12.72 0.33

I8 = CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors 6.19 15.41 0.40

Referring to the market index results, the index portfolio denoted I2 = CRSP + SMB
in Table 1 has mean excess return, volatility, and Sharpe ratio characteristics similar to
momentum. As more multifactors are added to the CRSP index, new market indexes have
noticeably higher mean excess returns, volatility, and, more importantly, Sharpe ratios
compared to the CRSP index. For example, for the CRSP index plus all five multifactors
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(denoted I6 = CRSP + SMB + HML + RMW + CMA + MOM), the mean excess return per
month jumps to 4.49 percent, standard deviation of returns to 13.13 percent, and Sharpe
ratio to 0.34. The latter Sharpe ratio is almost three times that of the CRSP index. Hence,
even though this market index has considerably higher total risk compared to the CRSP
index, its excess return per unit risk is much higher than this commonly-used market
index. We computed a variety of multifactor market indexes with different combinations
of multifactors and find that dropping the CMA multifactor from the market index (i.e.,
I7 = CRSP + SMB + HML + RMW + MOM) has little effect on the descriptive statistics of
the market index (e.g., Tables 1 and 2 show that the Sharpe ratio only decreases from 0.34
to 0.33).

Table 2. Descriptive statistics for scaled portfolio indexes combining the CRSP index with multifactors:
July 1963–December 2016. This table repeats Table 1 by scaling mean monthly portfolio index returns
to contain no leverage. As discussed in the text, to orthogonalize a zero-investment factor (e.g.,
F1), we regress F1,t’s returns on the CRSP index R(I1,t) over t sample period months as follows:
F1,t = α1 + β1R(I1,t) + ε1,t. The orthogonalized multifactor is Fnew

1,t = F1,t − β1R(I1,t). Using notation
from Equation (11), the more efficient portfolio I2’s return is computed as: R(I2,t) = R(I1,t) + x1Fnew

1,t .
We apply Equation (6) to determine the weight x1 for the factor return Fnew

1,t in the new market index
I2. Finally, we divide the mean return R(I2) over the sample period by the term 1 + x1(1 − β1). Each
portfolio index is deleveraged by means of this process.

Portfolios Mean Std. Dev. Sharpe Ratio

I1 = CRSP 0.51 4.42 0.12
SMB 0.27 3.04 0.09
HML 0.37 2.81 0.13
RMW 0.24 2.23 0.11
CMA 0.31 2.01 0.15
MOM 0.66 4.22 0.16

I2 = CRSP + SMB 0.40 3.07 0.13
I3 = CRSP + SMB + HML 0.38 1.82 0.21

I4 = CRSP + SMB + HML + RMW 0.33 1.27 0.26
I5 = CRSP + SMB + HML + RMW + CMA 0.33 1.18 0.28

I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.38 1.11 0.34
I7 = CRSP + SMB + HML + RMW + MOM 0.39 1.18 0.33

I8 = CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors 0.40 0.98 0.40

In constructing aggregate market indexes combining the CRSP index with the SMB,
HML, RMW, CMA, and MOM multifactors, the weights for factors denoted xk in Equation (6)
for multifactor market indexes are as follows:7

I2 = 0.533 CRSP + 0.467 SMB;
I3 = 0.313 CRSP + 0.223 SMB + 0.464 HML;
I4 = 0.231 CRSP + 0.175 SMB + 0.248 HML + 0.346 RMW;
I5 = 0.232 CRSP + 0.175 SMB + 0.073 HML + 0.203 RMW + 0.317 CMA;
I6 = 0.197 CRSP + 0.120 SMB + 0.123 HML + 0.159 RMW + 0.203 CMA + 0.198 MOM;
I7 = 0.202 CRSP + 0.130 SMB + 0.202 HML + 0.236 RMW + 0.230 MOM.
In most of the indexes, SMB gets a relatively lower weight and therefore contributes

less to increasing the Sharpe ratio of indexes than other factors. No individual factor
appears to dominate the other factors in terms of relative weight. In general, all of the
factors are important in forming aggregate indexes.

Our multifactor market indexes have noticeably higher total risk than the CRSP index
due to increasing leverage in these portfolios. By deleveraging these indexes, a more
accurate assessment of how multifactors affect both mean excess returns and their standard
deviation can be obtained. In this respect, Sharpe ratios adjust mean excess returns for
total risk but do not reveal these component effects. To adjust for leverage, we rescale the
market index portfolios to a zero leverage level. As an example, consider portfolio index
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I2 combining the CRSP index with the size factor denoted F1. We initially orthogonalize
size factor returns F1. To simplify the derivation and avoid abusing notations, we sub-
stitute R(I1,t) for R(I1, t)− R f ,t = Rm,t − R f ,t in Equation (10). Now the orthogonalized
multifactor is Fnew

1,t = F1,t − β1R(I1,t). Portfolio index I2’s risk premium is computed as:
R(I2,t) = R(I1,t) + x1Fnew

1,t = R(I1,t) + x1[F1,t − β1R(I1,t)]. To deleverage the index I2’s re-

turn, we divide the mean return R(I2) over the sample period by the term 1 + x1(1 − β1).8

This process is repeated for portfolio indexes’ returns R(I3) to R(I7). In this way, each
portfolio index is deleveraged.

Portfolio index returns with no leverage are shown in Table 2. As in Table 1, the highest
Sharpe ratios are attained by indexes I6, I7, and I8 at 0.34, 0.33, and 0.40, respectively, which
are approximately three times the CRSP index at 0.12. Notice that most of this gain in
efficiency is due to decreasing the standard derviation of returns. Indexes I2 to I8 have
lower mean returns than the CRSP index but substantially lower standard deviations of
returns. Portfolios I5 to I8 have less than one-third of the standard deviation of CRSP index
returns. Thus, adding multifactors and industry factors to the CRSP index provides sizable
diversification benefits in the form of lower total risk. As multifactors and industry factors
are added to the market index, new multifactor market indexes gradually become more
efficient with higher Sharpe ratios due to diversification gains.

3.2. Time-Series Tests of Multifactor Market Indexes

Stambaugh (1982) created alternative market indexes combining common stocks with
bonds, real estate, and consumer durables and found very high correlations between their
time-series returns. Not surprisingly, empirical tests of the CAPM were not sensitive to
the composition of these market indexes. Consistent with these findings, Black (1995)
commented that “ . . . all candidates for the U.S. market portfolio are highly correlated. . . ”,
including U.S. domestic and world market indexes, equal- and value-weighted portfolios,
and human capital and real estate portfolios of traded assets.9 For this reason, he believed
that the problem of selecting an appropriate market index was not severe (even though it
tends to flatten the line between expected return and beta). Related work by Jagannathan
and Wang (1996) augmented the value-weighted market index with a proxy for human cap-
ital to more comprehensively measure the return on aggregate wealth. Unlike Stambaugh,
rather than combining returns to stock market capital and human capital to form a single
market index, they treated them as two different market factors in a CAPM market model
framework. Subsequent cross-sectional tests indicated that human capital was significantly
priced but not the value-weighted market index.10

In Table 3 we report the correlation coefficients between the time-series monthly
returns for different multifactors and market indexes. The multifactors themselves tend to
have relatively low correlation coefficients, with the exception of HML and CMA at 0.69. As
a multifactor is added to a market index, their correlation naturally increases (e.g., the CRSP
index and SMB have a correlation of 0.28 compared to the correlation of market index CRSP
+ SMB and SMB at 0.68). In addition, as multifactors are progressively added to create new
market indexes, the correlation of the CRSP index with market indexes decreases. Strikingly,
the correlation between the CRSP index and market index I6 containing the five multifactors
is only 0.06. Multifactor market indexes are not only more efficient than the CRSP index
but not highly correlated with this index (and other commonly-used market indexes) due
to including the net effects from other risk factors with relatively low correlations with the
CRSP index.

Gibbons et al. (1989) developed a time-series regression test of the CAPM. The GRS
statistic tests estimated whether the αis in the CAPM market model (1) for i = 1, . . . , A
test assets jointly equal zero. Alternatively, given a set of test assets, a riskfree rate, and
a market index, the results can be interpreted as a test of whether the market index is a
mean-variance efficient portfolio (see Fama 2017). Using monthly returns for Fama and
French’s 25 size and book-to-market (value) sorted test asset portfolios downloaded from
Kenneth French’s website for the sample period July 1963 to December 2016, we estimated
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market model (1) with different market indexes. The GRS test statistics in Table 4 indicate
that none of the market indexes is a mean-variance efficient portfolio (i.e., all F-values
are statistically significant at the 1 percent level).11 However, as multifactors are added to
create new market indexes, GRS statistics gradually decrease from 4.77 for the CRSP index
to 2.77 for market index I7 = CRSP + SMB + HML + RMW + MOM. We infer that, for these
test assets, market indexes become gradually more efficient as multifactors are added. In
this regard, more multifactors are needed to achieve an insignificant GRS statistic. Given
the large number of factors proposed by researchers as mentioned in the introduction, this
possibility is plausible.

Table 3. Correlation coefficients between the monthly returns of multifactors and market indexes:
July 1963–December 2016. Based on CRSP stock return data in the sample period July 1963 to
December 2016, this table provides correlation coefficients between different market indexes as well
as multifactor (zero-investment portfolio) returns. Monthly returns for the value-weighted CRSP
index and popular multifactors are downloaded from Kenneth French’s website. The multifactors
are: size (SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM).
The market indexes are: I1 = CRSP index, I2 = CRSP + SMB, I3 = CRSP + SMB + HML, I4 = CRSP +
SMB + HML + RMW, I5 = CRSP + SMB + HML + RMW + CMA, I6 = CRSP + SMB + HML + RMW +
CMA + MOM, I7 = CRSP + SMB + HML + RMW + MOM, and I8 = CRSP + SMB + HML + RMW +
CMA + MOM + 30 Industry Factors. The text and Table 1 discuss the process for forming these
market indexes that comprise different combinations of CRSP index excess returns, multifactors, and
industry excess returns.

CRSP SMB HML RMW CMA MOM I2 I3 I4 I5 I6 I7 I8

I1 1.00 0.28 −0.26 −0.23 −0.38 −0.13 0.90 0.51 0.33 0.15 0.06 0.21 0.27
SMB 1.00 −0.08 −0.35 −0.10 −0.02 0.68 0.48 0.23 0.16 0.13 0.19 0.18
HML 1.00 0.07 0.69 −0.19 −0.24 0.63 0.63 0.78 0.59 0.45 0.12
RMW 1.00 −0.04 0.11 −0.34 −0.21 0.41 0.34 0.37 0.43 0.26
CMA 1.00 −0.01 −0.34 0.29 0.25 0.55 0.49 0.21 0.38
MOM 1.00 −0.11 −0.24 −0.16 −0.14 0.46 0.47 0.50

I2 1.00 0.61 0.36 0.19 0.11 0.25 0.29
I3 1.00 0.80 0.79 0.57 0.56 0.33
I4 1.00 0.94 0.75 0.79 0.47
I5 1.00 0.81 0.75 0.53
I6 1.00 0.96 0.77
I7 1.00 0.73
I8 1.00

Table 4. GRS tests using 25 size-value sorted test asset portfolios. This table reports GRS statistic
results proposed by Gibbons et al. (1989), which tests whether all estimated intercepts (αs) for the
test assets jointly equal zero. Our test assets are the monthly returns for the 25 size-value portfolios
downloaded from Kenneth French’s data website for the sample period July 1963 to December 2016.
The GRS test is conducted for the CAPM market model estimated with the following market indexes:
I1 = CRSP index, I2 = CRSP + SMB, I3 = CRSP + SMB + HML, I4 = CRSP + SMB + HML + RMW,
I5 = CRSP + SMB + HML + RMW + CMA, I6 = CRSP + SMB + HML + RMW + CMA + MOM,
I7 = CRSP + SMB + HML + RMW + MOM, and I8 = CRSP + SMB + HML + RMW + CMA + MOM +
30 Industry Factors. The text and Table 1 discuss the process for forming these market indexes that
represent different combinations of CRSP index excess returns, multifactors, and industry excess
returns. The GRS statistic follows an F(25, 642− 25− 1) distribution. Greater GRS test values indicate
larger absolute values of estimated αs.

I1 = CRSP I2 I3 I4 I5 I6 I7 I8

F-value 4.78 4.70 3.85 3.38 3.55 2.86 2.77 2.81
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3.3. Cross-Sectional Fama-MacBeth Tests of Multifactor Market Indexes

An important test of the efficiency of market indexes augmented with multifactors
is whether they are significantly priced in the cross section of average stock returns. For
this purpose, using monthly excess returns for 25 size-value sorted test asset portfolios
downloaded from French’s website, we conduct Fama and MacBeth (1973) tests of market
beta associated with different market indexes incorporating popular multifactors. Tests
incorporating industry factors are provided in the forthcoming Section 3.6.

We begin by estimating time-series regressions for the full sample period using the
excess returns for each of the 25 portfolios and 1 of the market indexes. Monthly index
returns are scaled to contain no leverage (see Table 2). As such, the estimated index
premiums can be compared to the historical market premium (i.e., 0.51 percent per month
in Table 1). Rolling monthly cross-sectional regressions are estimated with excess returns in
month t and the estimated full sample betas for all sample period months t = 1, . . . , T. From
these regressions we estimate the market price of beta risk, or λ̂Mt, which are averaged
over t = 1, . . . , T sample months to obtain λ̂M. This period-by-period regression approach
has the advantage that the t-statistic associated with λ̂M takes into account the covariance
of regression residuals and the independent variables without requiring estimates of
the covariances (see Fama 2017). The analyses are repeated for each of the portfolio
market indexes.

Results for the cross-sectional tests are reported in Table 5. Consistent with earlier stud-
ies, the CRSP index (I1) is not significantly priced, as the market price of risk λ̂M = −0.43
(t = −1.06). Additionally, index I2 = CRSP + SMB produces a market proxy that is not
priced with λ̂M = 0.00 (t = 0.00). However, upon adding both SMB and HML to the CRSP
index to form index I3, we obtain λ̂M = 0.34 (t = 3.80), which is economically meaningful
and statistically significant at less than a one percent level. Further adding RMA, CMA, and
MOM multifactors to the CRSP index to form index I6 yields similar results. Notice that
the strongest finding is for multifactor market index I7 = CSRP + SMB + HML + RMW +
MOM (excluding CMA), which yields λ̂M = 0.38 (t = 4.04). In addition, the estimated
mispricing term α̂ is insignificantly different from zero for the following market indexes:
I3 = CRSP + SMB + HML, I4 = CRSP + SMB + HML + RMW, and I7 = CRSP + SMB + HML +
RMW + MOM. Finally, adjusted R2 values jump from 9 percent for the CRSP index to over
50 percent for the combined CRSP plus multifactor portfolios, with the exception of the
CRSP + SMB portfolio.12 For market index I7 = CRSP + SMB + HML + RMW + MOM, the
adjusted R2 value is 0.71, which indicates a fairly strong goodness-of-fit.

Importantly, the t-values associated with a number of multifactor market indexes
well exceed recent standards for the significance of an asset pricing factor. As mentioned
earlier, Harvey et al. (2016) and Chordia et al. (2020) have recommended that acceptable
factors should exceed a t-statistic threshold of 3.0 or more. We infer that market indexes
combining the CRSP index and multifactor portfolios provide market portfolio proxies that
are priced in the cross-section of average stock returns and therefore are relatively more
efficient portfolios than the CRSP index.

3.4. Cross-Sectional Fama-MacBeth Tests of Multifactors

Here we compare the cross-sectional test results for the CAPM, three-factor, and five-
factor models, in addition to the five-factor model augmented with the momentum factor.
The results in Table 6 show that the five-factor model plus momentum has insignificant
mispricing (i.e., α̂ = 0) and a higher estimated adjusted R2 value (i.e., 83 percent) than the
other models. Momentum has a t-value of 4.71, which exceeds the t-values of other factors.
Across different models, the SMB, HML, and RMW factors are consistently significant and
exceed 3 in some instances, CMA is not priced, and the multifactor models substantially
boost the estimated adjusted R2 values relative tthe CAPM. Note that our multifactor
market index I7 (see Table 5) outperforms the three- and five-factor models, with similar R2

value but insignificant α̂ mispricing, and performs almost as well as the five-factor model
plus momentum.
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Table 5. Cross-sectional asset pricing tests of market beta for different market indexes using 25 size-
value sorted test asset portfolios: July 1963–December 2016. Based on CRSP stock return data in
the sample period July 1963 to December 2016, this table provides Fama and MacBeth (1973) cross-
sectional tests of the value-weighted CRSP index as well as market indexes combining the CRSP index
with popular multifactors. Downloaded from Kenneth French’s website, the multifactors are: size
(SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM). Multifactor
market indexes are formed using the following steps. First, the size (SMB) factor monthly returns are
regressed on CRSP index (I1) excess returns over the Treasury bill rate. The residual term from this
regression is utilized as the orthogonalized factor. Second, this orthogonalized size factor is added
to the CRSP index using Equation (11) to compute the return for the new multifactor market index
I2 as R(I2) = R(I1) + x1SMB. Third, value (HML) factor returns are regressed on the new R(I1) +
x1SMB portfolio excess returns to obtain the orthogonalized value factor. This residual value factor
is added to the CRSP + SMB portfolio to get market index I3 = CRSP + x1SMB + x2HML. Fourth,
the last step is repeated to sequentially create market index I4 = CRSP + x1SMB + x2HML + x3RMW,
market index I5 = CRSP + x1SMB + x2HML + x3RMW + x4CMA, and market index I6 = CRSP +
x1SMB + x2HML + x3RMW + x4CMA + x5MOM. In addition, we drop the CMA multifactor to form
market index I7 = CRSP + x1SMB + x2HML + x3RMW + x5MOM. Monthly returns for 25 size-value
test assets are downloaded from French’s data website (i.e., the value firm characteristic corresponds
to the book-to-market ratio). A time-series regression using monthly excess returns is run for the
full sample period to estimate CAPM betas for each of the 25 tests assets using the CRSP index.
Time-series regression analyses are repeated for the other market indexes. Following the procedure in
the text and Table 2, monthly market index returns are scaled to contain no leverage. Cross-sectional
tests are conducted by estimating monthly rolling cross-sectional regressions with excess returns
and full sample betas for all sample months. The resultant monthly series of estimated market
prices of beta risk are averaged over all sample months to estimate λ̂M (and associated t-statistics are
in parentheses).

Indexes α̂ λ̂M Adj. R2

I1 = CRSP 1.20 −0.43 0.09
(3.19) (−1.06)

I2 = CRSP + SMB 0.73 0.00 0.00
(2.970 (0.00)

I3 = CRSP + SMB + HML 0.08 0.34 0.54
(0.34) (3.80)

I4 = CRSP + SMB + HML + RMW 0.22 0.28 0.61
(0.86) (3.70)

I5 = CRSP + SMB + HML + RMW + CMA 0.48 0.21 0.56
(2.06) (3.27)

I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.54 0.26 0.61
(2.44) (3.43)

I7 = CRSP + SMB + HML + RMW + MOM 0.24 0.38 0.71
(0.95) (4.04)

We next consider whether a multifactor is priced when the market index contains
the multifactor portfolio. First, we create residual returns for the 25 size-value portfolios
(denoted Rres

p,t) as follows:

Rres
p,t = Rp,t − R f ,t − βp[R(IK,t)− R f ,t], (13)

where Rp,t − R f ,t is the excess portfolio return in month t, and R(IK,t)− R f ,t is the excess
market index return as defined in Equation (11), and βp is the estimated beta coefficient for
portfolio p = 1, . . . , 25. We employ market indexes I1 to I7 defined earlier in this section.
Second, using monthly residual returns and multifactor returns for the full sample period,
we run time-series regressions of residual returns on the multifactor returns for SMB, HML,
RMW, CMA, and MOM for each of the 25 portfolios. Third, and last, using monthly average
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portfolios’ residual returns, monthly rolling cross-sectional regressions are run as before to
estimate the market prices of risk for the multifactors.

Table 6. Cross-sectional asset pricing tests of the CRSP market factor and five popular multifactors:
July 1963–December 2016. Based on CRSP stock return data in the sample period July 1963 to
December 2016, this table provides Fama and MacBeth (1973) cross-sectional tests of the market
factor plus five popular multifactors. Downloaded from Kenneth French’s website, the factors are:
CRSP market index (M), size (SMB), value (HML), profit (RMW), capital investment (CMA), and
momentum (MOM). Test assets are the Fama–French 25 size-value portfolios downloaded from
French’s data website. For the full sample period, a time-series regression is run using monthly excess
returns for test assets as the dependent variable and the CRSP value-weighted market index excess
return plus different multifactor returns as the independent variables. Using estimated factor loadings
for each of the 25 test asset portfolios, cross-sectional tests are conducted by estimating monthly
rolling cross-sectional regressions with monthly excess returns and full sample betas for all sample
months. Resultant monthly series of estimated prices of beta risk for the kth factor (k = 1, . . . , 6) are
averaged over all sample months to estimate λ̂k (and associated t-statistics are in parentheses).

Index α̂ λ̂M λ̂SMB λ̂HML λ̂RMW λ̂CMA λ̂MOM Adj. R2

CAPM 1.20 −0.43 0.09
(3.19) (−1.06)

Three-factor 1.27 −0.73 0.22 0.40 0.67
(4.83) (−2.31) (1.78) (3.50)

Five-factor 1.02 −0.53 0.30 0.36 0.48 −0.02 0.74
(3.56) (−1.58) (2.47) (3.15) (2.82) (−0.10)

Five-factor + MOM 0.28 0.26 0.33 0.39 0.61 −0.14 2.94 0.83
(0.82) (0.69) (2.68) (3.47) (3.44) (−0.80) (4.71)

The empirical results in Table 7 indicate that, with the exception of momentum (MOM),
multifactors are not normally priced in the cross-section when the market index contains
the respective multifactors. For example, for market indexes I1 and I2 comprised of the
CRSP index and CRSP + SML, respectively, HML is significantly priced with λ̂HML = 0.50
(t = 4.91) and 0.61 (t = 4.93). However, for market index I3 (viz., CRSP + SMB + HML)
containing the HML portfolio, the multifactor HML is not priced with λ̂HML = −0.25
(t = −1.13). RMW is priced using market indexes I1, I2, I3, and I6 but not for I4 and I5

containing the RMW portfolio.13 Unlike the other multifactors, MOM consistently remains
significantly priced across all market indexes, even when the MOM portfolio is included in
market indexes I6 and I7. For this reason, we will refer to MOM as a possible strong factor
in forthcoming analyses of two-factor models comprised of multifactor market indexes
and the momentum factor. From these results we infer that, with the exception of MOM,
multifactors are not generally priced when they are incorporated in the market index. Lastly,
as multifactors are added to the market index, the explanatory power of the multifactors
diminishes (e.g., from 90 percent for the CRSP market index I1 to only 42 percent for the
multifactor market index I7 containing SMB, HML, RMW, and MOM).14
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Table 7. Cross-sectional asset pricing tests of multifactors using the excess residual returns of 25 size-
value sorted test assets with respect to market index excess returns: July 1963–December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides Fama
and MacBeth (1973) cross-sectional tests of five popular multifactors. Downloaded from Kenneth
French’s website, the multifactors are: size (SMB), value (HML), profit (RMW), capital investment
(CMA), and momentum (MOM). Test assets are monthly excess returns (denoted Ri,t − R f ,t) for
Fama–French 25 size-value portfolios downloaded from French’s data website. The residuals for
test assets are computed as Rres

i,t = Ri,t − R f ,t − β̂iR(IK,t), i = 1, . . . , 25 where R(IK,t) is the monthly
excess return for one of seven different market indexes (K = 1, . . . , 7). The text and Table 1 discuss
the process for forming market indexes that represent different combinations of the CRSP index
and multifactors. We denote these market indexes as follows: I1 = CRSP index, I2 = CRSP + SMB,
I3 = CRSP + SMB + HML, I4 = CRSP + SMB + HML + RMW, I5 = CRSP + SMB + HML + RMW +
CMA, and I6 = CRSP + SMB + HML + RMW + CMA + MOM, in addition to I7 = CRSP + SMB +
HML + RMW + MOM. For the full sample period, a time-series regression is run using monthly
residual returns as the dependent variable and multifactor returns as the independent variables to
estimate multifactor betas for each of the 25 test asset portfolios. Cross-sectional tests are conducted
by estimating monthly rolling cross-sectional regressions with monthly residual returns and full
sample betas for all sample months. The resultant monthly series of estimated multifactor prices of
beta risk for the kth factor (k = 1, . . . , 5) are averaged over all sample months to estimate λ̂k (and
associated t-statistics are in parentheses).

Index α̂ λ̂SMB λ̂HML λ̂RMW λ̂CMA λ̂MOM Adj. R2

I1 0.03 0.11 0.59 0.76 0.08 3.42 0.90
(1.21) (0.83) (4.91) (4.30) (0.38) (6.01)

I2 0.09 −0.33 0.61 0.87 0.09 3.34 0.91
(5.39) (−1.59) (4.93) (4.88) (0.40) (5.98)

I3 0.15 −0.20 −0.25 0.79 −0.35 3.50 0.72
(2.81) (−1.02) (−1.13) (4.37) (−2.17) (6.11)

I4 0.63 0.22 0.17 0.38 −0.12 2.44 0.66
(3.60) (1.31) (0.57) (1.70) (−0.86) (4.18)

I5 0.24 0.14 −0.47 0.32 −0.58 3.23 0.80
(1.39) (0.97) (−1.45) (1.38) (−2.74) (5.48)

I6 0.83 0.35 0.57 0.62 −0.01 1.51 0.70
(3.63) (2.40) (1.69) (2.63) (−0.03) (2.63)

I7 0.90 0.37 0.53 0.58 0.03 1.25 0.42
(3.94) (2.27) (2.10) (2.37) (0.17) (2.34)

3.5. Robustness Tests with Different Test Asset Portfolios

As a robustness check, we repeat the cross-sectional tests in Table 8 using 25 size-value
sorted portfolios for a variety of different test asset portfolios available on French’s data
website. The following test assets are used: 25 value-investment portfolios, 25 profit-
investment portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-
investment portfolios, 32 size-value-profit portfolios, 32 size-profit-investment portfolios,
and 30 industry portfolios. In general, the results for these portfolios corroborate our
findings in Table 5. The t-values associated with market indexes I4 to I7 have ranges as
follows: 2.32 to 2.52 for 25 value-investment portfolios in Panel A; 3.34 to 3.61 for 25 profit-
investment portfolios in Panel B; 4.16 to 4.54 for 25 size-investment portfolios in panel C;
3.85 to 3.89 for 25 size-profit portfolios in Panel D; 3.33 to 3.61 for 32 size-value-investment
portfolios in Panel E; 4.49 to 4.91 for 32 size-value-profit portfolios in Panel F; 5.85 to 6.53 for
32 size-profit-investment portfolios in Panel G; and –0.01 to 0.59 for 30 industry portfolios
in Panel H. Highlighting the results for the size-profit-investment portfolios in Panel G,
the results are as follows: λ̂M = 0.45 (t = 5.85) for I4, λ̂M = 0.37 (t = 6.20) for I5, λ̂M = 0.42
(t = 6.53) for I6, and λ̂M = 0.51 (t = 6.36) for I7. Mispricing terms α are insignificant
for these multifactor market indexes with the exception of I6. Adjusted R2 values range
from 0.67 to 0.76. Together, these results corroborate our earlier findings in Table 5 using
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size-value test asset portfolios. In addition, the results are comparable to the the three-factor,
five-factor, and five-factor plus momentum models in Table 6.

Table 8. Robustness checks for cross-sectional asset pricing tests of market beta for different market
indexes using a variety of test asset portfolios: July 1963–December 2016. Based on CRSP stock return
data in the sample period July 1963 to December 2016, this table provides Fama and MacBeth (1973)
cross-sectional tests of the value-weighted CRSP index as well as market indexes combining the
CRSP index with popular multifactors. Downloaded from Kenneth French’s website, the multifactors
are: size (SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM).
Multifactor market indexes are formed using the following steps. First, the size (SMB) factor monthly
returns are regressed on CRSP index (I1) excess returns over the Treasury bill rate. The residual term
from this regression is utilized as the orthogonalized factor. Second, this orthogonalized size factor is
added to the CRSP index using Equation (11) to compute the return for the new multifactor market
index I2 as R(I2) = R(I1) + x1SMB. Third, value (HML) factor returns are regressed on the new R(I1) +
x1SMB portfolio excess returns to obtain the orthogonalized value factor. This residual value factor is
added to the CRSP + SMB portfolio to get market index I3 = CRSP + x1SMB + x2HML. Fourth, the last
step is repeated to sequentially create market index I4 = CRSP + x1SMB + x2HML + x3RMW, market
index I5 = CRSP + x1SMB + x2HML + x3RMW + x4CMA, and market index I6 = CRSP + x1SMB +
x2HML + x3RMW + x4CMA + x5MOM. In addition, we drop the CMA multifactor to form market
index I7 = CRSP + x1SMB + x2HML + x3RMW + x5MOM. Following the procedure in the text and
Table 2, monthly market index returns are scaled to contain no leverage. Monthly returns for a variety
of test assets are downloaded from French’s data website: 25 value-investment portfolios, 25 profit-
investment portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment
portfolios, 32 size-value-profit portfolios, 32 size-profit-investment portfolios, and 30 industry portfo-
lios (see French’s website for details of these portfolios). A time-series regression is run using monthly
excess returns for the CRSP index for the full sample period to estimate CAPM betas for each of the
tests assets. Time-series regression analyses are repeated for the other market indexes. Cross-sectional
tests are conducted by estimating monthly rolling cross-sectional regressions with excess returns and
full sample betas for all sample months. The resultant monthly series of estimated market prices
of beta risk are averaged over all sample months to estimate λ̂M (and associated t-statistics are in
parentheses).

Panel A: 25 Value-Investment Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 0.77 2.93 −0.11 −0.34 −0.04
I2 = CRSP + SMB 0.49 2.41 0.13 0.75 −0.01

I3 = CRSP + SMB + HML 0.32 1.60 0.21 2.40 0.51
I4 = CRSP + SMB + HML + RMW 0.33 1.60 0.19 2.32 0.48

I5 = CRSP + SMB + HML + RMW + CMA 0.45 2.40 0.16 2.47 0.54
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.49 2.60 0.21 2.52 0.53

I7 = CRSP + SMB + HML + RMW + MOM 0.30 1.38 0.29 2.39 0.50

Panel B: 25 Profit-Investment Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 1.29 4.91 −0.69 −2.23 0.25
I2 = CRSP + SMB 1.05 5.13 −0.35 −1.95 0.19

I3 = CRSP + SMB + HML 0.45 2.10 0.09 0.74 −0.02
I4 = CRSP + SMB + HML + RMW 0.00 0.01 0.43 3.61 0.52

I5 = CRSP + SMB + HML + RMW + CMA 0.36 1.70 0.26 3.36 0.54
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.46 2.32 0.29 3.34 0.59

I7 = CRSP + SMB + HML + RMW + MOM 0.17 0.65 0.44 3.40 0.56
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Table 8. Cont.

Panel C: 25 Size-Investment Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 1.04 3.83 −0.28 −0.84 0.01
I2 = CRSP + SMB 0.62 2.94 0.07 0.43 −0.03

I3 = CRSP + SMB + HML 0.20 0.94 0.30 2.32 0.39
I4 = CRSP + SMB + HML + RMW 0.07 0.31 0.41 4.16 0.60

I5 = CRSP + SMB + HML + RMW + CMA 0.42 1.90 0.30 4.52 0.62
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.53 2.43 0.34 4.54 0.64

I7 = CRSP + SMB + HML + RMW + MOM 0.16 0.70 0.48 4.35 0.63

Panel D: 25 Size-Profit Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 0.47 1.41 0.21 0.55 −0.02
I2 = CRSP + SMB 0.31 1.37 0.24 1.40 0.15

I3 = CRSP + SMB + HML 0.18 0.83 0.29 2.12 0.39
I4 = CRSP + SMB + HML + RMW 0.19 0.91 0.30 3.86 0.85

I5 = CRSP + SMB + HML + RMW + CMA 0.39 1.87 0.30 3.85 0.75
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.52 2.54 0.31 3.85 0.75

I7 = CRSP + SMB + HML + RMW + MOM 0.32 1.57 0.32 3.89 0.84

Panel E: 32 Size-Value-Investment Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 0.51 1.53 0.22 0.56 −0.01
I2 = CRSP + SMB 0.33 1.49 0.27 1.63 0.19

I3 = CRSP + SMB + HML 0.22 1.11 0.29 3.06 0.58
I4 = CRSP + SMB + HML + RMW 0.29 1.39 0.25 3.33 0.46

I5 = CRSP + SMB + HML + RMW + CMA 0.48 2.40 0.20 3.40 0.44
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.52 2.64 0.27 3.61 0.48

I7 = CRSP + SMB + HML + RMW + MOM 0.26 1.27 0.36 3.56 0.54

Panel F: 32 Size-Value-Profit Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 1.17 3.54 −0.42 −1.15 0.02
I2 = CRSP + SMB 0.60 2.71 0.08 0.48 −0.02

I3 = CRSP + SMB + HML −0.01 −0.05 0.40 4.23 0.56
I4 = CRSP + SMB + HML + RMW 0.13 0.58 0.32 4.79 0.73

I5 = CRSP + SMB + HML + RMW + CMA 0.40 1.87 0.26 4.49 0.66
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.49 2.38 0.31 4.54 0.67

I7 = CRSP + SMB + HML + RMW + MOM 0.21 0.92 0.40 4.91 0.75

Panel G: 32 Size-Profit-Investment Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 1.04 3.62 −0.33 −0.94 0.00
I2 = CRSP + SMB 0.57 2.78 0.08 0.50 −0.02

I3 = CRSP + SMB + HML 0.15 0.75 0.32 2.59 0.26
I4 = CRSP + SMB + HML + RMW −0.03 −0.12 0.45 5.85 0.67

I5 = CRSP + SMB + HML + RMW + CMA 0.30 1.45 0.37 6.20 0.69
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.43 2.16 0.42 6.53 0.75

I7 = CRSP + SMB + HML + RMW + MOM 0.10 0.50 0.51 6.36 0.76

Panel H: 30 Industry Portfolios

Indexes α̂ t-Value λ̂M t-Value Adj. R2

I1 = CRSP 0.67 2.99 −0.06 −0.20 −0.03
I2 = CRSP + SMB 0.66 3.64 −0.03 −0.18 −0.03

I3 = CRSP + SMB + HML 0.71 4.24 −0.06 −0.52 0.01
I4 = CRSP + SMB + HML + RMW 0.60 3.42 0.01 0.11 −0.03

I5 = CRSP + SMB + HML + RMW + CMA 0.61 3.31 0.00 −0.01 −0.04
I6 = CRSP + SMB + HML + RMW + CMA + MOM 0.60 3.04 0.03 0.35 −0.02

I7 = CRSP + SMB + HML + RMW + MOM 0.55 2.88 0.05 0.59 −0.01
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Not surprisingly, in Panel H’s results for industry portfolios, market indexes I4 to I7
are not significantly priced. It is well-known that common market indexes and popular
multi-factors are not priced using exogenous industry portfolios. Hence, a shortfall in the
asset priciing literature is the absence of an aggregate industry factor.

3.6. Index Construction with Industry Factors

Our findings above indicate that efficient market indexes can be constructed from the
CRSP index in combination with popular multifactors. These market indexes do a good
job of pricing widely-used test assets with characteristics similar to the multifactors, but
are not useful in pricing industry portfolios. Unfortunately, there is no single industry
factor available.

Industry returns are different from other common risk factors based on firm charac-
teristics (e.g., size, book-to-market, profit, and capital investment) or stock characteristics
(e.g., winner and loser stock returns). A problem in forming an aggregate industry index is
that different industries tend to be independent of one another.15 A shared common risk
factor across industries (other than the market factor) is not directly observed. We propose
a possible solution to this problem. Using the 30 industry test assets, we initially form a
pure long/short portfolio that is long a particular industry and short an equal quantity of
Treasury bills. We then combine these 30 industry factors to construct a single industry
index based on our multifactor market index methods using relative Sharpe ratio weights
in Section 2. In addition, we combine the CRSP index, multifactors, and industry factors to
construct a new multifactor market index.

Regarding our earlier cross-sectional tests, we found that the results for a multifactor
market index were independent of the order with which multifactors were added one-by-
one to the obtained more efficient index. This robustness holds as long as the multifactors
themselves are priced factors. Each time we add a new factor to the base market index, we
only add in the net part which is not included in the base market index obtained in previous
step. It is important to note that, if the new factor has large noise, it will not contribute
to increasing the efficiency of the market index. Its noise component will be treated as
the net part to add to the base market index and, subsequently, will remain embedded in
the market index through the iterative steps of adding different multifactors to the index.
To mitigate this potential noise, we add industry factors with relatively smaller volatility
prior to higher volatility industry factors. Following this ordered procedure, we compute a
single industry index denoted IND.

Cross-sectional asset pricing tests of industry index IND are provided in Table 9. As
shown there, when using the 30 industry portfolios as the test assets, this industry index
is positively priced, i.e., λ̂IND = 0.82 (t = 2.50).16 For other test assets based on firm
characteristics, however, IND is normally significantly priced but negatively so and not
priced for profit-investment and size-profit portfolios.

For comparison purposes, we also construct a simple industry index denoted SIND,
which is defined as an equal-weighted portfolio of the 30 industry factors. The cross-
sectional test results in Table 10 show that SIND is not priced in the 30 industry portfo-
lios and most other test assets, with the exceptions of being negatively priced for value-
investment and profit-investment portfolios.

As a last step, we add the five popular multifactors plus 30 industry portfolios to
the CRSP index using relative Sharpe ratio weights as defined in Section 2. Factors are
added in the order discussed above, i.e., smaller volatility factors before other factors.
The obtained multifactor market index denoted I8 yields the cross-sectional test results in
Table 11. All test assets, including industry portfolios (i.e., significant at the 5 percent level),
are priced by this aggregate market index. Most of the t-values for different test assets
exceed the recommended 3.0 threshold. For size-profit-investment portfolios the t-value
reaches a high of 5.9, which is extraordinary in view of the very low and insignificant
t-values associated with the market factor in almost all published asset pricing studies.
Except for the value-investment portfolios, R2 values range from 41 percent to 76 percent,
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which implies relatively high goodness-of-fit for a single factor model. Interestingly, all
of the estimated mispricing terms α̂ using I8 as the market factor are insignificant. These
mispricing results bode well for the single factor CAPM. We infer that multifactor market
index I8 provides a superior market index for researchers to employ in asset pricing studies.

Table 9. Cross-sectional asset pricing tests of a single industry index incorporating 30 industry factors
using relative Sharpe ratio weights for a variety test asset portfolios: July 1963–December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides Fama
and MacBeth (1973) cross-sectional tests of a single industry index incorporating 30 industry factors
denoted IND. Each industry factor is defined as a pure long/short portfolio that is long a particular
industry and short an equal quantity of Treasury bills. The single industry index IND is formed by
combining the 30 industry factors based on the relative Sharpe ratio weighted methods defined in
Section 2. Monthly returns for a variety of test assets are downloaded from French’s data website:
30 industry portfolios, 25 size-value portfolios, 25 value-investment portfolios, 25 profit-investment
portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios,
32 size-value-profit portfolios, and 32 size-profit-investment portfolios (see French’s website for
details of these portfolios). A time-series regression using monthly excess returns is run for the full
sample period to estimate industry betas for each of the tests assets with respect to industry index
IND. Following the procedure in the text and Table 2, monthly industry index returns are scaled to
contain no leverage. Cross-sectional tests are conducted by estimating monthly rolling cross-sectional
regressions with excess returns and full sample industry betas for all sample months. The resultant
monthly series of estimated market prices of industry beta risk are averaged over all sample months
to estimate λ̂IND (and associated t-statistics are in parentheses).

Test Assets α̂ λ̂IND Adj. R2

30 industry portfolios 0.06 0.82 0.65
(0.19) (2.50)

25 size-value portfolios 2.08 −2.23 0.29
(5.26) (−3.71)

25 value-investment portfolios 1.63 −1.54 0.32
(3.56) (−2.28)

25 profit-investment portfolios 0.47 0.19 −0.04
(1.24) (0.32)

25 size-investment portfolios 2.47 −2.85 0.57
(5.46) (−4.27)

25 size-profit portfolios −0.15 1.39 0.12
(0.416) (2.74)

32 size-value-investment portfolios 2.45 −2.79 0.49
(5.11) (−4.11)

32 size-value-profit portfolios 1.92 −1.94 0.07
(3.98) (−2.50)

32 size-profit-investment portfolios 1.53 −1.37 0.04
(4.43) (−2.69)

3.7. Is Momentum a Strong Factor?

Because momentum was significantly priced after removing the excess returns of
different multifactor market indexes from the 25 size-value test assets (see Table 7), we
designated it as a possible strong factor. As mentioned earlier, strong factors supplement
multifactor market indexes to improve model specification.

In Table 12 we report the cross-sectional tests for two-factor models comprised of
multifactor market indexes I5, I6, I7, and I8 augmented with the momentum factor (MOM).
Note that I6, I7, and I8 contain the momentum multifactor. Referring to Table 12, we find
that momentum loadings are significantly priced in the following tests: Panel A for the
25-size-value test asset portfolios in combination with I5, I6, and I7 but not I8; Panel D for
25 size-investment portfolios in combination with I8; Panel F for 32 size-value-investment
portfolios in combination with I5, I6, and I7 but not I8; and Panel H for 32 size-profit-
investment portfolios in combination with all four multifactor market indexes.
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Table 10. Cross-sectional asset pricing tests of a simple industry index incorporating equal-weighted
industry factors for a variety test asset portfolios: July 1963–December 2016. Based on CRSP stock
return data in the sample period July 1963 to December 2016, this table provides Fama and MacBeth
(1973) cross-sectional tests of a simple industry index denoted as SIND. Each industry factor is
defined as a pure long/short portfolio that is long a particular industry and short an equal quantity of
Treasury bills. The single industry index SIND is formed by combining the 30 industry factors into an
equal-weighted portfolio. Monthly returns for a variety of test assets are downloaded from French’s
data website: 25 value-investment portfolios, 25 profit-investment portfolios, 25 size-investment
portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios, 32 size-value-profit portfolios,
32 size-profit-investment portfolios, and 30 industry portfolios (see French’s website for details of
these portfolios). A time-series regression using monthly excess returns is run for the full sample
period to estimate industry betas for each of the tests assets with respect to market index SIND.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample industry betas for all sample months. The resultant monthly series of
estimated market prices of industry beta risk are averaged over all sample months to estimate λ̂SIND

(and associated t-statistics are in parentheses).

Test Assets α̂ λ̂SIND Adj. R2

30 industry portfolios 0.64 −0.03 −0.03
(2.98) (−0.09)

25 size-value portfolios 0.89 −0.16 −0.03
(2.27) (−0.34)

25 value-investment portfolios 0.51 0.16 −0.03
(3.56) (−2.28)

25 profit-investment portfolios 1.21 −0.67 0.16
(4.45) (−1.89)

25 size-investment portfolios 0.81 −0.08 −0.04
(2.78) (−0.20)

25 size-profit portfolios 0.06 0.62 0.14
(0.17) (1.52)

32 size-value-investment portfolios 0.23 0.51 0.08
(0.66) (1.22)

32 size-value-profit portfolios 0.63 0.08 −0.03
(1.83) (0.20)

32 size-profit-investment portfolios 0.67 0.02 −0.03
(2.23) (0.05)

We interpret these results to suggest that momentum is a possible strong factor for all
four multifactor market indexes tested, as it continues to be significantly priced in some
test assets even if included in respective multifactor market indexes. Nonetheless, as the
efficiency of multifactor market indexes increases via the addition of more feasible factors
(e.g., based on cross-sectional t-values), the hurdle for strong factors such as momentum
will increase. It is conceivable that future research using more efficient multifactor market
indexes will eliminate momentum as a possible strong factor.

3.8. Discussion

Multifactor market indexes have both academic and practical applications. In aca-
demic studies, as discussed in Section 2, many different asset pricing models are popular in
the literature nowadays. Certainly more models with innovative factors will be proposed
in coming years. Which factors should be used by researchers? Our multifactor market
index approach enables researchers to reduce this problem to a manageable set of aggregate
indexes and strong factors. In this way, not only can all discovered factors be incorporated
into multifactor aggregate indexes, but parsimonious models can be specified for broad
usage in academic research. For practitioners, multifactor market indexes represent in-
vestable strategies to construct efficient portfolios for investment purposes. Hence, portfolio
managers can utilize significant factors in academic studies to boost their returns per unit
risk for clients. In turn, Markowitz’s (1959) mean-variance portfolio theory can be applied
to create well diversified, efficient portfolios.
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Table 11. Cross-sectional asset pricing tests of a multifactor market index incorporating five popular
multifactors and 30 industry factors for a variety test asset portfolios: July 1963–December 2016.
Based on CRSP stock return data in the sample period July 1963 to December 2016, this table provides
Fama and MacBeth (1973) cross-sectional tests of a multifactor market index denoted I8 incorporating
five popular multifactors and 30 industry factors. Each industry factor is defined as a pure long/short
portfolio that is long a particular industry and short an equal quantity of Treasury bills. Index I8 is
formed by adding five popular multifactors (viz., size, value, profit, investment, and momentum)
plus 30 industry factors to the CRSP index based on the relative Sharpe ratio weighted methods
defined in Section 2. Monthly returns for a variety of test assets are downloaded from French’s
data website: 30 industry portfolios, 25 value-investment portfolios, 25 profit-investment portfolios,
25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios, 32 size-
value-profit portfolios, and 32 size-profit-investment portfolios (see French’s website for details of
these portfolios). A time-series regression using monthly excess returns is run for the full sample
period to estimate CAPM betas for each of the tests assets with respect to market index I8. Following
the procedure in the text and Table 2, monthly market index returns are scaled to contain no leverage.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample betas for all sample months. The resultant monthly series of estimated
market prices of beta risk are averaged over all sample months to estimate λ̂M (and associated
t-statistics are in parentheses).

Test Assets α̂ λ̂M Adj. R2

30 industry portfolio 0.33 0.20 0.41
(1.27) (2.01)

25 size-value portfolios −0.20 0.59 0.63
(−0.82) (4.43)

25 value-investment portfolios 0.36 0.20 0.12
(1.49) (2.11)

25 profit-investment portfolios 0.06 0.39 0.76
(0.25) (4.15)

25 size-investment portfolios −0.02 0.47 0.65
(−0.08) (4.02)

25 size-profit portfolios 0.12 0.38 0.79
(0.56) (3.51)

32 size-value-investment portfolios −0.00 0.46 0.62
(−0.02) (3.82)

32 size-value-profit portfolios −0.17 0.59 0.68
(−0.71) (5.03)

32 size-profit-investment portfolios −0.07 0.49 0.71
(−0.34) (5.91)
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Table 12. Cross-sectional asset pricing tests of a two-factor model containing different multifactor
market indexes augmented with the momentum factor for a variety of test asset portfolios: July 1963–
December 2016. Based on CRSP stock return data in the sample period July 1963 to December 2016,
this table provides Fama and MacBeth (1973) cross-sectional tests of two-factor models comprised
of different multifactor market indexes augmented with the momentum factor. Downloaded from
Kenneth French’s website, the multifactors are: size (SMB), value (HML), profit (RMW), capital
investment (CMA), and momentum (MOM). Multifactor market indexes are formed using the
following steps. First, the size (SMB) factor monthly returns are regressed on CRSP index (I1)
excess returns over the Treasury bill rate. The residual term from this regression is utilized as the
orthogonalized factor. Second, this orthogonalized size factor is added to the CRSP index using
Equation (11) to compute the return for the new multifactor market index I2 as R(I2) = R(I1) +
x1SMB. Third, value (HML) factor returns are regressed on the new R(I1) + x1SMB portfolio excess
returns to obtain the orthogonalized value factor. This residual value factor is added to the CRSP +
SMB portfolio to get market index I3 = CRSP + x1SMB + x2HML. Fourth, the last step is repeated to
sequentially create market index I4 = CRSP + x1SMB + x2HML + x3RMW, market index I5 = CRSP +
x1SMB + x2HML + x3RMW + x4CMA, and market index I6 = CRSP + x1SMB + x2HML + x3RMW +
x4CMA + x5MOM. We drop the CMA multifactor to form market index I7 = CRSP + x1SMB +
x2HML + x3RMW + x5MOM. In addition, we form market index I8 = CRSP + x1SMB + x2HML +
x3RMW + x5MOM + (x6 to x35) × (1 to 30) industry factors, which are defined as the industry
index return minus the Treasury bill rate. Following the procedure in the text and Table 2, monthly
market index returns are scaled to contain no leverage. Monthly returns for a variety of test assets
are downloaded from French’s data website: 25 value-investment portfolios, 25 profit-investment
portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios,
32 size-value-profit portfolios, 32 size-profit-investment portfolios, and 30 industry portfolios (see
French’s website for details of these portfolios). A time-series regression is run for the full sample
period to estimate multifactor market and momentum factors’ betas for each of the tests assets.
Time-series regression analyses are repeated for the I5, I6, I7, and I8 multifactor market indexes.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample betas for all sample months. The resultant monthly series of estimated
market prices of beta risk are averaged over all sample months to estimate λ̂M (and associated
t-statistics are in parentheses).

Panel A: 25 Size-Value Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.74 3.43 0.25 3.82 1.87 3.42 0.65
I6, MOM 0.74 3.43 0.50 4.50 1.87 3.42 0.65
I7, MOM 0.37 1.43 0.73 5.43 2.47 3.93 0.79
I8, MOM −0.27 −1.02 0.48 2.65 0.55 0.66 0.64

Panel B: 25 Value-Investment Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.46 2.65 0.17 2.36 0.06 0.10 0.52
I6, MOM 0.46 2.65 0.15 1.20 0.06 0.10 0.52
I7, MOM 0.30 1.36 0.27 1.48 0.43 0.64 0.48
I8, MOM 0.18 0.73 0.08 0.73 −0.57 −1.10 0.44

Panel C: 25 Profit-Investment Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.47 2.46 0.25 3.27 0.53 1.02 0.57
I6, MOM 0.47 2.46 0.29 2.74 0.53 1.02 0.57
I7, MOM 0.09 0.36 0.42 2.99 0.45 0.86 0.55
I8, MOM 0.00 0.01 0.37 3.47 0.59 1.11 0.76
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Table 12. Cont.

Panel D: 25 Size-Investment Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.51 2.94 0.29 4.49 0.49 0.74 0.62
I6, MOM 0.51 2.94 0.32 2.76 0.49 0.74 0.62
I7, MOM 0.16 0.76 0.48 3.82 0.82 1.43 0.62
I8, MOM 0.03 0.14 0.57 4.02 1.66 2.65 0.65

Panel E: 25 Size-Profit Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.44 2.50 0.29 3.65 0.11 0.19 0.75
I6, MOM 0.44 2.50 0.26 2.67 0.11 0.19 0.75
I7, MOM 0.25 1.35 0.27 2.70 0.16 0.27 0.84
I8, MOM −0.03 −0.14 0.30 3.15 0.10 0.17 0.81

Panel F: 32 Size-Value-Investment Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.60 3.25 0.26 4.18 1.27 2.56 0.49
I6, MOM 0.60 3.25 0.41 4.05 1.27 2.56 0.49
I7, MOM 0.30 1.45 0.68 4.08 2.15 3.29 0.60
I8, MOM −0.14 −0.57 0.33 2.82 0.02 0.04 0.70

Panel G: 32 Size-Value-Profit Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.46 2.26 0.26 4.56 0.31 0.53 0.66
I6, MOM 0.46 2.27 0.27 2.56 0.31 0.53 0.66
I7, MOM 0.20 0.85 0.38 3.42 0.57 1.04 0.74
I8, MOM −0.34 −1.26 0.35 2.91 −0.26 −0.44 0.77

Panel H: 32 Size-Profit-Investment Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.54 3.02 0.34 5.54 1.36 2.85 0.76
I6, MOM 0.54 3.02 0.50 6.20 1.36 2.85 0.76
I7, MOM 0.21 1.09 0.59 6.96 1.51 3.30 0.76
I8, MOM −0.04 −0.18 0.51 7.01 1.24 2.81 0.71

Panel I: 30 Industry Portfolios

Factors α̂ t-Value λ̂M t-Value λ̂MOM t-Value Adj. R2

I5, MOM 0.65 3.79 0.02 0.28 0.32 0.65 −0.01
I6, MOM 0.65 3.79 0.06 0.61 0.32 0.65 −0.01
I7, MOM 0.60 3.36 0.11 0.96 0.43 0.87 0.03
I8, MOM 0.30 1.34 0.20 1.98 0.37 0.84 0.39

4. Conclusions

This paper sought to mitigate the model mall problem associated with the growing list
of factors in asset pricing. To do this, we proposed the construction of efficient multifactor
market indexes that combine the CRSP index with popular investable multifactors. To
demonstrate this approach, size, value, profit, capital investment, and momentum mul-
tifactors were sequentially added to the CRSP index. In the sample period July 1963 to
December 2016, as multifactors were added to the CRSP index, multimarket market in-
dexes became increasingly less correlated with the CRSP index and more efficient than the
CRSP index. Importantly, market betas associated with most of these multifactor market
indexes were significantly priced in cross-sectional asset pricing tests with economically
meaningful market prices of risk. With the exception of industry portfolio test assets, the
t-values associated with multifactor market index betas generally exceeded the recom-
mended 3.0 threshold for the significance of an asset pricing factor. In addition, we found
that multifactors were less likely to be significantly priced in cross-sectional tests when the
market index contained the respective multifactors. One exception was the momentum
factor, which was significantly priced even when contained in multifactor market indexes.
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We inferred that momentum may be a strong factor in the sense that it can serve to augment
multifactor market indexes in models comprised of two or more factors.

Further analyses demonstrated how a single industry index can be constructed by com-
bining numerous industry indexes. This new aggregate industry index was significantly
priced among industry portfolios, for which the CRSP index and multifactors are typically
not priced. When popular multifactors and industry factors were combined with the CRSP
index into a multifactor market index, the resultant market factor was significantly priced
across a wide variety of test assets including industry portfolios. Exemplary of our findings,
a very high t-value of 5.91 was achieved for size-value-investment portfolios. In tests of
this market index across different test assets, the goodness-of-fit was relatively high and
comparable to traditional multifactor models, and no mispricing was detected.

When multifactor market indexes were augmented with the momentum factor in a
two-factor model, momentum loadings were significant in a number of different test assets,
but not all test assets. We conclude that momentum is a possible strong factor that is priced
at times even when contained in the two-factor model’s multifactor market index. Future
research is needed to determine if, as multifactor market indexes become more efficient
with the inclusion of more feasible factors, momentum remains a priced factor.

Based on our empirical results, we conclude that: (1) multifactor market indexes are
more efficient than the CRSP market index, and (2) market beta is significantly priced for
these multivariate market index proxies. Hence, we infer that multifactors are not separate
risk factors but rather help jointly in combination with a general stock market index to better
proxy efficient market portfolios. An important implication of our findings is that asset
pricing models incorporating a market factor (including unconditional and conditional
empirical models) would benefit from employing multifactor market indexes rather than
the CRSP index or other general market indexes. More parsimonious low-dimensional
models can be developed that incorporate multifactor market indexes to substantially
reduce factor and model selection problems. That is, rather than creating an increasing
number of asset pricing models featuring different multifactors, most of the multifactors
can be productively utilized to form more efficient multifactor market indexes. Most
investable factors will likely be absorbed into a multifactor market index. Noninvestable
factors, such as market volatility, macroeconomic state variables, etc., cannot be combined
into an investable multifactor market index and, therefore, could be prospects as strong
factors in a low-dimensional model. More generally, by combining many proven factors
into a single aggregate market index, it is possible that better asset pricing models can be
constructed that capture the collective significance of numerous risk dimensions associated
with a wide array of factors.

Future research is recommended on efficient multifactor market indexes to reduce
the problems of factor and model selection in various asset pricing applications, such as
event studies of corporate and other major events, investment performance studies of
mutual funds and hedge funds, and other studies that rely upon asset pricing models in
their empirical analyses. Importantly, a practical implication is that investors can readily
form multifactor market indexes by combining (for example) a tradeable S&P 500 index
with ETFs related to size, value, momentum, and other multifactors. These new aggregate
indexes have the potential to outperform the S&P 500 index, a common benchmark used
to evaluate institutional investors. Investors seeking portfolios with higher returns per
unit risk would benefit from efficient ETFs and other multifactor index products, especially
those saving for retirement.
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Notes

1 See also Lettau and Pelger (2020), who utilized Principal Component Analysis (PCA) methods to reduce the number of potential
factors to a parsimonious set of latent factors. They found that five factors with economic content help to explain the cross-section
and time-series of returns.

2 For example, the three moment CAPM (Rubinstein (1973) and Kraus and Litzenberger (1976)), consumption CAPM (Breeden 1979),
conditional CAPM (Jagannathan and Wang (1996) and Ferson and Harvey (1999)), liquidity-based models (Pastor and Stambaugh
(2003), Acharya and Pedersen (2005), and Li et al. (2019)), intertemporal CAPM (ICAPM) (Petkova 2006), interest-rate-based
models Campbell (1996), cross-factor models Fama and French (2020), among others.

3 As such, the intercept equals zero, and the beta factor loading matrix is unchanged.
4 Numerous papers have found that various long-only market indexes are not mean-variance efficient portfolios (e.g., see Gibbons

et al. (1989); Gibbons (1982); Jobson and Korkie (1982); Kandel (1984); Shanken (1985, 1986); Kandel and Stambaugh (1987a,
1987b); Gibbons et al. (1989); Haugen and Baker (1991); MacKinlay and Richardson (1991); Zhou (1993); Brière et al. (2013), and
others). According to Brennan and Lo (2010), it is virtually impossible for long-only market indexes to be efficient portfolios.
Supporting this proposition, many studies have found that short positions are needed to achieve efficiency (e.g., see Pulley (1981);
Levy (1983); Kallberg and Ziemba (1983); Kroll et al. (1984); Green and Hollifield (1992); Jagannathan and Ma (2003); Brennan and
Lo (2010); Levy and Ritov (2010), and others). More generally, Kothari et al. (1995) have argued that the equity portfolio most
highly correlated with the market portfolio is efficient.

5 Also, if the expected return of the zero-cost factor portfolio is zero, the Sharpe ratio will not be increased by adding it to a
candidate market index. Note that any zero-cost asset that is uncorrelated with the tangency portfolio has an expected return
equal to the riskless rate such that its excess return is zero.

6 As shown there, the definitions of the multifactors are as follows: size (SMB) is the average return on the nine small stock
portfolios minus the average return on the nine big stock portfolios; value (HML) is the average return on the two value
portfolios minus the average return on the two growth portfolios; profit (RMW) is the average return on the two robust operating
profitability portfolios minus the average return on the two weak operating profitability portfolios; capital investment (CMA) is
the average return on the two conservative investment portfolios minus the average return on the two aggressive investment
portfolios; and momentum (MOM) is the average return on the two high prior return portfolios minus the average return on the
two low prior return portfolios.

7 These weights are averages using different orders of entry in forming indexes based on a rotation of factors. For example, I3 can
be formed by starting with CRSP, adding SMB, and then adding HML. Alternatively, we can start with SMB, add HML, and then
CRSP. Finally, we could add them in the order HML, SMB, and CRSP. We average weights for each factor across these rotational
combinations of order entry. While the order in which portfolios is combined changes their relative weights, the Sharpe ratios
and other performance metrics of respective aggregate indexes as well as forthcoming cross-sectional tests were little changed.

8 Rearranging terms, we have: R(I2,t) = R(I1,t)+ x1Fnew
1,t = R(I1,t)+ x1[F1,t − β1R(I1,t)]. Since both R(I1,t) and F1,t are deleveraged

portfolios, we can deleverage R(I2,t) by dividing its return by 1 + x1(1 − β1).
9 See also Roll (1977, p. 130), who also observed that most proxies for the market portfolio are very highly correlated.

10 They also included a time-varying market factor to capture beta instability over time (i.e., the BAA minus AAA bond yield
spread), which was found to be significantly priced. Hence, they concluded that, even though the static CAPM assuming constant
beta over time is not supported, the conditional CAPM allowing betas and expected returns to vary over time is supported.

11 The GRS test statistic has a noncentral F distribution with degrees of freedom N (25 portfolios) and T − N − 1 (T 654 months). As
the noncentrality parameter increases, the probability of rejecting a false null hypothesis tends to increase. According to tests in
Gibbons et al. (1989, pp. 1130–38), the power of our tests should be sufficient to detect deviations from the efficiency of the index.

12 Following standard practice, adjusted R2 values are estimated by regressing the average excess returns for test asset portfolios in
the full sample period on their full sample beta estimates.

13 By contrast, CMA is positive but not significantly priced for market indexes I1 and I2 based on the CRSP index and CRSP +
SML market index, respectively, but it is significantly priced with market indexes I3 and I5 containing the CMA portfolio. These
unexpected results for CMA are difficult to interpret due to being negatively (rather than positively) priced when significant.

14 Multifactor market index I7 does not eliminate the significance of the SMB, HML, RMW, and MOM factors even though these
factors are contained in this index. However, the markedly lower R2 value of 42 percent for this market index indicates that these
factors’ residual explanatory power is substantially diminished by market index I7.

15 Early work on industry as an asset pricing factor by King (1966) and Meyers (1973) found that, based on principal components
analyses of U.S. stock returns, most components could not be identified with specific industry groups. Components were only
weakly associated with industry classifications.

16 Unreported in Table 9, we also tested a two-factor model with the excess return on the CRSP index (I1) and industry factor (IND).
Using 30 industry portfolios as test assets, both factors are significantly priced with t-values of 2.12 and 2.98, respectively. The
correlation between these two factors was relatively high at 0.60.
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Abstract: Optimal trading strategies for pairs trading have been studied by models that try to
find either optimal shares of stocks by assuming no transaction costs or optimal timing of trading
fixed numbers of shares of stocks with transaction costs. To find optimal strategies that determine
optimally both trade times and number of shares in a pairs trading process, we use a singular
stochastic control approach to study an optimal pairs trading problem with proportional transaction
costs. Assuming a cointegrated relationship for a pair of stock log-prices, we consider a portfolio
optimization problem that involves dynamic trading strategies with proportional transaction costs.
We show that the value function of the control problem is the unique viscosity solution of a nonlinear
quasi-variational inequality, which is equivalent to a free boundary problem for the singular stochastic
control value function. We then develop a discrete time dynamic programming algorithm to compute
the transaction regions, and show the convergence of the discretization scheme. We illustrate our
approach with numerical examples and discuss the impact of different parameters on transaction
regions. We study the out-of-sample performance in an empirical study that consists of six pairs of U.S.
stocks selected from different industry sectors, and demonstrate the efficiency of the optimal strategy.

Keywords: free-boundary problem; pairs trading; stochastic control; trading strategies; transaction
costs; transaction regions

1. Introduction

Pairs trading is one of proprietary statistical arbitrage tools used by many hedge
funds and investment banks. It is a short-term trading strategy that first identifies two
stocks whose prices are associated in a long-run equilibrium and then trades on temporary
deviations of stock prices from the equilibrium. Though pairs trading is a simple market
neutral strategy, it has been used and discussed extensively by industrial practitioners in
the last several decades; see detailed discussion in Vidyamurthy (2004), Whistler (2004),
Ehrman (2006), Lai and Xing (2008), and references therein.

Besides its wide practice in financial industry, pairs trading also draws much attention
from academic researchers. For instance, Gatev et al. (2006) examined the risk and returns
of pairs trading using daily data collected from the U.S. equity market and concluded
that the strategy in general produces profit higher than transaction costs. To investigate
the pairs trading strategy analytically, Elliott et al. (2005) modeled the spread of returns
as a mean-reverting process and proposed a trading strategy based on the model. This
motivates subsequent researchers to formulate pairs trading rules as stochastic control
problems for an Ornstein–Uhlenbeck (OU) process and a correlated stock price process.
In particular, Mudchanatongsuk et al. (2008) assumed the log-relationship between a
pair of stock prices follows a mean-reverting process, and considered a self-financing
portfolio strategy that only allows positions that were long in one stock and short in the
other with equal dollar amounts. They then formulated a portfolio optimization based
stochastic control problem and obtained the optimal solution to this control problem in
closed form via the corresponding Hamilton–Jacobi–Bellman (HJB) equation. Relaxing the
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equal dollar constraint, Tourin and Yan (2013) extended Mudchanatongsuk et al. (2008)’s
approach and study pairs trading strategies with arbitrary amounts in each stock without
any transaction costs.

Instead of deriving optimal weights of stocks in pairs trading, another line of study on
pairs trading strategies fixes the number of traded shares for each stock during the entire
trading process and considers only the optimal timing of trades in the presence of fixed or
proportional transaction costs. Specifically, Leung and Li (2015) studies the optimal timing
to open or close the position subject to fixed transaction costs and the effect of stop-loss
level under the OU process by constructing the value function directly. Zhang and Zhang
(2008), Song and Zhang (2013), and Ngo and Pham (2016) studied the optimal pairs trading
rule that is based on optimal switching among two (buy and sell) or three (buy, sell, and
flat) regimes with a fixed commission cost for each transaction, and solve the problem by
finding viscosity solutions to the associated HJB equations (quasi-variational inequalities).
Lei and Xu (2015) studied the optimal pairs trading rule of entering and exiting the asset
market in finite horizon with proportional transaction cost for two convergent assets. Note
that, although transaction costs are considered in these strategies, since the number of
traded shares of stocks are fixed during the entire trading period, these strategies are still
far from traders’ practical experience in reality.

The above study on optimal pairs trading focuses either on optimal trading shares
without transaction costs or optimal trading times with fixed trading shares in the presence
of transaction costs. To relax the assumption of fixed trading shares in the latter study, this
paper uses a singular stochastic control approach to study the joint effect of optimal trading
shares and optimal trading times in pairs trading process with proportional transaction
costs. For convenience, we assume the same diffusion and Urnstein–Uhlenbeck processes
for one stock and its spread with the other stock as those in Mudchanatongsuk et al. (2008).
However, different from Mudchanatongsuk et al. (2008) who used a trading rule which
requires to short one stock and long the other in equal dollar amounts, we consider a
delta-neutral rule under which the ratio of traded shares for two stocks is fixed and this
fixed ratio is determined by the cointegration relationship of two stocks. Hence, when the
number of shares of one stock is determined, based on the rule of delta neutral, the number
of shares for the other stock is also determined. Besides the weight of shares need to be
optimally chosen, we also assume a proportional transaction cost for each trade and hence
the optimal times of trading also needs to be decided.

With the above assumptions, we solve the optimal pair trading problem by the singular
stochastic control approach in Davis et al. (1993). As the overall transaction cost based
on the above assumption depends on both trading times and the numbers of shares in
each trade, we compute the terminal utility of wealth over a fixed horizon and formulate
the problem of choosing optimal trading times and the number of shares as a singular
stochastic control problem. We derive the Hamilton–Jacobi–Bellman equations for this
problem, and show that the value function of the problem is the unique viscosity solution
of a quasi-variational inequality. We further argue that the quasi-variational inequality
is equivalent to a free boundary problem so that the state space consisting of one stock
price and its spread with the other stock can be naturally divided into three transaction
regions: long the first stock and short the second, short the first and long the second, and
no transaction. The implied transaction regions can help us determine not only optimal
times of each transaction, but also the optimal number of shares in each transaction. To
compute the boundaries of these transaction regions, we develop a numerical algorithm
that is based on discrete time dynamic programming to solve the equation for the negative
exponential utility function, and show that the numerical solution converges to the unique
continuous-time solution of the problem.

To demonstrate the advantage of joint consideration of optimal shares and optimal
trading times in pair trading, we carry out both simulation and empirical studies. Specifi-
cally, we study the time-varying transaction regions (or trading boundaries) for a specific
set of model parameters, and investigate the impact of variations of model parameters on
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transaction regions and performance of the optimal strategy. For comparison purposes, we
also consider a benchmark strategy based on the deviation of the spread from its long-term
mean and is popular among practitioners. In both simulation studies and real data analysis,
we show that the optimal trading strategy performs better than the benchmark strategy.

The rest of the paper is organized as follows. Section 2 first formulates the model and
then derive the Hamilton–Jacobi–Bellman equations associated with the singular stochastic
control problems. It shows the existence and uniqueness of the viscosity solution for the
variational inequalities, which are equivalent to the portfolio optimization problem, and
reduces the problem into a free boundary problem. Section 2 also considers the optimal
trading problem with exponential utility functions. In Section 3, we discretize the free
boundary problem and propose a discrete time dynamic programming algorithm. We
also demonstrate that the solution of the discretized problem converges to the viscosity
solution of the variational inequalities. Sections 4 and 5 provide simulation and empirical
studies of the model and the optimal trading strategy, and compare its performance with a
benchmark trading strategy. Some concluding remarks are given in Section 6.

2. A Pairs Trading Problem with Proportional Transaction Costs

2.1. Model Specification

Consider a pair of two stocks P and Q, and let p(t) and q(t) denote their prices at time
t, respectively. We assume that the price of stock P follows a geometric Brownian motion,

dp(t) = μp(t)dt + σp(t)dB(t), (1)

where μ and σ are the drift and the volatility of stock P, and B(t) is a standard Brownian
motion defined on a filtered probability space and specified later. Denote x(t) the difference
of the logarithms of the two stock prices, i.e.,

x(t) = log q(t)− log p(t) = log(q(t)/p(t)). (2)

We assume that the spread follows an Ornstein–Uhlenbeck process

dx(t) = κ(θ − x(t))dt + νdW(t), (3)

where κ > 0 is the speed of mean reversion, and θ is the long-term equilibrium level to
which the spread reverts. We assume that (B(t), W(t)) is a two-dimensional Brownian
motion defined on a filtered probability space (Ω,Ft,�), and the instantaneous correlation
coefficient between B(t) and W(t) is ρ, i.e.,

E[dW(t)dB(t)] = ρdt. (4)

The above assumptions are same as those in Mudchanatongsuk et al. (2008). With
these assumptions, we can express the dynamics of q(t) as

dq(t) =
[
μ + κ(θ − x(t)) +

1
2

ν2 + ρσν
]
q(t)dt + σq(t)dB(t) + νq(t)dW(t). (5)

In the presence of proportional transaction costs, the investor pays 0 < ζp, ζq < 1 and
0 < ηp, ηq < 1 of the dollar value transacted on purchase and sale of the underlying stocks
P and Q. Denote Lp(t) and Mp(t) two nondecreasing and non-anticipating processes and
represent the cumulative number of shares of stock P bought or sold, respectively, within
the time interval [0, t], 0 ≤ t ≤ T. Let yp(t) be the number of shares held in stock P, i.e.,
yp(t) = Lp(t)− Mp(t), and similarly, we define Lq(t), Mq(t), and yq(t) = Lq(t)− Mq(t)
for stock Q. Denote g(t) the dollar value of the investment in bond which pays a fixed
risk-free rate of r. Then, the investor’s position in two stocks and the bond is driven by

dyp(t) = dLp(t)− dMp(t), dyq(t) = dLq(t)− dMq(t) (6)
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and

dg(t) = rg(t)dt + bp p(t)dMp(t)− aqq(t)dLq(t) + bqq(t)dMq(t)− ap p(t)dLp(t), (7)

where ai = 1 + ζi and bi = 1 − ηi for i = p, q.
We then need to choose a rule to determine the number of shares of stocks P and Q

bought or sold at time t. Note that, Mudchanatongsuk et al. (2008) assumed no transaction
cost and considered the strategy that always shorts one stock and longs the other in equal
dollar amount, i.e., p(t)dLp(t) + q(t)dMq(t) = 0 or p(t)dMp(t) + q(t)dLq(t) = 0 at time t.
Lei and Xu (2015) and Ngo and Pham (2016) considered a delta-neutral strategy that always
long one share of a stock and short one share of the other stock, i.e., dyp(t) = −dyq(t) = 1
or dyp(t) = −dyq(t) = −1 at time t. Here, we also consider a delta-neutral strategy that
requires the total of positive and negative delta of two assets is zero, hence it suggests that
the number of shares of stock P bought (or sold) at time t are same as the number of shares
of stock Q sold (or bought), i.e.,

dLp(t) = dMq(t), dMp(t) = dLq(t). (8)

Equation (8) implies that
dyq(t) = −dyp(t)

at any time t. Comparing to Lei and Xu (2015) and Ngo and Pham (2016), we remove the
constraint dyp(t) = −dyq(t) = 1 or −1 and allow yp(t) = −yq(t) to be a control variable.
Using Equations (5) and (8), the dynamics of g(t) in Equation (7) can be simplified as

dg(t) = rg(t)dt −
(
ap − bqex(t))p(t)dLp(t) +

(
bp − aqex(t))p(t)dMp(t). (9)

The process (Lp(t), Mp(t)) together with our delta-neutral strategy provides us an
admissible trading strategy. For convenience, we denote T (g0) the set of admissible trading
strategies that an investor starts at time zero with amount g0 of the investment in bond and
zero holdings in two stocks (i.e., yp(0) = yq(0) = 0), which indicates that the numbers of
shares held in stocks P and Q at time t are yp(t) and −yp(t), respectively. For notational
convenience, we omit the subscript of yp(t) and denote yp(t) as y(t) in our discussion.
Then, Equations (1), (3), (6) and (9) compose the market model in the time interval [0, T],
which describes a stochastic process of (p(t), x(t), yp(t), g(t)) in �+ ×�×�×�.

Denote the terminal value of the pairs trading portfolio by J(x(T), p(T), y(T)). Note
that, under our assumption, y(T) indicates that the investor’s positions in stocks P and Q
are y(T) and −y(T), respectively, then the liquidated value of the portfolio is

J(p(T), x(T), y(T)) = A+(p(T), x(T))y(T)�{y(T)≥0} + A−(p(T), x(T))y(T)�{y(T)<0}, (10)

where
A+(p, x) = (bp − aqex)p, A−(p, x) = (ap − bqex)p.

Furthermore, if the investment in bond at terminal time T is g(T), the terminal wealth
of the investor is given by g(T) + J(p(T), x(T), y(T)). Suppose that the investor’s utility
U : � −→ � is a concave and increasing function with U(0) = 0. We assume that the
investor’s goal is to maximize the expected utility of terminal wealth under the market
model (1), (3), (6) and (9),

V(t, p, x, y, g) = sup
(Lp(t),Mp(t))∈T (g0)

E
{

U(g(T) + J(p(T), x(T), y(T))|p(t) = p,

x(t) = x, yt = y, g(t) = g
}

.
(11)
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Furthermore, given trading strategies (Lp, Mp), the total trading cost incurred over
[t, T] can be expressed as

C(Lp, Mp; t, T) =
∫ T

t
er(T−u)A−(p(u), x(u))dLp(u)−

∫ T

t
er(T−u)A+(p(u), x(u))dMp(u)

−J(p(T), x(T), y(T)). (12)

and the total profit over [t, T] is −C(Lp, Mp; t, T).

2.2. The Hamilton-Jacobi-Bellman Equations and Free Boundary Problems

We now derive the Hamilton–Jacobi–Bellman (HJB) equations, associated with the
stochastic control problems, for the utility maximization problem (11). Consider a class of
trading strategies such that Lp(t) and Mp(t) are absolutely continuous processes, given by

Lp(t) =
∫ t

0
l(u)du, Mp(t) =

∫ t

0
m(u)du,

where l(u) and m(u) are positive and uniformly bounded by ξ < ∞. Then, (1), (3), (6)
and (9) provides us a system of stochastic differential equations with controlled drift, and
the Bellman equation for a value function denoted by Vξ is

L1,oVξ + sup
0≤lt ,mt≤ξ

{[
L1,bVξ

]
lt −

[
L1,sVξ

]
mt

}
= 0,

for (t, p, X, y, g) ∈ [0, T] × �+ × � × � × �, in which the operators L, B, and S are
defined as

L1,o :=
∂

∂t
+ κ

(
θ − x

) ∂

∂x
+ μp

∂

∂p
+ rg

∂

∂g
+

1
2

ν2 ∂2

∂x2 + ρνσp
∂2

∂p∂x
+

1
2

σ2 p2 ∂2

∂p2 ,

L1,b :=
∂

∂y
−
(
ap − bqex(t))p(t)

∂

∂g
,

L1,s :=
∂

∂y
−
(
bp − aqex(t))p(t)

∂

∂g
.

The optimal trading strategy is then determined by considering the following three
possible cases:

(i) buying stock P and sell stock Q at the same rate l(t) = ξ (i.e., m(t) = 0) when

L1,bVξ ≥ 0, L1,sVξ > 0; (13)

(ii) selling stock P and buy stock Q at rate m(t) = ξ (i.e., l(t) = 0) when

L1,bVξ < 0, L1,sVξ ≤ 0; (14)

(iii) doing nothing (i.e., l(t) = m(t) = 0) when

L1,bVξ ≤ 0, L1,sVξ ≥ 0. (15)

Note that the case L1,bVξ > 0 and L1,sVξ < 0 can not occur, as all value functions are
increasing functions of g.

The above argument shows that the optimization problem (11) is a free boundary
problem in which the optimal trading strategy is defined by the inequalities (i), (ii), and
(iii) for a given value function. Besides, the state space [0, T]×�+ ×�×�×� is par-
titioned into buy, sell, and no-transaction regions for stock P, which are characterized by
inequalities (13), (14) and (15), respectively. For sufficiently large ξ, the state space remains
divided into a buy region B, a sell region S , and a no-transaction region N for stock P, which
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are correspondingly the sell region, the buy region, and the no transaction region for stock Q
due to Equation (8). Obviously, the buy and sell regions for stock P are disjoint, as it is
not optimal to buy and sell the same stock at the same time. We denote the boundaries
between the no-transaction region N and the buy and sell regions B and S as ∂B and ∂S ,
respectively.

Let ξ → ∞, the class of admissible trading strategies becomes T (g0). We can guess
that the state space is still divided into three regions, a region of buying P and selling Q, a
region of selling P and buying Q, and a no-transaction region. Then, the optimal trading
strategy requires an immediate move to the boundaries of buy or sell regions, if the state is
in the buy region B or the sell region S . Actually, we can obtain equations that each of the
value functions should satisfy as follows.

(i) In region B of buying P and selling Q, the value function remains constant along
the path of the state, dictated by the optimal trading strategy, and therefore, for δy ≥ 0

V(t, p, x, y, g) = V(t, p, x, y + δy, g − (ap − bqex)pδy), (16)

where δy is the number of shares of stock P bought and stock Q sold by the investor. δy can
be any positive value up to the number required to take the state to ∂B, so letting δy → 0
in (16) yields

L1,bV = 0. (17)

(ii) Similarly, in region S of selling P and buying Q, the value function obeys the
following equation for δy ≥ 0

V(t, p, x, y, g) = V(t, p, x, y − δy, g + (bp − aqex)pδy), (18)

where δy is the number of shares of stock P sold and stock Q bought by the investor. δy can
be any positive value up to the number required to take the state to ∂S , so letting δy → 0
in (18) yields

L1,sV = 0. (19)

(iii) In the no-transaction region, the value function obeys the same set of equations
obtained for the class of absolutely continuous trading strategies, and therefore the value
function is given by

L1,oV = 0, (20)

and the pair of inequalities, shown above in (15), also hold. Note that, due to the continuity
of the value function, if it is known in the no-transaction region, it can be determined in
both the buy and sell regions by (17) and (19), respectively.

In the buy region B, L1,sV < 0, and, in the sell region S , L1,bV > 0. Additionally, from
the two pairs of inequalities (13) and (14), we may conjecture that L1,oV in (20) is negative
in both the buy region B and the sell region S . Therefore, the above set of equations can be
summarized as the following fully nonlinear partially differential equations (PDE):

min
{
−L1,bV,L1,sV,−L1,oV

}
= 0 (21)

for (t, p, X, y, g) ∈ [0, T]×�+ ×�×�×�. Note that the above discussion also yields the
following free boundary problem for the singular stochastic control value function:⎧⎪⎪⎨⎪⎪⎩

L1,bV = 0 in B
L1,sV = 0 in S
L1,oV = 0 in N

V(T, p, x, y, g) = U(g + J(p, x, y)).

(22)

We next show that the value function given by (11) is a constrained viscosity solution
of the variational inequality (21) on [0, T]×�+ ×�×�×�, and it is the unique bounded
constrained viscosity solution of (21). The proof is given in the Appendix A.
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Theorem 1. The value function V(t, p, x, y, g) is a constrained viscosity solution of (21) on
[0, T]×�+ ×�×�×�.

Theorem 2. Let u be a bounded upper semicontinuous viscosity subsolution of (21), and v a
bounded from below lower semicontinuous viscosity supersolution of (21), such that u(T, x) ≤
v(T, x) for all x ∈ �+ ×�×�×�. Then u ≤ v on [0, T]×�+ ×�×�×�.

2.3. Optimal Trading with Exponential Utility Functions

We next assume that the investor has the negative exponential utility function

U(z) = 1 − exp(−γz), (23)

where γ is the constant absolute risk aversion (CARA) parameter such that −U′′(z)
/

U′(z) = γ.
For Equation (21), this utility function can reduce much of computational effort and is easy
to interpret. Note that for the utility function (23), the definition of the value function (11)
can be expressed as

V(t, p, x, y, g) = 1 − exp
(
− γger(T−t)

)
H(t, p, x, y), (24)

where H(t, p, x, y) is a convex nonincreasing continuous function in y and defined by

H(t, p, x, y) = inf
Lp(t),Mp(t)∈T (g0)

E
{

exp[−γJ(p(T), x(T), y(T)]
∣∣p(t) = p, x(t) = x, y(t) = y

}
= 1 − V(t, p, x, y, 0).

Plug (24) into (21), and define the following operators for H(t, p, x, y) on [0, T]×�+ ×
�×�,

L2,o H =
∂H
∂t

+ κ(θ − x)
∂H
∂x

+ μp
∂H
∂p

+
1
2

ν2 ∂2H
∂x2 + ρνσp

∂2H
∂p∂x

+
1
2

σ2 p2 ∂2H
∂p2 ,

L2,bH =
∂H
∂y

+ γer(T−t)A−(p, x)H,

L2,sH =
∂H
∂y

+ γer(T−t)A+(p, x)H.

Then (21) is transformed into the following PDE for H(t, p, x, y)

min
{
L2,bH,−L2,sH,L2,o H

}
= 0 (25)

with the following boundary conditions

H(T, p, x, y) = exp
{
− γJ(p, x, y)

}
.

Correspondingly, the free boundary problem (22) becomes⎧⎪⎪⎨⎪⎪⎩
L2,o H = 0 y ∈ [Yb(t, p, x), Ys(t, p, x)]
L2,bH = 0 y ≤ Yb(t, p, x)
L2,sH = 0 y ≥ Ys(t, p, x)

H(T, p, x, y) = exp
{
− γJ(p, x, y)

}
.

(26)

in which Yb(t, p, x) and Ys(t, p, x) are the buy and sell boundaries for stock P, respectively.
Note that the function H(t, p, x, y) is evaluated in the four-dimensional space [0, T]×�×
�×�. Furthermore, this suggests that while (t, ut, wt) is inside the no-transaction region,
the dynamics of h(t, u, w, y) are driven by two-dimensional standard Brownian motions
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{zt, t ≥ 0} and {wt, t ≥ 0} with correlation ρ. In the buy and sell regions, it follows
from (26) that

H(t, p, x, y) = exp{−γer(T−t)A−(p, x)[y − Yb(t, p, x)]}H(t, p, x, Yb(t, p, x)), y ≤ Yb(t, p, x),

H(t, p, x, y) = exp{−γer(T−t)A+(p, x)[y − Ys(t, p, x)]}H(t, p, x, Ys(t, p, x)), y ≥ Ys(t, p, x).

3. Discretization and a Numerical Algorithm

The solution of the PDE (21) or (25) can be obtained by turning the stochastic differ-
ential Equations (1), (3), (6) and (9) into Markov chains and then applying the discrete
time dynamic programming algorithm. The discrete state is � = (χ,�,�, ϑ,�), whose
elements denote time, price of stock P, spread, number of shares of stock P, and amount
in the bank in a discrete space. The value function, denoted by �, are given a value at
the final time by using the boundary conditions for the continuous value functions over
the discrete subspace (�,�, ϑ,�), and then they are estimated by proceeding backward in
time by using the discrete time algorithm. As in the continuous time case, this algorithm
is the same for both value functions and is derived below for a value function denoted
by �δ(χ,�,�, ϑ,�), where ρ is a discretization parameter, which depends on the discrete
time interval tδ. If tδ and the resolution of the ϑ-axis ϑδ are sent to zero, then the above
discrete value function converges to a viscosity subsolution and a viscosity supersolution
of the PDE (21). Therefore, all the discrete value functions converge to their continuous
counterparts; this is due to the uniqueness of the viscosity solution.

Consider an evenly spaced partition of the time interval [0, T]: χ = {δ, 2δ, . . . , nδ}, where
δ = T/n, and two evenly spaced partitions of the space intervals � = {0,±

√
δ,±2

√
δ, . . . , }

and� = {0,±
√

δ,±2
√

δ, . . . , }. The grid � is defined by � via the following transformation,

�i = exp
(
(μ − 1

2
σ2)T + �iσ

√
T
)

. (27)

Note that the SDE (3) implies that the asymptotic distribution of X(t) is Normal (θ, ν2/(2κ)),
we define grid � by

�j = θ +
ν√
2κ
�j. (28)

Denote χi = iδ for i = 1, . . . , n − 1. The dynamics (1) and (3) of P(t) and X(t) implies
the following transition density for (�(χi),�(χi)),(

�(χi+1)

�χi+1

)∣∣∣∣∣
(
�(χi)

�χi

)
∼ N

((
log�(χi) + (μ − 1

2 σ2)δ

(1 − δκ)�(χi) + δκθ

)
,
(

δσ2, δρσν
δρσν, δν2

))
. (29)

We also note that the discrete time equation for the amount in the bank �(χ) is

�(χi+1) = �(χi) exp(rδ).

Given the grid defined above, the discrete time dynamic programming principle is
invoked, and the following discretization scheme is proposed for PDE (21):

�δ(χi,�(χi),�(χi), ϑ,�(χi)) = max
{

�δ
(
χi,�(χi),�(χi), ϑ + ξ,�(χi)− (ap − bqe�(χi))�(χi)ξ

)
,

�δ
(
χi,�(χi),�(χi), ϑ − ξ,�(χi) + (bp − aqe�(χi))�(χi)ξ

)
,

E
{
�δ

(
χi+1,�(χi+1),�(χi+1), ϑ,�(χi+1)

)} }
.

(30)

where ξ > 0 is a real constant and i = 0, . . . , n − 1. This scheme is based on the principle
that the investor’s policy is the choice of the optimum transaction. We next show that, as
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the discretization parameter δ → 0, the solution �δ of (30) converges to the value function
V, or, equivalently, to the unique constrained viscosity solution of (21).

Theorem 3. The solution�δ of (30) converges locally uniformly as δ → 0 to the unique continuous
constrained viscosity solution of (21).

For the exponential utility function U(z) = 1 − exp(−γz), the value function V can
be expressed as (24), and its discretization scheme is given by

�δ(χi,�(χi),�(χi), ϑ,�(χi)) = 1 − exp
(
− γ�(χi)er(T−χi)

)
�δ(χi,�(χi),�(χi), ϑ).

Then, the discretization scheme (30) can be reduced to

�δ(χi,�(χi),�(χi), ϑ) = min
{

Fb(�(χi),�(χi), ξ) ·�δ(χi,�(χi),�(χi), ϑ + ξ),

Fs(�(χi),�(χi), ξ) ·�δ(χi,�(χi),�(χi), ϑ − ξ), E
{
�δ

(
χi+1,�(χi+1),�(χi+1), ϑ

)} }
.

(31)

where
Fb(�(χi),�(χi), ξ) = exp

{
γξ A−(�(χi),�(χi))er(T−χi)

}
,

Fs(�(χi),�(χi), ξ) = exp
{
− γξ A+(�(χi),�(χi))er(T−χi)

}
.

4. Simulation Studies

4.1. Buy and Sell Regions

We use the numerical algorithm proposed in Section 2 to studies the buy and sell
boundaries of the pairs trading strategy. Our study focuses on two aspects of the problem.
The first is the property of buy and sell boundaries (or no transaction regions) for a given
set of model parameters, and the other is the impact of different model parameters on
the shape of buy and sell boundaries. Without loss of the generality, we assume the time
horizon T = 1 and p(0) = 1 in all our simulation studies.

We first consider a baseline scenario. The parameter values in the baseline scenario
are μ = 0.2, σ = 0.4, θ = 0.1, κ = 1, ν = 0.15, ρ = 0.5, r = 0.01, γ = 5 and ζp = ζq =
ξp = ξq = 0.0005. For convenience, we label the setting of the baseline parameter values
as Scenario 1 or (S1). We discretize the state space (t, p, x, y, g) and use the developed
Markov chain approximation to solve the discretized optimization problem. Figure 1
shows the buy and sell surfaces of (S1) at time t = 0.05, 0.35, 0.65, and 0.95. To better
read the figure, we also show in Figures 2 and 3 the buy and sell boundaries of (S1) at
prices p = 0.845, 1.095, 1.400, 2.108, and x = 0.023, 0.092, 0.157, 0.266, respectively. These
points are chosen such that they correspond to the 24%, 48%, 72%, and 96% quantiles of the
distribution of p(T) and asymptotic distribution of x(t), respectively. We find the following
from these figures. First, at a given time and a given price level, the no transaction region
becomes narrower when the spread gets larger, and the no transaction region moves from
the negative to the positive when the spread turns from the negative to the positive. For
example, at t = 0.05 and p(t) = 0.845, the no transaction region changes from [−9.4,−8.0]
at x(t) = 0.023 to [−4.6,−3.4] at x(t) = 0.092, [−0.7, 0.2] at x(t) = 0.157, and [3.2, 3.7] at
x(t) = 0.266. Second, at a given time and a given spread level, the no transaction region
becomes narrower when the price p(t) gets larger, and the no transaction region moves
up when the price becomes larger. For instance, at t = 0.05 and x(t) = 0.023, the no
transaction region changes from [−9.4,−8.0] at p(t) = 0.845 to [−6.8,−5.6] at p(t) = 1.095,
[−4.9,−3.9] at p(t) = 1.400, and [−2.7,−2.0] at p(t) = 2.108. Note that the movement
of the no transaction region with respect to price change but with a fixed spread level is
relatively smaller than that with respect to spread change but with a fixed price level. Third,
when time ellipses from 0 to 1, the no transaction region moves upward. For instance,
at the fixed price-spread level (p(t), x(t)) = (1.095, 0.092), the no transaction intervals at
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t = 0.05, 0.35, 0.65 and 0.95 are [−2.6,−1.6], [−2.1,−1.2], [−1.5,−0.7], and [−0.8,−0.2],
respectively.

Figure 1. Buy and sell boundaries of the baseline scenario (S1) at different times.

We then discuss the impact of different parameter values on the buy and sell bound-
aries (or no transaction regions). Besides the parameter values in (S1), we now consider
other 18 sets of parameter values, labeled as Scenarios 2–19. In each of Scenarios 2–19,
all parameters values are same as those in (S1) except one parameter is changed as the
specification; see Table 1 that summarizes parameter values in all 19 scenarios. For example,
Scenario 2 uses parameter values μ = 0.1 and assume all other parameters σ, θ, κ, ν, ρ, r, γ
and ζp = ζq = ξp = ξq have same values as those in (S1). We discretize the state space
(t, p, x, y, g), and use the developed Markov chain approximation to solve the discretized
optimization problem for Scenarios 2–19.
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Figure 2. Buy and sell boundaries of at prices Pt = 0.845 (top left), 1.095 (top right), 1.400 (bottom

left), and 2.108 (bottom right) and different times.

Figure 3. Buy and sell boundaries of at spread Xt = 0.023 (top left), 0.092 (top right), 0.157 (bottom

left), and 0.266 (bottom right) and different times.

To compare the buy and sell boundaries (or no transaction regions) among different
scenarios, we plot the buy and sell boundaries over time at four fixed points (p(1), x(1)) =
(0.9, 0.09), (p(2), x(2)) = (0.9, 0.12), (p(3), x(3)) = (1.5, 0.09), and (p(4), x(4)) = (1.5, 0.12),
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respectively. Figures 4–12 demonstrate variations of the buy and sell boundaries over time
for different values of μ, σ, θ, κ, ν, ρ, r, γ, ζp(= ζq = ξp = ξq), respectively. In each figure, we
plot the buy and sell boundaries for (p(i), x(i)), i = 1, 2, 3, 4 on the top left, top right, bottom
left, and bottom right, respectively, we also use the solid (dashed, dotted) lines to represent
the baseline value (the smaller value, the larger value) of the parameter under comparison.
Figure 4 suggests that when μ increases, the buy and sell boundaries move downward at
all four points. Figure 5 indicates that when σ increases, the buy and sell boundaries move
upward at (p(1), x(1)) and (p(2), x(2)), but move downward at (p(3), x(3)) and (p(4), x(4)).
Figure 6 shows that, when θ increases, the buy and sell boundaries move downward at all
four points. Figure 7 indicates that, when κ increases, the buy and sell boundaries move
downward, and the magnitude of such movement is larger at (p(1), x(1)) than the other three
points. Figure 8 shows that, when ν increases, the buy and sell boundaries move upward at
(p(i), x(i)), i = 1, 2, 3, but move downward at (p(4), x(4)). Figure 9 suggests that, when the
correlation ρ changes from the negative to the positive, the buy and sell boundaries move
downwards at (p(1), x(1)) and (p(2), x(2)), but move upward at (p(3), x(3)) and (p(4), x(4)).
Figure 10 indicates that variations of interest rate r have little impact on the buy and sell
boundaries. Figure 11 shows that, when the risk aversion parameter γ increases, the buy
and sell boundaries move upward at (p(i), x(i)), i = 1, 2, 3, but move downward at (p(4), x(4)).
Figure 12 suggests that, when the transaction cost increases, the center of the no transaction
region seems to not change, but the region gets wider.

Table 1. Parameter values of different scenarios.

(S1) μ = 0.2, σ = 0.4, θ = 0.1, κ = 1, ν = 0.15, ρ = 0.5,
r = 0.01, γ = 5 and ζp = ζq = ξp = ξq = 0.0005.

(S2) μ = 0.1 (S8) κ = 0.8 (S14) r = 0.005
(S3) μ = 0.3 (S9) κ = 1.2 (S15) r = 0.03
(S4) σ = 0.2 (S10) ν = 0.1 (S16) γ = 3
(S5) σ = 0.6 (S11) ν = 0.2 (S17) γ = 8
(S6) θ = −0.05 (S12) ρ = −0.2 (S18) ζp = ζq = ξp = ξq = 0.0001
(S7) θ = 0.3 (S13) ρ = 0.6 (S19) ζp = ζq = ξp = ξq = 0.0010

Figure 4. Buy and sell boundaries of at fixed prices (p(i), x(i)), i = 1, 2, 3, 4 for μ = 0.1 (dashed),
0.2 (solid), 0.3 (dotted).
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Figure 5. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for σ = 0.2 (dashed),
0.4 (solid), 0.6 (dotted).

Figure 6. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for θ = −0.05 (dashed),
0.1 (solid), 0.3 (dotted).
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Figure 7. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for κ = 0.8 (dashed),
1 (solid), and 1.2 (dotted).

Figure 8. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ν = 0.1 (dashed),
0.15 (solid), and 0.2 (dotted).
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Figure 9. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ρ = −0.2 (dashed),
0.5 (solid), and 0.6 (dotted).

Figure 10. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for r = 0.005 (dashed),
0.01 (solid), and 0.03 (dotted).
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Figure 11. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for γ = 3 (dashed),
5 (solid), and 8 (dotted).

Figure 12. Buy and sell boundaries of at fixed price (p(i), x(i)), i = 1, 2, 3, 4 for ζp = ζq = ξp = ξq =

0.0001 (dashed), 0.0005 (solid), and 0.0010 (dotted).

4.2. Performance of the Strategy

We also perform simulation studies to investigate the performance of the optimal
trading strategy. For comparison purpose, we also consider a benchmark strategy that is
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analogous to the relative-value arbitrage strategy used in Gatev et al. (2006) and based
on standard deviation of the spread. Specifically, the strategy opens a position when the
spread exceeds twice the standard deviation of the spread process, and closes the position
when either price converges or the maturity is reached. As the benchmark strategy doesn’t
specify the number of shares of stocks that should be bought or sold, we assume that the
number of shares of stocks traded each time is one.

We simulate the price process pt and the spread process xt to compare the perfor-
mance of the benchmark strategy and our strategy in scenarios (S1)–(S19). Assume that
T = 1, and we discretize the time interval (0, 1] as {0.01, 0.02, . . . , 0.99, 1}, so that we
have 100 trading periods. For each scenario, we simulate 1000 paths of {(pt, xt)|t =
0, 0.01, . . . , 0.99, 1, p0 = 1}, and for each simulated path (pt, xt), we implement the bench-
mark strategy and the optimal strategy at t = 0.01, 0.02, . . . , 0.99 and close the position
at T = 1. Let i = b, o represent the benchmark and the optimal strategies, respectively.
For each realized trading strategies, denote N(i) as the number of trades (i.e., buy and
sell) among the 100 trading periods and PL(i) = −C(i)(Lp, Mp; 0, 1) the total profit made
during the trading process. Note that the benchmark strategy trades only one share of
stock each time while the number of shares of stocks in the optimal strategy are “optimally”
chosen based on the buy and sell regions, we define PS(i) as the the average profit (or loss)
generated from the maximum number of shares of stocks during the trading process. That
is, PS(i) := −C(i)(Lp, Mp; 0, 1)/ maxt |Y(i)

t |, where Y(i)
t is the number of shares of stock P

at t = 0.01, 0.02, . . . , 0.99.
Table 2 summarizes the mean and standard error of N(i), PL(i), and PS(i) (i = o, b) for

1000 paths in each scenario. We note that the total numbers of trades N(o) in the optimal
strategy range from 45.736 to 55.821 for (S1)–(S17), and increases (or decreases) significantly
when the transaction costs decreases (or increases) in (S18) and (S19). In comparison to this,
the total numbers of trades N(b) in the benchmark strategy are much smaller, essentially,
between 1 and 2. This suggests the benchmark strategy is much more conservative than
the optimal strategy. For the realized profit over the trading period, PL(o) is much larger
than PL(b) as the optimal strategy can choose to buy or sell the “optimal” number of shares
of stock pairs, while the benchmark strategy only buy or sell one share of stock pair. PS(o)

and PS(b) remove the impact of number of shares of traded stocks, and provide the average
earning per traded stock, and we notice that PS(o) is still significantly higher than PS(b).

Table 2. Performance of strategies.

N(o) PL(o) PS(o) N(b) PL(b) PS(b)

(S1) 52.289 (0.247) 0.349 (0.019) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S2) 53.218 (0.241) 0.389 (0.020) 0.051 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S3) 51.348 (0.253) 0.318 (0.019) 0.046 (0.004) 1.094 (0.084) 0.004 (0.002) 0.004 (0.002)
(S4) 52.999 (0.208) 0.378 (0.019) 0.054 (0.003) 1.094 (0.084) 0.007 (0.002) 0.007 (0.002)
(S5) 51.896 (0.275) 0.326 (0.019) 0.040 (0.005) 1.094 (0.084) 0.003 (0.004) 0.003 (0.004)
(S6) 49.299 (0.235) 0.357 (0.020) 0.032 (0.003) 1.094 (0.084) 0.003 (0.002) 0.003 (0.002)
(S7) 54.233 (0.262) 0.344 (0.019) 0.064 (0.005) 1.094 (0.084) 0.008 (0.003) 0.008 (0.003)
(S8) 55.821 (0.304) 0.359 (0.021) 0.062 (0.006) 1.094 (0.084) 0.005 (0.003) 0.005 (0.003)
(S9) 45.736 (0.254) 0.266 (0.016) 0.046 (0.003) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)

(S10) 46.347 (0.292) 0.228 (0.016) 0.042 (0.005) 1.052 (0.083) 0.004 (0.002) 0.004 (0.002)
(S11) 57.689 (0.212) 0.489 (0.022) 0.053 (0.003) 1.206 (0.084) 0.007 (0.002) 0.007 (0.002)
(S12) 46.774 (0.248) 0.325 (0.015) 0.065 (0.003) 1.140 (0.086) 0.008 (0.001) 0.008 (0.001)
(S13) 53.516 (0.245) 0.361 (0.020) 0.045 (0.004) 1.140 (0.087) 0.006 (0.002) 0.006 (0.002)
(S14) 54.027 (0.232) 0.579 (0.032) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S15) 50.031 (0.266) 0.219 (0.012) 0.049 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S16) 52.300 (0.247) 0.347 (0.019) 0.048 (0.004) 1.094 (0.084) 0.005 (0.002) 0.005 (0.002)
(S17) 52.261 (0.247) 0.357 (0.019) 0.050 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S18) 73.801 (0.286) 0.339 (0.019) 0.045 (0.004) 1.094 (0.084) 0.006 (0.002) 0.006 (0.002)
(S19) 42.996 (0.222) 0.339 (0.019) 0.049 (0.004) 1.094 (0.084) 0.004 (0.002) 0.004 (0.002)
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5. Real Data Studies

We test our model with real market data in this section. We present the sample and
explain our methodology first, and then show the results and discussion.

A key step of implementing pairs trading strategy is to select two stocks for pairs
trading. Gatev et al. (2006) illustrate how this can be done by using stock price data. An
alternative to this approach is to use fundamentals analysis to select two stocks that have
almost the same risk factor exposures; see Vidyamurthy (2004). In this study, we consider
a hybrid of these two approaches. Specifically, we restrict two stocks P and Q to belong
to the same industry sector. Table 3 lists six pairs of stocks selected from four different
sectors. For each pair of stocks P and Q, we compute the spread by regressing log price
of stock Q on the log price of stock P, and the fitted values of the regression is considered
as the “transformed” price of P. Figure 13 shows six pairs of the original prices of Q and
transformed prices of P over time.

Table 3. Six pairs of stocks selected from different industries.

Sector Stock Q Stock P

Consumer goods Apple Inc. (AAPL) Procter & Gamble Co. (PG)
Consumer goods Coca-Cola Co. (KO) PepsiCo, Inc. (PEP)
Technology Alphabet Inc Class A (GOOGL) Microsoft Corporation (MSFT)
Technology AT&T Inc. (T) Verizon Communications Inc. (VZ)
Industrial goods Boeing Corporation (BA) General Electric Company (GE)
Financial Goldman Sachs Group Inc. (GS) JPMorgan Chase & Co. (JPM)

Figure 13. Original (solid) and transformed (dashed) prices of six pairs of stocks.
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We then apply the optimal strategy and the benchmark strategy in Section 4.2 to test
the out-of-the-sample performance. Specifically, we use the past three years of the historical
data of each pair to estimate the model parameter, and run a unit-root test to conclude if the
spread xt is a stationary process. If xt is not stationary, we do not implement any strategies.
Otherwise, we implement both the optimal strategy and the benchmark strategy. Note that
the optimal strategy can optimally choose the number of shares of stocks in each trade,
while we still trade one unit of stock in the benchmark strategy. Table 4 shows the number
of trades N(i), the accumulated profit (in U.S. dollars) at maturity PL(i), and the average
profit per traded share PS(i) over two testing periods, for i = o (the optimal strategy) and
i = b (the benchmark strategy). Table 4 suggests that the benchmark strategy is much more
conservative than the optimal strategy. Besides, the average profits per traded share PS(o)

of the optimal strategy are much larger than that of the benchmark strategy except for the
stock pair (KO, PEP).

Table 4. Performance of strategies.

Pairs Year N(o) PL(o) PS(o) N(b) PL(b) PS(b)

(AAPL, PG) 2014 58 8.56 2.173 0 0 0
2015 70 25.439 3.91 0 0 0

(BA, GE) 2014 97 27.866 1.292 0 0 0
2015 165 168.543 1.982 20 0.455 0.455

(T, VZ) 2014 127 77.908 2.158 2 0.603 0.603
2015 131 115.587 2.883 0 0 0

(GOOGL, MSFT) 2015 103 94.271 6.734 8 1.623 1.623
2016 135 65.957 6.296 0 0 0

(GS, JPM) 2015 100 7.654 0.195 6 −2.54 −2.54
2016 200 94.542 2.375 8 −1.66 −1.66

(KO, PEP) 2015 142 37.51 0.675 22 10.154 10.154
2016 165 217.878 4.059 4 5.983 5.983

6. Concluding Remark

The problem of optimal pairs trading has been studied by many academic researchers
and financial practitioners. Existing models and methods try to find either the optimal
shares of stocks by assuming no transaction costs, or the optimal timing of trading fixed
number of shares of stocks with transaction costs. In contrast to these analysis, this paper
studies the joint effect of optimal shares and optimal trading times in pairs trading process
with proportional transaction costs. Under the assumption that the investor’s aim is
to maximize the expected utility of terminal wealth, the optimal pair trading problem
can be written as a singular stochastic control problem and solved by the approach in
Davis et al. (1993). We then demonstrate the advantage of joint consideration of optimal
shares and optimal trading times in pair trading via simulation and empirical studies.

The following issues may need further investigation to make this study more practical.
First, our approach can be easily extended for nonexponential utility functions. In such a
case, the optimization problem involves five (instead of four) variables, and the numerical
algorithm in our paper needs to be modified to adapt for five variables. Second, our
approach can be extended to solve the optimal co-integration trading, which involves n
stocks with m co-integration relationship. Third, many empirical studies suggest that stock
price processes can be better approximated by incorporating jumps. Using the framework
and algorithms developed in Xing et al. (2017), the method developed here can be extended
to the case that price processes follow geometric jump-diffusion processes. In such a case,
the value function of the corresponding variational inequalities involve integro-differential
equations, which can be solved by extending our numerical algorithm.
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Appendix A. Proof of Theorems

Proof of Theorem 1. In our case, the state X is (s, x), where x = (p, x, y, g). Let X0 =
(s0, p0, x0, y0, G0), it follows that there exists an optimal trading strategy, dictated by the
pair of processes (L∗

p(t), M∗
p(t), where X∗

0(t) = (t, p∗0(t), x∗0(t), y∗0(t), g∗0(t)) is the optimal
trajectory, with X∗

0(s0) = X0.
(i) First, we prove that V is a viscosity subsolution of (21) on [0, T]×�+ ×�×�×�).

For this, we must show that, for all smooth functions φ(X), such that V(X)− φ(X) has a
local maximum at X0, the following inequality holds:

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≤ 0. (A1)

Without loss of generality, we assume that V(X0) = φ(X0) and V ≤ φ on [0, T] ×
�

+ ×�×�×�. We argue by contradiction: if the arguments inside the operator of (A1)
satisfy −Bφ(X0) > 0 and Sφ(X0) > 0, then there exists θ > 0, such that −Lφ(X0) > θ.
From the fact that φ is smooth, the above inequalities become −Bφ(X) > 0, Sφ(X) > 0,
and −Lφ(X) > θ, where X = (t, p, x, y, g) ∈ B(X0), a neighborhood of X0. In Lemma 1, it
is shown that X∗

0(t) has no jumps, P-a.s., at X0 = X∗
0(s0). Hence, τ(ω), defined by

τ(ω) = inf{t ∈ (s0, T] : X∗
0(t) /∈ B(X0)},

is positive P-a.s., and therefore the integral along X∗
0(t)

−θ
∫ τ

s0

dt >E
∫ τ

s0

Bφ(X∗
0(t))dL∗(t)− E

∫ τ

s0

Sφ(X∗
0(t))dM∗(t) + E

∫ τ

s0

Lφ(X∗
0(t))dt

=E{I1} − E{I2}+ E{I3},
(A2)

where (L∗(t), M∗(t)) is the optimal trading strategy at X0. Applying Itô’s formula to φ(X),
where the state dynamics are given by (1)–(6), we get

E{φ(X∗
0(τ))} = φ(X0) + E{I1} − E{I2}+ E{I3}. (A3)

Since V(X) ≤ φ(X), for all X ∈ B(X0), and V(X0) = φ(X0), (A2) and (A3) yield

E{V(X∗
0(τ))} ≤ V(X0) + E{I1} − E{I2}+ E{I3} < V(X0)− θ

∫ τ

s0

dt,

which violates the dynamic programming principle, together with the optimality of
(L∗(t), M∗(t)). Therefore, at least one of the arguments inside the minimum operator
of (A1) is nonpositive, and hence the value function is a viscosity subsolution of (21).

(ii) In the second part of the proof, we show that V is a viscosity supersolution of (21).
For this, we must show that, for all smooth functions φ(X), such that V(X)− φ(X) has a
local minimum at X0, the following inequality holds:

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≥ 0, (A4)
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where, without loss of generality, V(X0) = φ(X0) and V(X) ≥ φ(X) on [0, T]×�+ ×�×
�×�. In this case, we prove that each argument of the minimum operator of (A4) is
non-negative.

Consider the trading strategy L(t) = L0 > 0, s0 ≤ t ≤ T, and M(t) = 0, s0 ≤ t ≤ T.
By the dynamic programming principle,

V(s0, p0, x0, y0, g0) ≥ V(s0, p0, x0, y0 + L0, g − (ap − bqeX0)p0L0).

This inequality holds for φ(s, p, x, y, g) as well, and, by taking the left-hand side to
the right-hand side, dividing by L0, and sending L0 → 0, we get Bφ(X0) ≤ 0. Similarly,
by using the trading strategy L(t) = 0, s0 ≤ t ≤ T, and M(t) = M0 > 0, s0 ≤ t ≤ T, the
second argument inside the minimum operator is found to be non-negative.

Finally, consider the case where no trading is applied. By the dynamic programming
principle

E{V(Xd
0(t))} ≤ V(s0, p0, x0, y0, g0), (A5)

where Xd
0(t) is the state trajectory of starting at s0, when M(t) = L(t) = 0, s0 ≤ t ≤ T,

given by (1)–(6) as
Xd

0(t) = (t, p(t), x(t), y0, g(t))

and Xd
0(t) ∈ B(X0). Therefore, by applying Itô’s rule on φ(s, X, B, y, G), inequality (A5) yields

E

{∫ t

s0

Lφ(Xd
0(ξ))dξ

}
≤ 0,

and, by letting t → s0, the third argument inside the minimum operator is found to be
non-negative. This complete the proof.

Lemma A1. Assume that −Bφ(X0) > 0, and denote the event that the optimal trajectory X∗
0(t)

has a jump of size ε, along the direction (0, 0, 0, 1,−(ap − bqex0)p0) by A(ω). Assume that the
state (after the jump) is (s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε) ∈ B(X0). Then,(

Bφ(X0)
)

P(A) ≥ 0, (A6)

therefore P(A) = 0. Similarly, if Sφ(X0) > 0, then the optimal trajectory has no jumps along the
direction (0, 0, 0,−1, (bp − aqex0)p0), P-a.s. at x0.

Proof. By the principle of dynamic programming,

V(s0, p0, x0, y0, g0) = E
{

V(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)
}

=
∫

A(ω)
V(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)dP +

∫
A(ω)

V(s0, p0, x0, y0, g0)dP,

and therefore∫
A(ω)

[
φ(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)− φ(s0, p0, x0, y0, g0)

]
dP ≥ 0,

since V(X) ≤ φ(X) for all X ∈ B(X0) and V(X0) = φ(X0). Therefore,

lim sup
ε→0

{ ∫
A(ω)

φ(s0, p0, x0, y0 + ε,−(ap − bqex0)p0ε)− φ(s0, p0, x0, y0, g0)

ε
dP

}
≥ 0,

and, by Fatou’s lemma,

∫
A(ω)

lim sup
ε→0

{φ(s0, p0, x0, y0 + ε,−(ap − bqex0)B0ε)− φ(s0, p0, x0, y0, G0)

ε

}
dP ≥ 0,
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which implies (A6).

Proof of Theorem 3. Let

Vδ(t, p, x, y, g) =
{
�δ(χ,�,�, y,�) if t ∈ [χ, χ + δ), y ∈ [ν, ν + κδ),
Z(�,�, y,�) if t = T

and
V(X) = lim

Y→X
inf
δ→0

{�δ(Y)} and V(X) = lim
Y→X

sup
δ→0

{�δ(Y)}, (A7)

where X = (t, p, x, y, g). We will show that V(X) and V(X) are a viscosity supersolution
and a viscosity subsolution of (21), respectively. Combining this with the uniqueness of the
viscosity solution of (21) yields V(X) ≥ V(X) on [0, T]×�+ ×�×�×�. The opposite
inequality is true by the definition of V(X) and V(X), and therefore

V(X) = V(X) = V(X),

which, together with (A7), also implies the local uniform convergence of �δ to V.
Note that we only prove that V is a viscosity supersolution of (21), as the arguments

for V is identical. Let X0 be a local minimum of V − φ on [0, T]×�+ ×�×�×�, for
φ ∈ C1,2([0, T]×�+ ×�×�×�). Without loss of generality, we may assume that X0 is
a strict local minimum, that V(X0) = φ(X0), and that φ ≤ −2 × supδ{||�δ||∞} outside the
vall B(X0, R), R > 0, where V(X)− φ(X) ≥ 0.

Then, there exist sequences δn ∈ �+ and Yn ∈ [0, T]×�+ ×�×�×�, such that

δn → 0, Yn → X0,�δn(Yn) → V(X0), Yn if a global minimum point of �δn
j − φ.

Let hn = �δn − φ; then

hn → 0 and �δn
j (X) ≥ φ(X) + hn(X) for any X ∈ [0, T]×�+ ×�×�×�. (A8)

To show that V is a viscosity supersolution of (21), it suffices to show that

min
{
−Bφ(X0),Sφ(X0),−Lφ(X0)

}
≥ 0. (A9)

Let �n = (si,�n,�n, yn,�n), where si ∈ [χi, χi + δn) and yδn ∈ [ϑn, ϑn + κδn). Denote

�
(0)
n = (χn,�n,�n, yn,�n),

�
(1)
n =

(
χn,�n,�n, ϑn + κδn,�n − (ap − bqe�n)�nκδn

)
,

�
(2)
n =

(
χn,�n,�n, ϑn − κδn,�n + (bp − aqe�n)�nκδn

)
.

Then,

�δn(�
(0)
n ) = max

{
�δn(�

(1)
n ),�δn(�

(2)
n ), E

{
�δn(�

(0)
n+1)

} }
.

Now, we look at the following three cases.
Case 1. It holds that �δn(�

(0)
n ) = �δn(�

(1)
n ). Then (A8) implies that

�δn(�
(0)
n ) ≥ φ(�

(1)
n ) +�δn(�

(0)
n )− φ(�

(0)
n ),
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and therefore

0 ≥ lim inf
n

{φ(�
(1)
n )− φ(�

(0)
n )

δn

}
≥ lim inf

δ→0

{φ(�
(1)
0 )− φ(�

(0)
0 )

δ

}
=

∂φ(X0)

∂y
− (ap − ex0(t))p0(t)

∂φ(x0)

∂g
.

Case 2. It holds that�δn(�
(0)
n ) = �δn(�

(2)
n ). Arguing similarly to case 1, we get

0 ≥ −
(∂φ(X0)

∂y
− (bp − aqex0(t))p0(t)

∂φ(X0)

∂g

)
.

Case 3. It holds that�δn(�
(0)
n ) = E

{
�

δn(�
(0)
n+1)

}
. Then (A8) implies that

�
δn(�

(0)
n ) ≥ E

{
φ(�

(0)
n+1)

}
+�δn(�

(0)
n )− φ(�

(0)
n+1),

and therefore

0 ≥ lim inf
n

{φ(�
(0)
n+1)− φ(�

(0)
n )

δn

}
≥ lim inf

δ→0

{φ(�
(0)
1 )− φ(�

(0)
0 )

δ

}
= Lφ(X0).

Combining the results in cases 1–3 yields (A9), and the proof is complete.
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Abstract: Prices respond to equate supply and demand. However, price-setting in low-volume or
“thin” markets is a challenge as is determining which items to carry. We present an algorithm that
takes into account a store’s fixed costs, the cost of goods sold, prices, and listing duration to determine
the portfolio of items to maximize profits. Prices can then be assigned as a mark-up over cost. The
usefulness of this approach is demonstrated by applying it to a store on eBay in which the seller
needs to meet a profit threshold. The findings identify how sellers of unusual items can effectively
determine which items to list and how to set price to reach profit goals.

Keywords: pricing; market volume; portfolio profitability; Poisson model

JEL Classification: D4 (Market Structure and Pricing); L1 (Market Structure; Firm Strategy; and
Market Performance)

1. Introduction

A thin market is characterized by few buyers and sellers with few transactions
(Armstrong 2006). Artwork, antique collectables, and real estate are often traded in thin
markets (Knight 2002). In contrast, a thick market has high trading volume in which prices
equate supply and demand (Acemoglu 2007). Understanding how to set prices is especially
important when trading in markets with unusual items in which few are sold. (Khezr 2015).

Prices in thin markets tend to be volatile because suppliers often guess when choosing
what to charge (Coslor 2016). Lacking the robust pricing rules used in thick markets
(Hanson 2003), prices in thin markets use algorithms (Tesauro and Kephart 2002; Yu et al.
2011). Most algorithms focus on fixed costs (Deng and Yano 2006) or macroeconomic
variables such as GDP, employment rates, interest rates, or price indices (Cirman et al. 2015).
Profits can also be volatile in thin markets with sales of very few items determining gain or
loss. Sellers of items in thin markets face the challenge of building portfolios of items and
setting prices to reach profit goals (Severini 2017). The choice of inventory to accumulate
and sell in thin markets typically fails to account for the duration of shelf time and the
timing of cash flows that substantially influences small businesses’ survival (Elmaghraby
and Keskinocak 2003). In addition, the advent of e-commerce has increased the need to
understand, and potentially improve, how prices are set in low volume long-tail markets
(Kendall and Tsui 2011).

The present paper presents an algorithmic approach that sets prices for a portfolio of
thinly traded items subject to a cash flow constraint. The algorithm is applied to data from
a seller of unique items on eBay to demonstrate how to implement the methodology.

2. Method

The nonsmoothness of sales in thin markets can be modelled as a Poisson distribution.
An event is the sale of a single item in the store. This contrasts with typical sales models in
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which transactions include multiple items purchased at the same time. The probability of a
given number of items selling in a month is given by,

Pois(λ) =
λke−λ

k!
,

where k is the number of items sold and λ is the expected frequency of sales. The probability
of at least k items being sold (“ProbSold”) is 1 minus the cumulative distribution function
(CDF) of the distribution.

Sales frequency is affected by the quantity of goods available to sell, the portfolio of
goods that vary in their demand, and prices for each type of good. One can solve for the
types of goods to list by modifying Guadix et al. (2011) to include a fixed-cost threshold
that must be met every month and segmenting the listed items into one of four categories:
(1) high profit, sold fast (HF); (2) high profit, sold slow (HS); (3) low profit, sold fast (LF);
(4) low profit, sold slow (LS).

3. Results

We obtained data from a vintage auto parts store on eBay to demonstrate the above
method. The store owner obtains parts from junkyards, refurbishes them, and lists them for
sale. The customers are individual car owners and repair shops. The uniqueness of listed
items means that there are few competitors and therefore uncertainty about market-clearing
prices. The data are a sample of 319 items sold over three months of approximately 5000 that
the seller has listed. The data include part type, shelf duration, listed price, and item cost.
These data were used to calculate gross profit (sale price − item cost). The store owner also
shared his estimated monthly fixed costs, but was unable to supply the costs of the time
spent sourcing parts, cleaning and refurbishing them, researching prices, and packing and
mailing items. The algorithm below is easily modified to reflect these additional costs.

3.1. Listed Items and Duration

The average revenue per sale was USD 19.62 (SD = USD 73.73) and average cost
of goods sold was USD 8.56 (SD = USD 7.28). This produced average gross profit of
USD 111.06 (SD = USD 68.37). The average listing time prior to sale was 14.1 months
(SD = 11.89). The sample of 319 items was used to reflect the population of 5000 items used
in the analysis.

We parameterized the Poisson distribution using a month as the event period and the
event as the number of items sold per month. The parameter λ is the expected frequency of
monthly sales. The dataset shows this to be 68.65. The probability of at least k items being
sold in a month is 1 − e−68.65 ∑

[k]
i=0

68.65i

i! as shown in Figure 1.
The value λ = 68.85 for items sold per month maximizes expected gross profit (the

product of expected items sold at an average gross profit per item of USD 111.06), earning
the owner USD 5798. The value of lambda is scalable with listing quantity, showing that
listing more items generates more revenue and profit (Table 1).

Table 1. The maximum expected gross profit increases with increased listings.

Listed Quantity 319 600 900 1200 1500 1800 2100

Lambda (λ) 68.65 129.14 193.70 258.27 322.84 387.41 451.97

Maximum expected gross
profit USD 5798 USD 11,633 USD 18,045 USD 24,559 USD 31,142 USD 37,775 USD 44,444
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Figure 1. The Poisson distribution for λ = 68.65 showing the probability of selling at least k items in
a month.

3.2. Determining the Distribution of Listed Items

The store owner faces a binding revenue constraint that, prior to this analysis, he
sought to reach by guessing the types of items to list each month. This experience-based
assessment can be complemented by a data-driven algorithm. We used the store’s monthly
fixed costs, listing price, historical listing time, and cost of each item to develop an algorithm
to select items to meet a profit goal. We wrote code that iterates the number of items in each
class, extending a previous approach (Guadix et al. 2011). The procedure, written in SAS
v 9.4 software, first calculates the cost per item and assigns a portion of the store’s fixed
costs (USD 2000) to each item in the store. The assigned fixed cost per item is multiplied
by the number of months each item remains in the store unsold. Then, the assigned fixed
cost per item is compared to the item’s gross profit. The item is kept in the portfolio if
the gross profit is greater than its cost. This process continues until the portfolio contains
only items that generate positive profits. The code converged after 10 iterations, producing
a portfolio of 81 items. The flow chart in Figure 2 depicts how the algorithm builds the
portfolio. Appendix A shows the iterative process in detail and includes the SAS code.

The optimized portfolio of items varies considerably from the seller’s current inventory.
High profit items H (=HF + HS) make up 71.60% of the optimized mix compared to 50.47%
in the seller’s current store. Low profit items L (=LF + LS) are 28.40% of the new mix,
compared to 49.53% previously. Nearly all of the high profit items sell fast in the optimized
portfolio and there are no low profit slow selling (LS) items. The proportion of each product
class in the optimal mix is shown in Table 2.
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Figure 2. Flow chart of portfolio screening process.

Table 2. The distribution of the optimal portfolio of items. Gross profit and cost are the contribution
to overall profit and the cost of goods sold. Weighted profit is the percent of gross profit multiplied
by average gross profit (USD 140.57).

Median Split Category Gross Profit Item Cost
Weighted Profit

(per Item)

High profit, sold fast (HF) 70.37% 50.62% USD 104.85

High profit, sold slow (HS) 1.23% 1.23% USD 22.43

Low profit, sold fast (LF) 28.40% 48.15% USD 5.93

Low profit, sold slow (LS) 0.00% 0.00% USD 0.00

The optimized portfolio has an average cost of items sold of USD 9.11 (SD = USD 7.41)
and an average gross profit per item of USD 140.57 (SD = USD 67.18). The average profit in
the optimal portfolio is 26.6% higher than in the seller’s present portfolio (t-test, p = 0.0003).
The new portfolio has an average listing duration of 2.81 months (SD = 1.99) compared to
14.1 months for current listings (Figure 3); this is an 80% reduction in turnover duration
(p = 0.0000). The total expected monthly profit for the optimized portfolio is USD 4052.02
(USD 140.57*81/2.81) that is 61% higher than original monthly profit of USD 2512.63 (USD
111.06*319/14.1). Further, the algorithm we developed reduced the standard deviation
of duration by 83.3%. Every month, approximately 81 new items would be added to the
store’s inventory (Table 2).
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In the optimized portfolio, compared to the original set of items, the duration of parts
for cars from the 1990s was significantly lower (p = 0.048) as was the duration of items for
cars from Japan (p = 0.0172).

 

Figure 3. The histogram of duration for original and optimal portfolio.

3.3. Duration and Prices

One way to determine prices is a linear markup over cost. Estimating a linear regres-
sion using the original set of listed items (Figure 4), the average markup over cost is 668%.
The estimated pricing equation is

Item Price = 53.877 + 7.6822 × Item Cost.

Figure 4. The relationship between cost and price for the original (Orig) and optimal (Opt) portfolio.
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In the optimized portfolio, the average markup over cost is 673%. The pricing equa-
tion is

Item Price = 79.23 + 7.7322 × Item Cost.

Using the number of items sold per month (69) and the optimized distribution of
item types (Table 2), the optimized listings include 49 HF and 20 LF items. Assuming the
markup of each group follows the same ratio, the markups are 821% for HF and 335% for
LF goods.

The correlation between price and duration in the optimized portfolio was 0.56, sub-
stantially higher than the 0.04 correlation in the original portfolio (z = 4.67, p = 0.0000). The
higher correlation was due to the selection algorithm.

4. Discussion

The growth of eBay and other online stores has been phenomenal. In 2019, USD
22 billion of goods were sold on eBay from 1.3 billion listings and 182 million users
(Lin 2020). In the US, 40% of items sold on eBay were used rather than new. Setting a price
of items with high volume is easy—one simply searches eBay to establish the average and
range of prices. However, sellers in thin markets have a paucity of information on prices
and must also choose a selection of items to source and sell. Our contribution provides
online and physical retailers in thin markets with an algorithmic approach to stocking
their stores.

The algorithm developed in this paper offers sellers of items in thinly traded markets
a methodology to improve the distribution of items sold, while at the same time increasing
the likelihood that profit thresholds are met. The algorithm can select the type of items to
list by calculating the profitability of item categories and is relatively straightforward to
implement (Appendix A). The approach we have developed can easily be generalized to
include additional costs, including storage, overhead, administrative, utilities, and taxes.

The optimal portfolio did not sacrifice the seller’s high per item markup. Indeed, the
markup that maximizes profits was shown to be higher than that currently used. Prices
in thin markets are typically only weakly correlated with demand (Sudhir 2001). An
additional insight from our approach is that the seller should avoid listing LS (low profit,
sold slow) items. The algorithm thus provides a screen that reduces the sourcing, cleaning,
and listing of LS items, eliminating an entire class of inventory to manage. The cutoff for
LS items can be varied from the median split used here by assessing the profit contribution
of such items when they sell. An exception to this rule could be rare or antique items that
might sell slowly but could drive visitors to a store as a form of advertising (Barney and
Hesterly 2014).
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Appendix A

Iterative procedure to build portfolios of HS, LS, HF, HS items.

1. Let nj be the number of items kept in the portfolio and let j be the number of iterations
(j = 0, 1, 2, . . . ).

a. when j = 0, n0 = 319.

2. Let C be the total cost of items based on current cycle’s portfolio.

a. Cj = cos t/nj
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3. Let α be the cost of an item, T be the duration of the listing, m be the index of items
kept in the jth cycle. The cost to source an item is assumed to increase in proportion
to duration based on data from the original portfolio,

a. αm=Cj∗Tm

4. Compare each items’ profit πm vs. cost αm such that if πm > αm, keep the item in the
portfolio. Otherwise, delete the item from the portfolio.

5. Recalculate nj

6. Repeat this process until there is no πm < αm to obtain the final optimal portfolio.

SAS code

1. proc import out=my_Ebay
2. datafile=‘C:\SAS\Ebay’
3. dbms=xlsx replace;
4. sheet=”Orig data”my_Ebay
5. run;
6.
7. /*Add column of 1/T=orig d*/
8. data my_Ebay;
9. set my_Ebay;
10. orig_d=1/Dur__Months;
11. run;
12. sheet="Orig data";
13. run;
14.
15. proc contents data=my_Ebay;
16. run;
17.
18. /*Add column of 1/T=orig_d*/
19. data my_Ebay;
20. set my_Ebay;
21. orig_d=1/Dur__Months;
22. k=_N_;
23. fact_k=fact(k);
24. run;
25.
26. /*calculate the total orig d*/
27. proc sql;
28. select sum(orig_d)/count(*) into: final_d
29. from my_Ebay;
30. quit;
31. %put &final_d.;
32.
33. /*test count*/
34. proc sql;
35. select count(*) from my_Ebay;
36. quit;
37.
38. /*calculate p*/
39. data my_Ebay;
40. set my_Ebay;
41. p=exp(-&final_d.)*(&final_d.*k)/fact_k;
42. run;
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Abstract: This paper proposes new dynamic conditional futures hedge ratios and compares their
hedging performances along with those of common benchmark hedge ratios across three broad asset
classes. Three of the hedge ratios are based on the upward-biased carry cost rate hedge ratio, where
each is augmented in a different bias-mitigating way. The carry cost rate hedge ratio augmented with
the dynamic conditional correlation between spot and futures price changes generally: (1) provides
the highest hedging effectiveness and (2) has a statistically significantly higher hedging effectiveness
than the other hedge ratios across assets, sub-periods, and rolling window sizes.
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1. Introduction

The goal of futures hedging is to reduce the firm’s risk and increase its value. A key
consideration for a futures hedger is the ratio of futures assets to short over the number
of spot assets long, i.e., the futures hedge ratio. Not surprisingly, a large literature has
evolved regarding the best hedge ratio estimation technique, i.e., that which is expected to
reduce the hedger’s risk the most. Wang et al. (2015) empirically tested many hedge ratio
estimation methods and found that they fail to beat the naïve hedge ratio.

This paper examines dynamic conditional futures hedge ratios. It focuses on: (1) the
economics-based carry-cost rate hedge ratio introduced in Leistikow et al. (2020) and
employed in Leistikow and Chen (2019), (2) a hedge ratio based on the Engle (2002)
statistics-based dynamic conditional correlation model, and (3) three bias-adjusted versions
of the carry-cost rate hedge ratio, one of which incorporates the Engle (2002) dynamic
conditional correlation model. It compares the hedge ratios’ hedging performances across
three broad asset classes to those of each other and those of two common benchmark hedge
ratios. The carry-cost rate hedge ratio when augmented with the dynamic conditional
correlation between the spot and futures price changes generally (1) provides the highest
hedging effectiveness and (2) has a statistically significantly higher hedging effectiveness
than either that of the common benchmark hedge ratios or the other approaches across:
assets, sub-periods, and rolling window sizes. Moreover, it explains why the carry-cost
rate hedge ratio, when augmented with the dynamic conditional correlation between the
spot and futures price changes, performs better than the naïve hedge ratio.

Section 2 of the paper discusses the hedge ratios studied. Section 3 specifies the data
employed. Section 4 presents statistics regarding the hedge ratios, where the hedge ratios
are calculated using a 1008 trading day (i.e., 4 years) rolling window. Alternative rolling
window sizes (of 2 and 6 years) are analyzed and found to yield similar results; these
results are available in Appendices that will be provided upon request from the authors.
Section 5 shows the hedge ratios’ hedging performances and relative hedging performances.
Section 6 concludes the paper.
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2. Risk-Minimizing Hedge Ratio Estimation

For each unit of the spot asset, the hedge ratio (h) for the one-unit futures contract that
minimizes the future period’s risk is:

h =
ρσs

σF
, (1)

where: σs is the standard deviation of the spot price change (ΔS)1, σF is the standard
deviation of the futures price change (ΔF) and ρ is the correlation between ΔS and ΔF. In
this section, we discuss alternative empirical hedge ratio measures.

2.1. The Traditional Hedge Ratio

The traditional way to estimate the risk-minimizing hedge ratio on day d is to run the
ordinary least square regression:

ΔSd = a + htΔFd + εd, (2)

where the slope coefficient of ΔF, ht, is the “traditional” hedge ratio. In this study, we
estimate Equation (2) on day d using a rolling-window out-of-sample procedure, where
ΔSd and ΔFd are daily spot and future price changes over the past 1008 trading days (i.e.,
day d-1007 to day d), respectively.2 The 1008-trading days, i.e., 4-year, rolling window
is updated daily. Moreover, we use the same 1008-trading days rolling window when
estimating alternative models (discussed below) for the hedge ratio estimated on d to
ensure that they are compared on an equal basis. This “traditional” hedge ratio is discussed
in mainstream textbooks, e.g., Hull (2018) and has traditionally been used as the benchmark
for alternative hedge ratios that have been proposed over the last 40 years.

2.2. The “Dynamic Conditional” Hedge Ratio

Equation (2) is often considered a static model in that the historical data are assumed
to be equally informative about future realizations. In this subsection, we relax this assump-
tion by estimating an autoregressive-based model that allows more recent observations
to be weighted more heavily. Our rationale is that if the dynamics of the underlying
variable are indeed time-varying, an appropriately chosen dynamic conditional model is
likely to outperform the static model. Engle (2002) proposes a new class of multivariate
models called dynamic conditional correlation (DCC) models that are used to predict the
time-varying correlations between two financial assets. These models have the flexibil-
ity of univariate GARCH models coupled with parsimonious parametric models for the
correlations.3 Following Engle (2002), we estimate the conditional covariance between ΔS
and ΔF:

ΔSd = αΔS
0 + εΔS,d, (3)

ΔFd = αΔF
0 + εΔF,d, (4)

Ed

[
ε2

ΔS,d+1

]
≡ σ2

ΔS,d+1 = βΔS
0 + βΔS

1 ε2
ΔS,d + βΔS

2 σ2
ΔS,d, (5)

Ed

[
ε2

ΔF,d+1

]
≡ σ2

ΔF,d+1 = βΔF
0 + βΔF

1 ε2
ΔF,d + βΔF

2 σ2
ΔF,d, (6)

Ed[εΔS,d+1εΔF,d+1] ≡ σΔSΔF,d+1 = ρΔSΔF,d+1 · σΔS,d+1 · σΔF,d+1, (7)

ρΔSΔF,d+1 =
qΔSΔF,d+1√qΔSΔS,d+1 · qΔFΔF,d+1

, (8)

qΔSΔF,d+1 = ρΔSΔF + a1 · (εΔS,d · εΔF,d − ρΔSΔF) + a2 · (qΔSΔF,d − ρΔSΔF) (9)

In the above system of equations, ΔSd and ΔFd denote the daily spot and futures price
changes over the past 1008 trading days up to day d, respectively, and Ed[.] denotes the
expectation operator conditional on day d information. σ2

ΔS,d+1 is the day-d expected condi-

160



JRFM 2022, 15, 12

tional variance of daily spot price changes (ΔS), σ2
ΔF,d+1 is the day-d expected conditional

variance of daily futures price changes (ΔF), and σ2
ΔSΔF,d+1 is the day-d expected conditional

covariance between ΔS and ΔF. ρΔSΔF,d+1 = qΔSΔF,d+1/√qΔSΔS,d+1 · qΔFΔF,d+1 is the day-d
expected conditional correlation between ΔS and ΔF; ρΔSΔF is the unconditional correlation
between ΔS and ΔF. To ease the parameter convergence, we follow Bali and Engle (2010)
and Bali et al. (2017) and use correlation targeting, assuming that the time-varying correla-
tion mean reverts to the sample correlation, ρΔSΔF. For each day d + 1, the DCC hedge ratio
is defined as the ratio of Equations (6) and (7): hdcc = σΔSΔF,d+1/σ2

ΔF,d+1. Therefore, hdcc is
purely out-of-sample, estimated using the information available up to the formation of the
hedged portfolio (i.e., day d).

2.3. The Simple Carry-Cost-Rate Hedge Ratio

Unfortunately, the traditional hedge ratio ignores the economic connection between
the spot and futures prices. Leistikow et al. (2020) derived a hedge ratio that incorporates
the carry-cost hypothesis that links spot and futures prices as follows:

S(1 + c)T = F, (10)

where c is the annualized spot asset’s carry-cost rate (hereinafter CCR) to the futures’
maturity,4 T is the years to the futures contract’s maturity, and S and F are the asset’s
contemporaneous spot and futures prices, respectively.

From the carry-cost hypothesis, it follows that ∂S
∂F = (1 + c)−T ; thus, σΔS

σΔF
= (1 + c)−T .

Assuming ΔS and ΔF are perfectly correlated, the day d instantaneous hedge ratio (hccr) is
derived as5:

hccr = (1 + c)−T (11)

Therefore, hccr is calculated quickly and simply, since it only requires knowledge of c
and T on day d.

2.4. The Augmented Carry-Cost-Rate Hedge Ratios

The simple CCR-based hedge ratio discussed in the previous subsection is easier to
implement and has a firmer economic foundation than the statistics-based approaches
discussed earlier. However, hccr is biased upward because the correlation between ΔS and
ΔF is almost certainly less than its assumed level of one.6 In this subsection, we introduce
several ways to augment hccr to correct its upward bias.

First, we augment hccr with the dynamic conditional correlation between ΔS and
ΔF. It was estimated as part of the dynamic conditional hedge ratio discussed earlier in
Section 2.2. We calculate this hedge ratio, denoted hccr_dcc, on day d as:

hccr_dcc = hccr·ρdcc, (12)

where ρdcc comes from Equation (8) based on daily data over the period from d-1007 to day
d.

Second, we augmented hccr with the correlation (ρ) between daily ΔS and ΔF over the
period from d-1007 to day d. We calculated this hedge ratio, denoted hccr_corr, on day d as:

hccr_corr = hccr·ρ (13)

Finally, we use the Leistikow et al. (2020) BAM bias-adjusted hccr on day d, denoted
hccr_bam:

hccr_bam = hccr·BAM (14)

where BAM is the bias-adjustment multiplier, defined as the average ratio of the average
daily ht and average hccr for each futures contract employed in the hedges over the 1008 trad-
ing days between day d-1007 to day d. In this way, each of the three bias-adjustment factors:
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ρdcc, ρ, and BAM, proxy hccr’s bias based on the same amount of data, 1008 trading days
for now.

2.5. The “Naive” Hedge Ratio

Despite the widespread acceptance of ht and the development of more complex
statistical variants of it, Wang et al. (2015) find that ht and its more complex statistical
variants do not reduce risk better than does the “naive” hedge ratio of 1 (h1). Therefore, we
use h1 as well as the regression-based hedge ratio (ht) as benchmarks.

3. Data

We study the S&P500, Japanese Yen (JY), and gold since they represent a broad cross
section of asset classes, their carry-cost rates are known and objectively calculable, and
their spot and futures markets trade actively. All data are downloaded via a Bloomberg
terminal, which are updated daily during our sample period.

CME e-mini S&P500 futures contracts mature on the 3rd Friday of their maturity
month and have been the most liquid equity futures since about 2000 when they overtook
the regular S&P500 futures. We study their March, June, September, and December contract
maturities because they are the most liquid contract maturities and are very liquid (except
when they are far from and very near to their maturities). These futures contract maturity
months are alternatingly used as the hedging instrument where the hedging instrument
is the near maturity futures contract until it is one week to its maturity at which point it
switches to the second near maturity futures contract. The JY futures contracts mature two
business days before the 3rd Wednesday in the maturity month. For liquidity reasons, the
near futures maturity contract is used as the hedging instrument for the IMM Japanese
Yen, until the 1st Friday of the maturity month. For COMEX gold, we use the liquid
February, April, June, August, October, and December futures contract maturities and roll
the hedging instrument from the near to the second near futures maturity two weeks earlier
than for the JY due to gold’s earlier liquidity shift from the near to the second near futures
due to gold futures’ delivery options. The gold futures mature the 3rd last business day of
the maturity month.

The S&P500 data begins with the Mar ’98, while the JY data begins with the Mar ’97,
and the gold data begins with the Feb ’91 futures contract as the hedging instrument. The
Jun ’20 futures is the last futures used as the hedging instrument for all the assets.

The carry-cost rate is the US risk-free short-term interest rate7 minus the S&P500
dividend yield, the excess of the US over the JY risk-free short-term interest rate, and the
US risk-free short-term interest rate, for the S&P500, JY and gold, respectively.

4. Statistics for the Hedge Ratios and Their Differences from the Benchmarks

In this section, we provide statistics for the various daily profit hedge ratios (and their
differences from the benchmark hedge ratios) discussed in Section 2. After the first 4 years
(given the 4 years rolling window), for each subsequent S&P500 and JY futures contract an
average hedge ratio is calculated based on the 252/4 trading days that the contract is the
hedging instrument since their contracts follow a quarterly rotation. The corresponding
gold average hedge ratio is calculated based on the 252/6 trading days, since gold futures
contracts follow a bimonthly rotation. These futures’ average hedge ratios represent the
underlying data for the Table 1 statistics. Table 1A reports the descriptive statistics for
the average hedge ratios for the S&P500 in Panel A, JY in Panel B, and gold in Panel C.8

In each panel, the first column presents the results of the traditional regression hedge
ratio (ht), which serves as Table 1A’s benchmark hedge ratio. Columns 2–6 represent the
descriptive statistics for the differences between ht and the: dynamic conditional hedge
ratio (hdcc), the simple carry-cost-rate hedge ratio (hccr), and, finally, the carry-cost-rate
hedge ratio augmented with (i) the dynamic conditional correlation estimated from the
DCC model (hccr_dcc), (ii) the simple correlation between the daily spot and futures price
changes (hccr_corr), and (iii) the bias-adjustment multiplier (hccr_bam), respectively.
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Column (1) of Table 1A shows that the mean traditional hedge ratios (ht) for the
S&P500, JY, and gold are between 0.8975 and 0.9568. Their standard deviations are very
small, ranging from 0.0151 to 0.0469. Thus, as expected, their daily hedge ratios are highly
persistent since they are estimated using 1008 trading-days rolling windows.

Table 1. The Benchmark Hedge Ratios and Differences from them.

A. The Benchmark Hedge Ratio and Differences from it When ht is the Benchmark.

Panel A. S&P500

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9568 0.0073 0.0441 0.0133 0.0153 −0.0012

std 0.0151 0.0323 0.0156 0.0164 0.014 0.0144

count 74 74 74 74 74 58

t-stat 1.9382 24.3608 6.9605 9.3919 −0.614

signif lev 10% 1% 1% 1%

Panel B. JY

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9554 −0.01 0.0423 0 −0.0065 −0.0036

std 0.018 0.0389 0.0177 0.0232 0.0208 0.0162

count 78 78 78 78 78 62

t-stat −2.2673 21.1487 0.0174 −2.757 −1.7318

signif lev 5% 1% 1% 10%

Panel C. Gold

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.8975 0.0112 0.0982 0.0233 0.0098 0.0058

std 0.0469 0.0582 0.0483 0.0387 0.0189 0.0287

count 153 153 153 153 153 129

t-stat 2.3805 25.1193 7.4559 6.3829 2.3166

signif lev 5% 1% 1% 1% 5%

Panel D. HR Differences Aggregated across Assets

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.0002 0.0715 0.0123 0.0084 0.0015

std 0.0429 0.0451 0.0238 0.0215 0.0156

count 222 222 222 222 174

t-stat 0.0775 23.619 7.6897 5.8467 1.2684

signif lev 1% 1% 1%

The count is the number of futures contracts used as hedge instruments, or, alternatively, the number of hedges since each hedge
has a single hedging instrument. For each futures, the “average hedge ratio” is determined from the ≈252/4 dynamic daily hedge
ratios calculated for a quarterly maturing futures contract (e.g., as for the S&P500 and JY, whereas for gold there are ≈252/6
dynamic daily hedge ratios since the futures maturities are bimonthly). Since the BAM is calculated from 4 years of futures
contracts, the hccr_bam count is 4 × 4 (6 × 4) for the quarterly futures contract maturities of the S&P500 and JY (bimonthly
maturities of gold).

The “aggregated across assets” count is equal-weighted. It uses the most recent differences for each asset for roughly the same
period as the e−mini S&P500 (since its data series is the shortest). Since the gold futures data started earlier and there are 50% more
gold futures maturities/years, a little less than the 1st half of the gold futures contract results do not enter into the aggregation
across assets.
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B. The Benchmark Hedge Ratio and Differences from it When h1 is the Benchmark

Panel A. S&P500

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0359 0.0009 −0.0299 −0.0279 −0.0396

std 0 0.0321 0.0024 0.0058 0.0054 0.0106

count 74 74 74 74 74 58

t-stat −9.6302 3.3772 −44.7285 −44.1444 −28.4181

signif lev 1% 1% 1% 1% 1%

Panel B. JY

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0546 −0.0023 −0.0446 −0.0511 −0.0431

std 0 0.0391 0.0025 0.0156 0.0132 0.0123

count 78 78 78 78 78 62

t-stat −12.3317 −8.2224 −25.2679 −34.2633 −27.5771

signif lev 1% 1% 1% 1% 1%

Panel C. Gold

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 1 −0.0913 −0.0043 −0.0791 −0.0927 −0.0913

std 0 0.0671 0.0039 0.0385 0.0465 0.0362

count 153 153 153 153 153 129

t-stat −16.8137 −13.8224 −25.4034 −24.6593 −28.6446

signif lev 1% 1% 1% 1% 1%

Panel D. HR Differences Aggregated across Assets

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean −0.0721 −0.0008 −0.06 −0.0639 −0.0694

std 0.059 0.0024 0.0368 0.039 0.0422

count 222 222 222 222 174

t-stat −18.2127 −4.9113 −24.2818 −24.4085 −21.6855

signif lev 1% 1% 1% 1% 1%

The count is the number of futures contracts used as hedge instruments, or, alternatively, the number of hedges since each hedge
has a single hedging instrument. For each futures, the “average hedge ratio” is determined from the ≈252/4 dynamic daily hedge
ratios calculated for a quarterly maturing futures contract (e.g., as for the S&P500 and JY, whereas for gold there are ≈252/6
dynamic daily hedge ratios since the futures maturities are bimonthly). Since the BAM is calculated from 4 years of futures
contracts, the hccr_bam count is 4 × 4 (6 × 4) for the quarterly futures contract maturities of the S&P500 and JY (bimonthly
maturities of gold).

The “aggregated across assets” count is equal-weighted. It uses the most recent differences for each asset for roughly the same
period as the e−mini S&P500 (since its data series is the shortest). Since the gold futures data started earlier and there are 50% more
gold futures maturities/years, a little less than the 1st half of the gold futures contract results do not enter into the aggregation
across assets.

Columns 2–6 of Table 1A show that the mean differences between the other hedge
ratios and ht are small (<0.0233 in absolute value across the assets); except for the upward-
biased hccr; its maximum mean difference is 0.0982 (for gold). Therefore, the bias adjust-
ments to the CCR hedge ratio largely mitigate the simple CCR hedge ratio’s upward bias.
Similar to hccr, both hccr_dcc, and hccr_corr are larger than ht and the difference is significant
at the 1% level; however, this does not hold for the JY. The paper’s statistical significance
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tests are two-tailed tests, except for the one-tailed hccr − ht test in that hccr is upward biased
relative to ht.

Table 1A, Panel D has equal-weighted, roughly contemporaneous, aggregated across
asset results that end with the assets’ June 2020 futures contracts. To generate these results,
since the S&P500 data/results start later than the other assets’ (starting with the Mar
2002 futures), all of its results are included but only the contemporaneous JY (starting
with the Mar 2002 futures) and roughly contemporaneous gold results are included in
the aggregation (starting with the April 2008 futures). The gold results included in the
equal-weighted aggregation begin later, since gold has 50% more futures maturities/years
than the others and therefore gets the same number of futures contracts in 2/3 the time.
The aggregated across assets mean hccr − ht was above 0.07, while the means for the other
differences were not more than 0.0123 in absolute value. Hedge ratios hccr, hccr_dcc, and
hccr_corr are all larger than ht at the 1% significance level.

Table 1B below is the same as Table 1A, except that Table 1B’s benchmark hedge ratio
is h1. The other hedge ratios’ means, except for the S&P500 hccr, are significantly less than
1 at the 1% confidence level for all assets. For the Panel D, aggregations across assets,
while hccr’s mean is barely below 1, the other hedge ratios’ means are between 0.06 and
0.0721 below 1. All of the hedge ratio means are below h1 at the 1% significance level.
The fact that, for this study period and these assets, the upward biased hccr is significantly
below 1 portends poor h1 hedging performance; this conjecture is strongly supported by
the results in the next section.

5. The Benchmark Hedge Ratios’ Hedging Performances and Hedging Performance
Differences from Those of the Benchmark Hedge Ratios

Next, we calculated each hedge ratio’s out-of-sample hedge effectiveness (HE) and
compared it to those of the two benchmark hedge ratios. The HE is defined as the percentage
profit variance reduction for each contract over our sample period:

HE = 1 − Var(hedged profits)
Var(unhedged profits)

(15)

Hedged profit = ΔS − h·ΔF (16)

Unhedged profit = ΔS (17)

where Var(.) denotes variance, ΔS and ΔF are, respectively, the daily spot and futures price
changes on day d + 1, and h denotes a hedge ratio on day d calculated from one of the
hedge ratios described in Section 2. Therefore, the HE of a hedge ratio increases with the
risk reduced.

Table 2A reports the hedge effectiveness results, where ht’s HE is the benchmark. Col-
umn 1 is ht’s HE while the remaining columns represent the hedge effectiveness differences
in between those for the various hedge ratios and for ht.

Table 2A, column (1) shows that ht’s average HE for the S&P500, JY, and gold are
between 0.8464 and 0.9388. Their corresponding standard deviations are small, ranging
from 0.0378 to 0.1477. These results indicate that ht’s out-of-sample HE is highly persistent.

The HE for ht is higher than that for either hdcc or hccr. The latter result suggests that
the benefit of hccr through recognizing the economic link between the spot and the future
prices is less than the cost of its upward bias. The finding that hdcc does not outperform ht is
consistent with previous studies that show that complicated time-series hedge ratios do not
yield superior HE performance.9 Therefore, modeling the dynamic conditional hedge ratio
based on spot and futures price changes alone is insufficient to improve hedge effectiveness.

Columns 4–6 of Table 2A compare the augmented hccrs’ HEs with ht’s HE where the hccr is
augmented with the conditional correlation (hccr_dcc), the unconditional correlation (hccr_corr),
and the bias-adjustment multiplier (hccr_bam), respectively. Column (4) shows that the HE
for hccr_dcc is higher than that for ht for each asset, where the difference in HE is generally
statistically significant at the 5% level. When the HE differences are aggregated across assets,
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the HE for hccr_dcc is statistically significantly higher than that for ht at the 1% significant level.
Columns (5) and (6) show that the HEs for hccr_corr and hccr_bam are not typically significantly
different from that for ht. Therefore, the hccr_dcc result suggests that incorporating the economic
relation between the spot and futures prices and properly modeling their time-varying
conditional correlations jointly produce the best hedging performance.

Table 2. The Benchmark HRs’ Hedge Effectiveness and Differences from them.

A. The Benchmark HR’s Hedge Effectiveness and Differences from it When ht is the Benchmark

Panel A. S&P500

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9388 −0.0014 −0.0011 0.0035 0.0003 0.0001

std 0.0378 0.0215 0.005 0.0137 0.0022 0.002

count 74 74 74 74 74 58

t-stat −0.5447 −1.9024 2.1813 1.1068 0.2169

signif lev 10% 5%

Panel B. JY

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9107 −0.0023 −0.0018 0.0003 0.0008 0.0001

std 0.0479 0.0098 0.0051 0.0028 0.003 0.0022

count 78 78 78 78 78 62

t-stat −2.0244 −3.1242 1.0111 2.2843 0.5062

signif lev 5% 1% 5%

Panel C. Gold

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.8464 −0.0184 −0.0115 0.0055 −0.0006 −0.0006

std 0.1477 0.1955 0.026 0.0259 0.0046 0.0071

count 153 153 153 153 153 129

t-stat −1.1639 −5.4726 2.6309 −1.5674 −0.9196

signif lev 1% 1%

Panel D. HE Differences Aggregated across Assets

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean −0.0023 −0.0085 0.0032 0 0.0001

std 0.0189 0.0197 0.0124 0.0041 0.0022

count 222 222 222 222 174

t-stat −1.8015 −6.4151 3.8774 −0.1053 0.4399

signif lev 10% 1% 1%

B. The Benchmark HR’s Hedge Effectiveness and Differences from it When h1 is the Benchmark

Panel A. S&P500

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9378 −0.0004 −0.0002 0.0044 0.0012 0.0015

std 0.0406 0.0228 0.0005 0.0167 0.003 0.0047

count 74 74 74 74 74 58

t-stat −0.1566 −2.6257 2.2837 3.5766 2.3963

signif lev 5% 5% 1% 5%
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Panel B. JY

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9087 −0.0003 0.0002 0.0023 0.0028 0.0019

std 0.0492 0.0126 0.0004 0.0057 0.0071 0.0055

count 78 78 78 78 78 62

t-stat −0.1944 4.2624 3.554 3.4394 2.7357

signif lev 1% 1% 1% 1%

Panel C. Gold

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.8343 −0.0063 0.0006 0.0176 0.0115 0.014

std 0.1629 0.1958 0.0011 0.0373 0.0251 0.0219

count 153 153 153 153 153 129

t-stat −0.3963 7.3019 5.8403 5.692 7.2647

signif lev 1% 1% 1% 1%

Panel D. HE Differences Aggregated across Assets

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0063 0.0001 0.0118 0.0086 0.0096

std 0.0296 0.0005 0.0249 0.0184 0.0185

count 222 222 222 222 174

t-stat 3.1852 4.0726 7.0864 6.9614 6.8561

signif lev 1% 1% 1% 1% 1%

Table 2B reports the same results; however, h1’s HE is the benchmark. The HE for
h1 is statistically significantly lower (generally at the 1% level) than that for all the other
hedge ratios except for hdcc and, for the S&P500, hccr. Our finding differs from that of
Wang et al. (2015) and neither should be interpreted as a general result. The low HE for h1
was anticipated earlier when we noted that the upward biased hccr was significantly less
than 1. Our low HE for h1 is not a general result since the carry-cost rate varies across assets,
currency denominations, and time; thus, in the very improbable case that the upward
biased hccr exceeded 1 by its bias, the risk minimizing hedge ratio would be h1.

Table 3 repeats the HE analyses, except that it analyzes the first and second halves of
our sample period separately to see if the HE and HE difference results are stable across sub-
periods. The only HE difference from the benchmark’s HE that is nearly always statistically
significantly positive across both benchmarks, both halves, and all 3 assets is that for hccr_dcc
and the JY in the 1st half when ht is the benchmark is the main exception. The HEs for
the other two augmented hccrs are statistically significantly higher than those for h1 for 8
of the 12 individual asset results. However, their HEs are not generally higher for those
of ht. Table 3, Panel D, shows for the aggregations across assets that the HE for hccr_dcc
is statistically significantly higher than that for either benchmark in both sub-periods at
the 1% level. The HEs for the other two augmented hccrs are also statistically significantly
higher than those for h1 in both halves at the 1% level.
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Table 3. Stability of the Benchmark HRs’ HEs and Differences from them.

Panel A. S&P500

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9427 −0.0007 0.0003 0.0013 0.0008 0.0001

std 0.0248 0.0045 0.0036 0.0028 0.0017 0.0022

count 37 37 37 37 37 21

t-stat −0.9852 0.493 2.8216 3.0666 0.2467

signif lev 1% 1%

2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9348 −0.002 −0.0025 0.0057 −0.0003 0

std 0.0475 0.0303 0.0058 0.019 0.0026 0.0019

count 37 37 37 37 37 37

t-stat −0.3998 −2.6145 1.8057 −0.6361 0.0712

signif lev 5% 10%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9429 −0.001 0.0001 0.0011 0.0006 0.0003

std 0.0256 0.0042 0.0003 0.0039 0.0026 0.0037

count 37 37 37 37 37 21

t-stat −1.4123 1.0029 1.6317 1.4325 0.3594

signif lev

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9327 0.0001 −0.0004 0.0078 0.0019 0.0022

std 0.0513 0.0322 0.0005 0.0229 0.0032 0.0051

count 37 37 37 37 37 37

t-stat 0.0259 −3.9637 2.0694 3.5117 2.5698

signif lev 1% 5% 1% 5%

Panel B. JY

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9072 −0.0019 −0.002 0 0.0008 −0.0002

std 0.0553 0.0117 0.0059 0.0034 0.0036 0.0013

count 39 39 39 39 39 23

t-stat −0.9886 −2.1761 −0.065 1.3773 −0.8266

signif lev 5%
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2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9142 −0.0026 −0.0015 0.0007 0.0008 0.0004

std 0.0397 0.0076 0.0041 0.002 0.0023 0.0026

count 39 39 39 39 39 39

t-stat −2.1798 −2.3064 2.0882 2.0626 0.8715

signif lev 5% 5% 5% 5%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9049 0.0004 0.0002 0.0022 0.0031 0.0017

std 0.0574 0.0148 0.0005 0.0067 0.0085 0.0066

count 39 39 39 39 39 23

t-stat 0.1703 2.804 2.0646 2.2411 1.248

signif lev 1% 5% 5%

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.9126 −0.001 0.0002 0.0024 0.0024 0.002

std 0.0398 0.01 0.0003 0.0046 0.0053 0.0049

count 39 39 39 39 39 39

t-stat −0.601 3.7447 3.2522 2.8669 2.6087

signif lev 1% 1% 1% 5%

Panel C. Gold

1st half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.9013 −0.0333 −0.0012 0.0053 −0.0001 −0.0007

std 0.155 0.2766 0.018 0.0334 0.0029 0.0051

count 76 76 76 76 76 52

t-stat −1.051 −0.5814 1.3761 −0.2459 −0.9525

signif lev

2nd half: HE and HE differences when the benchmark is ht

ht hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean 0.7922 −0.0036 −0.0216 0.0058 −0.0011 −0.0005

std 0.118 0.0226 0.0286 0.0156 0.0057 0.0082

count 77 77 77 77 77 77

t-stat −1.4157 −6.6423 3.2315 −1.6364 −0.5428

signif lev 1% 1%

1st half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.8993 −0.0313 0.0009 0.0073 0.002 0.0028

std 0.1648 0.2734 0.0014 0.0385 0.0198 0.0108
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1st half: HE and HE differences when the benchmark is h1

count 76 76 76 76 76 52

t-stat −0.9975 5.4563 1.6599 0.8745 1.8718

signif lev 1% 10%

2nd half: HE and HE differences when the benchmark is h1

h1 hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.7701 0.0184 0.0004 0.0278 0.021 0.0215

std 0.1337 0.0411 0.0006 0.0334 0.0263 0.0242

count 77 77 77 77 77 77

t-stat 3.9315 6.0318 7.3037 6.9998 7.8227

signif lev 1% 1% 1% 1% 1%

Panel D. HE Differences Aggregated across Assets:

1st half: HE differences when the benchmark is ht

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

Mean −0.0045 −0.0066 0.0011 0.0005 0.0002

std 0.016 0.0189 0.0062 0.0036 0.002

count 111 111 111 111 63

t-stat −2.9776 −3.7015 1.9475 1.3209 0.7654

signif lev 1% 1% 10%

2nd half: HE differences when the benchmark is ht

hdcc − ht hccr − ht hccr_dcc − ht hccr_corr − ht hccr_bam − ht

mean −0.0001 −0.0103 0.0053 −0.0005 0

std 0.0213 0.0204 0.0162 0.0044 0.0024

count 111 111 111 111 111

t-stat −0.028 −5.3351 3.4564 −1.2058 0.0331

signif lev 1% 1%

1st half: HE differences when the benchmark is h1

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0023 0.0001 0.0079 0.0072 0.0082

std 0.0255 0.0003 0.0198 0.0193 0.0165

count 111 111 111 111 63

t-stat 0.931 4.322 4.2188 3.9366 3.9247

signif lev 1% 1% 1% 1%

2nd half: HE differences when the benchmark is h1

hdcc − h1 hccr − h1 hccr_dcc − h1 hccr_corr − h1 hccr_bam − h1

mean 0.0104 0.0001 0.0158 0.01 0.0105

std 0.0329 0.0006 0.0287 0.0174 0.0196

count 111 111 111 111 111

t-stat 3.3385 2.4052 5.7886 6.0397 5.6234

signif lev 1% 5% 1% 1% 1%

170



JRFM 2022, 15, 12

Table 4 directly tests the HE differences across the various bias-adjusted hccr ap-
proaches. The HE is statistically significantly higher for hccr_dcc than it is for the other
bias-adjustment approaches for the individual assets (other than for the JY) and for the
aggregation across assets.

Table 4. Hedge Effectiveness Differences across hccr Bias-Adjustment Methods.

Panel A. S&P500

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0032 0.0038 −0.0001

std 0.0152 0.0164 0.0018

count 74 58 58

t-stat 1.8087 1.7788 −0.4114

signif lev 10% 10%

Panel B. JY

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean −0.0005 0 0.0008

std 0.0037 0.0028 0.0035

count 78 62 62

t-stat −1.1004 0.1176 1.6953

signif lev 10%

Panel C. Gold

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0061 0.0064 0.0001

std 0.0261 0.0254 0.0087

count 153 129 129

t-stat 2.8874 2.8625 0.162

signif lev 1% 1%

Panel D. HE Differences Aggregated across Assets

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0033 0.0036 −0.0004

std 0.0137 0.0141 0.0039

count 222 174 174

t-stat 3.5345 3.3777 −1.5283

signif lev 1% 1%

Table 5 repeats the analyses of Table 4 except that it analyzes the first and second
halves separately to see if the HE difference results are stable across halves. Though the
sample sizes in each half are not large, the HE is generally higher for hccr_dcc than for the
other bias-adjustment approaches across assets and halves (the JY is an exception). While
the HE aggregation across assets for the 1st half is not statistically significant, it is significant
at the 1% level for the 2nd half.
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Table 5. Stability of the HE Differences across hccr Bias-Adjustment Methods.

Panel A. S&P500 1st Half

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0004 0.0007 0.0002

std 0.0025 0.0033 0.0016

count 37 21 21

t-stat 1.0708 0.9055 0.7225

signif lev

S&P500 2nd Half

mean 0.0059 0.0056 −0.0003

std 0.0211 0.0203 0.0019

count 37 37 37

t-stat 1.7108 1.6902 −0.9254

signif lev 10% 10%

Panel B. JY 1st Half

mean −0.0008 −0.0004 0.0014

std 0.0049 0.0039 0.0053

count 39 23 23

t-stat −1.0677 −0.5421 1.2426

signif lev

JY 2nd Half

mean −0.0001 0.0003 0.0004

std 0.0018 0.0019 0.0019

count 39 39 39

t-stat −0.2797 1.0794 1.3287

signif lev 10%

Panel C. Gold 1st Half

mean 0.0053 0.0066 0.0011

std 0.033 0.0346 0.0039

count 76 52 52

t-stat 1.4141 1.3841 2.1034

signif lev 10% 10% 5%

Gold 2nd Half

mean 0.0068 0.0063 −0.0006

std 0.0169 0.0169 0.0107

count 77 77 77

t-stat 3.5346 3.2453 −0.4598

signif lev 1% 1%
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Table 5. Cont.

Panel D. Aggregated across Assets 1st Half

hccr_dcc − hccr_corr hccr_dcc − hccr_bam hccr_corr − hccr_bam

mean 0.0007 0.0006 −0.0003

std 0.007 0.0071 0.0048

count 111 63 63

t-stat 1.0398 0.7008 −0.5409

signif lev

Aggregated across Assets 2nd Half

mean 0.0058 0.0053 −0.0005

std 0.0177 0.0166 0.0032

count 111 111 111

t-stat 3.4493 3.3615 −1.6791

signif lev 1% 1% 10%

6. Conclusions

The goal of futures hedging is to reduce the firm’s risk and increase its value. A key
consideration for a futures hedger is the ratio of futures assets to short over the number of
spot assets long, i.e., the futures hedge ratio.

This paper proposes new dynamic conditional futures hedge ratios. It studies: (1) the
economics-based carry-cost rate hedge ratio introduced in Leistikow et al. (2020) and
employed in Leistikow and Chen (2019), (2) a hedge ratio based on the Engle (2002)
statistics-based dynamic conditional correlation model, and (3) three bias-adjusted versions
of the carry-cost rate hedge ratio, where one uses the Engle (2002) dynamic conditional
correlation model to adjust the bias. The hedge ratios’ values and hedging performances
are compared to those of two common benchmark hedge ratios (the traditional and “naive”
hedge ratios) across three broad asset classes, two sub-periods, and three rolling window
sizes.

The newly proposed economics-based carry-cost rate hedge ratio augmented with the
Engle (2002) dynamic conditional correlation between the spot and futures prices nearly
always (1) provides the highest hedging effectiveness and (2) has a statistically significantly
higher hedging effectiveness than that of the other hedge ratio approaches across assets,
sub-periods, and rolling window sizes.

All of the bias-adjusted carry-cost rate hedge ratios provide statistically significantly
superior hedging performance across assets, sub-periods, and rolling window sizes to that
of the “naive” hedge ratio of 1, h1, advocated by Wang et al. (2015). However, this should
not be interpreted as a general result. The poor hedging performance of h1 is expected
when the upward biased carry-cost rate hedge ratio, hccr, is significantly less than 1 as it
was for these assets and time periods. Nevertheless, the carry-cost rate varies across assets,
currency denominations, and time; thus, in the rare instances that the upward biased hccr is
above 1 by its bias, the risk minimizing hedge ratio would also be h1.

Unlike h1, the statistics-based traditional hedge ratio, though inefficient compared
to hccr, is correlated with the changing carry-cost rate. Of the three augmented carry-cost
rate hedge ratios, only the one augmented with the Engle (2002) dynamic conditional
correlation between the spot and futures prices nearly always provided higher hedging
performance than the traditional hedge ratio.

Overall, our findings suggest that an effective hedge-ratio model needs to consider
both the economic motivation of the model parameters and the dynamic nature of the
correlations between a futures contract and its underlying asset. On the other hand, we
acknowledge that our time-series models are estimated using historical data, which may
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be susceptible to backward bias. In future research, more fruitful work can be done by
incorporating forward-looking data (e.g., options data) as part of the information set into
multivariate time-series models.
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Notes

1 Many attribute this approach to Ederington (1979). Ferguson and Leistikow (1999) show that the ΔS term should be reduced
by the period’s carry-cost. Henceforth, we define ΔS as the carry-cost adjusted spot price change. Ferguson and Leistikow
(1999) further shows that the carry-cost-adjusted spot price change hedge ratio calculation method is similar to, but theoretically
superior to, the ECM hedge ratio advanced and studied by Kroner and Sultan (1993) and Ghosh and Clayton (1996).

2 The 1008 trading days, i.e., 4 years, rolling window size is arbitrary. For a robustness check, we replicate our analyses using 2-
and 6-years rolling windows. Our results remain intact. The results are available upon request.

3 This modeling has been shown to produce superior empirical performance in a variety of situations. See, e.g., Engle (2002),
Chiang et al. (2007), and Baur and Lucey (2010).

4 For a general carry-cost rate discussion, see Brennan (1958).
5 In discrete time hedging, T in Equation (11) is replaced by the hedge lift date’s years to maturity, i.e., T − t.
6 For a more complete discussion of the advantages and disadvantages of the carry cost rate based hedge ratios, see Leistikow et al.

(2020).
7 The goal was to get a long (at least back to 12 July 1990) series for the short term (ideally overnight for the daily data and weekly

for the weekly data) US nearly riskless interest rate. Bloomberg’s US 1-week Repo rate data begins on 23 July 1998 and has several
gaps. Their overnight repo rate data begins at the same time as the 1-week repo rate data but is missing for about 100 more dates.
Surprisingly, the 1-week rate average was about 2.5 basis points less than the overnight rate, but still this seems a minor difference.
From these 2 series, we created a merged 1-week/1-day repo series: it is the 1-week repo rate unless it is unavailable, then it is the
overnight repo rate −2.5 basis points. Bloomberg also has data on two 1-month interest rate series (repo rate and Libor) that go
back farther than the above discussed (preferred, but unavailable) shorter (1-week/1-day) interest rates. The 1-month repo rate
was about 20 basis points lower than the Libor on average. From these two 1-month rates, we created a 1 month merged rate
series—it was the repo rate when available and Libor-20 basis points, otherwise. Finally, we created an overall series from the two
merged series we just created (i.e., the 1-week/1-night series and the 1-month series). Since the merged 1 month series averaged
0.5 basis points less than the merged 1week/1night series, it is the merged 1 week/day repo series unless it is unavailable, in
which case it is the 1 month series +0.5 basis points. This final merged series is the short term nearly riskless US interest rate used
in CCR calculations for the various assets.

8 For the S&P500 and JY, which have quarterly maturities, we lose the first 16 contracts to construct the first 1008-days rolling
window. The gold contracts have bimonthly maturities, so we lose the first 24 contracts to construct the first 1008-days rolling
window. Therefore, in this section, the results of the S&P500, JY, and gold are based on 74, 78, and 153 contracts, respectively.

9 There are more statistics-based hedge ratios such as the GARCH method and its variants (e.g., Sarno and Valente (2000), Shaffer
and Demaskey (2005), Alizadeh et al. (2008), Lee et al. (2009), and Wang et al. (2015). Alexander and Barbosa (2007) find the
GARCH model hedging performance to be inferior to that for ht, while Lien (2009) finds it is inferior except in small samples
under special conditions.
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Abstract: The aim of this study is to test the ability of the yield curve on US government bonds
to forecast the future evolution in the prices of commodities often used in as raw materials. We
consider the monthly prices of nine commodities for more than 30 years. Our findings, confirmed by
several parametric and non-parametric tests, are robust and indicate that the ability to forecast future
performance changes over time. Specifically, between 1986 and the early 2000s the yield curve was
quite successful in forecasting monthly changes in commodity prices, but that success diminished in
the period following. One possible explanation for this outcome is the increased flow of capital into
the commodity market resulting in stronger correlations with the equity markets and a breakdown
of the obvious relationship between commodities and business cycle. Our findings are important for
asset pricing, commodity traders and policy makers.

Keywords: forecasting; commodity market; metals; term structure; yield spread
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1. Introduction

The literature regards the term structure curve, which plots the yield of government
bonds against their maturity, as an indicator with valuable information about the current
and future states of the economy (e.g., Harvey 1989; Abdymomunov 2013; Gogas et al. 2015;
McMillan 2021b). The U.S. Federal Reserve, among other policymakers and institutional
market participants, has always looked at the difference between the yields on long- and
short-term sovereign bonds as an indication of where the economy is heading. Thus, the
forecasting ability of the yield spread has become something of a stylized fact among
macroeconomists.

Many studies, detailed in the literature review section, have demonstrated the ability
of yield spreads to predict future economic situations effectively. They have established
that the spreads contain a great deal of information about future economic activity and are
accurate predictors of economic growth. However, there have been fewer comprehensive
attempts to understand the dynamic relationships between the evolution in the prices
of commodities and the shape of the yield curve. This question has become particularly
relevant in the wake of the unconventional monetary policy used in the last two decades,
which has not been employed since the Great Depression during 1930s. Thus, our goal is
to fill this gap by exploring the ability of the term structure to forecast the future evolution
in the prices of commodities. To accomplish this task, we use 30 years of data about nine
commodities often used as raw materials: coal, gold, silver, oil, platinum, palladium, zinc,
ethanol, and natural gas. We also use various proxies for the yield spread combined from
30-year, 10-year, 2-year, 1-year and 3-month interest rates.

Our findings indicate that yield spreads are generally positively correlated with future
changes in the price of commodities. Our results are robust to controlling for real economic
and financial variables. Adding any or all of these potential alternative explanatory
variables only marginally affects the coefficients or their statistical significance. In our
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analysis, we also utilize the Engle’s (2002) dynamic conditional correlation procedure
(DCC). The overall picture confirms the existence of time-varying correlation between the
yield spread and future price movements in commodities. To determine why this result
emerged, we consider sub-samples that are determined endogenously using the Bai and
Perron (2003) tests. These structural break tests confirm that the positive correlation is
economically and statistically significant mainly for the period prior to 2004. On the other
hand, in the period following (2004–2020) it seems that the yield spread has been unable to
predict changes in commodities in any significant way.

The weakening correlation between the variables of interest may be related to the
massive capital inflows from individual and institutional investors into the commodity
market in the early 2000s (e.g., Tang and Xiong 2012). Many studies justified these inflows
to commodities by their relatively low correlation with financial markets and, accordingly,
the potential diversification benefits (e.g., Gorton and Rouwenhorst 2006; Daskalaki et al.
2017). However, the considerable inclusion of commodities in investors’ portfolios resulted
in the financialization of commodities, yielding a strong correlation between commodity
prices and equity markets (e.g., Hu et al. 2020) and a breakdown of the obvious relationship
between commodities and cyclical phases of the economy.

Lastly, between 1986 and December 2020, we found eight periods during which the
yield spread was negative or equal to zero. The non-parametric tests conducted to track
the future evolution in commodity prices following flat or downward-sloped yield curves
indicate that such situations can be a successful timing to embark on long positions in
several commodities for investors planning to hold for a relatively long period of time.
Recently, with the outbreak of the Coronavirus late in February 2020, the U.S. 1-year yield
was 1.43%, and the 10-year was about flat (1.46%). Tracking the commodity prices in the
few months following indicate significant shrink in prices. However, the prices recovered
sharply after 2–4 quarters. This recent case, among the others observed, confirms that
specific shapes of the yield curve may generate abnormal returns for investors (see Table A1
in the online Appendix A).

The mechanism underlying our conjecture here accords with the empirical evidence
confirming a strong relationship between the business cycle and commodity prices (Labys
et al. 1999; Chevallier et al. 2014). In addition, the literature has established that financial
markets, including the yield curve, move more quickly than real markets (Saar and Yagil
2015). Accordingly, one should observe a causal relationship from this macro-financial
predictor to the commodity market.

The paper contributes to the existing literature in several ways. First, our study sheds
light on the link between yield spreads and long-term prices in the commodity market.
While previous studies have focused on interest rates in level rather than the difference
between long and short-term sovereign bond yields (e.g., Dai and Kang 2021), little is
known about the information content of the term structure for commodities. Second, we
add to the literature documenting the time-varying relationship between real economic
and financial variables by examining the structural breaks in the long-term correlation
between yield spreads and the commodity market (e.g., Chinn and Kucko 2015). Third,
our findings are especially useful for policy makers and central banks because long-term
predictions about commodity prices are essential in targeting inflation and promoting
overall economic stability (e.g., Garner 1989; Orlowski 2017; Fasanya and Awodimila 2020).
Finally, modeling and forecasting future innovations in commodity prices are important for
both market participants and scholars. Predictions in this area play a vital role in portfolio
optimization and risk management. Indeed, investors are attracted to commodities due
to their inflation-hedging properties (e.g., Beckmann and Czudaj 2013; Bampinas and
Panagiotidis 2015; Levine et al. 2018; Umar et al. 2019), and their possible contribution to
diversifying risks (e.g., Gagnon et al. 2020).

The remainder of this study proceeds as follows. Section 2 reviews the literature.
Section 3 describes the data and the construction of the key variables. Section 4 presents the
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methodology. Section 5 details the empirical findings and discusses the results. Section 6
checks the robustness of the findings, and Section 7 concludes.

2. Literature Review

The macroeconomic literature has established that future real economic growth is pos-
itively correlated with lagged interest spreads (e.g., Stock and Watson 1989; Estrella and
Hardouvelis 1991; Plosser and Rouwenhorst 1994; McMillan 2021a). In parallel, the link
between interest rates and commodities has been also investigated and can be classified into
two categories. The first addresses the effect of the interest rate level on commodity prices.
This line of literature has established that commodity prices increase significantly in response
to reductions in real interest rates (Akram 2009; Arango et al. 2011). The second category
explores the effect of shocks in the commodity market (mainly oil prices) on long-term inter-
est rates (e.g., Ioannidis and Ka 2018). Recent studies use the Granger (1969) causality test
and provide evidence that not only do interest rates drive commodity prices, but also that
commodity prices drive income and interest rates (e.g., Harvey et al. 2017). Despite these
extensive efforts, the examination of the ability of yield spreads to predict future innovations
in commodity prices has attracted relatively less attention in the literature.

The literature points to several reasons why yield spreads forecast future real eco-
nomic activity. One reason relates to the expectation theory, according to which when the
yield curve flattens, market participants expect short-term interest rates to fall due to a re-
cession. This expectation translates into a drop in long-term interest rates, as deteriorating
market conditions during recessions might explain the decline in short-term rates. Indeed,
economic depressions are often associated with job loss, increased uncertainty, business
failures, and credit line contractions. Consequently, if people anticipate a slowdown in
economic activity, there will likely be a drop in the demand for credit, which in turn leads
to a decline in long-term interest rates. On the other hand, if market participants anticipate
an upturn in the economy, future short-term interest rates will be expected to rise, leading
to a steepening of the yield curve. Thus, while falling yield spreads preceding recessions
are caused by both aforementioned factors, the decline in expectations about short-term
rates is the more important one (Hamilton and Kim 2002).

The second explanation is related to the countercyclical monetary policy according
to which economic expansion is accompanied by inflation. To control inflation, central
banks follow a countercyclical monetary policy by raising short-term interest rates. Tight
monetary policies are used to stabilize output growth and cause the yield spread to drop.
This measure is aimed at reducing the anticipation of inflation to levels below the current
inflation rate. Consequently, short-term interest rates rise more than long-term interest
rates do, and the yield curve flattens. As real interest rates remain high, spending decreases,
causing an economic slowdown. Estrella (2005) provided a theoretical model wherein the
yield spread explains both output and inflation. The author showed that the predictive
ability of the yield spread depends upon the reaction of the given monetary policy. By the
same logic, in a recessionary economy, central banks will reduce short-term interest rates
as part of a countercyclical monetary policy. Thus, a lower yield spread or a flat yield curve
is a harbinger of economic downturn.

The third explanation of why the yield curve slope is a leading indicator of economic
output is referred to as the inter-temporal consumption model. As per Harvey (1989),
during expansionary periods people have a stable level of consumption, whereas during
recessions, when income is falling, they tend to reduce their consumption. Hence, if people
anticipate a decline in economic activity, they have an incentive to save in the current
period by selling short-term assets and buying bonds, which will ensure a stable income
during the low-income period. As a result, long-term bond prices rise, which in turn
reduces their yields, and short-term bonds trade at increased rates.

Finally, there are various empirical works dealing with the relationship between the factors
affecting macroeconomic fundamentals and commodity prices. Variables such as an increase in
economic activity (e.g., Duarte et al. 2021), economic uncertainty (Qadan and Nama 2018), the
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exchange rate of the dollar (e.g., Churchill et al. 2019) and the market index (Kagraoka 2016) are
capable of affecting commodity prices. Considering the ability of the spread in bond yields to
anticipate future economic activity, it is very important to have some understanding of its role
in providing information about the future prices of commodities.

3. Data

Our sample consists of monthly data on nine commodities—oil, silver, gold, platinum,
palladium, zinc, ethanol, coal, and natural gas—obtained based on the availability of
the data. These commodities are used in many industries as raw materials. Data about
silver and gold come from the Chicago Mercantile Exchange (CME). Data about platinum
palladium and natural gas come from the New York Mercantile Exchange (NYMEX). The
data on zinc and copper come from the London Bullion Market Association (LBMA).
Information about coal comes from the International Exchange (ICE), whereas the data on
WTI oil are taken from the Federal Reserve Bank of St. Louis.

The largest sample period used is that for oil, gold and silver, and ranges from January
1986 to December 2020, while the smallest sample is that for coal and ranges from January
2009 to December 2020. Our starting point for each commodity is simply due to the
availability of information about their prices. We use the International Monetary Fund’s
International Financial Statistics database for the rates for the 3-month, 1-year, 2-year, 10-
year and 30-year Treasury bills. Table 1 reports the descriptive statistics of the key variables
used in this study and outlines the sample period. Panel A reports the descriptive statistics
of the six proxies used to capture the yield spread, while Panel B reports the descriptive
statistics of the commodities employed here.

Table 1. Descriptive Statistics. Panel A—yield rates. Panel B—commodities.

Panel A

Y3M Y1 Y2 Y10 Y30

Mean 3.173 3.455 3.761 4.845 5.343
Median 3.055 3.390 3.920 4.680 5.155

Maximum 9.140 9.570 9.680 9.520 9.610
Minimum 0.010 0.100 0.130 0.620 1.270
Std. Dev. 2.557 2.623 2.653 2.280 2.052
Skewness 0.258 0.237 0.214 0.199 0.162
Kurtosis 1.845 1.824 1.793 1.981 2.046

J-Bera 28.001 28.118 28.716 20.950 17.767
#Obs. 420 420 420 420 420

Sample
Period

1986:01
to

2020:12

1986:01
to

2020:12

1986:01
to

2020:12

1986:01
to

2020:12

1986:01
to

2020:12

Panel B

COAL ETHNL GOLD NGAZ OIL PLDM PLTNM SLVR ZINC

Mean 83.85 1.89 730.10 3.75 44.15 459.31 822.34 11.20 1879.99
Median 82.65 1.77 425.55 2.92 31.90 309.75 680.50 6.72 1891.75

Maximum 130.90 3.62 1970.80 13.92 140.97 2508.80 2180.70 48.58 4474.00
Minimum 49.95 0.82 255.00 1.17 11.13 76.35 336.40 3.56 746.75
Std. Dev. 21.12 0.50 480.20 2.24 28.99 440.48 440.90 8.26 807.30
Skewness 0.280 0.672 0.792 1.721 0.879 2.111 0.813 1.418 0.528
Kurtosis 2.142 3.121 2.151 6.416 2.671 8.299 2.611 4.823 2.765

J-Bera 6.30 14.20 56.52 360.54 55.93 797.60 48.57 198.86 13.68
#Obs. 144 187 420 368 420 417 417 420 281

Sample
Period

2009:01
to

2020:12

2005:06
to

2020:12

1986:01
to

2020:12

1990:05
to

2020:12

1986:01
to

2020:12

1986:04
to

2020:12

1986:04
to

2020:12

1986:01
to

2020:12

1997:08
to

2020:12

Notes: Panel A of the table reports the descriptive statistics of the Treasury yield rates, whereas Panel B reports those of the commodity
prices. Y3M, Y1, Y2, Y10 and Y30, are US treasury yields on 3-month, 1-year, 2-year, 10-year and 30-year bonds, respectively—all denominated
in annual terms.
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4. Method

The empirical economic literature defines the yield spread as the difference between
the yield rates on long-term and short-term government bonds. In fact, there is no precise
theory that defines how the yield spread should be calculated, and the choice of creating
a proxy for the yield spread is somewhat arbitrary. Indeed, the literature provides many
proxies for the yield spread including the difference between the yields on 10-year bonds
and 3-month bonds (Estrella and Hardouvelis 1991), the difference between 10-year and
1-year interest rates (Stock and Watson 1989) and the difference between yields on 30-year
and 3-month bonds (Duffee 1998). Given the mixed definitions of the yield spread, we
utilize as broad a spectrum of bonds as possible, specifically, the differences in the yields on
10-year and 3-month Treasury bonds, 10-year and 1-year bonds, 10-year and 2-year bonds,
30-year and 3-month bonds, 30-year and 1-year bonds and 30-year and 2-year bonds.

We formulate the following model to trace the effect of the current yield spread (at
time t) on the cumulative rate of change in the “h” subsequent months or quarters.

Rt+h = βh
0 + βh

1
(
YLong,t − YShort,t

)
+ B′Xt + vt+h (1)

where

Rt+h =

(
12
h

× 100
)
× (ln(Pt+h)− ln(Pt)) (2)

Rt+h is the rate of change in the price of the commodity in annual terms. If, for example,
h = 1, then Rt+1 captures the cumulative return of one period (say, a quarter) ahead. If
h = 4, then Rt+4 captures the cumulative returns for the coming twelve months (four
quarters). The difference between the yield rates on long-term and short-term government
bonds is given by

(
YLong,t − YShort,t

)
and vt+h is the forecast error. Given the possibility

that the forecast error might be correlated, we use Newey and West’s (1987) corrected
covariance estimator. The estimated coefficients guarantee consistency in the presence
of both heteroscedasticity and autocorrelation (HAC) of unknown form. Xt denotes a
matrix of additional explanatory variables. In line with the literature, we use the U.S. dollar
exchange rate (Churchill et al. 2019), the S&P500 (Kagraoka 2016), the industrial production
index (Duarte et al. 2021) and the economic policy uncertainty index (Huang et al. 2021).

To depict the dynamic correlation between the current yield spread and the future
price direction of commodities, we use the established multivariate concept of dynamic
conditional correlation generalized autoregressive conditional heteroscedasticity (DCC
GARCH). Engle (2002) developed this state-of-the-art method, which has been used exten-
sively to quantify dynamic relationships over time. In the following, we provide a very
basic description of this methodology.1

The dynamic conditional correlation estimator is an extension of the constant condi-
tional correlation model suggested by Bollerslev (1990). According to Bollerslev’s proce-
dure, the correlation matrix ρ is constant. That is, Ht = DtρDt, where Dt = diag

{√
hi,t

}
and hi,t represents the i-th univariate (G)ARCH(p, q) process. In other words,

Dt =

⎛⎜⎜⎜⎜⎜⎜⎝

h1t 0 0 · · · 0
0 h2t 0 · · · 0

0 0 h3t
...

...
...

. . . 0
0 0 · · · hnt

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

According to Engle (2002), ρ is allowed to vary in time t. Thus,

Ht ≡ DtρtDt (4)

The correlation matrix is then given by:
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ρt =

⎛⎜⎜⎜⎜⎜⎝
1 q12,t q13,t · · · q1n,t

q21,t 1 q23,t · · · q2n,t
q31,t q32,t 1 · · · q3n,t

...
...

...
. . .

...
qn1,t qn2,t qn3,t · · · 1

⎞⎟⎟⎟⎟⎟⎠ (5)

The correlation matrix is a positive definite one because of the positive nature of Ht.
Given that Qt =

(
qij,t

)
, then:

Qt = (1 − α − β)Q + αηt−1η
′
t−1 + βQt−1 (6)

where ηt = εi,t/
√

hi,t are the standardized residuals from the (G)ARCH model, Q is a
n × n matrix and represents the unconditional variance matrix of the standardized error
terms ηt and computed as Q = E[ηt × η′t]. α and β are non-negative scalars and satisfy the
mean-revering assumption (i.e., α + β < 1). Qt is a positive definite matrix that determines
the structure of dynamics and Q∗−1

t normalizes the elements in Qt;

Q∗−1
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
q11t

0 0 · · · 0

0 1√
q22t

0 · · · 0

0 0 1√
q33t

· · · 0
...

...
. . .

...
0 0 0 · · · √

qnnt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(7)

In order to estimate the parameters of Ht specifically Φ = (α, β), the following
log-likelihood function is maximized:

L(Φ) = −0.5
T

∑
i=1

(
n log(2π) + log(|Ht|) + y′tH−1

t yt

)
(8)

5. Empirical Findings

Table 2 reports the estimation results of the reduced form of Equation (1). That
is, future commodity returns (Rt+h) are regressed against the current yield spread only.
Rt+h = βh

0 + βh
1
(
YLong,t − YShort,t

)
+ vh

t . In this table, we utilize the difference between
10-year and 3-month bond yields (Y10-Y3M) as a proxy for the yield spread. We also use
four forecasting horizons (h; h = 1, 2, 3 and 4) where h = 1 indicates forecasting of one
quarter ahead and h = 4 indicates forecasting four quarters ahead. Panel A of the table
reports the estimation results with respect to the entire sample, Panel B covers 1986 to 2003,
and Panel C covers 2004 to 2020.

Table 2. Estimation results of Equation (1) with the Y10-Y3M indicator. Panel A: entire sample. Panel B: sample period
1986–2003. Panel C: sample period 2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
10.61
(0.42)

−3.78
(0.56) 0.003 139 5.33

(0.48)
−0.37
(0.92) 0.000 139 4.89

(0.24)
0.08

(0.97) 0.000 138

2
9.03

(0.29)
−3.08
(0.46) 0.004 138 3.97

(0.45)
0.39

(0.88) 0.000 138 4.74
(0.10)

0.15
(0.92) 0.000 138

3
7.41

(0.24)
−2.30
(0.46) 0.004 137 1.85

(0.67)
1.40

(0.50) 0.003 137 4.56 *
(0.06)

0.11
(0.93) 0.000 137

4
4.29

(0.41)
−0.91
(0.72) 0.001 136 −0.23

(0.95)
2.40

(0.17) 0.014 136 4.47 **
(0.04)

0.06
(0.95) 0.000 136

182



JRFM 2021, 14, 585

Table 2. Cont.

Panel A

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
5.23

(0.45)
−1.48
(0.66) 0.001 139 19.38 *

(0.06)
−6.14
(0.22) 0.011 139 3.18

(0.75)
−0.02
(0.99) 0.000 93

2
3.68

(0.44)
−0.72
(0.76) 0.000 138 15.63 **

(0.04)
−3.95
(0.28) 0.009 138 −1.03

(0.89)
2.62

(0.49) 0.005 92

3
1.27

(0.73)
0.45

(0.80) 0.0005 136 10.53 *
(0.09)

−1.16
(0.70) 0.001 137 −4.31

(0.51)
4.53

(0.17) 0.021 91

4
−0.18
(0.95)

1.17
(0.43) 0.004 136 8.18

(0.14)
0.24

(0.93) 0.000 136 −6.91
(0.23)

6.04 **
(0.04)

0.05 90

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural Gas (1990:05–2020:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
3.52

(0.86)
−2.70
(0.79) 0.012 62 −7.04

(0.66)
4.08

(0.59) 0.006 48 4.24
(0.79)

−1.36
(0.86) 0.0003 122

2
1.49

(0.90)
−2.32
(0.70) 0.002 61 −10.92

(0.37)
5.85

(0.31) 0.0.23 47 2.11
(0.84)

−0.40
(0.94) 0.000 121

3
−1.69
(0.84)

−0.64
(0.88) 0.004 60 −15.40

(0.12)
7.67

(0.10) 0.06 46 −1.00
(0.91)

1.02
(0.80) 0.001 120

4
−5.01
(0.43)

0.61
(0.85) 0.001 59 −14.55

(0.11)
7.14 *
(0.09)

0.06 45 −3.51
(0.61)

2.39
(0.47) 0.005 119

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
11.73
(0.42)

−3.38
(0.63) 0.003 71 −6.16

(0.40)
4.15

(0.25) 0.019 71 −4.99
(0.37)

3.60
(0.18) 0.025 70

2
10.25
(0.29)

−2.58
(0.58) 0.004 71 −8.19

(0.13)
5.85 **
(0.03)

0.07 71 −4.51
(0.18)

3.36 **
(0.04)

0.06 71

3
10.62
(0.13)

−2.91
(0.39) 0.01 71 −7.71 *

(0.07)
5.28 ***
(0.01)

0.09 71 −3.99
(0.13)

2.74 **
(0.03)

0.06 71

4
9.55

(0.12)
−2.26
(0.44) 0.009 71 −7.57 **

(0.04)
5.20 ***
(0.004)

0.114 71 −3.54
(0.13)

2.40 **
(0.04)

0.06 71

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
−1.01
(0.89)

2.90
(0.44) 0.009 71 11.53

(0.40)
−4.63
(0.49) 0.007 71 −17.87

(0.11)
9.02

(0.12) 0.10 25

2
−3.28
(0.51)

4.35 *
(0.07)

0.046 71 4.58
(0.66)

−0.001
(0.99) 0.000 71 −15.85 *

(0.06)
9.50 **
(0.03)

0.18 25

3
−4.65
(0.23)

4.74 **
(0.014)

0.085 70 0.13
(0.99)

2.20
(0.60) 0.004 71 −14.08 **

(0.04)
8.39 **
(0.02)

0.20 25

4
−4.98
(0.15)

4.91 ***
(0.004)

0.112 71 −1.30
(0.87)

2.99
(0.43) 0.009 71 −13.17 **

(0.03)
8.38 ***
(0.01)

0.26 25
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Table 2. Cont.

Panel B

Forecast
Horizon

Natural Gas (1990:05–2003:12)

h C (Y10-Y3M) R2 N

1
8.41

(0.76)
1.11

(0.93) 0.0002 54

2
−0.57
(0.97)

5.51
(0.50) 0.009 54

3
−5.24
(0.69)

7.99
(0.19) 0.03 54

4
−7.17
(0.48)

9.42 *
(0.05)

0.07 54

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
9.51

(0.67)
−4.22
(0.70) 0.002 68 17.23

(0.20)
−5.16
(0.44) 0.009 68 14.40 **

(0.02)
−3.29
(0.27) 0.019 68

2
7.77

(0.59)
−3.65
(0.60) 0.004 67 16.94 *

(0.07)
−5.45
(0.23) 0.022 67 14.54 ***

(0.002)
−3.29
(0.14) 0.033 67

3
3.90

(0.72)
−1.62
(0.76) 0.001 66 12.35

(0.11)
−2.87
(0.44) 0.009 66 13.92 ***

(0.00)
−2.81
(0.14) 0.03 66

4
−1.66
(0.85)

0.66
(0.88) 0.0004 65 8.09

(0.20)
−0.78
(0.80) 0.001 65 13.53 ***

(0.00)
−2.64
(0.12) 0.04 65

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N C (Y10-Y3M) R2 N

1
11.84
(0.31)

−6.18
(0.29) 0.017 68 27.41 *

(0.07)
−7.64
(0.31) 0.016 68 13.99

(0.29)
−4.68
(0.48) 0.008 68

2
11.20
(0.17)

−6.21
(0.12) 0.04 67 27.36 **

(0.013)
−8.18
(0.13) 0.036 67 6.80

(0.52)
−0.91
(0.86) 0.0005 67

3
7.84

(0.21)
−4.25
(0.17) 0.029 66 21.92 **

(0.02)
−4.88
(0.26) 0.02 66 0.98

(2.38)
2.38

(0.59) 0.005 66

4
5.27

(0.30)
−2.97
(0.23) 0.023 65 18.91 **

(0.02)
−2.94
(0.43) 0.01 65 −3.42

(0.67)
4.67

(0.24) 0.022 65

Forecast
Horizon

Natural Gas (2004:01–2020:12)

h C (Y10-Y3M) R2 N

1
1.95

(0.92)
−4.07
(0.67) 0.003 68

2
5.14

(0.71)
−5.95
(0.38) 0.012 67

3
3.37

(0.76)
−5.48
(0.31) 0.016 66

4
0.49

(0.96)
−4.21
(0.32) 0.016 65

Notes: The forecast horizon (h) is in quarters. Y10-Y3M denotes the yield spread calculated as the difference between the yield rates on
10-year and 3-month government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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The picture that emerges indicates an insignificant positive tendency of the yield
spread to forecast future changes in the commodities used. Panel B, however, presents a
different picture. Except for oil and palladium, we find that, when considering 1986–2003,
the yield spread has a positive effect on the future prices of the rest of the commodities.
The ability of the current yield spread to predict future innovations in commodity prices is
manifested in both the statically significant positive coefficients and the relatively high R2

(for example, R2 values are 6%, 7%, 11.2%, 11.4% and 26% for gold, natural gas, platinum,
silver and zinc, respectively.). A steeper yield curve is always viewed as an indication
that the growth in future output is about to rise. Thus, the positive correlation detected
indicates that an increase in the slope at time t will have a positive impact on the future
prices of commodities.

While Table 2 regresses the commodity returns against the yield spread only, in Table 3
we present the full estimation of Equation (1) after controlling for additional explanatory
variables. The sample period considered in Table 3 is for 1986–2003. The results for the
entire sample and the period after 2004 appear in Table A2 (in the online Appendix A). The
overall picture is maintained as evident by the significant positive coefficients of the yield
spreads even after controlling for real and financial economic variables in the period prior
to 2004. The results hold true for all commodities except for oil and palladium.

Table 3. Estimation results of Equation (1) for the period 1986–2003.

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
11.80 −4.97 0.48 −2.20 11.89 0.03 −0.06 71 −8.22 4.93 0.58 −10.74 −1.92 0.00 −0.04 71
(0.76) (−0.62) (0.06) (−0.11) (0.67) (0.26) (−1.06) (1.23) (0.15) (−1.06) (−0.22) (−0.07)

2
10.61 −3.25 −9.41c −5.24 10.78 −0.02 0.00 71 −9.31 6.50b 0.58 −5.78 −3.10 −0.01 0.01 71
(1.06) (−0.63) (−1.82) (−0.4) (0.95) (−0.19) (−1.64) (2.22) (0.2) (−0.78) (−0.48) (−0.27)

3
10.22 −2.73 −5.10 −4.14 3.21 0.00 −0.03 71 −9.37b 6.04a 0.53 −9.09 −2.79 −0.02 0.06 71
(1.39) (−0.72) (−1.35) (−0.43) (0.38) (−0.03) (−2.11) (2.64) (0.23) (−1.57) (−0.55) (−0.4)

4
8.01 −1.83 −2.85 −7.46 2.58 0.02 −0.03 71 −8.92b 5.92a −0.02 −7.43 −2.73 −0.01 0.09 71

(1.25) (−0.56) (−0.86) (−0.9) (0.35) (0.44) (−2.36) (3.05) (−0.01) (−1.51) (−0.63) (−0.46)

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
−7.28 3.49 4.47 −10.20 3.19 0.00 0.01 70 −2.64 2.25 −1.79 −22.72b 7.66 −0.10 0.06 71
(−1.23) (1.17) (1.52) (−1.39) (0.5) (0.1) (−0.34) (0.57) (−0.45) (−2.26) (0.87) (−1.57)

2
−4.01 4.01b −1.50 3.21 −5.20 −0.02 0.04 70 −5.10 4.63c −1.73 −14.33b 2.42 −0.03 0.07 71
(−1.14) (2.23) (−0.83) (0.7) (−1.3) (−0.72) (−1.01) (1.78) (−0.66) (−2.17) (0.42) (−0.75)

3
−3.74 3.04b −0.49 0.67 −2.80 −0.02 0.02 70 −5.71 4.17b 0.32 −10.25c 5.89 −0.02 0.09 71
(−1.35) (2.14) (−0.35) (0.19) (−0.89) (−0.93) (−1.42) (2.02) (0.16) (−1.97) (1.29) (−0.49)

4
−3.62 2.94b −0.87 −0.42 −3.48 −0.02 0.03 70 −5.19 4.32b −0.21 −5.51 4.59 −0.02 0.09 71
(−1.46) (2.31) (−0.68) (−0.13) (−1.24) (−0.84) (−1.44) (2.33) (−0.11) (−1.17) (1.12) (−0.7)

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
15.89 −10.17 −14.00b −13.30 38.73 −0.18 0.13 71 −19.18c 5.87 8.85 −27.86 9.80 −0.02 0.07 25
(1.2) (−1.49) (−2.05) (−0.77) (2.57) (−1.6) (−1.76) (1.00) (1.59) (−1.15) (0.66) (−0.18)

2
6.75 −4.82 −3.68 −12.06 32.29a −0.08 0.06 71 −17.44b 7.48 5.42 −26.55 4.01 0.04 0.15 25

(0.65) (−0.9) (−0.68) (−0.89) (2.72) (−0.9) (−2.13) (1.7) (1.3) (−1.47) (0.36) (0.38)

3
3.16 −4.11 3.39 −4.46 37.41a −0.02 0.13 71 −15.76b 7.29c 3.40 −24.21 −2.48 0.10 0.21 25

(0.38) (−0.95) (0.78) (−0.41) (3.9) (−0.35) (−2.4) (2.07) (1.02) (−1.67) (−0.28) (1.26)

4
0.88 −2.11 3.50 −4.59 30.30a −0.01 0.10 71 −15.02b 7.85b 2.03 −12.48 1.41 0.09 0.22 25

(0.11) (−0.53) (0.88) (−0.46) (3.46) (−0.23) (−2.59) (2.52) (0.69) (−0.97) (0.18) (1.37)
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Table 3. Cont.

Forecast
Horizon Natural gas (1990:05–2003:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
4.31 −3.20 18.12 −12.32 36.33 0.04 −0.04 54

(0.15) (−0.23) (1.33) (−0.33) (1.14) (0.16)

2
−6.06 4.49 4.89 −34.36 21.29 −0.03 −0.03 54
(−0.34) (0.52) (0.57) (−1.43) (1.06) (−0.18)

3
−16.59 9.11 5.02 −50.56a 20.50 0.12 0.16 54
(−1.32) (1.51) (0.83) (−3.02) (1.46) (1.15)

4
−15.38 10.68b 3.90 −32.98b 10.68 0.11 0.13 54
(−1.51) (2.19) (0.8) (−2.44) (0.94) (1.33)

Notes: The forecast horizon (h) is in quarters. Y10-Y3M denotes the yield spread calculated as the difference between the yield rates on
10-year and 3-month government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. a, b and c denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

The statistically significant positive coefficients accord with the empirical literature
postulating that commodity prices (specifically silver, gold, platinum, zinc and natural
gas) are tightly linked with the business cycle and the state of the economy (e.g., Batten
et al. 2010; Kucher and McCoskey 2017; Jahan and Serletis 2019). This economically and
statistically significant relationship confirms that these metals are used extensively in
various industries, making them more exposed to the expected phases in the economic
cycle.

In investigating whether the relationship between yield spreads and future innova-
tions in commodity prices is stable over time, we made two major findings. The first is that
the correlation between commodity prices and yield spreads is not stable over time. This
finding is evident in Engle’s (2002) dynamic conditional correlations depicted in Figures 1–3,
which illustrate the dynamic conditional correlation between the yield spreads and the
commodity prices two, three and four quarters ahead. This finding accords with recent
studies maintaining time-varying relationship between yield spread and future economic
output (e.g., Kuosmanen et al. 2019; Chinn and Kucko 2015).

Silver Gold Oil 

   
Platinum Palladium Zinc 

Figure 1. Cont.
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Ethanol Coal Natural Gas 

Figure 1. Dynamic correlation between the yield spread and two quarters ahead.

Silver Gold Oil 

   

Platinum Palladium Zinc 

   
Ethanol Coal Natural Gas 

Figure 2. Dynamic correlation between the yield spread and three quarters ahead.
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Silver Gold Oil 

   

Platinum Palladium Zinc 

   
Ethanol Coal Natural Gas 

Figure 3. Dynamic correlation between the yield spread and four quarters ahead.

Second, using the Bai and Perron (2003) structural break test we find that the early
2000s is the period associated with structural breaks in the relationship between the yield
curve and the prices of commodities. Table 4 presents the results of this test and indicates
the dates detected as structural break points. In general, the findings of Bai and Perron
(2003) test point to the 2003–3004 as the period in which there was a structural break in the
relationship between yield spreads and future commodity prices. These findings accord
with earlier studies that date the start of the financialization commodities to the early 2000s
(Hamilton and Wu 2015; Henderson et al. 2015). In other words, this period marks the
start of the increased exposure of portfolio managers, individuals and hedge funds to
commodities.

Table 4. Bai and Perron (2003) multiple break-point test.

h = 2 (Two Quarters Ahead)

Silver Oil Gold PLTNM PLDM Zinc ETHNL Coal NatGas

Break Point #1 2003Q2 = 2001Q2 = = = = = =
Break Point #2 2011Q2 = 2012Q3 = = = = = =
Break Point #3 = = = = = = = = =
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Table 4. Cont.

h = 3 (Three Quarters Ahead)

Silver Oil Gold PLTNM PLDM Zinc ETHNL Coal NatGas

Break Point #1 2003Q2 = 2001Q1 = 1996Q3 = = 2011Q1 =
Break Point #2 2011Q1 = 2012Q2 = = = = 2015Q4 =
Break Point #3 = = = = = = = = =

h = 4 (Four Quarters Ahead)

Silver Oil Gold PLTNM PLDM Zinc ETHNL Coal NatGas

Break Point #1 2003Q1 1995Q4 2001Q2 1998Q4 1996Q2 = = 2011Q1 2000Q3
Break Point #2 2011Q1 = 2012Q2 2010Q4 2001Q2 = = 2015Q4 2006Q2
Break Point #3 = = = = 2008Q4 = = = =

Notes: We tested for any structural break using the Bai and Perron (2003) multiple break-point test. The values listed in the table are those
of the break dates. The vast majority of the commodities point to the 2000s as the structural break points. “=” denotes that no significant
breakpoint was detected between the future return and the current yield spread.

This finding is in line with prior studies documenting the weakening ability of the term
structure to predict future economic activity. Early on, Stock and Watson (2003) and Giacomini
and Rossi (2006) maintained that the yield spread’s ability to forecast economic expansion has
weakened since the 1980s, but its predictive ability remains strong only for recessions. Other
works raise questions regarding the stability of the term spread’s predictive content (e.g.,
Wheelock and Wohar 2009). Evgenidis et al. (2020) confirm the time-varying nature of the
yield spread’s predictive ability, mainly during the 2000s.

One possible factor explaining this break between commodities and the most reliable
indicator of future economic activity is the financialization of commodities. For a long time,
commodities were viewed as a segmented market offering significant diversification benefits in
light of the low—even negative—correlation between their returns and the stock market (e.g.,
Bodie and Rosansky 1980; Demiralay et al. 2019). This characteristic prompted traders, financial
institutions and institutional investors to consider this new asset class as a useful diversifier in
their portfolios. A byproduct of this development is the acceleration in the financialization of
these commodities, which in turn fueled a rapid increase in their co-movements with equity
markets (e.g., Qadan et al. 2019). This evolution may explain the breakdown of the obvious
relationship between commodities and the expected economic evolution.

We also test the extent to which the dynamic correlation of commodity “i” co-moves
with that of commodity “j.” A quick glance at Figures 1–3 shows the apparent co-movements
between some of these commodities. Table 5 presents the simple correlation between the
DCC values. Some of the correlation values are negative and statistically significant. For
example, we detect a negative correlation between the prices of ethanol and gold, gold
and natural gas, natural gas and palladium, oil, and palladium. On the other hand, the
majority of the other cases are associated with statistically significant positive correlations,
particularly for precious metals. For example, the correlation between the DCC values
of gold and silver is 0.73, and that between gold and platinum is 0.534. Overall, this
picture reveals that the conditional slope among commodities is largely connected—a clear
indication of their similar reaction to the current yield spread.

Table 5. Pearson’s correlation between the DCC values of the commodities.

Coal Ethanol Gold Nat.Gas Oil PLDM PLTNM Silver Zinc

Coal 1.00
Ethanol 0.647 *** 1.00

Gold 0.090 −0.230 * 1.00
Nat.Gas 0.124 0.321 ** −0.153 * 1.00

Oil 0.692 *** 0.519 *** 0.167 * 0.627 *** 1.00
PLDM 0.407 *** 0.205 0.166 * −0.222 ** −0.141 * 1.00

189



JRFM 2021, 14, 585

Table 5. Cont.

Coal Ethanol Gold Nat.Gas Oil PLDM PLTNM Silver Zinc

PLTNM 0.120 −0.037 0.534 *** 0.354 *** 0.406 *** 0.327 *** 1.00
Silver 0.249 −0.071 0.730 *** −0.065 0.091 0.487 *** 0.630 *** 1.00
Zinc 0.493 *** 0.277 ** −0.154 0.086 0.196 * 0.278 *** 0.081 0.159 1.00

Notes: ***, ** and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

6. Robustness Checks

6.1. Additional Proxies for Yield

Previous studies suggested capturing the yield spread using different proxies. To
develop a broader picture regarding the interaction between the yield spread and the
future evolution in commodity prices, we depart from the standard yield spread used in
the literature (Y10-Y3M) and test other proxies: the difference between 10-year and 1-year
interest rates (Y10-Y1), between 10-year and 2-year yields (Y10-Y2), between 30-year and
3-months yields (Y30-Y3M), between 30-year and 1-year bond yields (Y30-Y1) and between
30-year and 2-year bond yields (Y30-Y2).

Tables 6–10 report the estimation results of the prediction model. Table 6 presents
the estimation results given Y10-Y1 as the yield spread. In Table 7, Y10-Y2 proxies for the
yield spread. In Table 8, Y30-Y3M proxies for the yield spread. Table 9 utilizes Y30-Y1 as
the yield spread, and Table 10 utilizes Y30-Y2 to proxy for the yield spread. The overall
picture is maintained as evident by the significant positive coefficients in the period prior to
2004 (Panel B in each table), but the insignificant results in the period that follows (Panels
C). The regression results that include the other explanatory variables reflect very similar
picture. They appear in Tables A3–A7 in the online Appendix A.

A closer glance at the results in Panel B of Table 6 confirms that the yield spread,
defined as Y10-Y1, is an efficient predictor of the future prices of silver, gold, platinum
and zinc. The resulting R2 for silver ranges between 0.03 when forecasting one quarter
ahead (h = 1), and 0.19 when forecasting the prices one year ahead (h = 4). We find that
the regression R2 for gold ranges between 0.04 (for h = 1) and 0.15 (for h = 4), for platinum
it ranges between 0.01 (for h = 1) and 0.12 (for h = 4), and finally it ranges between 0.09
(for h = 1) and 0.26 for zinc (h = 4). This picture is essentially replicated in Tables 7–10.
Moreover, Panel B of Table 10 provides strong support for these findings. The resulting R2

for zinc ranges between 0.08 (for h = 1), and 0.34 (for h = 4). By and large, these findings
confirm the premise that metal prices are positively correlated with macroeconomic activity
(e.g., Fama and French 1988).

Table 6. Estimation results of Equation (1) with the Y10-Y1 indicator. Panel A: entire sample. Panel B: sample period
1986–2003. Panel C: sample period 2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
10.51
(0.25)

−4.45
(0.38) 0.003 139 3.28

(0.61)
1.01

(0.79) 0.000 139 3.82
(0.40)

0.84
(0.72) 0.001 138

2
8.59

(0.30)
−3.40
(0.47) 0.004 138 2.60

(0.67)
1.43

(0.70) 0.002 138 3.65
(0.41)

0.94
(0.68) 0.003 138

3
7.34

(0.35)
−2.71
(0.55) 0.005 137 1.03

(0.86)
2.26

(0.52) 0.007 137 3.41
(0.42)

0.94
(0.67) 0.004 137

4
4.95

(0.51)
−1.56
(0.72) 0.002 136 −0.65

(0.90)
3.19

(0.35) 0.021 136 3.30
(0.42)

0.89
(0.67) 0.004 136
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Table 6. Cont.

Panel A

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
3.98

(0.45)
−0.88
(0.78) 0.000 139 18.34 **

(0.04)
−6.63
(0.25) 0.01 139 3.24

(0.80)
−0.06
(0.99) 0.000 93

2
3.15

(0.54)
−0.49
(0.87) 0.0003 138 15.69 *

(0.08)
−4.79
(0.39) 0.01 138 0.19

(0.99)
2.13

(0.71) 0.003 92

3
1.71

(0.73)
0.23

(0.94) 0.0001 136 12.24
(0.18)

−2.59
(0.63) 0.004 137 −2.26

(0.84)
3.74

(0.46) 0.01 91

4
0.49

(0.92)
0.94

(0.72) 0.002 136 10.16
(0.27)

−1.10
(0.83) 0.001 136 −4.33

(0.69)
5.12

(0.27) 0.03 90

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural gas (1990:05–2020:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
2.00

(0.88)
−1.97
(0.80) 0.001 62 −4.91

(0.79)
3.21

(0.71) 0.004 48 5.07
(0.71)

−2.16
(0.76) 0.001 122

2
0.20

(0.98)
−1.70
(0.78) 0.001 61 −8.31

(0.61)
4.90

(0.52) 0.02 47 2.75
(0.82)

−0.90
(0.89) 0.0002 121

3
−1.68
(0.84)

−0.72
(0.90) 0.000 60 −12.06

(0.40)
6.51

(0.34) 0.04 46 0.96
(0.93)

−0.12
(0.98) 0.000 120

4
−4.84
(0.46)

0.56
(0.91) 0.000 59 −11.26

(0.42)
5.98

(0.37) 0.04 45 −1.10
(0.91)

1.19
(0.82) 0.001 119

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
12.42
(0.31)

−4.79
(0.43) 0.005 71 −7.50

(0.15)
6.26 *
(0.07)

0.03 71 −5.59
(0.14)

5.00 **
(0.03)

0.04 70

2
10.64
(0.33)

−3.56
(0.50) 0.006 71 −9.37 *

(0.05)
8.28 **
(0.03)

0.11 71 −5.59 *
(0.07)

5.06 ***
(0.01)

0.10 71

3
9.74

(0.32)
−3.03
(0.53) 0.009 71 −8.99 **

(0.03)
7.64 **
(0.01)

0.14 71 −5.41 **
(0.04)

4.52 ***
(0.004)

0.13 71

4
8.86

(0.34)
−2.35
(0.62) 0.007 71 −8.93 **

(0.01)
7.60 ***
(0.003)

0.19 71 −5.18 **
(0.04)

4.26 ***
(0.003)

0.15 71

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
−0.64
(0.93)

3.39
(0.35) 0.01 71 14.98

(0.29)
−8.42
(0.31) 0.02 71 −16.75

(0.14)
9.49

(0.12) 0.09 25

2
−2.72
(0.68)

5.09
(0.12) 0.05 71 8.46

(0.54)
−2.89
(0.72) 0.004 71 −14.68

(0.15)
10.01 *
(0.09)

0.17 25

3
−3.93
(0.52)

5.45 *
(0.07)

0.09 70 4.74
(0.73)

−0.63
(0.93) 0.000 71 −13.22

(0.18)
8.97 *
(0.09)

0.20 25

4
−4.48
(0.43)

5.85 *
(0.04)

0.12 71 2.72
(0.84)

0.80
(0.91) 0.001 71 −12.50

(0.17)
9.12 *
(0.06)

0.26 25
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Table 6. Cont.

Panel B

Forecast
Horizon

Natural Gas (1990:05–2003:12)

h C (Y10-Y1) R2 N

1
10.73
(0.67)

−0.22
(0.99) 0.000 54

2
2.97

(0.89)
4.30

(0.66) 0.004 54

3
−0.41
(0.98)

6.44
(0.47) 0.02 54

4
−1.84
(0.92)

7.84
(0.30) 0.04 54

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
8.26

(0.60)
−3.95
(0.64) 0.002 68 15.22

(0.10)
−4.46
(0.46) 0.006 68 13.82 **

(0.01)
−3.34
(0.29) 0.02 68

2
6.04

(0.65)
−2.99
(0.69) 0.002 67 15.87 *

(0.06)
−5.53
(0.34) 0.019 67 14.21 ***

(0.01)
−3.52
(0.26) 0.03 67

3
4.29

(0.73)
−2.10
(0.76) 0.002 66 12.56

(0.12)
−3.41
(0.55) 0.012 66 13.88 ***

(0.01)
−3.18
(0.29) 0.04 66

4
−0.09
(0.99)

−0.28
(0.97) 0.000 65 9.14

(0.25)
−1.59
(0.78) 0.004 65 13.71 ***

(0.004)
−3.12
(0.26) 0.05 65

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-Y1) R2 N C (Y10-Y1) R2 N C (Y10-Y1) R2 N

1
8.60

(0.24)
−4.83
(0.30) 0.01 68 22.90 **

(0.01)
−5.63
(0.44) 0.01 68 13.37

(0.46)
−4.91
(0.58) 0.01 68

2
9.07

(0.19)
−5.64
(0.23) 0.03 67 24.29 ***

(0.004)
−7.25
(0.32) 0.02 67 7.93

(0.65)
−1.80
(0.82) 0.002 67

3
7.55

(0.25)
−4.66
(0.27) 0.03 66 21.46 **

(0.01)
−5.25
(0.43) 0.02 66 3.58

(0.83)
0.97

(0.89) 0.000 66

4
5.67

(0.37)
−3.65
(0.33) 0.03 65 19.62 **

(0.03)
−3.82
(0.54) 0.01 65 0.15

(0.99)
2.97

(0.66) 0.01 65

Forecast
Horizon

Natural Gas (2004:01–2020:12)

h C (Y10-Y1) R2 N

1
0.56

(0.97)
−3.69
(0.63) 0.002 68

2
2.48

(0.86)
−4.99
(0.49) 0.01 67

3
1.93

(0.88)
−5.27
(0.41) 0.01 66

4
−0.77
(0.94)

−3.97
(0.47) 0.01 65

Notes: The forecast horizon (h) is in quarters. Y10-Y1 denotes the yield spread calculated as the difference between the yield rates on
10-year and 1-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table 7. Estimation results of Equation (1) with the Y10-Y2 indicator. Panel A: entire sample. Panel B: sample period
1986–2003. Panel C: sample period 2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
11.27
(0.20)

−6.39
(0.30) 0.004 139 2.30

(0.70)
2.18

(0.65) 0.001 139 2.96
(0.48)

1.86
(0.50) 0.004 138

2
8.47

(0.27)
−4.25
(0.44) 0.004 138 1.81

(0.75)
2.56

(0.58) 0.004 138 2.87
(0.48)

1.91
(0.47) 0.01 138

3
7.27

(0.32)
−3.41
(0.52) 0.005 137 0.69

(0.90)
3.20

(0.47) 0.01 137 2.61
(0.51)

1.92
(0.45) 0.01 137

4
5.27

(0.45)
−2.29
(0.66) 0.003 136 −0.55

(0.91)
3.99

(0.35) 0.02 136 2.50
(0.51)

1.86
(0.45) 0.01 136

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
3.51

(0.50)
−0.71
(0.85) 0.0002 139 16.64 *

(0.06)
−6.94
(0.33) 0.01 139 3.79

(0.76)
−0.54
(0.94) 0.000 93

2
2.90

(0.55)
−0.40
(0.91) 0.0001 138 15.04 *

(0.09)
−5.55
(0.42) 0.01 138 1.10

(0.93)
1.78

(0.78) 0.002 92

3
2.18

(0.65)
−0.13
(0.97) 0.000 136 12.77

(0.15)
−3.80
(0.57) 0.01 137 −0.98

(0.93)
3.41

(0.56) 0.01 91

4
1.29

(0.77)
0.49

(0.88) 0.0005 136 10.88
(0.21)

−2.05
(0.74) 0.003 136 −2.64

(0.80)
4.73

(0.38) 0.02 90

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural gas (1990:05–2020:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
1.64

(0.91)
−1.94
(0.84) 0.0004 62 −4.20

(0.82)
3.23

(0.74) 0.003 48 6.92
(0.59)

−4.28
(0.62) 0.002 122

2
−0.35
(0.97)

−1.50
(0.84) 0.001 61 −6.71

(0.69)
4.59

(0.62) 0.01 47 5.23
(0.65)

−3.24
(0.67) 0.002 121

3
−1.33
(0.88)

−1.11
(0.87) 0.001 60 −9.94

(0.51)
6.12

(0.47) 0.03 46 3.88
(0.72)

−2.62
(0.71) 0.002 120

4
−4.08
(0.55)

0.05
(0.99) 0.000 59 −8.80

(0.56)
5.31

(0.53) 0.03 45 1.61
(0.87)

−0.77
(0.90) 0.0003 119

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
12.81
(0.24)

−7.33
(0.31) 0.01 71 −6.76

(0.17)
8.23 *
(0.07)

0.04 71 −5.11
(0.15)

6.71 **
(0.02)

0.05 70

2
10.36
(0.30)

−4.83
(0.46) 0.01 71 −8.65 *

(0.06)
11.18 **
(0.02)

0.13 71 −5.24 *
(0.07)

6.93 ***
(0.004)

0.13 71

3
8.78

(0.34)
−3.34
(0.57) 0.01 71 −8.73 **

(0.03)
10.73 ***

(0.01)
0.18 71 −5.34 **

(0.03)
6.45 ***
(0.001)

0.18 71

4
7.32

(0.39)
−1.74
(0.77) 0.003 71 −8.63 ***

(0.01)
10.65 ***
(0.001)

0.24 71 −5.25 **
(0.03)

6.22 ***
(0.00)

0.21 71
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Table 7. Cont.

Panel B

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
−0.19
(0.98)

4.41
(0.37) 0.01 71 14.57

(0.25)
−11.71
(0.27) 0.02 71 −14.39

(0.22)
10.23
(0.17) 0.08 25

2
−1.92
(0.77)

6.49
(0.15) 0.05 71 9.81

(0.44)
−5.60
(0.58) 0.01 71 −13.13

(0.19)
11.82 *
(0.09) 0.18 25

3
−2.94
(0.62)

6.78 *
(0.09)

0.09 70 6.75
(0.59)

−3.07
(0.75) 0.004 71 −12.20

(0.18)
10.99 *
(0.06) 0.22 25

4
−3.43
(0.54)

7.32 **
(0.05)

0.13 71 4.49
(0.71)

−0.74
(0.93) 0.0003 71 −11.53

(0.16)
11.25 **
(0.02) 0.29 25

Forecast
Horizon

Natural Gas (1990:05–2003:12)

h C (Y10-Y2) R2 N

1
12.09
(0.59)

−1.61
(0.91) 0.0002 54

2
7.03

(0.72)
2.16

(0.85) 0.001 54

3
3.90

(0.83)
4.94

(0.64) 0.01 54

4
1.86

(0.91)
7.49

(0.40) 0.02 54

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
9.12

(0.58)
−5.25
(0.61) 0.002 68 14.73

(0.13)
−4.77
(0.53) 0.005 68 13.80 ***

(0.01)
−3.85
(0.31) 0.02 68

2
5.56

(0.67)
−3.09
(0.71) 0.002 67 15.76 *

(0.08)
−6.31
(0.38) 0.02 67 14.40 ***

(0.01)
−4.22
(0.26) 0.03 67

3
4.61

(0.71)
−2.68
(0.73) 0.002 66 13.68

(0.10)
−4.82
(0.49) 0.02 66 14.39 ***

(0.01)
−4.07
(0.25) 0.04 66

4
1.36

(0.91)
−1.44
(0.85) 0.001 65 10.82

(0.17)
−3.11
(0.64) 0.01 65 14.36 ***

(0.00)
−4.11
(0.22) 0.06 65

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-Y2) R2 N C (Y10-Y2) R2 N C (Y10-Y2) R2 N

1
7.53

(0.31)
−4.74
(0.36) 0.01 68 21.92 **

(0.02)
−5.74
(0.50) 0.01 68 15.05

(0.41)
−6.99
(0.51) 0.01 68

2
8.12

(0.25)
−5.78
(0.26) 0.02 67 23.87 ***

(0.01)
−8.05
(0.33) 0.02 67 10.20

(0.57)
−3.84
(0.69) 0.01 67

3
7.92

(0.23)
−5.67
(0.24) 0.03 66 22.88 ***

(0.01)
−7.17
(0.36) 0.03 66 6.35

(0.71)
−1.01
(0.91) 0.001 66

4
6.56

(0.29)
−4.90
(0.25) 0.04 65 21.70 ***

(0.01)
−6.01
(0.40) 0.03 65 3.36

(0.84)
0.99

(0.90) 0.001 65
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Table 7. Cont.

Panel C

Forecast
Horizon

Natural Gas (2004:01–2020:12)

h C (Y10-Y2) R2 N

1
0.76

(0.96)
−4.42
(0.63) 0.002 68

2
2.15

(0.88)
−5.52
(0.52) 0.01 67

3
2.29

(0.86)
−6.38
(0.40) 0.01 66

4
−0.56
(0.96)

−4.76
(0.47) 0.01 65

Notes: The forecast horizon (h) is in quarters. Y10-Y2 denotes the yield spread calculated as the difference between the yield rates on
10-year and 2-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 8. Estimation results of Equation (1) with the Y30-Y3M indicator. Panel A: entire sample. Panel B: sample period
1986–2003. Panel C: sample period 2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
10.14
(0.32)

−2.70
(0.48) 0.002 139 3.39

(0.63)
0.60

(0.84) 0.0003 139 4.43
(0.37)

0.27
(0.88) 0.0002 138

2
8.54

(0.36)
−2.16
(0.54) 0.003 138 2.55

(0.70)
0.95

(0.73) 0.001 138 4.26
(0.37)

0.33
(0.85) 0.001 138

3
7.38

(0.40)
−1.77
(0.60) 0.004 137 0.96

(0.88)
1.49

(0.57) 0.01 137 3.99
(0.38)

0.34
(0.83) 0.001 137

4
4.49

(0.59)
−0.80
(0.80) 0.001 136 −0.53

(0.93)
2.00

(0.42) 0.01 136 3.99
(0.36)

0.27
(0.87) 0.001 136

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
4.83

(0.43)
−0.96
(0.70) 0.001 139 19.20 *

(0.07)
−4.65
(0.29) 0.01 139 1.46

(0.92)
0.76

(0.87) 0.0004 93

2
3.92

(0.51)
−0.67
(0.78) 0.001 138 16.41

(0.11)
−3.41
(0.42) 0.01 138 −2.14

(0.87)
2.40

(0.57) 0.01 92

3
1.72

(0.76)
0.15

(0.95) 0.000 136 11.49
(0.27)

−1.33
(0.74) 0.002 137 −5.11

(0.68)
3.66

(0.33) 0.02 91

4
0.34

(0.95)
0.68

(0.73) 0.002 136 8.62
(0.40)

−0.01
(0.99) 0.000 136 −7.57

(0.52)
4.71

(0.17) 0.05 90

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural gas (1990:05–2020:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
1.03

(0.95)
−0.81
(0.89) 0.0002 62 −10.26

(0.62)
4.11

(0.53) 0.01 48 4.35
(0.78)

−1.08
(0.85) 0.0002 122

2
−0.25
(0.98)

−0.87
(0.85) 0.001 61 −13.06

(0.47)
4.96

(0.39) 0.02 47 2.07
(0.88)

−0.28
(0.95) 0.000 121

3
−1.98
(0.84)

−0.33
(0.94) 0.0002 60 −17.59

(0.26)
6.28

(0.22) 0.06 46 −0.74
(0.95)

0.66
(0.89) 0.0003 120

4
−5.05
(0.51)

0.45
(0.90) 0.001 59 −16.06

(0.30)
5.65

(0.27) 0.06 45 −3.24
(0.77)

1.70
(0.68) 0.003 119
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Table 8. Cont.

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
13.64
(0.31)

−3.74
(0.42) 0.01 71 −8.02

(0.14)
4.36 *
(0.07)

0.03 71 −5.61
(0.19)

3.29 *
(0.05)

0.03 70

2
10.91
(0.35)

−2.46
(0.52) 0.01 71 −10.57 **

(0.04)
6.02 **
(0.03)

0.11 71 −5.54
(0.11)

3.29 **
(0.02)

0.08 71

3
10.37
(0.32)

−2.29
(0.52) 0.01 71 −10.29 **

(0.02)
5.64 ***
(0.01)

0.14 71 −5.37 *
(0.06)

2.95 ***
(0.01)

0.11 71

4
8.64

(0.38)
−1.44
(0.68) 0.005 71 −9.87 ***

(0.01)
5.44 ***
(0.004)

0.18 71 −4.89*
(0.08)

2.65 **
(0.02)

0.11 71

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
−1.58
(0.85)

2.69
(0.34) 0.01 71 13.62

(0.40)
−4.86
(0.43) 0.01 71 −18.45

(0.11)
7.06 *
(0.09)

0.10 25

2
−4.02
(0.57)

3.98
(0.10) 0.05 71 6.92

(0.65)
−1.14
(0.85) 0.001 71 −17.37 *

(0.09)
7.92 *
(0.05)

0.20 25

3
−5.57
(0.39)

4.38 **
(0.04)

0.10 70 1.89
(0.90)

0.97
(0.86) 0.001 71 −16.08 *

(0.09)
7.34 **
(0.04)

0.25 25

4
−6.05
(0.30)

4.60 **
(0.02)

0.14 71 −0.58
(0.97)

2.13
(0.69) 0.01 71 −15.39 *

(0.08)
7.45 **
(0.02)

0.33 25

Forecast
Horizon

Natural gas (1990:05–2003:12)

h C (Y30-Y3M) R2 N

1
10.84
(0.71)

−0.20
(0.98) 0.000 54

2
1.57

(0.95)
3.48

(0.67) 0.01 54

3
−3.79
(0.87)

5.79
(0.43) 0.02 54

4
−6.18
(0.75)

7.15
(0.24) 0.06 54

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
5.77

(0.75)
−1.43
(0.82) 0.0004 68 17.50 *

(0.09)
−3.79
(0.42) 0.01 68 16.24 ***

(0.01)
−3.14
(0.18) 0.03 68

2
5.29

(0.73)
−1.57
(0.78) 0.001 67 18.60 **

(0.04)
−4.66
(0.28) 0.02 67 16.74 ***

(0.003)
−3.30
(0.16) 0.05 67

3
3.24

(0.82)
−0.89
(0.87) 0.001 66 15.15 *

(0.07)
−3.26
(0.42) 0.02 66 16.34 ***

(0.002)
−3.05
(0.16) 0.06 66

4
−1.50
(0.91)

0.41
(0.93) 0.0002 65 11.55

(0.15)
−2.02
(0.60) 0.01 65 16.08 ***

(0.001)
−2.98
(0.13) 0.07 65
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Table 8. Cont.

Panel C

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N C (Y30-Y3M) R2 N

1
11.93
(0.14)

−4.47
(0.21) 0.01 68 27.18 ***

(0.01)
−5.38
(0.33) 0.01 68 12.91

(0.54)
−2.90
(0.67) 0.004 68

2
12.74
(0.11)

−5.13
(0.16) 0.04 67 28.83 ***

(0.003)
−6.52
(0.22) 0.03 67 6.80

(0.73)
−0.66
(0.92) 0.0004 67

3
9.95

(0.16)
−3.96
(0.19) 0.04 66 24.38 ***

(0.01)
−4.56
(0.34) 0.03 66 1.45

(0.94)
1.52

(0.79) 0.003 66

4
7.52

(0.27)
−3.09
(0.24) 0.04 65 21.37 **

(0.04)
−3.16
(0.47) 0.02 65 −2.77

(0.88)
3.11

(0.55) 0.02 65

Forecast
Horizon

Natural gas (2004:01–2020:12)

h C (Y30-Y3M) R2 N

1
−1.68
(0.92)

−1.37
(0.81) 0.000 68

2
1.87

(0.91)
−2.89
(0.61) 0.004 67

3
1.14

(0.93)
−3.01
(0.55) 0.01 66

4
−1.64
(0.89)

−2.16
(0.62) 0.01 65

Notes: The forecast horizon (h) is in quarters. Y30-Y3M denotes the yield spread calculated as the difference between the yield rates on
10-year and 3-month government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 9. Estimation results of Equation (1) with the Y30-Y1 indicator. Panel A: entire sample. Panel C: sample period
2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
9.77

(0.28)
−2.90
(0.43) 0.002 139 1.75

(0.79)
1.55

(0.63) 0.002 139 3.58
(0.44)

0.74
(0.69) 0.001 138

2
7.95

(0.34)
−2.18
(0.52) 0.003 138 1.51

(0.81)
1.63

(0.59) 0.004 138 3.40
(0.45)

0.83
(0.65) 0.003 138

3
7.13

(0.36)
−1.90
(0.57) 0.004 137 0.45

(0.94)
1.98

(0.49) 0.01 137 3.09
(0.47)

0.86
(0.62) 0.005 137

4
4.93

(0.51)
−1.15
(0.72) 0.002 136 −0.66

(0.90)
2.37

(0.39) 0.02 136 3.07
(0.46)

0.78
(0.64) 0.01 136

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
3.68

(0.52)
−0.50
(0.84) 0.0002 139 17.84 *

(0.07)
−4.63
(0.32) 0.01 139 1.52

(0.91)
0.81

(0.87) 0.0004 93

2
3.41

(0.53)
−0.50
(0.84) 0.0005 138 16.10 *

(0.09)
−3.75
(0.40) 0.01 138 −1.001

(0.94)
2.08

(0.64) 0.005 92

3
2.09

(0.69)
−0.03
(0.99) 0.000 136 12.74

(0.18)
−2.18
(0.60) 0.01 137 −3.21

(0.80)
3.09

(0.45) 0.01 91

4
0.96

(0.84)
0.46

(0.83) 0.001 136 10.23
(0.27)

−0.85
(0.83) 0.001 136 −5.19

(0.66)
4.02

(0.28) 0.03 90
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Table 9. Cont.

Panel A

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural gas (1990:05–2020:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
−0.37
(0.98)

−0.20
(0.97) 0.000 62 −7.99

(0.70)
3.47

(0.61) 0.01 48 4.98
(0.73)

−1.52
(0.79) 0.0005 122

2
−1.43
(0.90)

−0.38
(0.94) 0.000 61 −10.36

(0.57)
4.21

(0.50) 0.02 47 2.60
(0.84)

−0.58
(0.91) 0.0001 121

3
−1.98
(0.83)

−0.36
(0.93) 0.0002 60 −14.18

(0.38)
5.35

(0.34) 0.04 46 0.99
(0.93)

−0.10
(0.98) 0.000 120

4
−4.89
(0.51)

0.41
(0.91) 0.000 59 −12.75

(0.04)
4.74

(0.39)
0.04 45 −1.07

(0.92)
0.85

(0.84) 0.001 119

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
13.74
(0.24)

−4.59
(0.30) 0.01 71 −8.56 *

(0.09)
5.60 **
(0.04)

0.04 71 −5.65
(0.16)

4.02 **
(0.03)

0.04 70

2
10.92
(0.30)

−2.99
(0.44) 0.01 71 −10.78 **

(0.03)
7.42 **
(0.02)

0.14 71 −6.00 *
(0.07)

4.26 ***
(0.005)

0.12 71

3
9.39

(0.32)
−2.20
(0.54) 0.01 71

−10.63
***

(0.01)

7.04 ***
(0.003)

0.19 71 −6.14 **
(0.03)

4.03 ***
(0.001)

0.17 71

4
7.91

(0.37)
−1.31
(0.71) 0.004 71

−10.29
***

(0.005)

6.85 ***
(0.001)

0.24 71 −5.87 **
(0.03)

3.79 ***
(0.001)

0.19 71

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
−0.97
(0.90)

2.89
(0.35) 0.01 71 15.75

(0.27)
−7.15
(0.30) 0.02 71 −17.19

(0.15)
7.11

(0.12) 0.09 25

2
−3.10
(0.65)

4.27
(0.12) 0.05 71 9.86

(0.48)
−3.11
(0.64) 0.01 71 −16.06

(0.12)
8.03 *
(0.07)

0.19 25

3
−4.49
(0.47)

4.66 *
(0.05)

0.10 70 5.65
(0.68)

−1.04
(0.86) 0.001 71 −15.05

(0.11)
7.54 **
(0.04)

0.24 25

4
−5.10
(0.36)

5.02 **
(0.02)

0.15 71 2.85
(0.83)

0.56
(0.92) 0.0004 71 −14.51*

(0.09)
7.75 **
(0.02)

0.32 25

Forecast
Horizon

Natural gas (1990:05–2003:12)

h C (Y30-Y1) R2 N

1
12.74
(0.62)

−1.23
(0.90) 0.0002 54

2
4.83

(0.83)
2.35

(0.77) 0.002 54

3
0.74

(0.97)
4.38

(0.54) 0.01 54

4
−1.10
(0.95)

5.68
(0.34) 0.03 54
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Table 9. Cont.

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
4.55

(0.79)
−0.99
(0.87) 0.0002 68 15.55

(0.13)
−3.23
(0.52) 0.01 68 15.62 ***

(0.01)
−3.15
(0.23) 0.02 68

2
3.67

(0.80)
−0.97
(0.86) 0.0004 67 17.50 *

(0.06)
−4.59
(0.33) 0.02 67 16.35 ***

(0.003)
−3.44
(0.18) 0.05 67

3
3.55

(0.79)
−1.12
(0.83) 0.001 66 15.24 *

(0.07)
−3.62
(0.41) 0.02 66 16.21 ***

(0.002)
−3.29
(0.17) 0.06 66

4
−0.10
(0.99)

−0.19
(0.97) 0.000 65 12.42

(0.12)
−2.61
(0.53) 0.02 65 16.13 ***

(0.001)
−3.29
(0.13) 0.08 65

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-Y1) R2 N C (Y30-Y1) R2 N C (Y30-Y1) R2 N

1
8.85

(0.27)
−3.45
(0.31) 0.01 68 22.91 **

(0.03)
−3.90
(0.48) 0.01 68 12.24

(0.55)
−2.86
(0.69) 0.004 68

2
10.67
(0.15)

−4.65
(0.18) 0.03 67 25.87 ***

(0.01)
−5.76
(0.28) 0.02 67 7.79

(0.69)
−1.18
(0.86) 0.001 67

3
9.57

(0.17)
−4.17
(0.18) 0.04 66 23.83 ***

(0.01)
−4.74
(0.33) 0.03 66 3.82

(0.84)
0.57

(0.93) 0.0004 66

4
7.76

(0.23)
−3.51
(0.19) 0.05 65 21.88 **

(0.03)
−3.70
(0.41) 0.02 65 0.47

(0.98)
1.92

(0.73) 0.01 65

Forecast
Horizon

Natural Gas (2004:01–2020:12)

h C (Y30-Y1) R2 N

1
−3.02
(0.86)

−0.87
(0.88) 0.0002 68

2
−0.63
(0.97)

−2.01
(0.71) 0.002 67

3
−0.26
(0.98)

−2.66
(0.59) 0.01 66

4
−2.82
(0.81)

−1.83
(0.68) 0.004 65

Notes: The forecast horizon (h) is in quarters. Y30-Y1 denotes the yield spread calculated as the difference between the yield rates on
10-year and 1-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 10. Estimation results of Equation (1) with the Y30-Y2 indicator. Panel A: entire sample. Panel B: sample period
1986–2003. Panel C: sample period 2004–2020.

Panel A

Forecast
Horizon

Oil (1986:01–2020:12) Silver (1986:01–2020:12) Gold (1986:01–2020:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
10.05
(0.24)

−3.63
(0.37) 0.003 139 0.99

(0.87)
2.32

(0.53) 0.003 139 2.96
(0.50)

1.28
(0.55) 0.003 138

2
7.63

(0.33)
−2.40
(0.52) 0.003 138 0.94

(0.87)
2.30

(0.51) 0.01 138 2.85
(0.49)

1.33
(0.51) 0.01 138

3
6.90

(0.34)
−2.12
(0.56) 0.004 137 0.30

(0.96)
2.45

(0.46) 0.01 137 2.52
(0.53)

1.38
(0.47) 0.01 137

4
5.09

(0.46)
−1.47
(0.68) 0.003 136 −0.39

(0.94)
2.66

(0.40) 0.02 136 2.51
(0.51)

1.29
(0.48) 0.01 136
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Table 10. Cont.

Panel A

Forecast
Horizon

Platinum (1986:04–2020:12) Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
3.25

(0.56)
−0.33
(0.91) 0.000 139 16.08 *

(0.09)
−4.42
(0.40) 0.01 139 1.81

(0.89)
0.75

(0.89) 0.0003 93

2
3.20

(0.54)
−0.47
(0.87) 0.0003 138 15.32 *

(0.09)
−4.00
(0.42) 0.01 138 −0.29

(0.98)
1.95

(0.69) 0.003 92

3
2.49

(0.62)
−0.28
(0.92) 0.0002 136 13.01

(0.15)
−2.77
(0.55) 0.01 137 −2.13

(0.86)
2.90

(0.52) 0.01 91

4
1.64

(0.72)
0.12

(0.96) 0.0001 136 10.71
(0.23)

−1.32
(0.76) 0.002 136 −3.72

(0.75)
3.73

(0.36) 0.02 90

Forecast
Horizon

Ethanol (2005:06–2020:12) Coal (2009:01–2020:12) Natural Gas (1990:05–2020:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
−1.17
(0.94)

0.20
(0.98) 0.000 62 −7.47

(0.71)
3.59

(0.63) 0.01 48 6.34
(0.65)

−2.57
(0.68) 0.001 122

2
−2.25
(0.84)

0.01
(0.99) 0.000 61 −8.79

(0.64)
3.94

(0.58) 0.01 47 4.53
(0.72)

−1.80
(0.75) 0.001 121

3
−1.75
(0.85)

−0.51
(0.92) 0.0003 60 −12.05

(0.48)
4.97

(0.44) 0.03 46 3.33
(0.77)

−1.46
(0.78) 0.001 120

4
−4.24
(0.58)

0.12
(0.98) 0.000 59 −10.28

(0.54)
4.16

(0.52) 0.03 45 1.17
(0.91)

−0.28
(0.95) 0.000 119

Panel B

Forecast
Horizon

Oil (1986:01–2003:12) Silver (1986:01–2003:12) Gold (1986:01–2003:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
13.76
(0.20)

−6.08
(0.22) 0.01 71 −7.65

(0.11)
6.70 **
(0.04)

0.05 71 −5.00
(0.20)

4.81 **
(0.02)

0.04 70

2
10.50
(0.28)

−3.63
(0.41) 0.01 71 −9.78 **

(0.03)
9.03 ***
(0.01)

0.15 71 −5.45 *
(0.08)

5.21 ***
(0.002)

0.13 71

3
8.50

(0.33)
−2.22
(0.58) 0.01 71 −9.99 ***

(0.01)
8.81 ***
(0.001)

0.23 71 −5.83 **
(0.03)

5.09 ***
(0.0001)

0.21 71

4
6.63

(0.41)
−0.73
(0.86) 0.001 71 −9.64 ***

(0.01)
8.55 ***
(0.000)

0.29 71 −5.68 **
(0.02)

4.87 ***
(0.00)

0.23 71

Forecast
Horizon

Platinum (1986:04–2003:12) Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
−0.44
(0.95)

3.41
(0.37) 0.01 71 14.97

(0.25)
−8.85
(0.27) 0.02 71 −15.13

(0.20)
7.27

(0.16) 0.08 25

2
−2.22
(0.74)

4.96
(0.14) 0.06 71 10.69

(0.40)
−4.78
(0.54) 0.01 71 −14.62

(0.14)
8.84 *
(0.06)

0.19 25

3
−3.44
(0.57)

5.33 *
(0.07)

0.10 70 7.10
(0.56)

−2.52
(0.72) 0.005 71 −14.04

(0.12)
8.85 **
(0.02)

0.26 25

4
−3.99
(0.46)

5.77 **
(0.02)

0.14 71 4.21
(0.72)

−0.32
(0.96) 0.000 71 −13.54 *

(0.09)
8.84 ***
(0.004)

0.34 25
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Table 10. Cont.

Panel B

Forecast
Horizon

Natural Gas (1990:05–2003:12)

h C (Y30-Y2) R2 N

1
13.81
(0.55)

−2.31
(0.84) 0.001 54

2
8.26

(0.69)
0.71

(0.94) 0.0001 54

3
4.46

(0.81)
3.12

(0.69) 0.005 54

4
2.21

(0.89)
5.08

(0.43) 0.02 54

Panel C

Forecast
Horizon

Oil (2004:01–2020:12) Silver (2004:01–2020:12) Gold (2004:01–2020:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
4.49

(0.79)
−1.07
(0.87) 0.000 68 15.00

(0.17)
−3.28
(0.59) 0.004 68 15.76 ***

(0.01)
−3.55
(0.25) 0.02 68

2
2.74

(0.85)
−0.59
(0.92) 0.0001 67 17.44 *

(0.07)
−5.04
(0.36) 0.02 67 16.72 ***

(0.004)
−3.98
(0.18) 0.05 67

3
3.61

(0.78)
−1.27
(0.82) 0.001 66 16.49 *

(0.06)
−4.63
(0.37) 0.03 66 16.89 ***

(0.002)
−3.98
(0.15) 0.07 66

4
1.10

(0.93)
−0.82
(0.88) 0.001 65 14.29 *

(0.07)
−3.83
(0.42) 0.03 65 16.95 ***

(0.00)
−4.05
(0.11) 0.10 65

Forecast
Horizon

Platinum (2004:01–2020:12) Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-Y2) R2 N C (Y30-Y2) R2 N C (Y30-Y2) R2 N

1
7.76

(0.35)
−3.24
(0.37) 0.01 68 21.83 *

(0.05)
−3.74
(0.54) 0.004 68 13.28

(0.52)
−3.69
(0.64) 0.01 68

2
9.88

(0.19)
−4.73
(0.19) 0.02 67 25.47 ***

(0.01)
−6.15
(0.28) 0.02 67 9.62

(0.63)
−2.25
(0.76) 0.003 67

3
10.02
(0.16)

−4.84
(0.16) 0.04 66 25.20 ***

(0.01)
−5.94
(0.27) 0.03 66 6.23

(0.75)
−0.61
(0.93) 0.0003 66

4
8.70

(0.17)
−4.35
(0.14) 0.05 65 23.84 ***

(0.01)
−5.08
(0.29) 0.03 65 3.33

(0.86)
0.67

(0.92) 0.001 65

Forecast
Horizon

Natural Gas (2004:01–2020:12)

h C (Y30-Y2) R2 N

1
−3.61
(0.84)

−0.66
(0.92) 0.000 68

2
−1.65
(0.92)

−1.69
(0.78) 0.001 67

3
−0.53
(0.97)

−2.79
(0.62) 0.005 66

4
−3.15
(0.79)

−1.85
(0.71) 0.003 65

Notes: The forecast horizon (h) is in quarters. Y30-Y2 denotes the yield spread calculated as the difference between the yield rates on
10-year and 2-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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6.2. Commodity Prices following Periods of Non-Positive Yield Spreads

What happens to the price of commodities in the months following downward-sloped
or flat yield curves? To answer this question, we track the evolution in the price of
the sampled commodities throughout the sample period. The period between 1986 and
December 2020 witnessed eight periods during which the yield spread (10-year minus
1-year yields) was negative or equal to zero. The left-hand side of Table 11 lists the dates
when the yield spread became non-positive. For each commodity, we calculate the returns
accumulated 1, 2, 3, 4, 5 and 6 quarters following these non-positive yield spread periods.

Table 11. Commodity prices in the periods following non-positive yield spread. Panel A: oil. Panel B: silver. Panel C: gold.
Panel D: platinum. Panel E: palladium. Panel F: zinc. Panel G: ethanol. Panel H: coal. Panel I: natural gas.

Panel A

Periods Associated with
Non-Positive
Yield Spreads

Return
1Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

25/01/1989 30/06/1989 −0.69% 7.65% 0.05% −15.79% 82.98% 40.31%
04/08/1989 13/10/1989 10.72% −14.89% −12.11% 90% 47.34% 2.82%
17/03/2000 28/04/2000 9.48% 27.2% 12.9% 9.83% 4.97% −13.95%
27/12/2005 29/03/2006 10.64% −5.33% −8.13% −0.63% 6.37% 22.89%
05/06/2006 05/06/2007 15.42% 33.35% 59.3% 94.77% 61.91% −37.8%
20/07/2007 08/08/2007 32.31% 27.19% 71.43% 59.67% −15.4% −45.17%
23/05/2019 03/06/2019 1.3% 5.35% −11.4% −30.87% −22.31% −14.29%
05/08/2019 08/10/2019 13.26% −52.33% −22.29% −21.74%

Average 11.56% 3.52% 11.22% 23.15% 23.69% −6.46%

Panel B

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

25/01/1989 30/06/1989 3.01% 2.29% −3.39% −5.2% −8.63% −17.61%
04/08/1989 13/10/1989 4.82% −0.62% −4.51% −15.27% −17.18% −22.41%
17/03/2000 28/04/2000 0.81% −3.63% −2.76% −12.16% −15.28% −14.46%
27/12/2005 29/03/2006 −6.68% 4.22% 16.82% 20.47% 11.56% 25.71%
05/06/2006 05/06/2007 −11.74% 3.32% 49.76% 24.31% −11.35% −31.94%
20/07/2007 08/08/2007 17.81% 29.92% 27.52% 16.4% −24.35% −2.58%
23/05/2019 03/06/2019 29.44% 16.18% 16.21% 23.88% 81.38% 63.41%
05/08/2019 08/10/2019 2.64% −14.1% 7.8% 34.89%

Average 5.01% 4.7% 13.43% 10.92% 2.31% 0.02%

Panel C

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End
25/01/1989 30/06/1989 −2.68% 7.39% −1.88% −4.61% 2.46% 5.01%
04/08/1989 13/10/1989 14.15% 3.47% 0.66% 6.66% 10.54% −0.55%
17/03/2000 28/04/2000 1.09% −3.75% −4.33% −3.79% −2.66% 1.6%
27/12/2005 29/03/2006 2.72% 4.41% 11.29% 15.38% 13.54% 29.57%
05/06/2006 05/06/2007 2.2% 19.1% 47.63% 30.2% 19.3% 12.08%
20/07/2007 08/08/2007 24.17% 36.16% 30.78% 27.18% 8.85% 32.31%
23/05/2019 03/06/2019 17.15% 11.76% 24.32% 30.43% 45.93% 38.87%
05/08/2019 08/10/2019 4.21% 11.23% 21.6% 26.14%

Average 7.88% 11.22% 16.26% 15.95% 13.99% 16.98%
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Table 11. Cont.

Panel D

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

25/01/1989 30/06/1989 −0.42% −1.73% −4.32% −2.18% −13.93% −17.58%
04/08/1989 13/10/1989 3.49% −0.83% −0.99% −13.79% −13.63% −17.16%
17/03/2000 28/04/2000 13.43% 13.6% 19.99% 18.93% 1% −15.14%
27/12/2005 29/03/2006 11.96% 5.97% 5.79% 15.39% 18.77% 29.56%
05/06/2006 05/06/2007 −1.99% 13.05% 75.25% 54.95% 5.31% −39.39%
20/07/2007 08/08/2007 14.14% 45.92% 58.18% 20.8% −34.01% −22.86%
23/05/2019 03/06/2019 16.41% 11.05% 5.9% 5.82% 8.37% 26.52%
05/08/2019 08/10/2019 8.32% −17.59% −1.28% −3.06%

Average 8.17% 8.68% 19.82% 12.11% −4.02% −8.01%

Panel E

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

25/01/1989 30/06/1989 −8.94% −13.75% −17.41% −25.11% −38.73% −48.28%
04/08/1989 13/10/1989 −0.93% −6.91% −16.05% −32.23% −35.82% −29.44%
17/03/2000 28/04/2000 24.56% 21.82% 69.84% 10.91% −26.72% −44.09%
27/12/2005 29/03/2006 −6.35% −5.45% 1.15% 6.38% 10.12% 5.17%
05/06/2006 05/06/2007 −9.21% −4.44% 52.74% 15.44% −26.12% −55.75%
20/07/2007 08/08/2007 3.72% 21.13% 19.77% −9.12% −38.45% −43.44%
23/05/2019 03/06/2019 16.71% 39.16% 83.09% 48.74% 74.85% 75.24%
05/08/2019 08/10/2019 24.88% 26.93% 17.42% 45.57%

Average 5.55% 9.81% 26.32% 7.57% −11.55% −20.08%

Panel F

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

17/03/2000 28/04/2000 0.02% −9.09% −9.56% −17.29% −27% −34.66%
27/12/2005 29/03/2006 19.53% 27.26% 64.03% 24.16% 28% 17.24%
05/06/2006 05/06/2007 −25.82% −36.91% −26.28% −49.13% −54.42% −72.24%
20/07/2007 08/08/2007 −20.16% −30.17% −37.26% −52.14% −69.52% −66.48%
23/05/2019 03/06/2019 −14.05% −14.01% −23.99% −21.75% −3.41% 6.25%
05/08/2019 08/10/2019 4.25% −17.65% −8.67% 1.14%

Average −6.04% −13.43% −6.96% −19.17% −25.27% −29.98%

Panel G

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

27/12/2005 29/03/2006 35.07% −29.26% −0.08% −9.02% −21.84% −37.88%
05/06/2006 05/06/2007 −22.17% −7.31% 11.04% 10.47% 2.36% −34.06%
20/07/2007 08/08/2007 0.54% 14.36% 40.65% 10.57% −6.67% −12.47%
23/05/2019 03/06/2019 −12.49% −2.91% −16.66% −23.33% −9.78% −7.47%
05/08/2019 08/10/2019 −7.42% −38.07% −5.69% −3.26%

Average −1.29% −12.64% 5.85% −2.91% −8.98% −22.97%
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Table 11. Cont.

Panel H

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

23/05/2019 03/06/2019 −9.22% −7.99% −9.62% −24.16% −32.15% 0.41%
05/08/2019 08/10/2019 0.3% −6.35% −21.45% −13.3%

Average −4.46% −7.17% −15.54% −18.73% −32.15% 0.41%

Panel I

Periods Associated with
Non-Positive
Yield Spreads

Return
1 Q Later

Return
2 Qs. Later

Return
3Qs. Later

Return
4Qs. Later

Return
5Qs. Later

Return
6Qs. Later

Start End

17/03/2000 28/04/2000 22.41% 44.57% 100.35% 54.95% 0.83% 1.94%
27/12/2005 29/03/2006 −15.18% −22.3% −12.91% 5.2% −6.36% −5.02%
05/06/2006 05/06/2007 −28.01% −10.9% 20.8% 55.25% −7.63% −28.79%
20/07/2007 08/08/2007 24% 33.46% 81.08% 32.6% 8.63% −22.72%
23/05/2019 03/06/2019 −1.87% 1.58% −25.09% −26.05% 3.5% 4.33%
05/08/2019 08/10/2019 −6.42% −22.07% −20.28% 14.82%

Average −0.85% 4.06% 23.99% 22.79% −0.21% −10.05%

Notes: the tables report the commodity returns accumulated after 1, 2, 3, 4, 5 and 6 quarters following downward-sloped or flat yield
curves.

Oil, silver, gold, platinum, palladium, and natural gas prices surged strongly in the
quarters following the periods associated with equality in long and short-term Treasury
yields. For example, tracking the prices of these commodities three quarters after an end in
the zero slope in the bond term structure reveals significant positive returns on average
(oil 11.22%; silver 13.43%; gold 16.26%; platinum 19.82%; palladium 26.32%; ethanol 5.85%;
natural gas 24%). In contrast, coal and zinc prices present a mixed and inconclusive picture
with a tendency to negative returns. This finding emphasizes that investors should note
that flat or downward-sloped yield curves seem to be reasonable points at which to take
long positions in several commodities that they plan to hold for a relatively long period of
time.

Our findings are even more pronounced if we consider the recent relatively flat
yield curve observed during the last week in February 2020 due to the outbreak of the
coronavirus. However, we did not include the findings in the table because the difference
between the 10-year and 1-year bond interest rates was 0.03% (0.0003). While quite small, it
is not a non-positive yield. In addition, prices recovered sharply after two to four quarters.
Nevertheless, the findings in Table A1 in the online Appendix A lend support to our
conjecture.

7. Conclusions

We investigated an important, yet barely discussed, issue: Can yield spreads forecast
future innovations in the commodity market? If so, is this long-term correlation stable over
time? Despite the extensive research linking economic real activity to lagged yield spreads,
the predictive ability of the yield curve has not been proven with regard to commodities
often used in as raw materials.

Our findings can be summarized as follows. First, the prediction ability of the yield
curve is evident mainly in the period before the financialization of commodities era, but is
absent between 2004 and 2020. Second, structural break tests confirm the changes in the
correlation between the six yield spreads proposed and future commodity prices. Third,
the findings of the dynamic conditional correlation confirm the time-varying nature of the
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yield spread in predicting the future evolution in commodity prices. One explanation might
be the increased flow of money into the commodity market and the increased correlation
between it and equity markets. These changes disconnected the prices of commodities
from the economic cycle.

The structural breaks and the fading correlation between the variables of interest are
critical for those involved in risk management and investment diversification. Furthermore,
our results may be useful for policy makers who must make decisions about policies
to target and control inflation. Future research can extend the standing literature by
addressing the interplay between the shape of the term structure and future evolution of
asset prices in the wake of pandemic outbreaks and the massive monetary intervention
conducted by central banks under severe economic conditions.
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Appendix A

Table A1. Evolution in the commodity prices following the relatively flat curve witnessed in February 2020.

Accumulated Returns after:

1 Month
2

Months
3

Months
4

Months
5

Months
6

Months
7

Months
8

Months
9

Months
10

Months

Oil −50.9% −66.1% −33.4% −22.4% −17.3% −13.1% −19.3% −22.7% −8.4% −1.6%
Silver −18.4% −16.1% −2.9% −1.6% 25.4% 44.4% 26.5% 34.2% 28.4% 42.6%
Gold −0.8% 4.7% 5.4% 7.0% 15.2% 16.1% 12.8% 15.5% 9.6% 14.5%

PLTNM −20.0% −17.0% −4.9% −13.9% 1.7% 0.2% −9.7% −6.4% 4.0% 11.9%
PLDM −14.0% −25.0% −25.3% −31.1% −13.4% −18.0% −16.6% −10.5% −11.5% −10.8%
Zinc −9.4% −7.1% −1.6% 1.3% 9.9% 22.2% 16.9% 25.4% 35.9% 41.7%

Ethanol −29.6% −27.5% −14.3% −12.0% −10.9% −0.4% 1.6% 21.5% 6.2% 2.3%
Coal −2.3% −10.0% −23.5% −21.6% −23.4% −26.7% −22.2% −14.6% −6.1% 17.8%

Nat.Gas −10.2% −5.5% −6.3% −19.8% −2.1% 34.8% 15.8% 63.7% 56.8% 46.2%

Notes: With the outbreak of the COVID−19 pandemic in February 2020, the U.S. 1-year yield was 1.43% while the 10-year was 1.46%. That
is, the yield spread was 0.03%. The table reports the evolution in the prices of commodities in the few months following this relatively flat
curve. Though we discuss one case, the overall picture is clear and shows that the current yield spread is a relatively good predictor of the
future evolution in commodity prices.

Table A2. Estimation results of model 5 with the Y10-Y3M indicator. Panel A: entire sample. Panel B: sample period
2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2020:12) Silver (1986:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
5.92 −0.79 −0.55 9.32 −14.07b 0.11 0.03 139 1.67 1.06 −0.85 −10.29 −4.90 0.06 −0.01 139

(0.45) (−0.12) (−0.08) (0.56) (−2.43) (1.08) (0.21) (0.28) (−0.21) (−1.04) (−1.44) (0.99)

2
7.33 −1.74 −5.23 2.47 −3.76 0.04 −0.01 138 3.12 1.40 −3.50 −6.35 −4.05c −0.05 0.02 138

(0.84) (−0.41) (−1.16) (0.22) (−0.99) (0.66) (0.58) (0.54) (−1.26) (−0.93) (−1.73) (−1.10)

3
4.84 −0.54 −5.93 −9.86 −5.02 −0.02 0.04 137 −0.37 2.76 −2.12 −8.83 −5.06a −0.03 0.05 137

(0.75) (−0.17) (−1.81) (−1.23) (−1.75) (−0.35) (−0.09) (1.32) (−0.96) (−1.64) (−2.62) (−0.77)

4
4.49 −1.48 −2.40 −5.33 6.23 −0.01 −0.01 136 0.69 2.56 −3.33c −0.55 −0.82 −0.04 0.02 136

(0.84) (−0.56) (−0.85) (−0.80) (1.17) (−0.25) (0.19) (1.42) (−1.71) (−0.12) (−0.23) (−1.38)
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Table A2. Cont.

Panel A

Forecast
Horizon Gold (1986:01–2020:12) Platinum (1986:04–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
3.73 0.54 1.61 −1.05 −2.52 0.01 −0.02 138 3.32 −0.56 −3.60 −8.25 −1.92 0.02 −0.02 139

(0.86) (0.26) (0.73) (−0.20) (−1.37) (0.45) (0.46) (−0.16) (−0.96) (−0.91) (−0.61) (0.4)

2
5.19c 0.43 −2.09 2.21 −1.25 −0.03 0.01 137 3.83 −0.31 −6.05b −5.14 0.50 −0.03 0.02 138
(1.76) (0.30) (−1.37) (0.60) (−0.97) (−1.14) (0.79) (−0.13) (−2.43) (−0.84) (0.24) (−0.87)

3
4.68c 0.33 −0.91 1.45 −1.05 −0.02 −0.01 136 0.63 1.01 −2.32 −7.80c −1.71 −0.04 0.02 137
(1.84) (0.27) (−0.71) (0.46) (−0.93) (−0.85) (0.17) (0.55) (−1.21) (−1.66) (−1.02) (−1.44)

4
5.25b 0.38 −1.91 3.31 −2.83 −0.02 0.01 135 1.19 0.56 −1.71 −0.17 4.16 −0.04c 0.02 136
(2.34) (0.34) (−1.61) (1.19) (−1.27) (−1.22) (0.38) (0.36) (−1.03) (−0.04) (1.34) (−1.8)

Forecast
Horizon Palladium (1986:04–2020:12) Zinc (1997:08–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
19.89c −6.40 −12.07b −7.36 8.63c 0.03 0.03 139 −1.27 0.56 −6.60 −15.05 0.07 0.17b 0.01 93
(1.94) (−1.29) (−2.27) (−0.57) (1.93) (0.37) (−0.13) (0.11) (−1.3) (−1.07) (0.02) (2.03)

2
16.52b −4.10 −7.36c −10.51 4.02 −0.05 0.02 138 −2.35 2.75 −2.46 −11.65 −0.71 0.03 −0.03 92
(2.16) (−1.11) (−1.87) (−1.1) (1.21) (−0.92) (−0.3) (0.7) (−0.61) (−1.05) (−0.23) (0.45)

3
11.65c −1.77 −0.97 −5.21 2.92 −0.03 −0.02 137 −6.15 5.27 −2.60 −5.86 −2.95 0.02 −0.01 91
(1.78) (−0.56) (−0.29) (−0.64) (1) (−0.69) (−0.91) (1.59) (−0.77) (−0.63) (−1.07) (0.43)

4
9.71c −1.60 0.49 −1.63 13.19b −0.03 0.01 136 −6.83 6.04b −1.16 7.09 3.45 0.02 0.01 90
(1.72) (−0.57) (0.16) (−0.23) (2.35) (−0.72) (−1.14) (2.05) (−0.37) (0.86) (0.57) (0.38)

Forecast
Horizon Ethanol (2005:06–2020:12) Coal (2009:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
−1.39 −0.65 3.71 47.44c −7.37 0.20 0.07 62 4.07 −0.18 −3.93 −14.93 9.82b −0.12 0.10 48

(−0.07) (−0.07) (0.35) (1.95) (−1.12) (1.35) (0.26) (−0.03) (−0.54) (−0.84) (2.45) (−1.11)

2
−5.25 −0.63 1.61 −2.20 −7.50c 0.13 0.02 61 −1.02 2.98 −5.38 −16.73 5.05c −0.20b 0.15 47

(−0.43) (−0.1) (0.25) (−0.15) (−1.85) (1.47) (−0.09) (0.55) (−1.02) (−1.29) (1.72) (−2.42)

3
−5.53 0.68 −0.35 −8.83 −5.12c 0.01 −0.03 60 −13.96 7.81 −1.61 −12.06 −1.60 −0.13c 0.07 46

(−0.63) (0.16) (−0.08) (−0.83) (−1.7) (0.12) (−1.34) (1.66) (−0.36) (−1.1) (−0.61) (−1.84)

4
−3.89 0.66 −3.32 2.19 0.06 −0.02 −0.07 59 −12.55 6.48 −1.08 −7.51 1.56 −0.06 −0.01 45

(−0.58) (0.2) (−0.87) (0.27) (0.01) (−0.33) (−1.3) (1.48) (−0.24) (−0.74) (0.23) (−0.93)

Forecast
Horizon Natural gas (1990:05–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
5.82 −3.09 15.11c 15.35 1.91 0.00 0.00 122

(0.36) (−0.4) (1.87) (0.74) (0.29) (−0.01)

2
−0.62 0.29 2.48 −14.15 −3.37 0.02 −0.03 121

(−0.06) (0.05) (0.45) (−1) (−0.73) (0.22)

3
−6.55 2.69 −0.25 −26.80b −5.08 0.06 0.02 120

(−0.75) (0.65) (−0.06) (−2.46) (−1.38) (0.85)

4
−5.93 1.55 1.67 −16.60c 12.51c 0.04 0.03 119

(−0.86) (0.47) (0.47) (−1.93) (1.85) (0.7)

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
−0.10 −0.53 0.86 16.77 −15.95b 0.17 0.04 68 11.98 −4.06 −2.96 −13.37 −4.65 0.11 −0.03 68
(0.00) (−0.05) (0.07) (0.61) (−2.11) (1.01) (0.86) (−0.6) (−0.4) (−0.77) (−0.98) (1.09)

2
3.69 −2.15 0.72 9.54 −5.95 0.08 −0.03 67 16.38c −4.37 −7.96 −11.18 −3.03 −0.06 0.06 67

(0.25) (−0.3) (0.09) (0.52) (−1.2) (0.73) (1.77) (−0.98) (−1.63) (−0.98) (−0.97) (−0.9)

3
−0.32 0.45 −6.34 −16.19 −6.44c −0.02 0.03 66 9.86 −1.47 −4.98 −11.62 −4.22 −0.03 0.05 66

(−0.03) (0.08) (−1.1) (−1.21) (−1.68) (−0.27) (1.29) (−0.4) (−1.26) (−1.27) (−1.6) (−0.54)

4
−0.25 −0.17 −1.22 −1.81 8.51 −0.03 −0.05 65 10.70c −0.62 −6.94c 3.41 −0.20 −0.06 0.03 65

(−0.03) (−0.04) (−0.24) (−0.17) (1.04) (−0.44) (1.7) (−0.21) (−1.98) (0.45) (−0.03) (−1.23)

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
13.40b −2.83 −0.20 3.97 −1.68 0.02 −0.03 68 7.99 −5.32 −5.15 0.76 −1.60 0.13 −0.02 68
(2.15) (−0.94) (−0.06) (0.51) (−0.79) (0.45) (0.66) (−0.9) (−0.79) (0.05) (−0.39) (1.41)

2
15.01a −2.91 −3.22 0.05 −0.50 −0.03 0.02 67 11.86 −5.76 −10.43b −1.19 1.81 −0.01 0.05 67
(3.24) (−1.31) (−1.31) (0.01) (−0.32) (−0.96) (1.44) (−1.45) (−2.4) (−0.12) (0.65) (−0.17)

3
14.24a −2.59 −1.62 1.16 −0.16 −0.02 −0.02 66 7.39 −3.57 −4.49 −9.43 −1.74 −0.05 0.05 66
(3.44) (−1.31) (−0.76) (0.23) (−0.11) (−0.67) (1.16) (−1.17) (−1.36) (−1.23) (−0.79) (−1.04)

4
15.03a −2.38 −2.94 5.51 −1.90 −0.03 0.06 65 7.35 −3.13 −3.70 2.13 2.23 −0.05 0.02 65
(4.32) (−1.42) (−1.52) (1.31) (−0.6) (−1.29) (1.43) (−1.26) (−1.29) (0.34) (0.47) (−1.31)
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Table A2. Cont.

Panel B

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
25.75 −8.22 −8.27 −5.39 6.03 0.15 −0.01 68 8.68 −4.06 −15.79b −15.38 2.54 0.22b 0.06 68
(1.66) (−1.09) (−0.99) (−0.28) (1.14) (1.26) (0.66) (−0.63) (−2.23) (−0.93) (0.56) (2.19)

2
29.00a −8.33 −8.79 −15.25 2.57 −0.06 0.03 67 5.83 −0.67 −6.85 −9.64 0.78 0.03 −0.05 67
(2.64) (−1.58) (−1.51) (−1.13) (0.69) (−0.73) (0.53) (−0.13) (−1.19) (−0.72) (0.21) (0.37)

3
23.67b −5.24 −2.35 −12.46 0.92 −0.07 −0.01 66 −0.61 3.31 −5.75 −3.17 −1.63 0.01 −0.04 66
(2.54) (−1.18) (−0.49) (−1.11) (0.29) (−1.06) (−0.06) (0.73) (−1.17) (−0.28) (−0.5) (0.13)

4
21.04a −3.07 −3.58 −4.10 1.08 −0.07 −0.02 65 −2.05 4.53 −2.82 10.35 3.08 0.00 −0.03 65
(2.65) (−0.8) (−0.81) (−0.43) (0.15) (−1.26) (−0.24) (1.12) (−0.6) (1.02) (0.4) (0)

Forecast
Horizon Natural gas (2004:01–2020:12)

h C (Y10-
Y3M)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
4.42 −5.06 17.53c 29.15 0.44 −0.03 −0.01 68

(0.23) (−0.54) (1.68) (1.2) (0.07) (−0.2)

2
1.56 −5.31 2.90 −6.76 −4.44 0.06 −0.05 67

(0.11) (−0.77) (0.38) (−0.38) (−0.92) (0.58)

3
−1.68 −4.13 −1.47 −18.22 −5.65 0.04 −0.01 66

(−0.15) (−0.75) (−0.25) (−1.32) (−1.43) (0.51)

4
−0.06 −5.29 −0.68 −10.39 11.01 0.03 −0.01 65

(−0.01) (−1.23) (−0.14) (−0.96) (1.35) (0.42)

Notes: The forecast horizon (h) is in quarters. Y10-Y3M denotes the yield spread calculated as the difference between the yield rates on
10-year and 3-month government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. a, b and c denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A3. Estimation results of Equation (1) with the Y10-Y1 indicator. Panel A: sample period 1986–2003. Panel B: sample
period 2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 10.68 −5.04 0.38 −2.13 10.18 0.04 −0.06 72 −12.36 10.33 **
(0.03)

0.09 −11.41 −3.41 0.06 0.02 72

2 9.29 −2.61 −9.56 *
(0.07)

−5.23 9.22 0.00 0.00 72 −10.04 *
(0.05)

8.40 ***
(0.01)

0.54 −6.30 −1.82 −0.01 0.05 72

3 7.75 −0.90 −5.37 −4.32 1.16 0.03 −0.03 72 −10.75 ***
(0.01)

8.55 ***
(0.00)

0.40 −9.64 *
(0.09)

−2.06 0.00 0.13 72

4 6.47 −0.83 −3.00 −7.62 1.38 0.04 −0.03 72 −10.23 ***
(0.00)

8.30 ***
(0.00)

−0.13 −7.98 *
(0.09)

−1.94 0.00 0.18 72

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −8.47 5.17 4.41 −10.64 3.55 0.01 0.03 70 −3.87 4.24 −1.97 −22.85 7.19 −0.07 0.05 72
2 −4.65 5.43 ***

(0.01)
−1.55 2.89 −4.56 −0.01 0.07 70 −4.31 4.94 *

(0.08)
−1.66 −14.42 **

(0.03)
3.87 −0.03 0.07 72

3
−4.99 *
(0.05)

4.71 ***
(0.00)

−0.59 0.26 −2.62 −0.01 0.09 70 −5.63 5.03 **
(0.02)

0.32 −10.42 *
(0.05)

6.87 −0.01 0.11 72

4
−5.03 **

(0.03)
4.71 ***
(0.00)

−0.98 −0.86 −3.38 −0.01 0.12 70 −5.16 5.25 ***
(0.01)

−0.22 −5.71 5.58 −0.02 0.11 72

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 11.59 −7.16 −14.61 *
(0.05)

−12.90 33.00 **
(0.04)

−0.09 0.08 72 −21.33 *
(0.06)

9.16 8.23 −25.35 11.31 0.03 0.10 26

2 7.05 −5.81 −3.70 −11.63 31.04 ***
(0.01)

−0.07 0.06 72 −16.97 **
(0.04)

7.48 6.01 −27.80 6.11 0.01 0.16 26

3 3.32 −4.93 3.38 −4.13 36.35 ***
(0.00)

−0.02 0.14 72 −15.35 **
(0.02)

7.55 **
(0.04)

3.84 −25.00 *
(0.09)

−0.50 0.08 0.23 26

4 1.79 −3.31 3.58 −4.30 30.21 ***
(0.00)

−0.02 0.11 72 −15.03 ***
(0.01)

8.66 ***
(0.01)

2.34 −12.80 3.54 0.09 0.28 26

Forecast
Horizon Natural gas (1990:05–2003:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 4.59 −4.38 18.18 −12.43 36.19 0.01 −0.04 55
2 −3.53 3.48 5.06 −33.81 22.93 −0.03 −0.03 55
3 −12.73 7.90 5.30 −49.78 ***

(0.00)
23.53 *
(0.09)

0.11 0.15 55

4 −9.98 8.53 4.29 −31.91 **
(0.02)

14.60 0.09 0.10 55
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Table A3. Cont.

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 0.01 −0.71 0.87 16.72 −15.96 **
(0.04)

0.17 0.04 67 13.07 −6.08 −2.52 −14.07 −4.75 0.08 −0.03 67

2 3.06 −2.22 0.81 9.33 −6.02 *
(0.09)

0.07 −0.03 66 15.64 *
(0.09)

−4.56 −7.99 −11.44 −3.10 −0.06 0.06 66
3 2.19 −1.56 −6.05 −16.46 −6.38 −0.04 0.04 65 10.99 −2.58 −4.89 −11.82 −4.20 −0.04 0.06 65
4 1.64 −1.67 −1.05 −1.99 8.65 −0.04 −0.05 64 11.94 *

(0.05)
−1.64 −6.86 *

(0.06)
3.29 −0.10 −0.06 0.03 64

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1
12.91 **
(0.03)

−2.92 −0.23 3.82 −1.73 0.02 −0.03 67 6.12 −5.08 −5.07 0.34 −1.76 0.12 −0.03 67

2
14.64 ***

(0.00)
−3.10 −3.25 −0.10 −0.54 −0.03 0.02 66 9.76 −5.21 −10.51 **

(0.02)
−1.47 1.68 −0.01 0.04 66

3
14.14 ***

(0.00)
−2.91 −1.65 1.01 −0.19 −0.02 −0.02 65 7.63 −4.39 −4.44 −9.72 −1.78 −0.05 0.06 65

4
15.12 ***

(0.00)
−2.78 −2.98 5.36 −2.01 −0.03 0.07 64 7.83 −4.00 −3.69 1.85 2.06 −0.05 0.03 64

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1
24.57 *
(0.09)

−9.53 −7.76 −6.41 5.78 0.10 −0.02 67 9.45 −5.33 −15.72 **
(0.03)

−15.73 2.51 0.21 **
(0.04)

0.06 67

2
26.18 **
(0.02)

−7.80 −8.83 −15.73 2.36 −0.06 0.02 66 6.95 −1.46 −6.89 −9.66 0.83 0.03 −0.05 66

3
23.33 ***

(0.01)
−5.92 −2.31 −12.83 0.82 −0.07 −0.01 65 2.55 1.68 −5.68 −3.06 −1.41 0.01 −0.05 65

4
21.35 ***

(0.00)
−3.68 −3.65 −4.26 1.01 −0.07 −0.02 64 1.63 2.63 −2.57 10.56 3.89 −0.01 −0.05 64

Forecast
Horizon Natural Gas (2004:01–2020:12)

h C (Y10-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 1.86 −3.96 17.37 28.99 0.32 −0.02 −0.01 67
2 −0.63 −4.66 2.84 −7.03 −4.58 0.06 −0.05 66
3 −2.01 −4.66 −1.41 −18.54 −5.74 0.04 −0.01 65
4 −1.42 −5.19 −0.79 −10.76 10.45 0.03 −0.01 64

Notes: The forecast horizon (h) is in quarters. Y10-Y1 denotes the yield spread calculated as the difference between the yield rates on
10-year and 1-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A4. Estimation results of Equation (1) with the Y10-Y2 indicator. Panel A: sample period 1986–2003. Panel B: sample
period 2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 10.51 −6.94 0.47 −2.11 9.52 0.04 −0.06 72 −11.02 13.14 **
(0.02)

−0.01 −11.22 −1.76 0.06 0.03 72

2 8.54 −2.87 −9.57 *
(0.07)

−5.37 8.69 0.00 0.00 72 −9.15 *
(0.05)

10.90 ***
(0.00)

0.44 −6.19 −0.53 −0.01 0.07 72

3 6.92 −0.37 −5.42 −4.51 0.81 0.03 −0.03 72 −10.21 ***
(0.01)

11.50 ***
(0.00)

0.26 −9.61 *
(0.08)

−0.86 0.00 0.17 72

4 5.07 0.34 −3.11 −7.94 0.88 0.04 −0.03 72 −9.70***
(0.00)

11.15 ***
(0.00)

−0.26 −7.95 *
(0.08)

−0.77 0.00 0.23 72

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −8.04 6.88 *
(0.08)

4.32 −10.59 4.28 0.01 0.04 70 −3.70 5.81 −2.05 −22.86 **
(0.03)

7.76 −0.07 0.05 72

2 −4.12 7.13 ***
(0.00)

−1.63 2.96 −3.76 −0.01 0.09 70 −3.63 6.24 *
(0.07)

−1.71 −14.32 **
(0.03)

4.67 −0.03 0.07 72

3
−4.85 **

(0.03)
6.54 ***
(0.00)

−0.69 0.25 −2.02 −0.01 0.13 70 −5.00 6.41 **
(0.02)

0.27 −10.32 *
(0.05)

7.67 *
(0.07)

−0.01 0.12 72

4
−4.94 ***

(0.01)
6.59 ***
(0.00)

−1.08 −0.89 −2.80 −0.01 0.18 70 −4.48 6.69 ***
(0.01)

−0.27 −5.61 6.42 *
(0.09)

−0.02 0.12 72

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 9.00 −7.31 −14.69 −13.43 31.39 −0.09 0.07 72 −19.80 *
(0.06)

10.45 8.30 −24.92 12.87 0.03 0.10 26

2 6.24 −7.35 −3.65 −11.75 30.10 −0.07 0.06 72 −16.40 **
(0.04)

9.25 *
(0.08)

5.98 −27.08 7.58 0.00 0.17 26

3 2.72 −6.32 3.43 −4.21 35.57 −0.02 0.14 72 −14.85 **
(0.02)

9.42 **
(0.03)

3.79 −24.23 *
(0.09)

1.01 0.08 0.26 26

4 1.38 −4.23 3.61 −4.36 29.68 −0.02 0.11 72 −14.53 ***
(0.01)

10.91 ***
(0.00)

2.28 −11.87 5.29 0.08 0.33 26
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Table A4. Cont.

Panel A

Forecast
Horizon Natural Gas (1990:05–2003:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 4.28 −5.76 18.25 −12.59 35.60 0.01 −0.04 55
2 −0.05 1.51 5.22 −32.94 23.99 −0.04 −0.03 55
3 −8.32 6.74 5.43 −48.61 ***

(0.01)
25.29 *
(0.07)

0.10 0.13 55

4 −6.13 8.14 4.38 −30.86 **
(0.03)

16.34 0.08 0.08 55

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 0.64 −1.32 0.90 16.67 −15.94 **
(0.04)

0.17 0.04 67 12.44 −6.54 −2.47 −14.23 −4.82 0.08 −0.03 67

2 2.39 −2.04 0.81 9.29 −6.07 0.07 −0.03 66 15.43 *
(0.09)

−5.12 −7.94 −11.58 −3.15 −0.06 0.05 66

3 2.44 −2.01 −6.02 −16.53 −6.38 *
(0.09)

−0.04 0.04 65 12.12 −3.87 −4.83 −11.96 −4.17 −0.04 0.06 65

4 2.98 −2.99 −0.97 −2.09 8.80 −0.04 −0.05 64 13.44 **
(0.03)

−3.08 −6.78 *
(0.06)

3.18 0.08 −0.06 0.04 64

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1
12.82 **
(0.04)

−3.31 −0.20 3.73 −1.76 0.02 −0.03 67 4.78 −4.82 −5.04 0.25 −1.84 0.12 −0.03 67

2
14.76 ***

(0.00)
−3.68 −3.21 −0.21 −0.56 −0.03 0.02 66 8.53 −5.06 −10.48 **

(0.02)
−1.57 1.59 −0.01 0.04 66

3
14.61 ***

(0.00)
−3.74 −1.60 0.89 −0.20 −0.02 −0.01 65 7.96 −5.35 −4.37 −9.88 −1.82 −0.05 0.06 65

4
15.67 ***

(0.00)
−3.66 *
(0.09)

−2.93 5.24 −2.01 −0.03 0.08 64 8.58 *
(0.09)

−5.23 −3.62 1.69 2.05 −0.05 0.04 64

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 23.20 −9.94 −7.69 −6.65 5.65 0.10 −0.02 67 10.90 −7.32 −15.61 **
(0.03)

−15.98 2.51 0.21 **
(0.04)

0.06 67

2
25.65 **
(0.02)

−8.61 −8.75 −15.96 2.27 −0.06 0.02 66 9.24 −3.49 −6.80 −9.83 0.89 0.03 −0.05 66

3
24.84 ***

(0.01)
−8.04 −2.20 −13.10 0.83 −0.08 0.00 65 5.34 −0.22 −5.64 −3.14 −1.25 0.01 −0.05 65

4
23.42 ***

(0.00)
−5.90 −3.52 −4.47 1.21 −0.07 −0.01 64 4.68 0.63 −2.45 10.55 4.42 −0.01 −0.06 64

Forecast
Horizon Natural Gas (2004:01–2020:12)

h C (Y10-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 2.17 −4.83 17.42 28.85 0.30 −0.02 −0.01 67
2 −0.89 −5.19 2.89 −7.17 −4.63 0.06 −0.05 66
3 −1.55 −5.77 −1.34 −18.72 −5.77 0.04 −0.01 65
4 −1.25 −6.14 −0.74 −10.95 10.32 0.03 −0.01 64

Notes: The forecast horizon (h) is in quarters. Y10-Y2 denotes the yield spread calculated as the difference between the yield rates on
10-year and 2-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A5. Estimation results of Equation (1) with the Y30-Y3M indicator. Panel A: sample period 1986–2003. Panel B: sample
period 2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 12.77 −4.45 0.56 −1.91 11.52 0.04 −0.06 72 −13.32 7.41 **
(0.03)

−0.04 −11.21 −4.69 0.05 0.01 72

2 9.63 −1.93 −9.52 *
(0.07)

−5.25 9.60 0.00 0.00 72 −11.32 **
(0.04)

6.28 ***
(0.01)

0.39 −6.24 −3.08 −0.02 0.05 72

3 8.10 −0.78 −5.34 −4.29 1.39 0.03 −0.03 72 −12.25 ***
(0.01)

6.50 ***
(0.00)

0.24 −9.61 *
(0.09)

−3.43 −0.01 0.14 72

4 6.17 −0.41 −3.02 −7.71 1.32 0.04 −0.03 72 −11.34 ***
(0.00)

6.13 ***
(0.00)

−0.26 −7.89 *
(0.09)

−3.12 −0.01 0.17 72

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 −7.98 3.22 4.39 −10.34 3.31 0.01 0.02 70 −5.10 3.47 −2.09 −22.94 6.29 −0.07 0.05 72
2 −4.92 3.77 ***

(0.01)
−1.60 3.03 −5.13 −0.02 0.06 70 −5.62 3.98 *

(0.06)
−1.79 −14.49 **

(0.03)
2.88 −0.04 0.08 72

3
−5.12 *
(0.06)

3.22 ***
(0.01)

−0.63 0.41 −3.06 −0.02 0.07 70 −6.89 *
(0.08)

4.02 ***
(0.01)

0.20 −10.48 **
(0.04)

5.88 −0.01 0.12 72

4
−4.96 **

(0.04)
3.11 ***
(0.00)

−1.00 −0.68 −3.73 −0.01 0.09 70 −6.42 *
(0.07)

4.17 ***
(0.01)

−0.34 −5.76 4.59 −0.02 0.12 72
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Table A5. Cont.

Panel A

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 10.62 −4.30 −14.65 *
(0.05)

−13.36 33.17 **
(0.04)

−0.08 0.07 72 −21.63 *
(0.07)

6.28 7.90 −25.51 9.97 0.03 0.09 26

2 7.04 −3.89 −3.67 −11.85 31.52 ***
(0.01)

−0.07 0.06 72 −18.24 **
(0.04)

5.68 *
(0.09)

5.59 −27.52 5.02 0.01 0.17 26

3 3.00 −3.14 3.38 −4.38 36.62 ***
(0.00)

−0.01 0.13 72 −17.30 ***
(0.01)

6.09 **
(0.02)

3.31 −24.44 *
(0.09)

−1.61 0.08 0.27 26

4 0.66 −1.64 3.51 −4.65 29.98 ***
(0.00)

−0.02 0.11 72 −17.16 ***
(0.01)

6.94 ***
(0.00)

1.75 −12.20 2.27 0.09 0.34 26

Forecast
Horizon Natural Gas (1990:05–2003:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 7.71 −4.40 18.39 −11.95 37.52 0.01 −0.04 55
2 −3.67 2.41 5.02 −33.69 22.62 −0.03 −0.03 55
3 −14.50 6.16 5.13 −49.82 ***

(0.00)
22.36 0.10 0.15 55

4 −13.07 7.20 *
(0.07)

4.04 −32.21 **
(0.02)

12.97 0.09 0.11 55

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 −3.50 1.08 0.76 16.84 −16.06 **
(0.04)

0.17 0.04 67 15.85 −5.05 −2.31 −14.20 −4.77 0.08 −0.03 67

2 2.08 −0.98 0.81 9.35 −6.09 0.07 −0.03 66 17.66 *
(0.08)

−3.76 −7.83 −11.53 −3.12 −0.06 0.06 66

3 0.66 −0.34 −6.05 −16.43 −6.48 *
(0.09)

−0.04 0.04 65 13.20 −2.58 −4.77 −11.91 −4.17 −0.04 0.06 65

4 0.65 −0.63 −1.06 −1.98 8.48 −0.04 −0.05 64 13.85 *
(0.05)

−1.87 −6.70 *
(0.06)

3.26 0.23 −0.06 0.04 64

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
15.19 **
(0.03)

−2.83 −0.11 3.73 −1.71 0.02 −0.03 67 9.44 −4.65 −4.86 0.20 −1.75 0.12 −0.02 67

2
16.84 ***

(0.00)
−2.91 −3.12 −0.19 −0.52 −0.03 0.04 66 12.79 −4.61 −10.31 **

(0.02)
−1.60 1.68 −0.01 0.05 66

3
16.44 ***

(0.00)
−2.83 *
(0.08)

−1.52 0.92 −0.16 −0.02 0.01 65 9.74 −3.69 −4.28 −9.82 −1.80 −0.05 0.07 65

4
17.09 ***

(0.00)
−2.63 *
(0.05)

−2.79 5.32 −1.67 −0.03 0.09 64 9.50 *
(0.09)

−3.28 −3.48 1.81 2.35 −0.05 0.04 64

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1
29.84 *
(0.07)

−8.31 −7.40 −6.65 5.77 0.10 −0.01 67 8.58 −2.99 −15.64 **
(0.03)

−15.73 2.41 0.21 0.05 67

2
30.47 ***

(0.01)
−6.79 −8.53 −15.93 2.35 −0.06 0.03 66 5.39 −0.25 −6.91 −9.61 0.76 0.03 −0.05 66

3
26.31 ***

(0.01)
−5.03 −2.10 −12.97 0.81 −0.07 0.00 65 −0.13 2.21 −5.79 −2.97 −1.49 0.01 −0.04 65

4
22.79 ***

(0.01)
−2.97 −3.46 −4.30 1.26 −0.07 −0.02 64 −1.41 3.00 −2.82 10.61 3.38 −0.01 −0.04 64

Forecast
Horizon Natural gas (2004:01–2020:12))

h C (Y30-
M3)

ΔSP ΔEX ΔIP ΔEPU R2 N

1 0.34 −1.84 17.39 29.02 0.22 −0.02 −0.01 67
2 −1.16 −2.72 2.91 −7.04 −4.67 0.06 −0.06 66
3 −2.99 −2.55 −1.33 −18.55 −5.89 0.04 −0.01 65
4 −1.73 −3.17 −0.66 −10.78 10.40 0.03 −0.02 64

Notes: The forecast horizon (h) is in quarters. Y30-Y3M denotes the yield spread calculated as the difference between the yield rates on
10-year and 3-month government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.
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Table A6. Estimation results of Equation (1) with the Y30-Y1 indicator. Panel A: sample period 1986–2003. Panel B: sample
period 2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 11.73 −4.60 0.50 −1.93 10.11 0.04 −0.06 72 −13.51 *
(0.08)

8.82 ***
(0.01)

−0.08 −11.60 −2.95 0.06 0.03 72

2 9.08 −1.93 −9.55 *
(0.07)

−5.29 8.95 0.00 0.00 72 −11.34 **
(0.03)

7.39 ***
(0.00)

0.37 −6.54 −1.56 −0.01 0.08 72

3 7.17 −0.36 −5.41 −4.46 0.90 0.03 −0.03 72 −12.32 ***
(0.00)

7.68 ***
(0.00)

0.21 −9.93 *
(0.07)

−1.88 0.00 0.19 72

4 5.40 −0.01 −3.08 −7.86 0.97 0.04 −0.04 72 −11.52 ***
(0.00)

7.31 ***
(0.00)

−0.30 −8.22 *
(0.07)

−1.69 0.00 0.24 72

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −8.48 4.09 4.35 −10.60 3.93 0.01 0.03 70 −4.59 3.77 −2.06 −22.99 **
(0.03)

7.30 −0.07 0.06 72

2 −4.99 4.49 ***
(0.00)

−1.62 2.85 −4.25 −0.01 0.09 70 −4.77 4.17 *
(0.06)

−1.74 −14.49 **
(0.03)

4.12 −0.03 0.08 72

3
−5.71 **

(0.02)
4.16 ***
(0.00)

−0.69 0.14 −2.48 −0.01 0.13 70 −6.35 *
(0.08)

4.39 ***
(0.01)

0.22 −10.54 **
(0.04)

7.05
*

(0.09)
−0.01 0.13 72

4
−5.69

***
(0.01)

4.11 ***
(0.00)

−1.07 −0.97 −3.23 −0.01 0.16 70 −5.93 *
(0.07)

4.60 ***
(0.00)

−0.32 −5.85 5.76 −0.02 0.13 72

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 10.57 −5.02 −14.64 *
(0.05)

−13.17 32.11 **
(0.04)

−0.09 0.08 72 −21.84 *
(0.06)

6.90 8.09 −25.65 11.71 0.03 0.10 26

2 7.38 −4.78 −3.63 −11.59 30.69 ***
(0.01)

−0.07 0.07 72 −18.30 **
(0.03)

6.16 *
(0.08)

5.78 −27.69 6.57 0.00 0.18 26

3 3.17 −3.79 3.40 −4.19 35.91 ***
(0.00)

−0.02 0.14 72 −17.09 ***
(0.01)

6.44 **
(0.02)

3.55 −24.73 *
(0.08)

0.02 0.08 0.28 26

4 1.10 −2.19 3.55 −4.48 29.72 ***
(0.00)

−0.02 0.11 72 −17.03 ***
(0.00)

7.41 ***
(0.00)

2.01 −12.49 4.14 0.08 0.35 26

Forecast
Horizon Natural gas (1990:05–2003:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 6.68 −4.48 18.32 −12.18 36.38 0.01 −0.04 55
2 −1.62 1.67 5.15 −33.25 23.58 −0.04 −0.03 55
3 −11.31 5.34 5.33 −49.12 ***

(0.01)
24.34 *
(0.08)

0.10 0.14 55

4 −8.91 6.01 4.30 −31.30 **
(0.03)

15.38 0.09 0.09 55

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −3.42 1.15 0.77 16.91 −16.04 **
(0.04)

0.17 0.04 67 14.08 −4.73 −2.40 −14.42 −4.86 0.08 −0.03 67

2 0.85 −0.50 0.77 9.36 −6.13 0.07 −0.03 66 16.73 *
(0.09)

−3.71 −7.89 −11.72 −3.19 −0.06 0.06 66

3 1.44 −0.75 −6.04 −16.50 −6.46 *
(0.09)

−0.04 0.04 65 13.60 *
(0.09)

−3.04 −4.77 −12.10 −4.19 −0.03 0.06 65

4 1.53 −1.12 −1.02 −2.06 8.57 −0.04 −0.05 64 14.52 **
(0.03)

−2.39 −6.70 *
(0.06)

3.10 0.22 −0.06 0.04 64

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1
14.67 **
(0.03)

−2.87 −0.14 3.57 −1.76 0.02 −0.03 67 6.63 −3.78 −4.97 0.07 −1.86 0.12 −0.03 67

2
16.43 ***

(0.00)
−3.02 −3.15 −0.36 −0.57 −0.03 0.04 66 10.72 −4.10 −10.40 **

(0.02)
−1.77 1.58 −0.01 0.04 66

3
16.26 ***

(0.00)
−3.04 *
(0.07)

−1.54 0.74 −0.21 −0.02 0.01 65 9.37 −3.91 −4.31 −10.04 −1.87 −0.05 0.07 65

4
17.07 ***

(0.00)
−2.89 **

(0.04)
−2.83 5.14 −1.82 −0.03 0.10 64 9.44 *

(0.08)
−3.58 *
(0.09)

−3.53 1.58 2.15 −0.05 0.05 64

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 25.07 −6.88 −7.61 −6.89 5.57 0.11 −0.02 67 8.66 −3.34 −15.66 **
(0.03)

−15.93 2.38 0.21 **
(0.04)

0.05 67

2
27.23 **
(0.02)

−5.95 −8.68 −16.16 2.20 −0.06 0.02 66 6.70 −0.90 −6.87 −9.71 0.79 0.03 −0.05 66

3
25.42 ***

(0.01)
−5.14 −2.15 −13.24 0.70 −0.07 0.00 65 2.66 1.13 −5.71 −2.99 −1.35 0.01 −0.05 65

4
23.11 ***

(0.00)
−3.43 −3.49 −4.53 1.13 −0.07 −0.02 64 1.69 1.82 −2.61 10.69 4.00 −0.01 −0.05 64
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Table A6. Cont.

Panel B

Forecast
Horizon Natural gas (2004:01–2020:12))

h C (Y30-Y1) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −1.61 −1.10 17.31 29.03 0.16 −0.02 −0.01 67
2 −3.34 −1.97 2.82 −7.08 −4.75 0.06 −0.06 66
3 −3.84 −2.42 −1.37 −18.66 −5.96 0.04 −0.01 65
4 −3.23 −2.78 −0.79 −10.94 10.00 0.03 −0.02 64

Notes: The forecast horizon (h) is in quarters. Y30-Y1 denotes the yield spread calculated as the difference between the yield rates on
10-year and 1-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A7. Estimation results of Equation (1) with the Y30-Y2 indicator. Panel A: sample period 1986–2003. Panel B: sample
period 2004–2020.

Panel A

Forecast
Horizon Oil (1986:01–2003:12) Silver (1986:01–2003:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 11.32 −5.65 0.56 −1.99 9.36 0.04 −0.06 72 −11.97 *
(0.09)

10.26 ***
(0.01)

−0.13 −11.33 −1.33 0.06 0.04 72

2 8.40 −1.97 −9.57 *
(0.07)

−5.43 8.52 0.00 0.00 72 −10.23 **
(0.03)

8.73 ***
(0.00)

0.31 −6.35 −0.24 −0.01 0.09 72

3 6.51 0.05 −5.46 −4.60 0.70 0.03 −0.03 72 −11.45 ***
(0.00)

9.29 ***
(0.00)

0.12 −9.80 *
(0.07)

−0.58 0.00 0.22 72

4 4.35 0.81 −3.17 −8.10 0.73 0.04 −0.03 72 −10.68 ***
(0.00)

8.84 ***
(0.00)

−0.38 −8.09 *
(0.07)

−0.44 0.00 0.28 72

Forecast
Horizon Gold (1986:01–2003:12) Platinum (1986:04–2003:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −7.86 4.87 *
(0.09)

4.29 −10.48 4.62 0.01 0.03 70 −4.23 4.62 −2.11 −22.94 **
(0.03)

7.92 −0.07 0.06 72

2 −4.30 5.30 ***
(0.00)

−1.66 2.97 −3.45 −0.01 0.10 70 −4.00 4.81 *
(0.05)

−1.76 −14.35 **
(0.03)

4.89 −0.04 0.08 72

3
−5.34 **

(0.02)
5.13 ***
(0.00)

−0.75 0.19 −1.82 −0.01 0.16 70 −5.61 *
(0.09)

5.12 ***
(0.01)

0.19 −10.41 **
(0.04)

7.85
*

(0.06)
−0.01 0.13 72

4
−5.36

***
(0.00)

5.10 ***
(0.00)

−1.14 −0.92 −2.58 −0.01 0.21 70 −5.15 *
(0.09)

5.36 ***
(0.00)

−0.35 −5.71
6.60

*
(0.08)

−0.02 0.14 72

Forecast
Horizon Palladium (1986:04–2003:12) Zinc (1997:08–2003:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 8.32 −4.76
−14.73

**
(0.04)

−13.64 30.87 **
(0.04)

−0.08 0.07 72 −20.44 *
(0.07)

7.38 8.17 −25.51 12.79 0.03 0.09 26

2 6.49 −5.51 −3.60 −11.75 29.80 ***
(0.01)

−0.07 0.07 72 −17.71 **
(0.03)

7.05 *
(0.07) 5.76 −27.27 7.72 0.00 0.19 26

3 2.48 −4.39 3.43 −4.32 35.21 ***
(0.00)

−0.02 0.14 72 −16.55 ***
(0.01)

7.43 **
(0.02)

3.52 −24.26 *
(0.09)

1.24 0.08 0.30 26

4 0.64 −2.48 3.56 −4.56 29.30 ***
(0.00)

−0.02 0.11 72 −16.49 ***
(0.00)

8.59 ***
(0.00)

1.96 −11.91 5.56 0.08 0.39 26

Forecast
Horizon Natural Gas (1990:05–2003:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 6.22 −5.39 18.38 −12.43 35.71 0.01 −0.04 55
2 1.23 0.21 5.31 −32.64 24.24 −0.04 −0.03 55
3 −7.52 4.24 5.48 −48.20 ***

(0.01)
25.63 *
(0.07)

0.10 0.13 55

4 −5.53 5.36 4.41 −30.44 **
(0.03)

16.70 0.08 0.07 55

Panel B

Forecast
Horizon Oil (2004:01–2020:12) Silver (2004:01–2020:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −3.48 1.30 0.75 16.95 −16.03 **
(0.04)

0.17 0.04 67 13.47 −4.90 −2.36 −14.55 −4.93 0.08 −0.03 67

2 −0.15 −0.03 0.74 9.42 −6.15 0.07 −0.03 66 16.55 *
(0.09)

−4.01 −7.84 −11.85 −3.23 −0.06 0.06 66

3 1.47 −0.84 −6.02 −16.53 −6.47 *
(0.09)

−0.04 0.04 65 14.86 *
(0.07)

−4.02 −4.68 −12.32 −4.20 −0.03 0.07 65

4 2.57 −1.79 −0.95 −2.18 8.67 −0.04 −0.05 64 16.11 **
(0.02)

−3.48 −6.58 *
(0.06)

2.90 0.34 −0.06 0.05 64
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Table A7. Cont.

Panel B

Forecast
Horizon Gold (2004:01–2020:12) Platinum (2004:01–2020:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1
14.78 **
(0.03)

−3.23 −0.09 3.45 −1.79 0.02 −0.03 67 5.38 −3.52 −4.97 0.03 −1.93 0.12 −0.03 67

2
16.70 ***

(0.00)
−3.48 −3.10 −0.50 −0.60 −0.03 0.04 66 9.64 −3.96 −10.39 **

(0.02)
−1.84 1.51 −0.01 0.04 66

3
16.88 ***

(0.00)
−3.69 *
(0.05)

−1.48 0.58 −0.24 −0.02 0.02 65 9.76 −4.53 −4.24 −10.22 −1.92 −0.05 0.07 65

4
17.75 ***

(0.00)
−3.55 **

(0.03)
−2.76 4.97 −1.83 −0.03 0.11 64 10.18 *

(0.06)
−4.35 *
(0.07)

−3.45 1.39 2.12 −0.05 0.05 64

Forecast
Horizon Palladium (2004:01–2020:12) Zinc (2004:01–2020:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 23.62 −6.84 −7.57 −7.03 5.47 0.11 −0.03 67 9.55 −4.16 −15.58 **
(0.03)

−16.12 2.35 0.21 **
(0.04)

0.05 67

2
26.66 **
(0.03)

−6.28 −8.62 −16.34 2.11 −0.06 0.02 66 8.53 −1.96 −6.79 −9.89 0.81 0.04 −0.05 66

3
26.79 ***

(0.01)
−6.41 −2.03 −13.55 0.66 −0.07 0.01 65 5.05 0.00 −5.65 −3.13 −1.27 0.01 −0.05 65

4
24.98 ***

(0.00)
−4.78 −3.35 −4.79 1.26 −0.07 −0.01 64 4.33 0.61 −2.48 10.59 4.39 −0.01 −0.06 64

Forecast
Horizon Natural Gas (2004:01–2020:12)

h C (Y30-Y2) ΔSP ΔEX ΔIP ΔEPU R2 N

1 −2.07 −0.97 17.31 29.02 0.14 −0.02 −0.01 67
2 −4.18 −1.73 2.81 −7.08 −4.79 0.06 −0.06 66
3 −3.91 −2.64 −1.33 −18.75 −6.00 0.04 −0.01 65
4 −3.57 −2.90 −0.78 −11.03 9.87 0.03 −0.03 64

Notes: The forecast horizon (h) is in quarters. Y30-Y2 denotes the yield spread calculated as the difference between the yield rates on
10-year and 2-year government bonds. The table reports the estimation results of Equation (1) with the Newey and West (1987) procedure.
The sample period appears separately for each commodity. Figures in parentheses denote estimated standard errors. ***, ** and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Note

1 The conditional correlation between two random variables y1 and y2 is ρ12,t = Et−1(y1ty2t)/
√

Et−1(y2
1t)Et−1

(
y2

2t
)
. It is acceptable

to present returns as the conditional standard deviation times the standardized disturbance. yit =
√

hitεit. This is because
hit = Et−1

(
y2

it
)
. For each series i, εit is a standardized disturbance with a mean of zero and a variance of one. Accordingly, the

conditional correlation can be presented as ρ12,t = Et−1(ε1t ε2t)/
√

Et−1(ε
2
1t)Et−1

(
ε2

2t
)
= Et−1(ε1tε2t). Hence, the conditional

correlation is also the conditional covariance between the standardized disturbances. This is the spirit of the DCC method.
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