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Preface to ”Dedication to Professor Michael

Tribelsky: 50 Years in Physics”

Michael Tribelsky graduated from Lomonosov Moscow State University, USSR in 1973, defended

his Ph.D. thesis at the Moscow Institute of Physics and Technologies in 1976, and receive a second

Doctorate (habilitation, known as “Doctor of Physical-Mathematical Sciences”) from the Landau

Institute for Theoretical Physics in 1983. In 1979, at the age of 28, he received the highest USSR

national prize for junior scientists, the Lenin Komsomol Prize in Science and Technologies, for his

outstanding achievements in the study of optical damage to glass.

His first scientific paper (of which he was a single author) was published in 1971, when he still

was a student. The paper is devoted to the Gunn effect in semiconductors. It is worth mentioning

that, in this paper, he developed an original approximate method to solve the Schrödinger equation in

the vicinity of the ground state with complicated potential (the limit opposite to the WKB). Since then,

Prof. Tribelsky has made numerous fundamental contributions to an extremely broad area of physics

and mathematics, including (but not limited to) quantum solid-state physics, various problems of

light–matter interaction, liquid crystals, physical hydrodynamics, nonlinear waves, pattern formation

in nonequilibrium systems and transition to chaos, bifurcation and probability theory, and even a

prediction of the dynamics of actual market prices. He has published several fundamental papers,

which included the following results:

• The pioneering detailed study of the structure and stability of domain walls between various

nonequilibrium (dissipative) structures, such as grains of roll with different orientations in

Rayleigh–Bénard–Marangoni convection.

• The prediction of a new type of stable dissipative structure with quasicrystal symmetry and a

determination of the criteria for their stability.

• The discovery of the drift bifurcation transforming a steady dissipative pattern into a traveling

wave.

• The formulation of an approach to determine the height of the barrier separating various locally

stable solutions of the Ginzburg–Landau equation in the corresponding functional space and

calculating this barrier in the explicit form. This made it possible to determine the “stability

margin” of the corresponding solutions for finite-amplitude perturbations.

• A simple topological explanation of the nature of the violation of weak conservation laws, which

led to a “slip” in the phase of the complex-order parameter when its modulus vanishes, and

the prediction of the universality of the dynamics of the order parameter in the vicinity of the

phase-slip-points.

• In collaboration with I.M. Lifshitz, the formulation and solution of the problem of the

propagation of nonlinear elastic waves in metals near the point of the electron-topological phase

transition, which required the derivation of the nonlinear quantum elasticity theory equations.

• The prediction of a new and very unusual type of transition to turbulence analogous to

second-order phase transitions, when the turbulent state smoothly and directly detaches from

the rest state of a fluid (experimentally observed in the electroconvection of liquid crystals).

In the course of his work on light–matter interactions, Prof. Tribelsky’s contribution to the optical

breakdown of glass acquired special importance, as well as his explanation of the deep laser melting

of metals made shortly after the experimental discovery of the effect. Another noteworthy study

direction is represented by his work on the optical-thermodynamic phenomena in liquids, where a

ix



light beam is used as a tool to transfer liquid to a given point in the phase diagram. Finally, it is

worht mentioning the pioneering research of Prof. Tribelsky on the dynamics of thermochemical

instability in polymers. In his recent work, he focused on fundamentals of resonant light scattering

by subwavelength particles and made a significant contribution to the understanding of the physics

of the Fano resonances, anomalous scattering, and absorption, as well as the excitation of longitudinal

modes in subwavelength particles made of materials with a spatial dispersion. Last but not least, his

most recent results, devoted to the dynamic resonant scattering, should be mentioned, which opened

door to a new subfield in subwavelength optics.

We would like to stress that all his important (and often counterintuitive) theoretical predictions

have found solid experimental evidence. Most of these results remain highly relevant to the current

research in this vast area.

Professor Tribelsky’s accomplishments are highly appreciated by the international community.

The best indications of this are the high citation rates of his publications, and the numerous awards

and titles he has received. In particular, in addition to the aforementioned Lenin Komsomol Prize, he

received the Max Planck Society Fellowship many times to carry out research in Germany; the JSPS

Fellowship for Senior Scientists, to carry out research in Japan, Center of Excellency Professorship

from the University of Tokyo and Kyushu University, Japan; Honorary Doctor of Philosophy from

the Yamaguchi University, Japan; and numerous invitations for Visiting Professorships from the best

universities around the world.

We congratulate Michael on his double anniversary and wish him many happy, fruitful years

ahead, new fundamental discoveries, and talented disciples. We believe that this Special Issue

constitutes a timely celebration of our respected scholar, researcher, and friend. Furthermore, we hope

that this Special Issue inspires scholars, especially junior researchers, to continue these advancements

in physics.

Andrey Miroshnichenko, Boris Malomed, and Fernando Moreno

Editors

x



Brief Report

Spontaneous Curvature Induced Stretching-Bending Mode
Coupling in Membranes

Efim I. Kats

Citation: Kats, E.I. Spontaneous

Curvature Induced Stretching-

Bending Mode Coupling in

Membranes. Physics 2021, 3, 367–371.

https://doi.org/10.3390/

physics3020025

Received: 15 April 2021

Accepted: 10 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Landau Institute for Theoretical Physics, RAS, 142432 Chernogolovka, Moscow Region, Russia; kats@itp.ac.ru

Abstract: In this paper, a simple example to illustrate what is basically known from the Gauss’ times
interplay between geometry and mechanics in thin shells is presented. Specifically, the eigen-mode
spectrum in spontaneously curved (i.e., up-down asymmetric) extensible polymerized or elastic
membranes is studied. It is found that in the spontaneously curved crystalline membrane, the
flexural mode is coupled to the acoustic longitudinal mode, even in the harmonic approximation. If
the coupling (proportional to the membrane spontaneous curvature) is strong enough, the coupled
modes dispersions acquire the imaginary part, i.e., effective damping. The damping is not related
to the entropy production (dissipation); it comes from the redistribution of the energy between
the modes. The curvature-induced mode coupling makes the flexural mode more rigid, and the
acoustic mode becomes softer. As it concerns the transverse acoustical mode, it remains uncoupled
in the harmonic approximation, keeping its standard dispersion law. We anticipate that the basic
ideas inspiring this study can be applied to a large variety of interesting systems, ranging from still
fashionable graphene films, both in the freely suspended and on a substrate states, to the not yet fully
understood lipid membranes in the so-called gel and rippled phases.

Keywords: membranes; vibration modes

1. Introduction

It is my pleasure and honor to present my work in the Special Issue of journal of
Physics, dedicated to the 70th birthday of Prof. Mikhail Tribelsky. Many years ago, we
collaborated with Misha (as I became used to calling him), investigating phase transitions
in biaxial liquid crystals. Misha came up with the idea of our joint article and guided me
through the long process of writing. The paper I am presenting now (also from the realm
of soft matter physics) is a small token of my gratitude and respect to Misha Tribelsky.

The study is motivated by a recent influential paper [1], where the authors found
that even in the harmonic approximation, in-plane and out-of-plane vibrations of a low-
dimension (D = 1 , 2) elastic system can be coupled. The harmonic coupling in Ref. [1]
occurs if the stress-free state of the membrane is curved. Provided that the ”up-down”
symmetry of the system is not broken, the only way to couple the modes is related to
the Gaussian curvature, which is symmetric (even) with respect to “up-down” inversion;
for more details, see monographs and review [2–6] or original papers [7–10]. However,
in many realistic and experimentally relevant situations, the “up-down” symmetry is
spontaneously broken [3,5]. Moreover, it can be nonuniformly broken over the membrane
surface, e.g., due to asymmetric adsorption of different molecular species. In such a
situation, the up-down non-symmetric free energy in the harmonic approximation can
be written in terms of the scalar out-of-plane displacement f and the 2D vector u of the
in-plane displacements: [2,3,5]

Felastic =
∫

d2r

⎡⎣1
2

κ(∇2 f )2 + C0(r)∇2 f +
1
2

λu2
ii + μ

(
∂ui
∂xj

+
∂uj

∂xi

)2
⎤⎦ , (1)
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where κ is the bending (curvature) elastic modulus, the subscripts i and j take on the values
1, 2 for the Cartesian axis within the membrane plane (in the limit of small displacements,
the topological Gaussian curvature contribution is neglected here), μ and λ are the stretch-
ing Lame coefficients, and C0(r) is non-uniform over the membrane spontaneous curvature.
In the linear approximation, the only term allowed by symmetry is

C0 = γintdivu , (2)

where γint is the curvature-induced mode coupling coefficient.

2. Basic Derivation

With the free energy expansion (1) one can find the eigen-modes of the system. Since
the intent of this study is to investigate dynamic behavior of spontaneously curved mem-
branes, first of all, the free energy (1) has to be supplemented by the kinetic energy terms
related to the in-plane and out-of-plane displacements dynamics. As a result, one gets the
dynamic action,

S =
1
2

(
∂ f
∂t

)2
+

1
2

(
∂ui
∂t

)2
+ Felastic , (3)

where, for the sake of simplicity, the units with the mass density ρ = 1 are used, and t is
the time. Then, in the Fourier space, the corresponding Euler–Lagrange equations for the
coupled eigen-modes read:

ω2 f̃ − κq4 f̃ − iγintq2qiũi = 0 ,

ω2ũi − iγintqiq2 f̃ − μq2ũi − μqi(qjũj)− λqi(qmũm) = 0 , (4)

where f̃ and ũ are the Fourier transforms of the displacements

f (r, t) =
∫ d2q

(2π)2
dω

2π
exp(−iωt + iqr) f̃ (q, ω) ,

and similarly for the in-plane displacements ui.
From Equation (4), one can see that the out-of-plane displacement is coupled to the

only longitudinal component (with respect to the wave-vector) of the in-plane displace-
ments, similarly to the case of up-down symmetric crystalline membranes considered in
Ref. [11]. Therefore, it is convenient to express the in-plane displacements in terms of the
longitudinal, ul , and transverse, ut, components, namely,

ui = ul
qi
q
+ utεij

qj

q
, (5)

where εij = −εji is the antisymmetric second-rank tensor. Then, the equations of motion
can be rewritten as:

ω2 f̃ − κq4 f̃ − iγintq3ũl = 0 ,

ω2ũl − iγintqiq2 f̃ − (2μ + λ)q2ũl = 0 ,

ω2ũt − μq2ũt = 0 . (6)

3. Eigen-Modes in Spontaneously Curved Membranes

From Equation (6), one can see that the transverse acoustic mode, which is decoupled
from flexural mode in the harmonic approximation, has the standard dispersion law:

ω2
t = μq2 . (7)

2
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In the harmonic approximation, the dispersion laws for the two coupled (in the sponta-
neously curved membrane) longitudinal acoustic and flexural modes are:

ω2
1,2 =

κq4 + (λ + 2μ)q2

2
±
[(

κq4 − (λ + 2μ)q2

2

)2

− γ2
intκ

2q5

]1/2

. (8)

This expression is the main result of this paper and is ready for further inspection. From
Equation (8), one arrives at the two following conclusions.

• For the sufficiently strong spontaneous curvature-induced coupling, there is an inter-
val of the wave vectors,

(λ + 2μ)2

κ2γ2
int

< q <

√
λ + 2μ

κ
, (9)

where the coupled-modes dispersions acquire the imaginary part, i.e., effective damp-
ing. The damping is not related to the entropy production (dissipation), since there is
no any dissipative term in the action (3). The damping occurs from the redistribution
of the energy of the modes.

• In the limit of weak coupling,

γ2
intκ

2q5 <
(κq4 − μq2)2

4
, (10)

the coupled modes remain purely propagating, and their dispersion laws read:

ω2
1 = κq4 +

γ2
intκ

2

λ + 2μ
q3 , (11)

ω2
2 = (2μ + λ)q2 − γ2

intκ
2

(2μ + λ)
q3 . (12)

Therefore, the curvature-induced mode coupling makes the flexural mode more rigid,
and the acoustic mode becomes softer.

4. Outlook and Conclusions

To summarize, in this paper, the eigen-mode spectrum in spontaneously curved, i.e.,
up-down asymmetric, extensible polymerized or elastic membranes is calculated. It is
found that in the spontaneously-curved crystalline membrane, the flexural mode is coupled
to the acoustic longitudinal mode, even in the harmonic approximation. If the coupling,
being proportional to the membrane spontaneous curvature, is strong enough, the coupled-
mode’s dispersions acquire the imaginary part, i.e., effective damping. The damping is
not related to the entropy production (dissipation): it comes from the redistribution of the
energy of the modes. The curvature-induced mode coupling makes the flexural mode more
rigid, and the acoustic mode becomes softer. What concerns the transverse acoustical mode,
it remains uncoupled in the harmonic approximation, keeping its standard dispersion law.

Let us close with some conclusions about where the results presented here can be
applied. First, one may think about the famous graphene films [12–16] either on substrate
or freely suspended. In both cases, experimental observations suggest that the graphene
film becomes spontaneously corrugated. Although the main physical phenomena leading
to the graphene film corrugations are not yet fully understood (see, e.g., Refs. [17–19]), the
conclusion of the very existence of the corrugated state seems inescapable. The second
system one might have in mind is a rippled state of lipid membranes, below so-called main
phase transition [4–6]. The macroscopic structure and physical properties of the rippled
gel state are still debated in the literature; see, e.g., Refs. [20,21]. The simple calculations,
presented in this paper, are a step forward to check whether the state is liquid, liquid-

3
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crystalline (liquid layers), or crystalline (with a positional order within the layer). Analysis
of eigen-mode spectra provides a hint to disentangle both states.

It is worth noting that only the mean-field approximation was considered in this paper.
However, the membranes are effectively two-dimensional objects (on scales larger than
the membrane thickness). Therefore, thermal fluctuations can affect behavior, first of all,
renormalizing the membrane elastic moduli. This renormalization of the bending modulus
κ is well known for liquid-like membranes. It turns out that thermal fluctuations make
the liquid-like membrane softer, i.e., reduce the bending modulus [5,6]. For crystalline
membranes (see Refs. [9,10] and recent studies [22,23]), the bending modulus increases, i.e.,
the membrane becomes harder, whereas the stretching Lame coefficients μ and λ decrease.
Similarly, one can also find the fluctuation renormalization of the spontaneous curvature or,
in terms of this study, the curvature-induced mode coupling coefficient γint. The one-loop
approximation calculations [5,6] yield the following scaling law:

γint ∝ (3T/4πκ)−1/3 ,

with T being the temperature, i.e., thermal fluctuations decrease the curvature-induced
mode coupling. In this paper, only the surface of this reach subject is stratched. This study
deliberately focused on the most limited possible question, which can be answered by
calculations ”on a back of the envelope”. There is a plenty of work ahead.

Acknowledgments: I thank V.V. Lebedev for useful discussions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Kernes, J.; Levine, A.J. Effects of curvature on the propagation of undulatory waves in lower dimensional elastic materials.
Phys. Rev. E 2021, 103, 013002. [CrossRef] [PubMed]

2. Nelson, D.; Piran, T.; Weinberg, S. (Eds.) Statistical Mechanics of Membranes and Surfaces; World Scientific: Singapore, 1989.
[CrossRef]

3. Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2000. [CrossRef]
4. Bowick, M.J.; Travesset, A. The statistical mechanics of membranes. Phys. Rep. 2001, 344, 255–308. [CrossRef]
5. Safran, S.A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; CRC Press: Boca Raton, FL, USA, 2003. [CrossRef]
6. Kats, E.I.; Lebedev, V.V. Fluctuational Effects in the Dynamics of Liquid Crystals; Springer: New York, NY, USA, 1994. [CrossRef]
7. Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiment. Z. Naturforsch. 1973, 28, 693–703. [CrossRef]

[PubMed]
8. Seifert, U. Configurations of fluid membranes and vesicles. Adv. Phys. 1997, 46, 13–137. [CrossRef]
9. Nelson, D.R.; Peliti, L. Fluctuations in membranes with crystalline and hexatic order. J. Phys. France 1987, 48, 1085–1092.

[CrossRef]
10. Aronovitz, J.A.; Lubensky, T.C. Fluctuations of solid membranes. Phys. Rev. Lett. 1988, 60, 2634–2638. [CrossRef] [PubMed]
11. Kernes, J.; Levine, A.J. Geometrically-induced localization of flexural waves on thin warped physical membranes. arXiv 2020,

arXiv:2011.07152v1.
12. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in

atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef] [PubMed]
13. Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, V.V.; Geim, A.K. Two-dimensional atomic crystals.

Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [CrossRef] [PubMed]
14. Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009,

81, 109–161. [CrossRef]
15. Vozmediano, M.A.H.; Katsnelson, M.I.; Guinea, F. Gauge fields in graphene. Phys. Rep. 2010, 496, 109–152. [CrossRef]
16. Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [CrossRef] [PubMed]
17. Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861. [CrossRef]
18. Bao, W.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C.N. Controlled ripple texturing of suspended graphene and

ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566. [CrossRef] [PubMed]
19. Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and

applications. Mater. Today 2016, 19, 197–213. [CrossRef]
20. Raghunathan, V.A.; Katsaras, J. L′

β → Lc phase transition in phosphatidylcholine lipid bilayers: A disorder-order transition in
two dimensions. Phys. Rev. E 1996, 54, 4446–4449. [CrossRef] [PubMed]

21. Akabori, K.; Nagle, J.F. Structure of the DMPC lipid bilayer ripple phase. Soft Matter 2015, 11, 918–926. [CrossRef] [PubMed]

4



Physics 2021, 3

22. Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Los, J.H.; Mirlin, A.D. Stress-controlled Poisson ratio of a
crystalline membrane: Application to graphene. Phys. Rev. B 2018, 97, 125402. [CrossRef]

23. Saykin, D.R.; Kachorovskii, V.Y.; Burmistrov, I.S. Phase diagram of a flexible two-dimensional material. Phys. Rev. Res. 2020, 2,
043099. [CrossRef]

5





Citation: Komarova, N.L.;

Rodriguez-Brenes, I.A.; Wodarz, D.

Laws of Spatially Structured

Population Dynamics on a Lattice.

Physics 2022, 4, 812–832. https://

doi.org/10.3390/physics4030052

Received: 14 April 2022

Accepted: 14 June 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Perspective

Laws of Spatially Structured Population Dynamics on a Lattice

Natalia L. Komarova 1,*, Ignacio A. Rodriguez-Brenes 1 and Dominik Wodarz 1,2

1 Department of Mathematics, University of California Irvine, Irvine, CA 92617, USA;
ignacio.rodriguezbrenes@uci.edu (I.A.R.-B.); dwodarz@uci.edu (D.W.)

2 Department of Population Health and Disease Prevention, Program in Public Health Susan and Henry
Samueli College of Health Sciences, University of California Irvine, Irvine, CA 92697, USA

* Correspondence: komarova@uci.edu

Abstract: We consider spatial population dynamics on a lattice, following a type of a contact (birth–
death) stochastic process. We show that simple mathematical approximations for the density of cells
can be obtained in a variety of scenarios. In the case of a homogeneous cell population, we derive
the cellular density for a two-dimensional (2D) spatial lattice with an arbitrary number of neighbors,
including the von Neumann, Moore, and hexagonal lattice. We then turn our attention to evolution-
ary dynamics, where mutant cells of different properties can be generated. For disadvantageous
mutants, we derive an approximation for the equilibrium density representing the selection–mutation
balance. For neutral and advantageous mutants, we show that simple scaling (power) laws for the
numbers of mutants in expanding populations hold in 2D and 3D, under both flat (planar) and range
population expansion. These models have relevance for studies in ecology and evolutionary biology,
as well as biomedical applications including the dynamics of drug-resistant mutants in cancer and
bacterial biofilms.

Keywords: evolutionary dynamics; mutations; agent-based modeling; somatic evolution; computational
methods; mathematical modeling

1. Introduction

Before we begin describing some of our attempts to derive a number of mathematical
laws for biological population dynamics, one of the authors (N.L.K.) would like to express
her eternal gratitude to Michael Tribelsky, who was her teacher in the Physics Department,
Moscow State University, at the beginning of the 1990s. Without his advice and guidance,
N.L.K. would not be what she is now. Tribelsky’s relentless optimism (often disguised)
has taught her to overcome whatever difficulties life has posed. N.L.K. always follows
Tribelsky’s principle that problems (in life, as well as in science) must be addressed at the
same pace, and not faster, than they are thrown at you (“Проблемы нужно решать по
мере их поступления”). Tribelsky’s “special course”, delivered to the theoreticians from
the Low Temperature Division, opened up a universe of diverse phenomena that are, at
the same time, fascinating and amenable to understanding. He helped instill the sense of
wonder at the beauty of the surrounding world, and this has stayed with N.L.K. no matter
what subject matter she happened to focus on, from language evolution to virus dynamics.

Much has been said about the existence of laws in biology. Physicists in particular
often feel that some beautiful (and, hopefully, simple) formal relations must exist to help
us navigate the complexities of life. In this paper, we look for universal biological laws
in the area of population dynamics, which is an area relevant for studies in ecology and
evolutionary biology. A rich literature exists about the evolutionary dynamics of mutant
spread and invasion, investigating aspects such as fixation probabilities and fixation times
of different kinds of mutants in constant populations [1,2], as well as mutant dynamics in
growing populations [3–5], where mathematical approaches were motivated by the famous
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Luria–Delbruck experiments [6]. Traditionally, much of this work has focused on well-
mixed (non-spatial), homogeneous populations. In a wide array of biological scenarios,
however, cells and organisms evolve in more complex settings, such as in spatially struc-
tured habitats (bacterial biofilms, cells in tissues and tumors) and within heterogeneous
population structures (such as stem and more differentiated cells in tissues [7] or bacteria
with different degrees of specialization in biofilms [8,9]). In the last 15 years, theoretical
work has extended our understanding of mutant emergence in spatially structured popula-
tions [10–18]. An excess of mutational jackpot events was observed in spatial compared to
well-mixed systems; such events result from mutations arising at the surface of expanding,
spatially structured populations, surfing at the edge of range expansions, and appearing as
mutant “bubbles” or “slices”. These jackpot events have been implicated in the finding that
the average number of neutral mutants when the total population reaches a given threshold
size is significantly larger in spatial compared to non-spatial settings [18]. Further work by
our group [19] showed that the evolutionary dynamics of mutants in spatially structured,
expanding populations are characterized by additional complexities.

In general, spatial population dynamics are significantly more complex compared
to the mass-action dynamics, and analytical approximations are not easily derived. In
this paper, we describe two examples where our group has been successful in obtaining
analytical approximations for laws of spatial dynamics: (a) steady-state density in space;
(b) scaling laws for the number of mutants in expanding populations.

(a) Analytical approximations for steady-state density. In [20], we considered the
phenomenon of range expansion, the process in biology by which a species spreads to
new areas. We derived a numerical methodology that allowed for efficient computations
of the number of individuals as the species expands its range in space. In addition, we
found approximations for the steady-state density of populations, or the core density of
expanding colonies, in several cases, such as the von Neumann and Moore neighborhoods
on a square lattice and for a honeycomb neighborhood on a hexagonal lattice; see Table 1.
For the same death-to-birth ratio, the grid is more packed under the Moore neighborhood,
because of the availability of more neighbors per site. As a consequence, the equilibrium
density corresponding to the Moore neighborhood is higher and closer to that of mass-
action. A general formula that provides an approximation for the steady-state density as
a function of the number of neighbors is also given (Table 1). In this paper, we provide a
novel mathematical derivation of these laws, which generalizes to any neighborhood size
(Section 3).

Table 1. Steady-state densities for different types of lattices, as well as the mass-action system and a
generalized, Nb-neighbor system; see [20]. Here, δ = D/L, the division-to-death rate ratio. Red dots
denote the focal cell and the blue ones stand for its neighbors.

Lattice Geometry Density

von Neumann 3−4δ
3−δ

Moore 7−8δ
7−δ

Hexagonal 5−6δ
5−δ

Mass-action 1 − δ

Nb neighbors Nb−1−Nbδ
Nb−1−δ

8



Physics 2022, 4

(b) Laws of disadvantageous, neutral, and advantageous mutant spread in different
geometries. In [19], we studied the evolutionary dynamics of disadvantageous, neutral,
and advantageous mutants in spatially expanding populations, where the growing front
was characterized by different symmetries in two dimensions (2D) and 3D; see Table 2. In
particular, while disadvantageous mutants grow linearly with N (and differences among
different cases are more subtle), neutral mutants grow as a decreasing power of N as we go
from a 2D flat front (which is essentially a 1D growth), to a 2D and 3D range. There are
always fewer neutral or advantageous mutants in the mass-action (exponentially growing)
case compared to any spatially restricted growth. Here (Sections 4 and 5), we provide a
derivation of these laws, which follows [19].

Table 2. Mutant scaling laws for expanding populations; see [19]. Here, N is the population size, u is
the mutation rate, and α > 1. See text for details.

2D Flat 2D Range 3D Flat 3D Range Exponential

Mutant property

Disadvantageous uN uN uN uN uN

Neutral uN2 uN3/2 uN2 uN4/3 uN ln N

Advantageous uN3 uN2 uN4 uN2 uN(2α−1)/α

In the case of disadvantageous mutants, the number of mutants always scales with the
first power of N. In addition to this scaling law, for the case of disadvantageous mutants,
we also derive an approximate expression for the number of mutants in quasi-steady-state,
given that the number of wild-type cells is N:

# mutants =
DwLw(4D2

m + 3DmLw + DwLm)uN
Dm(4Dm + 3Lw)(DmLw − DwLm)

; (1)

see Section 4.1 for details and Section 2 for definitions (this expression is valid for a 2D von
Neumann grid, and can be generalized to other cases). We show that the proportion of
mutants at selection–mutation balance is higher for spatially distributed systems compared
to well-mixed systems at equilibrium.

2. General Setup and Agent-Based Modeling of Population Dynamics

In order to describe the spatial growth and turnover of cells, as well as the population
dynamics of species, we use a continuous-time Markov process, which is a generalization of
the usual birth–death process and a type of a contact process. We assume that individuals
of one or two different types exist, which we call “wild-type” and “mutant” individuals
(to reflect the versatility of these models, we use both “individuals” and “cells” to refer to
the biological agents under consideration). At the core of the description is a lattice that
specifies possible locations of cells. This can be viewed as a geometric network, where
each node is connected with its neighbors. The state space consists of different locations
of the cells of the two types on the lattice. Cells are characterized by division and death
rate parameters, which are denoted by Lw and Dw for the division and death rates of the
wild-type cells and Lm and Dm for division and death rates of mutants. In the case where
only one type of cell is considered, the notation is simply L and D for the two rates.

Each of the nodes can either be empty or contain one cell of either type. During an
infinitesimally small time increment, Δt, a given wild-type cell can attempt a division with
probability Lw and death with probability Dw. If division is attempted, then an offspring
is placed in one of the neighboring locations, chosen randomly and uniformly; division
only happens if the chosen node is empty. The offspring cell is wild-type with probability
1 − u and mutant with probability u, where 0 ≤ u < 1 is the mutation rate. Mutant cells
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divide and die according to similar rules, except in the models considered here, we always
assume that an offspring of a mutant cell is a mutant cell.

A number of biological phenomena can be studied by slight modifications of this pro-
cess. To study the growth laws in the absence [20] or presence [19] of mutants, we assume
an infinitely large grid. To study the quasi-steady-state (which describes, e.g., the turnover
of cells in homeostasis), we make the grid finite and impose relevant boundary conditions.

For numerical explorations of these processes, agent-based modeling (ABM) is often
used; see, e.g., [21–23]. For example, consider a two-dimensional ABM on a square grid
with individuals of two types. A spot on the grid can be empty or can contain a cell, which
is either wild-type or mutant. At each time step, the grid is randomly sampled N times,
where N is the total number of cells currently in the system. If the sampled cell is wild-type,
the cell attempts division (described below) with a probability proportional to Lw or dies
with a probability proportional to Dw. When reproduction is attempted, a target spot is
chosen randomly among the Nb nearest neighbors of the cell. A neighborhood may contain,
e.g., Nb = 4 cells (the von Neumann neighborhood) or Nb = 8 neighbors (the Moore
neighborhood). If that spot is empty, the offspring cell is placed there. If it is already filled,
the division event is aborted. (This modeling choice represents the assumption that the
probability of divisions is reduced under more crowded conditions. This is similar to the
logistic growth term often used in deterministic models.) The offspring cell is assigned
wild-type with probability 1 − u, and it is a mutant with probability u. If the sampled
spot contains a mutant cell, the same processes occur. Attempted division occurs with a
probability ∝ Lm, and the cell dies with a probability ∝ Dm. Initial and boundary conditions
are determined by the specific geometric setting investigated. For 2D spatial simulations,
an n × n square or an n × w rectangular domain could be considered. At the boundaries
of the domain, a spot is assumed to have fewer neighbors, i.e., more division events will
fail. The process starts with a single wild-type cell, placed, e.g., in the center of the grid.
Simulations always stop before the boundary of the grid is reached.

In what follows below, we derive some approximations of important observables
from these types of dynamics, which have a clear biological meaning. We discuss both
single-type populations and the co-dynamics of wild-type and mutant individuals.

3. Analytical Approximations for Steady-State Density (A Single Type)

In this Section, we consider populations consisting of only a single cell type with
division and death rates L and D < L and no mutations (u = 0).

Equilibrium Density in Space: An Analytical Method

The process of range expansion (colonization) is one of the basic types of biological
dynamics, whereby a species grows and spreads outwards, occupying new territories.
Spatial modeling of this process is naturally implemented as a stochastic ABM of the
type described above, with individuals (in this case, of only a single type) occupying
nodes on a rectangular grid, births and deaths occurring probabilistically, and individuals
only reproducing onto un-occupied neighboring spots. This approach is known to be
computationally expensive. In [20], we derived a set of efficient computational tools, which
were shown to be in good agreement with the underlying stochastic process of spatial
expansion. As part of the method development, we were able to obtain approximate
expressions for the quasi-steady-state (core) density of the individuals for different types of
grids. In [20], we provided the density formula for the contact process:

ρ =
Nb − 1 − Nbδ

Nb − 1 − δ
, (2)

where δ = D/L and Nb is the number of neighbors. Equation (2) was derived for several
cases of Nb, but no general derivation that would work for a given Nb was supplied. Here,
we present such a derivation, starting with Nb = 2 and generalizing to any Nb.

10
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In 1D, with only Nb = 2 neighbors, Equation (2) gives

ρ =
1 − 2δ

1 − δ
, (3)

which, although a slight overestimation of the density, provides a good approximation. To
derive this formula, consider a 1D ABM of the type described above. At the equilibrium,
denote by p1 the probability that a cell is located next to an existing cell and by p0 the
probability that a cell is located next to an existing empty spot. These two quantities can be
estimated numerically.

A 1D realization of the population at a fixed moment of time can be viewed as a
Markov chain with states {0, 1}, where state 0 corresponds to the absence of a cell at a given
spot and state 1 denotes the presence of a cell at a given spot. The transition probability
matrix is given by

P =

(
p1 1 − p1
p0 1 − p0

)
where P11 is the probability that there is a cell on the right of a cell, P12 is the probability
that the spot on the right of a cell is empty, P21 is the probability that there is a cell on the
right of an empty spot, and P22 is the probability that an empty spot is on the right of an
empty spot. The steady-state probability distribution of this process is (ρ, 1 − ρ), where
ρ is the probability that a given spot contains a cell. This can be found as the eigenvector
corresponding to the unit eigenvalue and is given by

ρ =
p0

1 − p1 + p0
. (4)

This quantity (given the numerically calculated p0 and p1) is a very good approxima-
tion of the actual (numerical) density. Another way to derive this connection between ρ
and p0, p1 is as follows:

ρ = ρp1 + (1 − ρ)p0, (5)

where the left-hand side is the probability to have a cell at a given point, the first term on
the right assumes that there is a cell to the left of that point (ρ) and, then, the given point
contains a cell with probability p1, and the second term on the right assumes that there is no
cell to the left of that point (1 − ρ) and, then the given point contains a cell with probability
p0. Solving this for ρ gives expression (4).

Now, suppose that a cell is located at a given location. Then, a cell is located to the
right of it (which we call the focal location) with probability p1. We have, after a single
update of the contact process:

p1 = (1 − p1)

(
L
2
+ p0

L
2

)
1
N

+ p1

(
1 − D

N

)
. (6)

The first term on the right assumes that there was no cell at the focal location (1 − p1),
but a cell on its left was chosen (probability 1/N) that divided to its right (L/2) or that
a cell on its right exists (probability p0), was chosen (1/N), and divided to its left (L/2).
The second term assumes that there was a cell at the focal location (p1) and it did not die
(1 − D/N). The equality follows from the assumption of having an equilibrium.

Similarly, we can assume that there is no cell at a given location, then to its right (the
focal location), the probability to have a cell, p0, satisfies:

p0 = (1 − p0)p0
L

2N
+ p0

(
1 − D

N

)
. (7)

The first term on the right assumes that there was no cell at the focal location (1 − p0),
but a cell on its right exists (probability p0), was chosen (1/N), and divided to its left (L/2).

11
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The second term assumes that there was a cell at the focal location (p0) and it did not die
(1 − D/N).

Solving Equations (6) and (7) for p0 and p1, we obtain:

p1 = 1 − D
L

, p0 = 1 − 2D
L

.

Substituting this into Equation (4), we obtain expression (3).
This analysis easily generalizes to other systems (including higher dimensionalities),

where the number of neighbors is given by Nb. Instead of Equations (6) and (7), we have

p1 = (1 − p1)

(
L

Nb
+

(Nb − 1)p0L
n

)
1
N

+ p1

(
1 − D

N

)
, (8)

p0 = (1 − p0)
(Nb − 1)p0L

NbN
+ p0

(
1 − D

N

)
. (9)

Solving this system, we obtain

p1 = 1 − D
L

, p0 = 1 − NbD
(Nb − 1)L

.

Substitution into Equation (4) (which holds in these systems because Equation (5)
remains valid in these systems) yields Equation (2).

Figure 1 plots the quasi-equilibrium density approximated by Equation (2) as a func-
tion of D/L for two finite values of Nb corresponding to the von Neumann and Moore
neighborhoods. Figure 1a compares them with the well-known mass-action result, show-
ing that higher connectivity of the underlying network corresponds to a higher density
of the cells. Figure 1b and Figure 1c compare the results with numerical simulations,
demonstrating that Equation (2) provides a very good approximation. We notice that the
approximation works better at higher densities, compared to lower ones. In the derivation,
we assumed that the state of a given position on the lattice only depends on its immediate
neighbor, and not on other, more distant, sites. This assumption becomes less valid at low
densities, because macroscopic structures with strong correlations over distances > 1 form.
Therefore, the approximation becomes worse as the death rate approaches the division rate.
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Figure 1. Quasi-equilibrium density of cells. (a) Equation (2), showing the equilibrium density
as a function of D/L for Nb = 4 (von Neumann lattice), Nb = 8 (Moore lattice), and Nb → ∞
(mass-action). (b) Comparison of Equation (2) (solid line) with numerically calculated density values
(dots) for Nb = 4. The dashed-dotted line represents a higher-order approximation; see [20] for
details. (c) Comparison of Equation (2) (solid line) with numerically calculated density values (dots)
for Nb = 8. See text for details.

4. Disadvantageous Mutants and Selection–Mutation Balance in Spatial Models

In the remainder of the paper, we consider two types of individuals, wild-type and
mutants. This Section deals with disadvantageous mutants (defined below), while Section 5
focuses on neutral and advantageous mutants. We start with an Ordinary Differential
Equation (ODE) formulation.

4.1. A Basic ODE Formulation

Let us denote the wild-type population as x(t) and the mutant population as y(t).
Suppose that mutations happen at the rate u, and Dw < Lw. Then, the competition
dynamics of cells in a mass-action system can be formulated as follows:

ẋ = Lwx(1 − u)
(

1 − x + y
K
)
− Dwx, (10)

ẏ = (Lwxu + Lmy)
(

1 − x + y
K
)
− Dmy, (11)

13
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where K is the carrying capacity. This system illustrates differences in the behavior of
advantageous and disadvantageous mutants. If

Dm

Dw
− Lm

Lw(1 − u)
< 0,

then the globally stable solution is x = 0, y = K(1 − Dm/Lm), that is the mutant excludes
the wild-type and takes over. In this case, we say that the mutant is advantageous. If the
inequality above is reversed, the mutants are disadvantageous and the so-called selection–
mutation balance is reached, where mutants and wild-type cells coexist. This happens
because the (stronger) wild-type cells produce mutants at a nonzero rate u, but the latter
cannot take over and remains at a fraction of the population. For simplicity, let us assume
that the mutation rate is low:

u � Dm

Dw
− Lm

Lw
≡ γ.

Then, we can say that the mutants are disadvantageous if

Dm

Dw
− Lm

Lw
> 0, (12)

and then, the equilibrium solution is given by

x̄ = K
(

1 − Dw

Lw

)
, (13)

where we neglected terms of the order u/γ, while the number of mutants is

ȳ = x̄u
(

Dm

Dw
− Lm

Lw

)−1
, (14)

where we neglected terms of the order (u/γ)2.
Below, we calculate the equilibrium densities of disadvantageous mutants and (advan-

tageous) wild-type cells in a spatially distributed system at steady-state. This will also corre-
spond to the densities in the core of an expanding system away from the advancing front.

4.2. A Spatial Description: Equations for the Densities

We restrict our description to a 2D square grid, with the von Neumann neighborhood
(that is, each location has four nearest neighbors); the methodology is generalizable to
the Moore neighborhood (eight neighbors). We use a method similar to that of [20]. Two
random variables describe the state of the stochastic system at each spatial location, x: ρx
describes wild-type cells, such that

ρx =

{
1, if a wild-type cell is at location x,
0, otherwise,

and ηx describes mutant cells, such that

ηx =

{
1, if a mutant cell is at location x,
0, otherwise.

Note that ρx and ηx cannot be equal to one simultaneously; an empty spot corresponds
to ρx = ηx = 0. We assume that wild-type cells have division and death rates Lw and Dw
and mutant cells have division and death rates Lm and Dm. Wild-type cells mutate with
probability u, and no back mutations are considered.

Denote the expectation of ρx and ηx by

〈ρx〉 = ρ, 〈ηx〉 = η,

14
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where we assumed that the expected values do not depend on spatial location, since we are
interested in spatially homogeneous equilibrium solutions. We have

ρ̇ =

〈
Lw

Nb
(1 − u)(1 − ρx)(1 − ηx)∑

k
ρ
(k)
x − Dwρx

〉
, (15)

η̇ =

〈
1

Nb
(1 − ρx)(1 − ηx)∑

k

(
Lwuρ

(k)
x + Lmη

(k)
x

)
− Dmηx

〉
, (16)

where the product (1− ρx)(1− ηx) is nonzero only if location x is empty, and the summation
goes over all the neighbors of point x, which reproduce into location x at rates Lw/Nb and
Lm/Nb if they are wild-type or mutant, respectively. The superscript in the notation ρ

(k)
x ,

η
(k)
x refers to the quantity at a location, k, neighboring the focal location, x.

Let us consider the von Neumann neighborhood (Nb = 4). In the right-hand side of
Equation (15), the terms are the summation having the form

〈(1 − ρx)(1 − ηx)ρ
(k)
x 〉 = 〈ρ(k)x 〉 − 〈ρxρ

(k)
x 〉 − 〈ρ(k)x ηx〉+ 〈ρ(k)x ρxηx〉 = ρ − W − I, (17)

and in Equation (16), there are also terms of the form

〈(1 − ρx)(1 − ηx)η
(k)
x 〉 = 〈η(k)

x 〉 − 〈ρxη
(k)
x 〉 − 〈η(k)

x ηx〉+ 〈η(k)
x ρxηx〉 = η − I − M. (18)

In the expressions above, we have 〈ρxρ
(k)
x η

(k)
x 〉 = 0, because either η

(k)
x or ρ

(k)
x is zero

at location x(k), and the three types of dyads are defined as follows:

• W = 〈ρxρ
(k)
x 〉 is the probability to have two wild-type cells at two neighboring locations;

• I = 〈ρxη
(k)
x 〉 is the probability to have a wild-type cell and a mutant at two neighboring

locations;
• M = 〈ηxη

(k)
x 〉 is the probability to have two mutant cells at two neighboring locations.

Figure 2a illustrates these three configurations. In terms of these correlations, Equa-
tions (15) and (16) can be rewritten as

ρ̇ = Lw(1 − u)(ρ − W − I)− Dwρ, (19)

η̇ = Lwu(ρ − W − I) + Lm(η − I − M)− Dmη. (20)

The correlations for the three dyads that appear in these equations require their own
equations to close the system. Let us derive an equation for W. We have

Ẇ =

〈
2(1 − ρx)(1 − ηx)ρ

(k)
x ∑

j
ρ
(j)
x

Lw

Nb
(1 − u)− 2DwW

〉
,

where we assume that one of the points in the dyad contains a wild-type cell (term ρ
(k)
x ),

while the other point is empty (term (1− ρx)(1− ηx)), and that one of its neighbors (location
x(j)) contains a wild-type cell, which reproduces faithfully into point x at rate Lw(1− u)/Nb.
Note that either of the two points could be empty, which results in the multiplier of two in
the first term on the right-hand side. Similarly, either of the dyad’s locations can experience
cell death, resulting in the negative rate 2Dw. In order to calculate the average, we need to
consider terms

〈(1 − ρx)(1 − ηx)ρ
(k)
x ρ

(j)
x 〉. (21)

Note that here and below, the operation of averaging makes the expression indepen-
dent of the actual location x. Further, the superscripts (k) and (j) do not refer to any specific
neighbor of x, but to any neighbor of x; in particular, location x(j) may be the same as or
different than location x(k). In the case when the two locations are different, the correlation
(21) is presented in Figure 2b, on the left.
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Figure 2. Steps in the derivation of equations for a two-component system of wild-type and mutant
cells. Blue circles denote wild-type, and purple denote mutant cells. (a) Three configurations, whose
correlations appear in Equations (19) and (20). (b) Three types of correlations needed for equations
for W, I, and M.

In the equations for Ṁ and İ, the following expressions appear in addition to
Equation (21):

〈(1 − ρx)(1 − ηx)ρ
(k)
x η

(j)
x 〉, 〈(1 − ρx)(1 − ηx)η

(k)
x η

(j)
x 〉.

These correlations are shown in Figure 2b, center and right. Therefore, denoting by a
and b either ρ or η, we evaluate the average of the form

〈(1 − ρx)(1 − ηx)a(k)x b(j)
x 〉, (22)

which corresponds to a dyad with one of the locations (location x) empty and the other
(location x(k)), containing type “a”, while a neighbor of x (location x(j)) contains type “b”.
First, let us assume that location x(j) is different from location x(k). Under von Neumann
neighborhoods, this implies that x(j) and x(k) are not each other’s neighbors because
on a square grid, there could not be a non-degenerate triangle with diameter 1 or less.
expression (22) is equal to

P(b(j)
x = 1|a(k)x = 1, ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0) ≈

P(b(j)
x = 1|ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0) = (23)

P(b(j)
x = 1, ρx = ηx = 0)P(a(k)x = 1, ρx = ηx = 0)

P(ρx = ηx = 0)

The expression in the denominator is calculated as follows:

P(ρx = ηx = 0) = 〈(1 − ρx)(1 − ηx)〉 = 〈1 − ρx − ηx + ρxηx〉 = 1 − ρ − η.

Depending on the types at location x, the expressions in the numerator of Equation (23)
can be of two types:

P(ρ(k)x = 1, ρx = ηx = 0) or P(η(k)
x = 1, ρx = ηx = 0),

and they are calculated in (17) and (18), respectively.
Next, we assume that location x(j) is the same as x(k). Then, if types “a” and “b” in

expression (22) are different, then we obtain 〈(1 − ρx)(1 − ηx)ρ
(k)
x η

(k)
x = 0. If the types are

the same, then we obtain expression (17) or (18). To summarize, expressions of type (22)
are given as follows:
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〈(1 − ρx)(1 − ηx)ρ
(k)
x ρ

(j)
x 〉 =

{
(ρ−W−I)2

1−ρ−η , x(j) �= x(k),
ρ − W − I, x(j) = x(k),

〈(1 − ρx)(1 − ηx)ρ
(k)
x η

(j)
x 〉 =

{
(ρ−W−I)(η−I−M)

1−ρ−η , x(j) �= x(k),
0, x(j) = x(k),

〈(1 − ρx)(1 − ηx)η
(k)
x η

(j)
x 〉 =

{
(η−I−M)2

1−ρ−η , x(j) �= x(k),
η − I − M, x(j) = x(k).

The equation for W is then given by

Ẇ =
Lw

2
(1 − u)

(
ρ − W − I +

3(ρ − W − I)2

1 − ρ − η

)
− 2DwW. (24)

Similarly, the other two equations can be derived:

İ =
3
4
[Lw(1 − u) + Lm]

(ρ − W − I)(η − I − M)

1 − ρ − η
+

Lwu
4

Lm

(
ρ − W − I +

3(ρ − W − I)2

1 − ρ − η

)
− (Dw + Dm)I, (25)

Ṁ =
3Lwu

2
(ρ − W − I)(η − I − M)

1 − ρ − η
+

Lm

2

(
η − I − M +

3(η − I − M)2

1 − ρ − η

)
− 2Dm M. (26)

The closed system of equations for ρ, η, W, I, and M is given by Equations (19), (20),
and (24)–(26).

4.3. Selection–Mutation Balance Solution

Solving these equations in the steady-state exactly is difficult, but if the mutation rate
u � 1, we can find the approximate solution. We start by setting u = 0 and obtaining the
steady-state solution. Apart from the trivial solution and a negative solution, there are two
symmetric solutions where only one type survives (competitive exclusion). We use the one
where the wild-type excludes mutants:

ρ(0) = 1 +
3Dw

Dw − 3Lw
, W(0) = 1 − 6Dw

Dw − 3Lw
− 4Dw

Lw
, η(0) = I(0) = M(0) = 0, (27)

where the superscript corresponds to the zeroth order in the expansion in terms of small u.
Note that, as expected, the expression for ρ(0) coincides with the one given in Table 1 for
von Neumann grid (Nb = 4). We then look for the first correction by substituting

ρ = ρ(0) + uρ(1), η = uη(1), W = W(0) + uW(1), I = uI(1), M = uM(1),

inserting in the system of five equations, keeping only the first order of expansion in u, and
solving for ρ(1), . . . , M(1). We obtain

η = η(1)u =
DwLw(4Dw − 3Lw)(4D2

m + 3DmLw + DwLm)u
Dm(Dw − 3Lw)(4Dm + 3Lw)(DmLw − DwLm)

. (28)

This is the equilibrium solution corresponding to mutation–selection balance in the
presence of spatial interactions. This approach is valid as long as the wild-type is advanta-
geous (inequality (12)). In the opposite scenario, this solution is unstable, and the system
converges to the mutants excluding the wild-type.
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Under selection–mutation balance, of interest is the equilibrium proportion of mutants
in the system given by

ν
eq
vN =

η(1)u
ρ(0)

=
DwLw(4D2

m + 3DmLw + DwLm)u
Dm(4Dm + 3Lw)(DmLw − DwLm)

. (29)

It is instructive to compare this quantity with the equilibrium proportion of mutants
in a mass-action system, ν

eq
m−a = ȳ/x̄, Equation (14):

ν
eq
m−a =

DwLwu
DmLw − DwLm

.

We have
ν

eq
vN

ν
eq
m−a

= 1 +
DwLw

Dm(4Dm + 3Lw)
> 1.

In other words, the relative contents of mutants (in proportion to the wild-types) are
higher in spatially distributed systems compared to mass-action systems at equilibrium.
This result resembles our recent analysis presented in [24], where we showed that the
mean number of disadvantageous mutants is higher in fragmented populations compared
to well-mixed populations. A comparison with non-equilibrium, growing, well-mixed
populations is presented in [19] and not discussed here.

4.4. Applications and Comparison with Computations

The result in Equation (29) is applicable to two relevant scenarios.

• Quasi-equilibrium density in finite populations. If simulations are continued until a
finite grid is filled, the population reaches a quasi-equilibrium state where wild-type
and disadvantageous mutant cells coexist. For a 2D square grid under a von Neumann
neighborhood, the density of the mutants is approximated by η in Equation (28), while
the density of wild-types is given by ρ(0), Equation (27). The total numbers of mutant
and wild-type cells are obtained by multiplying the quantities η and ρ(0) by the total
number of grid points, respectively. Note that this scenario is not interesting in the
case of advantageous or neutral mutants, as the entire population will eventually
consist of mutant cells.

• Number of mutants in spatially expanding populations. Simulating a growing pop-
ulation (on a large grid where the boundaries are not reached), we can ask how the
number of disadvantageous mutants scales with the total number of cells, N. Since
the core of the expanding colony is in quasi-equilibrium, Equation (29) shows that
the number of mutants grows as the first power of N. Results for the scaling laws for
neutral and advantageous mutants are discussed in the next Section.

The expected number of mutants predicted theoretically was compared with the
results of numerical simulations. This was done in the following way. At size N, the
number of mutants (in the von Neumann case) is predicted to be Nuν

eq
vN; see Equation (29).

Solving the equation Nuν
eq
vN=const, we can obtain the pairs (Lm, Dm) of mutant kinetic rates

corresponding to a predicted given number of mutants in a system of size N. Figure 3a
shows the predicted number of mutant as a contour plot. The closer to the “neutrality” line
(see inequality (12)), the larger the predicted number of mutants. The solution of equation
Nuν

eq
vN = const is shown in Figure 3b and for five points from the solution set, the predicted

number of mutants (given by Nuν
eq
vN = 10) is compared with the numerically obtained

mean (plotted together with the standard deviation, Figure 3c. We can see that for larger
mutant division rates, the deviation from the theory becomes significant. Figure 3d shows
a histogram of the numbers of mutants for the parameters corresponding to the fifth point.
One can see that the distribution has a long tail and a very large standard deviation. This is
the consequence of macroscopic structures (“slices”) that cannot be handled by the present,
local, method.
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Figure 3. The level of mutants in the spatial (von Neumann) system: analytical approximation and
numerical results. (a) The quantity Nuν

eq
vN is presented as a contour plot as a function of Lm and Dm,

for fixed values of Lw and Dw. Mutants are disadvantageous above the red line (inequality (12)).
The contours’ values are specified. (b) Solution Lm of equation Nuν

eq
vN = 10 as a function of Dm; the

5 points, used in panel (c), are marked in red and numbered. (c) The comparison of the predicted
number of mutants, Nuν

eq
vN = 10, (horizontal red line) and simulated number of mutants in the 5

parameter pairs from panel (b). Simulated means and standard deviations are shown (out of 2.5× 106

runs). (d) For the 5th parameter combination, the numerically obtained histogram of the number of
mutants is shown. The rest of the parameters are: u = 2 × 10−5, N = 105, Lw = 0.08, and Dw = 0.015.
See text for details.

5. Laws of Neutral and Advantageous Mutant Spread in Different Geometries

In the previous Section, we showed that (under the assumption of small mutation
rates) the number of disadvantageous mutants in a spatially growing population scales
with the total number of cells, as ∝ Nu. If cells are advantageous or disadvantageous, they
obey different scaling laws [19]. In this Section we present simple derivations for those
laws in different geometries.

5.1. Derivation of the Growth Laws

Below, we consider several scenarios that differ by the dimensionality of the grid (2D
or 3D) and by the direction of growth (planar growth vs. range expansion; see Table 2.

5.1.1. Two-Dimensional Flat Front

Let us first assume that the death rate of cells is equal to zero. Consider cells growing
along the surface of a cylinder of width W. This represents a one-directional growth
process, where during each generation, we assume that W new cells appear, and the the
total population is given by N = LW, where L represents the number of layers. The value
of L is proportional to the number of generations, and thus to the physical time, t:

L ∝ t.

The following calculation estimates the growth law of mutants. Every time a new
layer (of width W) is added, the mean number of new mutations is given by Wu. Suppose
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that mutants are neutral. Then, each such mutation will give rise to an array of daughter
mutant cells of width 1; see Figure 4. The length of this array is given by L− i, where i is
the layer at which the mutation occurred. Therefore, the total expected number of neutral
mutants is a cylinder of length L given by

Mneut
2D flat =

L
∑
i=1

Wu
L
∑

j=i+1
1 =

uWL(L− 1)
2

≈ uWL2

2
=

u
2W

N2, (30)

where we assumed L � 1. Note that in this derivation, we assumed that the number of
mutants is small compared to the total population, and individual mutant clones do not
interact. In a more precise calculation, the number of wild-type cells in each layer is smaller
than W because of the existence of mutants, and thus, the rate of new mutant production is
smaller than Wu. We, however, assume that uLW � 1, such that the number of mutants is
relatively small.

Note that the number of neutral mutants decreases with W; see Figure 5; the largest
number of mutants is achieved in the case of W = 1, a one-dimensional expanding array
of cells.

Figure 4. The conceptual model for mutant number calculations, the case of neutral mutants in a
colony growing along the surface of a cylinder (2D flat front). Red circles denote mutants and blue
circles wild-type cells.

Figure 5. The number of mutants during a 2D flat front expansion decays with the front width.
Equation (30) is presented with N = 10,000 and u = 5 × 10−5.

Next, let us consider advantageous mutants. In this case, each new mutant gives rise
to a triangular clone. In the first layer, the width of the clone is 1; in the next layer it is 1 + s;
in the kth layer, it is 1 + (k − 1)s, where parameter s ≥ 0 measures the advantage of the
mutants (with s = 0 corresponding to neutral mutants). Therefore, we have

20



Physics 2022, 4

Madv
2D flat =

L

∑
i=1

Wu
L
∑

j=i+1
(1 + (j − (i + 1))s) = uWL(L− 1)

(
1
2
+

s(L− 2)
6

)
(31)

≈ uWsL3

6
=

us
6W2 N3,

where for the approximation, we assumed that Ls � 1. Furthermore, for this simple
calculation to be valid, we need to assume that the wedges created by mutants do not come
close to the cylinder’s width, W, that is Ls � W. In particular, Equation (31) can be valid
for small values of W > 1, but only for mutants that are neutral for practical purposes
(s � 1).

Note that when N is fixed, the total number of cell divisions that the system has
undergone is also fixed. The number of mutants however is vastly different depending
on the spatial configuration. It is the highest for W = 1 (one row of cells) and decreases
drastically with the width of the cylinder. This is consistent with the notion that spatial
restrictions result in a heightened number of mutants, the 1D space (W = 1) being the most
spatially restrictive system. The reason for this is that in 1D, a mutant, once created, blocks
the whole range of expansion and prevents wild-type cells from reproducing. The wider
the front, the weaker this effect. Further, we note that in the special case where W = 1,
mutant advantage does not play a role, and the number of advantageous, neutral, and even
disadvantageous mutants is given by the same formula, Equation (30).

In the derivations above, a zero death rate of cells was assumed. This means that the
colony spreads as a solid mass, where all of the spots in the core are occupied. Including
a nonzero death rate does not change the geometric argument presented here, because
the only difference now is that the expanding population is “porous”, such that the same
number of cells occupies a larger number of spots on the grid. Therefore, adding a nonzero
death rate does not alter the scaling laws derived here and in the other cases. For this reason,
we present calculations assuming a zero death rate. Numerical calculations in Section 5.2
confirm that the scaling laws remain the same in the presence of nonzero death rates.

5.1.2. Two-Dimensional: Circular Range Expansion

Next, we turn to the dynamics of neutral mutants on a circle. Let us suppose that the
radius of the circle is R and N = πR2. The size of the colony increases via surface growth
with N ∝ t2 and

R ∝ t.

As the range expansion proceeds, the circular layer of radius r will on average give
rise to 2πru new mutations. Each mutation will result in a wedge expanding outwards.
If the new mutation occurred in the layer with radius r, the number of mutating cells in
layer r is 1. The number of mutants in the next layer is given by r+1

r , because under the
assumption of mutant neutrality, the fraction of mutants in each new layer of radius j > r
(with surface 2π j) should stay constant and equal to 1

2πr . For layer j, the number of mutants
is then given by j/r. This gives rise to the following calculation:

Mneut
2D range =

R

∑
r=1

2πru
R

∑
j=r+1

j
r
=

2
3

πR(R2 − 1)u ≈ 2πR3u
3

=
2u

3π1/2 N3/2

(the approximation is valid for R � 1).
For advantageous mutants in a growing 2D circle, the fraction of mutants will grow

with each layer:
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Madv
2D range =

R

∑
r=1

2πru
R

∑
j=r+1

(1 + (j − (r + 1))s)
j
r
= πR(R2 − 1)u

(
2
3
+

1
4

s(R − 2)
)

≈ πR4su
4

=
su
4π

N2, (32)

where we assumed Rs � 1. For this approximation to be valid, the mutant wedges should
not exceed the circumference of the colony. Strictly speaking, this results in the condition
Rs << 2πR, that is s � 1. For larger values of s, the events where the mutant covers the
whole surface of the colony are no longer negligible.

5.1.3. Three-Dimensional Flat Front

In a 3D space, let us first consider a solid cylinder of constant radius R0, where initially,
the cells are situated as a layer at the bottom of the cylinder and proceed to grow by adding
layers of size πR2

0. Each generation contributes πR2
0u new mutants, and as the colony

grows to length L (and volume 2πR2
0L), we have in the neutral case:

Mneut
3D flat =

L
∑
i=1

2πR2
0u

L
∑

j=i+1
1 = πR2

0uL(L− 1) ≈ πR2
0uL2 =

u
πR2

0
N2,

which is similar to the 2D flat front expansion. If the mutants are advantageous, then their
number will increase from layer to layer, giving rise to conical wedges. This gives rise to
the following calculation:

Madv
3D flat =

L
∑
i=1

2πR2
0u

L
∑

j=i+1
(1 + (j − (i + 1))s)2

=
L(L− 1)πR2

0u
6

[
(L2 − 3L+ 2)s2 + 4(L− 2)s + 6

]
≈ πR2

0s2uL4

6
=

s2u
6π3R6

0
N4,

where Ls � 1 for the approximation, and the approach is valid as long as the wedge radius
is smaller than that of the cylinder, sL � R0.

5.1.4. Three-Dimensional Range Expansion

Next, we consider a 3D expanding sphere. For a sphere of radius R, we have N = 4/3πR3,
and the surface is given by 4πR2. The size of the colony increases via 3D surface growth
with N ∝ t3. Each spherical layer of radius r will on average give rise to 4πr2u new
mutations. Each mutation will result in a conical wedge expanding outwards. If the new
mutation occurred in layer with radius r, the number of mutating cells in layer r is 1.
The number of mutants in a layer of radius j > r is given by (j/r)2, because under the
assumption of mutant neutrality, the fraction of mutants in each new layer should stay
constant (and equal to 1

4πr2 ). Therefore, we write:

Mneut
3D range =

R

∑
r=1

4πr2u
R

∑
j=r+1

(
j
r

)2
= πR(R2 − 1)(R + 2/3)u ≈ πR4u =

34/3u
π1/344/3 N4/3

(the approximation is again valid for R � 1).
If the mutant in a growing 3D sphere is advantageous, the fraction in each layer will

increase according to the fitness advantage s and stretch from layer to layer in the same
way as for the neutral mutants. We therefore have
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Madv
3D range =

R

∑
r=1

4πr2u
R

∑
j=r+1

(1 + (j − (r + 1))s)2
(

j
r

)2

=
πuR(R2 − 1)

90

[
(20R3 − 48R2 − 5R + 42)s2 + (72R2 − 90R − 108)s + 90R + 60

]
≈ 2

9
πs2uR6 =

s2u
8π

N2.

As before, the approximation holds if Rs � 1. The method assumes that the mutant
colony’s size in each layer does not come close to the surface area, which amounts to the
inequality s � 1.

5.1.5. Exponential (Non-Spatial, Mass-Action) Growth

Finally, for exponentially growing populations, similar formulas could be derived. In
particular, for neutral mutants, we have

Mneut
exp = Nu ln N,

and for advantageous mutants with advantage α (which is the ratio of the net growth rate
of mutants and the net growth rate of wild-type cells), we have

Madv
exp =

α

(α − 1)2
α−1

α

N
2α−1

α ;

see [25], Equation (14c); see also Equation (13) there for a more general formula.

5.2. Comparison with Numerical Simulations

We ran numerical simulations to check the results derived here. Figures 6 and 7, which
are described in detail below, illustrate the accuracy and applicability of the approximations
derived above. They contain colored lines, which are the results of the numerical simula-
tions, and black “guides for the eye”, which represent power-law functions characterized
by the powers predicted by the theory. The figures show that these scaling laws hold over
large intervals of N, the population size.

Table 3. Simulation parameters for Figure 6.

Curve Description Lw Lm Dw Dm

A Neutral, no death 0.7 0.7 0 0

B Neutral, with death 0.7 0.7 0.2 0.2

C Adv, no death 0.7 0.9 0 0

D Adv, no death, larger advantage 0.7 1.0 0 0

E Adv by division, with death 0.7 0.8 0.2 0.2

F Adv by death 0.7 0.7 0.2 0.1

G Adv by death, wider front 0.7 0.7 0.2 0.1
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Figure 6. Neutral and advantageous mutants in a 2D colony under (a) a flat front expansion and (b) a range
expansion. The number of mutants is plotted as a function of the total population, averaged over 1000 stochastic
runs (standard error is too small to see). Cases (A,B) are neutral, and the corresponding solid black lines are
guides to the eye, with (a) slope 2 and (b) slope 3/2 in the log–log plot. Cases (C–G) are advantageous, and the
dashed lines are guides to the eye with (a) slope 3 and (b) slope 2. Curves (A–G) are described in Table 3. The rest
of the parameters are u = 5 × 10−5, W = 100 (except G, where W = 1000).

Figure 6 shows results for the case of 2D systems, with flat front expansion presented
in Figure 6a and range expansion in Figure 6b. Plotted are the average numbers of mutants
(the vertical axis) measured at different population sizes, N (the horizontal axis). Different
curves correspond to different parameter values, summarized in Table 3.

To simulate flat front expansion (Figure 6a), ABM simulations were performed in
cylindrical geometry, with an n × W rectangular domain of width W. We started with
an array of W wild-type cells at the left boundary of the domain and imposed periodic
boundary conditions in the transversal direction. In each simulation, the cell population
was allowed to grow to a size N, and the number of mutant cells at this size was recorded.
Such simulations were performed repeatedly, and the average number of mutants was
calculated. Simulation runs, in which the total cell population went extinct due to stochastic
effects, were ignored.
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Figure 7. Mutants in the 3D expansion: the average number of mutants is plotted as a function of
the total population. (A) Neutral mutants in a range expansion, with the corresponding dotted gray
guide to the eye with slope 4/3 in the log–log plot. (B,C) Advantageous mutants in a range expansion,
and the solid lines are guides to the eye with slope 2. (D) Neutral mutants in a 3D flat front expansion,
and the solid guide to the eye has slope 2. (E,F) Advantageous mutants in a colony with a 3D flat
expansion; the dashed guides to the eye have slope 4. Curve parameters are given in Table 4.

Table 4. Simulation parameters for Figure 7.

Curve Description Lw Lm Dw Dm u

A Neutral, range 0.7 0.7 0.1 0.1 2 × 10−5

B, yellow Adv by division, range 0.4 0.8 0.1 0.1 2 × 10−5

B, red Adv by division, range 0.7 0.7 0.2 0.2 2 × 10−7

C Adv by death, range 0.7 0.7 0.2 0.1 2 × 10−7

D Neutral, flat 0.8 0.8 0.1 0.1 2 × 10−7

E Adv by division, flat 0.4 0.8 0.1 0.1 2 × 10−7

F Adv by death, flat 0.7 0.7 0.2 0.1 2 × 10−7

Curves (A) and (B) in Figure 6a represent neutral mutants in the absence (A) and
in the presence (B) of cell death. The black solid lines are guides for the eye with slope
2 in the log–log plot, representing the quadratic scaling law (see Table 2). Curves (C–G)
represent advantageous mutants, and the dashed lines are guides for the eye with slope 3
in the log–log plot, representing the cubic scaling law (see Table 2). The different cases of
advantageous mutants include systems with and without cell death, cases where mutants
are advantageous by divisions (that is, have a larger division rate and the same death rate,
compared with wild-type cells), and cases where mutants are advantageous by deaths (that
is, have a smaller death rate and the same division rate, compared with wild-type cells).
The cubic scaling law holds at least for part of the N values for all these cases; see [19] for
more details.

To simulate range expansion (Figure 6b), we performed simulation on a square grid,
starting with a single cell in the middle and letting the population expand outwards.
Simulations resulting in population extinction were discarded, and all simulations were
stopped before the boundary of the grid was reached. In Figure 6b, curves (A) and (B) again
represent neutral mutants without and with cell death (with solid guides to the eye having
slope 3/2). The rest of the curves again explore advantageous mutants under different
assumptions, with dashed guides for the eye having slope 2. In all cases, the scaling laws
in Table 2 are confirmed.
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Finally, Figure 7 demonstrates numerical results for 3D expanding colonies (with pa-
rameters listed in Table 4). The different cases considered include neutral and advantageous
mutants experiencing 3D flat and range expansion, with the advantage realized through
differences in division and death rates.

6. Conclusions

In this paper, we reviewed some recent results on the behavior of populations in lattice
models. Both homogeneous populations (that is, populations consisting of a single type
of individuals) and evolving populations (wild-type and mutants) were considered, and
some simple laws derived approximate population densities in different dimensionalities,
geometries of growth, and lattice types. The methodologies developed here can be extended
to other cases, for example Equation (1) of mutant density was derived for a 2D von
Neumann grid, but the methodology can be generalized, e.g., to the Moore lattice and also
to 3D systems.

Our results have further practical applications, for example for understanding the
dynamics of drug-resistant mutants in solid tumors [26] or the laws of evolution in bacterial
biofilms [27].

The laws described in this paper can be viewed as a way to reduce a complex (spatial,
stochastic) process to a small number of important observables, such as the mean equilib-
rium population density or the expected number of mutants. These quantities are shown
to obey some simple rules, which relate these observables to the microscopic (kinetic)
parameters of the cellular turnover and to system geometry. Having these simple rules
can be very useful, if one, for example, fits a stochastic agent-based modeling (ABM) to a
set of data: some parameters can be extracted by applying these laws and solving for the
unknown quantities.

Aspects of the theory presented here can be tested in biological experiments. Even
though lattice models present a certain simplification of reality, the scaling laws of mutant
growth (Table 2) are quite versatile, as they have been shown (numerically) to hold in mod-
els with different neighborhood structures and over a large variety of assumptions on cells’
kinetic parameters. While some of these laws were tested previously (see, e.g., [18]), others,
such as 3D flat and 3D range expansion laws, have not yet been confirmed experimentally.

Having simple laws that connect the macroscopic state with microscopic variables can
be useful in interpreting experimental results. The laws in Table 1 describe the equilibrium
density of populations of cells undergoing a turnover. By comparing the observed popu-
lation density in experiments with the theoretical predictions, one could simply deduce
the division-to-death ratio of cells growing in a given system. This can provide a useful
quantitative measure of cells’ state. In particular, the differences in cellular density can
inform one of the changes in kinetic parameters that arise as a consequence of changes
in the microenvironment. Examples of relevant experiments include investigations of the
effect of various drug treatments on the cellular turnover.

Finally, our techniques can be extended to describing more complex systems. One
potential application is deriving spatial laws of the microbial colony dynamics, such as
bacteria growing in a microfluidic trap [28–30]. Deriving rules of global dynamics of
microbial communities from local interaction rules is a task that is similar in spirit to the
efforts that were described in the present paper.
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Abstract: A condensed review is presented for two basic topics in the theory of pattern formation
in nonlinear dissipative media: (i) domain walls (DWs, alias grain boundaries), which appear as
transient layers between different states occupying semi-infinite regions, and (ii) two- and three-
dimensional (2D and 3D) quasiperiodic (QP) patterns, which are built as a superposition of plane–
wave modes with incommensurate spatial periodicities. These topics are selected for the present
review, dedicated to the 70th birthday of Professor Michael I. Tribelsky, due to the impact made
on them by papers of Prof. Tribelsky and his coauthors. Although some findings revealed in those
works may now seem “old”, they keep their significance as fundamentally important results in the
theory of nonlinear DW and QP patterns. Adding to the findings revealed in the original papers by
M.I. Tribelsky et al., the present review also reports several new analytical results, obtained as exact
solutions to systems of coupled real Ginzburg–Landau (GL) equations. These are a new solution for
symmetric DWs in the bimodal system including linear mixing between its components; a solution
for a strongly asymmetric DWs in the case when the diffusion (second-derivative) term is present
only in one GL equation; a solution for a system of three real GL equations, for the symmetric DW
with a trapped bright soliton in the third component; and an exact solution for DWs between counter-
propagating waves governed by the GL equations with group-velocity terms. The significance of the
“old” and new results, collected in this review, is enhanced by the fact that the systems of coupled
equations for two- and multicomponent order parameters, addressed in this review, apply equally
well to modeling thermal convection, multimode light propagation in nonlinear optics, and binary
Bose–Einstein condensates.

Keywords: Ginzburg-Landau equations; thermal convection; quasiperiodic patterns

1. Introduction

1.1. The Objective of This Paper

This text was written as a contribution for a festschrift devoted to the celebration of
fifty years of the work of Prof. Mikhail Tribelsky in theoretical physics (the name known as
Mikhail/Michael/Michel/Miguel/Michele/Michal/Mikael/Mikkel/Mitxel/. . . is considered
as the oldest masculine name used in modern languages; the meaning of its original form
in Hebrew is “Who (is) like El (God)?”, which implies a response “no one can be likened to
God”). Apart from his fundamental contributions to optics, especially to the theory of the
nonresonant light–matter interaction [1,2] and light scattering by small particles [2–7], an
essential topic in the works of Prof. Tribelsky is the theory of pattern formation in nonlinear
dissipative media. In particular, two important subjects considered in his publications are
domain walls (DWs, alias grain boundaries), i.e., stationary stripes separating two domains
which are filled by different stable patterns, and quasiperiodic (QP) patterns, alias dissipative
two-dimensional (2D) quasicrystals. It is relevant to mention that the fundamental papers of
Prof. Tribelsky on the former and latter topics, viz., Refs. [8,9], are, respectively, his second and
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sixth best-cited publications, according to the data provided by Web of Science. The objective
of this paper is to produce a condensed review of basic results reported in those older but still
significant works, and outline directions of subsequent work initiated by the results reported
in them. The review also includes some new exact analytical results for DWs, which offer a
natural extension of the analysis initiated in Ref. [8] (in a detailed form, the new results will
be reported elsewhere [10]). The presentation given in this review has a personal flavor, due
to the fact that the present author was Mikhail’s collaborator in projects which produced the
above-mentioned original publications.

In addition (Ref. [8]) it is relevant to mention a still earlier paper [11], where we
addressed a well-known model equation, which is usually called the real Ginzburg–Landau
(GL) equation (the name originates from the phenomenological theory of superconductivity
elaborated by Ginzburg and Landau 70 years ago [12]). The usual scaled form of the real
GL equation is as follows:

∂u
∂t

= u +
∂2u
∂x2 − |u|2u, (1)

where x and t are the spatial coordinate and time measured in scaled units.
In fact, the order parameter u(x, t) governed by Equation (1) is a complex function;

the equation is called “real” because its coefficients are real (therefore, by means of scaling,
all coefficients in Equation (1) are set to be ±1). The first, second, and third terms on the
right-hand side of Equation (1) represent, respectively, the linear gain, diffusion/viscosity
(dispersive linear loss), and nonlinear loss. The real GL equation is a universal model for
many nonlinear dissipative media, such as the Rayleigh–Bénard convective instability in a
shallow layer of a liquid heated from below [13] and instability of a plane laser evaporation
front [1].

Note that Equation (1) may be represented in the gradient form as follows:

∂u
∂t

= − δL
δu∗ , (2)

where δ/δu∗ stands for the functional (Freché) derivative, and

L =
∫ +∞

−∞

(
−|u|2 +

∣∣∣∣∂u
∂x

∣∣∣∣2 + 1
2
|u|4
)

dx (3)

is a real Lyapunov functional. A consequence of the gradient representation is that L may
only decrease or stay constant in the course of the evolution, dL/dt ≤ 0. This constraint
simplifies the dynamics of the real GL equation.

Equation (1) gives rise to a family of simple stationary plane–wave (PW) solutions:

u(x) =
√

1 − k2 exp(ikx), (4)

where real wavenumber k takes values in the existence band,

− 1 < k < +1. (5)

A nontrivial issue is stability of the PW solutions against small perturbations. It can
be naturally addressed by rewriting Equation (1) in the Madelung form (sometimes called
the hydrodynamic representation), substituting

u(x, t) = A(x, t) exp(iφ(x, t)), (6)
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where A and φ are the real amplitude and phase. The substitution splits Equation (1) into a
pair of real equations:

∂A
∂t

= A +
∂2 A
∂x2 − A

(
∂φ

∂x

)2
− A3, (7)

A
∂φ

∂t
= A

∂2φ

∂x
+ 2

∂A
∂x

∂φ

∂x
. (8)

In terms of the latter system, the PW solution (4) is written as follows:

A =
√

1 − k2, φ(x) = kx. (9)

In paper [11] (incidentally, it is the ninth best-cited publication of M.I. Tribelsky), the
stability of solution (9) was explored by means of linearization of Equations (7) and (8)
against small perturbations of the amplitude and phase. We thus found that the stability
region in the existence band (5) is

− 1/
√

3 ≤ k ≤ +1/
√

3. (10)

In this region, the squared amplitude of the PW solution, A2(k), exceeds 2/3 of its
maximum value, A2

max ≡ 1, which corresponds to k = 0:

A2 ≡ 1 − k2 ≥ 2/3. (11)

At that time, we were not aware of the fact that this result, in the form of Equation (10),
was established much earlier [14] by W. Eckhaus (Wiktor Eckhaus (1930–2000) was born
in Poland, where he had survived Holocaust; after WWII, he moved to the Netherlands,
where he had eventually become a professor at the Utrecht University). It is now commonly
known as the Eckhaus stability criterion (ESC). Later, we learned that some other people
entering this research area had also independently rediscovered the ESC (this fact suggested
our coauthor in Refs. [8,9], Prof. Alexander Nepomnyashchy, to formulate a Nepomnyashchy
criterion: a necessary condition for successful work on the pattern–formation theory is the
ability of the researcher to re-derive the ESC from the scratch).

1.2. Complex Ginzburg–Landau Equations: The Formulation, Plane Waves, and
Dissipative Solitons

Before proceeding to the discussion of particular topics included in this review, it
is relevant to briefly recapitulate the main principles concerning complex GL equations
as a class of fundamental models underlying the theory of pattern formation under the
combined action of linear gain and loss (including the diffusion/viscosity), linear wave
dispersion, nonlinear loss, and nonlinear dispersion. In the case of cubic nonlinearity, the
generic form of this equation is as [15,16]

∂u
∂t

= gu + (a + ib)
∂2u
∂x2 − (d + ic)|u|2u, (12)

cf. its counterpart (1) with real coefficients. Here, constants g > 0, a ≥ 0, and d > 0
represent, respectively, the linear gain, diffusion coefficient, and nonlinear loss. Further, co-
efficients b and c, which may have any sign, control the linear and nonlinear dispersion, re-
spectively. Coefficient g in Equation (CCGL) may include an imaginary part too, but such a
frequency term can be trivially removed by a transformation, u(x, t) ≡ u(x, t) exp[iIm(g)t].

By means of obvious rescaling of t, x, and u, one can fix three coefficients in Equation (12):

g = a = d = 1, (13)
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unless the equation does not include the diffusion term, in which case a = 0 is set. Equa-
tion (12) is written in the 1D form, while its multidimensional version is obtained replacing
∂2u/∂x2 by the Laplacian, ∇2u.

Unlike Equation (1), the complex GL Equation (12) does not admit a gradient repre-
sentation (see Equation (2)). In the case of relatively small real parts of the coefficients,
i.e., a � |b|, d � |c|, Equation (12) may be treated as a perturbed version of the nonlinear
Schrödinger (NLS) equation. Methods of the perturbation theory for NLS equations were
developed in detail long ago [17].

The ubiquity of the complex GL equations is stressed by the title of the major review by
Aranson and Kramer [15], The world of the complex Ginzburg-Landau equation—indeed, the
great number of particular forms of such equations, their various realizations and applications,
and the great number of solutions, obtained by means of numerical and approximate analytical
methods, form a “world” in itself. As concerns applications, complex GL equations emerge
not only in such areas as optics of laser cavities [18–21], where they can be directly derived as
basic physical models, with u(x, t) being a slowly varying amplitude of the optical field, but
also in many other areas of physics (hydrodynamics, electron-hole plasmas in semiconductors,
gas-discharge plasmas, chemical waves, etc.). In many cases, the underlying systems of
basic equations are complicated, but complex GL equations may be derived from them as
asymptotic equations for long-scale small-amplitude (but, nevertheless, essentially nonlinear)
excitations [22–24]. In some cases, equations of the complex-GL type may also be quite useful
as phenomenological models [15,16].

While DW states are supported by a finite-amplitude PW background, it is relevant
to mention that complex GL equations may give rise to localized states (dissipative soli-
tons [25–31]). In particular, Equation (12) admits an exact solution,

u = A [cosh(κx)]−(1+iμ) exp(−iωt), (14)

with a single set of parameter values, A, κ, μ, and ω, given by cumbersome expressions [32,33].
If the complex GL equation reduces to a perturbed NLS equation, the dissipative soliton (14)
can be obtained from the NLS soliton by means of the perturbation theory, under condition
bc < 0 (otherwise, the underlying NLS equation does not have bright-soliton solutions).
However, solution (14) is always unstable, as the linear gain in Equation (12), represented by
g > 0, makes the zero background around the soliton unstable.

Dissipative solitons of this type may be effectively stabilized, in a nonstationary form,
in a model including time-periodic alternation of linear gain and loss, which implies
replacing the constant coefficient g in Equation (12) by function g(t) periodically changing
between positive and negative values; in particular, it may be taken as a periodic array of
amplification pulses on top of a constant lossy background:

g(t) = G
+∞

∑
n=−∞

δ(t − τn)− g0, (15)

with G > 0 and g0 > 0, τ being the amplification period [34]. Another option for the
stabilization is the use of the dispersion management, i.e., replacing constant dispersion
coefficient b in Equation (12) by function b(t), which periodically jumps between positive
and negative values, cf. Equation (15) [35].

The fact that the dissipative soliton (14) may be considered an extension of bright
NLS solitons suggests that Equation (12) may also support a solution resembling the dark
soliton of the NLS equation with the self-defocusing nonlinearity. Indeed, such solutions
were found by Nozaki and Bekki in the form of [36]. Although the holes, as well as DWs,
are supported by a stable PW background, they are completely different states, as DWs
separate different PWs (see below), while the hole is built into a single PW.

A more sophisticated version of the complex GL equation admits the existence of
stable stationary dissipative solitons if the zero solution is stable, i.e., the linear term must
be lossy, corresponding to g < 0 in Equation (12). In this case, it is necessary to include the
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cubic gain and quintic loss (the latter term prevents the blowup). Thus, one arrives at the
complex GL equation with the cubic-quintic nonlinearity, which was first introduced by
Petviashvili and Sergeev [37] (actually, as a 2D equation) in the following form:

∂u
∂t

= gu + (a + ib)
∂2u
∂x2 − (d + ic)|u|2u − ( f + ih)|u|4u, (16)

with g < 0, a ≥ 0, d < 0, and f > 0, cf. Equation (12).
It follows from Equation (16) that the interplay of the gain and loss terms in Equation (16)

allows the generation of nonzero states under the condition that the cubic-gain strength
exceeds a minimum value necessary to compensate the effect of the losses:

|d| > (|d|)min = 2
√
|g| f . (17)

Further, using the rescaling freedom, one can normalize Equation (16) by setting

− g = a = −d ≡ 1, (18)

cf. Equation (13) in the case of Equation (12). Then, condition (17) amounts to f < 1/4.
Stable dissipative solitons as solutions of Equation (16), in the case when they may

be considered to be a perturbation of NLS solitons, were first predicted in Ref. [25] and
later rediscovered in Ref. [38]. Then, stable dissipative soliton solutions of Equation (16)
were found in the opposite limit, when the dispersive terms in this equation may be treated
as small perturbations. In this case, the dissipative solitons are broad (nearly flat) states,
bounded by sharp edges in the form of a kink and antikink [39–41].

The complex GL Equation (16), subject to normalization (18), generates a family of
PW solutions, where the wavenumber takes values in the same interval (5) as above:

ψ =
√

1 − k2 exp(ikx − iωt), ω = c + (b − c)k2, (19)

cf. stationary solutions (4) of the real GL equation. The stability of these flat states against
long-wave perturbations can be investigated analytically, leading to a generalization of the
ESC (cf. Equation (10)) [42]:

k2 ≤ (1 + bc)/
(

3 + 2c2 + bc
)

(20)

The full stability of solutions (19) was investigated in a numerical form [15,16]. Note
that condition (20) cannot hold unless the dispersion coefficients in Equation (16), normal-
ized as per Equation (18), satisfy the Benjamin–Feir–Newell (BFN) condition,

1 + bc > 0. (21)

If this condition does not hold, unstable PWs develop phase turbulence, with |ψ|
staying roughly constant, while the phase of the complex order parameter, φ(x, t) ≡
arg{u(x, t)}, demonstrates spatiotemporal chaos. Just below the BFN instability threshold,
i.e., at 0 < −(1 + bc) � 1 (see Equation (21)), the chaotic evolution of the phase gradient
p ≡ φx obeys the Kuramoto–Sivashinsky equation [43,44], whose scaled form is

pt + pxx + pxxxx + ppx = 0. (22)

Deeper into the region of 1 + bc < 0, the instability creates defects of the wave field,
at which |u(x, t)| = 0, and eventually leads to the onset of defect turbulence [15,16].
Further evolution may lead to emergence of regularly arranged train-shaped patterns in
the turbulent states [45].
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1.3. The Structure of This Paper

The rest of the paper is divided into Sections 2 and 3, which are followed by concluding
Section 4. Section 2 addresses the concept of DWs and its further developments, starting
from Ref. [8]. The DWs considered in that work were constructed as solutions of a system
of two nonlinearly coupled real GL equations, which model the interaction of two families
of simplest roll patterns (quasi-1D spatially periodic structures) in the Rayleigh–Bénard
convection. This setup is controlled by the overcriticality, which is defined as follows:

ε = (Ra − Racrit)/Racrit , (23)

where Ra is the Rayleigh number, and Racrit is its critical value at the threshold of the
convective instability of the fluid layer heated from below. DWs in convection patterns
were predicted as linear defects (grain boundaries) [13,46,47], and were directly observed
in experiments, both as DWs proper and more complex structures, formed by junctions of
DWs. Typical examples of the experimentally observed patterns, borrowed from Ref. [48],
are presented in Figure 1.

(a) (b)

Figure 1. (a) An experimentally observed pattern of rolls in the Rayleigh–Bénard convection, which
demonstrates a junction of domain walls (grain boundaries). The pattern corresponds to overcritical-
ity ε = 1; see Equation (23). (b) Similar patterns observed at ε = 1.8 (left) and 2 (right). Reprinted
with permissions from Ref. [48].

It is relevant to stress that the concept of grain boundaries is known, in a great variety
of different realizations, as a very general one in condensed-matter physics [49–55]. In
most cases, the nature of such objects is different from that in thermal convection and other
nonlinear dissipative media. Nevertheless, the phenomenology of the grain boundaries in
completely different physical systems has many common features.

The DW states were constructed in Ref. [8] as solutions of two coupled real GL
equations for amplitudes of PWs connected by the DW. In a particular case, such a solution
for a symmetric DW is available in an exact analytical form, see Equations (50) and (51)
below. It is also demonstrated that the symmetric DW may play the role of a potential well,
which traps an additional small-amplitude component, in the form of a bright soliton, thus
making the structure of the DW more complex, as shown below by Equations (72)–(75)
and Figure 5. Further, a newly derived extension of the exact solution is included, for
the case when the symmetrically coupled real GL equations include linear-mixing terms
(see Equation (54) below), and a new exact solution for a strongly asymmetric DW, in the
case when only one real GL equation includes the diffusion term (second derivative). This
solution is given below by Equations (64)–(68) and Figure 4.

At the level of stationary solutions, the same coupled equations which model the grain
boundaries in thermal convection predict DWs in optics, as boundaries between spatial or
temporal domains occupied by PWs representing different polarizations or different carrier
frequencies of light [56]. These equations also produce DW states in binary Bose–Einstein
condensates (BECs) composed of immiscible components [57].
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Still earlier, approximate solutions similar to DWs were constructed in the framework
of a single complex GL equation [58]. Such solutions represent stationary sources of stable
PWs with wavenumbers ±k (see Equation (19)) emitted in opposite directions (while the
above-mentioned holes are sinks absorbing colliding PWs with opposite wavenumbers). A
special case corresponds to complex GL Equation (12) without the diffusion term, i.e., with
a = 0. In that case, DWs may be approximately reduced to shock waves governed by an
effective Burgers equation for a local wavenumber [59]. These results are also included,
in a brief form, in Section 2. As an extension of the topic, this section also addresses
DWs between semi-infinite domains filled by counterpropagating traveling waves (this
is possible, in particular, in thermal convection in a layer of a binary fluid heated from
below [60–63]). Furthermore, Section 2 includes a newly found exact solution for the DW
between traveling waves produced by a system of coupled real GL equations that include
group-velocity terms (see Equations (85)–(90) below).

Section 3 summarizes some theoretical results for QP patterns in 2D and 3D nonlinear
dissipative media, the study of which was initiated in Ref. [9]. In particular, included
are findings for stable QP states produced by combinations of four spatial modes in a
laser cavity with different 3D wave vectors [64]. Another possibility to produce a spatially
confined four-mode (eight-fold) QP structure, briefly considered in Section 3, is offered by
the overlap of two square-shaped (two-mode) patterns under the angle of 45o in a transient
layer between the patterns [65]. This possibility is a combination of the two main topics
considered in this review, viz., DWs and QP patterns.

The review is completed by Section 4, which summarizes basic results and briefly
outlines new possibilities in this area.

2. DW (Domain-Wall) Patterns

2.1. The Source Pattern Generated by the Single Complex GL Equation
2.1.1. The Generic Case

To produce approximate solutions to Equation (12), it is convenient to rewrite it in the
Madelung form (6), which yields the following system of equations for real amplitude A
and phase φ:

∂A
∂t

= A − A3 +
∂2 A
∂x2 − A

(
∂φ

∂x

)2
− 2b

∂A
∂x

∂φ

∂x
− bA

∂2φ

∂x2 , (24)

A
∂φ

∂t
= 2

∂A
∂x

∂φ

∂x
+ A

∂2φ

∂x2 − cA3 + b
∂2 A
∂x2 − bA

(
∂φ

∂x

)2
(25)

(recall that the coefficients of Equation (12) are subject to normalization conditions (13)).
As shown in Ref. [58], a stationary solution of the DW type, which represents a source
of PWs emitted in the directions of x → ±∞, can be looked for assuming that the dis-
persion coefficients b and a are small, and the local amplitude, A(x), and wavenumber,
p(x) ≡ ∂φ/∂x, are slowly varying functions of x (the “nonlinear geometric-optics ap-
proximation”, alias the “eikonal approximation”). In the lowest order, all derivatives and
dispersion terms may be neglected in Equation (24), reducing it merely to A2 ≈ 1 − p2,
cf. Equation (4). Next, this approximation is substituted in Equation (25), with the phase
taken as follows:

φ(x, t) = −
(

c + (b − c)k2
)

t +
∫

p(x)dx, (26)

where it is assumed that the asymptotic values of the wavenumber are

p(x → ±∞) = ±k (27)
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(hence, the frequency in expression (26) is the same as in Equation (19)). Keeping the lowest-
order small terms with respect to the small dispersive coefficients and small derivative dp/dx
of the slowly varying local wavenumber leads to the following approximate equation:

1 − 3p2

1 − p2
dp
dx

= (c − b)
(

k2 − p2
)

. (28)

The DW solution to Equation (28) can be obtained in an implicit form, which yields x
as a function of p, satisfying the boundary conditions (27):

2k ln
1 − p
1 + p

+
(

1 − 3k2
)

ln
k − p
k + p

= 2k(b − c)
(

1 − k2
)

x. (29)

The solution can be easily cast in an explicit form under condition k2 � 1:

p(x) ≈ k tanh[(c − b)kx]. (30)

This form clearly demonstrates that the DW may be indeed construed as an emitter of
waves from the center, where p(x = 0) = 0, to x → ±∞, in agreement with Equation (28).
The explicit solutions, as well as the implicit ones (29), constitute a family parameterized
by free constant k.

In the real GL equation, with b = c = 0, as well as in the case when the linear and
nonlinear dispersions exactly cancel each other, b = c, Equation (28) cannot produce a
stationary DW solution. As shown in Ref. [58], in that case, initial configurations in the
form resembling expression (30), i.e., a step-shaped profile of the local wavenumber, give
rise to nonstationary solutions, which may be approximated by means of characteristics
and caustics of a quasi-linear evolution equation for p(x, t).

2.1.2. Domain Walls as Shock Waves in the Diffusion-Free Complex GL Equation

The consideration of DWs should be performed differently in the special case of the
complex GL Equation (12) with a = 0, which does not include the diffusion term. Taking
into regard normalization (13), the respective equation takes the following form:

∂u
∂t

= u + ib
∂2u
∂x2 − (1 + ic)|u|2u (31)

(in fact, one can additionally rescale coordinate x here, to set b = ±1). This form of
the equation admits free motion of various modes [26,59]. In this case, the Madelung
substitution (6) leads, instead of the amplitude-phase Equations (24) and (25), to the
following system:

∂A
∂t

= A − A3 − 2b
∂A
∂x

∂φ

∂x
− bA

∂2φ

∂x2 , (32)

A
∂φ

∂t
= −cA3 + b

∂2 A
∂x2 − bA

(
∂φ

∂x

)2
. (33)

Further, the lowest approximation of the nonlinear geometric optics, applied to Equa-
tion (32), yields

A2 ≈ 1 − b
∂p
∂x

. (34)

The substitution of this in Equation (33) leads, after simple manipulations (including
the division by A and differentiation with respect to x, in order to replace ∂φ/∂t by ∂p/∂t),
to the Burgers equation [59]:

∂p
∂t

= bc
∂2 p
∂x2 − 2bp

∂p
∂x

. (35)
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The usual shock-wave solutions of Equation (35) give rise to a family of DWs with
two independent parameters, viz., wall thickness ξ > 0 and speed s, which may be positive
or negative:

p(x, t) =
s

2b
− c

ξ
tanh

(
x − st

ξ

)
. (36)

The appearance of the second free parameter, s, in this solution corresponds to the
above-mentioned fact that Equation (31) admits free motion of patterns produced by this
variant of the complex GL equation.

2.2. DWs in Systems of Real Coupled GL Equations: Old and New Solutions
2.2.1. The Setting

The starting point of the analysis developed in Ref. [8] was a general expression for
the distribution of the complex order parameter in the 2D system (e.g., the amplitude of
the convective flow):

U(x, y; t) =
N

∑
l=1

ul(x, y; t) exp(inl ·R), (37)

where R =(x, y). Equation (37) implies that the order-parameter field is a superposition of
N plane-wave modes (often called rolls, in the context of the convection theory) with wave
vectors nl , and ul(x, y) are slowly varying amplitudes of these modes. Stationary states
produced by the real GL equations may be looked for in the real form too as follows:

ul(x, y) ≡ rl(x, y), arg(ul) = 0. (38)

as the evolution of phases arg(ul) is trivial in this case.
It is relevant to mention that patterns similar to the rolls (known under the same name)

are produced by the Lugiato–Lefever (LL) equation and its varieties. The basic LL equation
may be considered the NLS equation for amplitude u(x, t) of the optical field in a laser
cavity, which includes the linear-loss coefficient, γ > 0, a real cavity-mismatch parameter,
θ ≷ 0, and a constant pump field, u0 [66]:

∂u
∂t

= −γu + u0 + i
(
|u|2 − θ

)
u + i

∂2u
∂x2 . (39)

Roll patterns were studied in detail in various forms of LL models [67–69]. DWs also
occur in these systems [70,71].

As is illustrated by Figure 2a, the simplest possibility of the realization of patterns
represented by Equation (37) is the superposition of N = 2 modes, each one filling, essen-
tially, a half-plane bounded by the DW. In this case, real amplitudes r1.2 are slowly varying
functions of only one coordinate, x, directed perpendicular to the DW. The respective
boundary conditions (b.c.) are as follows:

r1(x → −∞) = r2(x → +∞) = const �= 0,

r1(x → +∞) = r2(x → −∞) = 0. (40)

The scaled form of stationary (time-independent) coupled real GL equations for slowly
varying amplitudes r1(x) and r2(x), corresponding to the bimodal DW configuration
defined as per Figure 2a and Equation (40), is [8] (see also Refs. [13,46]):

D1
d2r1

dx2 + r1

(
1 − r2

1 − Gr2
2

)
= 0, (41)

D2
d2r2

dx2 + r2

(
1 − r2

2 − Gr2
1

)
= 0. (42)
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Here, the effective diffusion coefficients are

D1.2 = cos2 θ1,2 (43)

(see Figure 2a), and G > 0 is an effective coefficient of the cross-interaction between
different plane waves, while the self-interaction coefficient is scaled to be 1.

The symmetric configuration corresponds to Figure 2a with the following:

θ1 = −θ2, (44)

which implies D1 = D2 ≡ D, according to Equation (43). Naturally, the symmetric case
plays an important role in the analysis, as shown below.

(a) (b)

Figure 2. The scheme of the formation of the DW (domain wall) between two-dimensional patterns in the Rayleigh–Bénard
convection and similar settings. (a) The DW between plane waves (rolls) with wave vectors oriented under angles θ1 and θ2

with respect to the x axis, see Equation (37). The respective amplitudes r1,2(x) satisfy Equations (41) and (42) and are subject
to b.c. (40). The position of the DW is shown by the vertical dashed line. An example of the DW profile is displayed below
in Figure 3a. (b) The same as in (a) for the DW between hexagons (the triple-mode pattern) and single-mode rolls. Figure is
reprinted with permissions from Ref. [8].

It is relevant to mention that coupled Equations (41) and (42) may be considered
as formal equations of motion for a mechanical system with two degrees of freedom,
while x plays the role of formal time. This system keeps a constant value of its (formal)
Hamiltonian,

h =
1
2 ∑

j=1,2

[
Dj

(drj

dx

)2

+ r2
j −

1
2

r4
j

]
− G

2
r2

1r2
2. (45)

DW solutions can be readily found as numerical solutions of coupled Equations (41) and
(42), subject to b.c. (40). A characteristic example of the solution is displayed in Figure 3a. In
fact, the existence of the DWs in the framework of Equations (41) and (42) may be understood
as the immiscibility of the modes whose amplitudes are produced by these equations. The
general condition for the immiscibility, written in the present notation, is well known:

G > 1, (46)

i.e., the strength of the mutual repulsion of the two components must exceed the strength
of their self-repulsion [72].

Hexagonal states in the Rayleigh–Bénard convection are produced by a superposition
of three plane waves, with angles 120o between their wave vectors. Such patterns are
stable if, in addition to the cubic inter-mode interaction in Equations (41) and (42), the
respective system of three GL equations for local amplitudes r1,2,3(x) includes resonant
quadratic terms:

D1
d2r1

dx2 + r1

[
1 − r2

1 − G
(

r2
2 + r2

3

)]
+ νr2r3 = 0 (47)
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plus two complementing equations obtained from Equation (47) by cyclic permutations
of subscripts (1, 2, 3), where ν is a coefficient of the resonant interaction. In the theory of
the thermal convection, the quadratic terms represent the effects beyond the framework
of the basic Boussinesq approximation [73,74]. The numerical solution of Equation (47)
produces DWs connecting single-mode rolls and the hexagonal pattern [8], see an illus-
tration in Figure 2b and the corresponding pattern displayed in Figure 3b. It was also
demonstrated that DWs are possible between two bimodal (square-shaped) patterns, each
one composed of two plane waves with perpendicular orientations. In that case, the DW
appears as a boundary between two half planes filled by square patterns with different
orientations [8,65]; see further details below in Equations (125)–(128) and Figure 9. Further,
in Ref. [75], a spatially inhomogeneous model in which the cross-interaction coefficient is a
function of the coordinate G = G(x) was introduced, making it possible to construct stable
DWs between the single- and bimodal patterns.

(a) (b)

Figure 3. (a) A typical profile of the DW between different plane-wave (roll) families. (b) The
structure of the DW between the plane-wave and hexagonal patterns (in this panel, k1,2,3 are identical
to nl in Equation (37)). Figure is reprinted with permissions from Ref. [8].

2.2.2. Original Analytical Results

An analytically tractable case is the symmetric one, with D1 = D2 ≡ D, and

0 < G − 1 � 1 (48)

(recall that G > 1 is a necessary condition for the existence of DWs). The analysis makes
it possible to reduce the coupled GL equations to an effective sine-Gordon equation for a
slowly varying inter-component phase χ(x), and thus produce an approximate analytical
DW solution with a large width of the transient layer, L ∼ (G − 1)−1/2 [8]:{

r1(x)
r2(x)

}
≈
{

cos χ(x)
sin χ(x)

}
, χ = arctan

(
exp

(√
G − 1

D
x

))
. (49)

In the particular case of
G = 3, (50)

the symmetric version of Equations (41) and (42) admits an exact DW solution [8]:
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{
r1(x)
r2(x)

}
=

1
2

⎧⎨⎩ 1 − tanh
(

x/
√

2D
)

1 + tanh
(

x/
√

2D
) ⎫⎬⎭, (51)

which is obviously compatible with b.c. (40).

2.2.3. New Analytical Results
Symmetric DWs

Precisely the same real time-independent equations as Equations (41) and (42) appear
in nonlinear optics as a stationary version of coupled NLS equations in bimodal waveg-
uides, with r1 and r2 being the local amplitudes of electromagnetic waves carrying different
wavelengths or different polarizations of light [76]. In the latter case, typical values of G are
2/3 or 2 for the linear or circular polarizations of the light, respectively. Other values are
possible too, in photonic-crystal waveguides [77]. Similarly, the stationary real equations
naturally appear as the time-independent version of coupled Gross–Pitaevskii equations
for mean-field wave functions of binary BECs in ultracold atomic gases [78].

Thus, the same solutions considered here may represent optical DWs [56], as well as
DWs separating two immiscible species in the BEC [57]. Further, the coupled equations
in optics and BEC models may also include linear mixing between the interacting modes.
In particular, this effect is produced by a twist applied to the bulk optical waveguide. A
similar effect in binary BEC, viz., mutual inter-conversion of two atomic states, which
form the binary BEC, may be induced by the resonant radio-frequency field [79]. The
respectively modified symmetric system of Equations (41) and (42) is

D
d2r1

dx2 + r1

(
1 − r2

1 − Gr2
2

)
+ λr2 = 0, (52)

D
d2r2

dx2 + r2

(
1 − r2

2 − Gr2
1

)
+ λr1 = 0, (53)

where real λ is the linear-coupling coefficient. In fact, Equations (52) and (53) apply to the
Rayleigh–Bénard convection too, in the case when periodic corrugation of the bottom of
the convection cell, with amplitude ∼ λ and wave vector n1 + n2 (see Equation (37)), gives
rise to the effect of the linear cross-gain. It is used in many laser setups that are similar to
thermal convection [80,81].

The system of Equations (52) and (53) with G = 3 admits an exact DW solution, which
is an extension of its counterpart (51):

{
r1(x)
r2(x)

}
=

1
2

⎧⎪⎪⎨⎪⎪⎩
√

1 + λ −√
1 − λ tanh

(√
1−λ
2D x

)
√

1 + λ +
√

1 − λ tanh
(√

1−λ
2D x

)
⎫⎪⎪⎬⎪⎪⎭. (54)

Due to the action of the linear mixing, b.c. (40) is replaced by the following one:

r1(x → −∞) = r2(x → +∞) =
1
2

(√
1 + λ +

√
1 − λ

)
,

r1(x → +∞) = r2(x → −∞) =
1
2

(√
1 + λ −√

1 − λ
)

. (55)

The exact solution given by Equations (52)–(55) was not reported in previous publica-
tions.

The Effect of the Confining Potential

The above-mentioned realization of the coupled real GL equations in terms of the
binary BEC should include, in the general case, a trapping harmonic-oscillator (HO)
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potential, which is normally used in the experiment [78]. The accordingly modified system
of Equations (52) and (53) is

D
d2r1

dx2 + r1

(
1 − r2

1 − Gr2
2

)
+ λr2 =

ℵ2

2
x2r1, (56)

D
d2r2

dx2 + r2

(
1 − r2

2 − Gr2
1

)
+ λr1 =

ℵ2

2
x2r2, (57)

where ℵ2 is the strength of the OH potential. DW solutions of the system of Equations (56)
and (57) were addressed in Ref. [82]. A rigorous mathematical framework for the analysis
of such solutions in the absence of the linear coupling (λ = 0) was elaborated in Ref. [83].

If the HO trap is weak enough, viz., ℵ2 � 4/(1 − λ), the DW trapped in the OH
potential takes nearly constant values that are close to those in Equation (55) in the region
of

2D/(1 − λ) � x2 � 8D/ℵ2. (58)

At x2 → ∞, solutions generated by Equations (56) and (57) decay similar to eigenfunc-
tions of the HO potential in quantum mechanics, viz.,

r1,2 ≈ �1,2|x|β exp
(
− ℵ

2
√

2D
x2
)

, (59)

β =
1 + λ√

2Dℵ − 1
2

, (60)

where �1,2 are constants. In the case of λ = 0, the asymptotic tails (59) follow the structure of
solution (51), i.e., �1(x → +∞) = �2(x → −∞) = 0 and �1(x → −∞) = �2(x → +∞) �= 0.
On the other hand, the presence of the linear mixing, λ �= 0, makes the tail symmetric
with respect to the two components, �1(|x| → ∞) = �2(|x| → ∞) �= 0. Note that β = 0 in
Equation (60) with λ = 0 is tantamount to the case when values of ℵ and D in Equations (56)
and (57) correspond to the ground state of the HO potential.

Exact Asymmetric DWs

Another possibility to add a new analytical solution for DWs appears in the limit case
of the extreme asymmetry in the system of Equations (41) and (42), which corresponds to
D2 = 0 and D1 ≡ D > 0, i.e., the DW between two roll families one of which has the wave
vector perpendicular to the x axis (see Equation (43)):

D
d2r1

dx2 + r1

(
1 − r2

1 − Gr2
2

)
= 0, (61)

r2

(
1 − r2

2 − Gr2
1

)
= 0. (62)

In fact, the form of Equation (62), in which the second derivative drops out, corre-
sponds to the well-known Thomas–Fermi approximation (TF) in the BEC theory. In the
framework of the TF approximation, the kinetic-energy term in the Gross–Pitaevskii equa-
tion is neglected, in comparison with larger ones, representing a trapping potential and
the (self-repulsive) nonlinearity [78]. In the present case, corresponding to θ2 = 90o, i.e.,
D2 = 0 in Equation (43), is not an approximation but the exact special case. As concerns
the application of Equations (41) and (42) to BEC, with the kinetic energy coefficients
D1,2 = h̄2/(2m1,2) in physical units, where m1,2 are atomic masses of the two components
of the heteronuclear binary condensate, Equations (61) and (62) correspond to a semi-TF
approximation, representing a mixture of light (small m1) and heavy (large m2) atoms, e.g.,
a 7Li–87Rb diatomic gas [84].

Obviously, Equation (62) yields two solutions, viz., either

r2 = 0, (63)
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or the one featuring the quasi-TF relation,

r2
2(x) = 1 − Gr2

1(x). (64)

In the former case, Equation (61) with r2 = 0 yields a solution in the form of the usual
dark soliton, while in the latter case, the substitution of expression (64) in Equation (61)
produces a bright soliton solution. These solutions may be “dovetailed” at a stitch point,

x = x0 ≡ −
√

2D ln

(√
G + 1√
G − 1

)
, (65)

which is defined by condition r2
1(x) = 1/G (see Equation (64). The global form of the

solution, which complies with b.c. (40), is

r1(x) =

⎧⎪⎨⎪⎩
− tanh

(
x/

√
2D
)

, at − ∞ < x < x0,√
2

G+1 sech
[√

G−1
D (x − ξ)

]
, at x0 < x < +∞,

(66)

r2(x) =

{
0, at − ∞ < x < x0,√

1 − Gr2
1(x), at x0 < x < +∞

(67)

(in the context of BEC, a similar solution was reported in Ref. [85]).
Finally, the virtual center of bright-soliton segment of r1(x) is located at

x = ξ ≡ x0 −
√

D
G − 1

ln

(√
2G

G + 1
+

√
G − 1
G + 1

)
(68)

(the exact solution (66) makes use of the “tail" of the bright soliton in the region of x ≥ x0,
which does not include the central point, x = ξ). The distance x0 − ξ, determined by
Equation (68), defines the effective width of the strongly asymmetric DW. Note that, as
seen in Equations (65) and (66), this exact solution exists under the condition of G > 1,
which is the above-mentioned immiscibility condition.

It is easy to check that expression (66) satisfies the continuity conditions for r1(x)
and dr1/dx at x = x0, and expression (67) provides the continuity of r2(x) at the same
point. The continuity of dr2/dt at x = x0 is not required, as Equation (62) does not include
derivatives. A typical example of the exact solution is displayed for D = 1 and G = 2 in
Figure 4.

Figure 4. An example of the asymmetric DW, as given by Equations (65)–(68), for D = 1 and G = 2
(here, u1 and u2 stand for r1 and r2 in the analytical solution). Note that the coordinate of the stitch
point is, in this case, x0 ≈ −1.25 as per Equation (65), and the “virtual center” of the bright-soliton
segment of u1(x) is located at ξ ≈ −1.80 as per Equation (68).
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A remarkable fact is that, unlike the above-mentioned exact solutions (51) and (54),
which exist solely at G = 3 (see Equation (50)), the one given by Equations (65)–(68) exists
as a generic one for all values of G > 1.

2.2.4. DW–Bright-Soliton Complexes
An Exact Solution for the Composite State

The DW formed by two immiscible PWs may serve as an effective potential for
trapping an additional PW mode. To address this possibility, it is relevant to consider
the symmetric configuration, with D1 = D2 ≡ D (see Equation (43)), and wave vector kv
of the additional PW mode, v(x), directed along the bisectrix of the angle between the
DW-forming wave vectors k1 and k2, i.e., along axis x (hence, Equation (43) yields Dv = 1).
The corresponding system of three coupled stationary real GL equations is

D
d2u1

dx2 + u1

(
1 − u2

1 − Gu2
2 − gv2

)
= 0, (69)

D
d2u2

dx2 + u2

(
1 − u2

2 − Gu2
1 − gv2

)
= 0, (70)

d2v
dx2 +

(
1 − v3 − g

(
u2

1 + u2
2

))
v = 0, (71)

where g > 0 is the constant of the nonlinear interaction between components u1,2 and v.
The system of Equations (69)–(71) admits the following exact solution in the form of

the DW of components u1,2(x) coupled to a bright-soliton profile of v(x):{
u1(x)
u2(x)

}
=

1
2

{
1 − tanh

(√
g − 1x

)
1 + tanh

(√
g − 1x

) }, (72)

v(x) =

√
2 − 3

2
g sech

(√
g − 1x

)
. (73)

This solution is valid under the condition that coefficients G and D in Equations (69)
and (70) take the following particular values:

G = 3 − 8g + 6g2, (74)

D =
1
2
(3g − 1). (75)

As it follows from Equation (73), this solution contains free parameter g, which may
vary in a narrow interval as follows:

1 < g < 4/3 (76)

(see also Equation (82) below). According to Equations (74) and (75), the interval (76)
corresponds to coefficients G and D varying in intervals

1 < G < 3; 1 < D < 3/2. (77)

Thus, adding the v component lifts the degeneracy of the exact DW solution (51),
which exists solely at G = 3.

Recall that in the model of convection patterns, D cannot take values D > 1, which
disagrees with Equation (77). However, values D > 1 are relevant for systems of Gross–
Pitaevskii equations for the heteronuclear three-component BEC. In the latter case, D is
the ratio of atomic masses of the different species which form the triple immiscible BEC.
Similarly, D is the ratio of values of the normal group-velocity dispersion of copropagating
waves in the temporal-domain realization of the real GL equations in nonlinear fiber
optics [56]. In the latter case, values D > 1 are relevant too.
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An example of the DW–bright-soliton complex is displayed in Figure 5 for g = 7/6. In
this case Equations (74) and (75) yield G = 11/6 and D = 5/4 (according to Equations (74)
and (43)).

Figure 5. An example of the exact solution for the DW–bright-soliton complex, given by Equa-
tions (72) and (73), for g = 7/6, G = 11/6, and D = 5/4.

The Bifurcation of the Creation of the Composite State in the General Case

If relation (74) is not imposed on the interaction coefficients g and G, the solution for
the composite state cannot be found in an exact form. Nevertheless, it is possible to identify
bifurcation points at which component v with an infinitesimal amplitude appears. To this
end, Equation (71) should be used in the form linearized with respect to v as follows:

d2v
dx2 +

{
1 − g

[
u2

1(x) + u2
2(x)

]}
v = 0. (78)

This linear equation can be exactly solved for u1(x) = u2(x) given by expression (51)
in the case of G = 3, while parameters D and g may take arbitrary values. Indeed, using the
commonly known solution for the Pöschl–Teller potential in quantum mechanics, it is easy
to find that Equation (78), with the effective potential corresponding to expression (51),
gives rise to eigenmodes in the following form:

v(x) = const ·
[
sech

(
x/

√
2D
)]α

, (79)

at a special value of the interaction coefficient, which identifies the bifurcation producing
the composite state:

gbif = D−1
(

1 + 2D ∓√
1 + 2D

)
, (80)

the respective value of power α in expression (79) being the following:

α =

√
2
(

1 + D ∓√
1 + 2D

)
. (81)

The values given by Equations (80) and (81) with the top sign from ∓ correspond to
the bifurcation, creating a fundamental composite state (the ground state, in terms of the
quantum mechanical analog) at g > gbif, while the bottom sign represents a higher-order
bifurcation (alias, the second excited state, in the language of quantum mechanics; the first
excited state, which is not considered here, is a spatially odd mode). While it is obvious
that the fundamental bifurcation provides a stable composite state, it is plausible that the
ones produced by higher-order bifurcations are unstable.
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Lastly, varying coefficient D of the modes forming the underlying DW between D = 0
and D = ∞ (recall that the convection model corresponds to D < 1, while the realizations
in BEC and optics admit D > 1). Equation (80) demonstrates monotonous variation of the
bifurcation point in interval

gbif(D = 0) ≡ 1 < gbif < 2 ≡ gbif(D → ∞). (82)

It extends interval (76) in which exact composite states with a finite amplitude were
found above, see Equations (72)–(75).

2.3. Domain Walls between Traveling Waves
2.3.1. The Setting

An essential extension of the above results for DWs, produced by coupled Equa-
tions (41) and (42), was reported in Ref. [86], which addressed a system of coupled GL
equations for counter-propagating traveling waves, such as those occurring in binary-fluid
convection [60–63,87]. The system is composed of two equations of type (12) (subject to
normalization (13)), coupled by complex cubic terms with coefficients G and H:

∂u1

∂t
+ s

∂u1

∂x
= u1 + (1 + ib)

∂2u1

∂x2 − (1 + ic)|u1|2u1 − (G + iH)|u2|2u1, (83)

∂u2

∂t
− s

∂u1

∂x
= u2 + (1 + ib)

∂2u2

∂x2 − (1 + ic)|u2|2u2 − (G + iH)|u1|2u2, (84)

where −s and +s are group velocities of the counter-propagating waves, u1 and u2 (real
coefficient H represents the cross-phase modulation (XPM), in terms of optics [76]). A
natural approach to constructing DW solutions of the system of Equations (83) and (84)
is to use the lowest approximation, which neglects imaginary parts of coefficients in the
equations, but keeps the group-velocity terms. In this approximation, the order parameters
are real, u1,2(x) ≡ r1,2(x) obeying the time-independent version of Equations (83) and (84):

+s
dr1

dx
=

d2r1

dx2 + r1

(
1 − r2

1 − Gr2
2

)
, (85)

−s
dr2

dx
=

d2r2

dx2 + r2

(
1 − r2

2 − Gr2
1

)
. (86)

Note that, unlike similar Equations (41) and (42), Equations (85) and (86) cannot be
derived from a formal Hamiltonian, cf. Equation (45).

2.3.2. A (New) Exact Analytical Solution

To illustrate the structure of the DW state in this approximation, it is relevant to
produce a particular exact solution of the system of Equations (85) and (86), cf. the above-
mentioned solution (51):

{
r1(x)
r2(x)

}
=

1
2

⎧⎨⎩ 1 − tanh
((√

8 + s2 + s
)
(x/4

)
1 + tanh

((√
8 + s2 + s

)
(x/4

) ⎫⎬⎭. (87)

This solution (which was not reported in earlier studies) exists if the following relation
holds between the cross-interaction coefficient G and group velocity v:

G − 3 = s
(√

8 + s2 + s
)

, (88)

or, inversely,

s =
G − 3√
2(G + 1)

. (89)
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cf. Equation (50). It follows from the form of solution (87) and Equations (88) and (89) that

sgn(s) = sgn(G − 3), (90)

i.e., the exact solution represents a sink of traveling waves (s > 0) for G > 3, and a source
(s < 0) for G < 3. Note that the solution of the latter type exists even in the case of
G < 1, when the two components are miscible, cf. Equation (46). In this case, the mixing is
prevented by the opposite group velocities, which pull the components apart.

2.3.3. The Sink or Source Coupled to a Bright Soliton in an Additional Component

It is possible to consider a system including the counterpropagating traveling waves
coupled to an additional standing one. This is a natural counterpart of the three-component
system based on Equations (69)–(71). The traveling waves, which can trap the additional
standing one, v(x), are described by the following generalization of Equations (85) and (86):

+s
du1

dx
=

d2u1

dx2 + u1

(
1 − u2

1 − Gu2
2 − gv2

)
, (91)

−s
du2

dx
=

d2u2

dx2 + u2

(
1 − u2

2 − Gu2
1 − gv2

)
, (92)

while the equation for the standing component is

d2v
dx2 +

(
1 − v2 − g

(
u2

1 + u2
2

))
v = 0, (93)

cf. Equation (71). An exact solution of Equations (91)–(93) can be found for free parameters
g and s:

u1,2(x) =
1
2

(
1 ∓ tanh

(√
g − 1x

))
, (94)

v(x) =

√
2 − 3

2
gsech

(√
g − 1x

)
, (95)

G − 3 = 2g(3g − 4) + 4s
√

g − 1, (96)

D =
s

2
√

g − 1
+

1
2
(3g − 1), (97)

cf. Equations (72)–(75). As it is seen from Equation (96), the interaction with the soliton-
shaped standing wave shifts the boundary between the sink and source of the traveling
waves off the above-mentioned point, G = 3.

3. Two- and Three-Dimensional Quasiperiodic Patterns

Quasicrystals, as stable 3D ordered states of metallic alloys, whose atomic lattice
is spatially quasiperiodic (QP), were discovered by D. Shechtman et al. [88]. For this
discovery, Shechtman was awarded with the Nobel Prize in chemistry (2011). Then, a 2D
quasicrystalline structure was also experimentally demonstrated in alloys [89]. The work
on this topic remains very active in diverse branches of condensed-matter physics [90–94],
as well as in other physical systems, which offer a natural realization of QP patterns, such
as dissipative structures [95], photonics [96–99] and phononics [100].

The objective of this section is to summarize the results for stable 2D and 3D patterns
with the quasicrystalline structure that were predicted as stable non-equilibrium dynamical
structures (rather than equilibrium states of matter) in nonlinear dissipative media.
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3.1. 2D Octagonal (Eight-Mode) and Decagonal (Ten-Mode) Quasicrystals

Following Ref. [9], generic 2D patterns of a real order parameter, such as one repre-
senting the convection flow, are defined by means of complex amplitudes rl of PWs which
build them, cf. Equation (37):

U(x, y, t) =
2N

∑
l=1

ul(t) exp(inl ·R), (98)

where the set of 2N vectors nl is a star with angles π/N between adjacent ones. Note that
the vectors satisfy the following relation:

nl+N = −nl , for l = 1, 2, . . . , N. (99)

Amplitudes ul(t) are, generally speaking, complex variables,

ul(t) = Al(t) exp(iϕl(t)) (100)

(cf. Equation (6)), subject to constraint ul+N = u∗
l , which, along with Equation (99), proves

that the order-parameter distribution (98) is real.
For the lowest-order quasi-crystalline patterns, such as those corresponding to N = 4

(octagonal) and N = 5 (decagonal) ones, the phase evolution is trivial, making it possible
to disregard ϕl in Equation (100). The resulting system of evolution equations for the real
amplitudes, including the usual linear gain, γ0 > 0, and cubic loss (cf. Equation (1)), is

dAl
dt

=

(
γ0 −

N

∑
m=1

Tl−m A2
m

)
Al ≡ − ∂L

∂Al
, (101)

where Tl−m > 0 are coefficients of the cubic lossy nonlinearity, subject to normalization
T0 = 1, and the Lyapunov function is

L = −γ0

2

N

∑
l=1

A2
l +

1
4

N

∑
l,m=1

Tl−m A2
l A2

m, (102)

cf. Equations (2) and (3). Detailed analysis of the results, produced with the help of
Equation (101), is presented in Ref. [9]); see also some preliminary results in Refs. [101,102].

Spatially quasiperiodic patterns of the octagonal (N = 4) and decagonal (N = 5)
types are displayed, respectively, in Figures 6a and 7a. It is seen that they are built as
compositions of rhombuses of different shapes, and the presence of the overall octagonal
or pentagonal structure is evident.

Solutions of Equation (101) for N = 4 depend on two independent nonlinearity
coefficients, T1 = T3 and T2. In this case, there are four distinct stationary solutions which
have their stability areas: rolls, with

A1 =
√

γ0, A2,3,4 = 0; (103)

a square lattice, with

A1,3 =
√

γ0/(1 + T2), A2,4 = 0; (104)

an anisotropic rectangular lattice, with the aspect ratio tan(π/8) =
√

2 − 1 ≈ 0.414, ampli-
tudes

A1,2 =
√

γ0/(1 + T1), A3,4 = 0; (105)

and the octagonal quasicrystal, with

A1,2,3,4 =
√

γ0/(1 + 2T1 + T2). (106)
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(a) (b)

Figure 6. (a) The shape of the octagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The stability
chart for patterns composed of four amplitudes, A1,2,3,4, in the plane of nonlinearity coefficients, T1 and T2, of Equation (101),
reprinted with permissions from Ref. [9]. Stability areas of the rolls (103), squares (104), rectangles (105), and octagonal
quasicrystal (106) are denoted by encircled numbers 1, 2, 3, and 4, respectively.

(a) (b)

Figure 7. (a) The shape of the decagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The stability
chart for patterns composed of five amplitudes, A1,2,3,4,5, in the plane of nonlinearity coefficients, T1 and T2, of the respective
system of equations (101), reprinted with permissions from Ref. [9]. Stability areas of the rolls (107), rectangles (108)
and (109), decagonal quasicrystal (110), and semi-periodic states (111) and (112) are denoted by encircled numbers 1, 2, 3, 4,
5, and 6, respectively. Constants ω1 and ω2, marked in panel (b), are defined by Equation (113).
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In addition to that, Equation (101) also has a stationary semi-periodic solution, which
is quasiperiodic in direction n2 and periodic along n4, with A1 = A2 �= 0, A3 �= 0, and
A4 = 0. However, the latter solution is completely unstable.

The full stability chart for stationary solutions (103)–(106) can be readily found in an
analytical form. It is displayed in Figure 6b.

For N = 5, the solutions of Equation (101) also depend on two independent nonlin-
earity coefficients, T1 = T4 and T2 = T3. These equations produce six different species of
stable stationary patterns. These are rolls, with

A1 =
√

γ0, A2,3,4,5 = 0; (107)

two different species of rectangular lattices,

A1,2 =
√

γ0/(1 + T1), A3,4,5 = 0, (108)

A1,3 =
√

γ0/(1 + T2), A2,4,5 = 0; (109)

the decagonal quasicrystal,

A1,2,3,4,5 =
√

γ0/(1 + 2T1 + 2T2); (110)

and two species of semi-periodic patterns, that are quasiperiodic in one direction and
periodic in the other:

A1,3 =

√
γ0(1 − T1)

1 + T2 − 2T2
1

, A2 =

√
γ0(1 + T2 − 2T1)

1 + T2 − 2T2
1

, A4,5 = 0, (111)

A1,5 =

√
γ0(1 − T2)

1 + T1 − 2T2
2

, A3 =

√
γ0(1 + T1 − 2T2)

1 + T1 − 2T2
2

, A2,4 = 0. (112)

In addition to that, there is another semi-periodic solution, with A1 = A2 �= 0,
A3 = A4 �= 0, and A5 = 0, but it is completely unstable.

The full stability chart for this set of solutions was also found in an analytical form, as
shown in Figure 7b. In this figure, the constants are

ω1 =

√
5 − 1
2

≈ 0.618, ω2 = ω1 + 1. (113)

Note that, unlike the situation for the octagonal setting (N = 4) displayed in Figure 6b,
the stability areas for the decagonal (N = 5) quasicrystal (110) and periodic patterns (108),
(109) are not adjacent to each other in Figure 7b, being separated by regions of stable semi-
periodic states (111) and (112) (recall that all semi-periodic states are unstable in the case of
N = 4).

It is relevant to mention that if higher-order nonlinear terms are added to the system
of Equations (101), the sharp boundaries between stability areas of different patterns in
Figures 6b and 7b may be modified. In particular, there may appear narrow strips of
bistability (which is impossible in the framework of Equation (101)), as well as strips
populated by more complex patterns, instead of the sharp lines [9].

3.2. Dodecagonal Quasicrystals (N = 6)

In the case of the twelve-mode patterns, corresponding to N = 6 in Equation (101),
quadratic nonlinearity, with coefficient ν > 0, should be included too, as the corresponding
set of six wave vectors contains two resonant triads that may be naturally coupled by the
quadratic terms (cf. Equation (47)):

n1 + n5 + n9 = n2 + n6 + n10 = 0 (114)
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(recall that only six wave vectors are actually different, according to Equation (99)). In this
case, the dynamics of phases of the complex amplitudes (6) cannot be disregarded, giving
rise to phason modes [104–106]. Accordingly, Equation (101) is replaced by a coupled
system of evolution equations for the real amplitudes and phases [9]:

dAl
dt

=

(
γ0 −

N

∑
m=1

Tl−m A2
m

)
Al + νAn+4 An+8 cos Φn, (115)

Al
dϕl
dt

= −νAl+4 Al+8 sin Φl , (116)

Φl ≡ ϕl + ϕl+4 + ϕl+8, (117)

with ϕl ≡ ϕl−12 for l > 12.
These equations give rise to the following stationary solutions for the dodecagonal

quasicrystals, with equal values of real amplitudes Al , and coinciding values of Φl for both
resonantly coupled triads (114):

cos Φl = ±1, (118)

Al = ±(2Q0)
−1
(

ν ±
√

ν2 + 4γ0Q0

)
, (119)

Q0 ≡ 1 + 2T1 + 2T2 + T3. (120)

The analysis of the stability of these solutions in the framework of Equations (115)–(117)
demonstrates that they may be stable only under conditions Q0 > 0 (see Equation (120)) and
the following one:

Q3 ≡ 1 + T3 − T1 − T2 > 0. (121)

If these conditions hold, the amplitude of stable quasicrystals exceeds a minimum value,

Al ≥ Amin ≡ (1/2)max{ν/Q0, ν/Q3}. (122)

Further, there is no stability constraint for the largest value of the amplitude, provided
that the following combinations of the nonlinearity coefficients are positive:

Q1,2 ≡ 1 − T2 ± (T1 − T3) ≥ 0. (123)

Otherwise, the stability imposes the following limit on the amplitude:

A ≤ Amax ≡ min{−ν/Q1,−ν/Q2} (124)

(if only one combination Q1 or Q2 is negative, then only this one determines the upper
limit for the stability, as per Equation (124)).

The existence and stability results for the amplitude of the dodecagonal quasicrystals
is summarized in Figure 8b. Note that in the presence of the resonant interaction mediated
by the quadratic term in Equation (115), the solution appears as a subcritical [107] one,
with a finite value of the amplitude at γ0 < 0, i.e., when this coefficient represents linear
loss rather than gain.
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(a) (b)

Figure 8. (a) The shape of the dodecagonal quasiperiodic pattern, reprinted with permissions from Ref. [103]. (b) The
pattern’s amplitude, given by Equation (119) vs. the strength of the linear gain (γ0 > 0) or loss (γ0 < 0), reprinted with
permissions from Ref. [9]. Stable and unstable solutions are represented, respectively, by bold and thin lines. Branches 1, 2
and 3 pertain, respectively, to the solutions with cos Φl = +1 and −1 in Equation (118). Parameters Q0, Amin, and Amax are
defined as per Equations (120), (122) and (124), respectively.

3.3. A Quasicrystalline Layer between Orthogonally Oriented Square-Lattice Patterns

While, as shown in Figure 6b, square-lattice and octagonal quasiperiodic patterns
cannot coexist as stable ones in the system with N = 4, it was demonstrated in Ref. [65]
that a sufficiently broad stripe filled by an effectively stable nearly-octagonal quasiperiodic
pattern may be realized as a transient layer between stable square-lattice patterns mutually
oriented under the angle of 45o, as schematically shown in Figure 9a. For this configuration
(which naturally combines the two main topics of the present review, viz., the DWs and
QP patterns), one may naturally adopt equal amplitudes corresponding to wave vectors k3
and k4:

A3(x) = A4(x) ≡ A(x), (125)

while amplitudes B1 and B2 related to k1 and k2 are different, the effective diffusion
coefficient for the latter one being zero, as per Equation (43). The corresponding system of
stationary real GL equations, naturally extending Equations (52), (53), (61), (62) and (101),
takes the following form:

1
2

d2 A
dx2 + A − A3 −

(
T1B2

1 + T1B2
2 + T2 A2

)
A = 0, (126)

d2B1

dx2 + B1 − B3
1 −
(

2T1 A2 + T2B2
2

)
B1 = 0, (127)

B2 − B3
2 −
(

2T1 A2 + T2B2
1

)
B2 = 0, (128)

where, like in Equation (101), T1 and T2 are coefficients of the cross-interaction between the
PW modes with angles, respectively, 45o and 90o between their wave vectors. According to
Figure 6b, the stability conditions for the spatially uniform square-lattice and octagonal
quasicrystalline patterns are, respectively, the following:

T2 ≤ 1, T1 ≥ T2 + 1/2, (129)

T2 ≤ 1, T1 ≤ T2 + 1/2. (130)
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Accordingly, to secure the stability of the background square lattices and a possibility
to have a broad transient layer between mutually rotated ones, which is filled by the
effectively stable nearly-octagonal pattern, it is relevant to choose parameters belonging
to the stability area (129), with values close to the stability boundary, T1 = T2 + 1/2. An
appropriate choice is the following:

T1,2 ≡ 1 − μ1,2, 0 < μ1,2 � 1, (131)

with m ≡ 2μ1/μ2 < 1. (132)

Similar to what is considered above in Equations (63) and (64), Equation (128) obvi-
ously splits in two options, B2 = 0 or the following one:

B2
2 + 2T1 A2 + T2B2

1 = 1. (133)

In either case, Equations (126) and (127) simplify accordingly. The solutions corre-
sponding to B2 = 0 or to Equation (133) must be “dovetailed” at a stitch point, x = x0, cf.
Equation (65). An example of the so obtained solutions for amplitudes A(x) and B1,2(x) is
displayed in Figure 9b.

(a) (b)

Figure 9. (a) The scheme for building a broad stripe of the octagonal quasicrystalline state as a transient layer between
semi-infinite domains filled by square-lattice patterns, mutually rotated by 45o. (b) An example of the corresponding
solution for amplitudes A(x) and B1,2(x). Parts of the solution corresponding to Equation (133) or to B2 = 0 are connected
at the stitch point x = x0. Reprinted with permissions from Ref. [65].

3.4. Three-Dimensional Quasicrystals

A setting which makes it possible to predict a stable quasiperiodic pattern based on
a set of four PW modes in the 3D space was put forward in Ref. [64]. It originates from
the model of a lasing cavity, based on the standard system of coupled Maxwell–Bloch
equations. The evolutional variable in this system is time, while the spatial structure is
strongly anisotropic, as the field (Maxwell’s) equation in the system contains only the first
derivative, ∂/∂z, with respect to the longitudinal coordinate, z, and the usual paraxial-
diffraction operator, i

(
∂2

x + ∂2
y

)
, acting on the transverse coordinates, (x, y). As a result, at

the lasing threshold components of 3D wave vectors carrying the PW modes,

K = (k, kz), k ≡ (kx, ky
)
, (134)
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satisfy the following dispersion relation, which couples them to the wave’s frequency Ω as
follows:

Ω = k2 + kz. (135)

Eventually, above the lasing threshold the cubic nonlinearity of the Maxwell–Bloch
system may produce a resonant quartet of 3D wave vectors, coupled by the following
condition:

K1 + K2 = K3 + K4. (136)

For comparison, in the 2D space the same relation (136), taken close to the threshold,
i.e., for nearly equal length of the wave vectors, would imply that the four vectors form a
rhombus, and the cubic interaction between the corresponding amplitudes, u1,2,3,4, would be
represented by usual nonresonant nonlinear terms, essentially the same as in Equation (101),
with Al replaced by ul and A2

m Al replaced by the XPM terms, |um|2ul. However, in the 3D
setting, the resonance condition (136), combined with the dispersion relation (135), leads to
a nontrivial possibility to add four-wave-mixing (FWM) cubic terms to the XPM ones, see
below.

Substituting expression (134) for the 3D wave vector in Equations (136) and (135) leads
to the following elementary exercise in planar geometry: find two pairs of 2D vectors,
(k1, k2) and (k3, k4), satisfying the following conditions:

k1 + k2 = k3 + k4, k2
1 + k2

2 = k2
3 + k2

4. (137)

An obvious solution of this exercise is plotted in Figure 10a.

(a) (b)

Figure 10. (a) A set of four two-dimensional vectors k1,2,3,4 which solves equations (137). Here, A and B are two arbitrary
points belonging to the circumference of arbitrary radius R, and a < R is an arbitrary value of coordinate x. (b) An
example of the three-dimensional quasiperiodic pattern, projected onto the (x, y) plane. Shown are contour plots of the

corresponding distribution of the order parameter, Re
[
∑4

l=1 ul cos(kl · R)
]
, where ul are the complex amplitudes given by

Equations (141)–(143). In this case, the phases are ϕ1 = π, ϕ2 = −π/2, ϕ3 = π/7, while ϕ4 is determined by Equation (142).
The angle between vectors k1 − k2 and k3 − k4 is π/5. Figure is reprinted with permissions from Ref. [64].
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Once a resonantly coupled quartet of four wave vectors is chosen, the respective
system of evolution equations for the corresponding complex amplitudes is [64]

du1

dt
= γ0u1 −

(
|u1|2 + 2 ∑

l �=1
|ul |2

)
u1 − 2u∗

2u3u4,

du2

dt
= γ0u2 −

(
|u2|2 + 2 ∑

l �=2
|ul |2

)
u2 − 2u∗

1u3u4,

(138)

du3

dt
= γ0u3 −

(
|u3|2 + 2 ∑

l �=3
|ul |2

)
u3 − 2u1u2u∗

4,

du4

dt
= γ0u4 −

(
|u4|2 + 2 ∑

l �=4
|ul |2

)
u4 − 2u1u2u∗

3.

In these equations, γ0 > 0 is the linear gain, as above, and the last terms represent
the four-wave-mixing (FWM) effect. Particular values of coefficients in front of nonlinear
terms are standard ones which correspond to the XPM and FWM interactions in non-
linear optics [17], unlike general values of coefficients Tl−m in Equation (101). Similar
to Equation (101), the system of Equations (138) admits the presentation in the form of
dul/dt = − ∂L/∂u∗

l , with the Lyapunov function

L = −γ0 ∑
l
|ul |2 + 1

2 ∑
l
|ul |4 + 2 ∑

l>m
|ul |2|um|2 + 4Re(u1u2u∗

3u∗
4). (139)

Further analysis performed in Ref. [64] has produced two stable stationary solutions
of Equation (138). First, this is a simple single-mode state (rolls), with

|u1|2 = γ0, u2,3,4 = 0. (140)

Next, dodecagonal quasicrystals with equal absolute values of all the four amplitudes
are looked for as follows:

ul = A exp(iϕl), (141)

where the phases are locked so that

ϕ1 + ϕ2 − ϕ3 − ϕ4 = π, (142)

and the squared absolute value of the amplitudes is

|ul |2 = γ0/5, (143)

cf. the rolls solution (140). Note that values of the Lyapunov function (139) for the rolls and
3D quasicrystal are as follows:

Lrolls = −γ2
0/2, Lquasicryst = −2γ2

0/5, (144)

Hence, the rolls represent the ground state of the system, while the quasicrystal is a
metastable state, as its value of L is slightly higher.

An example of the shape of the 3D quasiperiodic solution is displayed, in the projection
onto plane (x, y), in Figure 10b. Additional examples can be found in Ref. [64].

Besides these solutions, Equations (138) give rise to another quasiperiodic state, with
ϕ1 + ϕ2 − ϕ3 − ϕ4 = 0 and |ul |2 = γ0/9 (cf. Equations (142) and (143)), but it is unstable.
Two-mode solutions, e.g., ones with |u1,2|2 = γ0/3, u3,4 = 0, also exist but are unstable [64].
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4. Conclusions

The aim of this paper is to present a concise overview of two important topics in
the theory of pattern formation in nonlinear dissipative media, viz., DWs (domain walls)
and QP (quasiperiodic) patterns. The topics are selected as those important contribu-
tions to which were made in the works of Prof. Mikhail Tribelsky. Most of the results
collected in this review, may be considered as “old” ones, as they were published ca.
30–35 [8,9,11,25,38,41,48,56,58–60,74,102] or 20 [57,63–65,75] years ago. Nevertheless, these
results remain relevant in the context of ongoing theoretical and experimental studies in
the ever expanding pattern-formation research area. This conclusion is upheld by the fact
that the present paper includes a few novel exact analytical results, obtained as a relevant
addition to the old theoretical findings concerning the DWs in systems of coupled real
GL (Ginzburg–Landau) equations [10]. The new results, represented by Equations (54),
(63)–(68), (72)–(75), and (87)–(90), produce exact solutions for symmetric DWs in the system
of real GL equations, including linear mixing between the components; the solution for
strongly asymmetric DWs in the case when the diffusion term is present only in one GL
equation; the three-component composite state, including the DW in two components and
a bright soliton in the third one; and the particular exact solution for DWs between waves
governed by the real GL equations, including group-velocity terms with opposite signs.

The significance of the results presented in this brief review is enhanced by the fact
that essentially the same coupled equations describe patterns of the DW and QP types not
only in thermal convection, but also in nonlinear optics, BEC, and other physical systems. In
particular, the pattern formation in BEC of cesium atoms under the action of a temporally
periodic modulation of the nonlinearity (imposed by means of the Feshbach resonance [108]),
similar to the Faraday instability, was recently experimentally demonstrated and theoretically
modeled in the framework of amplitude equations similar to Equation (101) in Ref. [109].
Another novel realization of the pattern formation was proposed for a driven dissipative
Bose–Hubbard lattice, which can be implemented in superconducting circuit arrays [110].

It is expected that theoretical and experimental studies along the directions outlined
in this review have potential for further development, which will make it possible to add
new findings to the above-mentioned well-established results.
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Abstract: Drying of an aqueous suspension containing fine granules leads to the formation of a
circular pattern, i.e., the coffee-ring effect. Here, we report the effect of mechanical rotation with
drying of an aqueous suspension containing a large amount of granular particles as in the Turkish
coffee. It was found that wavy fragmented stripes, or a “waggly pattern”, appear in the early stage
of the drying process and a “polka-dot pattern” with many small circles is generated in the late
stage. We discuss the mechanism of these patterns in terms of the kinetic effect on micro phase-
segregation. We suggest that the waggly pattern is induced through a mechanism similar to spinodal
decomposition, whereas polka-dot formation is accompanied by the enhanced segregation of a
water-rich phase under mechanical rotation.

Keywords: coffee-ring; micro phase-segregation; transition of drying pattern

1. Introduction

The formation of a deposition pattern with the evaporation of a liquid containing
nonvolatile particles has attracted considerable interest not only from a fundamental scien-
tific aspects perspective [1–3], but also from an engineering point of view with respect to
coating and patterning processes [4,5]. As a typical pattern, a so-called coffee-ring is caused
by the transportation of solute particles toward a pinned contact line driven by Marangoni
effect, or spatial gradient of the surface tension, under a differential evaporation rate over
the liquid/air surface [6–11]. In addition to the formation of a ring-like pattern [12], the gen-
eration of various kinds of morphologies, such as fractures, cracks, straight lines, spiral and
dry parch, have been reported in the drying of droplets containing micro or nanoparti-
cles [13–22]. Smart control of the positioning of nanoparticles by using photo-sensitive
surfactant in drying droplets was also reported [23]. It has been shown that particles can be
concentrated at the center of a droplet through spot-irradiation of its apex with a heating
laser, by dismissing the coffee-ring pattern, which phenomenon was interpreted in terms of
the reversal of intra-droplet flow induced by a thermal Marangoni effect [24,25]. A similar
manner of particle deposition at the center of a droplet was observed when the solvent was
changed from water to octane [26]. To suppress the coffee-ring effect, or the heterogeneous
deposition of particles, various methodologies have been proposed, including the appli-
cation of a surface acoustic wave [27], the imposition of electronic fields [28,29], heating
of the solid substrate [30], and the addition of a surfactant [31,32]. In the present study,
we performed a drying experiment by adopting an aqueous suspension containing fine
coffee powder/granules, i.e., Turkish coffee, which is usually served without filtering and
thus contains a relatively large amount of micro-particles. Drying this solution under a
horizontal static condition results in the formation of a homogeneous granular layer with-
out the formation of a coffee-ring. Interestingly, characteristic patterns of drying granules,
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Physics 2021, 3

such as multiple wavy segments and several mini-circles, are generated using a rotating
dish under a tilting condition.

2. Materials and Methods

Roasted coffee beans were ground with a conical burr coffee grinder (product MSCS-
2B, Hario Co. Ltd., Tokyo, Japan). Larger particles were sieved out of the ground powder
with a sifter (grid size of 250 μm, Tokyo Screen Co., Ltd., Tokyo, Japan). In Figure 1,
the experimental procedure in a schematic manner is shown, together with the photograph
of the coffee powder (average diameter of 68 μm, and standard deviation of 23 μm).
Aqueous solution was prepared by mixing 900 mg of ground coffee beans with 3 mL
of ultrapure water (produced with Milli-Q water purification system, Millipore, Merck).
The mixed solution was transferred onto a paper dish, of which the surface laminated with
polyethylene terephthalate is hydrophobic and the diameter of the bottom planar part is
140 mm (RS-362, Dixie Japan Ltd., Tokyo, Japan). Then, the solution was mechanically
homogenized with a vortex mixer (SI-0286, Scientific Industries Inc., Bohemia, NY, USA).
In the present Communication, we report the experimental results under the conditions
that the paper dish was fixed to a rotating dish with a tilting angle of θ = 45◦ and was
rotated at 60 rpm by a direct current motor (mini-motor multi-ratio gearbox (12-speed),
item 70190, Tamiya Ltd., Tokyo, Japan). As for the effect of tilting, we found that the coffee
solution tends to flow out from the dish when θ is larger than 60◦, whereas contrast of
the generating pattern becomes relatively unclear when θ is smaller than 30◦. Thus, we
have carried out the experiment by taking the tilting angle as 45◦. Under the condition
θ = 45◦, when the rotation rate is smaller than 30 rpm, the solution tends to flow downward
outside the dish. When the rotation rate is larger than 100 rpm, the generated pattern
tends to be inhomogeneous between the inner and outer regions of the dish, because of the
relatively large magnitude of the oscillation on the centrifugal force. Based on the results
of these preliminary experiments, we report the experimental results at the fixed values of
the tilting angle at 45◦ and rotational rate at 60 rpm, in order to reveal the representable
transition of the drying patters between wavy fragmented stripes and many mini-circles.

Figure 1. Experimental scheme. (a) Roasted coffee beans were ground with a conical burr grinder.
Larger particles were sieved out of the ground powder with a sifter (grid size: 250 μm). The ground
coffee was mixed with pure water on a paper dish (diameter of the horizontal circular area: 140 mm),
and the solution was spread over the whole dish by vibration with a vortex mixer. (b) Experimental
apparatus to rotate the tilted dish with the solution containing the coffee particles. The paper dish
with the coffee solution was fixed to a rotating dish with a tilting angle of θ = 45◦. The dish was
rotated at 60 rpm. During rotation, the whole experimental apparatus was situated inside a control
box with constant humidity (60%) and temperature (20 ◦C).
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3. Results and Discussion

Figure 2 shows the drying patterns obtained from the coffee solution, by adopting
(a–d) a solution containing coffee powder (see Figure 1a) and (e) filtered solution without
powder. All of the pictures were taken for the completely dried states after standing still
for 24 h with horizontal positioning. For the experiments shown in (a–d), we used a
suspension with the solution of coffee powder on a paper dish, of which the surface is
hydrophobic. Figure 2a shows the appearance of a pattern with many wavy shapes, which
was obtained by fixing the solution on the tilted plate for 10 s in a stationary manner and
then rotating it for 1 min. Hereafter, we call this morphology a “waggly” pattern. Figure 2b
shows the drying pattern after 10 s of stationary tilting and then 20 min of plate rotation.
The appearance of many mini-circles with a diameter of ~1 mm is observed, which we call
“polka-dot” in this article. Here, it is to be noted that the waggly and polka-dot patterns
appeared for the same experimental solution with different time-period of the dish rotation.
Figure 2c shows a tree-like pattern which was generated under the stationary tilt condition
for 1 min without rotation. Figure 2d shows a homogeneous layer of powder obtained by
drying the coffee suspension under a horizontal arrangement. For comparison, Figure 2e
shows a so-called coffee-ring, which was generated under horizontal drying of a droplet of
coffee solution prepared through filtration. In both Figure 2d,e, 0.1 mL of coffee solution
was deposited on the paper plate.

As shown in the experimental observations (Figure 2), it has become clear that drying
under tilted rotation strongly affects the outcome; a waggly pattern appears first and
then a polka-dot pattern develops. Next, we discuss the mechanism of the occurrence of
the characteristic patterns. Under dish rotation, the coffee suspension is segregated into
grain-rich and water-rich solutions as revealed in Figure 2. It would be expected that the
underlying mechanism of the pattern formation observed for the suspension could be
interpreted in terms of a kinetic effect in the first-order phase-transition. Thus, we will
consider the appearance of the waggly and polka-dot patterns by adopting Cahn–Hilliard-
type simple model equations [33–39]:

∂η

∂t
= ∇

(
Mc∇ δF

δη

)
, (1)

where the free energy F exhibits two different contributions: bimodality with the order
parameter and the interfacial energy. Here, Mc is a parameter of diffusivity and t is time.

F =
∫ (

Lη(1 − η) +
α

2
|∇η|2

)
dv, (2)

where L, α and dv are interaction parameter, gradient energy coefficient and differential
volume, respectively. For simplicity, we chose the bimodal profile of the interaction energy
as a function of η, corresponding to the water content in the solution containing coffee
grains; η = 1 corresponds to pure water. We also neglected the contribution from the
mixing entropy, since we are considering the segregation of relatively large particles of
coffee grains. For the calculation of Equation (2), we tentatively adopted the parameters
L = 6.4 × 103 J/mol and α = 3.0 × 10−3 Jm2/mol, so as to obtain the pattern with usual
spinodal decomposition. We may regard that η = 0, 1 correspond to the dense coffee
grains and the clear solution, respectively. Strictly speaking, our experimental system is
non-conservative, because of the evaporation of water to cause the spatial pattern. Thus,
the usual Cahn–Hilliard equation does not hold in a strict manner for our experiments,
especially for the experimental conditions with relatively large effect of the evaporation.
However, the numerical results can still be expected to provide useful insight into the
mechanism of pattern formation. Actually, for the initial stage of the drying process when
the water content does not decrease so much, the kinetic equation based on Cahn–Hilliard
model would represent the essential feature of the segregation. Since the order parameter
η is dependent primarily on the relative concentration of the coffee grains, we may need to
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consider that the diffusivity Mc is sensitively dependent on η, in addition to the bimodal
dependence (the term η (1 − η)),

Mc =

[
D0

RT
η +

D1

RT
(1 − η)

]
η(1 − η), (3)

where D0 and D1 are the diffusion constants for the states with η = 0 and 1, respectively. In
the following simulation, we used the universal gas constant R = 8.31 J/mol. We adopted
the apparent diffusion constants D0 = 4.0 × 10−10 m2/s and D1 = 4.0 × 10−8 m2/s, by
taking into account the effect of the smaller diffusivity of the grain rich solution. We
adapted one-order larger value for the apparent diffusivity of water, D1, as that of the pure
water with stationary standing state [40], by considering the effect owe to the rhythmic
change in gravitational field induced by the dish rotation. As for the diffusivity of the
grain powder (the diameter is ca. 40 μm as estimated from the average diameter of 68
μm, as mentioned in Materials and Methods), it is expected that its diffusion constant
is on the order of 10−5–10−6 comparted to that of water for the usual Brownian motion
under thermal equilibrium, as estimated from the Stokes–Einstein relationship. In addition,
with the decrease of the water content, the diffusion of the coffee grain should become
much lower. Thus, it is noted that the adapted value for D1 is rather large compared
to the intrinsic diffusivity under the fluctuation-dispersion relationship near thermal
equilibricity. In other words, we perform the numerical modeling with the consideration
of the effect induced by the external agitation, i.e., the periodic change of the gravitational
field accompanied by the rotation of the tilted dish. Through such simple assumptions, we
performed a numerical simulation using a two-dimensional system to shed light on the
essential mechanism on the time-development of the generated pattern. It may be possible
to include the effect of the periodic acceleration during dish rotation by tuning the effective
temperature in the simulation. However, in the present study, for simplicity we used room
temperature, T = 293 K. We carried out the numerical simulation by modifying the source
code of Python available from the open access version [41], provided by the “Yamanaka
Laboratoty” at Tokyo University of Agriculture and Technology, Japan. The grid spacing in
the computation is taken as 1.0 × 10−3 m. The time width and step number are 0.01 s and
13,000, respectively; corresponding to a time-period of 130 s.
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Figure 2. Generation of various characteristic patterns from a drying solution containing coffee
powder under different conditions. The scale bars are 10 mm. (a) A waggly pattern with many wavy
shapes formed when the paper dish was tilted while stationary for 10 s and then rotated for 1 min at
a fixed angle of 45◦ (see Figure 1b). After the rotation, the dish was stood still horizontally for 24 h.
The light brown and dark brown parts indicate water-rich and powder-rich regions, respectively.
(b) Polka-dot pattern with many mini-circles generated from the coffee solution, with tilting without
rotation for 10 s and then rotation for 20 min. After the rotation, the dish was stood still horizontally
for 24 h. (c) Tree-like pattern caused by the downward flow of coffee solution when the plate was
tilted at a fixed angle of 45◦ for 1 min without rotation, the dish was stood still horizontally for
24 h. (d) Homogeneous pattern formed by drying the coffee solution containing the powder, i.e.,
essentially the same solution as in (a–c). (e) Usual so-called coffee-ring formed by drying the filtered
coffee solution with almost no grained powder.

Figure 3 exemplifies the segregation pattern generated after 130 s from the start
of the segregation in the simulation. Figure 3a shows the appearance of wavy short-
fragmented stripes, where the coloring of the segregation pattern is carried out with a
threshold value of η = 0.53. This wavy pattern is familiar for phase segregation with
spinodal decomposition [42] and apparently is similar to the waggly pattern observed in
the early state (1 min rotation) of the drying process with vessel rotation as in Figure 2a.
In contrast, Figure 3b shows the appearance of many mini-circles when the threshold is
η = 0.56, corresponding to the polka-dot pattern observed in the late stage with rotation
as in Figure 2b. Here, note that the apparent patterns change markedly depending on the
threshold value for the same stage of the phase segregation kinetics. Figure 3c shows the
spatial profile of the order parameter for the same region as in Figure 3a,b, revealing the
existence of multiple domains with a larger η value along a wavy stripe. The appearance of
multiple spots implies the occurrence of mini water-rich spots and such water-rich regions
would prefer the formation of round shaped domain owe to the effect of surface tension.
Thus, it is expected that such water-rich mini-domains tend to develop circular aqueous
droplets during the longer drying process with rotation under tilting. The rate of water
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evaporation is expected to be faster in the grain-rich region (corresponding to the domain
with smaller parameter η) compared to that from the relatively smooth surface of the mini
water-rich region, which may induce the formation of mini water droplets with circular
shapes by causing the polka-dot pattern.

Figure 3. Segregation pattern obtained from numerical simulation for phase-segregation with the
simple model equations (Equations (1)–(3)). The scale bars are 10 mm. (a,b): Spatial patterns with
different threshold values of the parameter, η = 0.53 and 0.56, respectively, both of which correspond
to the pattern generated after 130 s from the start of segregation. The bright parts in (b) show the
region that is more water-rich than that in (a). (c): Order parameter along a section as indicated
by a green bar in (a) and a red bar in (b), which are chosen from the spatial patterns in (a,b). (d):
Artificial 3D color image on the same numerical simulation as in (a,b), revealing the existence of mini
water-rich spots on the upper part (larger η value) of the waggly pattern.
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4. Conclusions

We have reported the formation of waggly and polka-dot patterns for a drying solution
containing fine coffee granules under tilted rotation. The results showed that mm-sized
phase-segregation between the powder-rich and water-rich phases occurs for the drying
solution with dish-rotation, whereas a homogeneous drying layer is generated without
rotation. In relation to our observation, the appearance of various unique patterns from
a coffee solution with a large amount of grain powder is known as a “fortune telling”
pattern with Turkish coffee [43]. Inspired by such interesting pattern formation, we have
performed the present study by introducing the effect of mechanical rotation of the plate.
The appearance of the polka-dot pattern implies the realization of a uniform pattern with
many mini-circles. It is noted that the time-development from waggly onto polka-dot
pattern implies a kind of reverse process of coarse-graining. On the other hand, it is well
known that coarsening or Ostwald ripening is the usual scenario in spinodal decomposi-
tion. Recently, it has been suggested that assemblies of self-propelled particles can cause
reverse Ostwald ripening, i.e., reverse process of coarsening [44]. As similar phenomenon,
the formation of spherical domains through the kinetics of spinodal decomposition was
observed for a rubber-modified epoxy resin accompanied by a chemical reaction [45–48].
It is also noted that, from theoretical considerations, self-propelled particles are expected to
undergo phase-separation [49–51], suggesting the occurrence of reverse process of coarsen-
ing during the development of phases separation. Thus, it is expected that the occurrence
of the reverse-coarsening is generated under the far-equilibrium conditions through the
violation of the fluctuation-dissipation relationship, or caused by the external mechanical
agitation. In our experiment, the periodic change of the gravitational field should cause
fluctuating translational motion of the segregating domains and such forcing effect may
concern with the underlying mechanism on the specific phase-segregation of self-propelled
particles under the violation of the fluctuation-dissipation relationship. The results of the
present study as in Figure 2 suggest that the formation of many mini-circular pattern from
waggly pattern, or reverse Ostwald ripening, can be generated for passive particles under
external agitation of the mechanical dish rotation with a tilted state. Here, it is to be noted
that, for the transition of the patterns, surface tension should play an important role in
the formation of the circular domain as in the Polka-dot pattern through the decrease of
the droplet surface area in the water-rich domains. In our 2D model simulation, we have
not adapted these important effects in an apparent manner. It is highly expected that our
results will stimulate experimental studies to examine the possible appearance of unique
drying-induced patterns for solutions under various types of external mechanical agitation
and also theoretical studies to clarify the detailed mechanism of the time-development
from waggly pattern onto polka-dot pattern.
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Abstract: Structural color emerges from the interaction of light with structured matter when its
dimension is comparable to the incident wavelength. The reflected color can be switched by con-
trolling such interaction with materials whose properties can be changed through external stimuli
such as electrical, optical, or thermal excitation. In this research, a molybdenum oxide (MoOx)
reflective grating to get a switchable on/off subpixel is designed and analyzed. The design is based
on subpixel on and off states that could be controlled through the oxidation degree of MoOx. A
suitable combination of three of these subpixels, optimized to get a control of primary colors, red,
green, and blue, can lead to a pixel which can cover a wide range of colors in the color space for
reflective display applications.

Keywords: color reflective displays; phase-change materials; structural color

1. Introduction

For centuries, color has been a quite interesting topic for the scientific community [1,2].
The first systematic study was made by Newton when he performed his classical exper-
iment, i.e., analysis and synthesis of light with a glass prism. Newton stated that the
spectrum was constituted by seven colors: red, orange, yellow, green, blue, indigo, and
violet. However, most colors in nature are not spectrally pure or able to fit in a small
region of the spectrum, since they are often a result of a combination of phenomena. The
color of a radiation depends not only on the reflectance—or transmittance—of the last
object it went through, but also on the kind of illuminant and the photopic curve of the
observer. Although a wide range of magnitudes can be used to characterize color, the best
attributes according to the International Commission on Illumination (CIE) are chromaticity,
brightness, and contrast [3].

Structural color is one of the most common manifestations of color in nature [4].
It is based on the selective light reflection depending on the interaction between light
and structured matter (typically at nano- and microscale). This is the main pigmentary
difference in which color is originated by the absorption of the electrons present in the
pigment [5].

The most common mechanisms for obtaining structural colors are based on interfer-
ence, diffraction, scattering, and photonic crystals [6]. Film interference can be considered
as a typical Fabry–Perot (FP) effect. In such systems, light undergoes multiple reflections.
When the optical path difference between two reflected rays is an odd multiple of a half
of the incident wavelength, constructive interference takes place in specific spectral in-
tervals and vivid colors can be generated. Many reflective displays are based on this
phenomenon [7–11]. A typical configuration is a metal–insulator–metal (MIM) stack. A
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thin metal layer is used to control the spectral width of the reflectance peaks, a dielectric
spacer tunes the resonant wavelength in the cavity, and a second metal layer works as a
bottom mirror. However, if one looks for monochromatic intervals, there is an important
drawback; these types of FP configurations generate reflectance resonances with a broad
spectral width, and more than one resonance (second-order or even higher) is often gener-
ated, leading to undesirable resonance peaks in the visible range. This can be overcome by
using diffraction gratings. They allow to generate narrow and isolated peaks in the visible
part of the electromagnetic spectrum.

The diffraction effect by a grating is comparable to the multiple interference generated
in FP cavities. The grating efficiency is determined by the period, functional shape of
the profile, depth of the periodic structure, materials, angle of incidence and observation
direction, wavelength, and polarization. Wood anomalies are known concept in the diffrac-
tion by periodic gratings [12]. The adjective “anomalies” is because, when discovered
by R. Wood in 1902 [13], there was no clear explanation for the observation of narrow
reflectance peaks in diffraction gratings. For metals, this is now explained because of
surface plasmon excitation [12]. For dielectric gratings, the effect is due to the coupling
of the propagating diffracted rays to the modes of the waveguide underneath, leading
to guided mode resonances (GMR) [14,15]. The spectral width of a GMR is usually quite
narrow; thus, as later shown, this is a favorable feature in terms of obtaining a wide color
gamut. Although diffraction gratings have been proposed previously for their use on
reflective displays [16–20], most of the gratings cannot control the reflectance for a fixed
geometry. In this situation, only “static” colors are generated, which limits their potential as
actively tunable color devices. A more recent study proposed a dielectric grating based on
ITO to obtain an active color display by changing its permittivity with electrically tunable
electron densities [21]. An alternative solution to the one proposed in [21] is the use of
phase-change materials (PCM).

The most extended PCMs are chalcogenide materials. These are compounds of ele-
ments of the chalcogen group (sulfur, selenium, and tellurium) bound to network formers
such as arsenic, germanium, antimony, and gallium [22]. They are known as the GST
family due to the chalcogenide Ge2Sb2Te5, which has revolutionized the blooming field of
phase-change photonics. The peculiarity of these materials is that they can be switched
between their crystalline and amorphous phases by controlled electrical, optical, or ther-
mal excitation [23,24]. This process leads to a modulation of their optical and electrical
properties. Another known PCM is vanadium dioxide (VO2). VO2 is a strongly correlated
material that is dielectric at room temperature and becomes metallic in the infrared spec-
trum when heated at around 340 K [25–27]. On the other hand, molybdenum oxide (MoOx)
presents a metal–semiconductor transition in the visible (Vis) spectrum, by changing its
oxidation degree from MoO2 (metal) to MoO3 (semiconductor), which makes it suitable for
applications in this range such as reflective displays among others [28]. Very recently, a
switchable pixel based on an FP configuration with MoOx for color reflective displays was
presented [29].

In this research, the design of a dielectric grating based on molybdenum oxide is
proposed as a switchable on/off pixel for a color display. MoOx can be considered a
nonvolatile phase-change material, i.e., it does not require a constant energy supply of
energy to keep the switched state. It can exist as MoO2 or MoO3 and has a wide variety
of nonstoichiometric oxides. The change in the oxygen content strongly affects the band
structure and, consequently, its optical behavior. In MoO3, O 2p orbitals give rise to the
highest occupied states, wherein electrons are fully localized around the O atoms, giving a
semiconducting behavior. However, the Fermi level of MoO2 is composed of O 3d orbitals
that present the characteristics of a metal [30]. Therefore, by changing the oxidation state
from MoO3 to MoO2 a semiconductor–conductor–metal transition is triggered, allowing
a modulation of the light–matter interaction. Interestingly, the literature shows that the
intervalence charge-transfer modulation within diverse valence states of Mo, going from
Mo6+ (MoO3) to Mo5+ and finally to Mo4+ (MoO2), can occur thermally by annealing at
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400 ◦C in air (oxidation of MoO2 to Mo3) [31,32] or in a reduction environment (reduction
from MoO3 to MoO2), e.g., using a gas such as hydrogen or propane (which is a source of
hydrogen), [32,33] involving the thermal-activated adsorption/desorption of oxygen.

As for oxidation [31,32], the feasibility of oxidation even from MoS2 to MoO2 and
MoO3 in air has also been shown by green laser irradiation on a millisecond time scale [34].

This annealing and change of oxidation state can be operated starting from deposited
MoO3 or MoO2, which can be obtained (i) by controlling the stoichiometry during the
growth by the oxygen partial pressure, or (ii) by post-growth processing which includes
ion bombardment, which results in the preferential loss of bridging oxygen atoms and
oxygen plasmas.

Noteworthy, this innovative way of modulating the oxygen content in oxides has been
recently reported for the phase-change material VO2 [35].

Although work is in progress for the practical implementation of this approach to
MoOx, the oxidation/hydrogenation approach has already been implemented in dynamic
color devices [36], even using another material (magnesium, Mg), moving it between the
two states of oxidation to MgO and hydrogenation to MgH2.

According to this concept of oxidation/reduction applied to MoOx, MoO3 acts as
a lossless transparent dielectric in the visible range (Egap = 3 eV depending on the crys-
tallinity), allowing the coupling of narrow modes of the GMR kind and, therefore, opening
the possibility of getting vivid colors in the reflectance. On the contrary, MoO2 absorbs the
visible spectrum range and Wood anomalies cannot be generated, reflecting a pale color.

For an accurate description of the proposed color display, this paper is divided into
various sections. Section 2 is devoted to describing the device design, Section 3 contains
details about the numerical simulation method, Section 4 develops the working principle
and Sections 5 and 6 contain, respectively, the main results and conclusions of this research.

2. Pixel Model

In this research, the reflective display pixel constituted three subpixels, each one
associated to a primary color, red (R), green (G), and blue (B). Their reflection properties
can be controlled through the optical properties of the MoOx material according to what
has been described previously. Each subpixel is a reflective diffraction grating based on
periodic MoOx ribs over a silicon dioxide (SiO2) substrate, as shown in Figure 1 (top). A
microheater [37] can be located under the substrate to control the annealing process under
an oxygen or hydrogen atmosphere.

As MoOx is the active tunable material of the reflective display, on and off states can be
generated and controlled depending on its stoichiometry. In this work, two measurements
of oxygen contents were considered: x = 2.9 (on) and x = 2.1 (off ). The refractive index of
molybdenum oxide for both oxygen contents is also shown in Figure 1 (bottom left and
bottom right, respectively). The imaginary part of the refractive index, k, is almost zero in
the on mode and greater than one in the off state. In the on state, light can travel through it,
allowing the generation of a GMR (see Section 4 for more details), which in turn produces
vivid colors. However, in the off state, most of the light is absorbed. In this case, resonances
are not produced, and a pale unsaturated color is reflected. These optical constants for both
oxygen contents were obtained from the literature [38].

In general, the main parameters for the characterization of a diffraction grating are the
duty cycle, D, the height, d, of the ribs, the period, P, the polarization (perpendicular to rib
direction, p-polarization), and the incident angle, θ. The duty cycle D can be considered as
the ratio between the width of the rib, w, and the period P. The first three parameters can
be varied for the optimization of the device. The optimization is based on the achievement
of the best primary colors, R, G, and B. Each primary color corresponds to a different
grating (subpixel) with different parameters. Their suitable combination gives rise to the
desired color.
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Figure 1. Scheme of the reflected display unit (subpixel associated with a primary color). This design is based on a periodic
structure of ribs made of molybdenum oxide (MoOx) over a SiO2 substrate. Depending on the amount of oxygen content,
MoOx is either a transparent medium to visible radiation (on state) or an absorbing one (off state) (see the extinction
coefficient k of the refractive index [38]). The transition between both states can be triggered by controlling the amount of
H2 or O2 (see [35,36]).

All results were simulated considering normal incidence and light polarization per-
pendicular to the rib direction. For simplicity, this polarization was chosen in order to
ignore the length of the ribs, allowing the study of the system under a 2D geometrical
configuration without losing physical information.

3. Numerical Simulation Method

Spectral reflectivity was calculated using finite-difference time-domain (FDTD) simu-
lation (LUMERICAL). This is a numerical analysis technique used for modeling computa-
tional electrodynamics (finding approximate solutions to a system of coupled differential
equations by time discretization). Nonuniform mesh settings were used in these simula-
tions, and the source used was always a plane wave. Periodicity boundary conditions were
used to simulate an infinite number of MoOx ribs over a silicon dioxide substrate.

All color simulations within this work assume a standard D65 illuminant, correspond-
ing to average daylight, and a CIE standard observer (2◦), representing mean human
spectral sensitivity to visible spectrum range under 2◦ field observation [39,40]. As sunlight
is not polarized and this study was performed for p-polarization, some polarizing element
should be used in the actual device for the accurate generation of the colors described in
this work.

The most common color space to characterize the color generated by reflective displays,
as cited in the introduction, is CIE1931. In this space, color is defined by its tristimulus
values (x, y, z) in the chromaticity diagram. In this diagram, it is possible to compare
the simulated red, green, and blue colors generated by the device with the standard
ones (sRGB).

4. Working Principle: Wood Anomalies and the Guided Mode Resonance

The color reflected by the designed subpixel device in the on mode is the result of
the excitation of guided waves by the grating, also known as Wood anomalies [14]. This
high-reflectance phenomenon is based on coupling light propagating in free space to the
grating, leading to GMRs [41]. To better understand this phenomenon, spectral reflectivity
and the electric and magnetic fields in the near-field regime of the proposed device were

74



Physics 2021, 3

analyzed for a given subpixel case. To simulate an example, diffraction grating parameters
were fixed to d = 150 nm, P = 340 nm, and D = 0.6 (normal incidence and p-polarization
were also assumed).

In Figure 2a,b, the grating spectral reflectivity is shown for the on and off modes,
respectively. In the on mode, a narrow reflectance peak appears at a wavelength around
517 nm. There is a single resonance because a mode is excited and guided by the subwave-
length grating. On the contrary, the spectral reflectivity in the off state is a flat curve due to
the absorbance predominance of MoO2.1, making impossible the generation of GMR.

Figure 2. Reflectance of the proposed subpixel for the grating parameters d = 150 nm, p = 340 nm, and D = 0.6 for the (a) on
and (b) off states, respectively. For the transparent version of the MoOx ribs, the reflection of the grating peaks occurs at
λ = 517 nm. Square module of the electric field in near-field regime when the incident wavelength is λ = 517 nm (spectral
position of the reflectance maximum) for the (c) on and (e) off states, respectively. Square modulus of the magnetic field in
the near-field regime when the incident wavelength is λ = 517 nm for the (d) on and (f) off states, respectively. The electric
field is orthogonal to the grating ribs and the magnetic field is parallel.

The modules of the electric and magnetic fields for the on state and λ = 517 nm are
represented in Figure 2c,d, respectively, where guided mode resonances can clearly be
observed. Such resonances come from a coupling between nonhomogeneous diffraction
orders and the eigenmodes of the grating (Wood anomalies) [41]. As a result, the electric
dipole resonance is produced at the MoOx–SiO2 interface (the two hotspots in Figure 2c).
The coupling of all the dipoles produced in each rib is attributed to the narrow and high
reflectance peak. Depending on the number of interacting ribs (i.e., number of interacting
dipoles), the electromagnetic response is different. A higher number of ribs leads to more
efficient coupling. To assess the importance of this issue, the same simulation shown in
Figure 2a was performed but now considering a finite number of ribs (Figure 3a). As this
number was increased, the reflectance was more similar to that simulated by periodic
boundary conditions. Figure 3b shows that a reflectance stationary regime was reached
from a number of approximately 150 ribs.

Analogous simulations are presented in Figure 2e,f for the off state. No modes were
excited due to the high value of the extinction coefficient k of MoO2.1.
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Figure 3. (a) Spectral reflectivity of the proposed device fixing grating parameters to d = 150 nm, P = 340 nm, and D = 0.6 (on
state) for different numbers of ribs. (b) Maximum reflectance of the resonances generated by changing the number of ribs.

5. Results

The results are based on the optimization of each reflective grating subpixel to generate
the best primary colors. For normal incidence and p-polarization, the way to control the
GMR is by varying the duty cycle, the period, or the rib height. Although color does not
only depend on spectral reflectivity, for RGB optimization, those magnitudes (D, P, d)
were analyzed to generate resonances at 460 nm (blue), 520 nm (green), and 620 nm (red).
Moreover, a good contrast between the on and off colors should be addressed. The grating
subpixel parameters used for color primary generation are shown in Table 1.

Table 1. Grating subpixel parameters (height d, period P, and duty cycle D) for the generation of red,
green, and blue colors.

R Subpixel G Subpixel B Subpixel

d (nm) 230 125 150

P (nm) 400 340 280

D 0.55 0.8 0.6

The corresponding spectral reflectivities are shown in Figure 4a,b for the on and the off
states, respectively. The height, the bandwidth, and the spectral position of those resonances
delimited the quality of the generated color. For small bandwidths, monochromatic colors
were obtained. However, a lower bandwidth led to less light being reflected. Therefore,
the luminosity of the color was too low, generating a very dark color. For this reason, an
equilibrium should be required. The resulting colors of these resonances are represented
in Figure 4c,d for the on and the off states respectively, and both are plotted in CIE1931
in Figure 4e. On colors (white points) are close to standard RGB coordinates (triangle
vertices). However, off colors (black points) are far from those vertices and close to each
other, revealing a pale and similar color. A large color gamut can be obtained through
this system.

76



Physics 2021, 3

Figure 4. Spectral reflectance of the designed subpixel devices by considering the grating parameters
shown in Table 1 for the on (a) and off (b) states, respectively. On (c) and off (d) colors generated by
the reflective display pixel, respectively. (e) Representation of those colors in CIE1931 space. The
triangle represents RGB standard coordinates, white points (on simulated colors), and black points
(off simulated colors).
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6. Conclusions

In this paper, a switchable on/off color reflective pixel model based on resonant effects
by reflective subwavelength diffraction gratings (subpixel) was designed. The pixel model
consisted of a suitable combination of three of those subpixels, each one optimized to
generate a primary color, red (R), green (G), or blue (B). The excited resonances in each
subpixel can be considered as the collective effect of the electric dipole modes generated
in each grating rib for resonant wavelengths. Consequently, the generated color can be
tuned spectrally by changing the height, period, and duty cycle of the grating of each
subpixel. On/off modes can be generated in each subpixel due to the change in oxidation
state of molybdenum oxide (MoOx) from MoO2 to MoO3. This leads to the generation of
a wide gamut of colors close to standard sRGB ones for the on mode and a pale color for
the respective off state. Compared to other reflective devices based on the Fabry–Perot
phenomenon, narrower reflectance peaks can be obtained due to the characteristics of
the excited grating resonances, which correspond to the Wood anomalies. This allows
the reflection of monochromatic colors and the generation of a large color gamut for
applications in color reflective displays.

Author Contributions: Conceptualization and methodology, G.S., F.M. and Y.G.; software, G.S.
and Y.G.; formal analysis, all.; resources, M.L. and F.M.; writing—original draft preparation, G.S.;
writing—review and editing, G.S., D.O., J.M.S. and F.M.; supervision, F.G., M.L. and F.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No. 899598—PHEMTRONICS.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shevell, S.K. (Ed.) The Science of Color; Optical Society of America/Elsevier Science: Oxford, UK, 2003. Available online:
https://www.sciencedirect.com/book/9780444512512/the-science-of-color (accessed on 9 August 2021).

2. Crone, R.A. A History of Color: The Evolution of Theories of Light and Color; Springer Science & Business Media: Dordrecht, Germany,
1999. [CrossRef]

3. Schanda, J. (Ed.) Colorimetry: Understanding the CIE System; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [CrossRef]
4. Sun, J.; Bhushan, B.; Tong, J. Structural coloration in nature. RSC Adv. 2013, 3, 14862–14889. [CrossRef]
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Abstract: The conjecture is made based on a plausible, but not rigorous argument, suggesting that
the unknot probability for a randomly generated self-avoiding polygon of N � 1 edges has only
logarithmic, and not power law corrections to the known leading exponential law: Punknot(N) ∼
exp[−N/N0 + o(ln N)] with N0 being referred to as the random knotting length. This conjecture is
consistent with the numerical result of 2010 by Baiesi, Orlandini, and Stella.
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1. Introduction and Problem Formulation

Randomly generated self-avoiding polygons represent an interesting object for math-
ematical physics, for several reasons. First, such polygons can serve as a zeroth approxi-
mation model for ring polymers. Different realizations, or members of the ensemble, of
random polygons mimic different spatial arrangements of polymers, sampled via thermal
fluctuations; importantly, ring polymers are currently the subject a great deal of interest,
as evidenced, for example, by recent papers [1–5]. Despite this multitude of studies, the
fundamentals of the statistical mechanics of topologically constrained polymers remain
insufficiently understood. Second, random polygons—especially those comprised of the
edges of a lattice, e.g., a cubic lattice—allow for concise mathematical formulation of the
problems of interest, which, for an off-lattice model, is difficult even to formulate, let alone
solve. Of course, this situation is by no means unique; other problems are also frequently
more easily addressed using lattice models. Specifically, here, the problem in question is
that of the knot entropy; see [6] for a general discussion. Indeed, this quantity is easy to
define for the lattice polygon. Let Ωunknot(N) be the total number of distinct rooted, i.e.,
with one point fixed, polygons with N edges, which are topologically equivalent to the
trivial knot (an unknot or a circle). Since lattice polygons are considered, Ωunknot(N) is a
well-defined finite number. By definition, then, ln Ωunknot(N) is the entropy of an unknot.

Let us emphasize that this paper deals only with loops made by the closing of one
single line, like letter O, not like letter θ or sign ∞, etc.; the loop may be embedded in
various ways in three dimensions, forming an unknot or knots of different topologies, but
the loop itself remains a simple O, albeit a “lattice O”.

The number of unknots must be compared with the total number of distinct rooted
polygons of N edges in three-dimensional space; let us call it Ωloop(N). Then, ln Ωloop(N)
is the entropy of the full ensemble of loops of all knot types. In terms of these quantities,
the probability of finding an unknot among the randomly (and uniformly) generated
polygons is:

Punknot(N) = Ωunknot(N)/Ωloop(N) . (1)

Clearly, ln Punknot represents the corresponding change of entropy. Under the con-
ditions of thermodynamic equilibrium, ln Punknot is related to the minimal amount of
mechanical work, needed to untie all the knots.
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Some statements are rigorously established about these quantities; see review [7] and
references therein. In particular, it is known that there exists a limit,

lim
N→∞

ln Punknot(N)

N
= − 1

N0
. (2)

In other words,
Punknot(N)|N�1 � const · exp[−N/N0] . (3)

The quantity N0 is sometimes referred to as the random knotting length: for N < N0,
most polymers are unknots, while, for N > N0, unknots are exceedingly rare. The exponen-
tial behavior of unknotting probability (3) is also proven for random off-lattice polygons
and established numerically for a number of other models [7], albeit with very different
values of N0, ranging from a few hundred to a few million. Remarkably, no analytical
method is known to find this quantity for any model.

The subject of the present note is the question—how does Punknot approach its ex-
ponential asymptotic? In other words, how does the difference, ln Punknot(N)/N + 1/N0
(note that ln Punknot(N) < 0), behave at large N, or how does this difference tend towards
zero? The question is about the tail of probability Punknot(N) and whether it is similar to
other subtle probability distributions known in various branches of physics; see, e.g., [8].

2. Developing the Argument

Let us start with Ωlinear(N)—the number of distinct self-avoiding “open polygons”
of N edges in three-dimensional space starting from, i.e., rooted in the origin (the open
polygon is simply a broken line, with non-connected ends). This quantity was carefully
studied in the theory of self-avoiding walks (see, e.g., [9], as a classical source), and it is
known to behave as

Ωlinear(N)|N�1 � const · zN · Nγ−1 , (4)

where γ is a critical exponent which is universal, unlike the growth constant z, which is
not universal. Therefore, z depends, for example, on the lattice type, while γ does not. The
numerical value of γ was studied with great attention both analytically by renormalization
group and ε-expansion [10], and by high-precision Monte Carlo [11,12]: the result was
γ ≈ 1.16.

Based on the knowledge of Ωlinear(N), one can deduce the estimate of Ωloop(N). This
deduction is known [9], and, here, for the purpose of subsequent generalization, let us
repeat the derivation using the scaling argument, originally due to Khokhlov [13] and
later developed by Duplantier [14]. This argument views transformation from a linear
chain to a loop as a chemical reaction between chain ends. The argument suggests that the
probability of two ends of a linear chain, meeting together in space, is of the same order as
the conditional probability of the ends of two separate chains meeting in space, conditioned
on the fact that these two chains share the same volume R3 ∼ N3ν. Here, ν ≈ 0.588 is a
usual “metric” or Flory critical exponent, while R is the mean squared average gyration
radius of the chain of length N. This argument yields the following estimate for Ωloop(N):

Ωloop(N)

Ωlinear(N)
∼ Ωlinear(2N)

[Ωlinear(N)]× [R3Ωlinear(N)]
. (5)

This relation can also be explained in a different way. Equation (5) represents the
statement that two different probabilities are of the same order, i.e., they scale with the
same power of N. The left-hand side of Equation (5) is the probability that a randomly
chosen linear chain of N monomers can be closed due to two ends being next to each other
by pure chance. The right-hand side of Equation (5) estimates the probability, dealing
with two linear chains of the same length N being co-localized in the same volume ∼ R3;
for these two chains, the right-hand side of Equation (5) indicates the probability that the
end of one of the chains is found next to the end of the other. Indeed, the numerator of
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the right-hand side of Equation (5) represents the number of states of one linear chain of
combined length 2N that is the same as two separate chains with the ends of these chains
forced to be next to each other. The first factor in the denominator is the number of states
for one half-chain, while the second factor is enhanced by a factor R3 as soon as the second
chain can be rooted in any place within volume R3 around the root of the first chain (the
monomer size is taken to be unity). Assembling all this together, one arrives at:

Ωloop(N)
∣∣∣

N�1
� const · zN · N−3ν . (6)

This result also follows straight from Equations (1.10) and (1.11) of Ref. [14], and is
known for self-avoiding polymers, as stated in textbooks, see, e.g., [9]. The most important
property of the result (6) is that it does not involve the index γ, which cancels away from
the “chemical equilibrium” condition (5). This cancellation of γ has an important physical
interpretation: γ describes the situation around chain ends, as monomers close to the ends
find themselves in a different kind of environment compared to internal monomers close
to the middle of the chain. Since the loop does not have any ends, there is no effect to be
described by γ.

The estimate (6) is accurate in terms of the power, so we can rewrite it as:

Ωloop(N)
∣∣∣

N�1
� const · eN ln z−3ν ln N+o(ln N) . (7)

Thus, corrections in the exponential are much smaller than ln N.
The next step in building the argument is yet another mathematically proven state-

ment [7] that the number of N-step self-avoiding unknots, Ωunknot(N), behaves such that
there exists a limit,

lim
N→∞

ln Ωunknot(N)

N
= z0 < z , (8)

or
Ωunknot(N)|N�1 � zN+o(N)

0 . (9)

At the same time, there is a scaling prediction [15], supported by a significant amount
of numerical evidence [16–18], suggesting that a trivial knot loop, in terms of its overall
size (e.g., gyration radius), is controlled by the same index ν ≈ 0.588, which describes the
self-avoiding walks. Although there is a counter-argument pointing to the limited depth of
analogy between trivial knots and self-avoiding loops [19], one can try to take this analogy
one step further and conjecture that the number of unknots has the same scaling as the
number of self-avoiding loops (6), but with a modified growth constant:

Ωunknot(N)|N�1 � const · zN
0 · N−3ν

� const · eN ln z0−3ν ln N+o(ln N) .
(10)

In other words, the above argument yields the conjecture that the cancellation of
the index γ, as in Equation (5), occurs for knot-avoiding loops—just as it is proven to
do for self-avoiding loops. From physics point of view, this is justified by the fact that
γ is supposed to characterize chain ends, while an unknot has no ends. Since this is a
non-rigorous conjecture, it is important to stress where the argument may have limitations.
In this regard, cancellation of the index γ is the most essential point where the conjecture is
justified only by a physical argument and not by mathematics.

Another important point is also that the power ν needs to be of the same value
in both relation (6) and relation (10). If this conjecture is correct, then the probabil-
ity of unknot, Punknot(N) = Ωunknot(N)/Ωloop(N), is predicted to have the following
asymptotic behavior:

Punknot(N)|N�1 � const · eN(ln z0−ln z)+o(ln N) . (11)
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To reiterate, the non-rigorous conjecture, found here, is, first, motivated by the anal-
ogy between knots-avoiding and self-avoiding—both described by the same metric ex-
ponent ν, and, second, by the fact that there is no index γ or its analogs since there are
no ends in the loop.

3. Concluding Remarks

Equation (11) represents the result of the present paper. Of course, this equaion
indicates that the random knotting chain length can be expressed as 1/N0 = ln(z/z0).
However, this is not a significant result because the growth constant z0 (or even z) are not
simple quantities to compute theoretically or to measure experimentally; essentially, z0
and N0 contain the same information. The real non-trivial statement is that there is o(ln N)
instead of o(N) in the exponential. In other words, the conjecture suggests that there is
no power-law correction factor to the main exponential trend in unknot probability. The
correction, of course, exists, but it is at most logarithmic. This can be contrasted with the
fact that the probabilities of various non-trivial knots are routinely fitted to expressions like
Nμ exp(−N/N0) (with N0 as for trivial knots); see, e.g., [20–22]. In these terms, the result
of the present paper is that for the trivial knots, μ = 0 exactly.

The questions of critical exponents, related to the entropy of random polygons, were
examined numerically, in quite some detail in the series of studies by the Italian group of
E. Orlandini and co-authors [21–23]. In particular, Ref. [23] presented the most accurate
study to date of (in the present notation) the exponent μ and it was found that, within the
numerical accuracy of the Monte Carlo simulations made there, the result for an unknot
was so small that it was not distinguishable from μ = 0. In this sense, the result of the
present study can be viewed as a confirmation or rather an explanation of the numerical
observation made about a decade ago.

Does this result have practical implications beyond mathematical curiosity? In general,
random knots are a fact of life in case of a DNA plasmid and a number of other biological
contexts; see, e.g., [24]. Historically, in the first study [25] on random polymer topology, the
main surprise was to observe that the probability of non-trivial knots, i.e., 1 − Punknot(N),
although still rather small at the tested range of N values, is, nevertheless, an increasing
function of N. In this sense, the main observation is that for long polymers, Punknot(N)
is small. This is, of course, consistent with the statement of the mathematical theorem
(2), except the latter deals with the mathematical limit of N → ∞, while, in practice, the
exponential dependence of Punknot(N) on the chain length, N, seems to be consistent with
observations, even at modest values of N being certainly smaller than random knotting
length N0; see, e.g., [26]. In this sense, the statement of the absence of power law corrections,
made in the present paper, may have quite some practical implications.
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Abstract: The instability of traveling pulses in nonlinear diffusion problems is inspected on the
example of Gunn domains in semiconductors. Mathematically, the problem is reduced to the
calculation of the “energy” of the ground state in the Schrödinger equation with a complicated
potential. A general method to obtain the bottom-part spectrum of such equations based on the
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1. Historical Remarks

When the Editors kindly offered me to submit a paper to this Special Issue dedicated
to my fifty years in physics, I began to think about a possible topic of the paper. Finally, I
decided that the best is to generalize the results of my very first paper [1], which formally
was published exactly fifty years ago. I said “formally” because actually this paper has
never been published. Perhaps, its story is so remarkable that it is worth telling it here.

The point is that though I graduated from the Lomonosov Moscow State University
(MSU)—the one where now I head a laboratory—I did not enter this university in the
usual, standard manner. It so happened that the university I entered was the Belorussian
State University (BSU) in Minsk. Now, Minsk is the capital of independent state Belarus,
while, at that time, Minsk and Moscow both belonged to a single state: the Soviet Union.
In Minsk, I met my first scientific adviser Mikhail Aleksandrovich El’yashevich [2].

Then, upon completing my first two university years in Minsk, I moved to Moscow.
Thus, I became a student of MSU due to my transfer from BSU. Just one letter difference
in the names meant the drastic difference in the ranks. Though BSU was quite a good
university, MSU was (and is) the Number One.

Doing paperwork related to the transfer, I asked El’yashevich for a reference letter to
one of his collaborators in Moscow. I then obtained a letter to his former Ph.D. student
Sergei Ivanovich Anisimov [3], who became my next scientific adviser.

It was 1969. At that time, I could not even imagine how lucky I was. Anisimov was
employed by the Landau Institute for Theoretical Physics. The Institute was created just five
years ago to collect “under a single roof” the first generation of Lev Davidovich Landau’s
disciples [4]. By the time I am talking about, all of them had become first magnitude stars
in the scientific sky.

Thus, suddenly and almost by chance, I became embedded in the scientific atmosphere
representing the very top of theoretical physics in the USSR, and I would say in the entire
world too. Moreover, I had even more good luck, though, I did not know it yet: In the
very same year of my transfer to MSU, a prominent theoretical physicist Il’ya Mikhailovich
Lifshits [5] succeeded the late Landau’s position of the Head of the Theoretical Physics
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Department at the Kapitza Institute [6]. To this end, he moved to Moscow from Khar’kov (a
big Ukrainian city), where he resided before. In addition to this position, Il’ya Mikhailovich
got a professorship at the Chair for Quantum Theory, the Faculty of Physics, MSU. By that
time, another employee of the Landau Institute and a disciple of Il’ya Mikhailovich, namely,
Mark Yakovlevich Azbel [7], already shared his position at the Landau Institute with a
professorial position of this Chair. The second disciple of Il’ya Mikhailovich, who came
from Khar’kov to Moscow and became a Professor of the same Chair, was Moisei Isaakovich
Kaganov. Among other scientific accomplishments of this group was the galvanomagnetic
theory of electrons with an arbitrary dispersion law. The theory describes the effects
of both electric and magnetic fields acting together on free electrons in metals. In this
theory, electrons are regarded as quasi-classical particles, but, instead of the conventional
dependence of the energy on (quasi)momentum ε(p) = p2/(2m), this dependence may be
arbitrary. The theory was a breakthrough in quantum solid-state physics, and was named
after its creators—the LAK theory (Lifshitz, Azbel, Kaganov).

There is an interesting story related to this abbreviation. When another one of Landau’s
disciples, Alexander Solomonovich Kompaneetz, known, in addition to his outstanding
scientific results, for his sense of humor, leant about LAK theory, he said, “It is excellent
that the authors did not employ the inverted order of them.” The joke is that kal in Russian
means excrements.

To complete my description of the Chair for Quantum Theory, I should add that it
was headed by one of the most prominent experts in theoretical physics, a very respectable
person with the highest moral standards, Academician of the Soviet Academy of Sciences,
Mikhail Aleksandrovich Leontovich [8]. Alas, all of them have already passed away.

In 1969, I knew nothing about these people and the Chair, but Anisimov did know.
Therefore, when I asked his advice about the specific Chair at the Faculty of Physics for my
specialization, he immediately replied, “The one where I.M. Lifshitz is a Professor.” I took
his advice and applied for the specialization at this Chair. Once again, I was lucky — my
application was approved, and in addition to the excellent external scientific environment
at the Landau Institute, I benefited from that at the Chair for Quantum Theory.

Soon after my appearance at the Chair, I began to attend lectures on the quantum
theory of metals given by Kaganov. Bearing in mind that Kaganov was a brilliant lecturer,
it is easy to understand that I admired the beauty of the lectures and that of the theory
as a whole. Thus, it is easy to understand that, when Anisimov asked me about the
preferences for the topic of the future study, my reply was, “Something from quantum
solid-state physics”.

It is worth mentioning that, at the time, I did not have any idea about the specific
subfield, where the accomplishments of Anisimov lay (namely, laser–matter interaction,
physical hydrodynamics, shock waves, plasma physics, and the like). Fortunately, he
was a physicist with broad interests and understood physics far beyond the frames of his
own subfield. It was a typical feature of physicists from the Landau Institute originated
by Landau himself: Broad knowledge helps to see cross-links between different, seem-
ingly unrelated, problems. This, in turn, sometimes helps to obtain very beautiful and
unexpected results.

Then, according to my desire, Anisimov posed me a problem from quantum solid-state
physics. It was related to the Gunn effect in semiconductors [9]. At that time, the effect
was a fascinating, challenging topic, and, up to now, it still attracts a great deal of attention
from researchers [10–15].

Naturally, now the understanding of the effect is more profound, and its mathematical
description is much more elaborated than it was 50 years ago; see, e.g., Ref. [16]. However,
since the goal of this paper is to generalize the methods and results discussed in Ref. [1],
making them applicable to a broad class of related problems, rather than to inspect specific
peculiarities of the Gunn effect itself; in what follows, I stick to the old model of the
effect [17] employed by Knight and Peterson [18] and then, in my paper [1].
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Very briefly, the essence of the phenomenon is as follows. In a strong enough electric
field, E, applied to a semiconductor, the conductivity of the sample depends on E, and
the current–voltage curve becomes nonlinear. In some cases, calculations based on the
assumption of the spatially homogeneous distribution of the current density, j, and E along
and across the sample give rise to very unusual behavior of this dependence so that, in a
certain area of the E values, an increase in E results in a decrease in j.

In what follows, only one-dimensional cases will be considered, so I can replace
j(E) → j(E). Then, by definition, the conductivity σ = j/E. Let us define the differential
conductivity as σd = dj/dE. Thus, the area mentioned above is characterized with a
negative differential conductivity. Here, I will not discuss the microscopic mechanisms
explaining the negativeness of σd; a detailed description may be found, e.g., in Ref. [19].
Further increase in E makes σd positive again so that the overall shape of the current–
voltage curve resembles letter "N”, see Figure 1.

E1 E2Ec1

j

jc1

jext

jc2

Ec2 E3 E

Figure 1. A letter-N-shape current–voltage characteristics obtained under the assumption that
electric field E = const along and across the sample: the differential conductivity, σd is negative at
Ec1 < E < Ec2.

It occurs that the assumption about the spatially uniform distribution of j and E in
the regions with σd < 0 is erroneous. This distribution is unstable against small spatially-
inhomogeneous perturbations and, eventually, is destroyed owing to their growth. In
certain cases, the instability ends up forming a strong field domain bounded by the cor-
responding layers of charge density. The domain drifts along the sample with a constant
speed until it hits the sample edge (anode). The domain disintegrates there, a new one
emerges at the opposite side of the sample, and the process repeats. As a result, oscillations
with the period L/v are generated. Here, L stands for the sample length and v is the drift
speed of the domain. This is the Gunn effect [9]. It is successfully used in Gunn diodes to
generate microwave oscillations [19].

Let us consider an idealized case of a single traveling strong-field Gunn domain
drifting with a constant velocity along an infinitely-large sample. The “strong-field domain”
means that the field outside it equals E1 (see Figure 1), while inside the domain, it is greater
than that. Then, if the voltage applied to the sample is constant, the single domain with a
fixed shape is stable, while a configuration with several domains is not. However, if an
external source fixes the current in the sample, even the single domain becomes unstable.
The instability affects the faces of the domain, which begin to move in opposite directions
with respect to the center of the traveling domain. If they move to each other, the domain
contracts and, eventually, collapses. If the faces move in the opposite direction, the domain
expands and transforms into two traveling layers [19].

Linear analysis of this secondary instability of a single traveling domain at a fixed
current in the circuit was performed by Knight and Peterson [18]. Mathematically, the
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stability problem was reduced to the calculation of a gap between the ground and the first
excited states in the one-dimensional Schrödinger equation with a complicated potential
(see below). To this end, Knight and Peterson employed the Wentzel-Kramers-Brillouin
(WKB) approximation. However, this approximation is accurate for highly excited states
when the characteristic spatial scale of the wave function oscillations is small relative to
the one for the variations of the potential. This is not the case for the ground state. Hence,
the accuracy of the results obtained in Ref. [18] through the WKB method, at least, was
questionable. The problem, posed for me by Anisimov, was to check the results of Knight
and Peterson employing for the calculations an approximation different from WKB.

If I faced this problem now, quite probably, I would have used the Ritz method
supplemented by the orthogonality condition of the wave functions of the ground and
excited states [20]. However, at that time, I was much more ignorant than I am now.
Therefore, instead of taking a simple, known way (perhaps, at that time, it was neither
simple nor known for me), I decided to go on my own one. Specifically, I decided no less
than to find a new method to obtain approximate solutions to the Schrödinger equation
opposite to the WKB-method, which could be suitable for the ground and low-excited
states. Furthermore, I succeeded in doing that! So, maybe, ignorance is not always bad.

The main idea of the developed approach is somewhat unusual for quantum me-
chanics, where approximations conventionally are targeted to a wave function, while
the potential is given and fixed. However, if one has ground and low-excited states in a
complicated potential, the potential has a sharply varying profile relative to that of the
wave functions, and the latter is not very sensitive to the fine details of the former. If so,
why does one not try to approximate the potential, with some simple shapes, say, with
square wells? Then, the Schrödinger equation becomes either exactly solvable or readily
treated by perturbation methods.

The most challenging task was to set the first step in this way. The rest was just a
matter of not so complicated calculations. I quickly did them and presented the results to
Anisimov. “Very well,” he said, “the problem is solved. Write a paper. One more point to
be made. Il’ya Mikhailovich Lifshitz has organized a periodic scientific seminar at your
Faculty. It takes place every second and fourth Thursday of a month from September to
June. I recommend you to contact Il’ya Mikhailovich and ask him to put your talk about
this study in the seminar program.”.

Up to now, I remember how difficult it was for me (a fourth-year undergraduate
student) to approach such a famous scientist as Il’ya Mikhailovich was and request a talk
at his seminar. Finally, I gathered up all my courage and did it. “Excellent,” replied Il’ya
Mikhailovich, “Please contact the seminar’s secretary, Mr. Rzhevsky, and ask him to find
the nearest free spot in the program. Will 45 minutes be enough for you?”.

To give a 45-min talk in front of an audience of top-rank experts, including a dozen of
world-class scientists! My knees turned to jelly, but there was no way to retreat.

It is remarkable that I can vividly remember any moment before and after my talk,
but nothing of the talk itself. However, it seems that I stood this test. Moreover, the talk at
this seminar was a milestone for my relationship with Il’ya Mikhailovich. Since then, every
one of my new results was discussed with him, either through a talk at the seminar or in a
private manner at his office at the Kapitza Institute. Later on, I became a close associate and
coauthor of Il’ya Mikhailovich [21]. We even had a joint Ph.D. student. Our close contact
lasted until his unexpected premature death of a heart attack in 1982.

However, all this will be later on. At the time I am talking about, I could not imagine
even a small part of that.

Thus, the first task (the talk) was complete, but the second remained: I had to write a
paper. It was my very first paper, and it took a lot of my time and efforts to do that. Finally,
an extended manuscript (in Russian) was submitted to Fizika i Tekhnika Poluprovodnikov
(Physics and Technology of Semiconductors).
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It was the beginning of the bad luck for this paper. At that time, a new publication
option was introduced. For some papers (especially lengthy ones), only abstracts were
published. The papers themselves were deposited in specially assigned institutions. If an
abstract of such a paper drew somebody’s attention, and he/she was interested in the
complete text, a copy of the one could be posted to him/her upon a request. Maybe it
was an attempt to reduce the printed size of scientific journals and to solve, at least partly,
the eternal Soviet problem of paper deficit. Anyway, my paper was accepted under this
condition. Its abstract was published, see Figure 2, while the full text was deposited at
Research and Development (R&D) Institute Electronics.

Since then, many events have occurred. The country named the Soviet Union does
not exist anymore. Regarding R&D Electronics, I am afraid it has shared the destiny of
the country. Now, I am residing within walking distance from the building where R&D
Electronics used to be. It is a shopping mall there. Then, it is quite probable that the full text
of my paper has ended up in a nearby scrap-heap, and the abstract reproduced in Figure 2
is the only remaining piece of the paper.

Figure 2. The only ever published piece of paper [1] (in Russian).

The English translation reads:

Vol. 10 DE-416 dated 30 June 1971
On the increment of the instability of the Gunn domains in the direct current regime

M. I. Tribel’skii

The growth of instability of wide Gunn domains (the width of the top is much larger
than the widths of the faces) at the stationary external current regime is inspected. The
basis of calculations is the phenomenological model, in which the total current is composed
of the conductivity current and the diffusion one. Instability affects the domain faces
so that they begin to shift in opposite directions. The instability increment is calculated.
The diffusion coefficient is supposed to be independent of the field. Mathematically the
stability problem is reduced to a one-dimensional Schrödinger equation with a certain
complicated potential. It is shown that the results are weakly dependent on details of this
potential. Therefore, the potential is approximated by two square potential wells (separated
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by a barrier), which made it possible to obtain an explicit expression for the increment.
The problem is solved in two limiting cases, namely symmetric and highly asymmetric
domains. In both cases, additional drops of voltage on the domain are calculated, as well
as the width of the faces and the top of the domain.

It is essential that the final result does not include any integral characteristics of the
problem. It depends only on the value of the functions j(E) and dj/dE ≡ σd at certain
characteristic points. A developed method without significant changes may be extended to
the study of the instability of waves in the form of two or more domains.

Received 13 March 1971.

The next attempt to publish these results I made after the defense of my Master
Science Thesis. An appointed referee of the thesis was another disciple of Landau, Igor
Ekhiel’evich Dzyaloshinskii [22]. After reading the thesis, he said that the results of this
level should be available to the international community, and I should publish them abroad
in English (when the first draft of the present paper was ready, I learned the sad news:
Igor Ekhiel’evich Dzyaloshinskii passed away on 14 July 2021).

To publish abroad, ... it was easier to say than to do. Not to mention poor English,
which I had at that time, sending a scientific paper abroad from the Soviet Union was not
simple at all. The authors themselves were not eligible to do that. A manuscript had to be
sent through specially authorized personnel. The personnel decided whether or not the
paper could be submitted abroad, and, if the decision was affirmative, they took care of
the submission.

Moreover, prior to the acceptance of the manuscript by the personnel, the authors had
to do plenty of paperwork. On top of that, it took 2–3 months on average for mail to be
delivered to the addressee. Up to now, I wonder why this was so much. Even if horses
delivered the mail; it would not have taken such a long time!

I discussed the matter with Anisimov, and we decided to submit the paper to the
East-German journal Physica Status Solidi published in English. There were two reasons for
this choice. First, sending a paper to an Eastern bloc country required less paperwork, and
chances to get permission for the submission were higher than that in the case of a Western
journal. Second, the requirement for the English quality in this journal was not as strict as
those in the West. The latter was important since my English was far from being perfect.

Thus, I wrote in English an elaborated version of Ref. [1] including some new results,
did all the required paperwork, gave the bunch of documents to the “authorized personnel,”
and... lost control over the submission. Half a year elapsed, but I had not heard anything
from the Editors. Then, I sent a postcard to Physica Status Solidi asking for the status of
my paper. A reply came surprisingly fast—in just four months. However, it was pretty
unexpected. The Editors informed me that they had never received my manuscript.

By that time, on the one hand, I had already published a paper [23], where the
secondary instability of the Gunn domain was inspected just employing the Ritz method.
On the other hand, I got a job and, owing to that, was forced to abandon my study in
solid-state physics and focus on an entirely different topic.

Eventually, the results discussed in Ref. [1] have remained unpublished. Now, fifty
years later, I try to realize the advice of Dzyaloshinskii and make these results available to
the international community. Perhaps fifty years is a too long period to complete a task,
but “that is not lost that comes at last!”.

At the end of these, perhaps lengthy, remarks, I have to say that the results discussed
below are not exactly the same as those in Ref. [1]. First, it is not good to publish the same
results twice, even if the fifty years lie between the two publications. Second, I could not
do this, even if I wanted to—the original manuscript is lost, and I do not remember all
details. Last but not least: now I am a bit more experienced and educated than I was fifty
years ago. Therefore, I extracted from this old problem the essential points and generalized
them. These points are as follows: (i) the conclusion about the instability of traveling pulses
in a broad class of nonlinear diffusion-type problems and (ii) a new method to obtain
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the bottom-part spectrum of the Schrödinger equation with a complicated potential. A
discussion of these two issues is given below.

2. Problem Formulation

Thus, the problem is to find the instability increment for a single traveling Gunn
domain at a fixed current in the circuit. According to what has been said above, the current–
voltage characteristic of the semiconductor sample in question has the shape schematically
shown in Figure 1. Regarding the external current, jext, let us suppose that it satisfies the
restrictions jc1 < jext < jc2, so that the equation j(E) = jext always has three roots, E1,2,3.

It is important to stress that the curve, shown in Figure 1, is not the actual current–
voltage characteristic of the sample. As mentioned above, it would have been the one
provided E is a constant along and across the sample. Obviously, this is not the case for
the traveling domain, when E is coordinate- and time-dependent. Therefore, only the
stable branches of the presented curve with σd > 0 coincide with the actual current–voltage
characteristic. In contrast, the whole curve in Figure 1 should be regarded as the field
dependence of the normalized average electron drift velocity [17].

It is convenient to normalize the electric field over E2 and j(E) over jext introducing
the dimensionless quantities E ≡ E/E2 and u(E) ≡ j(E)/jext. Then, under certain assump-
tions, in the traveling coordinate frame connected with the domain, the normalized electric
field in the sample is described by the following equation [19]:

DE ξξ + α[s − u(E)]Eξ + [1 − u(E)] = Eη(ξ, η), (1)

where the subscripts indicate the corresponding derivatives. Equation (1) is written in
dimensionless variables, whose detailed definition is not important for the subsequent
analysis (it may be found in Ref. [19]). Note only that D, s, ξ, and η stand for the diffusion
coefficient, the domain velocity in the laboratory coordinate frame, traveling coordinate,
and time, respectively; α = const > 0 is the ratio of two characteristic spatial scales of the
problem at E = E2.

Let us suppose that D = const. This assumption simplifies calculations, but it is not
crucial for the analysis. A more general case, when D = D(E), was inspected by Knight
and Peterson [18].

It is important to stress that, if the dependence u(E) is not related to the specific shape
of j(E), shown in Figure 1, Equation (1) is nothing but a nonlinear diffusion equation of
quite a general type describing a wide diversity of problems. Accordingly, the results
discussed below may be applied to a much broader class of problems, provided these
problems have traveling solitary-wave-type solutions.

For a steady-state traveling wave, the right-hand side of Equation (1) vanishes, and
the equation transforms into an odinary differential equation. For the problem in question,
a simple analysis reveals that its phase plane (E , E ξ) has three singular points situated at
the E axis at E = E1,2,3 corresponding to E = E1,2,3 in Figure 1. Note that, by definition,
E2 ≡ 1 since E = E/E2. In the phase plane, a single traveling domain is described by a
homoclinic path beginning in the saddle (E1, 0), making a loop around the unstable focus
(E2, 0) and ending up in the same saddle (E1, 0), see Figure 3.

It is possible to show that such a solution of Equation (1) exists at s = 1 solely [18].
Since this is the only case I am interested in, s below is always supposed to be equal to
unity. Then, the homoclinic path may be found explicitly [18]; however, I do not need this
expression for the subsequent inspection. Let us just designate the steady-state solution
of Equation (1) as E0(ξ). The goal of this paper is to analyze the stability of this solution
against small time-dependent perturbations δE(ξ, η).
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Figure 3. Phase plane (E , E ξ) (schematically). Three singular points are marked with red. The blue
curve designates the homoclinic path corresponding to a single traveling domain. If the point (Em, 0)
merges with (E3, 0), the homoclinic path is split into two independent heteroclinic ones (the upper
and lower parts of the homoclinic path, respectively). See text for details.

3. Stability Analysis

The stability analysis performed in Ref. [18] generalizes a brilliant approach by Zel-
dovich and Barenblatt for the inspection of the stability of a slow combustion front [24].
The main idea is as follows. Let us suppose that δE(ξ, η) = E (1)(ξ) exp(−λη), where λ is
an eigenvalue of the stability problem. If there is a negative λ in the problem’s spectrum, it
means instability.

Substituting E(ξ, η) = E (0)(ξ) + E (1)(ξ) exp(−λη) in Equation (1) and linearizing the
result in small E (1), one arrives at the eigenvalue problem:

DE (1)
ξξ + α[1 − u(E (0)(ξ))]E (1)

ξ − uE (E (0)(ξ))E (1) = −λE (1), (2)

supplemented with the boundary conditions E (1) → 0 at ξ → ±∞. Then, introducing a
new function ψ(ξ) connected with E (1)(ξ) by the relation,

ψ(ξ) = exp
(

α

2D
∫
(1 − u(E (0)(ξ))dξ

)
E (1)(ξ) ≡ F(ξ)E (1)(ξ), (3)

one reduces Equation (2) to the standard Schrödinger equation:

Ĥψ = Λψ, (4)

Ĥ = − d2

dξ2 + V(ξ), (5)

V(ξ) =

(
α(1 − u(E (0)(ξ))

2D

)2

+

⎛⎝1 −
αE (0)

ξ (ξ)

2

⎞⎠uE (E (0)(ξ))

D , (6)

where Λ ≡ λ/D. Let us remark that there is a misprint in the expression for V(ξ) in
Ref. [19] corrected in Equation (6).

Note that, since the homoclinic path begins and ends up at the same singular point
(E1, 0) and u(E1) = 1, the considered steady-state traveling domain solution satisfies the
condition u(E (0)(ξ)) → 1 at ξ → ±∞. Therefore, as it follows from Equation (3), ψ(ξ) and
E (1)(ξ), both have the same asymptotic behavior at ξ → ±∞. This is important since it
means that none of the solutions of the Schrödinger equation generate “false” solutions of
the initial stability problem, which may not satisfy the boundary conditions E (1)(ξ) → 0 at
ξ → ±∞.
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Now, the most essential part of the stability analysis begins. If E (0)(ξ) is a solution of
the steady-state version of Equation (2), then, owing to the translational invariance of the
problem E (0)(ξ + ξ0), where ξ0 is any constant, also is its solution, i.e., being substituted in
the left-hand side of Equation (2), E (0)(ξ + ξ0), turns it to zero identically.

Let us consider the limit ξ0 → 0. In this case, E (0)(ξ + ξ0) ≈ E (0)(ξ) + E (0)
ξ (ξ)ξ0, and

E (0)
ξ (ξ)ξ0 here may be regarded as an infinitesimal perturbation to E (0)(ξ). The perturba-

tion transforms the steady-state solution into another steady-state solution. This means
that such a perturbation is neutrally-stable and should not evolve in time. In other words, it
means that E (0)

ξ (ξ) is an eigenfunction of the stability problem with zero eigenvalue.
Note that we obtain this result based on the translational invariance solely, without the

employment of a specific form of the differential operator in Equation (2). These neutrally-
stable modes generated by a transformation of a continuous group of symmetry are called
Goldstone modes. Since 2008, when the implementation of such a mode in strong-interaction
physics (do you remember my remark about interconnections of different fields in physics?)
resulted in the Nobel Prize being awarded to Prof. Yoichiro Nambu, they have also been
called Nambu–Goldstone modes.

It is interesting to note that, twenty-five years after the publication of Ref. [1], I
returned to the inspection of the role of Goldstone modes in stability problems. This study
resulted in the discovery of a new type of chaos at the onset analogous to the second-order
phase transitions in statistical physics, where the mean amplitudes of the turbulent modes
played the role of the order parameter [25–27].

However, I have departed from the stability analysis of the Gunn domain. It is
high time to be back. Actually, not so much remains to be done. Collecting together all
mentioned above, one can conclude that

ψ(ξ) = F(ξ)E (0)
ξ (ξ) (7)

is the eigenfunction of the Schrödinger equation, Equations (4)–(6) with zero eigenvalue.
Recall now the oscillation theorem [20]. The theorem states that, in a one-dimensional

Schrödinger equation, the nth wave function of a discrete spectrum should vanish n times.
Then, it is not a complicated task to show that the integral in the exponent in Equation (3)
always remains finite, i.e., F(ξ) never vanishes. Thus, all zeros of ψ(ξ), if any, coincide
with those of E (0)

ξ (ξ). Finally, since for the traveling domain the profile E (0)(ξ) has a single
maximum (the homoclinic path in the phase plane (E , E ξ) crosses the E -axis at E = Em,

situated in between E2 and E3, see Figure 3), the product F(ξ)E (0)
ξ (ξ) has a single zero at

the value of ξ corresponding to the maximal field achieved in the domain, Em. It means
that the wave function (3) is the one for the first excited state. The “energy” of the ground
state should be lower than those for excited states. Since the first excited state has zero
“energy” this gives rise to the conclusion that the ground state has negative “energy”,
i.e., the spectrum of Equations (4)–(6) has a single negative eigenvalue. In other words,
the solution E (0)(ξ) is unstable with the instability increment equal to the modulus of λ,
corresponding to the ground state of the Schrödinger equation.

Though the problem in question has several parameters, the actual control parameter,
which relatively easily may be varied in an experiment, is the current in the circuit, jext.
Varying jext, one can change the values of E1,2,3 and hence the shape of the traveling domain.

At a certain value of jext = j0, the maximal field in the domain, Em merges with E3,
and the homoclinic path in the plane (E , E ξ) is split into two independent heteroclinic paths
connecting the singular points (E1, 0) and (E3, 0). One of these paths lies entirely in the
upper semi-plane. For this solution, E (0)

ξ is always positive at any finite ξ. The other lies

entirely in the lower semi-plane and, for it, E (0)
ξ < 0 at any finite ξ, see Figure 3. Each of

these solutions corresponds to a traveling charge layer transferring the sample from one
steady-state to another steady-state.
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It is important that, since, for the layers, E (0)
ξ does not vanish at any finite ξ, the

corresponding wave function given by Equation (7) is the one of the ground state of the
Schrödinger equation. This means that, in contrast to the traveling domain, the traveling
layers are stable [18,19].

4. Spectrum of Schrödinger Equation

Thus, to get the value of the instability increment and, hence, the characteristic time
for the traveling domain decomposition, one has to obtain the energy level for the ground
state in the Schrödinger equation with the complicated potential given by Equation (6).
As it has been mentioned above, the main idea employed in Ref. [1] to fulfill this task is
to approximate the actual smooth potential by a superposition of square potential wells.
The parameters of the wells are selected so that the approximated potential keeps all main
features of the initial smooth profile. One of the approximation parameters remains free. It
is fixed by the condition that, for the first excited state, Λ = 0.

This procedure reduces the solution of the complicated initial problem to finding the
roots of a set of transcendental equations. In the worst case, the latter may be readily done
numerically. To illustrate this rather general approach, a simple case of a broad traveling
domain is discussed below.

The domain becomes broad when jext approaches j0. In the phase plane, it corresponds
to the shift of the regular point of the path (Em, 0) toward the saddle (E3, 0). In this case, the
domain approximately may be presented as a nonlinear superposition of two layers with
opposite charges, and the potential (6) has a shape of two wells separated by a barrier.

Each well is associated with the corresponding layer. The width of the barrier equals
the distance between the layers and is large in the case under consideration. Then, the
tunneling through the barrier is exponentially weak. If the tunneling were suppressed
entirely, each well would have corresponded to the potential generated by a single layer
and, in accordance with the mentioned above, had the ground state with Λ = 0. Thus, it is
clear that the level with Λ < 0 for the domain occurs due to the finite tunneling resulting in
the splitting of the ground states in the two wells with the same value of Λ = 0. Therefore,
instead of the employment of a rather cumbersome general procedure of the solution of an
entire problem with the finite tunneling, let us, first, neglect the tunneling and consider
the solutions of the Schrödinger equation in each square well separately. Then, the finite
tunneling is taken into account with the help of perturbation theory.

The values of the parameters of the square wells approximating the smooth profile
of the potential may be obtained by inspection of Equation (6). For example, bearing in
mind that at ξ → ±∞, the solution E (0)(ξ) describing the domain satisfies the conditions
E (0) → E1; E (0)

ξ → 0 and that, by definition, u(E1,2,3) = 1, one immediately obtains that
both outer walls of the wells have a height equal to uE (E1)/D. Similarly, the barrier height
is uE (Em)/D ≈ uE (E3)/D. The widths of the wells and the barrier are estimated based on
the exact solution describing the domain path in the phase plane obtained in Ref. [18]. The
last remaining parameters are the depths of the wells. They are fixed by the conditions that
the ground state in each well has Λ = 0.

I do not present here these simple but cumbersome calculations. Just note that the
problem is rather robust against errors in the approximation of V(ξ). The robustness is
related to the smallness of the split of the ground levels in the wells due to the tunneling
and the fact that, at the employed approach, the important condition Λ = 0 for the ground
state in each separate well holds automatically.

Let us suppose that the wave functions, |1, 2〉, of the ground state for each well are
known and that these wave functions satisfy the equations Ĥ1,2|1, 2〉 = 0. Here, Ĥ1,2
designates the Hamiltonians, whose potentials, U1,2 are the corresponding single-well
potentials. Let us look for the wave function of the complete problem with the two-well
potential in a form of a linear superposition of |1, 2〉:

96



Physics 2021, 3

|ψ〉 = c1|1〉+ c2|2〉, (8)

where c1,2 are constants, which should be defined in the course of calculations. Then, since
|ψ〉 is an eigenfunction of the complete Hamiltonian Ĥ,

c1Ĥ|1〉+ c2Ĥ|2〉 = Λ(c1|1〉+ c2|2〉). (9)

Making scalar products with 〈1, 2| and taking into account the normalization condi-
tions 〈1|1〉 = 〈2|2〉 = 1, one arrives from Equation (9) to the following equations for c1,2:

(H11 − Λ)c1 + (H12 − Λ〈1|2〉)c2 = 0, (10)

(H21 − Λ〈2|1〉)c1 + (H22 − Λ)c2 = 0, (11)

where H11, H12, H21 and H22 stand for the corresponding matrix elements. Note that
the wave functions |1〉 and |2〉 are not orthogonal since they are the eigenfunctions of the
different Hamiltonians, namely, Ĥ1 and Ĥ2 �= Ĥ1.

The solvability condition requires vanishing of the determinant of Equations (10) and (11).
This results in a quadratic equation for Λ. The difference, Δ = |Λ1 − Λ2|, between the two
roots of this equation approximately equals the desired instability increment.

This result has completed the instability analysis. However, the exact expression
for Δ is rather cumbersome. Therefore, it is worth simplifying this result, employing the
smallness of certain parameters in Equations (10) and (11). To this end, I have to estimate
the matrix elements and the overlap integrals 〈1, 2|2, 1〉.

To calculate the matrix elements, it is convenient to single out from the full double-
well square potential, VDWS(ξ), the part corresponding to a single well, i.e., to suppose
that VDWS(ξ) = U1,2 − V1,2, see Figure 4, where for the first well (left side of Figure 4),
V1 = 0 at ξ < ξ3, while, at ξ > ξ3, the sum of VDWS and V1 equals the height of the barrier.
Similarly, for the second well (right), the sum VDWS + V2 equals the height of the barrier at
ξ < ξ2, while, at ξ > ξ2, the potential V2 = 0. Thus, U1,2 are the single-well potentials, and
the corresponding Hamiltonians acting on their wave functions produce zero. Then, the
leading terms in the matrix elements are estimated as follows:

H11 = −〈1|V1|1〉 ∼ H22 = −〈1|V2|1〉 ∼ exp[−2db

√
uE (E3)/D], (12)

where db = ξ3 − ξ2 is the barrier width. The same estimate is true for H22 (for the sake of
simplicity, the widths of the corresponding wells, d1,2

√
uE (E3)/D, are supposed to be not

small). In the same manner, one obtains

H12 ∼ H21 ∼ 〈2|1〉 ∼ 〈1|2〉 ∼ exp[−db

√
uE (E3)/D], (13)

Then, in the leading approximation,

Δ ≈ H12 + H21 ∼ exp[−db

√
uE (E3)/D]. (14)

Thus, as it could be expected, the value of the instability increment for the broad
domain is exponentially small indeed.

Finally, note that, for each single square well, the normalized wave functions |1, 2〉
may be readily obtained in the explicit form, including the normalization constant. Then, it
is just a matter of more or less routine calculations to improve the accuracy of Equation (14),
taking into account the prefactors and dropped higher-order exponentially small terms.
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Figure 4. Schematically: The actual double-well potential V(ξ) (smooth blue line). The approximation
of V(ξ) by the double-well square potential, VDWS(ξ), is shown in black; ξ1,2,3,4 designate the
coordinates of the walls of the wells. U1,2(ξ) = VDWS(ξ) + V1,2(ξ) are the potentials of the single-
well approximation, when tunneling is neglected.

5. Conclusions

Summarizing and generalizing the discussed above, one arrives at the following
conclusions:

• The analysis of the linear stability of traveling wave solutions in a wide class of
nonlinear diffusion problems is reduced to inspection of a bottom part of the spectrum
of the associated Schrödinger equation, whose potential is generated by the profile of
the analyzed solution.

• The translational invariance transformation generates in the stability spectrum a
neutrally-stable (Goldstone) mode.

• The qualitative answer to the question about the stability of the solution is readily
obtained based on the oscillation theorem—if the Goldstone mode does not have any
nodes, the solution is stable. Otherwise, it is unstable.

• To quantitatively characterize the instability (if any), the “energy” level of the ground
state of the Schrödinger equation should be obtained.

• A powerful tool to make the problem of a bottom part of the Schrödinger equation
spectrum tractable is to approximate the potential by square wells.

These conclusions are rather general. They are valid far beyond the frameworks of the
Gunn effect and, hopefully, may help to analyze the stability of traveling waves in a broad
class of nonlinear diffusion problems.

The developed approach to find an approximate solution and spectrum of the Schrö-
dinger equation with a complicated potential valid for ground and low-excited states may
be regarded as a complement to the known Wentzel-Kramers-Brillouin (WKB) method,
which is good in the opposite case of high-excited states. A common disadvantage of both
approaches is the approximation error, which is difficult to improve and even to control.
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Abstract: A superchiral field, which can generate a larger chiral signal than circularly polarized light,
is a promising mechanism to improve the capability to characterize chiral objects. In this paper, Mie
scattering by a chiral sphere is analyzed based on the T-matrix method. The chiral signal by circularly
polarized light can be obviously enhanced due to the Mie resonances. By employing superchiral
light illumination, the chiral signal is further enhanced by 46.8% at the resonance frequency. The
distribution of the light field inside the sphere is calculated to explain the enhancement mechanism.
The study shows that a dielectric sphere can be used as an excellent platform to study the chiroptical
effects at the nanoscale.

Keywords: Mie scattering; superchirality; circular dichroism; T-matrix

1. Introduction

Chirality describes the asymmetric feature of a three-dimensional object, whose mirror
image is different from itself [1]. Objects with chirality are quite common in nature. In
the human body, most of the important molecules have chirality, such as DNA, enzyme,
and protein. As a wave phenomenon, the light field also has chirality [2]. A well-known
example is circularly polarized light (CPL). Left circularly polarized (LCP) and right cir-
cularly polarized (RCP) light beams are a pair of enantiomers that have opposite spins.
The interaction between the light field and chiral objects has attracted great interest from
researchers [3]. The chiral properties of the objects can be evaluated by the different
responses under illumination of LCP and RCP lights. This chiral signal is useful to dis-
tinguish and measure the chirality of a sample. In natural materials, the chiral signal is
very weak (10−3–10−6) [1]. The main reason is the mismatch between the size of the chiral
molecules and the light wavelength. In previous studies, it has been shown that plasmonic
structures can increase chiral signals by orders of magnitude owing to the strong light
confinement near the metallic surface [4]. The plasmonic chiral structure is used to improve
the sensing performance of enantiomers [5]. In a nonchiral structure, optical chirality can
be largely increased [6]. It has been shown that the local chirality of the light field can be
tailored near the plasmonic structure. The optical antenna theory can be used to design the
chiral light [7]. Symmetric metal–dielectric–metal (MDM) metamaterial structures have
also been proposed to enhance the chiral light–matter interaction [8]. However, metals
have intrinsic loss, which fundamentally limits the practical performance of the designed
plasmonic structures. Recently, dielectric nanoparticles with high refractive indices have
also been used to manipulate the light field at the nanoscale [9]. The supercavity with
high q-factor can be designed by subwavelength high-index particles [10]. The electric
and magnetic resonances in silicon nanoparticles can be utilized to enhance the quantum
efficiency of silicon nanoparticles [11]. The anapole mode in such kind of particles has
been intensively studied recently [12]. The simplest case of an anapole is caused by the
destructive interference between the electric dipole and the toroidal moment. In 2015, the
radiationless anapole mode in visible was first observed [13]. By tuning the geometry of
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the scattering particle, an obvious dip can be found in the far-field scattering spectrum,
which is caused by the excitation of the anapole mode. Moreover, by tailoring the incident
field, the anapole mode can also be excited in a dielectric sphere [14]. The electric and
magnetic resonances can be strongly excited inside the high-index particles with low loss,
which may further enable the chirality enhancement. Besides the enhancement mechanism
arising from near-field structures, the enhancement of a chiral signal can also be realized
by tailoring the light field. Traditionally, circularly polarized light is believed to have the
highest chirality. However, Cohen proposed the superchiral field, which has larger chirality
than circular polarized light [15,16]. Recently, it was demonstrated by us that a localized
superchiral hotspot can be generated by tightly focusing a vectorial light beam with orbital
angular momentum [17].

In this study, a method based on the T-matrix is employed to efficiently analyze the
scattering process by a chiral sphere. It is demonstrated that two enhancement mechanisms
can be employed to enhance the scattering circular dichroism (CD) signal of a chiral sphere
simultaneously.

2. Materials and Methods

To consider the chiral property of the sphere in our theoretical model, the following
constitutive relations are used [18]:

D = εsE − jκsH, (1)

B = μsH + jκsE. (2)

In Equations (1) and (2), εs, μs, and κs are the permittivity, permeability, and chirality
parameters of the material in the sphere. Following the procedure proposed by Bohren [19],
the electromagnetic field in the chiral sphere (E1, H1) can be expressed by the linear
transformation relation: [

E1
H1

]
=

[
j
√

εsμs μs
εs j

√
εsμs

][
QL
QR

]
. (3)

Because of the transformed fields, QL and QR should satisfy the wave equation,
∇2QL/R + k2

L/RQL/R = 0. They can be expanded by the linear combination of vector
spherical harmonics (VSHs):

QL =
+∞

∑
n=1

+n

∑
m=−n

cmn[RgMmn(kL) + RgNmn(kL)], (4)

QR =
+∞

∑
n=1

+n

∑
m=−n

dmn[RgMmn(kR)− RgNmn(kR)], (5)

where kL/R = ω
√

εsμs ∓ ωκs, and m and n are both integers. In this study, RgMmn and
RgNmn are regular VSHs whose values at origin are finite, and Mmn and Nmn are outgoing
VSHs with singularity points at origin. The definitions of these VSH functions can be found
in [20]. Outside the sphere, the incident field (Einc, Hinc and scattering field (Es, Hs) can be
expressed as the combinations of VSHs:

Einc =
+∞

∑
n=1

n

∑
m=−n

(umnRgMmn + vmnRgNmn), (6)

Hinc =
1

iZ0

+∞

∑
n=1

n

∑
m=−n

(umnRgNmn + vmnRgMmn), (7)

Es =
+∞

∑
n=1

n

∑
m=−n

(amnMmn + bmnNmn), (8)
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Hs =
1

iZ0

+∞

∑
n=1

n

∑
m=−n

(amnNmn + bmnMmn). (9)

In Equations (6) and (7), the expansion coefficients umn and vmn can be determined by
the incident light field. The multipolar decomposition of various types of focused beams
was considered in previous studies [21]. The expansion coefficients of umn and vmn for
the scattering field can be calculated by the T-matrix method. According to the boundary
condition on the surface of the sphere (r = Rs), the T-matrix for a chiral sphere can be
obtained from: [

Es
Hs

]
= T

[
Einc
Hinc

]
=
[
T(1)
]−1

T(2)
[

Einc
Hinc

]
. (10)

In Equation (10), the elements of the matrices T(1) and T(2) are given below:

T
(1)
11,mn = iZ0εsξn(k0Rs)ψ

′
n(kRRs)− i

√
εsμsψn(kRRs)ξ

′
n(k0Rs), (11)

T
(1)
12 = iZ0εsψn(kRRs)ξ

′
n(k0Rs)− i

√
εsμsξn(k0Rs)ψ

′
n(kRRs), (12)

T
(1)
21 = −Z0

√
εsμsξn(k0Rs)ψ

′
n(kLRs) + μsψn(kLRs)ξ

′
n(k0Rs), (13)

T
(1)
22 = Z0

√
εsμsψn(kLRs)ξ

′
n(k0Rs)− μsξn(k0Rs)ψ

′
n(kLRs), (14)

T
(2)
11 = −iZ0εsψn(k0Rs)ψ

′
n(kRRs) + i

√
εsμsψn(kRRs)ψ

′
n(k0Rs), (15)

T
(2)
12 = −iZ0εsψn(kRRs)ψ

′
n(k0Rs) + i

√
εsμsψn(k0Rs)ψ

′
n(kRRs), (16)

T
(2)
21 = Z0

√
εsμsψn(k0Rs)ψ

′
n(kLRs)− μsψn(kLRs)ψ

′
n(k0Rs), (17)

T
(2)
22 = −Z0

√
εsμsψn(kLRs)ψ

′
n(k0Rs) + μsψn(k0Rs)ψ

′
n(kLRs). (18)

In Equations (11)–(18), the Riccati–Bessel functions are defined as ψn(ρ) = ρjn(ρ) and
ξn(ρ) = ρh(1)n (ρ). Z0 is the vacuum impedance. k0 = ω/c is the wave vector in vacuum.
According to the Mie theory, the scattering power can be calculated by:

Wscat =
1

2k2
0

+∞

∑
n=1

n

∑
m=−n

(
|amn|2 + |bmn|2

)
. (19)

The radius of the sphere is Rs = 75 nm, and the parameters of the chiral material
are εs = 25, μs = 1, and κs = 0.01. The scattering spectrum under the illumination of
linearly polarized light in free space (n0 = 1) is shown in Figure 1a. In the frequency
range of 200–700 THz, the scattering power is mainly caused by terms related to an
electric dipole (ED), magnetic dipole (MD), and magnetic quadrupole (MQ) [22]. Their
contributions to the scattering power can be analyzed by the following three terms from
the total scattering power:

WED =
1

2k2
0
∑
m
|am1|2, (20)

WMD =
1

2k2
0
∑
m
|bm1|2, (21)

WMQ =
1

2k2
0
∑
m
|bm2|2. (22)

In Figure 1b, the spectral curves for the three scattering terms are helpful to analyze
the mechanisms of the Mie resonances. It can be clearly demonstrated that the three
peaks of Wscat in Figure 1a are caused by the MD, ED, and MQ resonances at frequencies
of 388.5, 538.5, and 563.5 THz, respectively. Linearly polarized light can be represented
as the superposition of left- and right-hand circularly polarized light. The circularly
polarized light is useful to explore the properties of materials [23]. To evaluate the chiral
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response of the sphere, the scattering CD parameter gscat is calculated, which is defined
as gscat = 2

(
W+

scat − W−
scat
)
/
(
W+

scat + W−
scat
)
. In this definition, W+

scat and W−
scat are the

scattering energies by the chiral sphere under the illuminations of LCP and RCP light.
There are two regions in the spectrum in Figure 1c, where the scattering CD single is
enhanced. One region is near the MD resonance wavelength, and the other is near the ED
resonance wavelength. However, the signs of CD values in the two ranges are opposite. The
inversion of the optical chiral response can be attributed to the main absorption mechanism,
which is converted from MD to ED when the light frequency is increased. In the region
where ED absorption is dominant, there exists a deep valley at a frequency of 563.5 THz,
which is exactly the MQ resonance frequency.

Figure 1. (a) The scattering spectrum of a chiral sphere with a radius of 75 nm under the illumi-
nation of linearly polarized light. The optical parameters of the sphere are εs = 25 (permittivity),
μs = 1 (permeability), and κs = 0.01 (chirality). The sphere is in free space (refractive index n0 = 1).
(b) The contributions to the total scattering energies from three different mechanisms (magnetic
dipole, electric dipole, and magnetic quadrupole). (c) The circular dichroism (CD) spectrum of gscat

under the illumination of left circularly polarized (LCP) and right circularly polarized (RCP) light.

As discussed above, the light field can be tailored to gain larger chirality than CPL.
To evaluate the chirality of the light field, the parameter of the CD enhancement factor
is defined as g/gCPL, where g and gCPL are the CD values of a chiral dipole excited by
the tailored light and CPL light. When g/gCPL > 1, the tailored light can produce a larger
CD signal than CPL light. This kind of light is called superchiral field. Recently, it was
reported by us a highly localized superchiral hotspot by tightly focusing a radially polarized
beam with orbital angular momentum near the dielectric interface [17]. In this study, the
capability of the superchiral field to increase the scattering CD signal can be verified, when
the particle is at the Mie resonance. It has been proved that when the incident angle of
a focused beam is slightly smaller than the critical angle of totally internal reflection, the
chirality of the light field (g/gCPL) can be largely enhanced. Therefore, the configuration
in Figure 2 is considered. The chiral sphere is on the substrate with a refractive index
of n1, which is larger than n0. To analyze the interaction between the chiral sphere on
the substrate and the superchiral field, the T-matrix in Equation (10) should be modified
to incorporate the substrate into the theoretical model [22,24]. The scattering process is
illustrated in Figure 2. The light propagates from the substrate (n1) to the air (n0), and
the chiral sphere is illuminated by the transmitted light (Einc, Hinc). The scattering field is
expressed as [Es, Hs]T = T[Einc, Hinc]T, where the T-matrix is given in Equations (11)–(18).
As shown by the red arrow in Figure 2, a part of the scattering field can be reflected by the
interface, and then the reflected field can also be scattered by the sphere again. One can
see that there is a round trip of light between the sphere and the interface. Therefore, the
multiple reflections between the sphere and the interface should be considered to build the
accurate scattering model. In this study, the matrix of LR is the reflection matrix, and the
reflected field of the scattering field can be expressed as LR [Es, Hs]

T. The final scattering
field of the multiscattering process can be calculated by Equation (23) [24].[

Es
Hs

]
=

+∞

∑
α=0

(TLR)
αT

[
Einc
Hinc

]
= [I − TLR]

−1T

[
Einc
Hinc

]
. (23)
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Figure 2. A schematic of the theoretical model to analyze light scattering by a chiral sphere on the
substrate. The blue and green arrows represent the path of the incident light (Einc and Hinc) and
scattering light (Es and Hs). The red arrows represent the light reflected and transmitted at the
interface. LR represent the reflection matrix.

According to Equation (23), the T-matrix for the sphere in free space should be mod-
ified as the effective one, which is Teff = [I − TLR]−1T. I represents the unit matrix. The
elements of LR are the reflection coefficients of VSHs by the interface. To calculate these
coefficients, the VSH is first expanded by the plane waves. The directions of the plane
waves are represented by

(
θ̃, ϕ̃
)

, where θ̃ is the polar angle and ϕ̃ is the azimuthal angle.
The reflection coefficient of each plane wave can be calculated independently by the Fresnel
equation. The reflected field of the VSH can be obtained by recombining all the reflected
plane wave components. After these operations, the reflected field of each VSH field
scattered by the sphere can be calculated. To calculate the elements of LR, the reflected
fields have to be expended by the VSH basis, which has been used to express the incident
field of [Einc, Hinc]T in Equations (6) and (7). The expansions of the reflected VSHs, Mmn,r
and Nmn,r can be expressed as:

Mmn,r =
+∞

∑
ν=1

ν

∑
μ=−ν

[
Aμν,mnRgMμν + Bμν,mnRgNμν

]
, (24)

Nmn,r =
+∞

∑
ν=1

ν

∑
μ=−ν

[
Cμν,mnRgMμν + Dμν,mnRgNμν

]
. (25)

In Equations (24) and (25), the expansion coefficients can be determined by the follow-
ing integrals with the integration path of θ̃ being [π/2 + i∞, π]:

Aμν,mn = δμmγmn,ν

∫
C

(
rθm2πm

n πm
ν − r f τm

n τm
ν

)
e2ik0 cos θ̃Rs sin θ̃dθ̃, (26)

Bμν,mn = −mδμmγmn,ν

∫
C

(
rθπm

n τm
ν − r f τm

n πm
ν

)
e2ik0 cos θ̃Rs sin θ̃dθ̃, (27)

Cμν,mn = mδμmγmn,ν

∫
C

(
rθτm

n πm
ν − r f πm

n τm
ν

)
e2ik0 cos θ̃Rs sin θ̃dθ̃, (28)

Dμν,mn = −δμmγmn,ν

∫
C

e2ik0 cos θ̃Rs
(

rθτm
n τm

ν − r f m2πm
n πm

ν

)
sin θ̃dθ̃. (29)

In Equations (26)–(29), rθ and rφ are the Fresnel reflection coefficients for p-polarized
and s-polarized light, τm

n and πm
n are the angle-dependent functions in the Mie theory for

convenience [20]. The expression of γmn,ν is in Equations (26)–(29), which is only related to
the order numbers (n, m and ν):

γmn,ν = (−1)ν+miν−n

√
(2n + 1)(n − m)!
n(n + 1)(n + m)!

√
(2ν + 1)(ν − m)!
ν(ν + 1)(ν + m)!

. (30)
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After obtaining the coefficients in Equations (26)–(29), the reflected matrix LR can be
expressed as:

LR =

[
A C

B D

]
. (31)

Based on the theoretical model, light scattering by the sphere in the superchiral field
can be analyzed efficiently. To further simplify the calculation, let us consider the vectorial
Bessel beam as the incident light, whose field in a cylindrical coordinate can be expressed
as [25]:

Einc = eim0 ϕ+ik1z cos θ̃

⎛⎜⎜⎜⎝
i
[

Jm0+1(k1r sin θ̃)− Jm0−1(k1r sin θ̃)
]

cos θ̃nr[
Jm0+1(k1r sin θ̃) + Jm0−1(k1r sin θ̃)

]
cos θ̃nϕ

−2Jm0(k1r sin θ̃) sin θ̃nz

⎞⎟⎟⎟⎠, (32)

Hinc =
1

Z1
eim0 ϕ+ik1z cos θ̃

⎛⎜⎜⎜⎝
−
[

Jm0+1(k1r sin θ̃) + Jm0−1(k1r sin θ̃)
]
nr

i
[

Jm0+1(k1r sin θ̃)− Jm0−1(k1r sin θ̃)
]
nϕ

0

⎞⎟⎟⎟⎠. (33)

In Equations (32) and (33), m0 is the topological charge of the incident field. k1 = n1k0
is the wave vector in the substrate. The refractive indexes of the substrate and air are
n1 = 1.518 and n0 = 1. As shown in Figure 3a, this vectorial light beam can be regarded
as the superposition of the p-polarized plane waves, whose wave vector k lives in a cone
with the polar angle of θ̃ and the azimuthal angle ϕ̃ ∈ [0, 2π] in k-space. The chirality
enhancement factor at the focus point (r = 0) is calculated when the polar angle is changed
from zero to the critical angle of the total internal reflection, as shown in Figure 3b. When θ̃
is slightly smaller than the critical angle of θ̃c, the hotspot region with high optical chirality
can be realized near the focus point. The sign of optical chirality is the same with the
topological charge m0. Therefore, the scattering energies of W+

scat and W−
scat in the definition

of gscat are calculated when, m0 = 1 and, m0 = −1 in Equations (32) and (33).

Figure 3. (a) The model to analyze light scattering by the sphere in the superchiral field. The incident
field is the vectorial Bessel beam with orbital angular momentum of Equations (32) and (33), with
the topological charge, m0 = ±1. The refractive indexes of the substrate and air are n1 = 1.518 and
n0 = 1. The incident angle is θ̃, and the refraction angle is θ̃T (b) The enhancement factor of the chiral
signal from a dipole at the focus (r = 0). g and gCPL are the CD factors under the superchiral light and
circularly polarized light (CPL) light. θ̃c represents the critical angle of total reflection.

In Figure 4a, the scattering CD spectrum for the sphere in the superchiral field with
θ̃ = 0.98θ̃c is calculated as shown by the black curve. For comparison, the red curve
represents the scattering CD spectrum for the same sphere in free space when illuminated
by CPL light. As discussed above, the chiral response can be largely increased at the
Mie resonance wavelength compared with that in the Rayleigh region, where the light
wavelength is much larger than the sphere diameter. The peak values of the two CD spectra
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are 0.0445 and 0.0303 at frequencies of 546 and 579 THz, respectively. It means that, by
introducing the superchiral field, the peak value of the scattering CD can be enhanced
by 46.8%. The relationship between this enhancement factor and the incident angle has
been calculated, as shown by the black curve in Figure 4b. The red dash line represents
the level of the peak CD value for CPL light. When the incident angle approaches the
critical angle, the CD enhancement is increased at first, and reaches the maximum value at
θ̃ = 0.98θ̃c. Then the enhancement factor drops dramatically, which is quite different from
the prediction by the chiral dipole model in Figure 3b. To explain the difference, one should
notice that the CD value in Figure 3b is for a chiral dipole, which is an individual point.
However, the curve in Figure 4b is for the chiral sphere with a diameter of Rs = 75 nm.
As it has been reported previously [17], the area of the superchiral hotspot is decreased
when θ̃ is close to θ̃c, which may make it mismatch the size of the sphere. When θ̃ = 0.98θ̃c,
the superchiral hotspot collapses to a point with infinite optical chirality. Around the
singularity point, the light field becomes achiral. Therefore, there exists an optimized
incident angle for a chiral sphere with finite size.

Figure 4. (a) The black curve represents the scattering CD spectrum of a chiral sphere on the substrate
under the illumination of the superchiral field with θ̃ = 0.98θ̃c. The red curve is the scattering CD
spectrum of the chiral sphere in free space excited by CPL. (b) The peak value of the scattering CD
spectra with a different value of θ̃. The red dash line represents the peak value of the scattering CD
spectra under the illumination of CPL, when the sphere is in free space.

3. Discussion

To explain the mechanism of the peak value of the scattering CD for the superchiral
field in Figure 4a, the electrical and magnetic fields near the center of the chiral sphere
are calculated. In Figure 5a–d, the distributions of the incident field with m0 = 1 are
plotted. The frequency of the incident light is 546 THz. For the electric field, Ez is dominant
compared with the parallel component in Figure 5b around the focus point. Because the
incident beam is entirely p-polarized, the field of Hz is zero.

By employing the theoretical model above, the scattering field by the chiral sphere is
calculated in Figure 5e–h. The E|| and H|| of the light field are still the major components,
as shown in Figure 5e,g. Because the scattering fields of Ez and Hz both have the helical
phase term, the field intensity of Ez and Hz on the z axis is zero in Figure 5f,h. At the
frequency of the Mie resonance, the light field is well confined within the sphere. From
Figure 5e,g, it can be clearly seen that the resonance along the z direction is formed,
and the spatial intensity distribution of E|| and H|| is well separated inside the sphere.
The regions of the enhanced magnetic field are both in the upper and lower parts of the
sphere. In these regions, the large magnetic field is helpful to increase the chiral response
through the coupling between the electric and magnetic fields inside the chiral medium.
It should be noted that, under the illumination of the superchiral field, the dip of the
scattering CD curve caused by the interaction between ED and MQ disappears. It means
that the chiral responses for different orders of the Mie resonances are not independent.
In recent years, the scattering by a dielectric sphere has also been employed to enhance
the circular dichroism of chiral materials [26,27]. The interaction between different chiral
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mechanisms should be further studied, which may lead to deeper understanding of the
chiroptical effects and the development of novel technologies to distinguish and separate
chiral molecules and nanoparticles.

Figure 5. The light field of the vectorial Bessel beam above the air–dielectric interface. The topological
charge is m0 = 1. (a–d) The distributions of E||, Ez, H||, and Hz without the chiral sphere. E|| and Ez

(H|| and Hz) represent the electric (magnetic) field components parallel and vertical to the interface.
(e–h) The distributions of E||, Ez, H||, and Hz scattering by the chiral sphere. The incident light
frequency is 546 THz.

4. Conclusions

In summary, the theoretical method for analyzing light scattering by a chiral sphere in
a vectorial light field is developed based on the T-matrix method. Compared with a pure
numerical simulation (e.g., finite element method and finite-difference time-domain), this
analytical method is more efficient for analyzing the mechanisms of chiroptical phenomena.
Especially for a sphere with a subwavelength scale, the scattering field can be calculated
accurately by employing a smaller number of vector spherical harmonics. It has been shown
that the chiral response by a high-index nanosphere can be enhanced at the frequency of
the Mie resonance. Moreover, the superchiral field can be employed to further increase
the scattering circular dichroism value when the nanosphere is under resonance condition.
Therefore, to obtain the highest chiral signal, both the enhancement mechanisms arising
from the near-field nanostructure and the superchiral incident light field can be employed
and optimized simultaneously. Further exploration of the chiral interaction between the
artificially designed nanostructure (e.g., [28]) and the superchiral field is valuable to the
field of optical activity for both fundamental and practical considerations.
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Abstract: As it was shown earlier, a wide class of nonlinear 3-dimensional (3D) fluid flows of
incompressible viscous fluid can be described by only one scalar function dubbed the quasi-potential.
This class of fluid flows is characterized by a three-component velocity field having a two-component
vorticity field. Both these fields may, in general, depend on all three spatial variables and time. In this
paper, the governing equations for the quasi-potential are derived and simple illustrative examples
of 3D flows in the Cartesian coordinates are presented. The generalisation of the developed approach
to the fluid flows in the cylindrical and spherical coordinate frames represents a nontrivial problem
that has not been solved yet. In this paper, this gap is filled and the concept of a quasi-potential to
the cylindrical and spherical coordinate frames is further developed. A few illustrative examples are
presented which can be of interest for practical applications.

Keywords: incompressible fluid; vortical flow; vector-potential; vorticity

1. Introduction

A great success in the solution of fluid dynamic problems is associated with the re-
duction of a primitive set of hydrodynamic equations to only one equation for some scalar
function, e.g., velocity potential or stream function [1–5]. It has been shown in [6,7] that
the class of exactly solvable hydrodynamic problems can be widened by introducing one
more scalar function dubbed the quasi-potential. The starting point for the introduction
of the quasi-potential is the condition of incompressibility of a fluid: div U = 0, where U

is the velocity field. This condition allows us to introduce a vector-potential A such that
U = curl A automatically satisfies this equation. However, there is a gauge invariance in
the choice of the vector-potential as it is defined up to the gradient of any scalar function
f (t, x, y, z) of spatial variables x, y and z because curl (∇ f ) ≡ 0. Therefore, the addition of
the gradient of an arbitrary function f (t, x, y, z) to the vector-potential, A +∇ f , does not
affect the velocity field U. Due to the freedom of choice of an arbitrary function f (t, x, y, z),
one of the components of the vector-potential can be eliminated. Therefore, without loss
of generality, the vector potential A can be chosen consisting of two components only. It
does not matter which component is eliminated in the Cartesian rectilinear coordinates
because vector differential operations are symmetrical with respect to all spatial variables.
However, it is not the case in curvilinear coordinates, in particular, in cylindrical or spheri-
cal coordinates. In any case, an arbitrary 3-dimensional velocity field can be described, in
general, by two-component vector-potential, i.e., by two scalar functions—the correspond-
ing components of the vector-potential. If there is any additional link between these two
components, then the description of a fluid flow can be done in terms of only one scalar
function. The governing equation for the corresponding scalar function can be derived
from the primitive Navier–Stokes equation. This approach has been exploited in [6,7] in
Cartesian coordinates and illustrated by nontrivial examples of fluid flows.
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In this paper, fluid flows in the cylindrical and spherical coordinates are considered
and it is shown how the quasi-potential can be introduced when one of the components of
the vector-potential A is eliminated and two other components are linked with each other.
Illustrative examples, which demonstrate three-dimensional velocity field with only two
components of vorticity, are provided.

2. Governing Equations and Quasi-Potential in Cylindrical Coordinates

2.1. Case 1—Vector-Potential Does Not Contain the Radial Component

Consider first the case when the vector-potential does not contain the radial component
Ar which is eliminated by the appropriate choice of function f (t, x, y, z). Then, it can be
presented as A = (F1/r)eϕ − F2ez, where F1 and F2 are functions of time and all spatial
variables. Here ϕ is the azimuthal angle, and eϕ and ez are the unit vectors. The velocity
and vorticity fields for such a vector-potential are:

U = F3 er +
∂F2

∂r
eϕ +

1
r

∂F1

∂r
ez, (1)

ω =

(
1
r2

∂2F1

∂r∂ϕ
− ∂2F2

∂r∂z

)
er +

[
∂F3

∂z
− ∂

∂r

(
1
r

∂F1

∂r

)]
eϕ +

1
r

[
∂

∂r

(
r

∂F2

∂r

)
− ∂F3

∂ϕ

]
ez, (2)

respectively, where F3 = −1
r

(
∂F2

∂ϕ
+

∂F1

∂z

)
.

Consider a particular class of fluid flows having only two components of the vorticity,
the ϕ- and z-components. For such a class of fluid motion, one has the following differential
link between the functions F1 and F2:

1
r2

∂2F1

∂r∂ϕ
=

∂2F2

∂r∂z
(3)

Substitute then the expressions for U and ω in the Navier–Stokes equation in the
Helmholtz form (4) [1]:

∂ ω

∂t
+ curl [ω × U] = νΔ ω. (4)

Bearing in mind that thanks to the condition (3), the r-component of the vorticity is
zero, one obtains from Equation (4):

(curl [ω × U] · er) ≡ 1
r

[
∂F3

∂ϕ

∂

∂r

(
1
r

∂F1

∂r

)
− ∂F3

∂z
∂

∂r

(
r

∂F2

∂r

)]
= 0. (5)

Let us introduce function S(r, t) such that

∂

∂r

(
1
r

∂F1

∂r

)
=

∂S
∂z

;
∂

∂r

(
r

∂F2

∂r

)
=

∂S
∂ϕ

. (6)

Then, the left-hand side of Equation (5) reduces to the Jacobian of two functions F3
and S with respect to the variables ϕ and z. As well known, if the Jacobian is zero then, the
functions are related by an arbitrary function. In our case this means that J(F3, S) = 0, so
that F3 = G(S, r, t), where G is an arbitrary function of S, r and time t. Using the definition
of function F3 (see after Equation (2)) and Equation (6), one obtains:

ΔΦ = −1
r

∂

∂r
{

r
[
G(Φ′

r)− Φ′
r
]}

, (7)

where Φ =
∫

S dr is the quasi-potential, and prime stands for differentiation with respect to
the corresponding variable indicated by a subscript.
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In terms of the quasi-potential, the velocity and vorticity fields can be presented,
respectively, as:

U = ∇Φ + [G(Φ′
r)− Φ′

r] er , (8)

ω =
∂

∂z
[G(Φ′

r)− Φ′
r] eϕ − 1

r
∂

∂ϕ

[
G(Φ′

r)− Φ′
r
]

ez. (9)

By substitution of these expressions into two other components (the ϕ- and
z-components) of the Helmholtz Equation (4), after some manipulations (see Appendix A)
the equations reduce:

∂

∂t
[
G(Φ′

r)− Φ′
r
]
+∇Φ · ∇[G(Φ′

r)− Φ′
r
]
+

1
2

∂

∂r
[
G(Φ′

r)− Φ′
r
]2

− νΔ
[
G(Φ′

r)− Φ′
r
]
= Q(r, t), (10)

where Q(r, t) is an arbitrary function of the arguments.
In the particular case of G(Φr) ≡ Φr, the quasi-potential Φ becomes the conven-

tional hydrodynamic velocity potential. Equation (7) reduces to the Laplace equation,
Equation (10) disappears, and vorticity vanishes. In general, the main equations to be
solved simultaneously are Equations (7) and (10) with two arbitrary functions G(Φr) and
Q(r, t). As there is big freedom in the choice of these functions, one obtains a good per-
spective to construct exact solutions to hydrodynamic equations and accommodate them
to practical needs.

2.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component

Consider now the case when the vector potential has only r- and z-components:
A = −r F1 er + r F2 ez. In this case, the velocity and vorticity fields become:

U =
∂F2

∂ϕ
er +

F3

r
eϕ +

∂F1

∂ϕ
ez , (11)

ω =
1
r

(
∂2F1

∂ϕ2 − ∂F3

∂z

)
er +

∂

∂ϕ

(
∂F2

∂z
− ∂F1

∂r

)
eϕ +

1
r

(
∂F3

∂r
− ∂2F2

∂ϕ2

)
ez, (12)

respectively, where F3 = −r
[

r
∂F1

∂z
+

∂(r F2)

∂r

]
.

Let us consider such a class of fluid motion which does not contain the ϕ-component
of vorticity. In this case, there must be a relationship between functions F1 and F2 such that
∂F1/∂r = ∂F2/∂z. Then, the ϕ-component of the Helmholtz Equation (4) reduces to:(

∂

∂z
F3

r2

)
∂2F2

∂ϕ2 −
(

∂

∂r
F3

r2

)
∂2F1

∂ϕ2 = 0. (13)

The left-hand side of this equation reduces to the Jacobian on variables r and z as soon
as such function S(r, t) is introduced that

∂2F2

∂ϕ2 =
∂S
∂r

,
∂2F1

∂ϕ2 =
∂S
∂z

. (14)

Then, from Equation (13) one obtains: F3 = r2G(S, ϕ, t), where G is an arbitrary
function of S, ϕ and t. Recalling the definition of function F3 in terms of F1 and F2 and
introducing a quasi-potential Φ such that S = ∂Φ/∂ϕ, Equation (13) reduces to:

ΔΦ = − 1
r2

∂

∂ϕ

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
. (15)
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In terms of quasi-potential the velocity and vorticity fields read, respectively:

U = ∇Φ +
1
r

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
eϕ , (16)

ω =
1
r

{
− ∂

∂z

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
er +

∂

∂r

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
ez

}
. (17)

In the case of a perfect fluid (ν = 0), two other components, the r- and z-components, of
the Helmholtz Equation (4) after simple but long manipulations similar to those presented
in Appendix A can be reduced to only one equation:

∂

∂t

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
+∇Φ · ∇

[
r2G(Φ′

ϕ)− Φ′
ϕ

]
+

1
2r2

∂

∂ϕ

[
r2G(Φ′

ϕ)− Φ′
ϕ

]2
= Q(ϕ, t), (18)

where Q(ϕ, t) is an arbitrary function of the arguments.
In the particular case of G(Φ′

ϕ) ≡ Φ′
ϕ/r2, the quasi-potential Φ becomes a conven-

tional hydrodynamic velocity potential. Equation (15) reduces to the Laplace equation,
Equation (18) vanishes, the velocity field becomes potential, and the vorticity field vanishes.
In general, the main equations to be solved simultaneously for Φ are Equations (15) and (18)
with given functions Q(ϕ, t), and G(Φ′

ϕ). Despite the more complex character of these
equations, the freedom of choice of arbitrary functions allows one to obtain again a good
perspective to construct exact solutions to hydrodynamic equations and accommodate
them to practical needs. Unfortunately, in the case of a viscous fluid (ν �= 0) the introduction
of a quasi-potential does not help to simplify the basic Equation (4).

Example of a Vortical Flow Illustrating Case 2

To illustrate this case, let us assume that function G(Φ′
ϕ) ≡ λ2Φ′

ϕ/r2, where λ �= ±1
is a constant. One can readily verify that the following quasi-potential,

Φ =

(√
r2 + z2 + z

r

)λ

sin ϕ, (19)

satisfies Equations (15) and (18). Then, the velocity and vorticity fields read, respectively:

U =

(√
r2 + z2 + z

r

)λ
λ

r
√

r2 + z2

[
−z sin ϕ er + λ

√
r2 + z2 cos ϕ eϕ + r sin ϕ ez

]
, (20)

ω =

(√
r2 + z2 + z

r

)λ
λ(1 − λ2) cos ϕ

r2
√

r2 + z2
(r er + z ez). (21)

This solution describes stationary vortical flow periodic in azimuthal coordinate ϕ
and has two components of vorticity. When λ = 0, the velocity and vorticity fields vanish,
whereas when λ = 1, the flow becomes potential with the zero vorticity.

In Cartesian coordinates, both the velocity and vorticity fields have all three compo-
nents:

U = λ

(
R + z√
x2 + y2

)λ −xy(λR + z) i +
(
λx2R − y2z

)
j + y

(
x2 + y2) k

R(x2 + y2)
3/2 , (22)
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where R =
√

x2 + y2 + z2;

ω =

(
R + z√
x2 + y2

)λ
λ
(
1 − λ2)x

R(x2 + y2)
3/2 (x i + y j + z k). (23)

Figure 1 illustrates the velocity and vorticity fields as per Equations (22) and (23). The
modulus of the velocity field is:

|U| = λ

(
R + z√
x2 + y2

)λ√
λ2x2 + y2

(x2 + y2)
. (24)

Furthermore, the modulus of the vorticity field is:

|ω| = λ
(

1 − λ2
)( R + z√

x2 + y2

)λ
x

(x2 + y2)
3/2 . (25)

(a) (b)

Figure 1. Fragments of (a) the velocity field as per Equation (22), and (b) the vorticity field as per Equation (23) for λ = 2.

2.3. Case 3—Vector-Potential Does Not Contain the Axial Component

Consider at last the case when the vector potential has only r- and ϕ-components and
can be presented through the function F1 and F2 in the following way: A = (F1/r) er − F2 eϕ.
In this case the velocity and vorticity fields become, respectively:

U =
∂F2

∂z
er +

1
r

∂F1

∂z
eϕ + F3 ez , (26)

ω =
1
r

(
∂F3

∂ϕ
− ∂2F1

∂z2

)
er +

(
∂2F2

∂z2 − ∂F3

∂r

)
eϕ +

1
r

∂

∂z

(
∂F1

∂r
− ∂F2

∂ϕ

)
ez , (27)
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where F3 = −1
r

(
∂(r F2)

∂r
+

1
r

∂F1

∂ϕ

)
.

Assuming that the z-component of the vorticity is zero, one obtains the following
relationship between the function F1 and F2:

∂F1

∂r
=

∂F2

∂ϕ
. (28)

By substitution the expressions for the velocity and vorticity in the Helmholtz
Equation (4), one obtains:

(curl [ω × U] · ez) ≡ ∂F3

∂r
∂2F1

∂z2 − ∂F3

∂ϕ

∂2F2

∂z2 = 0. (29)

Let us introduce function S(r, t) such that

∂2F1

∂z2 =
∂S
∂ϕ

;
∂2F2

∂z2 =
∂S
∂r

. (30)

Then, the left-hand side of Equation (5) reduces to the Jacobian of two functions
F3 and S with respect to the variables r and ϕ. Omitting the details which are similar
to those presented in two previous section, one finds: F3 = G(S, z, t), where G is an
arbitrary function of S, z and t. Using then the definition of function F3 (see Equation (27))
and Equation (30), one obtains:

ΔΦ = − ∂

∂z
[
G(Φ′

z)− Φ′
z
]
, (31)

where the quasi-potential is Φ =
∫

S dz.
In terms of the quasi-potential, the velocity and vorticity fields can be presented,

respectively, as:
U = ∇Φ + [G(Φ′

z)− Φ′
z] ez , (32)

ω =
1
r

∂

∂ϕ
[G(Φ′

z)− Φ′
z] er − ∂

∂r
[
G(Φ′

z)− Φ′
z
]

eϕ. (33)

By substitution of these expressions into two other components (the r- and
ϕ-components) of the Helmholtz Equation (4) and neglecting viscosity (ν = 0), after
some manipulations, similar to those presented in the Appendix A, the equations reduce
to only one equation:

∂

∂t
[
G(Φ′

z)− Φ′
z
]
+∇Φ · ∇[G(Φ′

z)− Φ′
z
]
+

1
2

∂

∂z
[
G(Φ′

z)− Φ′
z
]2

= Q(z, t), (34)

where Q(z, t) is an arbitrary function of the arguments.
In the particular case of G(Φ′

z) ≡ Φ′
z, the quasi-potential Φ becomes the conven-

tional hydrodynamic velocity potential. Equation (31) reduces to the Laplace equation,
Equation (34) disappears, and vorticity vanishes. In general, the main equations to be
solved simultaneously are Equations (31) and (34) with two arbitrary functions G(Φ′

z)
and Q(z, t). There is again a big freedom in the choice of these functions, so that one can
obtain a good perspective to construct exact solutions to hydrodynamic equations and
accommodate them to practical needs. Unfortunately, in the case of a viscous fluid (ν �= 0),
the introduction of a quasi-potential does not help to simplify the basic Equation (4).

Example of a Vortical Flow Illustrating Case 3

Consider now an example of the vortical flow for the third case when the vector
potential has only r- and ϕ-components in cylindrical coordinates. Let us assume that
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G(Φz) ≡ −λ2Φz, where λ is a constant. One can readily verify that the following quasi-
potential,

Φ = cos (λr sin ϕ) cos z, (35)

satisfies Equations (31) and (34). Then, the velocity and vorticity fields read, respcetively:

U = −λ
[
cos z sin (rλ sin ϕ)

(
sin ϕ er + cos ϕ eϕ

)− λ sin z cos (rλ sin ϕ) ez
]
, (36)

ω = λ
(

1 + λ2
)

sin z sin (rλ sin ϕ)
(−cos ϕ er + sin ϕ eϕ

)
. (37)

This solution describes non-viscous stationary fluid flow. The vector fields U and ω are
periodic in ϕ and z. In Cartesian coordinates, the velocity field becomes two-component:

U = −λ(sin λy cos z j − λ cos λy sin z k), (38)

whereas the vorticity field has only one x-component:

ω = −λ
(

1 + λ2
)

sin (λy) sin z i. (39)

Both these fields do not depend on x and therefore can be described by the conven-
tional stream function ψ = sin λy sin z, so that the velocity components are:

Uy =
∂ψ

∂z
, Uz = −∂ψ

∂y
.

For purely imaginary λ = i, the quasi-potential reduces to the conventional hydrody-
namic potential, and the fluid field becomes potential with zero vorticity:

U = sinh y cos z j − cosh λy sin z k, (40)

Thus, in general, this example describes a vortical flow double periodic in the (y, z)
plane. Figure 2 illustrates the velocity and vorticity fields for λ = 1 when y and z vary in
the range [−4, 4].
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(a) (b)

Figure 2. Fragments of (a) the velocity field as per Equation (38), and (b) the density of vorticity field
as per Equation (39).

In this Section, only two simple examples have been presented to illustrate vortical
flows of inviscid fluid flows. As one can see already from these two examples, the in-
troduction of quasi-potentials allows us to construct exact solutions for fairly complex
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vortical flows in cylindrical coordinates. The transformation of a two-component vortic-
ity field aкщь cylindrical to Cartesian coordinates can lead to either one-component or
three-component vorticity fields. There is no regular method to construct three-component
vortical flows in Cartesian coordinates, whereas the developed theory allows us to find
some exact solutions for such flows in terms of the quasi-potential.

3. Governing Equations and Quasi-Potential in Spherical Coordinates

The derivation of basic equations for the spherical case are similar but not the same
to that presented in Section 2. Therefore, the derivation of the corresponding equations is
described only briefly.

3.1. Case 1—Vector-Potential Does Not Contain the Radial Component

Consider the case when the vector-potential does not contain the component Ar and
reads: A = −(F2/r)eϕ + (F1/r)eθ where θ is the polar angle, and F1 and F2 are functions
of time and all spatial variables. The velocity and vorticity fields for such vector-potential
are:

U = F3er +
1
r

∂F1

∂r
eϕ +

1
r

∂F2

∂r
eθ , (41)

ω =
1

r2 sin θ

[
∂

∂θ

(
∂F1

∂r
sin θ

)
− ∂2F2

∂r∂ϕ

]
er

− 1
r sin θ

(
∂2F1

∂r2 sin θ − ∂F3

∂ϕ

)
eϕ +

1
r

(
∂2F2

∂r2 − ∂F3

∂θ

)
eθ , (42)

respectively, where F3 = − 1
r2 sin θ

[
∂F1

∂ϕ
+

∂(F2 sin θ)

∂θ

]
.

Consider again a particular class of fluid flows with the zero first component of the
vorticity. Then, the relationship between functions F1 and F2:

∂

∂θ
(F1 sin θ) =

∂F2

∂ϕ
. (43)

Furthermore, from the r-component of the Helmholtz Equation (4) one obtains:

(curl[ω × U] · er) ≡ sin θ
∂2F1

∂r2
∂F3

∂θ
− ∂2F2

∂r2
∂F3

∂θ
= 0. (44)

Let us introduce function S such that

sin θ
∂2F1

∂r2 =
∂S
∂ϕ

,
∂2F2

∂r2 =
∂S
∂θ

. (45)

Then Equation (44) takes a form of the Jacobian of two functions, J(F3, S) = 0 with
respect to the variables ϕ and θ. This gives F3 = G(S, r, t), where G is an arbitrary function
of the arguments. Using the definition of function F3 and Equation (45), one can reduce
this relationship to the equation:

Δ
∫

Φ dr =
1
r2

∂

∂r

(
r2Φ′

r

)
− G(Φ′

r), (46)

where the quasi-potential is defined by the equation S = ∂Φ/∂r, and Δ is the Laplacian in
spherical coordinates. This equation can be rewritten in the form:

ΔΦ = − 1
r2

∂2

∂r2

{
r2[G(Φ′

r)− Φ′
r
]}

+
4
r

∂

∂r
[
G(Φ′

r)− Φ′
r
]

− 2
r

(
1
r
+ 1
)[

G(Φ′
r)− Φ′

r
]
+

4
r

∂

∂r
(
Φ′

r − Φ
)
+

2
r2

(
Φ′

r − Φ
)
. (47)
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The expressions for the velocity and vorticity fields in terms of the quasi-potential, are,
respectively:

U = ∇Φ +
[
G(Φ′

r)− Φ′
r
]
er, (48)

ω =
1
r

{
1

sin θ

∂

∂ϕ

[
G(Φ′

r)− Φ′
r
]
eϕ − ∂

∂θ

[
G(Φ′

r)− Φ′
r
]
eθ

}
. (49)

Then, from the other two components of the Helmholtz Equation (4) neglecting the
viscosity (ν = 0), one obtains:

∂

∂t
[
G(Φ′

r)− Φ′
r
]
+∇Φ · ∇ ∂

∂r
[
G(Φ′

r)− Φ′
r
]
+

1
2

∂

∂r
[
G(Φ′

r)− Φ′
r
]2

= Q(r, t), (50)

where Q(r, t) is an arbitrary function of the arguments. Choosing G(Φ′
r) ≡ Φ′

r, one obtains
the expressions for the potential fluid flow with the zero vorticity and U = ∇Φ.

The Illustrative Example

Let us construct the illustrative example of a stationary flow for this case with the
following choice of functions G(Φ′

r) and Q(r, t):

Φ(r, ϕ, θ) = r3 sin ϕ sin θ, G(Φ′
r) =

1
6

Φ′
r, Q(r, t) = −5

2
r3. (51)

The velocity and vorticity fields with such choice of functions are, respectively:

U = r2
(

1
2

sin ϕ sin θ er + sin ϕ cos θ eϕ + cos ϕ eθ

)
, (52)

ω =
5
2

r
(− cos ϕ eϕ + sin ϕ cos θ eθ

)
. (53)

These fields in the Cartesian coordinates look as follows:

U =
1
2

[
−xy ex +

(
2x2 + y2 + 2z2

)
ey − yz ez

]
; ω =

5
2
(−z ex + x ez). (54)

Figure 3 illustrates the velocity field in the planes y = −1 and y = 1.
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Figure 3. The velocity field in the planes y = −1 (a) and y = 1 (b) as per Equation (54).

Figure 4 illustrates the velocity field in the planes x = 0 and x = ±5, and Figure 5
illustrates the vorticity field in the (x, z)-plane.
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Figure 4. The velocity field in the planes x = 0 (a) and x = ±5 (b) as per Equation (54).
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Figure 5. The vorticity field in the (x, z)-plane as per Equation (54).

3.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component

Consider now the case when the vector-potential does not contain the azimuthal
component Aϕ and reads: A = F1 sin θ er − F2r sin θ eθ , where F1 and F2 are functions of
time and all spatial variables. The velocity and vorticity fields for such vector-potential read:

U =
∂F2

∂ϕ
er +

F3

r sin θ
eϕ +

1
r

∂F1

∂ϕ
eθ , (55)

ω =
1

r2 sin θ

(
∂F3

∂θ
− ∂2F1

∂ϕ2

)
er +

1
r

∂

∂ϕ

(
∂F1

∂r
− ∂F2

∂θ

)
eϕ − 1

r sin θ

(
∂F3

∂r
− ∂2F2

∂ϕ2

)
eθ , (56)

respectively, where F3 = − sin θ

[
∂

∂r

(
F2r2 sin θ

)
+

∂

∂θ
(F1 sin θ)

]
.

Considering such a class of fluid flows which do not contain the ϕ-component of the
vorticity, one obtains a relationship between the functions F1 and F2:

∂F1

∂r
=

∂F2

∂θ
. (57)
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Then, from the ϕ-component of the Helmholtz Equation (4) one obtains:

(curl[ω × U] · eϕ)

=
∂

∂r

(
F3

r2 sin2 θ

)(
∂2F1

∂ϕ2 − ∂F3

∂θ

)
− ∂

∂θ

(
F3

r2 sin2 θ

)(
∂2F2

∂ϕ2 − ∂F3

∂r

)

=
∂

∂r

(
F3

r2 sin2 θ

)
∂2F1

∂ϕ2 − ∂

∂θ

(
F3

r2 sin2 θ

)
∂2F2

∂ϕ2 = 0. (58)

Introducing function S(r, t) such that

∂2F1

∂ϕ2 =
∂S
∂θ

,
∂2F2

∂ϕ2 =
∂S
∂r

, (59)

Equation (58) can be presented in the Jacobian form:

Jr,θ

(
F3

r2 sin2 θ
, S
)
≡ ∂

∂r

(
F3

r2 sin2 θ

)
∂S
∂θ

− ∂

∂θ

(
F3

r2 sin2 θ

)
∂S
∂r

= 0. (60)

This implies that F3 = G(S, ϕ, t)r2 sin2 θ, where G is an arbitrary function of the
arguments. Using the definition of function F3 (see Equation (56)) and the relationship (57)
between functions F1 and F2, one finally derives the static equation for the quasi-potential
Φ =

∫
S dϕ:

ΔΦ = − ∂

∂ϕ

[
G(Φ′

ϕ)−
Φ′

ϕ

r2 sin2 θ

]
. (61)

Another equation, describing the time dependence of Φ, can be obtained from two
other components (r- and θ-components) of the Helmholtz Equation (4). Omitting the
details, which are similar to those shown in Appendix A, for the perfect fluid (ν = 0), this
equation reads:

∂

∂t

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]
+∇Φ · ∇

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]
+

1
2r2 sin2 θ

∂

∂ϕ

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]2
= Q(ϕ, t), (62)

where Q(ϕ, t) is an arbitrary function of the arguments.
In terms of quasi-potential the velocity and vorticity fields are, respectively:

U = ∇Φ +
1

r sin θ

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]
, (63)

ω =
1

r2 sin θ

∂

∂θ

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]
er − 1

r sin θ

∂

∂r

[
r2 sin2 θ G(Φ′

ϕ)− Φ′
ϕ

]
eθ . (64)

Choosing G(Φ′
r) ≡ Φ′

r/r2 sin2 θ, one obtains the expressions for the potential fluid
flow with the zero vorticity and U = ∇Φ.

3.3. Case 3—Vector-Potential Does Not Contain the Polar Component

Consider, at last, the case when the vector-potential does not contain the polar com-
ponent Aθ and reads: A = −F1 er + F2/r sin θ eϕ, where F1 and F2 are functions of time
and all spatial variables. The velocity and vorticity fields for such vector-potential are,
respectively:

U =
1
r

(
1

r sin θ

∂F2

∂θ
er +

∂F1

∂θ
eϕ + F3 eθ

)
, (65)

ω =
1

r sin θ

{
1
r

[
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ

]
er + sin θ

[
∂F3

∂r
− ∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)]
eϕ
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+

[
∂

∂ϕ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂

∂r

(
sin θ

∂F1

∂θ

)]
eθ

}
. (66)

where F3 = − 1
sin θ

(
∂F2

∂r
+

∂F1

∂ϕ

)
.

Consider now a particular class of fluid flows with the zero polar component of the
vorticity. Then, one obtains the relationship between functions F1 and F2:

1
r2 sin θ

∂2F2

∂θ∂ϕ
= sin θ

∂2F1

∂θ∂r
. (67)

Then, from the θ-component of the Helmholtz Equation (4) one obtains:(
∂

∂ϕ

F3

r2

)[
∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂F3

∂r

]
−
(

∂

∂r
F3

r2

)[
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ

]
= 0. (68)

Introducing function S such that

∂

∂θ

(
1

r2 sin θ

∂F2

∂θ

)
− ∂F3

∂r
=

∂S
∂r

,
∂

∂θ

(
sin θ

∂F1

∂θ

)
− ∂F3

∂ϕ
=

∂S
∂ϕ

, (69)

Equation (68) transforms to the form of Jacobian:

Jϕ,r

(
F3

r2 , S
)
≡ ∂

∂ϕ

(
F3

r2

)
∂S
∂r

− ∂

∂r

(
F3

r2

)
∂S
∂ϕ

= 0. (70)

This implies that F3 = r2G(S, θ, t), where G is an arbitrary function of the arguments.
Using the definition of function F3 (see Equation (66) and the relationship between functions
F1 and F2 (67), one finally obtains the static equation for the function S:

ΔΦ =
1

r2 sin θ

∂(S sin θ)

∂θ
, (71)

where quasi-potential is Φ =
∫ [

S + r2G(S)
]
dθ, and Δ is the Laplacian in spherical coordi-

nates.
Another equation, describing time dependence of S, can be obtained from two other

components (r- and ϕ-components) of the Helmholtz Equation (4) with ν = 0. Omitting
the details, which are similar to those presented in Appendix A, the final expression is:

∂S
∂t

+∇Φ · ∇S − 1
2r2

∂S2

∂θ
= Q(θ, t). (72)

Then, the formulae for the velocity and vorticity fields are, respectively:

U = ∇Φ − S
r

eθ , (73)

ω =
1

r2 sin θ

∂S
∂ϕ

er − 1
r

∂S
∂r

eϕ. (74)

These formulae exhaust all possible versions of introduction of a quasi-potential in
spherical coordinates. No an illustrative example is found for this case but let believe that
this may be possible and, hopefully, an example will be found in the future, moreover, it
can be of a practical interest.

4. Conclusions

Thus, in this paper it has been demonstrated that the introduction of a proper quasi-
potential is possible in the cylindrical and spherical geometry albeit it is not a trivial
generalisation of the quasi-potential theory developed in Refs. [6,7]. The quasi-potential
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approach helps one to construct exact solutions describing fairly complex class of three-
dimensional velocity fields with two-component vorticity fields. After transformation from
the curvilinear coordinates to the Cartesian coordinates, the velocity and vorticity fields
can become fairly complex containing all three components of velocity and vorticity. In the
particular cases, the quasi-potential theory reduces to the conventional potential theory or
to the theory of a vortex flow based on the introduction of a stream-function. Our prelimi-
nary study shows that the quasi-potential approach can be used also in other curvilinear
coordinates however, the basic equations and formulae for the velocity and vorticity fields
become fairly complex and not so illustrative. Summarising the results obtained in this pa-
per and in Refs. [6,7], one can see that the traditional potential theory describes fluid flows
with zero vorticity; the stream-function approach allows us to describe flows with only
one component of vorticity; and the introduction of a quasi-potential allows us to describe
flows with two components of vorticity. It can be noted in conclusion that, unfortunately,
new ideas in the description of classical hydrodynamics appear seldom. Three relatively
recent publications [8–10] can be mentioned to illustrate that the development of such ideas
leads to the discovery of new non-trivial exact solutions in classical fluid mechanics.
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Appendix A

The ϕ-component of the Helmholtz Equation (4) after substitution the expressions for
the velocity (8) and vorticity (9) fields gives:

∂2

∂t∂z
[
G(Φ′

r, r)− Φ′
r
]− ∂

∂r

{
G(Φ′

r, r)
∂

∂z
[
G(Φ′

r, r)− Φ′
r
]}− νΔ

∂

∂z
[
G(Φ′

r, r)− Φ′
r
]

− ∂

∂z

{
∂Φ′

r, r)
∂z

∂

∂z
[
G(Φ′

r, r)− Φ′
r
]
+

1
r2

∂Φ′
r, r)

∂ϕ

∂

∂ϕ

[
G(Φ′

r, r)− Φ′
r
]}

= 0.

This equation can be rewritten in the form:

∂2

∂t∂z
[
G(Φ′

r, r)− Φ′
r
]
+

∂

∂z
{∇Φ · ∇[G(Φ′

r, r)− Φ′
r
]}

+
1
2

∂2

∂z∂r
[
G(Φ′

r, r)− Φ′
r
]2

− νΔ
∂

∂z
[
G(Φ′

r, r)− Φ′
r
]
= 0.

After integration over z this equation reduces to:

∂

∂t
[
G(Φ′

r, r)− Φ′
r
]
+∇Φ · ∇[G(Φ′

r, r)− Φ′
r
]
+

1
2

∂

∂r
[
G(Φ′

r, r)− Φ′
r
]2

− νΔ
[
G(Φ′

r, r)− Φ′
r
]
= Q1(r, ϕ, t), (A1)

where Q1(r, ϕ, t) is an arbitrary function of the arguments.

123



Physics 2021, 3

Then, the similar manipulations with the z-component of the Helmholtz Equation (4)
lead to the equation:

∂

∂t
[
G(Φ′

r, r)− Φ′
r
]
+∇Φ · ∇[G(Φ′

r, r)− Φ′
r
]
+

1
2

∂

∂r
[
G(Φ′

r, r)− Φ′
r
]2

− νΔ
[
G(Φ′

r, r)− Φ′
r
]
= Q2(r, z, t), (A2)

The left-hand side of Equations (A1) and (A2) are identical; therefore, one can conclude
that functions Q1(r, z, t) and Q2(r, z, t) can depend only on r and t and must be equal.
Denoting them by Q(r, t), one obtains Equation (10).

Appendix B

Here, one of the authors, Y.S., presents his reminiscent about friendship contacts with
Michael Tribelsky (Misha). We met relatively late, in 2007, when we both worked as Visiting
Professors at the Max Planck Institute for the Physics of Complex Systems, Dresden, Ger-
many. We quickly found many commons between us, including age, education, interests,
attitude to science and life. One of the attractive Misha’s features is a great sense of humour
and an optimistic attitude to life even when it was hard to him. We spent much time in
discussions of physical and mathematical problems, as well as stories of science history.

Figure A1. Yury Stepanyants (left) and Mikhail Tribelsky (right) at the Circular Quay, Sydney,
in 2008.

Our contacts continued when Misha visited me in Sydney the next year. I was attracted
to them by persistence and perseverance in achieving goals (this is clearly seen from his
autobiographical notes presented in this Special Issue). This pertains not only to physical
problems but to all aspects of life. I observed how carefully Misha chose the best spots for
photography of exotic trees, beautiful buildings, and other objects, taking photos in Sydney
when we walked continuously discussing something or disputing on different subjects.

Misha obtained an excellent education in one of the world’s most prestigious physical
faculties, namely the one at Lomonosov Moscow State University. He had an opportunity
to communicate and jointly work with brilliant world-renowned scientists such as his
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supervisor Prof. S. Anisimov and then, Profs. Ya. Zeldovich, I. Lifshits, V. Zakharov. He
boldly tackled difficult physical problems and found their own, often unconventional
solutions to them. I was delighted with his story about solving an important industrial
problem for one of the Japanese companies. The problem was related to the calculation of
the extinction coefficient in complicated multi-component media. At first, it was not even
clear how to approach the task. Still, after persistent reflections, Misha found the key in a
relatively short time which caused the admiration of company bosses.

I should also mention Misha’s deep knowledge of computer design and the internal
devices of a computer. I had a chance to be convinced that Misha’s level in this field is the
same as that (or even higher than that) of professional IT (information technology) experts.
Misha generously shared his knowledge with me. More than once, he helped me resolve
the difficult issues related to installing and fine-tuning computer programs. It is a pleasure
to have such a kind and reliable friend as Misha Tribelsky. I wish him good health and
many years of creative work in science.
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Abstract: Almost 70 years ago, the Fermi–Pasta–Ulam–Tsingou (FPUT) paradox was formulated
in, observed in, and reported using normal modes of a nonlinear, one-dimensional, non-integrable
string. Let us recap the paradox. One normal mode is excited, which drives three or four more
normal modes in the core. Then, that is it for quite a long time. So why are many normal modes
staying weakly excited in the tail? Furthermore, how many? A quantitative, analytical answer to
the latter question is given here using resonances and secular avalanches A comparison with the
previous numerical data is made and extremely good agreement is found.

Keywords: Fermi–Pasta–Ulam–Tsingou (FPUT) problem; normal modes; resonances; secular avalanche

1. Introduction

In 1955, Fermi, Pasta, Ulam and Tsingou published their celebrated report on the
thermalization of weakly nonlinear strings [1], bringing forth a fundamental physical and
mathematical problem of energy equipartition and ergodicity. The study was reportedly
performed by Enrico Fermi, John Pasta, Stanislav Ulam, and Mary Tsingou, and the internal
Los Alamos report was written and authored by Fermi, Pasta and Ulam [1]. A series of
numerical simulations showed that energy, initially placed in a low-frequency normal mode
of the linear problem with a frequency ωq and a corresponding wave number q, stayed
almost completely locked within a few neighbor low-frequency modes in the presence of
nonlinear mode–mode interactions, instead of being distributed among all modes of the
system. Moreover, the recurrence of energy to the originally excited mode was observed
after a long simulation time. It has been known since as the Fermi–Pasta–Ulam–Tsingou
(FPUT) problem, paradox, and discovery [2–5].

A number of studies have focused on the explanation of recurrences. Zabusky and
Kruskal pioneered the pathway of integrable approximations and soliton counting in real
space [6–8]. To connect to the limit of weak nonlinear dynamics, Ford and Jackson followed
the path of resonances in normal mode space [9–11]. Tuck and Menzel (née Tsingou) studied
in detail the fate of recurrences for longer times. To their surprise, they observed super-
recurrences, i.e., beatings of the recurrence amplitudes [12]. Sholl and Henry searched
for scaling relations from recurrence time computations [13]. Lin, Goedde, and Lichter
arrived at more detailed scaling relations for the recurrence times, and in addition also
produced intriguing numerical data for the dependence of the number of excited modes
of the energy [14]. The framework of periodic orbits in dynamical systems was used to
rigorously prove the existence of exact time-periodic orbits, coined q-breathers, which are
nonlinearity-induced deformed normal-mode periodic orbits of the linear limit [15,16].
FPUT trajectories correspond to perturbed q-breather solutions. An advanced perturbation
analysis in mode space which uses secular avalanches was derived by Ponno et al. [17],
which arrived at an approximate estimate of the excited mode number in the FPUT ex-
periment. Recently, Pace and Campbell arrived at an elegant theoretical quantitative
explanation of super-recurrences [18]. What remains, then, is to quantitatively explain the
numerical observations on the excited mode number by Lin et al. [14] which is what is
done below.
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2. The α-FPUT Chain

FPUT-studied models have cubic (α-FPUT) and quartic (β-FPUT) nonlinearities in the
Hamiltonian potential energy, and the α-FPUT case is considered here. The Hamiltonian
of the α-FPUT lattice for N particles is given by

Hα(q, p) =
N

∑
n=1

p2
n

2
+

N

∑
n=0

1
2
(qn+1 − qn)

2 +
α

3
(qn+1 − qn)

3. (1)

Fixed boundary conditions, q0 = qN+1 = 0 and p0 = pN+1 = 0 are used, where qn(t)
and pn(t) are canonical coordinates and momenta, respectively.

The normal-mode representation is introduced via a canonical Fourier transform,[
qn
pn

]
=

√
2

N + 1

N

∑
k=1

[
Qk
Pk

]
sin
(

nkπ

N + 1

)
, (2)

which diagonalizes the harmonic oscillator Hamiltonian part. Rewriting Equation (1) in
these normal-mode coordinates (Q, P) yields:

Hα(Q, P) =
N

∑
k=1

P2
k + ω2

k Q2
k

2
+

α

3

N

∑
k,j,l=1

Ak,j,lQkQjQl , (3)

where the normal mode frequencies are

ωk = 2 sin
(

kπ

2(N + 1)

)
, (4)

and the normal mode energies are defined as

Ek =
P2

k + ω2
k Q2

k
2

. (5)

Note that these normal mode energies are conserved quantities for α = 0, but cease to
be preserved for the nonlinear case. The coupling constants Ak,j,l are given by [16]

Ak,j,l =
ωkωjωl√
2(N + 1)

∑
±

(
δk,±j±l − δk±j±l,2(N+1)

)
. (6)

Here, the sums ∑± are overall combinations of plus and minus signs among the
± symbols, and δj,l is the Kronecker delta function.

One can rescale the normal-mode coordinate and momentum [19] pairs in Equation (3)
by (Q, P) → (Q/α, P/α). If E represents the total energy in the system, this leads to

Hα=1(Q, P) = α2E, (7)

which allows one to investigate results as functions of the combined parameter, Eα2, rather
than using the separate parameters E and α.

Let us show the evolution of the original α-FPUT trajectory for α = 0.25, N = 32 and
energy E = 0.077 placed initially into the mode with k0 = 1. (All variables in this paper are
considered dimensionless.) In Figure 1, the time dependence of the mode energies Ek(t) is
plotted for the first five modes of the data from [16].
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Figure 1. Evolution of the linear mode energies for the first five modes on a large timescale for the orig-
inal Fermi–Pasta–Ulam-Tsingou (FPUT) trajectory for the parameter α = 0.25, theeneregyE = 0.077,
and the number of particles N = 32 [1] (oscillating curves). The almost-straight horizontal lines
indicate the weak time dependence of the linear mode energies on corresponding exact time-periodic
q-breather solutions from [16]. Figure is adapted from [16].

The period of the slowest (k0 = 1) harmonic mode is T1 = 2π/ω1 ≈ 66.02. One
observes slow processes of the redistribution of mode energies, with recurrence time
amounting to TR ≈ 10530. One can also observe even slower modulations of recurrence
amplitudes on time scales of the order of 105, which are the celebrated super-recurrences
with TSR ≈ 2 × 106 [12,18]. The localization in q-space is also well observed, with the max-
imum of E5 being eight times smaller than that of E1. The number of strongly participating
modes can be therefore estimated to be around three or four. The almost straight horizontal
lines indicate the weak time dependence of the linear mode energies on the corresponding
exact time-periodic q-breather solutions from [16].

3. Mode Coupling Approach

The equations of motion for the normal mode amplitudes follow from Equations (1)–(6)
and read:

Q̈k + ω2
k Qk = −α

N

∑
l,m=1

Ak,l,mQlQm, (8)

where the dots stay for time derivative.
The system of Equation (8) describes a network of oscillators with different eigen-

frequencies. These oscillators interact with each other via nonlinear interaction terms.
The interaction network is long-ranged in k-space. To be more specific, each normal-mode
oscillator is interacting with a set of other doublets of oscillators. The total number of
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multiplets one normal-mode oscillator is connected to is proportional to N2. The number
N is the total number of oscillators (particles), or, more generally, the volume of the system.
The coupling constants Ak,l,m depend on the oscillator frequencies; see Equation (6). Still,
their values do not decay exponentially fast, with some growing distance between oscilla-
tors (after introducing a proper metric). Therefore, essentially all oscillators interact with
all others. This is what is meant by “long range”.

If there is long-range interaction in mode space, why do modes not quickly excite other
modes and thermalize? The reason is that the interaction is nonlinear. Indeed, with linear
interactions, exciting one mode will inevitably excite other modes in some proportion to
the coupling coefficient amplitudes. However, with nonlinear couplings, things are more
complicate as shown below. Actually, it is insightful to recall the seemingly simple problem
of the periodic motion of one oscillator in an anharmonic potential,

ẍ = −x − αx2 − βx3 , (9)

where x is the space coordinate.
The bounded motion at energy E yields a solution which is periodic with some period,

T(E) = 2π/Ω (with Ω denoting the frequency), and can be represented by a Fourier series

x(t) = ∑
k

AkeikΩt , (10)

which leads to algebraic equations for the Fourier coefficients,

Ak = k2Ω2 Ak − α ∑
k1

Ak1 Ak−k1 − β ∑
k1,k2

Ak1 Ak2 Ak−k1−k2 . (11)

Let us note that Equation (11) has similar properties as compared to Equation (8)—the
coupling between the Fourier coefficients is nonlinear but long ranged. Yet, it is known
that the bounded solutions (10) to (9) are analytic functions x(t), and thus the Fourier series
coefficients Ak converge exponentially fast with k [20].

3.1. Complex Mode Variables

Ponno et al. [17] attempted to obtain analytical expressions for the mode dynamics of
the α-FPUT model at times shorter than, or at best of the order of the time of first recurrence.
Following their approach, let us perform a change from real to complex variables:

uk ≡ ωkQk + iPk√
2E

, |uk(t)|2 =
Ek(t)

E
= ek(t) , (12)

The α-FPUT Hamiltonian now reads:

H(u, u∗) =
N−1

∑
k=1

|uk|2︸ ︷︷ ︸
H2

+
μ

12

N−1

∑
k1,k2,k3=1

Δk1,k2,k3

3

∏
j=1

(ukj
+ u∗

kj
)︸ ︷︷ ︸

H3

, (13)

where
Δk1,k2,k3 ≡ δk1+k2,k3 + δk2+k3,k1 + δk3+k1,k2 − δk1+k2+k3,2N , (14)

and

μ ≡ α

√
E
N

. (15)
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The quadratic, H2, and cubic, H3, parts of the Hamiltonian are indicated in Equation (13).
The equations of motion then read:

u̇k = −iωk

[
uk +

μ

4

N−1

∑
p,q=1

Δk,p,q(up + u∗
p)(uq + u∗

q)

]
. (16)

The FPUT initial condition turns to

uk(0) = δk,1 . (17)

3.2. Resonances

With the FPUT initial condition of exciting mode k = 1, and a small value of μ in
Equation (15), the first mode starts evolving in an almost periodic fashion with a frequency
almost equal to ω1. Assuming uk = e−iω1tδk,1 as a solution to zero order in μ, and inserting
this into the righ-hand side (r.h.s.) of Equation (16) leaves us with

u̇2 + iω2u2 = −iμω2 cos2 ω1t ≡ −i
μω2

2
(1 + cos 2ω1t) . (18)

Thus, mode k = 2 is driven by a periodic force with frequency 2ω1. This is as close to
resonance as ω2 − 2ω1 is close to zero, and its smallness is to be compared with the drive
amplitude ∼μω2. Assuming π/(2(N + 1)) � 1, which is correct for N = 32, let us expand
the dispersion relation: ωk = 2 sin

(
kπ

2(N+1)

)
≈ 2
(

πk
2(N+1) − π3k3

48(N+1)3

)
. Then:

Δ2 ≡ |ω2 − 2ω1| ≈ π3

4(N + 1)3 . (19)

Stripping Equation (18) off its nonresonant terms (whose contribution to the solution
is reduced by a factor of Δ2/ω1,2 ∼ 1/N2), one is left with

u̇2 + iω2u2 ≈ −i
μω2

4
exp(−2iω1t) . (20)

The solution to Equation (20) reads:

u2(t) =
μω2

4Δ2
e−iω2t

[
eiΔ2t − 1

]
. (21)

As long as u2(t) � 1, the above approach is valid. The border of its validity is reached
when the energy E takes the critical value Esa

2 , at which mode k = 2 is involved in a secular
avalanche [17]:

μω2

4Δ2
= 1 → Esa

2 =
π4

36α2N3 . (22)

For energies E � Esa
2 , the small frequency Δ2 leads to a slow modulation in the

r.h.s. of Equation (21), which results in a corresponding slow modulation of the energy
stored in mode k = 1 due to energy conservation. Then, the corresponding zero order (or
perturbative) recurrence time estimate is:

T(0)
R ≡ 2π

Δ2
=

8
π2 N3 , E � Esa

2 . (23)

This coincides with earlier results by Sholl and Henry [13] ( see also Lin et al. [14]),
and the relevant resonance was already worked out in Ford’s paper [9].

Let us calculate some numbers. Figure 1 in Ref. [14] uses parameters E = 2.2, α = 0.1,
and N = 32. On one side, it follows T(0)

R = 26,560, but due to the large energy, it also follows
E � Esa

2 = 0.0083, implying that the recurrence time concept is invalid since perturbation
theory is inapplicable. Still, the measured TR = 6400 is orders of magnitude larger than the
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typical mode period, T1, and only a factor of four smaller than the perturbation theory esti-
mate. The original FPUT trajectory was investigated in Figure 1 of Ref. [16], with parameters
E = 0.077, α = 0.25 and N = 32, and shown here in Figure 1. Again, E � Esa

2 = 0.0013.

The measured recurrence time TR = 10,500 is smaller than the perturbation result T(0)
R , but

still orders of magnitude larger than the mode period T1. Part of the FPUT surprise must
have been that even for E � Esa

2 , recurrence times still stayed large and reasonably close to
their perturbation theory estimates, and a fast approach to equipartition was missing.

4. The Number of Excited Modes

For E � Esa
2 , one concludes that the FPUT trajectory is resonant. Mode k = 2 will

be resonantly pumped up by mode k = 1 until mode k = 1 is depleted. It is needless to
state that the process continues into higher modes, showing a complex resonant avalanche,
as studied in detail in Ref. [17]. Furthermore, this is what FPUT observed, since they
evidently chose the proper parameters to ensure that the system is in the nonperturbative
regime of a resonant avalanche, which one enters for energies E ≥ Esa

2 .
Why is the secular avalanche stopping and not continuing to flood all the modes?

According to Ref. [17], this is simply because the modes in the mode packet can be separated
into core modes and tail modes. Core modes are strongly and resonantly interacting with
each other. Tail modes fail to be resonantly pumped as they are tuned out of resonance
due to the nonlinear dispersion relation. The boundary-separating core and tail modes
are functions of the energy. For E � Esa

2 , all modes are tail modes except for the one core
mode initially excited.

To see that the above approach is extended to higher orders of perturbation theory;
see Ref. [17] for details. Mode k = 2 is driven by mode k = 1 through the resonant term
u2

1. Mode k = 3 is driven by the resonant term u1u2, and so on. One arrives at

u̇k + iωkuk ≈ −i
μωk

4
e−ikω1t . (24)

The relevant resonances are Δk = |kω1 − ωk|, and lead to

uk(t) ≈ μωk
4Δk

e−iωkt
[
eiΔkt − 1

]
. (25)

The critical energy Esa
k , above which mode k becomes part of the core and the secular

avalanche, then reads:
μωk
4Δk

= 1 → Esa
k =

2π4(k2 − 1)2

242α2N3 . (26)

Since Esa
k ∼ k4, it follows that for some reasonably small value of k ≡ kc, the corre-

sponding mode will be out of resonance:

kc =

√
1 +

6
π2 μN2 . (27)

This agrees very well with the detailed derivations in Ref. [17], which culminate in a
rough scaling estimate kc ≈ √

μN for large kc and large N. At the same time, Equation (27)
is accurate for small values of kc, which is the case for, e.g., the original FPUT trajectory
(see precise numbers just below). This can happen despite a large value of N � 1 since
other relevant (small) parameters include the energy E and the coupling constant α, which
make the product μN2 small. The mode energies for k > kc are decreasing exponentially
with increasing k, as observed numerically in Ref. [17,21], and as also derived for the
mode energy profiles in q-breather solutions [15,16]. Therefore, the number of modes
participating in an FPTU trajectory is simply given by kc.

Let us calculate numbers again. Figure 1 in Ref. [14] uses parameters E = 2.2, α = 0.1
and N = 32. It follows kc = 4.16 in good agreement with the numerical observations.
About four modes are involved in the resonant dynamics of the core, while all other modes
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stay out of resonance. The original FPUT trajectory, which was investigated in Figure 1 in
Ref. [16] with parameters E = 0.077, α = 0.25 and N = 32, yields kc = 2.9, which is again
in good agreement with numerical observations; see also Figure 1.

One is now in a position to quantitatively compare the central result obtained,
Equation (27), with numerical results from Lin et al. [14]. The authors of that study mea-
sured the effective number,

neff = eS , S = −∑
k

ek ln ek, (28)

which ranges from 1 to N as S = 0 for one mode excited, and S = ln N for equally
distributed mode energies. According to the derivation made:

kc = neff. (29)

In order to test the above equality, the data onneff versus μN2 for N = 3, 264, 128 are
extracted from Figure 4 of Ref. [14]. The result is plotted in Figure 2 along with the theoretical
result for kc in Equation (27). Very good agreement can be observed.

Figure 2. (Left panel) The effective number, neff versus αε1/2N2 ≡ μN2 with ε ≡ E/N. The symbols
represent the data read off from Figure 4b of Ref. [14], correspond to a set of different system sizes,
N = 3, 264, 128, and demonstrate a single scaling curve existence. The black line represents the
theoretical result (27). (Right panel) same as left panel but using linear scales. The square-root law
of Equation (27) provides an extremely good fit .

One concludes that the FPUT trajectory will, for long times, excite a mode packet with
kc modes, which are the core modes of the packet. The remaining (N − kc) modes belong
to the tail of the packet, and decay exponentially with increasing k. Let us further note that
the theoretical result obtained here can be rewritten in the limit of large system size as:

kc

N
≈

√
6α

π
ε1/4 , ε =

E
N

, N � 1 . (30)

Therefore, the packet size becomes system size-independent if expressed entirely
through intensive quantities—wave numbers and energy densities.

5. Discussion

It is now understood that both FPUT recurrences and super-recurrences are part of the
dynamics of so-called metastable states (mode packets) [22], which eventually relax into
equipartition at some time T2. These metastable states are formed at a time T1, persisting
over potentially huge time intervals, ∼(T2 − T1). They are characterized by a localized
distribution of energy in mode space. This distribution has a core which, e.g., in the case of
the original FPUT test, contains a few low-frequency modes. The distribution has also a tail.
Galgani and Scott observed that this tail is exponentially decaying [21]. The distribution
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appears to be almost stationary when using proper averaging times which are much
shorter than Tm, though of course lots of dynamics is going on at various time scales,
e.g., recurrences and super-recurrences. The core shows recurrence and super-recurrence,
but also various forms of chaos (at even larger time scales). The tails are characterized
by decay structures in normal mode space, resonances, and slow incoherent heating.
The decay structures can be exponential, thus leading to length scales in normal mode
space or algebraic implying the absence of the latter. Resonances in the decay profiles
show the driven nature of these tails, with the core being the driving source. Incoherent
heating results from the same core driving, which at larger time scales may exhibit chaotic
incoherent dynamics.

The core dynamics are quantified by their recurrence, TR, and super-recurrence, TSR,
times and the core size. While the recurrence and super-recurrence times were assessed
in previous studies a quantitative calculation of the core size is provided here, which
agrees very well with the measured data. One can therefore conclude that the regular
core dynamics have been to some extent exhaustively studied. What remains for the core
is to assess its chaotic incoherent dynamics. These dynamics are the reason for the slow
heating of the tail modes, and will ultimately explain the time scale T2 of a final reaching of
equipartition, as studied numerically in detail in Ref. [23].

6. Conclusions

In this paper, a quantitative estimates for the size of the core and tail of a low-frequency,
normal-mode excitation in a Fermi–Pasta–Ulam–Tsingou (FPUT) chain is provided. How
will these results be modified if high frequency modes are excited? Even more intriguing
is the question of whether any of these results are carried over in some form for an FPUT
system at thermal equilibrium—what are the details of the energy transfer between low and
high frequency modes in such a situation? What will happen at higher lattice dimensions?
What changes if the model supports optical normal modes with a finite frequency gap in
the band structure? It seems there a plenty of questions to be addressed 70 years after the
FPUT experiment.

7. HB2U

I had a great time working together with Mikhail Tribelsky back in Dresden at the
Max Planck Institute for Physics of Complex Systems. We both shared a passion for puzzles
and paradoxes, probably intuitively realizing that however remote the topic of the puzzle
is, solving it will advance the mind in potentially unexpected areas of science and general
understanding of the world. I dedicate this paper to Mikhail’s 70th birthday. It solves some
aspects of a paradox which is almost the same age, paradoxically.
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Abstract: In this paper, the fluctuation properties of the number of energy levels (mode fluctuation)
are studied in the mixed-type lemon billiards at high lying energies. The boundary of the lemon
billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between
the centers, as introduced by Heller and Tomsovic. In this paper, the case of two billiards, defined by
B = 0.1953, 0.083, is studied. It is shown that the fluctuation of the number of energy levels follows
the Gaussian distribution quite accurately, even though the relative fraction of the chaotic part of the
phase space is only 0.28 and 0.16, respectively. The theoretical description of spectral fluctuations
in the Berry–Robnik picture is discussed. Also, the (golden mean) integrable rectangular billiard is
studied and an almost Gaussian distribution is obtained, in contrast to theory expectations. However,
the variance as a function of energy, E, behaves as

√
E, in agreement with the theoretical prediction

by Steiner.

Keywords: nonlinear dynamics; quantum chaos; mixed-type systems; energy level statistics; billiards;
lemon billiards

1. Introduction

The purpose of this paper is to analyze the energy spectra of two characteristic complex
mixed-type lemon billiards within the scope of quantum chaos. The boundary of the lemon
billiards is defined by the intersection of two circles of equal unit radius with the distance
2B between the centers, as introduced by Heller and Tomsovic in 1993 [1,2]. The present
study represents a continuation of our recent paper [3] on the classical and quantum ergodic
billiard (B = 0.5) with strong stickiness effects, from the family of lemon billiards, as well
as on three simple mixed-type lemon billiards with only one regular region, surrounded
by a uniform chaotic sea without stickiness regions, namely, with the shape parameters
B = 0.42, 0.55, 0.6 [4].

In the present paper, two lemon billiards with the shape parameters
B = 0.1953, 0.083 are studied. These lemon billiards are mixed-type billiards with several
independent regular regions embedded in a chaotic sea with no significant stickiness
regions, which serve as examples of systems with a complex divided phase space. These
lemon billiards were selected by the criterion of the maximally complex chaotic component
generated by a single chaotic orbit. The discovery of the present and past physically and
dynamically different and interesting lemon billiards has only been made possible thanks
to the recent extensive analysis of Lozej [2]. The entire family of classical lemon billiards
for a dense set of about 4000 values of B ∈ [0.01, 0.99975] (in steps of dB = 0.00025) was
systematically analyzed as for the corresponding phase space structure and stickiness
effects. It must be emphasized that although all the lemon billiards belong to the same
family of billiards as for the mathematical definition, individually, the lemon billiards
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have quite different, in fact, very rich, dynamical properties, important in the classical and
quantum context.

A general introduction to the subjects in quantum chaos, related to this study, can be
found in [3]. Let us also mention the books by Stöckmann [5] and Haake [6] on general
quantum chaos and the recent reviews [7,8] on stationary quantum chaos in generic (mixed-
type) systems.

The main purpose of the present paper is to analyze the two selected quantum lemon
billiards of B = 0.1953 and 0.083, with the goal to study the energy spectra, while the
structure of the Poincaré–Husimi functions in the phase space, the separation of the regular
eigenstates and chaotic eigenstates, as well as the localization properties of the chaotic
eigenstates and their statistics will be treated separately [9].

The main results are as follows. The energy spectra are calculated by the scaling
method of Vergini–Saraceno [10] in two versions, one based on the plane waves and the
other one based on the circular waves (Bessel functions for the radial part and trigonometric
functions for the angular part). This is done for high-lying eigenstates with the wavenumber
k (in the specific units) k = 2880 for up to 300,000 consecutive levels for each of the four
symmetry classes (odd-odd, odd-even, even-odd, and even-even). The energy of the level
at k is E = k2. It turns out that about 0.1% of the levels are lost for technical reasons, which
is a known and experienced fact in numerically calculating billiard spectra with the scaling
method, while the accuracy of individual levels is better than 1% of the mean energy
level spacing. The spectral statistics are found to be stable with respect to these losses.
The cumulative (integrated) energy level density (spectral staircase function) N (k) is well
described by the Weyl formula (with the leading area term and the perimeter term) W(k)
if there are no missing levels. Then the fluctuations of the actual staircase function N (k)
around the Weyl function, the difference R(k) = N (k)− W(k), and the R(k) distribution
are studied. In the literature, R(k) is called mode fluctuation [11–14]. Due to the lost levels,
this difference has a drift to negative values and fluctuates around the mean value. In
order to separate the drift and the fluctuations, the quantity w(k) = R − m(R), where
m(R) is the local average of R(k) over 100 consecutive levels, is investigated. Then, the
distribution of w(k) for about 300,000 levels of each symmetry class separately, starting
at k = k0 = 2880, within the interval approximately k ∈ [2880,≈ 3700] is studied. One
finds that the distribution of w follows a Gaussian distribution fairly well, which is a
surprising result as the two billiards have the relative fraction of the chaotic phase space
of only 0.28 and 0.16, respectively. For comparison, also the entirely regular, integrable,
case of the maximally irrational rectangular billiard is investigated and it is surprisingly
found an almost Gaussian distribution for w, but with the variance rising linearly with
k, as generally predicted by the theory of Steiner [11–14], while the distribution itself
in integrable systems is predicted to be nonuniversal, varying from case to case, which
here is not confirmed. The validity of the theoretical predictions has also been checked
in experiments with superconducting microwave billiards [15]. Finally, the level spacing
distribution for the two lemon billiards is presented which provides good agreement with
the Berry–Robnik–Brody distribution.

The paper is organized as follows. In Section 2, the definition are given and classical
dynamical properties of the lemon billiards are examined. In Section 3, the analysis of the
fluctuation quantity w(k) is performed. In Section 4, the statistical analysis of the entire
energy spectra is made by calculating the level spacing distribution, P(S). In Section 5, the
results are discussed and conclusions are presented.

2. The Lemon Billiards and Their Phase Portraits

The family of lemon billiards was introduced by Heller and Tomsovic in 1993 [1] and
has been studied in a number of papers [16–20], most recently, in [2–4,21]. and in the recent
studies [3,4] by us. The lemon billiard boundary is defined by the intersection of two circles
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of equal unit radius with the distance between the centers, 2B, being less than the diameters
and B ∈ (0, 1), and is given by the following implicit equations in Cartesian coordinates:

(x + B)2 + y2 = 1, x > 0, (1)

(x − B)2 + y2 = 1, x < 0.

As usual, the canonical variables are used to specify the location, s, and the momentum
component, p, on the boundary at the collision point. Namely, the arc length, s, is counted in
the mathematical positive sense (counterclockwise) from the point (x, y) = (0,−√

1 − B2)
as the origin, while p is equal to the sine of the reflection angle θ; thus p = sin θ ∈ [−1, 1],
as θ ∈ [−π/2, π/2]. The bounce map (s, p) ⇒ (s′, p′) is area preserving as in all billiard
systems [22]. Due to the two kinks, the Lazutkin invariant tori (related to the boundary
glancing orbits) do not exist. The period-2 orbit connecting the centers of the two circular
arcs at the positions (1 − B, 0) and (−1 + B, 0) is always stable (and therefore surrounded
by a regular island) except for the case B = 1/2, where it is a marginally unstable periodic
orbit, the case being ergodic and treated by us earlier [3].

The circumference of the entire billiard, L, is given by:

L = 4 arctan
√

B−2 − 1. (2)

The area A of the billiard is:

A = 2 arctan
√

B−2 − 1 − 2B
√

1 − B2 (3)

=
L
2
− 2B

√
1 − B2.

The structure of the phase space is shown in Figure 1 for the lemon billiard of
B = 0.1953, with L = 5.4969. The relative fraction of the area of the chaotic component of
the bounce map is χc = 0.3585, while the relative fraction of the phase space volume of the
same chaotic component is ρ2 = 0.2804, the Berry–Robnik parameter. Three independent
regular island chains are clearly visible, the largest one around the period-2 orbit, which
is densely covered by the invariant tori, with no visible thin chaotic layers inside. Let
us denote the largest island chain by L, the second largest one by M, and the smallest
one by S. The relative phase space volume of all three regular regions taken together is
ρ1 = 1 − ρ2 = 0.7196. The chaotic sea is quite uniform, with no significant stickiness
regions, and is generated by a single chaotic orbit.

The structure of the phase space, as shown in Figure 2 for the lemon billiard of
B = 0.083, is more complex. Here, L = 5.9508. The relative fraction of the area of the
chaotic component of the bounce map is χc = 0.2168, while the relative fraction of the
phase space volume of the same chaotic component is ρ2 = 0.1617. Thus, the relative phase
space volume fraction of the complementary regular regions is ρ1 = 1 − ρ2 = 0.8383. In
this case also, the chaotic sea is rather uniform, with no significant stickiness regions, and is
generated by a single chaotic orbit, creating a very complex structure, perhaps mimicking
stickiness in some thin regions. Both billiards are clearly of the Kolmogorov-Arnold-Moser
(KAM) type, generic systems; examples of stochastic transition were studied already in [23].

One can conclude that the two cases B = 0.1953, 0.083 are interesting to verify the
Berry–Robnik picture of quantum billiards [24], including the possible quantum localization
of chaotic eigenstates, leading to the Berry–Robnik–Brody level spacing distribution and the
universal statistical properties of the localization measures [4,9], as there are no significant
stickiness effects, based on the results of the analysis of the recurrence time statistics in [2],
unlike in the ergodic case, B = 0.5, studied in [3].
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Figure 1. The phase portrait of the lemon billiard of B = 0.1953. The parameters are: the relative
fraction of the area of the chaotic component of the bounce map, χc = 0.3585, the relative fraction of
the phase space volume, ρ2 = 0.2804, and the complementary regular region, ρ1 = 1 − ρ2 = 0.7196.
The abscissa is the location point, s ∈ [0, 5.4969], and the ordinate is the momentim, p ∈ [−1, 1], on
the boundary at the collisions point. The chaotic component was created by a single chaotic orbit.

Figure 2. Same as Figure 1, but for B = 0.083 and s ∈ [0, 5.9508]. The parameters are: χc = 0.2168,
ρ2 = 0.1617, and ρ1 = 1 − ρ2 = 0.8383.

3. The Energy Spectra and the Fluctuation of the Number of Energy Levels

Let us now turn to the quantum billiard B described by the stationary Schrödinger
equation in the chosen units (h̄2/2m = 1) given by the Helmholtz equation:

Δψ + k2ψ = 0 (4)

with the Dirichlet boundary conditions ψ|∂B = 0, and the energy is E = k2. Here h̄ is the
reduced Planck constant and m is the mass of the particle.

140



Physics 2021, 3

The mean number of energy levels W(E) below E = k2 is determined quite accurately,
especially at large energies, asymptotically exact, by the celebrated Weyl formula (with
perimeter corrections) using the Dirichlet boundary conditions, namely:

W(E) =
A E
4π

− L √
E

4π
+ c.c., (5)

where “c.c.” stays for small constants, determined by the corners and the curvature of
the billiard boundary, which differentially play no role. Thus, the mean density of levels
d(E) = dW/dE is equal to:

d(E) =
A
4π

− L
8π

√
E

. (6)

The numerical method used here to solve the Helmholtz equation is based on the
Heller’s plane wave decomposition method and the Vergini–Saraceno scaling
method [10,25]. Both versions of the Vergini–Saraceno method are implemented, namely,
the one, based on plane waves, and the other one, based on the circular waves, and the same
results are obtained within an accuracy of 0.1% of the mean level spacing. As mentioned,
typically at most about 0.1% of the levels are lost. The numerical accuracy was checked by
the convergence test, by varying the method’s parameters (the number of basis waves and
the number of nodes on the boundary).

The billiard considered has two reflection symmetries; thus, the eigenstates have
four symmetry classes: odd-odd, odd-even, even-odd, and even-even. For the purpose of
analyzing the spectral statistics and the wave functions, let us consider only the quarter
billiard. In this case, the Weyl formula for the four symmetry classes reads:

W̄(E) =
A E
16π

− L̄ √
E

4π
+ c.c., (7)

where L̄ is defined for each of the above-defined symmetry classes as follows:

L̄oo =
L
4
+ a + b,

L̄oe =
L
4
+ a − b, (8)

L̄eo =
L
4
− a + b,

L̄ee =
L
4
− a − b,

where a =
√

1 − B2 and b = 1 − B. Note that summing up the four contributions in
Equation (7) with Equation (8), one obtains the Weyl formula for the entire spectrum
Equation (5). For each symmetry class for each of the two billiards, about 300,000 levels
were calculated and the difference, R(k) = N (k)− W̄(k), was studied between the staircase
function, N (k), and the Weyl function, W̄(k).

Figure 3 shows the results for the B = 0.1953 billiard. It is clear that R(k) decreases
linearly with k due to the numerical loss of the levels. Typically, about 0.1% of the levels are
missing. In order to study the fluctuation properties, one needs to subtract the local mean
value, m(R(k)), obtained by averaging over 100 consecutive levels, and then analyze the
resulting fluctuation quantity, w(k) = R(k)− m(R(k)). The agreement with the Gaussian
distribution is extremely good which is surprising, as the billiard is predominantly regular,
with only 28% of the chaotic component. Steiner’s theory [11–14] predicts a Gaussian distri-
bution only for entirely chaotic (ergodic) systems, while the distribution of the fluctuation
quantity, w, in integrable systems is expected to be nonuniversal. In the mixed-type case,
the distribution of w should be in between, which here is not the case. Moreover, even for
the rectangle as an example of the integrable systems, an (almost) Gaussian distribution is
found (see below).
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Figure 3. Results for the B = 0.1953 billiard: left column (a,d,g,j): the difference,
R(k) = N (k)− W̄(k), between the staircase function, N (k), around the Weyl function and the Weyl
function as a function of the wavenumber k (in the mean linearly decreasing line); middle column

(b,e,h,k): the fluctuation quantity, w(k) = R(k)− m(R(k)) as afunction of k, where m(R(k)) is the
local average of R(k) over 100 consecutive levels; right column (c,f,i,l): the distribution of w. The
rows top to bottom refer to the symmetry classes odd-odd, odd-even, even-odd, and even-even,
respectively. In each parity case, there are about 300,000 levels. The agreement with the Gaussian
distribution is extremely good. The small shift of the maximum around w ≈ 0.1 is due to the
imperfection of local averaging. The values of the mean, μ, and the standard deviation, σ are (top to
bottom): (0.126, 2.624), (0.139, 2.636), (0.132, 2.635), (0.148, 2.641), respectively. Within the expected
statistical error, the value of σ is the same for all parities.

The same analysis was performed for the case of the B = 0.083 billiard, and the results
are shown in Figure 4, and lead to the same conclusions.
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Figure 4. Results for the B = 0.083 billiard:left column (a,d,g,j): the difference, R(k) = N (k)− W̄(k),
between the staircase function, N (k), around the Weyl function and the Weyl function as a function
of the wavenumber k (in the mean linearly decreasing line); middle column (b,e,h,k): the fluctuation
quantity, w(k) = R(k)− m(R(k)) as afunction of k, where m(R(k)) is the local average of R(k) over
100 consecutive levels; right column (c,f,i,l): the distribution of w. The rows top to bottom refer to
the symmetry classes odd-odd, odd-even, even-odd, and even-even, respectively. In each parity
case, there are about 300,000 levels. The agreement with the Gaussian distribution is again extremely
good. The values of the mean μ and standard deviation σ are: (0.148, 2.915), (0.137, 2.925), (0.154,
2.900), (0.146, 2.946) (top to bottom). Within the expected statistical error, the value of σ is the same
for all parities.

The local averaging procedure over 100 consecutive levels is, of course, somewhat
arbitrary. Therefore, the results were checked for 50, 200, 400 levels. In all cases, the
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distribution was found to represent Gaussian extremely well. The standard deviation
σ at each level number keeps the same value for all parities, but increases slowly with
the number of levels such that for 50, 100, 200, 400 for B = 0.1953, one gets σ ≈
2.08, 2.63, 2.88, 2.92, respectively. For the B = 0.083 billiard, the corresponding values are:
σ ≈ 2.22, 2.92, 3.50, 3.52.

In order to explore an integrable, entirely regular system, an example of the maximally
irrational rectangle billiard was studied whose aspect ratio was taken the golden mean
g = (1 +

√
5)/2 ≈ 1.61803. The spectrum in this case is known analytically, and is exact:

Eln = l2/g2 + n2, where l and n are two positive integers. Figure 5 shows the fluctuation
quantity w(k), which has no drift, because the spectrum is exact (no lost levels) over a wide
range of k.
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Figure 5. Results for the rectangle billiard, the fluctuation quantity w(k) = R(k) = N (k)− W(k) for
a wide range of k.

The corresponding distributions at various wavenumber k intervals starting at k0 are
shown in Figure 6. Each histogram comprises about 100,000 objects. They are surprisingly
close to a Gaussian distribution, contrary to the theoretical expectation, and thus, the
distribution is just close to the case of ergodic chaotic systems. Therefore, the distribution
of the number of energy levels (distribution of mode fluctuations) is not a good criterion to
distinguish ergodic chaotic systems from the regular integrable systems. In Table 1, the
data for the mean, μ, standard deviation, σ, skewness, and kurtosis are given.
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Figure 6. Distributions of w, w(k) = R(k) = N (k) − W(k), for the rectangle billiard in twelve intervals of k. In each
histogram, there are about 100,000 objects, distributed in 100 bins. The distribution is surprisingly close to Gaussian; there is
no significantly nonuniversal distribution for integrable systems. In Table 1, the values of the mean μ, standard deviation
σ, skewness, and kurtosis are given. The fitting (red) curve is the Gaussian distribution with the same μ and σ as those
obtained. However, the variance as a function of k is linear for all integrable systems; it is thus universal in the class of
integrable systems, see Figure 7.
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Table 1. Parameters of the distribution of Figure 6 for the wavenumber k-intervals starting at k0: the
mean μ, standard deviation σ, skewness, and kurtosis.

Parameters of the Distributions in Figure 6

k0 μ σ Skewness Kurtosis

0 0.747 4.530 −0.309 0.345
1000 0.757 6.483 −0.234 −0.132
2000 0.764 8.587 −0.222 −0.121
3000 0.741 10.490 −0.306 −0.171
4000 0.795 11.593 −0.274 −0.190
5000 0.624 13.258 −0.285 −0.113
6000 0.727 14.795 −0.261 −0.088
7000 1.067 16.041 −0.204 −0.223
8000 0.590 16.532 −0.117 −0.054
9000 0.752 17.271 −0.274 −0.192
10,000 0.852 18.394 −0.433 0.318
11,000 1.051 19.772 −0.231 0.032

In Figure 7, the standard deviation of the distributions of w is plotted as a function of
k, which clearly accurately follows the prediction by Steiner [11–14], namely the standard
deviation σ rises as

√
k, shown also in the log-log plot, and the variance is a linear function

of k. Therefore, the dependence of the variance on k is a good signature of chaos, unlike the
distribution itself: in ergodic chaotic systems, the standard deviation behaves as

√
log k.
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Figure 7. The standard deviation σ of the distribution of the fluctuation quantity w(k) = R(k) =
N (k)− W(k) for a wide range of k, shown along with the fitting curve, σ = a kγ, with a = 0.187 and
γ = 0.502: in the linear scale (left panel) and in log-log scale (right panel). The log-log plot clearly
shows a power-law increase of k with the slope 0.5.

4. Level Spacing Distribution for the Entire Spectrum

One of the most important statistical measures of the (unfolded) energy spectra is
the level spacing distribution, P(S). For integrable systems, one gets Poissonian statistics
and PP(S) = exp(−S), while for classically ergodic (fully chaotic) systems the Gaussian
orthogonal ensemble (GOE) of random matrix theory applies. The Wigner distribution
(Wigner surmise) is 2-dimensional GOE distribution and is a very good approximation for
the GOE level spacing distribution (infinite-dimensional),

PW(S) =
πS
2

exp
(
−πS2

4

)
. (9)
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There is a general useful relationship, namely, one using the gap probability, E(S),
being the probability of having no level on an arbitrary interval of length S: the level
spacing distribution P(S) is, in general, equal to the second derivative of the gap probability,
P(S) = d2E(S)/dS2.

For Poisson statistics: EP(S) = exp(−S), while for the Wigner distribution, one finds:

EW(S) = 1 − erf
(√

πS
2

)
= erfc

(√
πS
2

)
. (10)

For mixed-type systems, there is typically one dominant chaotic component with the
relative density of levels ρ2 (equal to the relative fraction of the chaotic phase space volume),
while the complement is typically a regular component of relative density, ρ1 = 1 − ρ2. If
the regular and chaotic levels superimpose statistically independent of each other, then
obviously, the gap probability factorizes:

E(S) = EP(ρ1S) EW(ρ2S), (11)

and therefore, in this case, the level spacing distribution is given by the Berry–Robnik (BR)
formula [24]:

PBR(S) = e−ρ1S exp

(
−πρ2

2S2

4

)(
2ρ1ρ2 +

πρ3
2S

2

)
(12)

+ e−ρ1Sρ2
1erfc

(√
πρ2S
2

)
.

The above statements are true provided the Heisenberg time is larger than any classical
transport time in the system [8]. (The Heisenberg time is defined as 2πh̄ d(E), where d(E)
is the mean energy level density, also the reciprocal mean energy level spacing.) If this
is not the case, the chaotic eigenstates can be quantum (or dynamically) localized, which
implies localized chaotic Poincaré–Husimi functions in the phase space. The level spacing
distribution for such localized chaotic eigenstates becomes (approximately) the known
Brody distribution [26,27]:

PB(S) = cSβ exp
(
−dSβ+1

)
, (13)

where by the normalization of the total probability and the first moment, one gets:

c = (β + 1)d, d =

[
Γ
(

β + 2
β + 1

)]β+1
, (14)

where Γ(x) is the Gamma function. The Brody distribution interpolates the exponential
and Wigner distribution as β goes from zero to one. The important feature of the Brody
distribution is the fractional level repulsion effect, meaning the power law at small S,
P(S) ∝ Sβ. The corresponding gap probability is:

EB(S) =
1

γ(β + 1)
Q
(

1
β + 1

, (γS)β+1
)

, (15)

where γ = Γ
(

β+2
β+1

)
, and Q(a, x) is the incomplete Gamma function:

Q(a, x) =
∫ ∞

x
ta−1e−tdt. (16)

Here, the only parameter is β, the level repulsion exponent in (13), which measures
the degree of localization of the chaotic eigenstates: if the localization is maximally strong,
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the eigenstates practically do not overlap in the phase space (of the Wigner functions), and
one finds β = 0 and a Poissonian distribution, while in the case of maximal extendedness
(no localization), one finds β = 1 and the GOE statistics of levels applies. Thus, by
replacing EW(S) by EB(S), the Berry–Robnik–Brody (BRB) distribution is obtained which
generalizes the BR distribution (12) such that the localization effects in chaotic eigenstates
are included [28]. Note that in the semiclassical limit, h̄ → 0 or k → ∞, the Heisenberg time
becomes arbitrarily large (larger than any classical transport time), the localization effects
of chaotic eigenstates disappear, and the BRB distribution becomes the BR distribution.
However, the theoretical derivation of the Brody distribution for the localized chaotic states
remains an important open problem. Furthermore, while the local behavior at small S,
described by the power law P(S) ∝ Sβ, is certainly correct, the global feature of the Brody
distribution is surely approximate, although empirically is well founded.

In Figure 8, the present study, the classical transport time of the billiards is very short;
therefore, one expects β ≈ 1, and the level spacing distribution is almost BR one (12).
Thus, in the level statistics, one does not detect large localization effects. For the spectral
unfolding procedure, the Weyl formula, Equation (5), is used, which at high energies is
quite accurate.

Figure 8, shows the level spacing distributions P(S) for the two billiards—one of
B = 0.1953 (left column), and another one of B = 0.083 (right column)—for the spectral
stretches each about 20,000 levels long, starting at k0 = 2880, for each parity: even-even
even-odd, odd-even and odd-odd and for all four parities together (about 80,000 levels),
each of them along with the best fitting BRB distribution.

As one can see, in the case of B = 0.1953, Figure 8a,c,e,g,i, the β parameter is very close
to one, while the parameter ρ1 is close to the classical value, ρ1 = 1 − ρ2 = 0.7196, being
the relative fraction of the volume of the regular part of the phase space (see Section 2).
Thus, the system exhibits the Berry–Robnik picture with weak localization effects in the
chaotic part of the energy spectrum. P(S) is well fit by the BRB distribution. The picture is
very similar for other lower values of k0 (not shown).

For B = 0.083, one observes a substantial variation of both the β and ρ1 parameters,
the latter one being far from the classical value ρ1 = 0.8383. This is certainly due to the
complexity of the phase portrait shown in Figure 2, where many structural features are
quantum mechanically not yet resolved, even at such high lying energies E = k2, starting
at k0 = 2880. This will be studied in more detail in the forthcoming paper by us [9], where
the Poincaré–Husimi functions in the phase space are analyzed in a similar way as in [4].
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(c) (d)

(e) (f)

(g) (h)

(i)

1

(j)

Figure 8. Level spacing distribution P(S) for the two billiards: of B = 0.1953 (left column) and
of B = 0.083 (right column), along with the best fitting Berry–Robnik–Brody curves. The abscissa
represents S and the ordinate gives P(S). The full circles represent the value of P(S = 0). The parities
are: even-even (a,b), even-odd (c,d), odd-even (e,f), odd-odd (g,h), and all parities together (i,j). For
each particular parity, there are about 20,000 levels; for all parities together, there are about 80,000
levels. The values of (β, ρ1) for the left column are (top to bottom): (0.798, 0.684), (1.000, 0.716), (1.000,
0.709), (1.000, 0.690), (1.000, 0.700). The classical value ρ1 = 0.7196. The values of (β, ρ1) for the right
column are (top to bottom): (0.316, 0.666), (0.178, 0.588), (0.129, 0.474), (1.000, 0.738), (0.324, 0.660).
The classical value ρ1 = 0.8383.
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5. Conclusions

In this paper, the statistical properties of the oscillations of the cumulative spectral
staircase function (the integrated density of energy levels) around the corresponding
mean value were studied, in order to compare the function obtained with the theoretical
predictions of Steiner [11–14] for the fully chaotic and integrable (regular) systems. In
billiards, the mean behavior is asymptotically exactly described by the Weyl formula (5).
In the case of the integrable maximally irrational rectangle billiard, almost a Gaussian
distribution of the fluctuations was surprisingly observed, in contrary to the expectations
of Steiner’s theory. Nevertheless, the standard deviation as a function of the wavenumber
k was found to be proportional to

√
k, precisely in agreement with Steiner’s prediction for

all integrable systems.
In the two mixed-type lemon billiards, B = 0.1953 and 0.083, where regular and

chaotic regions coexist in the classical phase space, the Gaussian distribution is found,
which is surprising, as the theory predicts a Gaussian distribution only for the fully chaotic
(ergodic) systems. Thus, in these two cases, one observes that there is very little difference
between the mixed-type systems and the fully chaotic systems. Moreover, this is even
more surprising as in the two billiards studied here, the fraction of the chaotic part of
the phase space was only 0.28 and 0.16, respectively. This implies that the distribution
of the fluctuations of the spectral staircase functions around the mean behavior is not a
very significant criterion for quantum chaos. This conclusion is corroborated by the result
obtained for the integrable rectangle billiard.

The level spacing distribution of the energy spectra at high lying levels was also
explored, starting at k0 = 2880, and the Berry–Robnik–Brody distribution was found in
both lemon billiard cases. In the case B = 0.1953, the results were in agreement with the
Berry–Robnik picture [8,24], showing that the localization of the chaotic eigenstates is very
weak, the level repulsion parameter β is close to one, and the quantum Berry–Robnik
parameter ρ2 is close to the classical one. On the other hand, in the lemon billiard B = 0.083,
one observed relatively strong localization: β is substantially lower than one and varies
widely over the four parities. Likewise, the quantum ρ1 is substantially smaller than the
classical value 0.8383 and varies widely over the four parities, which is certainly due to the
complexity of the classical phase space, as the fine structure of the classical phase space
is not yet resolved by the Poincaré–Husimi functions. This analysis will be the topics of
forthcoming paper by us [9], using the approach of [4].
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Abstract: The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting
of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane
wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell
sphere are derived and the plasmonic enhanced optical pulling force in the antibonding and bonding
dipole modes of the graded nanoparticle are demonstrated. Additionally, the resonant pulling force
occurring on the dipole mode is shown to be dependent on the aspect ratio of the core-shell particle,
which is illustrated by the obtained equivalent permittivity. This shows that the gradation of the
graded shell will influence the plasmonic feature of the particle, thus further shifting the resonant
optical force peaks and strengthening the pulling force. The obtained results provide an additional
degree of freedom to manipulate nanoparticles and give a deep insight into light–matter interaction.

Keywords: optical force; graded plasmonic material; core-shell particle; optical gain

1. Introduction

The change of the field gradients or linear momentum carried by photons will give
rise to the optical force [1]. Radiation pressure induced by photon momentum exchange
always pushes objects in the light flow direction, which is known as “optical pushing”.
In contrast, if the light–matter momentum transfer leads to the backward motion of the
objects, this phenomenon is named “optical pulling”. The optical pulling force is a more
novel phenomenon than the pushing one because it requires many more critical conditions
to realize it and has many more potential applications in nano-manipulation [2–8]. One
possible way to obtain the optical pulling force to pull the object towards the light is by
increasing the forward scattering via Gaussian beam [9,10], Bessel Beam [11], and other
tractor beams. Recently, the optical pulling forces acting on a nano-object consisting of
chiral [12–14], hyperbolic [15], and gain [16–18] materials have been widely investigated.
The introduction of a gain material could provide additional forward scattering strength
with the appropriate gain threshold to achieve the optical pulling force [17]; therefore,
investigating the threshold gain for the pulling force in different gain-assist nanostructures
constitutes another task for researchers. Actually, the threshold gain for the pulling force
was analytically studied for nano-spheres, thin cylinders and thin slabs [18]. Moreover, the
continuous modulation from the pushing to the pulling force was exhibited by controlling
the incident angle of the interfering plane waves near the Fano resonance of the plasmonic
nanoparticle [19]. The plasmonic enhanced optical force has been applied to quantum
measurement, signal detection, and other fields [20–24]. Furthermore, tunable optical
pulling forces originating from plasmon singularity and Fano resonance on plasmonic
nanoparticles have been investigated in detail [25–27].
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The approaches to realize and maximize the optical fulling force rely on designing
a specific tractor beam [2,3,5,27–30], modifying the surroundings of the manipulated
objects [31–33], or utilizing a gain-assist structure [15,18,25,34]. The resonant interplay
between plasmonic structures and gain media and the coupling with a gain medium located
in the core of a metallic nanoshell, when excited by means of an external pump, produces
intense changes of the electromagnetic fields around the structure, thus producing novel
features which can be useful for a variety of applications, such as photothermal therapy,
enhanced spectroscopy, and spaser [35–38]. Graded materials are the materials whose
material properties can vary continuously in space with a gradient coefficient, and graded
core-shell spheres show a widely tunable plasmonic response band [39–42]. The near
field distribution [43], far field scattering as well as nonlinear response [44] enhanced by
plasmon resonances could be adjustable by changing the gradient coefficient and aspect
ratio of the inner and outer radii of the sphere. More recently, the nonlinear optical
properties of graded magnetite nanoparticles in a colloid were investigated experimentally
as a sample of the extension from the electrical field to the magnetic field [45]. The gradient
coefficient provides us with a new freedom to control the plasmonic feature of the graded
core-shell particle and could thus be further adopted to tailor the optical pulling force on
the core-shell structure. Recently, the optical trapping force on a gain-enriched metallic
nanoshell by a Gaussian beam was investigated [38], which opened perspectives for gain-
assisted optomechanics where nonlinear optical forces are finely tuned to efficiently trap,
manipulate, channel, and deliver an externally controlled nanophotonic system. The aim of
this paper is to explore the optical pulling force on a gain-assist graded core-shell sphere at
the nanoscale and to investigate the dependence of the pulling force on the gain threshold
and the degree of gradation. Moreover, the equivalent permittivity of the graded core-shell
is adopted to explain the pulling force that occurs in different plasmon resonant modes in
the cases of low and high aspect ratios.

2. Models and Methods

We consider a core-shell sphere consisting of a dielectric gain core and graded plas-
monic shell illuminated by a plane electric field in the host medium with a relative per-
mittivity, εh. Here, we make the assumption that the dielectric function of the graded
materials varies along the radial direction, r, in the spherical coordinates (r, θ, ϕ) and can
be written as εs(r). The inner and outer radii are a and b. For simplicity, the size of the
particle is assumed to be much smaller than the incident wavelength, and therefore the
retardation effect is neglected and a long-wavelength approximation could be adopted [46].
The electric potentials in whole space satisfy the following equation within the quasi-static
approximation [43]:

∇·[εβ(r)∇ φβ

]
= 0, (1)

where φβ is the electric potential in each area (β = c, s, h indicates the core, the shell and
the host media, respectively) and could derivate the local electric field by:

Eβ = −∇φβ. (2)

In the illumination of an external uniform electric field along the z-direction, it can be
written as:

1
r2

∂

∂r

[
r2εβ(r)

∂φβ

∂r

]
+

1
r sin θ

∂

∂θ

[
εβ(r)

sin θ

r
∂φβ

∂θ

]
= 0, (3)

The electric potentials in each region have the following general expressions:

φc(r, θ) = −ArP1(cos θ)E0, r ≤ a,

φs(r, θ) = [A1R+
1 (r) + B1R−

1 (r)]P1(cos θ)E0, a < r ≤ b,

φh(r, θ) = (−r + b3Br−2)P1(cos θ)E0, r > b

(4)
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where A, B, A1, B1 are four unknown coefficients to be determined, Pn(cos φ) is the n-th
order Legendre polynomials, and the radial function, Rn(r), in the shell region satisfies the
following equation:

∂

∂r

[
r2εs(r)

∂Rn(r)
∂r

]
− n(n + 1)[εs(r)Rn(r)] = 0, (5)

where R+
n (r) and R−

n (r) are the two solutions that are regular at the origin and infinity,
respectively, and are the key to achieving the polarizability of the graded core-shell particle.

Considering the boundary condition, i.e., the continuity of the potentials and normal
electric displacements:

φc(r, θ)|r=a = φs(r, θ)|r=a,

φs(r, θ)|r=b = φh(r, θ)|r=b,

−εc
∂φc(r,θ)

∂r

∣∣∣
r=a

= −εs(r)
∂φs(r,θ)

∂r

∣∣∣
r=a

,

−εs(r)
∂φs(r,θ)

∂r

∣∣∣
r=b

= −εh
∂φh(r,θ)

∂r

∣∣∣
r=b

.

(6)

The coefficients are obtained as:

A1 = −3bT−
1 (a)/T(a, b),

B1 = 3bT+
1 (a)/T(a, b),

A = −a−1[A1R+
1 (a) + B1R−

1 (a)],

B = [F(b)− εh]/[F(b) + 2εh],

T(a, b) = T+
2 (b)T−

1 (a)− T−
2 (b)T+

1 (a),

T±
1 (a) = R±

1 (a)− a εs(a)
εc

∂
∂r R±

1 (a),

T±
2 (b) = 2R±

1 (b) + b εs(b)
εh

∂
∂r R±

1 (b),

R1(r) = A1R+
1 (r) + B1R−

1 (r),

F(b) = bεs(b)
R1(b)

∂R1(b)
∂r .

(7)

The spherical shell permittivity profile is given by the graded Drude model [43]:

εs(r, ω) = εb −
ω2

p(r)
ω(ω + iΓ)

, (8)

where ωp(r) and Γ are the spatially varying plasmon frequency and the relaxation rate,
respectively. r We introduce a graded plasmon frequency ω2

p(r) = ω2
p(0)(1 − hrk) in

the graded Drude model [47], where h and k are two gradient coefficients denoting the
gradation of the shell. Without loss of generality, we further normalize the external field
frequencies ω and the relaxation rate Γ by ωp(0). Consequently, Equation (8) reduces to

εs(r, ω) = εb −
(

1 − hrk
)

/[ω(ω + iΓ)]. In the case of 1− hrk > 0, the graded Drude model
has a positive imaginary part, indicating that it is a lossy material.

The gain effect of the dielectric core can be realized by using a semiconductor or dye
molecules with pumping [48]. In the theoretical part, we describe the gain core with a
relative permittivity function whose imaginary part has a negative value, i.e., εc = εc0 + iεcg
with εcg < 0 corresponding to the material gain. The electrostatic polarizability including
the radiation reaction of the graded core-shell sphere can be written as:

α =
α0

1 − i 2
3

k3
hα0

4πε0εh

(9)
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with α0 = 4πε0εhb3B, kh = 2π
λ

√
εh and ε0 being the permittivity of vacuum. The time-

averaged optical forces on the nonmagnetic Rayleigh nanoparticle for the incident wave
are expressed as:

〈F〉 = 1
2

khE2
0Im(α). (10)

We normalize the force with F0 = πb2Sinc/c (Sinc) is the power flow density of the
incident wave and c is the speed of light). In the long-wavelength approximation, the
dipole contribution dominates the electric response of the dielectric particle. If the dipolar
factor B of the core-shell particle vanishes in Equation (4), this means that the core-shell
particle and the host medium are the same in view of the dielectric response. Substituting
εeq for εh in the dipolar factor B and implying B = 0 yield the self-consistency equation [49],
which is solved to obtain the equivalent permittivity of the graded core-shell particle:

εeq(b) =
bεs(b)
R1(b)

∂R1(b)
∂r

. (11)

If one considers the nongraded case and the gradient coefficient is set to h = 0, then
the equivalent permittivity of the graded core-shell particle is naturally reduced to the
nongraded case:

εeq(b) = εs(0)
2a3[εc − εs(0)] + b3[εc + 2εs(0)]
a3[εs(0)− εc] + b3[εc + 2εs(0)]

. (12)

3. Results and Discussion

The graded Drude model in Equation (8) shows that the gradient coefficient h plays a
more important role than k within the present framework because the permittivity is inde-
pendent of k when the radius is fixed, especially for the dipole moment, which we mainly
focus on in the following. Figure 1 illustrates the permittivity of the graded shell as a func-
tion of the gradient coefficient h with the following parameter: ωp(0) = 1.367 × 1016 s−1,
Γ = 2.733 × 1013 s−1, εc0 = 2.1 and εh = 1. This shows that the graded shell can change
from being dielectric-like to metallic-like with an increasing incident wavelength. On the
other hand, the graded shell is more like a metal when h is low within the present spectrum.
Actually, from Equation (8) one concludes that the dielectric-like or metallic-like profile of
the graded Drude model is dependent on the choice of h and k, and for a plasmonic shell
lower h and lower k values are needed. In what follows, the parameter range of h is used
as being from 0 to 0.3 to achieve the plasmonic profile of the shell.

Figure 1. Real (a) and imaginary (b) parts of the graded shell permittivity εs(b) as a function of the
gradient coefficient, h, and the incident wavelength, λ. The white curve in (a) indicates a value of
zero. Other parameters are the outer radius b = 10 nm and the gradient coefficient k = 0.4.
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Figure 2 shows the normalized time-averaged optical force as a function of the incident
wavelength with different gradient coefficients h and gain coefficients εcg for cases with a
low aspect ratio (a/b = 0.2) and high aspect ratio (a/b = 0.8), respectively. The evolution
of the optical force on the gradient coefficient h in the non-gain case (εcg = 0) is well
seen in Figure 2a. As it is a graded plasmonic core-shell sphere, one expects two surface
plasmon resonant modes, i.e., the bonding dipole mode at the long wavelength λ+ and
the antibonding dipole mode at the short wavelength λ−. These two resonant modes lead
to enhanced optical forces, and meanwhile the resonant wavelength is blue-shifted and
the magnitudes of the peak value are decreased when the gradient coefficient h increases.
It is easy to understand that both the real and imaginary parts of the permittivity of the
graded shell are determined by h (see Figure 1), especially the real part which dramatically
influences the resonant wavelength. When the gain level is increased, an enhanced negative
optical force occurs in the antibonding dipole mode. There exists a critical level of gain in
order to achieve the maximal optical pulling force, and a further increase of the gain level
could not give rise to a stronger optical pulling force. On the other hand, the absolute value
of the resonant peak is dramatically decreased with an increasing h for both the positive
and negative forces. As for the optical force enhanced with the bonding dipole mode, it is
not sensitive to the gain in the low aspect ratio case.

In contrast to the low aspect ratio case, the gain has a more dramatic influence on the
bonding mode than on the antibonding mode in the high a/b case. An extremely strong
optical pushing force (see Figure 2f) and pulling force (see Figure 2g) are achieved with the
same level of gain as in the previous case. In addition, the gradient coefficient is found to
dramatically enhance the optical pulling force in the bonding dipole mode, as shown in
Figure 2g. Up to now, the gain-assisted optical pulling force has been found in both the
antibonding mode and bonding mode in the graded core-shell particle. However, it should
be mentioned that these two kinds of negative forces arise from different origins in terms
of the equivalent medium, which is considered in detail below.

We now adopt the equivalent permittivity of the graded core-shell sphere, as shown in
Equation (11), and plot the equivalent permittivity of the graded core-shell sphere for both
low and high aspect ratio cases in Figures 3 and 4. It is found that Im(εeq) could exceed
−7 in the equivalent permittivity spectrum of the low aspect ratio case due to the surface
plasmon resonance. Note that εcg is merely −0.07 in the present model, which is not a high
level of gain [50]; however, the equivalent sphere achieves an extremely high plasmonic
enhanced effective gain level. As for the case of the high aspect ratio, the surface plasmon
resonance leads to an extremely high loss peak in the equivalent permittivity spectrum.
It should be mentioned that there exists only one resonant mode occurring in the inner
surface of the core-shell sphere in the equivalent permittivity spectrum. This is because
the equivalent permittivity obtained by the self-consistency method is independent of the
host medium and this resonance is the intrinsic property of the core-shell sphere itself.
Actually, the intrinsic plasmon resonance arises from the plasmonic singularity [25], and
the resonant curve shapes vary with different εcg. If increases further, Im(εeq) in the high
aspect ratio case will show a negative value peak.
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Figure 2. Normalized time-averaged optical force as a function of the incident wavelength λ for low
aspect ratio, a/b = 0.2 (a–d), and high aspect ratio, a/b = 0.8 (e–h) with different gain coefficients
εcg and gradient coefficients h. Other parameters are b = 10 nm and k = 0.4. For the normalization
F0 = πb2Sinc/c (Sinc is the power flow density of the incident wave) is used.
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Figure 3. (a) Normalized optical force for the case of the low aspect ratio, as shown in Figure 2, with
εcg = −0.07 and h = 0. (b) The imaginary and (c) real parts of the equivalent permittivity. The insets
in (a) indicate the near field intensity distributions at the resonant wavelengths.

Figure 4. (a) Normalized optical force for the case of the high aspect ratio, as shown in Figure 2, with
εcg = −0.07 and h = 0.3. (b) The imaginary and (c) real parts of the equivalent permittivity. The
insets in (a) indicate the near field intensity distributions at the resonant wavelengths.

To give a simple approach for finding the resonant optical force and, on other hand, to
mathematically explain why the resonant optical pulling force exists in the bonding (or an-
tibonding) resonant modes corresponding to a high (or low) aspect ratio, we now introduce
the equivalent permittivity of the core-shell sphere as obtained in Equation (12). When the
core-shell particle is modeled as a sphere with an equivalent permittivity, the optical force
on the corresponding equivalent sphere in the long-wavelength approximation is:

〈F〉 = 2πε0εhkhb3E2
0

3Im(εeq) + 2(khb)3[Re(εeq)− εh
]2/3[

Re(εeq) + 2εh
]2

+
[
Im(εeq)

]2
+ 4(khb)3Im(εeq)εh

. (13)

Equation (13) illustrates that the optical force can be enhanced by the surface plasmon
resonances occurring when Re(εeq) = −2εh, and the optical pulling force can be achieved
when the numerator of Equation (13) has a negative value. Note that the second term
of the numerator is always positive and that the potential negative optical force requires
Im(εeq) to be negative and its absolute value to be larger than the second term. On
the other hand, by substituting Re(εeq) = −2εh into Equation (13) and ignoring the
second term for a sufficiently small khb, Equation (13) reduces to a simple version as
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〈F〉 = 6πε0εhkhb3E2
0/Im(εeq), which indicates that the absolute value of the negative

optical force is inversely proportional to Im(εeq).
We highlight the values of Im(εeq) at resonant wavelengths in Figures 3 and 4, and

this explains why, mathematically, the optical pulling force occurs in different modes with
the low and high aspect ratios in vacuum (εh = 1). In general, F/F0 is negative when the
equivalent sphere plays a role as the active gain medium with Im(εeq) < 0, and F/F0 is
positive when the equivalent sphere is lossy with Im(εeq) > 0. Moreover, it is concluded
that the stronger optical pushing force can be achieved when the equivalent loss is low
(Im(εeq) = 0.0338) (see Figure 3b), and one can realize a stronger optical pulling force
when the equivalent gain is low (Im(εeq) = −0.0046) (see Figure 4b). With the equivalent
permittivity, one can predict where the pulling force occurs in a simpler way. The inserts
indicate the near field intensity distributions of the graded core-shell sphere in the different
resonant modes for both low and high aspect ratio cases. It is well seen that the antibonding
mode is dominated by the surface plasmon resonant on the inner surface. In contrast, the
bonding mode is more influenced by the plasma on the outer surface. A dramatically high
concentrated local field intensity in the dielectric core is found in the low aspect ratio case,
especially in the bonding mode.

To further demonstrate this, the phase diagrams of the equivalent permittivity as
a function of λ and h for both cases are plotted in Figure 5. The parameter space for
Im(εeq) < 0 is clearly plotted with a red–black color, and the pulling force peaks are
located on the white lines that indicate the resonant conditions, Re(εeq) = −2εh. Moreover,
the pushing force peaks on the white lines lying in the gray region (Im(εeq) > 0) are
indicated in Figure 5 as well. The resonant pulling forces in the high aspect ratio case
are generally stronger than those in the low aspect ratio (see Figure 2c,g), as soon as∣∣Im(εeq)

∣∣ are much smaller on the pulling force line in Figure 5b, according to the previous
analysis of Equation (13). Actually, in spite of the giant resonant pushing/pulling force
on the white lines, in Figure 5b there exists a broader parameter space for a slight pulling
force where Im(εeq) < 0. Let us remark here that Re(εeq) might not rigorously satisfy the
resonant condition, i.e., Re(εeq) > −2εh with h increasing since the loss of the graded shell
is inversely proportional to h, as illustrated in Figure 1b; consequently, there exists a cut-off
for the resonant white line in the low aspect ratio case when h reaches ∼ 0.24. Still, a tiny
pulling force peak occurs in the bonding mode in Figure 2c with a large h.

Figure 5. Im(εeq) versus incident wavelength, λ, and gradient coefficient, h, for the cases of (a) low
aspect ratio (a/b = 0.2) and (b) high aspect ratio (a/b = 0.8). Gray regions indicate the parameter
space for a positive value. The white lines show the positions of Re(εeq) = −2εh. The gain coefficient
is set as εcg = −0.07 for both cases.

Finally, we investigate the dependence of the pulling force on the aspect ratio of the
graded core-shell particle in Figure 6. The resonant pulling force tends to occur in the
gain-assisted core-shell sphere with either a low aspect ratio or high aspect ratio (see the
rectangle), and in contrast the resonant pushing force exists in the case of a wider moderate

160



Physics 2021, 3

aspect ratio. On the other hand, the resonant wavelength together with the resonant pulling
force peak varies with the graded coefficient h. This gives rise to a broader parameter space
in order to realize the resonant pulling force in the antibonding mode and, on the contrary,
a smaller space in the bonding mode with a high h.

Figure 6. Normalized optical force, F/F0, versus incident wavelength, λ, and aspect ratio, a/b, in the
cases of (a) h = 0 and (b) h = 0.3 with εcg = −0.07. The white curves indicate a pulling force much
stronger than −5, which is marked by a white rectangle.

It should be noted that, in this paper, we use a flat imaginary part of εc instead of a
more realistic frequency-dependent one [25,35,38]. In what follows, a brief comparison
between the results with the Lorentzian dependent permittivity and those with a flat
constant permittivity for the gain media are given in order to certify the validity of this
study. Thus, the gain media is described by the permittivity with a Lorentzian shape [38] as:

εc(ω) = εc0 −
εcgΔ

2(ω − ωg) + iΔ
, (14)

where εc0 is the background permittivity of the gain core, ωg is the emission centerline of
the gain elements, and Δ = 2/τ is the width of the Lorentzian shape where τ is the energy
relaxation time of the gain. εcg is a dimensionless parameter measuring the amount of gain
present in the system.

Figures 7 and 8 illustrate that when the gain lines shape is centered exactly on the
plasmon resonant frequency, the optical pulling force obtained by εc(ω) in Equation (14)
is the same as that with a flat constant εc. It is worth noting that εc(ω) at the plasmon
resonant position has the same real and imaginary values as the flat one. One of the goals
in this study is to demonstrate the different behaviors of the optical force in plasmonic
resonant modes of a graded nanoshell with different aspect ratios (i.e., a/b) on the same
level of gain. Thus, what makes sense is the central gain amount at the resonant frequency.
From this point of view, the conclusions made with the flat constant model are the same as
those made with the frequency-dependent one. However, it is found that the overall gain
amount (εcg = −0.07) slightly exceeds the spaser threshold (see Figure 9) for both cases in
Figures 7 and 8, which might lead to a spaser instability [35].

161



Physics 2021, 3

Figure 7. Real (a) and imaginary (b) parts of εc(ω) in the case of a low aspect ratio (a/b = 0.2) of
Figure 2c with εcg = −0.07 and h = 0. (c) The same as Figure 3a but using the present εc(ω).
Parameters: τ = 10−14 s, ωg = ω− = 2πc/λ−, λ− = 337.8 nm.

Figure 8. Real (a) and imaginary (b) parts of εc(ω) in the case of a high aspect ratio (a/b = 0.8) of
Figure 2g with εcg = −0.07 and h = 0.3. (c) The same as Figure 4a but using the present εc(ω).
Parameters: τ = 10−14 s, ωg = ω+ = 2πc/λ+, λ+ = 617.4 nm.

Figure 9. Finding the spaser threshold gain Gth for the cases of (a) Figure 7 and (b) Figure 8.

According to Ref. [35], a more complex model should be introduced. However, the analyti-
cal results for the coefficient B in Equation (4) contain the hyper-geometric function F(α, β, γ, z)
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in R+
1 (r) and R−

1 (r), i.e., R+
1 (r) = rF(α1, β1, γ1, z) and R−

1 (r) = r−2F(α−1, β−1, γ−1, z), where

α±1 =

[
k ± 3 −

√
(k + 1)2 + 8

]
/2k, β±1 =

[
k ± 3 +

√
(k + 1)2 + 8

]
/2k, γ±1 = (±3 + k)/k

and z = −hrk/(ω2 + iωΓ − 1). Thus, it is not straight to analyze the temporal dynamic
evolution of the dipole moments and study the condition of instability, especially for the
case of the metallic nanoshell where more than one plasmonic resonant mode exists. The
exact nature of this final state requires a thorough study dependent on the various model
parameters, which is not within the scope of this paper.

4. Conclusions

In summary, in this paper, giant gain-assisted resonant pulling forces are demonstrated
on a graded core-shell nanoparticle in a long-wavelength approximation. It is found that
these plasmonic enhanced pulling forces can exist in either the antibonding or bonding
modes based on the choice of the aspect ratio of the core-shell sphere. Generally, the
antibonding mode in the low aspect ratio case and the bonding mode in the high aspect
ratio would lead to the resonant pulling force, and this could be demonstrated by the
obtained equivalent permittivity of the graded core-shell sphere. The gradation of the
shell has a dramatic influence on the resonant wavelength of the pulling force and could
strengthen the resonant pulling force with the same level of gain as in the nongraded case.
Moreover, the parameter space for realizing the pulling force is broadened with a higher
gradient coefficient. The present study may give a deep insight into the mechanism of the
pulling force in gain systems and offer an effective way to obtain large negative forces for
nano-manipulation.
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Abstract: Experimentally observed complex networks are often scale-free, small-world and have
an unexpectedly large number of small cycles. An Apollonian network is one notable example of a
model network simultaneously having all three of these properties. This network is constructed by
a deterministic procedure of consequentially splitting a triangle into smaller and smaller triangles.
In this paper, a similar construction based on the consequential splitting of tetragons and other
polygons with an even number of edges is presented. The suggested procedure is stochastic and
results in the ensemble of planar scale-free graphs. In the limit of a large number of splittings, the
degree distribution of the graph converges to a true power law with an exponent, which is smaller
than three in the case of tetragons and larger than three for polygons with a larger number of edges.
It is shown that it is possible to stochastically mix tetragon-based and hexagon-based constructions to
obtain an ensemble of graphs with a tunable exponent of degree distribution. Other possible planar
generalizations of the Apollonian procedure are also briefly discussed.
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1. Introduction

It is often convenient to present big volumes of data as a graph, i.e., as a set of objects
and binary relations (bonds) between them. This approach naturally arises in numerous
contexts ranging from physics of disordered systems [1] and biology [2] to sociology [3] and
linguistics (see, e.g., [4–6]). The rapid growth in information technology ensures that larger
and larger datasets of this type are becoming available. This naturally stimulates interest
in the tools to analyze these datasets and simple (or not so simple) reference mathematical
models, which can be used to probe their properties. Thus, a rapid development in the
last 20 years of a new interdisciplinary field on the boundary of the random graph theory,
the data analysis and the statistical physics, known as complex network theory [7–9],
has occurred.

Among the structural characteristics typical for many experimentally observed net-
works, there are three especially common and striking (see, e.g., [7]): (i) the small-world
property (a very small average node-to-node distance measured along the network), (ii) ex-
tremely wide, approximately a power-law distribution of the node degrees (the networks
with this property are often called ‘scale-free’), and (iii) large, as compared to referent
randomized networks, the concentration of the short circles (e.g., triangles). It is rea-
sonably easy to construct a model network that has one or two of these characteristics,
e.g., Erdős–Rényi graphs [10,11] are small-world, random geometrical graphs [12] that
have a large clustering coefficient. The Barabási–Albert model [13] generates small-world
scale-free networks. The Watts–Strogatts model [14] generates small-world graphs with
a large clustering coefficient, etc. Generating all three properties simultaneously is much
harder. Random geometric networks in a hyperbolic space [15–17] constitute one example
of networks with these properties. Another one is the Apollonian network.

The Apollonian network [18,19] is a planar graph that arises naturally as a network
representation of the Apollonian gasket, a remarkable object, which is, apparently, the first
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known fractal (interestingly, its exact fractal dimension is still unknown) [20,21]. The con-
struction of this network can be explained recursively as follows; see Figure 1. Take a
triangle, pick a point inside it and connect it to the three corners of the triangle. As a result,
one obtains a set of 3 adjacent triangles that form the first-generation Apollonian network.
Now, pick a point inside each of the three triangles, and connect it to its corners, this gives
a second-generation Apollonian network, then repeat ad infinitum. The resulting network
has been studied extensively in recent years, and it has been shown to have many beautiful
properties. For example, the degree distribution and the clustering coefficient have been
calculated [18], as well as the average path length [22]. Notably, there is an interesting
non-planar interpretation of the Apollonian network. Namely, it can be thought of as a
simplicial complex in the following way [23]. A first-generation Apollonian network is a
tetrahedron (3-simplex). A second-generation Apollonian network consists of four tetrahe-
dra: the original one and another three, each having a common two-face with the original
one. A third-generation Apollonian network consists of 13 tetrahedra: one produced in
the first generation, three produced in the second generation and nine new ones attached
to each free face of the three second-generation tetrahedra, etc. Thus, one can think of an
Apollonian network as a regular rooted tree of tetrahedra touching each other by common
faces. This construction is easy to visualize in a 3-dimensional (3D) space (see Figure 1b,c),
and it makes the Apollonian network a natural discretization of the 3D hyperbolic space in
the same way as a regular tree is a natural discretization of the hyperbolic plane. Many
properties of the Apollonian network can be calculated exactly, which makes it a nice toy
model for the study of various properties of real scale-free networks. As a result, there
have been a significant number of papers in recent years studying percolation [23], spin
models [24], signal spreading [25], synchronization [26], traffic [27], random walks [28,29],
etc., on the Apollonian network.

(a) (b) (c)

Figure 1. Apollonian network: (a) first (black) and second (black and red) generations of the
Apollonian network; (b) first generation of the same Apollonian network represented as a tetrahedron
in 3-dimensional space; (c) Apollonian networks of higher generations can be thought of as rooted
trees constructed from adjacent tetrahedra. Here, second generation is shown; the shaded face
functions as a root of the tree.

Despite being such a beautiful and well-studied object, the Apollonian network has
certain drawbacks as a model of real networks. Most importantly, it is a single deterministic
object with certain fixed properties, e.g., a fixed degree distribution with a fixed power
law exponent γ = ln 3/ ln 2. Importantly, that degree distribution is not a true power
law but rather a log-periodic distribution consisting of a sequence of atoms at points
3 × 2n and a power-law envelope. This means that the network is scale-invariant only
with respect to certain discrete renormalizations and thus do not have the full set of
properties of a true power law distribution; see [30] for a recent discussion. One natural
generalization is a random Apollonian network [31–33], which is constructed, instead
of a regular generation-by-generation process, by sequential partitioning of arbitrarily
chosen triangles. The average degree distribution in such network is a true power law with
exponent γR = 3 [32]. Notably, to the best of our knowledge, random Apollonian graphs
remain the only scale-free planar graph model with a continuously growing size for which
the exact degree distribution exponent is known. Another way of generalizing the network
is to consider the k-simpliceswith k > 3 as building blocks of the network construction
procedure. This gives rise to multidimensional Apollonian networks [34,35].
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In this paper, the authors suggest another way of generalizing the Apollonian network
construction. As a result, a novel famility of small-world, scale-free planar networks is
obtained. The main idea is to construct an Apollonian-style iteration procedure based on
polygons with different numbers of edges. The paper is organized as follows. In Section 2,
a tetragon-based Apollonian-style network is constructed and the corresponding degree
distribution is explicitely calculated. Then, the suggested procedure is generalized to
polygons with an arbitrary even number of edges. In Section 4, it is shown that it is
possible to construct a continuous one-parametric family of models interpolating between
the tetragon- and hexagon-based models and demonstrate that the models in this family
have a power low degree distribution with an exponent depending on the parameter, so
it is possible to adjust it to fit the desired degree distribution (note that the adjustable
exponent of the degree distribution can be obtained by different means in the so-called
Evolving Apollonian networks [26,33]). Last section, summarizes the results of the paper
and discusses further open questions and possible generalizations.

2. Tetragon-Based Network

2.1. Definition
Among several possible ways of generalizing the procedure described above to the

case of polygons, consider the following procedure defined here for tetragons but easy to
generalize for any polygon with an even number of edges. Note that given that we make
such a generalization in further sections, we prefer to use the term ‘tetragon’ rather than
‘quadrilateral’ for a polygon with 4 sides in order to make the terminology more uniform.

Take a tetragon and pick a point inside it; then choose (at random) a pair of non-
adjacent vertices of the original tetragon and connect them with a polyline with one new
intermediate point. One now has two adjacent tetragons, for which one can repeat this
construction, as shown in Figure 2. Importantly, contrary to the standard Apollonian
network, which is a deterministic object, the network resulting from this procedure is
stochastic. Indeed, already in the second generation, there are three topologically different
realizations of the network, see Figure 2B. Notably, at any generation, this network has no
triangles and is, in fact, bipartite.

(A) (B) (C)

Figure 2. Constructionof a tetragon-based network: (A) representatives of the tetragon-networks up
to the 4th generation; (B) three possible topologically different realizations of the second-generation
network; (C) random triangulation of the fourth-generation network.
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2.2. Degree Distribution
The natural question to ask about this newly introduced class of planar Apollonian-

like networks is what is the degree distribution of the nodes Gn(k) in the n-th generation
of the network and what distribution G(k) it converges to for n → ∞ (here and in what
follows the term “degree distribution” is used to mean the probability density function,
i.e., the probability for the node to have a degree equal to k, as opposed to the cumulative
distribution function, i.e., the probability for the node to have a degree larger or equal to k).
By analogy with the Apollonian networks, one expects G(k) to be scale-free, i.e.,

G(k) � Ck−α, k � 1, (1)

with some yet unknown constants C and α.
To calculate the degree distribution Gn(k), note that the degree of any given node is

a random variable, whose distribution Fn−m(k) for all nodes except the four initial ones
depends only on the number of generations between the generation m at which it was
created and current generation n. Indeed, each node with degree k has exactly k adjacent
tetragons (k − 1 for the four initial nodes), and at every step of the recurrent procedure,
each of these tetragons is split in two, which results in the creation of a new edge adjacent
to the node with the probability 1/2 (in the other half of the cases, the splitting path does
not go through the given node). These splitting events happen independently for all
tetragons. The overall degree distribution is therefore calculated by averaging over degree
distributions of different generations:

Gall
n (k) =

4F(0)
n (k) + ∑n

m=1 QmFn−m(k)
4 + ∑n

m=1 Qm
=

4
2n + 3

F(0)
n (k) +

2n − 1
2n + 3

Gn(k), Gn(k) =
∑n

m=1 QmFn−m(k)
∑n

m=1 Qm
, (2)

where Qm = 2m−1 is the number of nodes created in the m-th generation, F(0)
n (k) is the

degree distribution of the four initial nodes, and it is convenient to introduce Gn(k), the
degree distribution of all nodes except four initial ones.

2.3. Recurrence Relation for Fn(K)
To construct the recurrence relation for Fn(k) proceed as follows. Let l be the degree of

a node in the (n − 1)-th generation. This means that this node has l tetragons adjacent to it,
and when constructing the n-th generation of the network, each of them will be split in half,
and with probability 1/2, the splitting path will go through the node under consideration.
Every such path increases the degree of the node by one. Thus, the overall degree may
increase by l′, 0 ≤ l′ ≤ l, with the probability 2−l( l

l′), leading to

Fn(k) =
k

∑
l=�(k+1)/2�

2−l
(

l
k − l

)
Fn−1(l) for n ≥ 1, F0(k) = δk,2, (3)

where the fact that all nodes are created with degree 2 is taken into account and the notation
�x� is introduced for the integer part of x (i.e., greatest integer less or equal to x). This
equation can be written down in a simpler form in terms of a generating function,

fn(λ) =
∞

∑
k=2

λkFn(k). (4)

Indeed, after substituting Equation (3), one obtains f0(λ) = λ2 and

fn(λ) =
∞

∑
k=2

k

∑
l=�(k+1)/2�

λk2−l
(

l
k − l

)
Fn−1(l)

=
∞

∑
l=2

l

∑
m=0

(λ/2)l
(

l
m

)
λmFn−1(l) =

∞

∑
l=2

(
λ(1 + λ)

2

)l
Fn−1(l) = fn−1

(
λ(1 + λ)

2

)
,

(5)
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where the order of summation is changed, m = k − l is introduced, and the binomial formula,

(1 + λ)l =
l

∑
m=0

(
l
m

)
λm, (6)

is used. The recurrence relation for the four initial nodes is a bit different because in their
case, the node of degree l has only l − 1 adjacent tetragons:

F(0)
n (k) =

k

∑
l=�k/2�+1

2−l+1
(

l − 1
k − l + 1

)
F(0)

n−1(l) for n ≥ 1, F0(k) = δk,2, (7)

which leads to the following equation for the generating function

f (0)n (λ) =
∞

∑
k=2

λkF(0)
n (k) =

2
1 + λ

f (0)n−1

(
λ(1 + λ)

2

)
, (8)

In the n → ∞ limit, both fn(λ) and f (0)n (λ) converge to zero for all |λ| < 1. Indeed, the
probability to have any finite degree many generations after the creation of a node is
exponentially small.

2.4. Generating Function of the Degree Distribution

Combining Equation (2) for Gn(k), Gall
n (k) and the equations for the generating func-

tions (5) and (8), one gets the recurrence relation for the full degree distributions in terms
of generating functions:

gn(λ) = ∑
k

Gn(k)λk, gall
n (λ) = ∑

k
Gall

n (k)λk. (9)

For gn(λ), one gets:

(2n+1 − 1)gn+1(λ) = 2nλ2 + (2n − 1)gn

(
λ(1 + λ)

2

)
for n ≥ 0; g0(λ) = λ2, (10)

which in the limit of large n reduces to

gn+1(λ) =
1
2

λ2 +
1
2

gn

(
λ(1 + λ)

2

)
. (11)

Contrary to Equation (5) and (8), Equation (10) has a non-trivial limiting solution for n → ∞.
Indeed, if Gn(k) converges to a limiting form G(k), then

ḡ(λ) = ∑ G(k)λk = ∑ lim
n→∞

Gn(k)λk = lim
n→∞ ∑ Gn(k)λk = lim

n→∞
gn(λ). (12)

where the summation and the limit are transposed, as one can do for convergent positive
series. Thus, ḡ(λ) is a solution of the functional equation,

2ḡ(λ) = λ2 + ḡ
(

λ(1 + λ)

2

)
, ḡ(λ) = ∑

k
G(k)λk. (13)

It seems impossible to solve this equation for all λ; however, it is possible to extract
most important information about G(k) directly from the equation. Indeed, the behavior of
the distribution for the small and large k is controlled by the behavior of the generating
function in the vicinity of λ = 0 and λ = 1, respectively. For small λ, substituting

ḡ(λ) = p2λ2 + p3λ2 + p4λ4 + . . . (14)
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into Equation (13), one obtains:

p2 =
4
7

, p3 =
16

105
, p4 =

16
155

, p5 =
64

1519
, etc. (15)

for the limiting probabilities of having a node degree equal to 2, 3, 4, 5, . . . .
In turn, from the behavior of ḡ(λ) in the vicinity of λ = 1, one can extract both the value

of α defined in Equation (1) and the values of existing moments of G(k). Indeed, define

Greg(k) = G(k)− Ck−α, (16)

and, accordingly,
greg(λ) = ḡ(λ)− CLiα(λ). (17)

Equation (1) implies that Greg(k) converges to zero with growing k faster than k−α, which
guarantees that greg(λ) is less singular then the first one in the vicinity of λ = 1. Thus,
at λ → 1, the function ḡ(λ) has a singularity of the type (1 − λ)α−1 and has smooth
derivatives up to the order �α − 1�. Thus, in the lowest orders in ε = 1 − λ,

ḡ(λ) =
�α−1�
∑
i=0

aiε
i + CΓ(1 − α)εα−1 + o(εα−1), (18)

where values of ai depend on the small-k behavior of G(k) and contain information about
the momenta of the distribution:

a0 = ∑
k
G(k); a1 = −∑

k
kG(k) = −〈k〉∞, etc. (19)

Now, substituting λ(λ + 1)/2 = 1 − 3ε/2 + ε2/2 into Equation (13) and equating
coefficients in front of different powers of ε, one obtains:

2a0 = 1 + a0, a0 = 1,

2a1 = −2 + 3a1/2, a1 = −4,

2CΓ(1 − α) = CΓ(1 − α)(3/2)α−1, α = 1 + ln 2
ln(3/2) =

ln 3
ln 3−ln 2 ≈ 2.70951 . . .

(20)

Thus, �α − 1� = 1, and only zeroth and first moments of the distribution converge:

∑
k
G(k) = a0 = 1; 〈k〉∞ = −a1 = 4, (21)

while all the higher moments, starting from 〈k2〉, diverge with growing n.
It is instructive to calculate the exact values of moments 〈k〉n, 〈k2〉n for all finite n. To

do this, note that

〈k〉n =
dgn(λ)

dλ

∣∣∣∣
λ=1

; 〈k2〉n = 〈k〉n +
d2gn(λ)

dλ2

∣∣∣∣
λ=1

. (22)

Equation (10) implies

(2n+1 − 1)g′n+1(λ) = 2n+1λ + (2n − 1)
(

2λ + 1
2

)
g′n
(

λ(1 + λ)

2

)
, (23)

which, for λ = 1, leads to(
1 − 2−n−1

)
〈k〉n+1 = 1 +

3
4
(
1 − 2−n)〈k〉n. (24)

Substituting
bn = 4 − (1 − 2−n)〈k〉n, (25)
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and allowing for the initial condition 〈k〉1 = 2, b1 = 3, one obtains:

bn =
3
4

bn−1 = 4
(

3
4

)n
(26)

and, thus,

〈k〉n = 4
1 − (3/4)n

1 − (1/2)n . (27)

This is the average degree of all nodes except the original four at the n-th step of the
network-generation process. Given Equation (2), one obtains the average degree of all
nodes:

〈k〉all
n = ∑ kGall

n (k) =
(2n − 1)〈k〉n + 4(1 + (3/2)n)

2n + 3
= 4

(1 − (3/4)n)2n + 1 + (3/2)n

2n + 3
= 4

2n + 1
2n + 3

. (28)

2.5. Second Moment of the Finite-Generation Distribution
To calculate the second moment, take the second derivative of Equation (10):

(2n+1 − 1)g′′n+1(λ) = 2n+1 + (2n − 1)g′n
(

λ(1 + λ)

2

)
+ (2n − 1)

(
2λ + 1

2

)2
g′′n
(

λ(1 + λ)

2

)
(29)

and take into account Equation (55). Substituting λ = 1 and allowing for the fact that

g′n(1) = 〈k〉n; g′′n(1) = 〈k2〉n − 〈k〉n (30)

leads to

(2n+1 − 1)(〈k2〉n+1 − 〈k〉n+1) = 2n+1 + (2n − 1)〈k〉n +
9
4
(2n − 1)(〈k2〉n − 〈k〉n) (31)

or

(2n+1 − 1)〈k2〉n+1 − 9
4
(2n − 1)〈k2〉n = 2n+1 + (2n+1 − 1)〈k〉n+1 − 5

4
(2n − 1)〈k〉n, (32)

which, after substituting Equation (27), simplifies to

(2n+1 − 1)〈k2〉n+1 − 9
4
(2n − 1)〈k2〉n = 2n

(
5 −
(

3
4

)n)
. (33)

Now define the sequence

an = 〈k2〉n
2n − 1

2n (34)

and its generating function F(s) = ∑ ansn. The recurrency for an reads:

an+1 =
9
8

an +
5
2
− 1

2

(
3
4

)n
(35)

for n ≥ 1, and a1 = 2. Then:

F(s)
(

1 − 9
8

s
)
= 2s +

5
2

s2

1 − s
− 3

8
s2

1 − 3s/4
. (36)
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In order to proceed further, note that

2s
1 − 9s/8

= −16
9

+
16
9

1
1 − 9s/8

,

s2

(1 − s)(1 − 9s/8)
=

8
9
− 8

1
1 − s

+
64
9

1
1 − 9s/8

,

s2

(1 − 3s/4)(1 − 9s/8)
=

32
27

− 32
9

1
1 − 3s/4

+
64
27

1
1 − 9s/8

.

(37)

Thus,

F(s) =
56
3

1
1 − 9s/8

− 20
1

1 − s
+

4
3

1
1 − 3s/4

; an =
56
3

(
9
8

)n
− 20 +

(
3
4

)n−1
, (38)

and

〈k2〉 = (1 − 2−n)−1

[
56
3

(
9
8

)n
− 20 +

(
3
4

)n−1
]

. (39)

Proceeding in the same way, one obtains:

〈k2〉(0) = 4
3

(
9
4

)n
+

5
3

(
3
2

)n
+ 1. (40)

Thus, the total average degree is:

〈k2〉all =
2n − 1
2n + 3

〈k2〉+ 4
2n + 3

〈k2〉(0)

=

(
1 +

3
2n

)−1[
24
(

9
8

)n
− 20 + 8

(
3
4

)n
+ 4
(

1
2

)n]
≈ 24

(
9
8

)n
− 20,

(41)

where the approximal equality holds for n � 1. Comparing Equations (39) and (41) shows
that, interestingly, the four initial nodes contribute a finite fraction to the overall value of
〈k2〉all, which converges to 2/9 for large n.

2.6. Scaling Form of the Degree Distribution
For large n, the degree distribution Gn(k) converges to G(k). Typically (see, e.g., [36]),

one expects the ratio of these functions Φn(k) = Gn(k)/G(k) to attain a universal shape for
large n. More precisely, it means that there exists a scaling function φ(x) and a sequence
Kn for which

Φn(k)
φ(k/Kn)

→ 1 for n → ∞. (42)

Here, Kn is the characteristic scale of the distribution of the n-th generation graph, and it
diverges as n → ∞. One must demand φ(0) = 1 in order for Gn(k) to converge to G(k) and
φ(∞) = 0 in order for k to be bound from above for any finite n. There are various ways of
obtaining the scaling factor Kn, e.g., one can use the large-n behavior of 〈k2〉n:

〈k2〉n = ∑ k2Gn(k) ∼ K(3−α)
n , (43)

where it is taken into account that (contrary to the lower moments) 〈k2〉n is controlled by
the tail of the distribution. Substituting Equation (41), one obtains:

K3−α
n = (9/8)n; → Kn = (3/2)n, (44)

which is to be expected since the typical maximal degree of the network increases by a
factor 3/2 on each step.

In order to check the predictions of the model, 2 × 105 realizations of the networks
of up to the 14th generation were generated. Figure 3a shows the resulting degree dis-
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tributions for sequential generations of the network. It can be seen from Figure 3b that
after renormalization of the abscisse and ordinate axes by the factors (3/2)n and k−α,
respectively, the data collapse perfectly on a single scaling curve φ(x).

k

P(k)

k/(3/2)
n

P(k) k
�

(a) (b)

Figure 3. (a) Degree distributions of the tetragon-based networks of generations 5–14 as indicated. The results shown are
obtained after averaging over 2 × 105 realizations and logarithmic binning with step 1.1. (b) Same distributions but rescaled
as the axes show.

3. Polygon-Based Networks for Polygons with Any Even Number of Edges

The procedure suggested in Section 2 can be easily generalized for any even number
of edges 2m (m ≥ 2) in the generating polygon; see generalization for m = 3 in Figure 4.
This procedure results in a sequence of planar scale-free network models with degree
distributions converging to

Gm(k) � Cmk−αm , k � 1, (45)

with m-dependent exponents αm. At each generation, each polygon is split by a path
connecting directly opposite nodes. There are m different ways of such a splitting, so
each node of a polygon participates in the splitting with probability 1/m. This allows
generalizing the recurrence relations (3) and (7) for the degree distribution of a node n
generations after its creation in the following way:

F(0)
n,m(k) =

k

∑
l=�k/2�+1

(
l − 1

k − l + 1

)(
1
m

)k−l+1(m − 1
m

)2l−k−2
F(0)

n−1,m(l) for n ≥ 1 F(0)
0 (k) = δk,2 , (46)

for the original 2m nodes, and

Fn,m(k) =
k

∑
l=�(k+1)/2�

(
l

k − l

)(
1
m

)k−l(m − 1
m

)2l−k
Fn−1,m(l) for n ≥ 1; F0,m(k) = δk,2; (47)

for all the rest. The number of nodes created at n-th generation (n ≥ 1) is (m − 1)2n.
Proceeding in exactly the same way as before, gives

f (0)n,m(λ) =
∞

∑
k=2

λkF(0)
n (k) =

m
m − 1 + λ

f (0)n−1

(
λ(m − 1 + λ)

m

)
, (48)

gn,m(λ) =
1

(m − 1)(2n − 1)

n

∑
l=1

∞

∑
k=2

(m − 1)2l Fn−l,m(k)λk

=
2n−1

2n − 1
λ2 +

2n−1 − 1
2n − 1

gn−1,m

(
λ(m − 1 + λ)

m

)
for n ≥ 1; g1,m(λ) = λ2,

(49)
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and

gall
n,m(k) =

2m
(m − 1)2n + m + 1

f (0)n,m(λ) +
(m − 1)(2n − 1)

(m − 1)2n + m + 1
gn,m(λ) (50)

for the generating functions of the degree distributions of the original, newly created and
all nodes of the network, f (0)n,m(λ), gn,m(λ) and gall

n,m(λ), respectively. The limiting function,

ḡm(λ) = lim
n→∞

gn,m(λ), (51)

satisfies

ḡm(λ) =
λ2

2
+

1
2

ḡm

(
λ(m − 1 + λ)

m

)
, (52)

and its behavior is easy to analyze both in the vicinity of λ = 0 and λ = 1. Expanding
Equation (52) for small λ, one obtains:

pm
2 =

m2

K2,m
, pm

3 =
2m3(m − 1)

K2,mK3,m
, pm

4 =
m3(2m3 + 5(m − 1)3)

4
∏
l=2

Kl,m

,

pm
5 =

m5(m − 1)2(12m4 + 8m3(m − 1) + 14(m − 1)4)
5

∏
l=2

Kl,m

, etc.,

(53)

where a short-hand notation, Kl,m = 2ml − (m − 1)l , is introduced.

Figure 4. Construction of the hexagon-based network (up to 4th generation).

176



Physics 2021, 3

In turn, in the vicinity of λ = 1 ḡm(λ), it takes the form of Equation (18). Substituting
the ansatz (18) into Equation (52), one obtains:

2a0 = 1 + a0, a0 = 1,

2a1 = −2 + (m + 1)a1/m, a1 = −2m/(m − 1),

2a2 = 1 − a1/m + (m + 1)2a2/m2, a2 =
(m + 1)m2

(m − 1)(m2 − 2m − 1)
,

2CΓ(1 − αm) = CΓ(1 − αm)(m + 1/m)αm−1, αm = 1 +
ln 2

ln(m + 1)− ln m
.

(54)

Thus, for any m ≥ 3 �αm − 1� ≥ 2, the second moment of Gm(k) converges. The moments
are controlled by the coefficients ai:

∑
k
G(k) = a0 = 1, ∑

k
kG(k) = −a1 =

2m
m − 1

, ∑
k

k2G(k) = 2a2 − a1 =
2m(2m2 − m − 1)

(m − 1)(m2 − 2m − 1)
. (55)

Since the second moment of Gm(k) is now controlled by the values of distribution at small
k, the initial 2m nodes do not contribute to the second moment.

Once again, in order to check the predictions 2 × 105 realizations of the networks
of up to the 12th generation were generated. The results are shown in Figure 5a, and
in Figure 5b the plot in the renormalized coordinates is shown. The collapse of the data
onto a single master curve is apparent, although it is somewhat worse than in Figure 3b.
Presumably, this happens because the typical degrees in the hexagon-based network are
much smaller than in the tetragon-network of the same size, and finite size effects are
therefore more important.

k

P(k)

k/(4/3)
n

P(k) k
�

(a) (b)

Figure 5. (a) Degree distributions of the hexagon-based networks of generations 4–12 as indicated. The results shown are
obtained after averaging over 2 × 105 realizations and logarithmic binning with step 1.1. (b) Same distributions but rescaled
as the axes show.

4. Polygon-Based Networks with Smoothly Changing Exponent of the
Degree Distribution

As a result of Section 3, one now has a sequence of Apollonian-like models that gener-
ate planar scale-free networks with a discrete sequence of degree-distribution exponents
αm = 1+ ln 2/(ln(m+ 1)− ln m), m = 2, 3, . . . Is it possible to further generalize the model
to make α change continuously and take any intermediate values, including, for example,
α = 3, corresponding to the point where the second moment of the degree distributions
diverges for the first time?

It turns out that this is indeed possible. One way to do that is as follows. Assume
that when introducing a new shortcut dividing a polygon in two, one makes the resulting
partition to be a pair of tetragons with probability p and a pair of hexagons with probability
1 − p. That is to say, if the original polygon is a tetragon, then with probability p introduce
a 2-step path connecting opposite vertices, and with probability q = 1 − p , a 4-step path;
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if the original polygon is a hexagon, the new path connecting two opposite vertices is a
1-step path with probability p and a 3-step path with probability q.

Here, we restrict ourselves to this simplest construction, although it is possible to create
more complicated rules. For example, one can introduce correlations between generations
in a Markovian way so that there is a matrix pij of probabilities for a tetragon to give birth
to a couple of tetragons, a hexagon to give birth to a couple of tetragons, etc. As a result, it
might be possible to construct a network that is, for example, tetragon-dominated at large
scales (early generations) and hexagon-dominated at small scales (later generations).

Once again , consider a node, which is created at generation n0, and let us study
its degree distribution at generation n0 + n. This degree distribution depends only on n
and on the number of edges of the initial two faces adjacent to the node where tetragons
or hexagons.

Let the average fraction of tetragons at a given generation be p and the fraction of
hexagons be q = 1 − p. Then, for each face adjacent to a given node, the probability that
this face is a tetragon is

π(p) =
4p

4p + 6q
=

2p
3 − p

. (56)

Assume now that different faces adjacent to a node are tetragons (hexagons) indepen-
dently from each other. Generally speaking, that is not true: when a new edge is created,
the two faces on the sides of it have a similar number of edges. However, one might expect
that as the degree of the node grows the correlations become less and less relevant. In this
approximation, the probability for a node of degree k to have exactly l adjacent tetragons is(

k
l

)
πl(1 − π)k−l . (57)

when the next generation is created, a new edge adjacent to the node under consideration
is created with probability 1/2 for each tetragon face and with probability 1/3 for each
hexagon face. Therefore, one can write down the following approximate equation for the
probability P(k + r|k, p) of the node that has degree k + r at the next generation given that
it had degree k in the previous one:

P(k + r|k, p) =
k

∑
l=0

r

∑
s=0

(
k
l

)
πl(1 − π)k−l

(
l
s

)(
1
2

)l(k − l
r − s

)(
1
3

)r−s(2
3

)k−l−r+s
, (58)

where the binomial coefficients (m
n) are assumed to be zeros if n > m or n < 0. Now,

introduce the probability Fn(k|p) for a node to have degree k n generations after its creation,
and the corresponding generation function,

fn(λ|p) =
∞

∑
k=2

Fn(k)λk. (59)

Then, f0(λ|p) = λ2,

Fn(k) =
k

∑
k′=� k+1

2 �
P(k|k′, p)Fn−1(k′), (60)

and

fn(λ|p) =
∞

∑
k=2

k

∑
k′=� k+1

2 �
λkP(k|k′, p)Fn−1(k′) =

∞

∑
k′=2

Fn−1(k′)λk′
2k′

∑
k=k′

λk−k′P(k|k′, p). (61)

Using Equation (58), it is easy to calculate the second sum on the right-hand side:
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∑k′
r=0 λrP(k′ + r|k′, p) = ∑k′

r=0 ∑k′
l=0 ∑r

s=0
k′ !

s!(l−s)!(r−s)!(k′−l−r+s)! π
l(1 − π)k′−l

(
1
2

)l( 1
3

)r−s( 2
3
)k′−l−r+s

λr

= ∑k′
r=0 ∑k′

l=0 ∑r
s=0

k′ !
s!(r−s)!(l−s)!(k′−l−r+s)!

(
πλ
2

)s(
π
2
)l−s
(
(1−π)λ

3

)r−s( 2(1−π)
3

)k′−l−r+s

=
(

πλ
2 + π

2 + (1−π)λ
3 + 2(1−π)

3

)k′
,

(62)

which leads to the following equation for the generating function:

fn(λ) = fn−1

(
λ

(
4 − π

6
+

2 + π

6
λ

))
= fn−1

(
2 − p + λ

3 − p
λ

)
, (63)

where Equation (56) is taken into account to obtain to the last expression. Proceeding
as before, one gets the equation for the generating function of the full limiting degree
distribution g∞(λ) (except for the initial set of nodes):

g∞(λ) =
λ2

2
+

1
2

g∞

(
2 − p + λ

3 − p
λ

)
. (64)

Expanding g∞(λ) for λ = 1 − ε, ε � 1 in the form (compare Equation (18)):

ḡ(λ) =
�α(p)−1�

∑
i=0

aiε
i + CΓ(1 − α(p))εα(p)−1 + o(εα(p)−1), (65)

and equating the coefficients term by term exactly in the same way as in Section 2, one gets
the following equation for the degree distribution exponent α(p):

2 =

(
4 − p
3 − p

)α(p)−1
, α(p) = 1 +

ln 2
ln(4 − p)− ln(3 − p)

. (66)

Thus, for example, the interesting case α(p) = 3 when the second moment of the
degree distribution diverges for the first time corresponds to

p|α=3 = 2 −
√

2 ≈ 0.58579 . . . (67)

In Figure 6, the numerical data for the degree distribution of the mixed networks
are shown. One can clearly see that the slope of the distribution gradually changes with
changing p. Moreover, after rescaling the degree distribution with the power law prescribed
by Equation (66), all curves are approximately flat for small k, validating the approximation
of independent phases.
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Figure 6. (a) Degree distributions of n = 10th-generation mixed tetragon–hexagon networks with varying p, rainbow
changing color from p = 0.9 (red) to p = 0.1 (violet). The results shown are obtained after averaging over 105 realizations
and logarithmic binning with step 1.05. (b) Same distributions but rescaled: P(k) is rescaled by its theoretical behavior k−α,
with α given by Equation (66), k is rescaled by a factor k0(p, n) = ((4 − p)/(3 − p))n, which approximates the growth of the
maximal accessible degree with the number of generations n.

5. Concluding Remarks and Open Questions

This paper presents one possible class of planar random graphs constructed from
polygons with an even number of edges using a procedure similar to the construction of
Apollonian graphs [18]. The 2m-polygon-based graphs have a limiting power law degree
distribution with the exponent,

αm = 1 +
ln 2

ln(m − 1)− ln m
, (68)

and the moments of the degree distribution are given by Equations (21) and (55). The second
moment of the degree distribution diverges as (9/8)n with the number of generations n
in the case of tetragon-based graphs (see Equation (41)) and converges to a finite value
in Equation (55) for the polygons with a larger number of edges. Moreover, as described
in Section 4, it is possible to construct a mixed model based on two different polygons
(tetragons and hexagons in our example) so that on all stages of construction, tetragons
are formed with probability p and hexagons with probability 1 − p. By varying p, one can
adjust the slope of the degree distribution in order to achieve a desired value in a way
reminiscent of evolving Apollonian networks [26].

Clearly, all graph classes presented here are small world. Indeed, the diameter of the
graphs grows at most linearly with the number of generations:

dn+1 ≤ dn + 2�m/2� , (69)

where dn is the diameter of the n-generation graph. In turn, the total number of nodes grows
exponentially with the number of generations; thus, the diameter is, at most, proportional
to the logarithm of the number of nodes.

The shortest cycles in the graphs presented here are 2m, and, in particular, there are
no triangles in them, so, generally speaking, the clustering coefficient is zero. However,
this should not obscure the fact that there is actually a huge number of short cycles in
these graphs. Indeed, consider the following auxiliary construction: let the polygon-based
construction be exactly as presented above up to n-th generation, but then connect all the
nodes belonging to the same face on the last generation of the procedure, so the smallest
faces (i.e., faces constructed on the last step) are considered to be complete graphs K2m
((2m − 1)-simplices). The large-scale structure of the resulting graph (including, e.g., the
slope of the degree distribution) will be the same as in the original polygon-based procedure,
but a finite fraction of nodes (those created in the n-th generation of the construction) will
have clustering coefficient 1, guaranteeing that the average clustering coefficient of the
whole graph remains finite as n → ∞. In order to use polygon-based graphs as a toy model
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for experimental systems, it might be reasonable to add a random fraction of them in order
to fit the observed clustering coefficient instead of adding all possible links connecting the
vertices in the smallest faces.

Interestingly, polygon-based graphs with even m are bipartite, see Figure 7a. In that
sense, the tetragon-based graph seems to be a natural generalization of the Apollonian
construction for the case of bipartite graphs. We expect that there might be a connection
between bipartite polygon-based graphs and space-filling bearings, which allow only
cycles of even lengths [37] in a way similar to the connection between original Apollonian
networks and space-filling systems of embedded disks. Exploring this question goes,
however, beyond the scope of this paper.

This paper restricts itself to just one class of possible generalizations of the Apollonian
construction based on polygons of arbitrary sizes. It is quite easy to suggest various other
generalizations. The most obvious example is, probably, the random polygon construc-
tion where new graphs are constructed not generation-by-generation by splitting all the
polygons of the previous generation at once, but rather by randomly choosing on each
step a face to split. Figure 7b presents an example realization of such a tetragon-based
random graph. In the standard Apollonian case, it is known that the exponent of the degree
distribution is different for the regular and random constructions. Calculating the de-
gree distribution of random Apollonian-like polygon-based graphs remains an interesting
open question.

(a)

(b)

(c)

Figure 7. (a) Tetragon-based networks are bipartite. (b) An example of a particular realization of a
randon tetragon-based graph. (c) An example of a 2nd-generation deterministic pentagon-based graph.

Another, this time a completely deterministic generalization, is as follows. Consider
a polygon with an odd number of edges 2m + 1, m ≥ 1. Put a point inside the polygon
and connect it with all vertices of the polygon by chains of m edges and (m − 1) nodes.
This splits a polygon into 2m + 1 faces, each having exactly 2m + 1 edges. On the next
step, repeat this procedure for each of the faces and proceed ad infinitum. Figure 7c shows
the second-generation pentagon-based graph obtained via such procedure. Clearly, this
construction is an even more direct generalization of the Apollonian graph construction
(indeed, m = 1 case is just the Apollonian graph itself). However, it means that it has
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standard drawbacks of the Apollonian graph in a sense that it is a single deterministic
object rather than a stochastic ensemble of graphs and that its limiting degree distribution
is not a power law but rather a log-periodic function with a power law envelope.

We think that the classes of graphs presented here are a useful addition to the toolkit
of toy models to model scale-free graphs. Indeed, while having the main advantages of the
Apollonian networks, they have additional flexibility in a sense that one might regulate the
slope of the degree distribution and the average clustering coefficient in the way described
above. In particular, such graphs might be, in our opinion, useful in the applications
where graph planarity is essential [38], for example, in quantitative geography, such as the
study of the formation of the systems of interconnected cities. On the other side, studying
percolation, spectral properties, diffusion, synchronization, epidemic spreading, etc., on
these generalized graphs might allow to systematically study the influence of varying
degree exponents on these phenomena, which, to the best of our knowledge, have not yet
been done for the scale-free planar networks.
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Abstract: This paper is concerned with limits on kinetic and magnetic energies and dissipation rates
in forced flows that lead to dynamo action and a finite amplitude magnetic field. Rigorous results
are presented giving upper and lower limits on the values of these quantities, in a simple cubic
geometry with periodic boundary conditions, using standard inequalities. In addition to the general
case, results in the special case of the Archontis dynamo are presented, in which fields and flows are
closely similar in much of the domain.

Keywords: magnetohydrodynamics; dynamo theory; rigorous bounds

1. Introduction

This paper sets out some rigorous bounds on statistically steady dynamos driven by
steady forcing. Such dynamos have been widely investigated by a number of authors; for a
review with references see [1]. Of particular interest is the so-called Archontis dynamo [2,3]
in which the magnetic field is almost aligned with the velocity field over much of the
domain. In the latter case the velocity field and magnetic field can be almost steady with
steady forcing while in other cases the fields and flows are disordered and aperiodic in
time, so that averages over both space and time have to be assumed constant to make
progress. This permits the construction of both upper and lower bounds on the time-
averaged magnetic energy or dissipation, and the ratios of these quantities to their kinetic
equivalents. A number of these results have been given elsewhere (see references in
Section 3), but others are apparently novel. Some general results are given, and also more
restrictive bounds that obtain (approximately) when the fields and flows are of Archontis
type. The analysis shows results for the simple case where the magnetic Prandtl is unity
and also where it is small, as found in laboratory fluids.

The plan of this paper is as follows: After an introduction in Sections 1 and 2, the
mathematical problem is presented in Section 3.

2. Methods

The analysis is performed using a number of known inequalities (Poincaré, Cauchy–Schwartz,
Hölder, and others) that have a long history in the literature; while the bounds that are
derived are only approximate in the sense that results for real flows will not be close to
the extreme limits derived, they have the merit of being universal and are useful as a
consistency check on any numerical computations. There have been a number of rigorous
results derived for magnetic field growth due to prescribed flow; see, e.g., [4]. Here, flows
that are driven by a steady space-periodic forcing are examined. Results are presented both
for the flows and fields themselves, and for the Elsasser variables, defined as the sum and
difference of the velocity and magnetic fields.

3. Governing Equations

We consider forced incompressible flow u∗ and dynamo generated magnetic field b∗
in a periodic box off side L. The forcing f∗(x∗) is also taken to be incompressible. As well
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as the velocity forcing we have the Lorenz force due to the magnetic field. The momentum
Equation for u∗ and the induction equation for b∗ can be written in the dimensionless forms:

∂u

∂t
+ Ru ·∇u = −∇P + Rb ·∇b +∇2u + f, (1)

∂b

∂t
= R∇× (u × b) + P−1

m ∇2b, (2)

where x∗ = x/d, u∗ = Rνu/d, b∗ (measured in Alfvén velocity units) = Rνb/d , f∗ = ν2Rd−3f

and Pm = ν/η (the magnetic Prandtl number), where ν is the kinematic viscosity, d = L/2π
where L is the length scale of the system, and η the magnetic diffusivity. The parameter
R is defined such that

〈|f|2〉S = 1, where 〈·〉S is defined as an average over the periodic
box. Thus, R plays the role of a Reynolds number or inverse viscosity. For simplic-
ity, the assumption is made that the forcing f is independent of time, and it is further
supposed that all quantities are periodic over a box of side L. It is also supposed that
∇ · u = ∇ · f = ∇ · b = 0, and that 〈b〉S = 〈u〉S = 〈f〉S = 0. (It may be checked that these
averages do not change during the evolution of the system.) We are interested in a system
in a statistically steady state, and define 〈·〉 to be the time average of 〈·〉S over time.

4. Results

4.1. No Magnetic Field

Equations (1) and (2) have solutions with b ≡ 0. In that case we can can find bounds on
the kinetic energy and viscous dissipation in terms of properties of f. Defining E2 ≡ 〈|u|〉2,
D2 ≡ 〈|∇u|〉2 we have the following results, noting that E2 ≤ D2 in the chosen geometry.

4.1.1. Upper Bound

Multiplying Equation (1) by u and averaging and use of the Cauchy and Poincaré
inequalities gives

E2 ≤ D2 = 〈u · f〉 ≤ D
〈
|∇g|2

〉 1
2 , (3)

where g is defined by f = −∇2g, 〈g〉S = 0, so that one has the upper bound,

E ≤ D ≤ Γ, where Γ2 =
〈
|∇g|2

〉
≤ 1. (4)

The last of these inequalities is shown, recalling that
〈|f|2〉 = 1, by noting that

Γ2 = 〈f · g〉 ≤ 〈|g|2〉 1
2 ≤ Γ.

4.1.2. Lower Bound

Multiplying Equation (1) by g and averaging, recalling that g is independent of time,
one obtains:

− R〈u · (u · ∇g)〉 −
〈

u · ∇2g
〉
= −R〈u · (u · ∇g)〉+D2 = 〈f · g〉 = Γ2. (5)

One can bound the terms on the left hand side using the above inequalities and the
Hölder inequality to get (defining maxi,j,x(|∂gi/∂xj|) = A, where A is a constant):

(RA + 1)D2 ≥ RAE2 +D2 ≥ Γ2. (6)

Results similar to both these upper and lower bounds have been obtained earlier,
e.g., [5,6].
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4.2. Dynamo Inequalities

We now introduce the induction equation and the Lorentz force term and try to
generalise the above results. These are now framed as inequalities on the magnetic energy
and magnetic dissipation; we define E2

m ≡ 〈|b|2〉, D2
m ≡ 〈|∇b|2〉.

4.2.1. Upper Bound

Multiplying Equation (1) by u and Equation (2) by b, averaging and adding, one finds
that the cubic integrals cancel and that

(P−1
m D2

m+D2) = 〈u · f〉 ≤ ΓD , so that (7)

D2
m ≤ Pm

(
ΓD −D2

)
≤ PmΓ2

4
. (8)

4.2.2. Lower Bound

More surprising perhaps is the fact that the magnetic dissipation is bounded below, for
given values of R and D. Multiplying Equation (1) by g, using Equation (8) and averaging,
one finds:

− R〈(u · (u · ∇g)− b · (b · ∇g)〉+ (P−1
m D2

m +D2) = Γ2. (9)

Then by analogous methods to the non-magnetic case one finally obtains:

RA(D2
m+D2) + (P−1

m D2
m +D2) ≥ RA(E2

m + E2) + (P−1
m D2

m +D2) ≥ Γ2, or

D2
m ≥Γ2 − RAE2 −D2

RA + P−1
m

≥ Γ2 − (RA + 1)D2

RA + P−1
m

.
(10)

These results are related to those shown by Tilgner [7] in the context of the G.O.
Roberts dynamo.

4.2.3. Dissipation Ratio

One can write these results alternately in terms of the ratio of magnetic to kinetic
dissipation. Let D2

m = k2D2; then (here G = 1/D):

Γ2G2 − (1 + RA)

RA + P−1
m

≤ k2 ≤ Pm(ΓG − 1). (11)

The largest possible value of k2
max of k2 is given by the intersection of the bound-

ary curves of the inequalities in Equation (11). Eliminating X = ΓG at the intersection,
one finds:

k2
max = 1

2

[
Pm(Z − 1) +

√
P2

m(1 − Z)2 + 4Pm(2Z + 1)
]

, where Z = PmRA. (12)

k2
max appears to increase monotonically with R. For many liquid metals Pm � 1; in

that case, if k2
max = O(1), one must have R = O(P−2

m ).

4.3. The Archontis Dynamo

Now these results can be applied to the Archontis dynamo to get what are probably
rather conservative estimates on the relation between R and Pm necessary to sustain such
a dynamo.

The original forcing function used by Archontis takes the form,

f =

√
2
3
(sin z, sin x, sin y). (13)
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Then one can see that g = f, A =
√

2/3, Γ = 1. For the Archontis dynamo, k2 ≈ 1 and
so the boundary of the region in (R, Pm) space, where this is possible, is given by putting
both the expressions in Equation (11) equal to unity, giving the approximate inequality for
such a dynamo:

R ≥
√

1
6

P−2
m . (14)

Since, as previously noted, Pm � 1 in many physical systems, it can be seen that
Archontis type dynamos can occur only for large values of R for such systems.

4.4. Use of Elsasser Variables

One can instead use the Elsasser variables z± = u ± b. The equations can be written

∂z±
∂t

+ Rz∓ ·∇z± = −∇P +
1
2
(1 + P−1

m )∇2z± +
1
2
(1 − P−1

m )∇2z∓ + f. (15)

Then multiplying each equation by z±, one finds, in the statistically steady state:

〈z± · f〉 = 1
2
(1 + P−1

m )
〈
|∇z±|2

〉
+

1
2
(1 − P−1

m )〈∇z± · ∇z∓〉. (16)

Now defining D2± =
〈|∇z±|2

〉
and using similar inequalities to those in previous

Sections, one finds:

ΓD± +
1
2
|1 − P−1

m |D±D∓ ≥ 1
2
(1 + P−1

m )D2±, (17)

or, dividing through,

Γ ≥ 1
2
(1 + P−1

m )D± − 1
2
|1 − P−1

m |D∓. (18)

As a check consider the non-magnetic case for which z+ = z−. For Pm < 1 we
reproduce an inequality similar to Equation (4). When Pm > 1 one obtains a weaker result.
One can find relations corresponding to Equation (10) by multiplying Equation (15) by g

and averaging, leading to

VRD±D∓ +
1
2
(1 + P−1

m )ΓD± +
1
2
|1 − P−1

m |ΓD∓ ≥ Γ2. (19)

where maxx(|g|) = V. To understand what these inequalities imply consider the special
case Pm = 1, and the Archontis forcing, where V =

√
2, Γ = 1. Then Equations (18) and (19)

become:
D± ≤ 1,

√
2RD±D∓ +D± ≥ 1. (20)

For the Archontis dynamo, we have that D− � D+, say. It is straightforward to check,
using the lower sign in Equation (20), that the smallest value of the ratio r = D−/D+

compatible with the above inequalities is 1/(
√

2R + 1), and so R has to be large for an
Archontis type dynamo, as indeed is found in the experiments; see for example the detailed
calculations for large R , described for Pm = 1 in [8], (with large R corresponding to small ε
in their notation).

Similar results hold for general Pm. Consider the interesting case Pm < 1. Then a
similar calculation gives, for H = VR,

2Hr ≥ 1 + r +
1

Pm
(1 − 2r − r2) +

r
P2

m
(r − 1). (21)

How big should R - or H - be to get close to the Archontis configuration? If r � 1 then
H ≈ (1 + P−1

m )/2r � 1. If r ∼ Pm � 1 then r ≈ 1/
(
(Pm(2H+ P−2

m )
)

and so H has to be
very large, of order P−2

m , to reduce r significantly below Pm.
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Figure 1 shows the relation between H and r for three values of Pm ≤ 1. It can
immediately be seen that as Pm decreases (i.e., η increases for fixed ν) it becomes harder to
make r small, i.e., to approach an Archontis state.

20 40 60 80 100
H

0.00

0.05

0.10

0.15

0.20
r

Figure 1. The minimum value of r = D−/D+ as a function of H = R
√

2 for Pm = 1 (solid line);
Pm = 0.2 (dashed line); Pm = 0.05 (dash-dotted line). See text for details.

The values of k and r are not straightforwardly related. By use of the Schwartz
inequality it can be established that as long as k, r < 1 as envisaged one must have
(r + 1)(k + 1) ≥ 2, so that, for instance, if r is close to zero, then k must be close to unity
but, since r is bounded below rather than above for fixed H, then k is not constrained.

5. Discussion

In this short paper, I explore the rigorous results that constrain the magnetic and
kinetic energies and dissipation rates in a forced, fully nonlinear dynamo. It is possible to
obtain both lower and upper bounds on the magnetic dissipation for a given forcing. In
particular, the parameter R, which measures the amplitude of the forcing, has to be very
large when the magnetic Prandtl number is small. Similar bounds can be found for the
Elsasser variables, z± = u ± z, and these lead to the same conclusion in the case of the
Archontis dynamo where u and b are closely aligned in much of the domain, while some of
the bounds are likely to be rather loose, they are at least rigorous, and provide guidance as
to where in parameter space to look for exceptional configurations such as those found by
Archontis. Work is in progress with D.J.Galloway to examine the accuracy of the bounds
through direct numerical simulations. In Appendix A, the author of this paper presents his
brief reminiscent about contacts with M. Tribelsky to whose honour this issue is dedicated.
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Appendix A

I am delighted to dedicate this paper to my friend and colleague Michael Tribelsky. I
have known him since meeting in Bayreuth in 1989 at a conference and we had valuable
discussions during his visit to the Isaac Newton Institute, Cambridge, UK in 2005.

Figure A1. Michael Tribelsky (left) and Michael Proctor (right): Trinity College, Cambridge, UK
in 2005.
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