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This collection of reprinted articles
celebrates the collegial collaborations of an
extensive network of contributors whose
creativity and passion combined with Jack’s
in over four decades of remarkable advances
in educational research and practice.



Preface

This selection of articles from the many dozens Jack Stenner authored and co-
authored from the 1970s through the 2010s tracks the development of statistical,
measurement, methodological, and theoretical themes in his research and applica-
tions. Jack’s works document the science enabling alignments of measured human
and social valueswithfinancial values.Regardinghumanand social value, Jack shows
how educational assessment and instruction can be simultaneously custom-tailored
to individual student needs, abstractly represented in common metrics, and formally
explained by theoretical models. Jack saw that the consistent and broad-scale repro-
duction of this value over time and across readers, texts, and assessments sets the
stage for coordinating educators’, publishers’, testing agencies’, and students’ and
their families’ shared interests in improved instructional outcomes.

What Jack and his networks of collaborators accomplished provides a model of
applied science and commercialized research that ought to be emulated across all
fields employing test-, assessment-, and survey-based measurements. Much remains
to be done to follow through on what Jack and his colleagues began, not only in
emulating the model they demonstrated but also in extending it in further expansions
of the relational networks they created.

Jack holds a Ph.D. from Duke University and a Bachelor’s degree in Psychology
andEducation from theUniversity ofMissouri. He served as President of the Institute
for Objective Measurement in Chicago, Illinois, and as a board member for The
National Institute for Statistical Sciences (NISS).

Over the course of his career, Jack Stenner was involved in over 20 business star-
tups ranging fromapopular restaurant (Anotherthyme, inDurham,NorthCarolina) to
a furniture factory. His legacy as a serial entrepreneur includes having beenChairman
and co-founder of National Technology Group, a 700-person firm specializing in
computer networking and systems integration that was sold to VanStar Corporation
in December, 1996. He was also co-founder and Chairman of MetaMetrics, Inc.,
a privately held educational research and development corporation. Jack was the
Principal Investigator on five Small Business Innovation Research grants from the
National Institute of Health, (1984–1996) dealing with the measurement of literacy.
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viii Preface

A little-known fact about Jack is that for many years he competed in billiards tour-
naments. The 1993 edition of the Professional Billiard Tour Association’s Billiards:
Official Rules, Records, & Player Profiles shows Jack Stenner as Vice President and
Acting President. Jack often played a round during lunch breaks.

And there’s more: according to the men’s basketball record book published by
the University of Missouri, St. Louis, Jack Stenner is “Among the most celebrated
players in UMSLmen’s basketball history and UMSL’s first all-American selection”
(UMSL, 2021, p. 13). He “earned all-American status as a senior during the 1968–
1969 season, after averaging 24.3 points per game and leading his team to a 19–7
record…and a trip to the NAIA National Tournament” (UMSL, 2021, p. 13). Jack
“ranks eighth in UMSL history with 1,267 career points and second best career
scoring average at 20.1 points per game. He was drafted by the Carolina Cougars in
the ABA Draft after his career at UMSL” (UMSL, 2021, p. 12).

Jack’s accomplishments in competitive sports, in business, and in science share a
common theme that might be summed up as his grasp of the fact that “the play is the
thing.”WhereHamlet focused on catching the conscience of the king, Jack intuitively
understood how to captivate educators’ imaginations. Jack saw how to maximize the
potential for learners to experience the creative flow that follows from appropri-
ately targeted reading challenges and timely feedback, as was so aptly described by
Csikszentmihalyi (1990). Jack furthermore also tapped intuitively but directly into
Gadamer’s (1989, pp. 101–134) insight that play is a key clue to authenticity in the
method. Jack saw mathematical measurement models as tools for telling absorbing
stories about the development of reading ability. These stories, like all great literature
and science, are true of us all in their broad, abstract generality even though they
never happen in their specific details to anyone in particular.

In providing a common language through which developmental processes of
growth in reading ability can express themselves, Jack Stenner gave humanity gifts
of models and methods informing a new range of artful sciences and scientific arts.
His accomplishments will directly and indirectly influence the relations of science,
technology, education, and business for decades to come.

Sausalito, California, USA
April 2022

William P. Fisher Jr.
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Introduction: Koans, Semiotics, and Metrology
in Stenner’s Approach to
Measurement-Informed Science and Commerce

Abstract Over the course of the last 40 years and more, Alfred Jackson Stenner,
signed as A. Jackson Stenner and known by all as Jack, in collaboration with an
extensive network of colleagues, has led the introduction of a new model of inte-
grated science and commerce. Papers authored and co-authored by Jack on measure-
ment science, reading comprehension, and the creation of more systematic states
of affairs in education policy and practice are collected together in this book. Jack
notably operationalized technical issues involved in measuring psychological and
social constructs, especially reading comprehension. In the background, behind these
explicit themes, playful Zen koans, metrological network alliances, and commercial
business agreements are all implicated. Most details of the events that transpired will
have to be left to others with the needed expertise in contracts, accounting, pricing,
marketing, and sales, and who have access to the relevant documents and personal
stories to be told. That broader biography and detailed history of Jack’s work seems
likely to become of considerable interest, given the innovations incorporated into
the model of integrated psychological science and commerce he and his colleagues
enacted. But the commercial implementations of the technical processes reported
in Jack’s publications are of less relevance in the context of the papers collected in
this book than the ideas informing those processes, and their still-unfolding impli-
cations. What is of interest here is how Jack and his allies demonstrated the creation
of shared social realities that co-evolve in dialogue with objectively repeatable and
reproducible measurements. Finally, I concentrate here on Jack’s work in reading
comprehension as it provides the most salient focus for considering the development
of his ideas on measurement.

Introduction

Working closely with key allies possessing complementary skills and resources, Jack
Stenner demonstrated new ways of blending science and commerce. He showed
how to model and represent objective facts so they could be put into circulation
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xii Introduction: Koans, Semiotics, and Metrology in Stenner’s Approach …

as common currencies for the exchange of actionable ideas and observations. He
intuitively grasped the value obtained when a phenomenon persistently shows itself
in characteristic ways over time and space, and across samples of persons and test
items. He moreover saw how that value could be made fungible and pragmatically
actionable. He understood, seemingly innately, that real value could be translated
into a viable business model only by linking together networks of actors sharing a
common frameof reference. Jack understood howmeasurementmodels parameterize
these frames of reference in ways that make them exportable from the laboratory
into the real world. He saw that statistically sufficient estimators for the parameters
in identified models lay the foundations for efficient markets matching supply and
demand. Economists like Frisch, Koopmans, and Reiersøl and V. Smith would have
been proud to see the ways that Jack implicitly proved the truth of their ideas (Fisher,
2002, 2015, 2021b).

As was so clearly stated by Bernstein (2004) and De Soto (2000) after Jack was
well underway, Jack saw that the science had to be complemented with arrays of
social, legal, and economic relationships if it was to be put into general circulation.
Those relationships have to be formatted so as to incorporate the language by which
the thing of interest is recognized for what it is. Absent those connections, Jack
saw, science can only ever exist as an area of activities isolated and alienated from
the broader spheres of human interests. And though Jack and his colleagues have
accomplished a great deal, they have only scratched the surface of what is needed.
Bringing together some of the key articles documenting high points in Jack’s long
career may increase the probability that others will extend and improve on what he
has done.

So, of particular interest here are Jack’s intensive investments in practical imple-
mentations of measurement research products. He saw that technical processes for
systematically integrating concrete, abstract, and formal levels of complexity opened
up opportunities for re-organizing social relationships. From the time he and I met
at an International Objective Measurement Workshop held in the mid-1980s in Ben
Wright’s Judd Hall classroom at the University of Chicago, Jack and I shared a
passion for engaging with these topics. Though we conversed endlessly on Zen
koans as much as measurement, I will here focus primarily on the measurement side
of things, reserving a fuller consideration of Jack’s love of Zen koans for another
occasion.

To what degree was Jack’s profound understanding of how to proceed in his work
gleaned from careful and prolonged study, and to what degree was it a product of
highly developed intuitions? Plainly, his expertise in mathematical modeling, statis-
tics, and experimental science required years of careful development. But it is also
the case that, being widely read across multiple fields, including history and philos-
ophy, Jack’s imagination was captivated by multiple intriguing transdisciplinary
connections.

My focus in this foreword is an expansion on some of the most pointed themes
recurring in conversations with Jack, themes that also are implicated in the back-
ground of his writings. What I have to say is, then, a quite personal combination of
Jack’s and my own perspectives. Jack and I both often remarked that we could not
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recall who had thought of this or that idea first. We also often could not recall if or
when our ideas were drawn from the works of one author in particular, or another,
of the many we both engaged with in our thinking.

Our relationship was characterized by a particular kind of dialogue. On the
one hand, Jack’s intuitions as to how to proceed with commercializing the value
produced in reading measurement research were complemented by my deep famil-
iarity with philosophy and the history of science and technology. I could connect
Jack’s experience with examples from the past providing pertinent lessons and analo-
gies relevant to the problems he faced. On the other hand, conversely, my interests
in generalizing the lessons of history and philosophy were tested and challenged by
Jack’s successes and failures in creating practical measurement implementations in
a business environment intolerant of pointless academic wool gathering.

That Jack and I both had extensive experience in the application of Rasch’s prob-
abilistic models of measurement, in instrument design and data analysis, and in
the testing of predictive construct theories provided a background of shared values.
That common background was further informed by Jack’s expertise in language
learning and my own in-depth studies of howmetaphor and analogy infuse cognitive
processes. A matter of key concern to be taken up below falls under the heading
of the ecological fallacy and the importance of distinguishing and separating levels
of meaning in language. Even though Jack did not foreground these issues in his
writing, an early emphasis (Hayman et al., 1979) on keeping levels of data aggrega-
tion in close correspondence with the organizational levels in which they are put to
use became an enduring theme.

That theme found highly salient expression in O. D. Duncan’s (1984, pp. 38–
39) suggestion “that social measurement should be brought within the scope of
historical metrology, while that discipline learns to take advantage of sociological
perspectives.” Duncan took an historical perspective on the role of measurement in
the economy, seeing lessons for sociology in the counterproductive confusions and
opportunities for deception associated with false weights and diverse measures. His
authoritative grasp of Rasch’s probabilistic models for measurement complemented
his understanding that “All measurement is...social measurement. Physical measures
are made for social purposes” (Duncan, 1984, p. 35). Duncan speculated, “it may be
that...the measurement of time and the temporal framework of social organization
will prove to be the entering wedge for a sociological metrology” (Duncan, 1984,
p. 27). Jack and I thought that the temporal framework of social organization in educa-
tion—focusing on cognitive development and reading ability, in particular—would
provide an actionable point of entry for psychological metrology. Similar opportu-
nities have been opened for measured constructs involving learning progressions,
healing trajectories, and developmental sequences in general.

In that context, this foreword can be neither a perspective on Jack’s organiza-
tional and business accomplishments nor a precise exposition of philosophical and
historical influences on Jack’s accomplishments. My intention is not to document
exact or fully consistent connections or motivations, but rather to convey something
of how ideas in the background of the technical work provide a context for a more
intimate understanding of what Jack presents in his formal arguments. I recount in a
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series of meditations the broad strokes of Jack’s thinking on the topic of Zen koans
and draw out his intuitive pursuit of a thoroughly unmodern (or amodern, terms that
will be clarified in what follows) approach to integrating science and commerce.
This foreword closes with a brief synopsis of the papers reprinted in the following
chapters.

Koans

Over the years weworked together, Jack often spoke of his love for Zen koans. Koans
are paradoxical statements traditionally used in meditation by Buddhists as a way
of freeing thinking from rigid preconceptions. The basic idea as Jack and I explored
is that when words in a grammatically correct sentence do not immediately cohere
into a meaningful statement, the resulting perplexity may lead one to reflect on the
arbitrariness of idea-word-thing connections.

This foreword is not the time or place for a thorough treatment of even the
informal understanding Jack and I shared of the potential relevance Zen koans might
have regarding the role of language in understanding and in the measurement of
reading comprehension. A brief summary of the basic idea will suffice to give some
background to the papers collected together here.

A couple of famous koans include “What is the sound of one hand clapping?” and
“If a tree in a distant wood falls and no one hears it, does it make a sound?” Focusing
attention on these seeming nonsensical questions may aid in releasing thinking from
the bonds of inflexible habits ofmind. Encounterswith the randomness ofword forms
and syntactic structures can lead to newways of seeing theworld. Becoming aware of
the arbitrariness of any particular language’s alphabet, grammar, and pronunciation
can be a factor encouraging creative insights, and compassionate understanding, as
to how alternatives to existing concepts and things might be formulated.

Jack was fascinated by the different paths forward in thinking opened up when the
limits of language are viewed in this way. Being a student of the cognitive processes
involved in reading comprehension led Jack to a particularly acute perspective on
the value of koans. Meditatively allowing word forms to dissolve into the arbitrary
social constructs that they are openperception to previously unnoticedwaysof seeing.
Now things are experienced in a different ways and are less automatically categorized
as something in particular. The effect is in some respects akin to learning a second
language,which also can reveal the capricious randomness andhistorical contingency
of the metaphors incorporated in concepts, and in linguistic standards themselves.

Meditating on language in this way can then lead to a pointed awareness of
formlessness in relation to the multiplicities of forms, with interesting mathematical
implications (Szymanski, 1995). On the one hand, idealizations persist as invariant
structures and invisible forces asserting their objective existence independent of
particular instances and words. Though meanings are shaped by cultural circum-
stances in particular ways, things and processes (mountains, trees, rivers, the sun,
running, walking, etc.) must exhibit broad consistencies to sustain ongoing ostensive
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references. On the other hand, the availability of a common language, arbitrary as it
is, makes a shared reality possible, one in which meanings within specific and unique
circumstances can be negotiated via contrasts with ideal concepts.

Jack came to see the value that could be obtained by systematically separating and
balancing formal conceptual ideals, abstract instrumental standards, and concrete
local circumstances. Seeing that there are infinite ways of imagining, conceiving,
and representing things, one becomes more sensitive to the multiplicity of possibil-
ities implicated by the way language focuses attention. Language itself serves as a
model for how representing concrete things systematically requires clear distinctions
between unrealistic conceptual ideals and abstract standardizedwords and semantics.
This semiotic triangle of ideas-words-things opens onto an infinite array of possible
representations at the same time that it does so by restricting attention to salient
matters of interest.

The norms of everyday communication set up opportunities, then, in the context
of limits. The limits are not completely inviolable, as humor, irony, and poetry all
open onto creative configurations of circumstances that can provide insights into how
things might be different from the way they are. But no matter how powerful one’s
experience of infinite formlessnessmay have been, articulating it inevitably confronts
the constraints imposed by the forms of communication in the language. The idea of
sharing a fulfilling meditative experience of a seamless whole immediately confronts
a conundrum: whatever is said will have to be shaped in the particular forms of a
linguistic expression, a reduction of the infinite to a text of finite length, which, of
course, immediately contradicts the point of trying to communicate the entirety of
the experience. Thus, raucous laughter is a typical response of those experienced in
meditation when asked questions about the meaning of life, or the essence of Zen.

Modern, Postmodern, and Unmodern Issues in Science
and Measurement

A valuable lesson Jack took away from these meditations was seeing that the implicit
and informal modeling function performed by everyday language could be made
explicit and formal. In the same way that linguistic standards (alphabets, phonemes,
grammars, etc.) are abstractions mediating unrealistic ideals and concrete circum-
stances, so, too, measurement standards (quantity values, unit definitions, instrument
design principles, estimation methods, etc.) are abstractions mediating the relations
of theoretical axioms, laws, and models with locally unique concrete events.

A relevant personal connection with a figure from Jack’s childhood in St. Louis
illuminates the point of departure fromwhich Jack and I began our conversations. The
philosopher Robert J. Ackermann was a young Assistant Professor at Washington
University in the 1960s when Jack’s father was also on the faculty of the philosophy
department there. When I mentioned Ackermann’s 1985 book, Data, Instruments,
and Theory: A Dialectical Approach to Understanding Science, Jack said he was
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acquainted with Ackermann and as a teenager had earned some spending money
babysitting his children. In addition, Jack’s father’s immersion in philosophical issues
was such that a 1992 Washington University dissertation (Campbell, 1992) includes
an acknowledgment of the Senior Professor Stenner, thanking him for introducing the
author (Campbell) to the theory of metaphor. My (Fisher, 1988) dissertation brought
Ackermann’s ideas to bear on metaphor in a way that framed my thinking on much
of the subsequent work Jack and I did together.

A bit of background is needed to bring out the relevance of Ackermann’s ideas.
When Jack and I first met in Ben Wright’s Chicago classroom, I had been pursuing
my interest in situating Rasch’s measurement models in the context of science and
technology studies, though it was not referred to by that name at the time. Latour
and Woolgar’s (1979) book, Laboratory Life: The Social Construction of Scientific
Facts, had opened the door to a new domain of ethnographic, historical, social, and
philosophical studies of science and technology. This body of work seemed to me to
point in a productive direction in which to take psychological measurement theory
and practice.

A key distinguishing feature of science and technology studies that sets it apart
from postmodern deconstruction and hermeneutics is its emphasis on the essential
roles played by linguistic and scientific standards and technologies. Postmodernism
tends to become lost in endless futile debates with modernism, as advocates of
transcendental universals spar with advocates of temporally and spatially situated
meanings. The infinite spiraling of this contentious opposition ought, itself, to indi-
cate something is amiss. A question that should be asked more often is what makes
the arguments unproductive and impossible to resolve?

The answer to that question has, perhaps, a lot to do with hidden assumptions. As
Latour (1991, p. 17) puts it, “Postmodernism is a disappointed form of modernism.
It shares with its enemy all its features but hope.” Modernist vs. postmodernist argu-
ments often proceed with little or no cognizance on the parts of the participants
that both sides are making use of a system of standardized signs. Those signs are
human-made tools entirely imbuedwith cultural and historical significance. Ignoring
the use being made of language results in internally inconsistent positions. Modern
transcendentalists argue in a specific and unique technologically dependent local
circumstance for universal objectivity, while postmodernists argue on behalf of rela-
tivized subjectivity using formal conceptual ideals represented by globally accessible
language.

Ignoring the role of language as a medium leads to mainstream takes on postmod-
ernism that accordingly then range from condemnations of its alleged “suppression of
reason” (Bloom, 1987, p. 387) to inconsistently accepting the limits ofmeasurements
and interpretations “not assumed to be consistent or similar across time, contexts,
or individuals” (Delandshere & Petrosky, 1994; also see Cupples, 2019, p. 15). The
irony of saying, in effect, “this statement cannot be interpreted as consistent,” seems
lost on many writers, though the form of the statement is exactly that of the liar’s
paradox (“this statement is false”), long recognized as a limit in recursive, self-
referential systems (Sethy, 2021). Both rejecting and accepting postmodern ideas
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necessitate applications of shared systems of symbolic standards, though these are
ignored by both sides in the debate.

In contrast to the self-contradictory tensions characterizing the modern-
postmodern debates, there are philosophers associated with postmodernism who
“leave room for a structural science” that “must in effect liberate the mathematiza-
tion of language” (Derrida, 1981, pp. 28, 34). Gasché (1987) and Spivak (1990),
for instance, explicitly recognize the need for strategic pauses breaking the poten-
tially endless cycle of deconstructions,and applying new understandings in practice.
“Sadly, though,” in Tasić’s (2001, p. 99) opinion, “the mathematical roots of ‘high’
postmodern theory seem to be well beyond the reach of most of its representatives
(with the possible exception of Derrida).”

ThoughTasić’s endorsement ofDerrida’s awareness ofmathematical implications
is tentative, further evidence is provided in Derrida’s (2003, p. 62) explicit statement
that,

…many people who read me…don’t know what I know….When I take liberties, it’s always
by measuring the distance from the standards I know or that I’ve been rigorously trained in.

Derrida’s reputation as a Socratic gadfly afflicting the comfortable seems diamet-
rically opposite to Gadamer’s image as a Socratic midwife comforting the afflicted
(Bernasconi, 1989; Risser, 1989), but they both acknowledged the role of language
as the medium of thought.

SoGadamer (1989, p. 412; original emphasis), a leading hermeneutic philosopher,
understood that “it is not word but number that is the real paradigm of the noetic,”
the domain of being and existence. Gadamer (1989, p. 413) continued, recognizing
that:

The more univocally a sign-thing signifies, the more the sign is a pure sign—i.e., it is
exhausted in the co-ordination. Thus, for example, written signs are co-ordinated with partic-
ular sounds, numerical signs with particular numbers, and they are the most ideal signs
because their position in the order completely exhausts them.

These reflections on language as a medium (Gadamer, 1989, p. 351) effectively
crystallize the value of the deconstructive moment in the phenomenological, or onto-
logical, method (Heidegger, 1982, pp. 19–23, 320–330; Gadamer, 1989; Nuzzo,
1999, 2011; Fisher, 2004, 2010; Fisher & Stenner, 2011a). All method (a) reduces
complex experiences to simplified expressions in language, and then proceeds by
(b) applying linguistic expressions in communication, which evolve as (c) inconsis-
tencies are apprehended via critical engagement, and (d) a return to a new reduction
begins a new cycle.

Where Gadamer tends to be read as a traditional formalist methodically moving
from (a) to (b), focused on idealized ways of appropriating meaning, Derrida, as
Tasić (2001, p. 58) points out, seemsmore aligned withWeyl’s intuitionism, method-
ically moving from (c) to (d) (Gasché, 1987, 2014). Furthermore, where Tasić (2001,
p. 106) is “searching for common patterns that could serve as the ground for devel-
oping analogies and comparisons as to the ‘fate’ of both structural linguistics and
mathematics,” Jack and I aimed to address the need for analogies and comparisons of
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language and measurement encompassing the full range of qualitative to quantitative
mathematical expressions.

The culminating unmodern, nonmodern, or amodern (Dewey, 2012; Latour, 1990,
1993a, 1995b; Fisher, 2018; Fisher & Cavanagh, 2016; Fisher & Stenner, 2018b)
insight of postmodern deconstructions of modern language is an expanded semiotic
understanding of the inescapable truth that:

• “When I think in language, there aren’t ‘meanings’ going through my mind in
addition to the verbal expressions: the language is itself the vehicle of thought”
(Wittgenstein, 1958, p. 107).

• “Meanings run in channels formed by instrumentalities of which, in the end,
language, the vehicle of thought as well as of communication, is the most
important” (Dewey, 1954, p. 210).

• “We have no power of thinking without signs” (Peirce, 1868/1992, p. 30).
• “From the moment that there is meaning there are nothing but signs. We think

only in signs” (Derrida, 1976, p. 50; original emphasis).
• “...the function of substituting signs for things and of representing things by the

means of signs, appears to be more than a mere effect in social life. It is its very
foundation. We should have to say, according to this generalized function of the
semiotic, not only that the symbolic function is social, but that social reality is
fundamentally symbolic” (Ricoeur, 1981, p. 219).

The idea that there is no thought without expression in language goes back at
least to the late eighteenth-century works of Hamann and Herder: “They did not
use the word ‘structure,’ but romanticists like Schleiermacher and Humboldt did”
(Tasić, 2001, p. 104; also see Surber, 2011, pp. 245–247). Philosophy has increas-
ingly engaged with language as a semiotic model of reason via developments quite
independent of the emergence of semiotics as a field of its own.

The contemporary semiotic perspective in the philosophy of science emphasizes
instruments, models, and technologies as media embodying relational connections
between theory and data (Blok et al., 2020; Bowker et al., 2015; Bud & Cozzens,
1992; Haraway, 1996; Ihde, 1991; Latour, 1987, 2005; Wise, 1995). This point is
emphasized in the way Princeton University Press marketed Ackermann (1985) with
a description saying the book documents how instruments mediate theory and data,
creating a reasoned basis for scientific objectivity that breaks the dependency of
observation on theory. Re-expressed in the semiotic context, thing-word-idea and
data-instrument-theory connections are embedded in the external environment as
material artifacts (phonemic, alphabetical, grammatical, spelling, product definition,
unit, etc. standards) that serve as common points of reference.

The unproductive, yet still ongoing, tension between modern and postmodern
worldviews is defused when both have to confront the facts that (a) transcendent
universals cannot be demonstrated in the absence of technical media (linguistic signs
and measuring instruments), just as (b) locally situated unique circumstances cannot
be described or shared without communications standards. Unmodern philosoph-
ical investigations and studies overthrow contentious modernist and postmodernist
debates by means of fundamentally radical critiques that “follow the exact same
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paths through which the extension of standards, templates, or metrological chains
occurs” (Latour, 2014, p. 10; original emphasis). Deconstructive, philological, and
hermeneutic analyses can follow those paths just as much as transcendental idealiza-
tions do. All are involved in taking apart the historical, social, and economic inter-
ests informing taken-for-granted concepts embedded in institutionalized linguistic
routines.

But deconstructively retracing the paths by which conceptions became instituted
as standards for shared social realities is not an end in itself:

• “Deconstructive doubt is not a doubt about things but about the unrevisability of
established linguistic formulas” (Staten, 1984, p. 156).

• In a 1981 interview, Derrida remarked that “it is totally false to suggest that
deconstruction is a suspension of reference…. I never cease to be surprised by
critics who see my work as a declaration that there is nothing beyond language”
(Kearney, 1984, p. 123).

• “Derrida is not trying to bury the idea of ‘objectivity’ ... [since] it is not that
texts and languages have no ‘referents’ or ‘objectivity’ but that the referent and
objectivity are not what they pass themselves off to be, a pure transcendental
signified” (Caputo, 1997, p. 80).

• “Derrida’s concern with foregrounding the constitutive power of inscription…-
parallels our interest in mediating machines. Applied to the domain of science
studies, Derrida’s manner of proceeding suggests that we should attend to the
empirical, material character of the experimental system as bound up with the
production of a graphic trace” (Lenoir, 1998, p. 6).

Revising—better, transforming—languages serving as vehicles of thought
requires newways of apprehending the semiotic relations of ideas, words, and things.
By tracing the routes taken by established linguistic formulas as they circulate in soci-
eties and economies, we can come to learn how improved, more complex formulas,
ones more sensitive to differences that make a difference, might be created.

Measurement Modeling as Establishing Semiotic
Correspondences between Things and Thought

Jack and I felt that Ackermann’s 1985 book provided vitally important pointers as to
how to find and follow the paths along which traceable standards and metrological
chains are extended. Ackermann’s (1985) inclusion of instruments in relation to data
and theory was independently and simultaneously asserted by a number of additional
writers, such as Heelan (1983a, 1983b), Hacking (1983), Latour (1987), and others
characterized by Ihde (1991) as an emerging school of instrumental realists.1 The

1 My pursuit of these connections began about a year before Jack and I met in the mid-1980s.
After establishing my philosophical and scientific interest in language as the vehicle of thought, I
mentioned Ackermann’s book to David Tracy, a philosopher and theologian who supervised my
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basic theme on which Jack and I focused concerns what Latour and Woolgar (1979,
pp. 151–186) called the “microprocessing of facts.” This was described by Acker-
mann as an achievement establishing connections between real things in the world
and representations in language:

Once clear statements of fact have been achieved through instrumental investigation, the
reference of fact seems fixed and objective, and indeed it is. Theworld has been discovered to
show a fixed and repeatable response in certain interactions as described in the language, and
this response is an objective consequence of these interactions. ... This process of achieving
or constructing reference for language by development of a domain we will call the micro-
processing of fact, after discussion of this phenomenon by Latour and Woolgar. When the
process is complete, the evidence of microprocessing disappears, and mere correspondence,
the very correspondence that has been slowly and carefully constructed, is all that remains.
(Ackermann, 1985, pp. 143–144)

It was evident to Jack and me that applications of Rasch’s (1960, 1977) prob-
abilistic measurement models microprocess facts with the aim of setting up corre-
spondences between linguistic representations and reality. The point of constructing
models is plainly focused on identifying repeatedly observable patterns in response
data, doing so in ways that learn from the past to predict the future, as Wright
(1997a) puts it. The potential for the removal of the evidence of microprocessing
after establishing correspondences with real-world phenomena was recognized by
1985 across multiple fields (Andersen, 1977; Andrich, 1978; Andrich & Douglas,
1982; Fischer, 1973;Wright, 1968b, 1977, 1984;Wright &Masters, 1982;Wright &
Stone, 1979). Anchoring item estimates adaptively administered from pre-calibrated
banks and linking classroom tests with each other as well as with high stakes exam-
inations (Choppin, 1968, 1974; Masters, 1984; Wright, 1977; Wright & Bell, 1984)
both make explicit use of carefully constructed correspondences between models
and real-life situations.

Philosophically, the problem being addressed here is exactly that taken up in
hermeneutic phenomenology (Fisher, 1988, 1992, 2003, 2004, 2010; Fisher &
Stenner, 2011a). In Husserl’s (1965, p. 108) conception of philosophy as rigorous
science, he calls for phenomenologists to return “to the things themselves!”Husserl’s,
Heidegger’s (1962, pp. 50, 195; 1967, p. 105), and Gadamer’s (Gadamer, 1991,
pp. 14–15; 1994, p. 171) responses to that call focus on

things as they show themselves before the work of abstraction and theorizing has carved
out a language of fixed essences for them removed from human praxis, history and culture
(Heelan, 1994, p. 369).

Modernism ignores the erasure of the evidence of microprocessing, so it can focus
productively on making use of the practical correspondence with representations and
the language of fixed essences that have been established. Unfortunately, the success

master’s thesis and later co-chaired my Ph.D. dissertation with Ben Wright. Tracy then pointed
me toward Heelan (1983a) and Toulmin (1982). Heelan and Toulmin exchanged views at a 1984
conference held at the University of Chicago (Heelan, 1984). I was able to ask both of them about
their dialogue when I met the former at a meeting of the Society for Phenomenology and Existential
Philosophy and when I enrolled in a University of Chicago seminar with Toulmin.
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of modern science has altered the planetary environment to a degree that makes it
increasingly impossible to continue assuming there is little or no value to be found in
the evidence of microprocessing. Postmodernism, within which most hermeneutic
phenomenology remains trapped, invests all of its interest in the infinite variety of
ways in which human praxis, history, and culture carve out those correspondences. It
then often refuses to let any of the evidence be erased, which productively maintains
a memory of what might have been lost, but also does not offer any generalized,
methodical ways forward.

Unmodern philosophy, in contrast to both modernism and postmodernism, fore-
grounds the role of linguistic and measurement standards in ways that aid in tracing
out the good implicit hermeneutic phenomenologies that must be concealed within
any effective, productive science (as suggested byRicoeur, 1967b, p. 219).Unmodern
semiotics articulates the work of abstraction and theorizing that makes generalized
representations possible. Latour’s (1993b) study of Pasteur on lactic acid yeast and
Nersessian’s (2002) study of Maxwell’s method of analogy (utilized by Rasch; see
Fisher & Stenner, 2013) provide pertinent examples from the history of science.

Now, consider what Ackermann said in the context of Ben Wright’s approach to
measurement. A few years before Jack and I met in Wright’s classroom, Wright had
written that:

Because we are born into a world full of well-established variables it can seem that they have
always existed as part of an external reality which our ancestors have somehow discovered.
But science is more than discovery. It is also an expanding and ever-changing network of
practical inventions. Progress in science depends on the creation of new variables constructed
out of imaginative selections and organizations of experience. (Wright&Masters, 1982, p. 1)

Wright grasped the crux of the problem described by Ackermann, seeing science
as an “expanding and ever-changing network of practical inventions” that can make
the existing world—“full of well-established variables”—seem to “have always
existed as part of an external reality.” Wright implicitly augments the micropro-
cessing of facts documented by Latour and Woolgar by setting up new models and
methods for slowly and carefully constructing correspondences between words and
things. He was suggesting that improved measurement research in psychology and
the social sciences could contribute to expanding and evolving networks of new
practical inventions.

With no familiarity at all with the work of Ackermann or any of the other
“instrumental realists,” Wright focused directly on idealized models preserving the
simplicity of fixed and repeatable responses to interactions that could stand forth inde-
pendent of the particular data and theory employed in experimental tests validating
the correspondences. What is more, Wright also appreciated Rasch’s (1960, pp. 34–
35; also see Box, 1979) point that data never fit models, devising individual student
reports mapping response patterns in ways useful to teachers (Wright, Mead, &
Ludlow, 1980). Though neither Wright nor Stenner made explicit use of “unmod-
ern” philosophy or “metrology” in theirwriting, their intuitions arewell characterized
by writers who do, largely in the domain of science and technology studies.
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Unmodern Semiotics Across the Sciences

Anadditional avenueof support for anunmodernperspective that Jack and I discussed
deserves mention here. This involves the semiotic implications of twentieth-century
advances in physics. The capacity to take language as a model for meaningful
communication across all fields of human endeavor requires firm reasons estab-
lishing exactly how “The whole of science is nothing more than a refinement of
everyday thinking,” as Einstein (1954, p. 290) puts it. Recent proposals by teams
of collaborating metrology engineers, physicists, and psychometricians (Cano et al.,
2019; Mari & Wilson, 2014; Mari et al., 2021; Pendrill, 2019; Pendrill & Fisher,
2015; Wilson & Fisher, 2016, 2019) of a common frame of reference for measure-
ment across the sciences would seem to be viable only via this kind of grounding
in a common root source, or seed. Modernist efforts at imitating the methods of the
natural sciences in the social sciences have plainly produced disappointing results
(de Marchi, 1993; Gould, 1996). An unmodern semiotic perspective may offer ways
forward innovative enough to transform what needs to change while leaving intact
what works.

Neils Bohr’s essentially semiotic focus on the role of the instrument in quantum
physics is, then, of considerable interest. As Bohr once stressed in a discussion, his
principle of complementarity implies scientific observers are suspended in language
to the point that words can no longer be seen as grounded on an independent reality.
Instead, Bohr said, our thinking and communications are suspended in language to
the point that we cannot tell up from down (Petersen, 1968, pp. 187–188; French &
Kennedy, 1985, p. 302).

The physics Nobelist Wheeler (1980, p. 153; 1982, p. 201; 1984) follows through
fromBohr’s emphasis on the arrangement of the experimental apparatus to the essen-
tial role playedby the readingof instruments in science.Wheelerwas reportedly influ-
enced by Peirce’s (1868/1992) semiotics (Merrell, 2011, p. 263), seeing it as a way
of situating humanity as participants in an evolving, meaningful universe. Sebeok
(1991, pp. 143, 153), in turn, drew from Wheeler and Peirce, then, in developing
his own perspective on how sign systems inform a new transdisciplinary research
paradigm of semiotic modeling (Anderson et al., 1984; Brier, 2013; Maran, 2007;
Merrell, 2011; Nöth, 1990, 2018; Sebeok, 2001; Xu& Feng, 2004). Others arrive via
their own independent analyses at similar conclusions, as with Cartwright’s (1983,
p. 129; quoted in Burdick et al., 2006) statement that “Fundamental equations do not
govern objects in reality; they govern only objects in models.”

Bohr’s theme of being suspended in language echoes a similar strain voiced by
another noted physicist, Ernst Mach, who noted that language provides a labor-
saving service allowing us to take up and use sign systems already in circulation.
Mach referred to this removal of the need for us all to make up our own sign systems
as an economy of thought (Banks, 2004; Mach, 1919, pp. 481–495; Franck, 2002,
2019). In this economy, language communities are the original efficient markets,
where the common currency of a shared symbol system reduces transaction costs to
negligible levels.
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Another noted physicistmining this same veinwas JohnPlatt, BenWright’s super-
visor in Nobelist Robert Millikan’s physics lab at the University of Chicago in the
1950s. Platt wrote extensively on how “a social chain reaction with positive feed-
back” could “amplify the delicate and uncertain powers of our highest intelligence
into directed and effective acts that will reduce our collective tensions and meet our
collective needs” (Platt, 1961, pp. 39–40). Communicable thing-word-idea corre-
spondences can “go viral” in efficient linguistic markets leveraging the economy of
thought, giving rise to social contagions (Goyal, Heidari, & Kearns, 2019; Hodas &
Lerman, 2014; Latour & Lépinay, 2010; Pastor-Satorras, Castellano, Van Miegham,
et al., 2015). Platt was well known for his views in this area and is quoted repeatedly
on the power of decentralized networks in a best-selling book I obtained in 1981
during a sabbatical year of reflection in Alaska (Ferguson, 1980). This book and the
follow-up reading I did in the next couple of years were preparatory to the events
that then unfolded in Chicago.

A philosophical motivation for semiotic modeling was indirectly provided by
Ricoeur (1981), with whom I was enrolled in seminars at the time Jack and I first
met in the mid-1980s. Ricoeur had formulated a “model of the text” grounded in a
textual

‘objectivity’ [fromwhich] derives a possibility of explaining which is not derived in any way
from another field, that of natural events, but which is congenial to this kind of objectivity.
Therefore there is no transfer from one region of reality to another—let us say, from the
sphere of facts to the sphere of signs. It is within the same sphere of signs that the process
of objectification takes place and gives rise to explanatory procedures. And it is within the
same sphere of signs that explanation and comprehension are confronted. (Ricoeur, 1981,
p. 210; see Fisher & Stenner, 2005, 2011a; Fisher, 1992, 2003, 2004, 2010)

This theme of language as the vehicle of thought and the environment in which
science operates motivated Peirce’s pragmatist semiotics, as he felt there was a surer
basis in it than in traditional epistemology (Houser, 1992, p. xxxvi). Latour (1987,
1995a, 2005) similarly recommends tracing out the propagation of representations
across media as superior to epistemology. Documenting science in action in that way,
via its inscriptions, we can be thoroughly positivistic about the factuality of what is
said and done, as that evidence can only work to inform, substantiate, and test the
tracing of communicative functions through ecological economies of thought.

Hamann advanced a variation on this kind of argument in direct response to Kant
in the eighteenth century (Surber, 2011), saying that “language is reason.” My own
work on metaphor (Fisher, 1988, 1990, 1994, 1995a/b, 2012a) led to much the same
conclusion. Taking up the direction indicated by Black (Ben Wright’s philosophy
professor at Cornell in the 1940s) in his work on models and metaphors (Black,
1962; also see Ricoeur, 1977, 1979, 1981, pp. 165–181; Cartwright, 1983; Lakoff
and Johnson, 1980) led to a mathematical way of setting up models as heuristic
fictions, and vice versa. Seeing science and art as overlapping in this way does not
lead to a negative conclusion or mere historical or cultural relativization, as would
be the case in a postmodernist context. The unmodern conclusion more productively
sees in the artful craft of making useful things like texts, textiles, techniques, and
technologies (all from the ancient Greek, techne) a semiotic basis for a pragmatically
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idealized (complex, multilevel, partly disunified, and partly unified) integration of
the arts and sciences.

Counting, for instance, is inherently metaphorical in the way it ignores what is
different about unique individual entities, events, or persons, as has been recognized
since Plato (see the Phaedo, 96b; Ballard, 1978, pp. 186–190; Fisher, 1994). Just
as irrational numbers involved in geometry cannot be exactly specified numerically
or drawn as lines or arcs, so, too, do laws like Newton’s inertial law also describe
unobservable ideals, such as an object left entirely unto itself with no forces acting
on it. These imaginary frames of reference captivate thinking in the play of signifiers
in highly productive ways (Gadamer, 1989, pp. 101–134; Ricoeur, 1981, p. 185).

Plato resolved the crisis of irrationality in Pythagorean geometry by redefining the
elements of geometry, making a point an indivisible line, a line an indivisible plane,
etc. (Cajori, 1985, p. 26; Gadamer, 1980, pp. 35, 100–101; Ricoeur, 1965, p. 202). In
so doing, Plato made irrational numbers equivalent to rational ones at a higher order
formal level of complexity. This distinction between names and concepts effectively
founded philosophy. Plato then required familiarity with mathematics for entrance
to his Academy because that experience orients students to the fact that numeric
and geometric figures are not the mathematical relationships themselves (Gadamer,
1980, pp. 35, 100–101).

The theory of heuristic fiction (Ricoeur, 1981, p. 187), and understanding that
mathematical relationships are primarily qualitative, led to the idea that metaphors
are models just as much as models are metaphors. In addition, understanding that
quantification requires a linear geometric metaphor, it was plain that variation in the
pertinence or relevance of what Black called the system of associated commonplaces
had to encompass the full range from the positive to the negative. Laying out the
implications of metaphors as statements on a survey that people could agree and
disagree with provided fairly clear and simple tests of the hypothesis that the ratio
of rationality is embedded in the metaphoric roots of all concepts.

The predictability of the statements was consistent enough that the theory-
informed blueprint mapping the metaphoric constructs sufficed to calibrate parallel
forms on which statements took expected positions on the scales in clearly distin-
guished ranges (Fisher, 1988, 1990, 1995a/b, 2012a). The metaphoric process
effected a virtual calibration of language as an instrument providing a measure of
meaning.Here, in themetaphor ofmeasurement and in themeasurement ofmetaphor,
we transition in the phenomenological method from the deconstruction of language
back to a new reduction (Ricoeur, 1977, p. 22), achieving the mathematization of
language foreseen by Derrida (1981, p. 34).

Hamann was, unfortunately, largely forgotten, and Peirce left much of his work
incomplete, was notorious for inventing new words, sometimes confused readers
by changing the meanings of those words, and was systematic to a fault with his
profusion of categorizations (Houser, 1992, pp. xxx-xxxix).

Peirce nonetheless established the U.S. as a reputable metrological partner in the
global geodetic survey, is widely recognized alongside Frege as a leading early logi-
cian, proposed a measurement model today recognized as possessing all the features
included by Rasch (Linacre, 2000; Peirce, 1878/1992), initiated the economic study
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of scientific research (though without connecting semiotics with metrology) (Peirce,
1879/2002), and took up the study of method, meaning, and interpretation as a
hermeneutic problem (Houser, 1992, p. xxxix) in a vein also taken up much later
by Gadamer (1989) and Ricoeur (1981). One can only wonder how Peirce might
have proceeded if he had been able to retain an academic appointment and produc-
tively focus on his work, instead of having been in the position of relying on income
provided by his friends and by articles he wrote for popular periodicals. As Walker
Percy puts it in his 1989 Jefferson Lecture inWashington, DC, Peirce laid the ground-
work for coherent psychological and social sciences that have yet to be worked out
(Percy, 1991; Houser, 1992, p. xxi).

Steps toward those sciences are suggested by Ricoeur, who, though not known
as a mathematical philosopher, takes up themes more often associated with Peirce,
aptly noting that the validation of interpretations involves

a logic of uncertainty and of qualitative probability. ... The method of converging indices,2

typical of the logic of subjective probability, gives a firm basis for a science of the individual
deserving the name of science. A text is a quasi-individual, and the validation of an inter-
pretation applied to it may be said, with complete legitimacy, to give a scientific knowledge
of the text. (Ricoeur, 1981, p. 212)

The constellation of associated theory and evidence accumulated in this broad
philosophical context complemented their experimental results in ways that inspired
confidence in Jack and his colleagues. They saw they had good reasons for thinking
they likely could succeed in advancing a new integration of science and commerce
in education. Yet more intricate details were still to unfold, giving rise to an image
Jack and I conjured of a kind of flower that not only perpetually bloomed but which
changed the color, shape, and size of its petals over time. Once events started to take
on lives of their own, we were often left in a state of wonder and amazement at how
circumstances unfolded.

Seeing Language as a Measurement Model

Jack’s intuitions, informed by trial-and-error experience, technical reading, history,
and philosophy, led him to see that extending everyday language into a new psycho-
logical science would have to involve more than merely applying models to data
in endless instrument calibration exercises. From his point of view, a huge busi-
ness opportunity was opened up by the contrast between a fixation on inefficient
data gathering and analysis in the mainstream, on the one hand, and the confidence
obtained when repeated empirical experiments and theoretical predictions converged
on a systematically repeating construct, on the other hand.

2 Converging, not “conveyance of,” as given in Ricoeur, 1981, p. 212. The original French (Ricoeur,
1986, p. 202) is plainly “convergence d’indices;” also see the translation given in Ricoeur, 1976,
p. 79.
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The magnitude of the opportunity Jack perceived is inversely related to the
embedded depth of the data-centric focus on statistical analysis as necessary to
measurement, which dominates the mainstream research culture in many fields. In a
bizarre kind of cultural schizophrenia (Bateson, 1978; Fisher, 2021a; Wright, 1988),
statistical methods are universally referred to as quantitative, even though those
methods are hardly ever used to formulate and test the hypothesis that a unit quantity
exists (Meehl, 1967; Michell, 1986). The deep entrenchment of the automatic asso-
ciation of numbers with quantities is counter-intuitive in that everyone knows counts
of rocks are in no way indicative of the quantitative amount of rock possessed; your
two rocks may have far more mass than my ten rocks. The same principle applies
to test scores and ratings, such that everyone is well aware that these numbers vary
in ways that depend on the difficulty or agreeability characteristics of the questions
asked.

These obvious facts seem to have had very little impact on the popularity of
statistical significance tests and techniques such as factor analysis. This remains so
despite the failure of these methods to live up to their billing as the means by which
scientific laws will be established, as has been pointed out for decades to no avail.
Cohen (1994) notes that the spherical shape of the earth was not proven by comparing
control and random samples producing a p-value less than 0.05, and Guttman (1985)
takes up “the illogic of statistical inference for cumulative science.” This theme is
echoed by Duncan and Stenbeck (1988, p. 23), who say

It was the determination of what observations to make, under what conditions, that required
the genius of a Tycho Brahe, a Galileo, a Mendel, or a Pasteur, all of whom could have made
good use of statistical methods, had they been available, but none of whose discoveries could
have been made by a platoon of statisticians.

In an introductory chapter to a textbook that remained unpublished at the time of
his death, Guttman (1994, p. 82) similarly pointed out

Those who firmly believe that rigorous science must consist largely of mathematics and
statistics have something to unlearn. Such a belief implies emasculating science of its basic
substantive nature.Mathematics is contentless, and hence—by itself—not empirical science.
As will be seen, rather rigorous treatment of content or subject matter is needed before some
mathematics can be thought of as a possibly useful (but limited) partner for empirical science.

Thinking along the same lines, Thurstone (1959, p 10) observed that some students
unable to formulate a mathematical expression may nonetheless be

…well able to comprehend an essentially mathematical formulation of a psychological
problem with its implications and experimental possibilities. Such a student may be more
fertile with ideas than one who possesses considerable mathematical skill without the flexi-
bility of mind that is essential in creative scientific work. More fortunate is the student who
has all these aptitudes.

Thurstone emphasized mathematics as not being just a tool applied to prob-
lems, but the “very language” in which we think. The student who comprehends
an everyday language expression of an essentially mathematical formulation of a
psychological problem is then tapping into and extending the mathematics of iden-
tity (the ball is red) and comparative relations (she reads with more comprehension
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than they do) widespread in daily discourse. Remarking on this qualitative mathe-
matics, Guttman (1994, p. 103) wryly noted that “it may be a surprise to most people
to learn that they speak mathematically routinely without knowing it.”

In fact, a close examination of the origins of mathematics and geometry in ancient
Greece leads to a reconceptualization of what it means for fields of investigation to be
genuinely scientific only to the extent they aremathematical, as Kant famously puts it
(Heidegger, 1977, p. 249; Kisiel, 1973, p. 110; also see Danesi, 2017; Derrida, 1989;
Fisher, 1992, 2003, 2004, 2010; Fisher & Stenner, 2011a; Harries, 2010). Thurstone
(1959, p. 9) gets exactly to the point with his “distinction between statistics and
mathematical psychology,” where it becomes apparent that:

A study can be quantitativewithout beingmathematical.Merely to count noses or the answers
in a test or seconds of reaction time or volume of secretion does not make a study either
mathematical or scientific.

And so, it follows that, conversely, a study can be mathematical without being
quantitative: “quantification is neither necessary nor sufficient for measurement”
(Mari, et al., 2013, 2016; Fisher, 1992, 2003, 2004, 2010; Fisher & Stenner, 2011a).

In his consideration of the history ofmeasurement, Kuhn (1977) arguably concurs,
remarking on a recurring implication that corresponds with Guttman’s (1994, p. 82)
emphasis on the need for quantification to be preceded by “rather rigorous treatment
of content:”

…much qualitative research, both empirical and theoretical, is normally prerequisite to
fruitful quantification of a given research field. In the absence of such prior work, themethod-
ological directive, ‘Go ye forth and measure,’ may well prove only an invitation to waste
time. (Kuhn, 1977, p. 213)

Thurstone, Guttman, and Kuhn contend that measurement comes into its own
as a productive activity only in the context of thorough qualitative and substantive
understandings of phenomena. This perspective stands in marked contrast with the
still-dominant opinion, stated explicitly by Campbell (1952, p. 134), that measure-
ment is of vital importance in science because it is essential to the discovery of laws.
But Kuhn (1977, p. 219; original emphasis), writing in 1961, asserts that

The road from scientific law to scientific measurement can rarely be traveled in the reverse
direction. To discover quantitative regularity one must normally know what regularity one
is seeking and one’s instruments must be designed accordingly; even then nature may not
yield consistent or generalizable results without a struggle.

Empirical and theoretical study precedes quantification because knowledge of
repeating and reproducible regularities is required before analogies with linear
geometry can be substantiated (Black, 1962; Carreira, 2001; Hendriana & Rohaeti,
2017; Hesse, 1970; Kuhn, 1979; Nersessian, 2008). The formal structure of scien-
tific laws provides an organizing principle applicable as a model only when useful
approximations of substantive additivity can be obtained.

Controllable variation in phenomena is typically produced by means of a tech-
nology affording systematically repeatable experimental comparisons. Kuhn (1977,
p. 90) then points out that the majority of those contributing to the emergence of
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the thermodynamic theory were engineers with hands-on experience working with
engines. Price (1986) similarly remarks that

Historically, we have almost no examples of an increase in understanding being applied to
make new advances in technical competence, but we have many cases of advances in tech-
nology being puzzled out by theoreticians and resulting in the advancement of knowledge.
It is not just a clever historical aphorism, but a general truth, that ‘thermodynamics owes
much more to the steam engine than ever the steam engine owed to thermodynamics.’

...historically the arrow of causality is largely from the technology to the science. (p. 240)

Others (Bud & Cozzens, 1992; van Helden & Hankins, 1999; Ihde, 1991; Latour,
1987, 2005; Blok, et al., 2020) have alsomademuch of “the historical and ontological
priority of technology over science,” as Ihde (1983) puts it. Others go so far as to say
that:

Instruments have a life of their own. They do not merely follow theory; often they determine
theory, because instruments determine what is possible, and what is possible determines to
a large extent what can be thought. (Hankins & Silverman 1999, p. 5)

In Ricoeur’s (1967a) terms, “the symbol gives rise to thought.” Kuhn’s paradig-
matic example of fruitful quantification is illuminating, then, for its unintended corre-
spondence with the emergence of widespread networks of instruments traceable to
metrological standards. First, he (Kuhn, 1977, p. 219) notes that:

Sometime between 1800 and 1850 there was an important change in the character of research
in many of the physical sciences, particularly in the cluster of research fields known as
physics.

He then qualifies what he wants to say before continuing on to offer a conjecture:

It would be absurd to pretend that mathematization was more than a facet. The first half of
the nineteenth century also witnessed a vast increase in the scale of the scientific enterprise,
major changes in patterns of scientific organization, and total reconstruction of scientific
education. But these changes affected all the sciences in much the same way. They ought not
to explain the characteristics that differentiate the newly mathematized sciences of the nine-
teenth century from other sciences of the same period. Though my sources are now impres-
sionistic, I feel quite sure that there are such characteristics. Let me hazard the following
prediction. Analytic, and in part statistical, research would show that physicists, as a group,
have displayed since about 1840 a greater ability to concentrate their attention on a few key
areas of research than have their colleagues in less completely quantified fields. In the same
period, if I am right, physicists would prove to have been more successful than most other
scientists in decreasing the length of controversies about scientific theories and increasing
the strength of the consensus that emerged from such controversies. In short, I believe that
the nineteenth-century mathematization of physical science produced vastly refined profes-
sional criteria for problem selection and that it simultaneously very much increased the
effectiveness of professional verification procedures.

Now consider the importance of Kuhn’s focus on the period of 1800 to 1850 and
on themention of 1840 in particular. Hacking (1983, p. 234) says that, in this passage,
Kuhn “suggests 1840 as a date when measuring, as we now conceive of it, takes on
its fundamental role.” In his history of the meter, Alder (2002) says:
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In 1837 the [French] government revived the metric system, both as a promise to modernize
France and a public assertion that the new regime was a worthy successor to the first great
Revolution. (p. 327)

The legislation, which was passed with overwhelming support in 1837, made the metric
system obligatory throughout France and its colonies as of January 1, 1840. (p. 328)

By the time France restored the metric system in 1840 [after reversing it in 1820], it had
already been obligatory for two decades in Holland, Belgium, and Luxembourg. (p. 330).

That both Kuhn and Alder mention the year 1840 is not a coincidence. The intro-
duction of metrological standards in Western Europe in the early nineteenth century
was a watershed moment in the evolution of science and commerce. As Alder points
out, democratic revolutions were also implicated. That is a story for another time,
but it points toward two issues at the heart of the matter.

First, technoscientific and social orders co-evolve, with quality-assured measure-
ments, legal property rights and contracts, accounting standards, and communica-
tions networks each informing one another (Bernstein, 2004; Fisher, 2012b, 2020;
Fisher & Stenner, 2011b; Jasanoff, 2004; Latour, 1987, 1993a, 2005; Shapin, 1994).
As Kuhn points out, not only did the mathematization of the sciences take off in the
early nineteenth century, but there were also vast changes in the scale of the scientific
enterprise, patterns of scientific organization, and a total reconstruction of science
education.

Echoing Kuhn and Price on the “arrow of causality” going from technology to
science, Latour (1983) plays off Archimedes, saying “give me a laboratory and I
will raise the world.” Society is shaped by linguistic and scientific standards to the
point that, as Alder (2002, p. 325) says, “Measures are more than a creation of
society, they create society.” Societies do not just make use of linguistic signs and
symbols; instead, theways inwhich things are symbolized shape shared social reality
(Hutchins, 2014; Latour, 2005; Petracca & Gallagher, 2020; Ricoeur, 1981, p. 219;
Thrift, 2008).

Second, as pointed out by Whitehead (1911, p. 61), civilization advances by
creating and distributing new, useful, and highly simplified ways of performing
complex operations, like flipping a switch to turn on a light. Individuals need not
understandmore than a small portion of the total knowledge incorporated in everyday
language and in scientific instruments to make productive use of complex semantics
and tools like clocks, thermometers, computers, smartphones, blenders, and auto-
mobiles. A good way to understand how it could be possible to perform important
operations without thinking about them is to see them analogically, as they might
appear if the social body had biological functions.

That is, in the same way that metabolic, neuromuscular, and digestive processes
are performed with no conscious thought on the part of individuals, so, too, is the
socialmind embodied in the infrastructure of cognitive supports built into the external
environment (Ihde & Malafouris, 2019; Meloni & Reynolds, 2021; Scarinzi, 2015).
Human-crafted technologies like alphabets, phonemes, grammars, texts, and tools
extend embodied subjectivity inways that enable theperformanceof communications
operations beyond individuals’ available resources.
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Intuitions informed by this kind of tacit knowledge (Polanyi, 1966) lift the intel-
ligence of all without altering their individual cognitive abilities “one whit” (Dewey,
1954, p. 210). Whitehead (1925, p. 107) similarly remarked in 1925 that the then-
recent quantum revolution in physics did not come about because individual scientists
became more imaginative; instead, he says, the change in thinking was the result of
advances in instrument design. Or, as Latour (2010b, p. 153) puts it in the context of
Tarde’s economics, “change the instruments, and you will change the entire social
theory that goes with them.”

Plainly, societies whose languages and technologies enhance their populations’
capacities for sharing complex imaginative realms and levels of intelligence aremore
likely to be creative and productive than those lacking means of sharing higher order
conceptualizations. New capacities to think together and communicate in common
languages about how to obtain food and shelter would likely lift a society previously
lacking those ideas to higher levels of reproductive success. Further advances in
the quality of life would follow as additional systematically distributed products
and processes were developed, such as mathematical modeling and manufacturing
mechanical tools.

Shared social realities are structured by means of linguistic standards. And “The
development from the spoken language ... through symbols and pictograms ... to
what we now understand as written language is a perfect standardization process”
(Weitzel, 2004, p. 11). Linguistic standards are the prototype for scientific standards.
The power of being able to think and act together to accomplish complex goals ought
to be a more deliberately conceived goal of research. The processes by which that
power is obtained via science are metrological. As Latour (1987) puts it:

• “The point here is that the easiest means to enrol people in the construction of
facts is to let oneself be enrolled by them! By pushing their explicit interests, you
will also further yours. The advantage of this piggy-back strategy is that you need
no other force to transform a claim into a fact; a weak contender can thus profit
from a vastly stronger one” (p. 110).

• “Every time you hear about a successful application of a science, look for the
progressive extension of a network” (p. 249).

• “The predictable character of technoscience is entirely dependent on its ability to
spread networks further” (pp. 249–250).

• “Facts and machines are like trains, electricity, packages of computer bytes or
frozen vegetables: they can go everywhere as long as the track along which they
travel is not interrupted in the slightest. This dependence and fragility is not felt
by the observer of science because ‘universality’ offers them the possibility of
applying laws of physics, of biology, or of mathematics everywhere in principle.
It is quite different in practice” (p. 250).

• “In all thesemental experiments youwill feel the vast difference between principle
and practice, and that when everything works according to plan it means that you
do not move an inch out of well-kept and carefully sealed networks” (p. 250).

• “Metrology is the name of this gigantic enterprise to make of the outside a world
inside which facts and machines can survive” (p. 251).
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• “Scientists build their enlightened networks by giving the outside the same paper
form as that of their instruments inside. [They can thereby] travel very far without
ever leaving home” (p. 251).

• “…our method would gain nothing in explaining ‘natural’ sciences by invoking
‘social’ sciences. There is not the slightest difference between the two, and they
are both to be studied in the same way. Neither of them should be believed more
nor endowed with the mysterious power of jumping out of the networks it builds”
(p. 256).

• “That much more effort has to be invested in extending science than in doing it
may surprise those who think it is naturally universal” (p. 250).

• “The paramount importance of metrology (like that of development and industrial
research) gives us a measure, so to speak, of our ignorance” (p. 250).

In accord with Latour’s metrological program, to generalize his insights, Stenner
allied himself with others—measurement theoreticians, psychometric analysts,
statisticians, researchers, educators, school district administrators, testing agencies,
state departments of education, book publishers, curriculum theorists, management
experts, marketing and sales specialists, accountants and lawyers—whose interests
could be better realized in productive partnerships than they could be in isolation.
Jack and his colleagues progressively expanded a network of relationships by piggy-
backing the shared interests of all these groups on each other in ways that multiplied
the value each obtained with the addition of each new domain of stakeholders.

A large literature has emerged in the last 40 years on this topic of actor-network
alliances (in addition to the previously cited works, see, in particular, Akrich et al.,
2002a, 2002b; Blok, Farias,&Roberts, 2020; Bowker, et al., 2015;Miller&O’Leary,
2007). Though Ackermann (1985) predates the emergence of actor-network theory,
that book may have inspired a good deal of confidence in Jack. Past that, the one
volume in science and technology studies (Wise, 1995) with which I am sure Jack
was familiar did not emerge until he was already well underway in his work.

Jack seems to have had strong intuitions and a remarkable capacity for learning
from his and others’ mistakes. One of his basic operational precepts was to engage
in dialogue with anyone who raised questions about his and his colleagues’ work,
since there was either something important to be learned or something important to
be taught. Either way, reaching out was essential whenever a potential ally emerged
displaying an interest—positive or negative—in the overall mission. A key rhetorical
advantage Jack leveraged in expandinghis networkwas the availability of amapof the
reading comprehension terrain occupied by everyone involved in literacy education.

Maps and Mapping

A foreshadowing of the direction Jack took up is provided by Latour’s (1987, p. 223;
original emphases) question as to:
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…how to act at a distance on unfamiliar events, places, and people? Answer: by somehow
bringing home these events, places and people. How can this be achieved, since they are
distant? By inventing means that (a) render them mobile so that they can be brought back;
(b) keep them stable so that they can be moved back and forth without additional distortion,
corruption or decay, and (c) are combinable so that whatever stuff they are made of, they can
be cumulated, aggregated, or shuffled like a pack of cards. If those conditions are met, then
a small provincial town, or an obscure laboratory, or a puny little company in a garage, that
were at first as weak as any other place will become centres dominating at a distance many
other places.

One of the primary tasks of explorers traveling to new regions is to map what
they see so that others learn from their experience and can then find their way more
easily than the first to arrive. So, too, does measurement research map the repeatable
structural invariance of objectively existing constructs so that those arriving later can
learn from those who came before. Science models new domains in ways that draw
maps others can follow; metrological networks trace out paths on those maps that let
everyone inhabiting the terrain see where they are in relation to everyone else, and
in relation to where they have been and where they want to go. And, importantly,
as anyone experienced in pilot-navigator communications can attest, maps are not
always simple or easy to use. I’ll have more to say about maps in relation to levels
of complexity, below.

Though Jack and I had shared our readings of Ackermann (1985), I do not
recall bringing Latour’s work to Jack’s attention until after he had progressed well
into expanding a reading comprehension network. He did, however, closely follow
Wright’s (Wright & Stone, 1979, pp. 121, 205–206; Wright & Masters, 1982,
pp. 124–126, 140–146, etc.)mapping ofmeasurement variables. Rasch (1960, pp. 10,
124) had provided a provocative hint in his 1960 book, saying that scientific:

…laws do not at all give an accurate picture of nature. They are very simplified descriptions
of a very complicated reality. The laws describe an ideal universe, a model, on which reality
may be mapped—leaving aside a lot of details. E.g. ‘a heavy point swinging without friction
on a weightless string’ never existed in the real world, but at a certain stage of the process
of knowledge it is a very useful model of a pendulum.”

Rasch heremakes a distinction between the formal, unrealistic idealizations incor-
porated in maps, where no one ever actually occupies a position in the sky at such an
elevationwith a comprehensive viewof the ground, and the complications of concrete
reality that never perfectly fits amodel. Improvedmodeling of communication neces-
sitates close attention to this distinction between the map and the territory it repre-
sents (Bateson, 1972, p. 186; Fisher, 2021a).Where communication theory is usually
restricted to a focus on information content and signal transmission, comprehension
processes must include semantic and syntactic elements (Bowman & Targowski,
1987). Beyond that, considerations of social interactions in which participants in
dialogue reference maps and markers must also be taken into account.

Hutchins (1995; also see Latour, 1995a) describes ways in which socially
distributed remembering and perception (Sutton, et al., 2010) are structured by
means of maps seen as material artifacts embedded in the external world as cognitive
infrastructure:
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The system for ship navigation...is based on formal manipulation of numbers and of the
symbols and lines drawn on charts. It is a system that exploits the powerful idea of formal
operations in many ways. But not all the representations that are processed to produce the
computational properties of this system are inside the heads of the quartermasters. Many
of them are in the culturally constituted material environment that the quartermasters share
with and produce for each other. (Hutchins, 1995, p. 360)

Across a great many areas of life, the same kinds of culturally constituted material
reference points connect technologically mediated maps with features in the world
interpreted in linguistically standardized ways. Clocks correspond with the shifting
shadows and light over the course of the day, thermometers with sensations of hot
and cold. Pronunciations correspond with phonemic standards, which are connected
to alphabets and grammar.

In all of these cases, the chicken and egg question emerges: which came first?
While emergent usage surely precedes and is codified into technical standards, stan-
dards then also feedback onto usage, constraining and limiting it via overt, covert,
and subconscious means until new categorizations and constructs emerge to set new
standards. A major insight achieved by Jack was that opportunities for innovating
and extending capacities for constructing shared social realities can be found in
the structural invariances documented in applications of probabilistic measurement
models.

Rasch and Wright laid out exactly the same consequences as those described
by Latour. To map distant and previously unseen cognitive and social events and
processes in ways that can be useful to those who come later, the representation has
to be mobile and portable in a convenient kind of way, stable enough to be moved
without introducing irrelevant sources of noise, and, most important, the local partic-
ulars of reading tests and the students taking them had to be combinable in endless
variations. What are now known as construct maps, Wright maps, and kidmaps
illustrate, in correspondence with Ackermann’s distinctions, the respective formal
theoretical, abstract instrumental, and concrete data levels of complexity in what
is measured (Fisher et al., 2021). Generally speaking, concrete data contrasts with
abstract information, and these both differ from formal knowledge.Data embedded in
information systems entails operations at a lower level of conceptual complexity than
is involved in knowledge infrastructures. Understanding is implied by the systematic
implementation of knowledge.

The correspondence of these themes from the history of science with Jack
Stenner’s contributions to measurement in psychology suggests opportunities for
advancing psychology and the social sciences that have hardly yet been clearly
stated, much less taken up. The alliances formed by Jack and his colleagues are
an exemplary instance of the commercial and scientific power made available by
expandingmetrological networks. But these alliances leveraging a common language
of reading comprehension measurement have scarcely begun to create the kinds
of effects produced by the introduction of metrological systems in the nineteenth
century. Much more stands to be done to follow through into higher order integra-
tions of the interests of stakeholders across sectors, following Bernstein’s (2004)
and Miller and O’Leary’s (2007) analyses of the roles of property rights, scientific
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rationality, capital markets, and communications networks in creating prosperous
ways of life (Fisher, 2012b, 2020; Fisher & Stenner, 2011b).

Generalized metrological networks are as possible in the social sciences as in
the natural sciences because product, regulatory, scientific, legal, monetary, and
accounting standards extend the prototype for all standards: language. The power
of these standards is remarkable. That power is the operational core of the economy
in general. Efficient markets depend to large extents on the creation and maintenance
of standards, which evolve from language as higher order levels of socio-ecological
complexity. Language thinks the world for us in advance, saving us from the trouble
of having to work out new words and semantics for connecting newly conceived
ideas in relation to useful things in the world.

Here again we encounter this labor-saving function of language and the economy
of thought (Banks, 2004; Mach, 1919, pp. 481–495; Franck, 2002, 2019) created
by shared linguistic standards and extended into the broader economy of manufac-
tured capital and finance by scientific standards. Jack and his colleagues leveraged
the efficiencies gained by setting up a new domain of scientifically supported semi-
otic connections. In so doing, they enacted a new model for advancing meaningful
communications across a wide array of domains. Completing what they started will
be challenging and complex, but do-able.

From Theory to Practice

In contrast to the usual perception of test data in education as idiosyncratically vari-
able, as subjective, and as uncontrollably and inherently local, Jack saw that educa-
tion has always and everywhere been structured, from its initial institution, around
universally observed progressions in learning. Children acquire spoken language
well enough to have their attention directed toward the distinctive shapes of letters
in an alphabet; from there to associations between orally pronounced words, written
words, and images; from there to texts composed of very common words and very
short sentences; and then to longer and longer sentences and texts incorporating
increasingly less common words.

This kind of progression in learning is as much an objective fact characterizing the
real world as any physical entity or process. Rasch (1960, pp. 110–115) accordingly
then asserted that children’s reading abilities could be measured with the same kind
of objectivity obtained in measuring their weight. Rasch spoke of how varying tests
could be linked so they measure in a common metric (Jolander, 1957/2008), his son-
in-law intentionally designed tests to measure at specific levels of difficulty (Prien,
1989), one of his students devised an explanatory model integrating predictive item
component difficulties (Fischer, 1973), and Rasch (1972/2010) held that the social
sciences could one day possess an “instrumentarium” akin to that available in the
natural sciences.

Rasch did not, however, take the step to substantiating the suggestion that all
instruments measuring reading comprehension might be equated to a common scale.
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Neither did he advance the essential point as to the advantageous efficiencies obtained
when item locations not only can be predicted from theory but their content can also
be automatically generated as well. Jack understood, however, that the repeatable and
reproducible structure of learning progressions spanning elementary and secondary
education sets out broad limits within which reading comprehension had long shown
itself as a persistent and objective phenomenon. Jack saw that the idea of a common
scale might be controversial, but drew confidence from the fact that the entire edifice
of education as a human cultural institution is founded on the universally shared
consensus that consistent variation in reading comprehension across learners and
across texts is real.

Jack also understood that much of what makes the idea of a common scale prob-
lematic is the historically demonstrated tendency in education to apply such scales
indiscriminately. Given his work in Head Start and other early education endeavors,
Jack was well aware that, too often, divergent response patterns in test data are
seen only as inconvenient nuisances to be skipped over in favor of the larger action-
able evidence available in test scores. Knowing that detailed, useful information on
individuals’ unique strengths and weaknesses could be obtained and leveraged in
classroom applications gave Jack further confidence in the value of addressing each
of education’s separate stakeholder groups in their own languages and in the context
of solutions to their primary problems.

And so, Jack thought through the implications of learning environments in detail,
as might be guessed from his own personal koan invention, “Does the reader compre-
hend the text because the reader is able or because the text is easy?” (Stenner&Stone,
2004; Chap. 11). Furthermore, in taking a stylized yin-yang symbol as the logo for the
Lexile Framework for Reading, Jack intentionally sought to suggest a vitally impor-
tant principle fundamental to enhancing human institutions’ capacities for nurturing
authentic, healthy, satisfying relationships.

The Lexile logo omits one of the key features of many yin-yang symbols, a
small dot in both of the complementary curves that represents the presence of the
other in each. The abstract medium of the Lexile unit of measurement embodies
a representation of the implicit existence of the unrealistic ideal in the concrete
particulars, as well as of the concrete in the formal idealization. The noted Zen
philosopher, Suzuki (1949, pp. 23–25), points out that “there is nothing infinite apart
from finite things,” and that “there was from the very beginning no need for a struggle
between the finite and the infinite.” One way of understanding the yin-yang symbol
is, then, as representing the mutual implication of finite concrete physicality and
infinite formal ideality. The measurement model sets up an axiomatic formulation of
the infinite realms of all possible readers and all possible texts that accepts finite and
imperfect concrete instances of particular students’ responses to actual assessment
items.

These opposites are embodied in the abstract medium of a standard in a way
that also sets up the yin-yang symbolization of matched reader abilities and text
complexities.

Most reflections on and implementations of the impacts of learning environ-
ments on outcomes, unfortunately, do not consider how to create a broader cultural
context for generalizing complex understandings integrating the concrete, abstract,
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and formal in systems, and integrating all four of these levels in systems of
systems, metasystematically. This perspective is, however, advanced in develop-
mental psychology’s model of hierarchical complexity (Commons et al., 1982;
Commons & Richards, 2002) and skill theory (Fischer, 1980; Fischer & Farrar,
1987; Dawson-Tunik et al., 2005). Here, the cognitive role of standards embedded
in the infrastructural scaffolding of the social environment is explicitly recognized
as a key factor shaping educational outcomes. As Commons and Goodheart (2008)
put it, “cultural progress is the result of developmental level of support.”

Plainly stated, educators face the problem of matching children’s reading abilities
with the complexity of the available reading materials. Any given single elementary
school classroom may have students varying across three to five grade levels of
reading ability. A shared textbook may adequately target and engage with the middle
third of the ability range, but that textbook will be too easy for, and so will bore, the
upper third, and the bottom third will be lost. Jack and his colleagues wondered if and
how itmight be possible to set up instructional contexts inwhich everyone is studying
the same topic but reading material targeting their individual comprehension level,
and learning from any especially salient mistakes they might have made.

Operationalizing Wright’s (1958, 1968a) concern with the need to learn more
systematically frommistakes and his celebration of a possible “curriculumof failure”
led to an emphasis on the formative processes by which assessment and instruction
can be integrated. In formulating what he called the “two-sigma problem,” Wright’s
Chicago colleague, Ben Bloom (1984) wondered how classroom achievement could
be improved to a level two standard deviations higher, where the outcomes of one-on-
one tutoring are typically found. Personalized learning technologies bringing together
Bloom’s mastery learning (Bloom, 1971; Guskey, 2009), formative feedback, and
adaptive testing methods have been documented repeatedly as solving Bloom’s two-
sigma problem (DeMillo, 2015, p. 99).

Jack saw early on how learning environments might be improved by means of
shared standards that—crucially—are adaptable to individuals and local circum-
stances, and that provide a medium through which unique voices can make
themselves heard. As Jack said in a 2011 interview,

As education moves toward more personalized learning, today’s one-size-fits-all textbook
will become a thing of the past. Our metrics support machine-generated item types that adapt
to test takers on the fly, and provide more accurate measures of growth (Rivero, 2011).

Dewey (1954) articulated the nature of the situation, saying:

The functionwhich science has to perform in the curriculum is thatwhich it has performed for
the race: emancipation from local and temporary incidents of experience, and the opening
of intellectual vistas unobscured by the accidents of personal habit and predilection. The
logical traits of abstraction, generalization, and definite formulation are all associated with
this function. In emancipating an idea from the particular context in which it originated
and giving it a wider reference the results of the experience of any individual are put at the
disposal of all…. Thus ultimately and philosophically science is the organ of general social
progress. (p. 230)

Ideals and standards formedwithout regard to themeans bywhich they are to be achieved
and incarnated in flesh are bound to be thin and wavering…. Our Babel is not one of tongues
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but of the signs and symbols without which shared experience is impossible…. A more
intelligent state of social affairs, one more informed with knowledge, more directed by
intelligence, would not improve original endowments one whit, but it would raise the level
upon which the intelligence of all operates…. Uniformity and standardization may provide
an underlying basis for differentiation and liberation of individual potentialities. They may
sink to the plane of unconscious habituations, taken for granted in the mechanical phases of
life, and deposit a soil from which personal susceptibilities and endowments may richly and
stably flower. (pp. 141, 210, 215–216)

So, when Commons and Goodheart’s (2008) title echoes Dewey, saying “Cul-
tural progress is the result of developmental level of support,” the implication is that
developmental levels of support advancing cultural progress must give voice to local
creative improvisations, to individual strengths and weaknesses, as well as to gener-
alized comparisons. In efforts outside of developmental psychology and philosophy,
historians of science (Bowker, et al., 2015; Galison, 1997; Haraway, 1996; Latour,
1987, 2005; O’Connell, 1993; Star & Griesemer, 1987; Scott, 1998) have simi-
larly articulated arguments prioritizing the need for embedded relational media and
infrastructures capable of satisfying “the competing requirements of openness and
malleability, coupled with structure and navigability,” as Star and Ruhleder (1996,
p. 132) put it.

To succeed, ideals and standards must pragmatically accept and integrate local
situations that never conform tomodeled expectations. The conceptual,mathematical
formalism of probabilistic models and construct specification equations is less the
“immutable mobile” described by Latour (1986, 1987) than it is a “boundary object”
(Bowker, et al., 2015; Star & Griesemer, 1989) situated in a “trading zone” (Galison,
1997, 1999; Galison & Stump, 1996) where it is valued and exchanged in different
terms by different groups (Fisher&Wilson, 2015; Fisher, 2020). Data never perfectly
fit models; models are not meant to be true, but to be useful (Rasch, 1960/1980,
pp. 34–35; Box, 1979).

Usefulness is determined in practice by the ways formal models structure abstract
standards and accommodate the infinitely varying concrete situations from which
the models and standards are created. When consensus can be reached on shared
terms for meaningful communication, assurances and certifications are supported by
routing checks on the system through obligatory passage points, such as metrolog-
ical, accounting, regulatory, or legal requirements. The due diligence of cross-sector
agreements on how and when these obligations are met is essential to creating shared
social realities.

For instance, what comes next in any given instructional program will, of course,
be very different for different students enrolled in different schools using different
curricula. Even when students have the samemeasured reading comprehension, their
patterns of strengths and weaknesses surely will differ, as also will the texts they
read and the test items they respond to. And what comes next will also vary across
teachers, even when their classes have the same average measurement, and so on, for
principals, parents, researchers, legal advocates, administrators, policymakers, etc.
Just as is the case for looking at reading comprehension tests in isolation, narrow
slices of experience across diverse perspectives may seem hopelessly confusing.
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Even when the larger view is achieved, ideals and generalities remain inherently and
always caught up in local instances of playful back and forth.

The complexity and difficulty of the issues involved in constituting measurable
andmanageable boundary objects should not be underestimated. Jack understood that
an essential part of the task that keeps it manageable involves keeping the big picture
in mind. The uncertainties arising in narrowly defined contexts must inevitably over-
whelm variation. Individual differences obtained within disconnected situations will
present the appearance of unmanageable inconsistency. Focusing on single assess-
ments of reading comprehension administered to students of similar reading ability is
akin to wearing blinders or accepting an unnecessary myopia as an inviolable reality.

Hierarchical Complexity as a Basis for Pragmatic Action

Language prethinks the world for us in advance, saving us the trouble of having
to work out new words and semantics for connecting newly conceived ideas in
relation to useful things in the world. This labor-saving economical function of
language’s semiotic triangle—things, words, and ideas—sets up the structural capac-
ities for science’s analogous assemblages of data, instruments, and theories. These
three levels of complexity (concrete, abstract, and formal) are then augmented in the
model of hierarchical complexity (Commons & Richards, 2002) by four post-formal
levels (systematic, metasystematic, paradigmatic, and cross-paradigmatic). Innova-
tors in the history of science typically attainmetasystematic integrations generalizing
capacities for mediating locally situated applications and axiomatic ideals in trans-
disciplinary systems of systems (Commons & Bresette, 2006; Commons, Ross, &
Bresette, 2011). Each level of complexity constitutes another layer of integrations
incorporated in a boundary object’s heterogeneous and distributed functions (Fisher,
2020, 2021a). The mediations effected make it possible to negotiate locally situated
meanings on the fly, doing so in ways that do not require homogenizing diversity
into monotonous sameness.

Organizing alliances coordinating theory and data by means of standardized
instrumentation provides human activity with the media for remotely and effec-
tively communicating and managing infinite arrays of concrete, material things, and
processes. Coordinating such networks across social sectors requires effective ways
of communicating and aligning shared interests by means of agreed-upon standards
and obligatory passage points. Such coordinations are not undertaken in the data-
focused world of Rasch analysis, which concentrates strictly on calibrating abstract
instruments from concrete observations, successfully integrating two levels of hier-
archical complexity, data set by data set. Jack saw how to continue the process into
higher order levels of complexity by

• employing formal theory to predict item calibrations, which allowed him to
integrate axiomatic models, unit standards, and observed data (three levels of
complexity) within multiple data- and instrument-specific studies;



Introduction: Koans, Semiotics, and Metrology in Stenner’s Approach … xxxix

• demonstrating the applicability of the theory across any given testing organi-
zation’s or state department of education’s samples and examinations, which
integrate concrete data, abstract instrument standards, and formal theory within
systems, at the fourth level of hierarchical complexity; and

• promoting the adoptionof the resulting frameof reference bymultiple educational,
testing, and publishing systems, which integrated the systems in a system of
systems (i.e., metasystematically).

And here we begin to glimpse some of the consequences of bringing into common
metrics the self-organized, repeating, and objective assertion of empirically and
theoretically reproducible constructs. These constructs assert their structure or its
absence independent of the wishes or desires of the researcher. This kind of objec-
tive, independent existence provides a more elegant, philosophically sophisticated,
and methodologically satisfying basis for human, social sciences than has previ-
ously been available inmodern and postmodern contexts (Latour, 2009, 2010a, 2011,
2015).

Operationalizing these kinds of involuntary, unwilled modes of being sets the
stage for a paradigm shift in the methods of psychology and the social sciences.
Hierarchically complex knowledge infrastructures of the kind Jack played a key role
in creating may comprise the “new science” projected by Star and Ruhleder (1996,
p. 132; also see Eveland & Bikson, 1987; Feldman, 1987). They described this new
science as “highly challenging technically,” requiring “new forms of computability
that are both socially situated and abstract enough to travel across time and space.”
Though Star and Ruhleder said (in 1996) “we cannot yet imagine” the forms and
conventions that would attend the organic and natural emergence of an infrastructure
of this kind, they cited others (Goguen, 1994) who had already anticipated that such
“abstract situated data types” could potentially lead to “the reconciliation of technical
and social issues.”Laterwork addressed this theme in an explicitly semioticmodeling
process (Xu & Feng, 2004), distinguishing concrete data, abstract information, and
formal knowledge, though not in relation to the model of hierarchical complexity
or to Rasch’s probabilistic models. Wright (1997b) provides a start in this direction,
however.

Nearly 100 years have passed with little change away from the centrally planned
data analytics dominating psychology and the social sciences. The enduring persis-
tence of methods that are not only widely recognized as insufficient but for which
superior replacements are readily available is remarkable. The ongoing situation is
testimony to the futility of trying to transform cultures without transforming the
systems of incentives and rewards structuring the values in play. But those transfor-
mations will be enacted as socio-ecological functionality of a new kind takes root
and grows. It is only reasonable to expect that fundamental enhancements in commu-
nications will have consequences extending far beyond education, psychology, and
the social sciences.

As pragmatically ideal and flexibly rigorous boundary objects become more
widely appreciated as viable, feasible, and desirable, new chapters in human history
will be written. Actor-network theory’s efficacy in explaining the growth of science,
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economies, and technologies (Blok, et al., 2020; Bowker, et al., 2015) will be
augmented by practical methods for creating and managing hierarchical and cross-
sector ecological complexity (Fisher, 2020, 2021a; Fisher & Cano, 2022). Heteroge-
neously distributed abstract situated data types are already deployed in metrological
networks in education and health care (Fisher & Stenner, 2016 (Chap. 22); He, Li, &
Kingsbury, 2016; Massof & Bradley, 2022; Morrison & Fisher, 2018, 2019, 2021).
As these ecosystems are nourished and grow, they will create populations of end
users habituated to and benefiting from improved cross-sector communications and
new economies of scale. That said, of course, as the history of electrical standards
shows (Hunt, 1994), the emergence of these markets will not be without struggles,
setbacks, and failures.

But, as time passes, the advantages of coordinating visualizations, plans, skills,
resources, and incentives (Knoster et al., 2000) across horizontally distributed and
hierarchically complex domains will organically and naturally emerge and become
a different way of life. Where, today, highly technical skills across a wide range
of areas must be brought together and managed to effect even narrowly defined
complex results, as with sociocognitive instrument design, calibration, and standard
setting, metasystematic and paradigmatic integrations of infrastructural systems will
remove the need to invest large resources in mounting disconnected and redundant
local metrological networks. Quality-assured quantitative estimation will, in due
course, recursively feedback collectively projected, qualitatively meaningful knowl-
edge structures in psychology and the social sciences. These fields will then begin to
succeed, in the terms used by Whitehead (1911, p. 61), in advancing civilization by
extending the number of important operations that can be performedwithout thinking
about them.

Population-level critical thinking capable of recognizing and acting on exceptions
and anomalies must find some way of systematically facilitating flexible ways of
living up to the maxim, “Think global, act local.” As Linssen (1958, p. 304) puts it
in the context of Zen philosophy,

In the game of life, let us use the cards we have in hand.

These cards are our faculties of thought, love and action. No one is expected to do the
impossible.

The cardswehave in our hands include the immensely useful symbols of language,
which can be organized to aid and advance our faculties of thought, love, and action.
In keepingwith a return to a shared reality seenwith a new vision, a different perspec-
tive on standards and their roles comes into view. Instead of seeing standards as rigidly
imposed, a wide range of philosophers taking markedly different approaches recog-
nize that everyday language provides a model in which standards serve as the media
through which meanings at the moment are negotiated, and creative improvisations
are expressed.

A primary function of standards and invariances is, then, the display of anoma-
lies (Cook, 1914/1979; Kuhn, 1977, pp. 205–206; Rasch, 1960, pp. 10, 124). Cook
(1914/1979) is particularly insightful, noting that
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• “we can but use the instruments we have” (p. 431),
• “without the mathematical expression as a guide we should be unable to take note

of the aberration” (pp. 434–435),
• “we shall use the theory or law chiefly to discover the exception” (p. 431),
• “the hidden meaning of such deviations will be more significant than any mere

conformity to the law itself” (p. 431), and
• “the really important thing is the exception” (p. 434).

Kuhn (1977, pp. 205–206) similarly says,
To the extent that measurement and quantitative technique play an especially

significant role in scientific discovery, they do so precisely because, by displaying
significant anomaly, they tell scientists when and where to look for a new qualitative
phenomenon. To the nature of that phenomenon, they usually provide no clues.
When measurement departs from theory, it is likely to yield mere numbers, and their
very neutrality make them particularly sterile as a source of remedial suggestions.
But numbers register the departure from theory with an authority and finesse that
no qualitative technique can duplicate, and that departure is often enough to start
a search. Neptune might, like Uranus, have been discovered through an accidental
observation; it had, in fact, been noticed by a few earlier observers who had taken it
for a previously unobserved star.What was needed to draw attention to it and tomake
its discovery as nearly inevitable as historical events can be was its involvement, as a
source of trouble, in existing quantitative observation and existing theory. It is hard
to see how either electron spin or the neutrino could have been discovered in any
other way.

Rasch (1960, pp. 10, 124) remarks on the same theme, saying

Once a law has been established within a certain field then the law itself may serve as a tool
for deciding whether or not added stimuli and/or objects belong to the original group.

Inmanyfields this typeof predictions canbemadewith an astonishingdegree of precision,
so close indeed, that aberrations between observations and calculated values have given rise
to discovery of previously unknown factors, e.g. the presence of hitherto unknown planets.

Accepting the unrealistic nature of scientific laws and models while simultane-
ously making use of them to structure meaningful communications and the display
of individual level exceptions to the rule requires a highly complex ability to coor-
dinate formal, abstract, and concrete perspectives simultaneously. And if it is diffi-
cult for individuals to coordinate these somewhat divergent and somewhat conver-
gent perspectives in a personal pragmatic idealism, it is all the more challenging
to figure out how to embed that complexity systematically, metasystematically,
paradigmatically, and cross-paradigmatically in the social world.

A way forward is suggested by Latour (2004):

Social sciences may become as scientific…as the natural sciences, on the condition that
they run the same risks, which means rethinking their methods and reshaping their settings
from top to bottom on the occasion of what those they articulate say. [The] …general prin-
ciple becomes: devise your inquiries so that they maximize the recalcitrance of those you
interrogate. (p. 217)
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In Jack’s work, as in theory-informed Rasch measurement modeling in general,
the recalcitrance of the constructs interrogated is maximized by providing a medium
that may be capable of giving voice to emerging harmonies and dissonances. Iden-
tified measurement models (Koopmans & Reiersøl, 1950; San Martin, Gonzalez, &
Tuerlinckx, 2009; San Martin & Rolin, 2013; Fisher, 2021b) focus on autonomous
structural invariances to create contexts in which people and organizations may push
back via the consistencies of their responses to affirm or contradict the coherence
and comparability of the questions asked. By focusing attention on the lived expe-
riences of readers as they develop from the bottom to the top of the continuum of
the learning progressions incorporated into the educational enterprise, Jack and his
colleagues rethought the methods of the social sciences, reshaping them on the basis
of what students themselves say.

The fit of data to measurement models is evaluated by a variety of statistical
and principal components analyses (Karabatsos, 2003; Smith, 2002; Smith, 1996;
Smith & Plackner, 2009) designed to anticipate structural invariances in individual-
ized learning or developmental trajectories, and unique special strengths and weak-
nesses impacting outcomes. The difficult order of test items emerges fromexaminees’
experiences and is not imposed from the outside by the preconceptions or theories of
the test designer or researcher. The construct measured finds its voice in the medium
of the instrument. Though inevitably colored to some extent by the local features of
the sample, the phrasings of the items, the administration process, the researcher’s
theoretical orientation, etc., repeated investigations varying these unique particulars
can and do converge on structural invariances (contextualized within uncertainty
ranges and confidence intervals) estimated to differing levels of precision.

This is a way, then, in which psychology and the social sciences have come to
join the natural sciences in “Rendering talkative what was until then mute,” and so,
also, in honoring the use of the word “logos” in the names of the various disciplines
(Latour, 2004, pp. 217–218). The use of Rasch’smodels in psychology and sociology
brings new ways of enabling disciplines to live up to the meaning of their various
“-ologies.” This is especially true when empirical experiments are complemented
by explanatory models, predictive theories, and construct specification equations
(Stenner & Smith, 1982 (Chap. 3); Stenner, Smith, & Burdick, 1983 (Chap. 4);
Stenner, et al., 2013 (Chap. 18); Stenner, et al., 2016; Carpenter, Just, & Shell, 1990;
de Boeck &Wilson, 2004; Embretson, 1999, 2010; Fischer, 1973; Green & Kluever,
1992; Green& Smith, 1987; Latimer, 1982;Whitely, 1981), which combine to create
new efficiencies, as in the natural sciences:

…laboratory settings where propositions can be articulated in a non-redundant fashion.
[where]…talking and writing is not a property of scientists uttering statements about mute
entities of the world, but a property of the well-articulated propositions themselves, of whole
disciplines. (Latour, 2004, p. 218)

Whether in conversation or inmeasurement, dialogues that constantly refer back to
the subject matter, allowing the course of the exchange to itself feedback indications
of what comes next, reveal “the immanent logic of the subject matter that is unfolded
in the dialogue” (Gadamer, 1989, p. 367). Here,
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What emerges in its truth is the logos, which is neither mine nor yours and hence so far
transcends the interlocutors’ subjective opinions that even the person leading the conversation
[Socrates, in Plato’s dialogues] knows that he does not know. As the art of conducting a
conversation, dialectic is also the art of seeing things in the unity of an aspect—i.e. , it is the
art of forming concepts through working out the commonmeaning. (Gadamer, 1989, p. 367)

In accord with the anticipatory sense of a qualitative mathematical “thinking-cap”
described by Butterfield (1957, pp. 16–17), Heidegger (1977), Cook (1914/1979),
Rasch (1960), and Kant (1929/1965, p. 20), finding a common meaning is not a
process in which a tool serving this aim is produced and applied. Instead, language
finds its true value in the moment of use as a medium agreed upon in advance to play
the role of the vehicle of shared thinking.

Thus, the more genuine a conversation is, the less does anyone conduct it
(Gadamer, 1989, p. 338). Someone skilled in the art of questioning may well appear
to have the weaker opinion, as the full strength of the object is allowed to show
itself, and questions about it are not suppressed. The common meaning identified
and agreed upon in any given moment exhibits the unity of being a particular aspect
of a conceptual ideal. Different circumstances will necessarily involve potentially
incommensurable local particulars. This is true even in the meaning of something as
mundane as saying, “Pull up a chair,” since no chair embodies every possible feature
of the concept, and the word might be used when no chairs are actually available.

Although Gadamer mistakenly conceives of mathematical understanding as
perfect and certain, he is correct in making the point that

the true being of things is to be investigated ‘without names’ means that there is no access to
truth in the proper being ofwords as such—even though, of course no questioning, answering,
instructing, and differentiating can take place without the help of language. (Gadamer, 1989,
p. 414)

Gadamer (1989, p.415) recognizes mathematical symbolism’s formal axioms as a
kind of nonphonetic writing that represents relationships generally, without naming
the specific entities or processes involved. And he recognizes things have a truth
about them apart from any given language while simultaneously accepting the neces-
sity of relying on language despite its shortcomings. Language simultaneously and
systematically performs conceptual ideals, instrumental abstractions, and concrete
particulars as a semiotic assemblage.

And here we come to the relevance of Galison’s (1997, pp. 843–844) surprising
conclusion, reported at the end of his study of thematerial culture ofmicrophysics. To
wit: conceptual and communicative disorder plays an essential role in the coherence
and success of science. He traced that complex blend of unity and disunity to the
inner structures of everyday language:

It seems to be a part of our general linguistic ability to set broader meanings aside while
regularizing different lexical, syntactic, and phonological elements to serve a local commu-
nicative function. So too does it seem in the assembly of meanings, practices, and theories
within physics. (Galison, 1997, p. 49)

The same sequence occurs as we move from Rasch’s projection of uniform
idealized relationships between reading comprehension, reading ability, and text
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complexity to measurement. Jack’s pragmatic idealism embodies the follow through
from the experience of formless pure concepts back into words and things. Jack
formulated and tested themathematical hypothesis that reading comprehension could
be conceived as a pure contentless and wordless form, and that this unrealistic formal
ideal could be brought to bear on abstract words and concrete observations in useful
and meaningful ways.

In no way does that usefulness require any one level of complexity to serve
as the basis for a homogenizing reduction, as Galison (1999, p. 143) points out.
Each respective community of research or practice focuses attention on the objects
of its interests: concrete in the experimental, executive, and managerial worlds of
laboratories, classrooms, and clinics focused on data; abstract in the metrological,
legislative, and standards worlds of instrument makers and consensus processes;
and formal in the explanatory, judicial, and axiomatic worlds of theoreticians and
modelers. Further distinctions can bemade at the systematic and other higher levels of
complexity and will need to be taken up tomethodically cultivate participatory social
ecologies analogous to, and expanding on, those created by Jack and his colleagues
for reading instruction.

Lingering a Moment Longer in Mindful Attentiveness

Letting reading comprehension be what it is, independent of any particular way of
representing or observing it, is an example of a kind of Zen doing by not-doing
that accords with the yin-yang symbolization of reader and text in dialogue. The
not-doing happens in standing back for a moment before proceeding directly into
data analysis. In this pause, the researcher looks closely for possible evidence of an
objective, independently asserted structure that cannot be willfully or methodically
imposed from the outside.

A key lesson taught by theworks of Jack Stenner collected in this volume concerns
howwe learn the limits of ameasured phenomenon as a form of life ormode of being.
Those limits become evident by providing things themselves with media through
which theymay find their voices. Seeing all things, from rocks to chemical processes,
as alive is a philosophical theme explored by Peirce and Hegel that asks how things
might come to be included more fully as participants in humanity’s shared social
reality (Bennett, 2010, p. 104; Fielding, 2003; Latour, 1991; Latour &Wiebel, 2005;
Maran, 2007; Oele, 2017). Measurement modeling and metrological infrastructures
provide an array of means for populating what Latour calls a “parliament of things.”

Complementarymasculinist and feminist perspectives on this event ofmeaningful
representative governance come to bear. InLatour’s (1987, pp. 87–93) andGadamer’s
(1989, p. 367) masculinist language, we test the strength of the measures we propose
to pass in our laboratory legislatures, so to speak. These collectively formed patterns
in data document the constraints of the systemsbywhich a rule of lawmaybe exported
successfully from the laboratory into a shared social reality. When the sources and
characteristics of the measured construct’s strengths are understood, the laboratory



Introduction: Koans, Semiotics, and Metrology in Stenner’s Approach … xlv

environment in which it stands forth as a thing, as a fabricated artifact (Ihde, 1991),
can be inferred as both derived from and applicable to the larger world.

In Haraway’s (1996, pp. 439–440) feminist language, in contrast, the focus is
on creating livable worlds from questions of pattern that also speak to embedded
relational infrastructures capable of serving as “the prophylaxis for both relativism
and transcendence.” Instead of focusing on exercises of strength, Haraway, in effect,
looks to the capacities of the mathematical matrix of relationships modeled in the
laboratory as a womb in which a new form of life is conceived and gestated before
being midwifed into the world and nurtured to maturity.

Here resides a kind of maternal patience attending to the growth and development
of something new in the world. Lingering in watchful anticipation enacts a nurturing
respect for life that contrasts dramatically with the way commonly used methods
move directly toward a kind of mechanical dissection that cannot but terminate the
new form of life before it can be born. Leaping to the conclusion that numbers
are inherently and automatically always measured quantities mindlessly disconnects
symbolic representations from any possible way of meaningfully connecting with
human social reality. In the emotional psychology of contemporary culture, should
not these systematically disempowering methods—routinely applied in so many
areas of research and practice involving human, social, and environmental issues—be
considered as analogous to a kind of conceptual infanticide or genocide? In enacting
somethodically and routinelywhat Ricoeur (1974) called the “violence of the prema-
ture conclusion,” do not we cut ourselves off from essential ways of respecting and
valuing the ethical importance of pregnancy (Kristeva, 1980, 2014)? What kinds
of consequences for healing might follow if humanity would heed Latour’s (2011)
recommendation that we “care for our technologies as we do our children”?

The contrasting masculinist and feminist points of view on mindfully lingering in
attentive care for the objects of discourse both require a poetic openness to noticing
and listening. This openness is notably absent in the hurried push in most psycho-
logical research toward presentations of merely numeric results masquerading as
measured quantities (Bateson, 1978; Fisher, 2021a; Wright, 1994). Tallying correct
answers or summing ratings and treating these scores as measurements commits a
kind of schizophrenic violence. Everyone is well aware that the counts are not quan-
tities, since the scores are universally understood to change meaning across tests and
surveys. In addition, many critics deplore the ways unique individual differences
are homogenized and reduced to false uniformity within any given scoring system
(Maraun, 1996;Michell, 1986). The same number is assumed tomean the same thing
even though structural evidence as to that meaning is usually not provided, and even
though disparate uncontrolled variations can often be discerned.

Measurementmodels andmethodsmay, however, be attuned to letting things show
themselves as they are. In contrast to the immediate scoring and analysis of counts,
calibrating instruments read for signs ofmeasured quantities must allow things them-
selves the agency of showing the way. Measuring then becomes an active doing that
fundamentally and simultaneously does not do what normally is taken for granted as
basic procedures in measurement research and practice. Letting things themselves
speak in their own voices across samples and instruments requires capacities for
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listening to what measured constructs have to say as to what goes with what, and
how different media for culturing social forms of life vary.

Jack was oriented toward this critical perspective before he encountered Rasch’s
models formeasurement. Hewas a co-author of three early papers not included in this
collection that explicitly addressed issues of cross-level meaning (Hayman, Rayder,
Stenner, & Madey, 1979) and cross-sample factor structure invariance (Katzen-
meyer&Stenner, 1975, 1977). Jack’s intellectual roots in these fundamentally impor-
tant and mutually implicating areas help inform one’s reading of his thinking about
reading comprehension as it evolved over time, culminating in widely reproduced
variations on the reading comprehension construct map (McCabe, 2006; Peabody,
O’Neill, & Peterson, 2015; Stenner, 1998; Wildomar, 2014).

Cross-Level Meanings and Cross-Sample Invariances
in “Ecologies of Mind”

The hypothesis considered in one of Jack’s early publications (Hayman, et al., 1979)
was “The utility of a set of evaluation data varies inversely with the number of
organizational levels between the action the data describe and the decision process
they are intended to influence” (Hayman, et al., 1979, p. 31). Without naming it as
such, this hypothesis concerns the ecological fallacy (Pollet, Stulp, Henzi, & Barrett,
2015; Rousseau, 1985) and the atomistic fallacy (Diez-Roux, 1998). The former
involves making false and illogical inferences about individuals from population-
level data, and the latter, making false inferences about populations from individuals
(Forer & Zumbo, 2011; Zumbo & Forer, 2011). Rousseau (1985) notes that

• “To reduce the risk of misspecification, we need to develop theories and research
designs that allow us to take issues of level into account” (p. 10).

• “Multi-level models specify patterns of relationships replicated across levels of
analysis. Hence they are concerned with generalizations that may be made from
phenomena observed at one level to those occurring at another” (p. 22).

• “Theories must be built with explicit description of the levels to which general-
ization is appropriate” (p. 29).

• “…level-specific construct validity must be determined for any construct taken
from one level and applied to another. Researchers are often cavalier in their use
of constructs from one level as surrogates for those at other levels” (p. 29).

Bateson (1972, p. 493) saw cross-level fallacies of these kinds as committing
a fundamental epistemological error, one in which thinking “is separated from the
structure in which it is immanent, such as human relationship, the human society, or
the ecosystem.” Creating an “ecology of mind,” to adopt Bateson’s (1972) phrase,
requires capacities for systematically distinguishing levels of complexity. The point
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of Katzenmeyer and Stenner’s (1975, 1977) testing for the invariance of item hier-
archies across samples of examinees is, in fact, to investigate whether level-specific
forms of construct validity and generalization might be distinguished.

Levels of complexity vary in ways usefully characterized by the differences
between maps and territories. “Differences that make a difference,” another of
Bateson’s memorable phrases, are important to include in a map, while those that
do not are excluded (Bateson, 1972, pp. 183–186; 1991, pp. 200–201). Determining
which differences matter, and which do not, is a major goal of mapping, just as
it is also part of the general modeling goal of simplifying matters without over-
simplifying them. Different kinds of maps (topographic, road, tourist, walking, etc.)
emphasize different features, and, importantly, maps’ simplifications never remove
the often-difficult challenges encountered in locating one’s position relative to the
desired goal.

These challenges follow from trying to reconcile what is represented abstractly
from a position that no one in fact ever occupies with what is seen in the concrete
world (Hutchins, 1995, 2014; Latour, 1995a). Jack understood that mapping psycho-
logical and social variables (Stone,Wright, &Stenner, 1999; Chap. 8) requires distin-
guishing levels of complexity capable of serving purposes analogous to those served
by geographic maps.What Jack learned from these efforts has since been taken up by
others in similar mapping and theory development projects, many of which also draw
from extensive interactions with theworks of BenjaminWright (Best, 2008; Fisher&
Wright, 1994; Melin, Cano, & Pendrill, 2021; Peabody, O’Neill, & Peterson, 2015;
Wilson, 2005).

The distinction between maps and territories hinges on the way the latter exist at a
concrete level of real-world things and data, while maps are abstractions. As Bateson
(1972, pp. 182–186) puts it, when we speak directly about concrete things, we use
denotative forms of expression, such as “the cat is on themat.”Whenwe refer to what
has been learned, we make metalinguistic statements referring to abstractions, like
“the word ‘cat’ cannot scratch.” Then, when we move on to talking about theories
of learning, we make formal metacommunicative statements: “my telling you where
to find your cat was friendly.”

Most research in psychology and education does not distinguish these levels of
complexity. Counts of correct test answers, for instance, support valid and legiti-
mate denotative statements concerning how many times a student understood what
was asked and could respond appropriately. But when these counts are treated as
measured quantities, as they often are, Bateson’s (1978) andWright’s (1994) distinc-
tion between denotative counts and metalinguistic quantities is ignored (Fisher,
2021a). The meaning of the same numeric count of correct answers must necessarily
vary across groups of students and across different collections of test questions. The
map tracks the territory so closely they become identical, making the map useless
apart from the specifics of the features of one local learning environment’s students
and test questions.

Log interval formulations of additive conjoint measurement models are used to
test the hypothesis that a unit quantity exists, doing so in ways that achieve funda-
mental measurement (Andrich, 1978, 1988; Fisher &Wright, 1994; Narens & Luce,
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1986; Newby, Connor, Grant, et al., 2009; Rasch, 1960, 1977; Wilson, 2005, 2013;
Wright, 1968b, 1977, 1984, 1997a).Measurement modeling of this kind successfully
maintains the distinction between denotative and metalinguistic levels of complexity
(Fisher, 2021a; Fisher, Oon, & Benson, 2021). Here, differences that make differ-
ences, that sustain distinctions between consistently identifiable levels of perfor-
mance, are identified. The quantitatively scaled map that is drawn now is an abstrac-
tion quite different from the concrete territory occupied by the numeric data. Now,
instead of a one-to-one correspondence between features on the map and features
in the territory, local particulars that do not accumulate into differences that make a
difference are skipped over. Different students can answer different questionswithout
compromising the estimation of their reading ability locations on the map, to within
the range of uncertainty, just as different questions can be posed to different students
without compromising the comparability of the item locations on the map.

In psychometrics in general, and in Rasch model applications in particular,
however, these experimental evaluations are almost always repeated anew for each
separate sample of students or collection of test items. Justifications for the validity
of the quantities relative to the counts are left tied to the specifics of the sample
and the items involved. Just as the denotative and metalinguistic levels were left
undifferentiated when counts are mistaken for quantities, we see here a failure to
distinguish between metalinguistic and metacommunicative statements. The consis-
tency of sample and item characteristics across data sets is left unexamined and
unleveraged as a means of explaining what has been learned about the learning
documented at the metalinguistic scale level of complexity.

An explanatory model predicting student measurements and item calibrations
on quantitative scales (Stenner, 1996 (Chap. 6); Stenner & Stone, 2010 (Chap. 13);
Carpenter, Just, & Shell, 1990; DeBoeck&Wilson, 2004; Embretson, 2010; Fischer,
1973; Green & Kluever, 1992; Green, Kluever, & Wright, 1994; Green & Smith,
1987; Melin, Cano, & Pendrill, 2021; Prien, 1989; Wright & Stone, 1979) is needed
to achieve the formal, metacommunicative level of complexity (Fisher, 2020, 2021a).
Now, a theory of learning contextualizes what was learned about learning, which in
turn contextualizes the facts learned. An axiomatic model of the measured construct
now informs the quantitative scaling process and the interpretation of the concrete
numeric data. Understanding themeasured construct in this way is a kind of synthetic
learning, where a capacity to reproduce the construct at will from theory is realized.
Jack implicitly agreedwith Feynman’s (1988) recognition that, “what I cannot create,
I do not understand,” and so strove to demonstrate how an understanding of reading
comprehension could be expressed creatively.

Wider recognition of Jack’s accomplishments must inevitably remain limited as
long as mainstream research methods continue to conflate levels of complexity,
remain ensnared in the crisis of reproducibility caused by the fixation on statis-
tical significance testing (Fiedler, 2017; Hardwicke, Thibault, Kosie, et al., 2021;
Pashler &Wagenmakers, 2012), and fail to implement metrological solutions (Cano,
et al., 2018, 2019; Fisher, 2022; Fisher & Stenner, 2016; Mari, et al., 2021; Pendrill,
2019; Wilson & Fisher, 2019) to problems of validity generalization (Schmidt &
Hunter, 1977). The situation will likely be resolved only in the wake of decisive
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demonstrations supplanting existing systems of incentives and rewards with new,
more satisfying ways of embedding relational structures in educational environ-
ments. That kind of a shift in power relations requires the emergence of more organ-
ically cohesive social ecologies. Hope for positive outcomes is not unreasonable,
given the practical power of thinking collectively in shared languages. An additional
factor to consider is the phenomenologically superior meaningfulness obtainedwhen
common languages are themselves structured as recursive expressions of collectively
projected data patterns. We may yet be able to activate new languages poetically and
scientifically, effectively and efficiently functioning as vehicles of thought in the
pragmatically ideal terms so many philosophers have sought to articulate for so
long.

Such combinations of coordinated behaviors and decisions rooted in sponta-
neously occurring human cognitive and social processes ought to easily out-perform
today’smainstreamparadigm’s disconnected and incommensurable pseudo-systems.
Even so, proving that and cultivating ecosystems in which human institutions partner
with social and cognitive forms of life in new economic relationships are hugely
formidable challenges. Those challenges will become better understood with the
unfolding ofmultiple ongoing projects (Massof&Bradley, 2022;Morrison&Fisher,
2018, 2019, 2021; Quaglia et al., 2016–2019, 2019–2022) that are emerging along-
side the established and still-growing reading comprehension ecosystems initiated
by Jack and his colleagues.

Getting Down to Business

The repeated demonstration of how student experiences of the difficulty of reading
comprehension test items can be predicted from sentence length and the common-
ality of the words used contributes to the formation of a new economy of thought in
education. The principle is as old as education itself, which begins from the alphabet
and moves from there to word-picture associations, and from there to increasingly
complex text and ideas. The predictable association of semantic and syntactic compo-
nents in text complements the explanatory power of data by offering independent
validation that the object of measurement is understood well enough to synthesize
it. But instead of restricting themselves to by-project equations of specific tests, Jack
and his team envisioned a larger market, the one implied by the measurement model.

That is, in parameterizing the infinite universes of all possible English reading
students’ abilities and all possible English reading passage difficulties, the potential
for a virtual connectivity of every member of both sets with all of the others comes
into view. Student ability and item difficulty parameters in probabilistic measure-
ment models are, then, heuristic fictions in principle capable of telling the stories of
any possible readers and collections of reading comprehension items. The potential
viability of this scenario was tested in the 1970s by the Anchor Test Study, which
equated seven reading tests in administrations involving 350,000 students in all 50
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U.S. states (Jaeger, 1973). But the resulting “National Reference Scale for Read-
ing” (Rentz & Bashaw, 1977) was rendered obsolete as soon as the test was finished
because the test publishers changed the items. Unless another large and expensive
study was undertaken, there would be no way to connect the existing results with the
new ones.

With the introduction of explanatorymodels predicting variation in item difficulty,
the commercial opportunity for creating a new market in literacy capital emerged.
Though difficulties were encountered along the way, it was not long before reading
test and curricula publishers, state departments of education, school districts, and
book and magazine publishers were avidly interested in this new way of connecting
readers with text.

In a 2012 presentation to the Pearson Global Research Conference held in
Fremantle,Australia, Jack spoke of personalized learning platforms (Stenner, Swartz,
Hanlon, et al., 2012). Here, instruction and assessment are integrated, with unique
items generated from the lesson being studied, and then scored, in real time, in a
single use application (see Appendix B on EdSphere in Chap. 24; Stenner, Stone, &
Fisher, 2018). In this pioneering application of automatic item generation (Attali,
2018; Barney & Fisher, 2016; Bejar, Lawless, Morley, et al., 2003; Embretson, 1999;
Gierl & Haladyna, 2012; Gierl & Lai, 2012; Kosh, Simpson, Bickel, et al., 2019;
Poinstingl, 2009; Sonnleitner, 2008), the student may receive immediate feedback
designed with the intention of being able to support developmental processes of
cognitive growth. Opportunities for revealing misconceptions commonly made in
any given area of study are built into assessments and are highlighted in Socrati-
cally suggestive feedback encouraging the student to think again (Black, Wilson, &
Yao, 2011; Chien, Linacre, & Wang, 2011; Fisher, 2013; Hattie & Timperley, 2007;
Masters, Adams, & Lokan, 1994; Wilson & Scalise, 2003; Wilson & Toyama, 2018;
Wright, Mead, & Ludlow, 1980). Testing, in this context, ceases to be a one-time
hoop to jump through and cram for, and instead becomes an integral part of the
assessment of, for, and as learning (Black & Wiliam, 1998, 2018; Black, Wilson, &
Yao, 2011; Fisher, 2013). In this work, what Ben Wright (1958, 1968a) called “a
curriculum of failure” is at work providing safe contexts for learning from mistakes.
Interestingly, the adaptive feedback mechanism was foreshadowed in ruminations
about computerized learning by Wright’s physics lab supervisor, John Platt (1970,
pp. 139–141).

Studies in multiple fields (Locoro, Fisher, & Mari, 2021; Massof, Ahmadian,
Grover, et al., 2007;Morrison&Fisher, 2018, 2019, 2021;Melin, et al., 2021; Powers,
Fisher, & Massof, 2016) are exploring the power of systematically integrating (a)
formal theories explaining variation in item calibrations and person measurements,
(b) empirically calibrated and equated instrumentsmeasuring in quality-assured stan-
dardized units with known uncertainties, and (c) individual response data reported
as instructionally or clinically actionable feedback. These projects are all akin
to Stenner’s ecologized environment for reading comprehension in that multiple
stakeholders are included in the development and deployment of common languages.

Via investigations of these kinds, the instruments of psychology and the social
sciences will become a medium for giving voice not only to things themselves,
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but also to individuals and communities that have been excluded from status
quo methods. Having extensions of everyday language built into comparisons of
outcomes across groups and over time, as well as in the monitoring and facilitating
of growth and healing, may be able to simultaneously support critical inquiry, quality
improvement, and equitable budgeting of resources.

When theory succeeds in retrospectively predicting item calibrations, following
the already-established principles of item banking and anchoring, Jack saw that it
becomes possible to prospectively estimate new items’ calibrations from theory,
administer them, and validate them by checking to see if they produced the expected
proportions of correct responses. Successful pilots of this kind set up the personalized
learning technology Jack initially called Oasis, in which unique new cloze reading
comprehension items were created from the text read by a student as they read
(Stenner, et al., 2012). Every second or third sentence had a word blanked out. When
the student clicked on the blank, a list of four words (the correct word with three
uniquely included distractors) would appear. The student would choose the correct
word from the list and continue.

Upon finishing the reading assignment, the application provides feedback on the
student’s responses, identifying special strengths and weaknesses by means of unex-
pected correct or incorrect responses to especially difficult or easy items. Transitional
misconceptions scored as partially correct are set in context for further reflection
as a means of capitalizing on the cognitive priming of the moment. Other students
reading the same passagewould have otherwords blanked out andwould see different
distractors when the same words were blanked out, but would nonetheless have
measurements expressed in a comparable metric. A record of the transaction would
be registered by the software for incorporation in growth charts and reports for use by
teachers, parents, researchers, administrators, and others (Stenner et al., 2012; Fisher,
2013; Williamson, 2016, 2018; Williamson, Fitzgerald, Stenner, 2013, 2014).

Linguistically materializing meaningful events and processes in shared signs
and symbols that make visible connections between things and thought frees the
cognitive process from identification with any particular thinker. This is a conse-
quence of having, as Scott (1998, p. 357) puts it, taken language itself as a model
for the kinds of institutional systems needed for improving the human condition.
Grasping the stochastic patterns in the observations cohering into something namable
requires arriving at a conceptual determination of what the thing itself is. Semiot-
ically speaking, of course, no concrete thing ever embodies every possible feature
of a formal conceptual ideal, and so the best that can be done by abstract words
is to serve as a standardized medium that is flexible enough to adapt to immediate
circumstances by disappearing into the referent.

This semiotic perspective fits squarely in the oft-repeated maxim that models are
not meant to be true, but to be useful. Box (1979, p. 202) and Rasch (1960, pp. 37–
38; 1973/2011) are repeatedly cited in this vein, but rarely with an appreciation
for the pragmatic idealism that operationalizes boundary objects (Bowker, et al.,
2015; Star & Griesemer, 1989; Star & Ruhleder, 1996). It is imperative that practical
methods accept the unrealistic geometrical form of scientific models as eminently
applicable idealizations differentially structuring shared social reality. No amount of
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data or observations are ever sufficient to lead to the empirical derivation of the laws
of science. Instead, the form of human thinking in the language is set up to begin from
qualitative, implicitly mathematical models to see if and when observational data,
calibrated instrumentation, and explanatory theory can be envisioned and ultimately
organized in meaningful and useful relational ensembles (Overton, 1998). It is hard
to imagine more conclusive proof of the practical commercial value of this kind of
modeling than the international ecosystem of relationships Jack and his colleagues
created around reading instruction.

Prospects for the Future

Heidegger (1991, p. 24) remarks that “What is great and constant in the thinking of a
thinker simply consists in its expressly givingword towhat always already resounds.”
In education, what always already resounds is the enduring value of learning through
what we already know. And there, in the process of learning, we also see that the
meaning “which can already be found in the older philosophers is seen only when
one has newly thought it out for himself” (Heidegger, 1967, p. 79).

In collaborations with extensive networks of allies, Jack was a key figure giving
word to what already resounds, not just in education but across a wide range of
fields. He thought through for himself essential insights already put on the record by
previous thinkers and made them available to others. He followed through in imagi-
native and original ways to collaboratively produce results recognized immediately
as valuable and useful by tens of millions of students, teachers, parents, publishers,
psychometricians, and others, though they themselves would have been incapable of
envisioning, planning, staffing, resourcing, or incentivizing those results.

And Jackwould be the first to recognize those results were possible only bymeans
of collective efforts. The theory of action implied by text interpretation (Ricoeur,
1981, 1991a) and by the role of metrology in the history of science and commerce
(Latour, 1987, pp. 247–257;Latour, 1991, 2005) suggests thatweunderstand, inhabit,
and dwell in the world projected temporally in front of us (Fisher & Stenner, 2005):

...we understand ourselves only by the detour of the signs of humanity deposited in the
cultural work (Ricoeur, 1991a, p. 87).

To understand is to understand oneself in front of the text... It is exposing ourselves to
the text and receiving from it an enlarged self (Ricoeur, 1991a, p. 88).

We learn about who we are as individuals and communities by testing ourselves
against what the world and others in it say to us. We express our identities via the
stories we tell about ourselves, prefiguring the future, configuring the present, and
refiguring the past as we go.We are shapedmoment bymoment by the way our world
horizons are altered, as what is said and done changes our expectations and colors
our self-images. Each encounter offers new opportunities for knowing ourselves,
broadening the range of possible ways we might signify who we are.
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Jack Stenner and his colleagues have provided a model art and science that both
demonstrates and enacts humanity’s universalizations and individualizations of its
stories. Science, just as much as classic myths, popular literature, art, and films,
recounts events inwhich everyone can see themselves, evenwhen the story told never
actually happened to anyone in particular. Jack’s qualitative quantities similarly give
voice to the “variations on an invariant” (Ricoeur, 1991b, p. 196) that are always
already resounding as we configure, refigure, and prefigure who we are in relation
to who we have been and who we want to be.

Following Stenner’s lead in co-evolving artful science and commerce, we might
yet findourway towhatDewey (1954, p. 210) called “Amore intelligent state of social
affairs, one more informed with knowledge, more directed by intelligence…[that]
would raise the level upon which the intelligence of all operates.” Given the fullness
of the way he opened himself to the world of the text, Jack Stenner not only received
a remarkably enlarged self, but he also shared it on previously unimagined scales,
raising the level upon which the intelligence of millions now operates.

Overview of Jack’s Articles

The following chapters are organized chronologically from earliest to latest. In the
course of reformatting the articles, a number of minor editorial revisions were made;
these involved correcting typos, adding citations for uncited references (or dropping
them), adding references for citations lacking them, clarifying direct quotes from
sources, adding missing subscripts in equations, etc. Chapters 1–4 present Jack’s
early efforts at understanding how to consolidate a formal level of complexity by
integrating concrete data and calibrated instruments via a predictive theory and an
explanatory model. The first two chapters apply traditional psychometric methods
in efforts aimed at potentially standardizing and theoretically explaining growth
in learning. A probabilistic Rasch model of measurement positing unidimensional
invariance is not introduced until Chap. 3 (Stenner & Smith, 1982). As can be antic-
ipated from the first two chapters, the scaling model is immediately connected with
the need for an explanatory account of what is quantified.

Stenner and Smith’s focus is, moreover, shifted away from the usual concentration
on between-person variation toward the relation of item characteristics and item
scores. Applications of explanatory models may, of course, focus on the person
or item characteristics, or both (Carpenter, et al., 1990; de Boeck & Wilson, 2004;
Embretson, 1999, 2010; Fischer, 1973;Green&Smith, 1987;Latimer, 1982;Whitely,
1981). Stenner and Smith’s analytic method for validating theoretical predictions is
based on linear regression, which was shown by Green and Smith (1987) to produce
results equivalent to those obtained from Fischer’s (1973) linear logistic test model.

No matter which method is used, empirical and theoretical approaches converge
on mutually validating results (pro or con). Either way, different data sets involving
different samples responding to different items designed to measure the same thing
are shown to provide evidence supporting or contradicting the linear comparability of
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empirically estimated and theoretically predicted item locations. Repeated analyses
of data sets reproducing linearly equivalent instrument calibrations formally integrate
the concrete and abstract levels of hierarchical complexity via the application of
the model. The explanatory construct model then integrates the concrete-abstract-
formal assemblage at the systems level, when different data sets, test instruments,
and instances of construct specifications producing comparable results are put to
work in any given sphere of application.

Chapters 5–13 mark the transition from these kinds of systems integrating
concrete, abstract, and formal levels of complexity into systems of systems. Now,
alliances of publishers, school districts, state departments of education, curriculum
developers, and testing agencies are being formed. At this metasystematic level,
measurement expertise, instrument calibration capacities, and a wide array of
complementary skill sets are not evenly distributed across stakeholder sectors. Each
group of partners in this alliance lacks the technical skills possessed by the others, but
all of themmust be brought to bear to coordinate a systemof systems aligning instruc-
tion, test design, item writing, examination administration, data analysis, instrument
calibration, curriculum development, book publishing, specification equations, etc.
These alliances require the coordination of stakeholders’ varying, somewhat diver-
gent, and somewhat convergent interests in an overarching boundary object. The
business side of the work performed by Jack and his colleagues involved, first, nego-
tiation of the form of the passage points through which quality-assured representa-
tions would flow, and then the creation and management of those representations.
Chapter 5’s (Stenner et al., 1988) response to criticisms conveys some of the feel-
ings of the kinds of questions that arose in the course of those negotiations (also see
Burdick et al., 2014; Stenner & Burdick, 1997; Stenner et al., 2001).

Chapters 14–24 take on yet broader, paradigmatic and cross-paradigmatic
concerns. Many earlier chapters, and Chaps. 6 (Stenner, 1996) and 13 (Stenner &
Stone, 2010) in particular, connect the quality of measurement information and
knowledge being constructed with that obtained in the natural sciences (as was also
addressed in articles not included here, such as Cano et al, 2016). In this final group
of chapters, the general implications of that connection are explored in relation to
methodology, entrepreneurial business models, commerce, the economy, aesthetics,
and governance.

Several years have already passed since the most recent of the articles collected
here was published. New developments are proceeding at a rapid pace. To pick but
two examples, first, Loubert and colleagues (Loubert, Regnault, Sebille, et al., 2020)
contemplate clinical trials as measurement systems affected by multiple sources
of uncertainty, expanding on the topic of uncertainty budgets raised in Chap. 23
(Fisher & Stenner, 2017).

Second, Melin and colleagues (Melin, Cano, & Pendrill, 2021) tap some of the
deepest roots in Jack’s oeuvre. They expand on the subject of information entropy
implicated in reading comprehension (Fisher & Stenner, 2016, p. 493; Chap. 22)
to augment the theory of the construct specification equation. They, moreover, take
on this task in the context of the measurement of short-term memory and attention
span, extending Stenner’s and Stone’s work in that area (Stenner & Smith, 1982;
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Stenner & Stone, 2003; Stone, 2002; Wright & Stone, 1979). Finally, beyond theory
and research, Jack played a role as a thought partner in advancing that cognitive
construct as a viable candidate for a new reference standard unit system in Europe
(Cano, Melin, Fisher, Stenner, Pendrill, et al., 2018). Research in this area continues
(Cano, et al., 2019; Melin, Cano, Göschel, et al., 2021; Quaglia, Pendrill, Melin,
et al., 2016–2019, 2019–2022).

If that standard is approved and adopted, Jack will have made substantial contri-
butions to creating the first quality-assured, metrologically traceable unit of psycho-
logical measurement ever introduced. This achievement will mark a major milestone
on the road traveled by language as the vehicle of thought. In the same way, technical
standards for themeasurement of time, temperature, length, weight, etc. have all been
brought into everyday language in convenient yet rigorously defined terms, so, too,
might Jack’s work in reading and mathematics education also lead to similar results
in the not-too-distant future (Fitzgerald, Elmore, Koons, et al., 2015; Fitzgerald,
Elmore, Hiebert, et al., 2016; Simpson, Kosh, Elmore, et al., 2015; Williamson,
2016, 2018; Williamson, Fitzgerald, & Stenner, 2013, 2014).

An overarching theme unifying the various developmental phases in Jack’s
thinking follows Dewey’s (1954, p. 210) insights into how:

Meanings run in channels formed by instrumentalities of which, in the end, language, the
vehicle of thought as well as of communication, is the most important. A mechanic can
discourse of ohms and amperes as Sir Isaac Newton could not in his day. Many a man who
has tinkered with radios can judge of things which Faraday did not dream of.

Measurement research and practice are inexorably following Jack Stenner’s lead
in bringing new levels of shared knowledge into everyday language’s channels of
meaning. Explanatory models in multiple fields are being designed, tested, validated,
and used to structure locally situated applications communicated in commonmetrics.
As these efforts proceed, new meanings will run in channels formed by the shared
languages in which we think and communicate. When that happens, teachers, clini-
cians, managers, and analysts at the front lines of practice will come to discourse on
technical matters and judge things that today’s experts do not dream of.

Paraphrasing Rasch (1960/1980, p. xx), the challenges are indeed huge, but with
the clear formulations of the problems we have in hand, and with the model of
successful implementations provided by Jack and his allies, it does seem possible to
meet those challenges. In fact, in this context, given humanity’s history of resilient
creativity, it is not just reasonable to hope, dream, and work for a better future;
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instead, passionately engaging in those hopes, dreams, and tasks may be key to
fulfilling humanity’s evolutionary potential.

William P. Fisher Jr.
Living Capital Metrics LLC

Sausalito, CA, USA

Research Institute of Sweden
Gothenburg, Sweden

BEAR Center, Graduate School of Education
University of California

Berkeley, USA
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The Standardized Growth Expectation:
Implications for Education Evaluation

A. Jackson Stenner, June D. Bland, Earl L. Hunter, and Mildred L. Cooper

Abstract The purpose of this paper is to review some assumptions underlying the
use of norm-referenced tests in educational evaluations and to provide a prospectus
for research on these assumptions as well as other questions related to norm-
referenced tests. Specifically, the assumptions which will be examined are (1)
expressing treatment effects in a standard score metric permits aggregation of effects
across grades, (2) commonly used standardized tests are sufficiently comparable to
permit aggregation of results across tests, and (3) the summer loss observed in Title
I projects is due to an actual loss in achievement skills and knowledge. We wish to
emphasize at the outset that our intent in this paper is to raise questions and not to
present a coherent set of answers.

Throughout this paper we make use of an index termed the “standardized growth
expectation” (SGE). The SGE is defined to be the amount of growth (expressed in
standard deviation form) that a student must demonstrate over a given treatment
interval to maintain his/her relative standing in the norm group (Stenner et al., 1977).
The SGE rests on the assumption that a student will attain the same raw score on the
pretest and posttest if no learning has taken place between testings. If the pretest raw
score is equivalent to a national percentile of 50 and the same raw score is entered
into the corresponding posttest percentile table, the resulting percentile score will be
less than 50. The difference between the pretest percentile and the posttest percentile
expressed in standard score form is termed the SGE. Stated another way, the SGE is
the amount that a student at a particular pretest percentile is assumed to learn over a
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period of time or, conversely, the loss in relative standing that such a student would
suffer if he/she learned nothing during the time period.

An example may help to clarify the procedures used to calculate the SGE. Table
1 presents a raw score percentile conversion table for beginning of first grade and
end of first grade on the Total Reading scale of the Comprehensive Test of Basic
Skills, Form S. The average (50th percentile) beginning first grade student attains a
raw score of 31 on Total Reading. Under the assumption that this illustrative average
student learns nothing in the first grade, he/she would be expected to again obtain a
raw score of 31 on the posttest.Whereas a raw score of 31 is equivalent to a beginning
first grade percentile of 50, it represents an end of first grade percentile of 9. If both
percentiles are converted to Z scores and subtracted, the result is an SGE of 1.39
(i.e., the 50th percentile equals a Z score of zero, whereas the 9th percentile equals a
Z score of−1.39). In other words, if an average student learns nothing about reading
during the first grade, he/she would be expected to lose 1.39 standard deviation units
in relative standing because that is the amount of standardized growth exhibited by
the national norm group during the first grade.1

1 Grade-To-Grade Variation in SGEs

Some educational evaluations which employ norm-referenced achievement tests
share a common assumption, namely that observed treatment effects (e.g., differ-
ences between standardized means of observed treatment group posttest scores and
expected treatment group posttest scores) are comparable across grades. Stated
another way, it has been assumed that a one-third standard deviation difference
between experimental and control students’ reading comprehension has the same
meaning whether observed at the second, fifth, or seventh grade levels. It has also
been assumed, with apparent logic, that if a special program consistently demon-
strates larger treatment effects in the primary as opposed to intermediate grades,
then compensatory efforts should be concentrated at the lower level. In fact, the
twelve-year history of ESEA Title I documents a nationwide trend toward focusing
increasing amount of compensatory education efforts on primary students. Numerous
evaluation studies have supported this movement through findings that larger treat-
ment effects are possible with younger students. One question raised in this paper is
whether or not there is a built-in-bias in our evaluation methodology and/or instru-
mentation that insures finding more “exemplary” programs at the primary grade
levels.

1 The SGE differs slightly depending upon where in the pretest distribution the raw score is selected
to be entered into the posttest percentile distribution. The difference is of interest in its own right,
but introducing the issue in the present paper would unnecessarily confuse the presentation.
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Table 1 Raw Score to
Percentile Table for
Beginning and End of First
Grade on CTBS, Level B
Total Reading

Beginning of first grade End of first grade

Raw score Percentile Raw score Percentile

73–84 99 84 99

86–72 98 84 98

65–67 97 84 97

61–64 96 84 96

59–60 95 84 95

57–58 94 83 94

55–56 93 83 93

53–54 92 82 92

52 91 82 91

31 50 59 50

31 49 58 49

31 48 58 48

31 47 57 47

31 46 56 46

30 45 55 45

29 44 54 44

29 43 53 43

29 42 53 42

29 41 52 41

20 10 32 10

19 9 31 9

18 8 30 8

18 7 29 7

18 6 28 6

18 5 27 5

17 4 25–26 4

16 3 24 3

15 2 21–23 2

0–14 1 0–23 1

We raise this issue of cross grade comparisons because educational policy may
rest upon the legitimacy of just such comparisons. For example, a review of seventy-
three school desegregation studies concluded that the critical period for desegrega-
tion (to maximize black students’ achievement) is prior to third grade (Crain and
Mahard, 1977). Black students desegregated beyond the third grade tend to show
lower achievement test gains. Of the ten studies involving first and second graders,
eight showed that desegregation produced higher achievement levels and two showed
no effect. Only nine of twenty-one studies showed higher achievement among third
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and fourth grade students and for students in grades five through twelve, only sixteen
of thirty-one studies showed any achievement gain attributable to desegregation.
Eleven of the seventy-three studies reviewed by Crain andMahard were not analyzed
by grade. Taken at face value, these findings suggest that younger students benefit
more from desegregation (in terms of achievement) than do older students. Crain
and Mahard (1977) conclude: “The review of these studies is inconclusive or debat-
able on nearly every point except that desegregation in the early grades is superior
to desegregation in the later grades” (p. 19). It is precisely this kind of conclusion
based upon cross grade comparisons of norm-referenced achievement tests that may
be invalid.

Table 2 presents standardized growth expectations for five commonly used norm-
referenced achievement tests. The full year SGEs show a consistent decrement with
each grade. The negative relationship between grade and SEG hold for both reading
and mathematics across all five tests. The differences between second grade SGEs
and eighth grade SGEs averaged across tests exceeds one-half standard deviation.
Interestingly, the largest losses in SGEs for both Total Reading and Total Math
occur during the third grade period. Several recent studies on test score decline
(cf Wirtz, 1977) have concluded that test scores begin to drop at the fourth grade
level. It might be rewarding to investigate the possibility that SGE decrements are
causally implicated in reported test score declines. The Stanford Achievement Test,
for example, exhibit almost a fifty percent decrement in Total Reading SGE from
second to third grade. Similarly, the ITBS, CAT-77, andCTBS-S all show decrements
approaching twenty-five percent.

Insight into the implications that these grade-to-grade differences may have for
educational evaluation is gained by realizing that a treatment effect of one-third stan-
dard deviation (often employed as a threshold value for an educationally meaningful
or practically significant effect size) represents a 33% increase above expectation for
second graders on the MAT Total Reading and a 200% increase above expectation
for eighth graders. If the ongoing instructional process is incapable of producing
more than 0.15 SD’s of growth on MAT Total Reading among eighth graders, then
it seems somewhat unrealistic to expect an eighth grade compensatory program or
desegregation effort to demonstrate a treatment effect of 0.33 SD’s.

The conclusion implied above is that any cross grade comparisons of treatment
effects expressed as national percentiles, standard scores, NCEs or grade equivalents
are usually inappropriate. Although treatment effects expressed in standard score
form may be smaller at the eighth grade level than at the second grade level, the
statistical significance (e.g., F ratio) of these effects may be the same for both grade
levels (assuming equal sample sizes) because of the increased pre-post correlation
at the eighth grade level. Thus to apply an arbitrary treatment effect criterion of 0.33
SD’s (or any other uniformly applied criterion based upon standardized scores) when
screening for exemplary projects or reviewing research studies, unfairly discriminates
against upper grade projects. A metric for practical or education significance which
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Table 2 Standardized Growth Expectations for Selected Tests and Grades (50%tile) (Standard
Deviation Units)

Total reading

Spring to Spring Grade Stanford ITBS CAT-77 CTBS Metropolitan

1.7–2.7 1.72 0.95 1.08 1.04 ?

2.7–3.7 0.64 0.74 0.74 0.74 0.71

3.7–4.7 0.56 0.74 0.61 0.52 0.71

4.7–5.7 0.44 0.74 0.47 0.41 ?

5.7–6.7 0.33 0.57 0.36 0.30 0.44

6.7–7.7 0.30 0.47 0.30 0.30 0.30

7.7–8.7 0.30 0.41 0.38 0.28 0.41

8.7–9.7 0.20 0.33 0.25 0.23 ?

Total math

1.7–2.7 1.17 1.17 1.23 1.17 ?

2.7–3.7 0.99 0.84 0.99 0.99 0.84

3.7–4.7 0.58 0.91 0.71 0.56 0.88

4.7–5.7 0.64 0.71 0.64 0.61 ?

5.7–6.7 0.44 0.67 0.49 0.36 0.50

6.7–7.7 0.33 0.49 0.36 0.30 0.47

7.7–8.7 0.41 0.47 0.47 0.30 0.38

8.7–9.7 0.28 0.33 0.28 0.33 ?

would be comparable across grades cannot be formulated without consideration of
the fact that pre-post correlations increase with grade.2

Following are five hypotheses regarding decrement in SGE as grade increases.
It is highly likely that several of these alternative explanations combine to account
for cross grade differences. Although the first two hypotheses are intuitively more
appealing than the others, much more study of the merits of each explanation is
recommended.

DomainExpansionHypothesis:With each increase in grade the relevant domain
(e.g., reading or math) expands in terms of the number of concepts encompassed by
the domain. The result of an expanding domain is that a fixed number of items will be
less and less representative; proportionately fewer items can be allocated to any given
span of concepts and objectives. As the range of concepts and objectives covered
by a test increases, the SGE decreases and edumetric validity is reduced (cf Carver,
1974). The poorer the match between what is taught at a given grade level and what
is tested, the less sensitive the test is to growth, and the lower the SGE.

2 Perhaps a more methodologically defensible metric would be the standard deviation of the pre-
post residuals. The metric should be comparable across grades since it is adjusted for pre-post
correlations.
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Shifting Constructs Hypothesis: The levels of some tests are not well articulated
and with each succeeding grade stable organizing influences other than reading
or math achievement increasingly determine students’ scores on norm-referenced
tests. For example, if reasoning ability becomes progressively more confounded
with reading and math achievement scores as grade increases, and reasoning ability
grows at an increasingly lower rate than reading and math achievement, then the
confounded reading and math SGEs would be expected to decline as confounding
increases. As what is measured by norm-referenced reading and math tests changes,
the edumetric validity of these tests may be reduced.

Learning Curve Hypothesis: The deteriorating SGE is due to an actual slowing
in the rate of learning similar to the way height slows down from birth to eighteen
years of age. According to this hypothesis younger students have a greater capacity
for learning and this capacity deteriorates with age.

Unequal Interval Hypothesis: Standard deviation units are not equal interval
across grade. Imagine a rubber band marked into ten equal intervals representing
the one standard deviation SGE at second grade on the MAT Total Reading. Now
imagine the rubber band stretched to the point that the distance between any two
marks is equal to the entire length of the unstretched rubber band. In this way we can
see how growth at the seventh grade on the MAT Total Reading (SGE= 0.10) might
equal growth at the second grade (SGE= 1.0). If this hypothesis were accepted, the
validity of cross grade comparisons would be questionable, but so would just about
all other comparisons of interest in educational evaluation.

Instructional Emphasis Hypothesis: Upper grade teachers do not emphasize
reading and math as much as lower grade teachers and, as a consequence, students
learn less and subsequently show less growth on norm-referenced reading andmathe-
matics tests.As upper grade teachers concentrate less on reading andmath instruction
than primary grade teachers, the SGE decreases.

The five hypotheses are rank ordered from most likely to least likely (in our
opinion) as explanations for the observed decrement in SGE as grade increases.
The first two hypotheses state that as grade increases, the edumetric validity of
NRTs decreases. The second three hypotheses offer explanations which, although
not related to the edumetric properties of NRTs, cannot be discounted without further
research. At present all the hypotheses and the rank ordering are exercises in specu-
lation. However, we are confident that variation in the SGE across grades represents
an important phenomenon which may have implications for both policy makers and
evaluation specialists. Until the grade-to-grade fluctuations in SGE are better under-
stood, researchers might refrain from sweeping policy recommendations based upon
cross grade comparisons of norm-referenced achievement test scores.

2 Test-To-Test Variation

Almost as striking as the grade-to-grade variations in full year SGEs within a test are
the test-to-test differences within a grade. Examination of Table 2 reveals numerous
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Table 3 Standardized Growth Expectations for Selected Tests and Grades (50%tile) (Standard
Deviation Units) School Year

Total reading

Fall to Spring Grade Stanford ITBS CAT-77 CTBS Metropolitan

2.1–2.7 0.95 0.74 0.56 0.51 1.00

3.1–3.7 0.58 0.47 0.49 0.41 0.36

4.1–4.7 0.49 0.41 0.30 0.30 0.30

5.1–5.7 0.38 0.38 0.25 0.28 0.30

6.1–6.7 0.30 0.33 0.20 0.23 0.25

7.1–7.7 0.28 0.28 0.18 0.18 0.10

8.1–8.7 0.18 0.28 0.18 0.18 0.15

9.1–9.7 0.18 0.12 0.10 ? ?

Total math

2.1–2.7 0.92 0.92 0.77 0.61 1.17

3.1–3.7 0.84 0.58 0.84 0.55 0.84

4.1–4.7 0.50 ? 0.52 0.30 0.58

5.1–5.7 0.61 0.44 0.44 0.33 0.30

6.1–6.7 0.33 0.38 0.33 0.31 0.15

7.1–7.7 0.30 0.28 0.25 0.15 0.05

8.1–8.7 0.25 0.30 0.10 0.15 0.10

9.1–9.7 0.20 0.20 0.12 ? ?

instances of SGEs being thirty to forty percent higher for some tests than for others.
When we shift focus to school-year SGEs (see Table 3), the differences across tests
are even more dramatic. School-year SGEs frequently vary among tests by as much
as fifty to sixty percent with isolated instances of SGEs for some tests being three to
six times as large as those of other tests.

All other things being equal, the higher the match between what is learned and
what is tested (i.e., the higher the edumetric validity) the higher the SGE. An SGE
near zero means that either nothing was taught, or something was taught but nothing
was learned, or the test did not reflect what was taught and/or learned. A large SGE
suggests that something was learned and the test reflects well whatever was learned.
Presumably, criterion-referenced tests are superior to norm-referenced tests precisely
because they provide a bettermatch betweenwhat is taught/learned andwhat is tested.
The SGE may provide a simple index for evaluating the claims made on behalf of
criterion-referenced tests that they are superior evaluation tools. If CRTs demonstrate
higher SGEs than NRTs, then these claims are likely valid. (The last section on the
edumetric ratio addresses this issue more thoroughly.) A properly developed CRT
should have greater fidelity to the curriculum and, consequently, larger SGEs. The
SGE may be an effective means of assessing, a priori, tests’ probable sensitivity to
instruction.
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We offer four hypotheses for the variation in SGEs across tests. Again we order
the hypotheses in terms of our present thinking regarding the probability that each
hypothesis will be sustained in future studies.

Edumetric Hypothesis: Norm-referenced tests differ in the extent to which they
reflect stable between-individual differences (Carver’s psychometric dimension) and
the extent to which they reflect within-individual growth (Carver’s edumetric dimen-
sion). A test may possess exemplary psychometric properties (e.g., high internal
consistency and a good p value distribution) but be insensitive to what students learn
over a given treatment interval. Such a testwill have a lowSGEbut otherwise indistin-
guishable from other norm-referenced tests. The reader is encouraged to re-examine
Table 2 in light of this hypothesis.

Procedures Hypothesis: Test publishers use vastly different approaches to inter-
polation/extrapolation and make different assumptions regarding summer growth,
thus artificially creating SGE differences. The fact that full year SGEs are much
more comparable between tests than are school year or summer SGEs suggests that
publishers differ considerably in the assumptions they make about summer growth.

Norm Group Hypothesis: The composition of the norm groups for the various
tests differ to such an extent that the SGEs are affected. Suppose, for example, that
the Stanford Achievement Test (SAT) norm group was substantially brighter than
the Metropolitan Achievement Test (MAT) norm group. The result would be that
the Stanford Achievement Test norms would reflect more growth and, consequently,
the SGEs for the SAT would be larger than those for the MAT. We should note that
findings from the Anchor Test Study, for at least four of the tests considered in this
paper, do not account for the large SGE differences across tests.

Cohort Hypothesis: Although the norm groups for the various tests were selected
in essentially similar ways because the tests were normed in different years, the
samples may have differed in rate of achievement. Teachers are fond of claiming
that, like fine wines, there are “vintage years” in which a particular group of students
just seems brighter, however, the pattern of SGE differences across tests (taking into
consideration the year each test was normed) is not consistent with this hypothesis.

Of the four hypotheses just presented, the procedures and edumetric hypotheses
seem most compelling. The fact that full-year SGEs are substantially more compa-
rable across tests than either school-year or summer SGEs suggests that publishers
make different assumptions about what students learn during the summer period.
Apparently publishers of the Stanford Achievement Test assume that very little
reading or math achievement growth should be expected of a fiftieth percentile
student, whereas publishers of the MAT seem to assume a large amount of summer
growth.3 It seems probable that evaluation findings will vary depending upon which
test is used, how closely different publishers’ assumptions regarding summer growth
coincide with empirical findings, and whether fall to spring or spring to spring testing
dates are employed.

3 The fact that both the Stanford and Metropolitan claim to have empirically determined fall and
spring norms makes the substantial differences in summer SGEs for those two tests all the more
puzzling.
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According to the edumetric hypothesis, some norm-referenced tests are more
sensitive to student growth in reading and math than other tests. Those tests with
low SGEs measure well the between-individual differences which become more
and more stable as students get older, but do a relatively poor job of measuring what
students learn during a particular treatment interval.Most users of NRTs, particularly
evaluation specialists, are primarily interested inmeasuring achievement growth. The
SGE differences across tests seem to indicate that commonly available NRTs differ
considerably in their edumetric validity, i.e., sensitivity to instruction.

The implications for educational evaluation of sustaining the edumetric hypoth-
esis are substantial indeed. First of all, assuming the validity of this hypothesis,
it is little wonder that most of our school effects studies have accounted for such
minuscule proportions of variance with instructional process measures (cf Cooley &
Lohnes, 1976). The problem may not rest with so-called “weak treatments” but
rather with measurement instruments that are systematically biased against showing
either significant treatment–control differences or substantial process-outcome rela-
tionships. When the SGE is as small as 0.15 standard deviations, as is the case with
several tests at the eighth grade level, is it any wonder we find very few “exemplary”
eighth grade reading and math programs or that Coleman et al. (1966) could find so
few school variables that correlated with STEP Reading Test scores. Similarly, it is
perhaps no coincidence that at those grade levels where the SGEs are largest and,
presumably the edumetric validity of the tests is highest, we find a higher frequency
of “exemplary” projects. An evaluation study that employs an NRT with a low SGE
may be a priori doomed to add yet another conclusion of “no significant difference”
to the literature on school effects.

3 Summer Loss Phenomenon

Several recent studies have highlighted the fact that Title I students achieve above
expectation during the regular school year and lose in relative standing during the
summer months (Pelavin and David, 1977, Stenner et al., 1977). Title I projects that
use fall to spring testing dates often report substantial treatment effects, whereas
projects that use fall to fall or spring to spring testing dates often report no treatment
effects (Pelavin and David, 1977). In general, there has been limited appreciation for
the different conclusions regarding treatment effects that result from simply varying
testing dates. For example, tentative procedures in the OE Title I Evaluation System
call for aggregating treatment effects without regard for testing dates. Similarly,
the Joint Dissemination Review Panel typically evaluates reported treatment effects
without considering testing dates.

Table 4 presents standardized growth expectations for the summer period (spring
to fall). Except for the SAT, all tests exhibit substantial growth expectations over
the summer period. We suggest that an edumetrically valid achievement test should
have a large SGE over the school year and a small summer SGE. However, since the
size of both school-year and summer SGEs can be manipulated by making different
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assumptions about summer growth, the data presented in this paper cannot speak
directly to this point. If empirical data could be collected at three points in time
(fall, spring, fall) for all commonly used NRTs, then the ratio of summer growth to
school-year growth might address the question of comparative edumetric validity.
Under such an analysis, when SGEs for the summer period approach or exceed
SGEs for the school year, a test’s sensitivity to instruction must be questioned. Large
summer SGEs would suggest that the construct being measured by the test evidences
growth whether or not the student is in school. Such an instrument would not only
be relatively less sensitive to instruction-related achievement growth but would also
presumably be insensitive to special project treatment effects. Again we emphasize
that given the lack of multiple empirical norming points, the summer – school-year
ratios given in Table 5 may simply reflect variation in publishers’ assumptions about
summer growth.

The large summer SGEs exhibited by four of the five tests examined in this paper
raises questions about how much of the report summer loss among Title I students
is due to absolute loss in achievement and how much is due to assumptions made
by publishers. If Title I students actually lose raw score points over the summer
period then we must conclude that there is an absolute loss in acquired skills and
knowledge. If, however, there is no raw score change from spring to fall, that the
Title I summer loss is relative rather then absolute and is a function of publisher
assumptions. Discussions with other researchers studying this phenomenon suggest
that there is some doubt as to whether the absolute achievement loss among Title I

Table 4 Standardized Growth Expectations (50%tile) for Selected Tests and Grades (Standard
Deviations)

Total reading

Spring to Fall Grade Period Stanford ITBS CAT-77 CTBS Metropolitan

2.7–3.1 0.10 0.38 0.21 0.36 0.41

3.7–4.1 0.02 0.25 0.30 0.29 0.36

4.7–5.1 0.02 0.23 0.20 0.15 ?

5.7–6.1 0.05 0.25 0.15 0.12 0.18

6.7–7.1 0.00 0.20 0.15 0.12 0.25

7.7–8.1 0.10 0.15 0.20 0.10 0.36

8.7–9.1 0.02 0.10 0.15 ? 0.15

Total math

2.7–3.1 0.15 0.15 0.23 0.52 0.36

3.7–4.1 0.05 0.38 0.25 0.23 0.25

4.7–5.1 0.00 0.28 0.25 0.28 ?

5.7–6.1 0.10 0.25 0.18 0.20 0.30

6.7–7.1 0.02 0.23 0.12 0.20 0.25

7.7–8.1 0.15 0.20 0.28 0.15 0.36

8.7–9.1 0.20 0.15 0.20 ? 0.10
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Table 5 Ratio of Summer Growth Expectation to School Year Expectation (50%tile)

Total reading

Grade Stanford ITBS CAT-77 CTBS Metropolitan

2 0.11 0.51 0.41 0.70 0.41

3 0.03 0.53 0.67 0.56 1.00

4 0.04 0.56 0.65 0.50 ?

5 0.13 0.66 0.60 0.42 0.60

6 ? 0.61 0.76 0.52 1.00

7 0.36 0.54 1.13 0.56 3.60

8 0.11 0.36 0.86 ? 1.00

Total math

2 0.16 0.16 0.29 0.85 0.30

3 0.06 0.66 0.30 0.42 0.30

4 ? 0.64 0.48 0.93 ?

5 0.16 0.57 0.40 0.67 1.00

6 0.60 0.61 0.37 0.65 1.67

7 0.50 0.71 1.11 1.00 7.20

8 0.18 0.50 1.14 ? 1.0

students is as large as is commonly believed. According to the arguments presented
in this paper, the amounts of both absolute and relative loss may depend upon the
NRT employed in the evaluation.

4 The Edumetric Ration

The fact that students do not attend school year around suggests a means for
computing edumetric validities for commonly used norm-referenced and criterion-
referenced tests. An edumetrically valid test, i.e., a test which is sensitive to instruc-
tion, should evidence proportionately higher SGEs during the school year than during
the summer. If we assume a nine month school year and a three month summer, then
any test purporting to measure what is taught in school (e.g., reading comprehension
and math computation) should evidence a ratio of “school-year SGE” to “summer
period SGE” larger than 3:1 (for convenience, we term this value the edumetric
ratio). On the other hand, a test of nonverbal reasoning might evidence an edumetric
ratio near 3:1, indicating that nonverbal reasoning (or what Cattell (1971) calls Fluid
Ability) grows at a constant rate largely unaffected by school experiences.4 Tests
purporting to measure skills and objectives taught in school which show edumetric

4 Edumetric ratios computed separately for different socio-economic groups might provide insight
into how differences in out-of-school and in-school experiences impact on achievement.
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ratios near “three” would probably prove highly insensitive to treatment effects and
might be expected to evidence near zero correlations with variables similar to those
employed by Coleman et al., (1966).

The edumetric ratio may also provide a means of externally validating criterion-
referenced test items. Typically CRT validation efforts rely heavily on content anal-
ysis and judgements of curriculum experts regarding the match between curriculum
and what a test item presumably measures. Edumetric validity of such items is
assumed when judges agree on what concept or objective an item is measuring.
We suggest that rating consensus is insufficient evidence to conclude that a test item
is edumetrically valid. One more methodologically defensible approach might be
to compute edumetric ratios on a set of items judged to be measuring a particular
concept or objective and include on the final instrument only those items with high
ratios.

Lastly, a comparison of SGEs for a widely used achievement and ability test offer
some additional insights into the aptitude-achievement distinction (Green, 1974).
Judging from theory and publisher test descriptions, one would expect achievement
tests to have higher SGEs than ability tests. For example, the technical manual for
the Cognitive Abilities Test (Thorndike & Hagen, 1971) states “…The test can be
characterized by the following statements and these characteristics describe behavior
that is important to measure for understanding an individual’s education and work
potential: (1) The tasks deal with abstract and general concepts, (2) In most cases, the
tasks require the interpretation and use of symbols, (3) In large part, it is relationships
among concepts and symbols with which the examinee must deal, (4) The tasks
require the examinee to be flexible in his basis for organizing concepts and symbols,
(5) Experience must be used in new patterns, and (6) Power in working with abstract
materials is emphasized, rather than speed” (p. 25). Contrast the above description
with that given in the technical manual for the Iowa Test of Basic Skills, “…The
ITBS provides for comprehensive and continuous measurement of growth in the
fundamental skills: vocabulary, reading, the mechanics of writing, methods of study,
and mathematics. These skills are crucial to current day-to-day learning activities
as well as to future educational development” (p. 3). In the ability test manual,
phrases such as “educational potential,” “general concepts,” and “interpretation and
use of symbols” are used whereas the achievement test manual uses such terms as
“growth,” “fundamental skills,” “diagnosis,” and “skill improvement.” Clearly the
impression one gets from these two manuals is that the Cognitive Abilities Test
measures something more stable and less sensitive to school experiences than the
ITBS; an impression which is not sustained by the SGE data.

Table 6 contrasts SGEs for the Cognitive Abilities Test and the ITBS. A first
observation is that ITBS-Reading SGEs are comparable to CAT-Verbal SGEs. Thus,
the ITBS-Reading appears to be almost as sensitive to instruction as the CAT-Verbal.
Whether comparability between the two is due to the fact that the achievement test
is actually more an ability test or the ability test is just a relabeled achievement
test, or the distinction between verbal ability and reading is a sham, merits further
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Table 6 Standardized Growth Expectations for the Iowa Test of Basic Skills and the Cognitive
Abilities Test

ITBS reading
comprehension

Cognitive
abilities test
verbal

ITBS total math Cognitive
abilities test
quantitative

Cognitive
abilities test
nonverbal

3.7–4.7 0.74 0.74 0.91 0.71 0.38

4.7–5.7 0.74 0.61 0.71 0.52 0.38

5.7–6.7 0.57 0.52 0.67 0.38 0.23

6.7–7.7 0.47 0.41 0.49 0.36 0.20

7.7–8.7 0.41 0.30 0.47 0.36 0.23

8.7–9.7 0.33 0.30 0.33 0.28 0.23

study.5 One conclusion appears disconcertingly clear, the ITBS-Reading appears to
be only slightly more edumetrically valid than the CAT-Verbal. How serious this
predicament is depends on whether one elects to fault the CAT for being too much
like an achievement test or the ITBS for being too much like an ability test.

The CAT-Quantitative appears to be less edumetrically valid than the ITBS-Total
Math, but more sensitive to instruction than the CAT-Nonverbal. Since the CAT-
Quantitative items loaded highly on the nonverbal factor and failed to define a quan-
titative factor (Thorndike & Hagen, 1971) one is left with the possibility that the
Quantitative items are simply a mixture of items similar to ITBS-Total Math items
and nonverbal reasoning items. Had the Quantitative Scale held more true to its
label, we suspect that the SGEs would more closely approximate those for ITBS-
Total Math. Finally, the CAT-Nonverbal evidences the lowest SGE. Whether the
nonverbal growth expectations for the summer period are proportional to the school
year, indicating little school effect, is a question requiring further study.

5 A Prospectus for Research

A major thesis of this paper is that policy decisions based upon grade-to-grade and
test-to-test comparisons rest on a potentially shaky foundation. If the SGE index
is meaningful and the analyses based upon it are valid, then a potentially large
number of research findings merit re-examination. Granting the far-reaching policy
implications inherent in our assertions and the need to establish quickly whether or
not these assertions are valid, we offer the following research agenda.

5 We are not suggesting that just because two tests have similar SGEs they are necessarilymeasuring
the same thing. We are suggesting that evidence of comparable SGEs when added to information
that disattenuated inter-test correlations approach 1.00 provides a pretty strong case for the fact that
the two tests measure the same psychological construct.
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• Submit the SGE concept to comprehensive analysis by measurement specialists
focusing upon the conceptual basis for the index and assumptions underlying its
computation.

• Compute SGEs for all subtests of commonly used achievement and ability test
marketed during the past twenty years, and compare SGEs across grades and
subtests. Some form of multi-method, multi-trait analysis might prove useful in
such a substudy.

• Conduct a comprehensive content analysis of commonly used NRTs to determine
the extent to which item content, type, or format contribute to variability in SGEs
across tests.

• Conduct a meta analysis of reported treatment effects across a wide range of
studies to determine whether treatment effects are correlated with SGEs. Prelimi-
nary investigations suggest that this may be a particularly fruitful area for further
investigation.

• Conduct a logical and empirical analysis of the summer loss phenomenon found
among Title I students. Estimate, if possible, what proportions of the loss are
relative and absolute, and examine ways these proportions differ depending upon
which NRT is used. Also conduct an item analysis to determine which skills
evidence the largest losses over the summer.

• Conduct a preliminary investigation of the relationship between shifting edumetric
validity and the Scholastic Aptitude Test score decline.

• Compute SGEs for a sample of criterion-referenced tests and investigate the claim
that the SGE provides a useful index for comparing edumetric validities of CRTs
and NRTs.

• Conduct a logical and empirical examination of the effects of out-of-level testing
on the edumetric validity of NRTs.

The above research agenda will first address the utility and validity of the
SGE concept and then proceed to examine selected implications of sustaining the
edumetric hypothesis. The current nationwide interest in basic skills testing makes
the topic of the proposed research particularly policy relevant at this time.
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Construct Definition Methodology
and Generalizability Theory Applied
to Career Education Measurement

A. Jackson Stenner and Richard J. Rohlf

Abstract The field of career educationmeasurement is in disarray. Evidencemounts
that today’s career education instruments are verbal ability measures in disguise. A
plethora of trait names such as career maturity, career development, career planning,
career awareness, and career decision making have, in the last decade, appeared as
labels to scales comprised of multiple choice items. Many of these scales appear to
be measuring similar underlying traits and certainly the labels have a similar sound
or “jingle” to them. Other scale names are attached to clusters of items that appear to
measure different traits and at first glance appear deservingof their unique trait names,
e.g., occupational information, resources for exploration, work conditions, personal
economics. The items of these scales look different and the labels correspondingly
are dissimilar or have a different “jangle” to them.

As instrument developers and users we commit the “jingle” fallacy (Green, 1974)
when we give the same or nearly the same name to clearly distinct underlying traits.
Similarly, we commit the “jangle” fallacy when different labels are assigned to
essentially the same underlying trait. When a trait label such as Career Maturity is
assigned to a set of items which in fact measures verbal ability, we have committed
the jangle fallacy. Whenever we find evidence that two similarly name scales are
only moderately correlated, there exists the possibility of the jingle fallacy.

Whether or not a given scale is a measure of verbal ability as opposed to career
maturity is, of course, a question of validity, i.e., is the scale actually a measure of
“what it is intended to measure”—or is it? This chapter asserts that the current state
of affairs in career education measurement exists because of the lack of carefully
defined and operationalized career education constructs andwill suggest a theory and
methodology that researchers and practitioners will, hopefully, find useful in their
continuing efforts to develop and refine measurement in the field of career education.
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1 Construct Definition

Constructs are the means by which science orders observations. We take it on faith
that the universe of our observations can be ordered and subsequently understood
with a comparatively small number of constructs or inferred organizing influences.
Observations are aggregated and constructs created through the mental process of
abstraction and induction. When we observe a group of children and describe some
of the children as more aggressive than others, we employ a construct. We create the
construct “aggression” by observing that certain behaviors tend to vary together and
this pattern of covariation among observations we come to designate as aggression.
In describing the differences in behavior among children, we might conclude that
one child is much more aggressive than other children. We arrive at this conclusion
informally by summing up the frequency of observed aggressive acts and we use the
total score as an index of each child’s level of aggression. These total scores are then
compared and we arrive at decisions about each child.

This process of weighting individual observations, aggregating the observations
into a total score and then checking the quality of the construct score by determining
how well the total score can predict the original observations happens so fast and
so frequently and works so well in our everyday lives, that there is seldom need to
reflect critically on the process itself. The search for pattern or regularity among
observations is, it seems, just as central to our daily lives as it is to scientific activity.
Perhaps because the process of observation, abstraction and construct formation
is so fundamental to daily functioning, it is taken for granted in behavioral science
research. Often observations in the form of questionnaire items and test questions are
aggregated without adequately examining the assumptions and implications inherent
in the summation and averaging procedures. The simple fact that observations are
combined and a total score computed means that we entertain a hypothesis that the
observations are in some way related to one another. If the observations are uncor-
related, then combining them into a total score is a meaningless undertaking, since
the total or construct score will carry no information about the original observations
and consequently will be of no value in explaining anything else. If, however, the
observations are correlated, then the construct score has meaning. Precisely what
meaning depends upon the perceived nature of the organizing influences responsible
for the correlations among observations.

A construct then is a theory which expresses how its inventor “construes” a
set of interrelated observations. Construct labels (e.g., career maturity, occupa-
tional information, career decision making) serve as shorthand expressions for
hypotheses regarding the nature of the predominant organizing influences responsible
for correlations among observations.

What constitutes an observation? In career education measurement the most
common “observation” would be a person’s response to a test or rating item. Such
observations provide information about a person’s placement on a scale and serves
as an indicant of the extent to which the subject possesses the attribute or trait being
measured. A set of such indicants (items) comprises an instrument. The underlying
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structure or organizing influence operating on these observations is often determined
by some combination of statistical structural analysis, e.g., factor analysis, and a
logical analysis of the item content. Corroboration of the underlying structure is then
frequently sought by confirmation via hypothesis testing and correlations with other
instruments measuring conceptually similar and dissimilar constructs.

All observation whether made in service of the behavioral or physical sciences,
is prone to error. Error is given more attention in behavioral sciences measurement
probably because it exists in such abundance. Because of its abundance the process
of construct definition must incorporate a theory of error. Various approaches to
estimating the reliability of a measurement procedure rest on different assumptions
about error and how it affects the observations we make.

Classical reliability theory is based on Spearman’s model of an observed score
(e.g., observation). Basically, an observed score is a function of two components, a
true score and an error score. Within this framework, models of reliability have been
formulated to assess the relative importance of each component. Campbell (1976)
gives an excellent review of the historical development of reliability theory. All tradi-
tional measures of reliability (alpha, equivalent forms, retest) describe the agreement
among repeated measurements of the same individuals. Although these reliability
measures differ in their definition of error, they all assume a single undifferentiated
source of error. Coefficient alpha attributes error to inconsistency in the extent to
which individual items measure an attribute. Measures of stability such as test-
retest or equivalent forms reliability coefficients, attribute error to changes in testing
conditions, mood of examinee, etc.

In recent times authors such as Tryon (1957), Cronbach et al. (1963), Nunally
(1967), and Lord and Novick (1968) have departed from the classic concept of true
vs. error scores and have instead incorporated what has become to be known as the
domain sampling theory of reliability. The notion of a true score was replaced by a
“domain” or “universe” score which is an individual’s score if all observations in a
domain or universe could be averaged. Measurement error in this framework is the
extent to which a sample value differs from the population value.

This change in focus from a “true score” to “universe score” resulted in increased
importance being placed on defining the “universe” from which a particular sample
of items has been drawn and to which we want to generalize. Initially the concept of
universe was restricted to thinking in terms of a universe of content, e.g., sampling
of reading comprehension items from a universe of possible reading comprehension
items. However, the work of Cronbach, et al. has broadened this original concep-
tualization. His work, referred to as generalizability theory, speaks to sampling of
“conditions of measurement” which include additional sources of variation to that
of just variation among samples of items, or components of content. This broadened
conceptualization can be viewed as a change from a focus on the reliability of an
instrument to a focus on the reliability of a measurement procedure.

For example, suppose the career maturity of a group of students is rated on a
number of items by a number of different teachers on several different occasions.
The traditional view of a content domain would focus on the items as a sample
from the universe of all such similar items. However, Cronbach’s generalizability
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theory forces us to acknowledge that there are probably systematic differences in
item scores across occasions which do not reflect true change in level of career
maturity; and to recognize that there are systematic differences among students that
are reflected in observed scores which are not necessarily due to difference in career
maturity, e.g., socioeconomic status. Thus, from this perspective we are not only
concerned with the universe of possible career maturity items, but, in addition, we
need to think in terms of a universe of possible teachers and a universe of possible
occasions, and a universe of possible respondents. Actually, Cronbach does not talk
in terms of different universes; but rather, each of the above would be considered a
“facet” in the universe of measurement conditions. The more facets one chooses to
include in defining a construct, the broader the universe of generalization. Cronbach
also refers to facets as either “random” or “fixed.” A fixed facet would be one that
would not vary, i.e., would be a constant in the universe. For example, if raters were
considered to be a fixed facet in a measurement procedure, the investigator would
be planning to always use the same rater(s) whenever a measurement was taken.
Given this condition, there would be no systematic differences in observed scores
due to idiosyncratic differences in rating behavior among raters. However, if raters
were considered to be a “random” facet, the investigator would be broadening the
construct definition of career maturity such that a person’s “universe score” would
be an average score across the universe of career maturity items judged across all
possible raters. In the “fixed” case, the “universe score” would be an average score
across the universe of items as judged by a particular rater or set or raters.

As discussed above, the process of construct definition begins with the recogni-
tion that observed scores (observations) are determined by some set of underlying
organizing influences. In addition to “wanted” influences causing variation among
scores, we must also recognize that there are “unwanted” (error) influences exer-
cising potentially biasing or misleading effects in observed scores. Generalizability
theory enables us to specify these sources of variance in observed scores in terms of
characteristics of the object of measurement, characteristics of the indicants (items),
characteristics of the context of measurement, and the interactions both within and
across those categories.

In addition to a conceptual model, generalizability theory, using analysis of vari-
ance procedures, provides the techniques by which we can specify the sources of
variance (both wanted and unwanted) in observed scores and estimate the magni-
tude of their effects. The procedure also yields a generalizability coefficient(s) which
can be interpretated in a manner similar to traditional reliability coefficients, e.g.,
in estimating the standard error of measurement. However, before these analysis of
variance procedures can be applied, it is necessary to design a study in which sources
of variance are systematically varied.

Generalizability theory makes a distinction between G and D studies. A G study
is a study in which data is collected in order to examine a wide range of sources of
variance affecting ameasurement procedure whereas a D study (for Decision) selects
either the G study design or some modification of that design for use in estimating
the generalizability coefficient that can be expected in some subsequent application
of the measurement procedure. A D study does not involve the gathering of data
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but rather uses the variance estimates from the sources designed into the G study to
estimate what the generalizability coefficient would be under alternative construct
definitions and sampling specifications. For example, suppose that the authors of a
career maturity scale employ a p:c × i × occ (persons nested within class crossed
with items crossed with occasion) G study design. That is, the career maturity scale
is administered to several classes on at least two occasions. Under this design the
broadest permissible construct definition generalizes over items and occasions with
either person or class as the object of measurement. Suppose that an investigator has
limited time available for student testing and wanted to know what the effect would
be of reducing by 50% the number of items on the scale. This scenario could be set
up and a generalizability coefficient estimated given specification of the object of
measurement and construct definition (which facets are considered fixed and which
random). This application of generalizability theory is analogous to power analysis
(Cohen, 1977) in which different sampling scenarios are evaluated to determine
the probability of detecting an effect. In D studies different measurement scenarios
(alternative construct definitions coupled with alternative sampling frequencies) are
evaluated to determine the precision with which objects of measurement can be
differentiated.

2 An Illustration of Generalizability Theory

Before proceedingwith an example, it may prove useful to reflect on themeaning of a
generalizability coefficient as well as its general form. A generalizability coefficient
is simply the ratio of true score variance (or universe score variance) to the sum of
true score variance and error variance:

∑2

ρ
= True scorevariance

True scorevariance+ errorvariance
= τ

τ + δ

The components that enter true score variance and error variance change as the
construct definition changes, but the basic expression for a generalizability coeffi-
cient remains the same. Following are several descriptive comments about the gener-
alizability coefficient that may help in gaining an intuitive grasp of what this ratio
means:

• One task of measurement is to differentiate among objects (e.g., classrooms
or children) on some scale while simultaneously generalizing over selected
facets. The higher the generalizability coefficient, the better the differentiation
or separation among objects.

• Children or classrooms differ on a scale for many reasons (we usually refer to
these reasons as sources). Some of these reasons are important to us and represent
what we want to measure, and others are not of interest and represent noise.
Differences among students that arise due to reasons we are interested in, we call
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true score differences whereas differences due to reasons we are not interested
in, we call error differences. A generalizability coefficient is simply the ratio
of average squared differences between objects that arise from wanted sources
divided by the average squared differences between objects arising from wanted
and unwanted sources.

• Observed score variance is the sum of true score variance and error variance. Thus
the generalizability coefficient represents the proportion of observed score vari-
ance that is due to “wanted” sources of variance. If the generalizability coefficient
is high, then a high proportion of the variance in observed scores is due to wanted
sources of variation, whereas if the coefficient is low, it means that only a small
proportion of differences among objects is due to wanted sources of variation.

• We can conceive of the generalizability coefficient as a heuristic that describes
the confidence with which we can reject the null hypothesis that all objects’ true
scores are equal. Statisticians would use an F ratio for this purpose and, in fact,
for the simple persons × items (p × i) design:

∑2

ρ
= F − 1

F
or F = 1

1− �ρ2

• The generalizability coefficient is the squared correlation between observed scores
and true scores. The true score is the average score we would obtain if all
observations across the random facets of the universe of generalization could
be exhaustively sampled. Errors of measurement (unwanted reasons that objects
have different scores) contribute to ordering people differently on observed scores
(which are samples) than they would be ordered if their scores could be averaged
over all facets of interest (e.g., items or days during a two-week period). The gener-
alizability coefficient provides an indication of how differently people are likely
to be ordered if exhaustive sampling of all relevant observations was possible.

In summary, the generalizability coefficient provides an estimate of the precision
of measurement given a construct definition. It is meaningless to refer to a reliability
or generalizability coefficient without reference to the governing construct definition.
What construct definition is most appropriate in a given situation is a substantive
question that often cannot be answered by measurement specialists. What definition
to employ is a complex questionwhich takes us back towhat wewant our construct to
mean. Ascribing meaning to constructs and increasing our understanding of variance
arising from applications of our measurement procedures is what the process of
construct definition is all about.

Table 1 provides estimated G Study variance component for a p × i × m design,
and Table 2 displays different D Study designs or measurement scenarios. The data
used in this illustrationwas graciously provided byDr. BertWestbrook and represents
a subsample of the ninth grade data used in his chapter in this volume. The sample
consists of 60 students responding to the 50 attitude items of the Career Maturity
Inventory (CMI).
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Table 1 Illustrative example of generalizability analyses for the attitude subscale of the CMI

Source Notation SS df MS Estimated
variance
component

Estimated
proportion of
universe variant
attributable to
each source

Person P 68.87 59 1.167 0.00889 04

Item I 270.41 49 5.519 0.04328 18

Moment M 1.20 1 1.204 0.00030 00

Person × Item p × i 661.62 2891 0.229 0.04111 17

Person × Moment p × m 11.55 59 0.196 0.00098 00

Item × Moment i × m 11.87 49 0.242 0.00159 01

Person × Item ×
Moment

p × i × me 423.88 2891 0.147 0.14662 60

Examination of Table 1 reveals that a large proportion (60%) of the variance on
this instrument is unexplained by facets of the measurement procedures. The second
and third largest components of variance are the item (i) and person × item (p ×
i) interaction, respectively. The person (p) component explains four percent of the
universe variance. The moment (m), person×moment (p×m) interaction and item
by moment (i × m) interaction explain very small proportions of the variance.

A major advantage of generalizability theory is that the theory specifies which
sources of variance are to be ignored, which contribute to true score (τ) and which
contribute to error (δ) in estimating the generalizability of a measurement procedure
under a particular construct definition. Whether stated or not, there are two essential
aspects of a measurement procedure that must be explicit before any reliability or
generalizability coefficients can be interpreted. These are (1) the construct definition,
i.e., which facets are to be considered random and which fixed, and (2) the sampling
frequencies for each facet included in the construct definition.

Table 2 presents construct definitions and sampling specifications for five
scenarios. Scenario #1 displays the generalizability coefficient under the classical
reliability formulation in which moments (i.e., short-term occasions) are fixed (Nm-
1) and items are random. The generalizability coefficient (

∑2

ρ = 0.72) under this
scenario accurately describes the precisionofmeasurement only if our interest centers
on how well students can be differentiated on a single occasion. This coefficient
corresponds to the traditional coefficient alpha (or KR-20).

In scenario #2 moments are random and items are fixed. This construct definition
corresponds to the traditional stability or retest coefficient. In other words, within
the framework of generalizability theory the traditional retest coefficient may be
computedunder a generalizability designof the formp× i×mwhere items constitute
a fixed facet and moments constitute a random facet. Note that in this case the retest
coefficient is higher than the internal consistency coefficient because the p × m
variance component accounts for virtually no variance whereas the p× i interaction
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(which contributes to the true score when items are fixed) accounts for 17% of the
universe variance.

Scenario #’s 3, 4, and 5 all employ the broadest permissible construct defini-
tion (items and moments random) but the sampling frequencies for items and/or
moments differ. In Scenario #3 we estimate what the generalizability coefficient
would be if 50 items were administered on one occasion (i.e., moment). Note that
the generalizability coefficient under this construct is coincidentally the same as that
observed under Scenario #1. As a rule when the construct definition is broadened
and the sampling specifications are unchanged, the generalizability coefficient goes
down. Similarly when the construct definition is narrowed and consequently the
universe of generalization is narrowed, the generalizability coefficient is increased.
The reasoning for this outcome is straightforward; if the universe under examination
is quite broad, then a larger number of observations must be sampled to attain a spec-
ified level of precision, whereas a narrower universe permits a smaller number of
observations to attain the same precision. Under Scenario #4 the item sample remains
at Ni = 50 but the number of testing sessions is increased, Nm = 2, resulting in an
improvement in the generalizability coefficient (

∑2

ρ = 0.81). Finally, under Scenario
#5 sampling frequencies are increased for both items (Ni = 100) and moments (Nm

= 3) resulting in a substantial increase in precision of measurement.
Classical reliability theory, as practiced in the field of career education measure-

ment, is unnecessarily restrictive. Disciples of classical theory compute a number
of equivalence coefficients by correlating student performance on split halves of an
instrument or by computing coefficient alpha (KR-20) for an instrument administered
on a single occasion. Similarly, stability or retest coefficients are computed by corre-
lating student performance on one occasion with performance, say, two weeks later.
Finally, interrater reliability coefficients are computed by correlating the ratings of
two or more raters of the same behavior. Each of these forms of reliability coefficient
reflect a single undifferentiated source of error and, more importantly, derive from
different construct definitions. Coefficient alpha accurately reflects an instrument’s
reliability under the highly restricted construct definition which treats items as the
only random facet and, consequently, the p × i interaction (confounded with the
residual) as the only source of error. The stability coefficient properly reflects an
instrument’s reliability under a construct definition that treats occasions as the only
random source of variance and the persons× occasion interaction as the only source
of error.

It is important to recognize that traditional forms of reliability permit error vari-
ance to be confounded with true score variance because they do not differentiate
among the many possible sources of error. For example, the test-retest reliability
coefficient will not “break out” a p × i interaction and thus that variance will be a
“hidden” component of the true score variance. Likewise, the p × occ interaction
will be a hidden component of the true score variance when calculating coefficient
alpha. This can result in an artificially inflated estimate of true score variance which,
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in turn, results in an inflated reliability coefficient. The attractiveness of generaliz-
ability theory is that it permits simultaneous consideration of items, occasions and
other facets as random sources of error.

Generalizability theory provides a framework that forces us to better conceptu-
alize the constructs we use. Unfortunately many investigators do not invest sufficient
time in construct definition activities. Time and again researchers move ahead to
answer substantive research questions without carefully defining the constructs that
figure in their theories or program evaluations. The most common mistake found in
the behavior sciences is that investigators will state a conceptually broad construct
definition, but will use a reliability estimate that is based on a much narrower defi-
nition, thus yielding a coefficient which exaggerates the precision with which the
construct can be measured. Elsewhere we have argued that career education will go
the way of many previous fads unless, as a field, it can stake out a set of well-defined
constructs and related instrumentation (Stenner et al., 1978). So far, efforts in this
regard have been disappointing.

3 Some Special Applications

Many seemingly diverse issues in measurement can be accommodated within
generalizability theory. Cronbach (1976) states:

What appears today to be most important in G Theory is not what the book gave
greater space to. In 1972 G Theory appeared as an elaborate technical apparatus.
Today the machinery looms less large than the questions that theory enables us to
pose. G Theory has a protean quality. The procedures and even the issues take a new
form in every contest. G Theory enables you to ask your questions better; what is
most significant for you cannot be supplied from the outside (p. 199).

In the discussion to follow we attempt to illustrate the range of applications for
which generalizability theory, coupled with construct definition methodology, can
be useful.

4 Toward a Theory of the Indicant

Ahistorical convention for which we can find no rational explanation has contributed
to avoidance of a potentially fruitful type of construct validation study. The conven-
tion is to report person scores as number of item (or indicants) correct and item
scores as proportion of respondents answering an item correctly. Thus, person scores
and item scores are expressed in different metrics, leading some investigators to
assume that there is some fundamental difference in the way people and items
can be analyzed. For example, construct validity studies often emphasize relation-
ships between theoretically relevant variables and the construct under study and use
the person as the unit of analysis. On the other hand, little work has been done in
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explaining variance in item scores. Some authors, including ourselves, contend that
many career development scales containing items of the multiple choice variety in
fact measure verbal ability and not career maturity (see Westbrook’s chapter in this
volume). One approach to investigating this contention which, on the face, seems
more direct than focusing on person score correlations, would involve predicting
item scores using a set of item readability and syntax measures as well as theoreti-
cally derived ratings of the extent of career maturity called for by each item. If the
readability and syntax measures explain a large proportion of the variance in item
scores and the theory-based ratings explain little of the variance, then it is likely that
the so-called career development items are really verbal reasoning items in disguise.
If a construct is really well defined, then it should be possible to explain the behavior
of indicants of the construct, i.e., explain variance in item or indicant scores. Unfor-
tunately this is a test that few constructs in the behavioral sciences, let alone career
education, have passed.

5 Generalizability of Ratings

Many outcomes in career education do not readily lend themselves to paper-pencil
testing. For example, outcomes such as employability skills, personal work habits
and job interview behavior are better measured by trained observers in either real or
simulated settings. Generalizability theory provides a framework for estimating the
dependability of these ratings.

Suppose a career education program sets about to improve the job interview
behavior of a group of students. Five employers from the local community are called
upon to interview each student and complete a rating scale. One highly informative
design for examining the generalizability of these ratings would be p× i× r (persons
crossed with items crossed with raters). Thus each student would be rated by each
employer on all items. Under this design the broadest permissible construct definition
generalizes over items and raters.

Separate estimates of alpha or interrater agreement would overestimate the preci-
sion with which the construct as defined can be measured. The generalizability coef-
ficient more accurately reflects our measurement precision and provides information
on how the precision can be increased to an acceptable level. One excellent illustra-
tion of this type of analysis is provided by Gilmore et al. (1978). Note that this design
does not include the “occasion” facet. If a sizable p× occ interaction exists, our esti-
mate of measurement precision may be inflated if we have defined our construct to
be stable over time.
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6 Competency Testing

Some career education programs have objectives which state that all students will
attain a particular mastery level in reading and mathematics. In assessing this objec-
tive, instrumentation is needed that has a special kind of reliability. Discussion above
focused on developing instruments thatwouldmaximally differentiate among objects
(e.g., students). In competency or mastery testing, the objective is to differentiate
among twogroups of students, those that have attained theminimal performance level
and those that have not. Generalizability theory provides a framework for studying
the dependability of mastery or competency decisions. The most thorough treatment
of this application of generalizability theory is provided byBrennan andKane (1977).

7 Generalizability of Class Means

Some career education evaluations employ class or school rather than student as the
unit of analysis (Stenner et al., 1978; Brennan, 1975;Kane et al., 1976). Haney (1974)
and Kane and Brennan (1977) have suggested that generalizability theory provides a
conceptually and practically appealing approach to estimating the reliability of class
means. The simplest design from which we can estimate the generalizability of class
means is p:c× i (persons nested within class crossed with items). Note that this is the
familiar persons× items design (from which coefficient alpha is computed) with the
addition that knowledge is available on class membership. Under this design we can
estimate the reliability of persons nested within classes and class means. In a more
complex design such as p:c:s × i, the object of measurement might be persons (p),
classes (c) or schools (s). In general, this typeof split plot design canproveparticularly
useful in an evaluation in which multiple units of analysis (e.g., students, classes,
schools) are employed (Hayman et al., 1979). As a rule, generalizability coefficients
should be computed for each unit of analysis employed in a research or evaluation
study.

In passing we should note that applications of generalizability theory in which
class or school is the object of measurement, have focused exclusively on the mean
or first moment of the distribution. Lohnes (1972), in an excellent but largely ignored
paper, demonstrated that using the variance of a class or school distribution as an
independent variable might also be useful in predicting outcomes. In such studies
interest is centered on differentiating classrooms not in terms of their means, but
rather in terms of their variances while generalizing over occasions or some other
random facet.



Construct Definition Methodology and Generalizability Theory … 29

8 Issues of Test Bias

Much attention and controversy has surrounded the issues of race and sex bias in
testing. Although there are many types of bias, perhaps the most pernicious is that
which gives members of particular racial, ethnic or sex groups unfair advantage in
responding to certain kinds of items. It is somewhat ironical that career education
has as one of its goals eradication of sex role stereotyping (Hoyt, 1975) and yet we
were unable to find any studies of sex bias in career education measurement.

Some forms of item bias can be effectively studied within the framework of
generalizability theory. For example, a simple p: s × i (persons nested within sex
group crossedwith items)will provide information on possible sex bias. In this design
the component of variance related to sex bias is the s× i (sex by item) interaction. If
this component of variance is large then items have a different meaning (i.e., measure
something different) for males and females. Examination of the items contributing
most heavily to the interaction can sometimes lead to explanations for the source
of the bias (e.g., terminology unfamiliar to males or females). Students can also be
nested within race groups to evaluate racial bias or nested within reading level groups
to evaluate the extent to which item meaning is conditional on student reading level.

Although the literature on bias has focused almost exclusively on racial, ethnic and
sex characteristics, the notion of bias is a generic concept. Any characteristic of the
object ofmeasurement which interacts with a random facet represents bias. For social
and other reasons, item scores which are conditional on race and sex (i.e., interact
with race and sex) have received the bulk of attention. From theoretical as well as
practical perspectives, there are other types of bias that pose equally troublesome
problems. For example, items that take on radically different meanings depending
upon the examinee’s reading level are just as invalid as indicators of career maturing
as items that are conditional on sex or race of the examinee.
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Testing Construct Theories

A. Jackson Stenner and Malbert Smith III

Abstract This paper presents and illustrates a novel methodology, construct-
specification equations, for examining the construct validity of a psychological
instrument. Whereas traditional approaches have focused on the study of between-
person variation on the construct, the suggested methodology emphasizes study of
the relationships between item characteristics and item scores. The major thesis of
the construct-specification-equation approach is that until developers of a psycho-
logical instrument understand what item characteristics are determining the item
difficulties, the understanding of what is being measured is unsatisfyingly primitive.
This method is illustrated with data from the Knox Cube Test which purports to be
a measure of visual attention and short-term memory.

The process of ascribing meaning to scores produced by a measurement procedure
is generally recognized as the most ‘important task in evaluating a psychological
measure, be it an achievement test, interest inventory, or personality scale. This
process, which is commonly referred to in the literature as construct validation (Cron-
bach & Meehl, 1955; Cronbach, 1971; Thorndike & Hagen, 1965; Jensen, 1980),
involves a family of methods and procedures for assessing the degree to which a test
measures the trait or theoretical construct the test was designed to measure.

While there is general consensus among measurement theorists regarding the
prominent role of construct validity, theorists and researchers have not articulated a
unified and systematic approach to establishing the construct validity of score inter-
pretations. As Buros (1977) noted in his assessment of the past fifty years in testing,
there has been little progress in the field of testing except for tremendous advances
in computer technology. His observations seem particularly accurate in terms of
the current status of construct validity. Contemporary measurement procedures do
not, in general, provide any more convincing evidence that they are measuring what
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they purport to measure than instruments developed fifty years ago. The absence of
persuasive, well-documented construct theories can be attributed, in part, to the lack
of formal methods for seating and testing such theories.

A major thesis of this paper is that until the developers of a psychological instru-
ment can adequately explain variation in item scores (i.e., difficulty), the under-
standing of what is being measured is unsatisfyingly primitive. Most approaches to
texting and elaborating construct theories focus on explaining person score varia-
tion.1 Cronbach (1971), for example, in his review of construct validity, emphasizes
the formal testing of nomological networks and interpretation of correlations among
person scores on theoretically relevant and irrelevant constructs. Except for isolated
investigations, explaining variation in item scores has not been viewed by methodol-
ogists or practitioners as a particularly protean source of information about construct
validity.

The rationale for giving more attention to variation in item scores is straight-
forward. Just as a person scoring higher than another person on an instrument is
assumed to possess more of the construct in question (i.e., visual memory, reading
comprehension, anxiety), an item (or task) which scores higher (in difficulty) than
another item must be viewed as demanding more of the construct. The key question
deals with the nature of the “something” that causes some persons to score higher
than other persons and some items to score higher than other items. The process by
which theories about this “something” are tested is termed “construct validation.”

There are essentially two routes one can travel in testing construct theories. The
traditional route is the study of between-person variation on the construct. By exam-
ining relationships between potential determinants and construct scores, progres-
sively more sophisticated construct theories are developed. The second, much less
traveled, route involves the study of relationships between item characteristics and
item scores. Thurstone (1923) appears to have set the stage for a half century of
neglect of this latter alternative when he argued:

I suggest that we dethrone the stimulus. He is only nominally the ruler of psychology.
The real ruler of the domain which psychology studies is the individual and his motives,
desires, wants, ambitions, cravings, and aspirations. The stimulus is merely the more or less
accidental fact... (p. 364).

Considering the symmetry in the person and item perspectives on construct vali-
dation, it is somewhat baffling that Thurstone, Terman, Binet, and Goodenough were
so successful in focusing the attention of early correlationists exclusively on person
variation. The practice, adopted early in the 1900s of expressing the row (i.e., person)
as raw counts and column (i.e., item) scores as proportions may have distorted the
symmetry, leading early test constructors, with few exceptions, to abandon variation
in item scores as a source of knowledge about a measurement’s meaning. From the
perspective of construct validation, the regularity and pattern in item-score variation
is no less deserving of exploration than that found in person-score variation. Only

1 Throughout this paper we distinguish “construct theory” from the broader “data theory.” A
construct theory accounts for a regularity in a set of observations generated from a measurement
procedure. A data theory interrelates a set of constructs in a nomological network.



Testing Construct Theories 33

historical accident and tradition have blinded behavioral researchers to the singularity
of purpose inherent in the two forms of analysis.

Perhaps the only exception to this blindness has occurred in the field of cognitive
psychology. This branch of psychology has been very diligent in analyzing items
as a data source in understanding the components of behavior. As Pellegrino and
Glaser (1982) explain, “performance on psychometric test tasks becomes the object
of theoretical and empirical analyses” (p. 275). Similarly, Sternberg (1977, 1980),
Carroll (1976), and Whitely (1981) have focused upon item variation in attempting
to explicate the cognitive processes required by certain psychometric tasks. As the
next section indicates, there are several advantages in adopting such an approach.

1 Advantages in Analyzing Item-Score Variation

There are advantages to studying item-score variation in the process of validating a
construct theory. In this section we shall examine three such advantages.

(1) Stating theories so falsification is possible. There is an obvious need throughout
the behavioral sciences for falsifiable construct theories that are broad enough
to yield predictions beyond those suggested by common sense. Most verbal
descriptions of constructs, as well as construct labels with their trains of conno-
tations and surplus meaning, serve as poor first approximations to deductive
theories regarding what a construct means or what an instrument measures.
These verbal descriptions seldom lead to predictions and thus are not suscep-
tible to challenge or refutation. Outside of the literature on response bias there
are few studies indeed that offer testable alternative theoretical perspectives on
what an instrument measures or what a construct means. Yet history shows that
this type of “challenge research” is precisely what fosters intellectual revolu-
tions (Kuhn, 1970). The behavioral sciences need more of the type of conflict
such studies engender.

A suggested test interpretation is a claim that a procedure measures a con struct.
Implicit in the use of any such procedure is a theory regarding the nature of the
construct being measured. A major problem with the current state of behavioral
science measurement is that it is not at all clear how such claims about construct
meaning can be falsified. Unless and until construct interpretations are framed in
ways that are in practice aswell as in principle falsifiable, the behavioral sciences will
not progress beyond a disjointed collection of instrumentation and methodological
curios.

A major reason for emphasizing item-score variation is that theories about the
meaning of a construct can be precisely stated in the form of a construct specification
equation (discussed at length in the next section). Such an equation embodies a
theory of item-score variation and simultaneously provides a straightforward means
of confirming or falsifying alternative theories about themeaning of scores generated
by a measurement procedure.
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(2) Higher generalizability of dependent and independent variables is possible. Item
scores are typically more generalizable (i.e., reliable) than are person scores. In
a simple persons X items generalizability design with person as the object of
measurement, the error term is divided by the number of items, whereas, if item
is viewed as the object of measurement, the error term is divided by the number
of people. Since most efforts to collect data involve many more people than
items, the item scores are typically more generalizable than are person scores.
Inmost studies involving psychological instrumentswhere the number of people
is greater than or equal to 400, the generalizability coefficient for item scores is
greater than or equal to 0.95. When items from nationally normed instruments
are examined, the generalizability coefficient for item scores generalizing over
people and occasions approaches unity.

It is also true that most measures used as independent variables in construct-
specification equations can be measured with considerable precision. Io studying the
item face of the person by items matrix, it is not unusual to find one’s self analyzing
a network of relationships among variables where each variable has an associated
generalizability coefficient (under a broad universe definition) approaching unity.
For those researchers accustomed to working with error ridden variables, this new
perspective can be refreshing.

(3) Experimental manipulation is possible. Items are docile and pliable subjects.
They can be radically altered without informed consent and can be analyzed and
reanalyzed as new theories regarding their behavior are developed. Similarly,
controlled experiments can be conducted in which selected item characteristics
are systematically introduced and their effects on item behavior assessed. Also,
causal inference is strengthened when one employs items as subjects rather than
people, due to the fact that the experimenter can control items better than people.
Items are passive subjects, whereas people are active subjects on whom only
minimal experimental control can be exercised; threats to the validity of a study
are more likely to be operative when people are studied. All in all, items are
better subjects for experimentation than people. Effects can be estimated and
interpreted with less ambiguity, and the direct experimental manipulation is less
costly and more efficient. Finally, this new perspective should breathe life into
Cronbach’s expressed hope that the experimental method be viewed as a proper
and necessary means of validating interpretations of psychological scores.

2 Construct-Specification Equation

A “measurement procedure” requires (1) an “item format” which details the general
framework of fixed item characteristics within which the item con tent is to be varied,
(2) the “construct-specification equation” which operationally defines the construct
and presents the item characteristics and associated regression weights to be used
in generating items and systematically varying their difficulty, (3) a sampling plan
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for selecting items from the universe bounded by the specification equation, (4) a
plan for selecting persons and assigning then to items, (5) administrative procedures
which govern the con text in which the measurement procedure is administered, and
(6) rules for assigning scores to persons and items.

A construct-specification equation is developed by regressing item scores on
selected characteristics of the items. The results from this multiple regression anal-
ysis yield two important sources of information. First, the R2 index indicates the
amount of variance in item scores accounted for by the model.2 Second, the analysis
provides a regression equation that indicates which characteristics of the items are
important in predicting item scores.

The construct-specification equation expresses a theory regarding observed regu-
larity in a set of observations generated by a measurement procedure. The equation
sets forth a theory of item-score variation and simultaneously pro vides the vehicle
for confirmation or falsification of the theory. Just as important, alternative theoret-
ical formulations can be tested side by side with criteria for priority unambiguously
stated.

As an example, suppose a researcher develops a measure of “career maturity”
and asserts that the 100-item instrument measures “student’s awareness and knowl-
edge about the world of work and his role in it.” Further suppose that another
researcher examines the instrument and concludes that it is merely a poor measure of
“reading comprehension.” Employing the perspective encouraged in this paper, both
researchers would be charged with building specification equations that embody the
two competing construct theories. Both equations would be applied to the same
dependent variable (i.e., same set of item scores) and the data analyzed. If the
reading comprehension theory predominated, the “career maturity” theorist could
revise his instrument systematically controlling reading comprehension while at the
same time either modifying the specification equation to account better for observed
item scores or revising items so that they conform better to predictions generated
from the construct theory. Whatever the outcome of this hypothetical research, the
direct confrontation between construct theories would have sharpened both theory
and instrumentation.

Note that under the present formulation a construct is not operationally defined
by a particular instrument but rather by a corresponding specification equation. The
construct validity of a score interpretation is assessed, in part, by how closely obser-
vations generated from a measurement procedure conform to predictions made by
the specification equation. If a specification equation explains a substantial propor-
tion of variation in item scores, then person scores can be interpreted in light of the
construct theory with increased confidence that such interpretations are valid. A high

2 An “item difficulty” is the p value associated with an instrument and represents the proportion of
respondents answering the item correctly (i.e., .68 or .74). Common sense suggests that such an
index be termed “item easiness” but tradition prevails. And “item score” analogous to a “person
score” is a scaled transformation of the item difficulty. Under the Rasch model the “items scores”
and the “person scores” are expressed in comparable scale units. In addition, the “item scores”
are not dependent on any particular sample of persons, and similarly the “person scores” are not
dependent on any particular sample of items.



36 A. J. Stenner and M. Smith III

R2 increases confidence in the construct theory, aswell as the particularmeasurement
procedure under examination, whereas a low R2 raises doubts about the construct
theory, the instrument, or both.

Similarly, the construct validity of a single item is assessed by themagnitude of its
residual. A small residual indicates that an item conforms well to specifications and
is not measuring unspecified (i.e., unwanted) influences. A large residual suggests
that unspecified sources of item variability account for an item’s score. Note the
constant interplay between formulation of theory and development of an instrument.
Given a specification equation it is possible to develop highly valid items and discard
invalid items with large residuals. Conversely, examination of item residuals may
suggest new variables that can be used to modify a construct theory and improve the
predictive power of the specification equation. Theory and instrument are thus bound
in a dynamic interplay, with a change in one implying modification of the other.

Observations are generated through applications of measurement procedures.
Such observations are meaningless unless interpreted by a construct theory. A good
construct theory explains the observed regularity in a set of observations and thus
imparts meaning to a set of person or item scores. Construct-specification equations
aid us in making explicit our theories about what is being measured by a particular
collection of items. As more comprehensive construct theories emerge, predictions
about observations (on both the person and item face) become more precise, and
broader generalizations are possible.

One pretender to legitimate explanation is the practice of describing the same thing
in a new language and passing the translation off as a contribution to understanding.
As, for example, when judges rate the complexity of a group of test items and this
rating is then employed in accounting for variance in item scores (Kirsch & Guthrie,
1980). Unless the reasoning underlying the judgments is explicated, such activity
contributes little to construct validation. An individual is not incapable of tenderness
because he is unloving and an item is not difficult because it is complex. Such pseudo
explanations are not only theoretically sterile but intellectually quite unsatisfying.

Construct-specification equations provide a useful, objective methodology for
explicating the components which account for the complexity in a set of items. We
turn now to an illustration of how a construct-specification equation can be built and
used.

3 Illustration

To illustrate the development of a “construct-specification equation,” we have
conducted an analysis of data from the Knox Cube Test which purports to be a
measure of visual attention and short-termmemory (Arthur, 1947). The test uses five
1-in. cubes; four of the cubes are fixed 2 in. apart on a board, and the fifth cube is
used to tap a series on the other four. To avoid confusion we will arbitrarily number
the cubes from left to right as “1”, “2”, “3”, and “4”. The easiest item is a two-tap
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item in which the examiner taps cube 2, then cube 3. The most difficult item is a
seven-tap item in which the sequence is 4, 1, 3, 4, 2, 1, 4.

Theoreticians have conceptualized short-term memory as an individual’s “work-
ing” memory span. It is the immediate memory in a person’s cognitive system which
appears to have a very limited capacity in terms of the amount of material that can
be retained and the length of time it can be retained. The limited nature of short-term
memory, in terms of volume of storage, tends to be around 7+ 2 bits of information
(Miller, 1956), while the limit in terms of time appears to be 18 to 20 s. (Gagne,
1977).

Most psychologists have postulated that material is lost (forgotten) from short-
term memory due to two factors, interference and/or time decay. Due to limited
working capacity, the strength of memory traces is diminished as more bits of infor-
mation are presented. As more demands are placed upon short-term memory, the
recall of any particular memory trace becomes more difficult. That is, as the back-
ground complexity increases, the probability of retrieving a particular trace (signal)
from the background (noise) is reduced.

The second determinant of loss from short-term memory is time. The proba-
bility of retrieving an item from short-term memory is negatively correlated with the
passage of time. The longer an item stays in memory, the weaker it becomes, until
at some point it is completely lost.

To assess the extent to which the Knox Cube Test measures the construct, “short-
term memory,” item scores computed on a sample of 101 subjects ages 3–16 year.
were subjected to the previously described analysis. First, the items were arranged
in order of difficulty from the easiest to the most difficult. Second, each item was
carefully examined in an attempt to ascertainwhether items differed fromone another
in ways consistent with a “short-term memory” construct interpretation. In trying
to identify characteristics of the Knox Cube Test items which accounted for their
difficulty, we selected the following attributes: (1) number of taps, (2) number of
reversals, and (3) total distance covered. Table 1 presents difficulty indices for the
items along with the tapping sequence and data on the three identified facets of each
item.

The descriptive statistics for these variables are presented in Tables 2 and 3. Table
2 presents the mean, standard deviation, and range for each variable, while Table 3
presents the correlation matrix.

An examination of these two tables provides several characteristics of the Knox
Cube Test. First, the three identified facets (number of taps, number of reversals, and
distance covered) seem to be important determinants of item difficulty. As the zero-
order correlations indicate, items become harder as the distance covered increases
(r = 0.95), as the number of taps increases (r = 0.94 and as the number of reversals
increases (r=0.87). Second, there is substantialmulticollinearity among the indepen-
dent variables. For example, as the number of taps increases, there are concomitant
increases in the distance covered (r = 0.90) and the number of reversals (r = 0.82).

To develop and refine the construct specification equation, a series of multiple
regression analyses were conducted. First, hierarchical set-wise multiple regression
was utilized in which the three main effects were entered as a first set, and the
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Table 1 Distributions of 106 children’s responses to the Knox Cube Test (taken from best test
design (Wright & Stone, 1979))

Item no Tapping
sequence

Rescaled Rasch
item difficulties

No. of taps No. of reversals Distance covered

2 2-3 1.0 2 0 2

3 1-2-4 1.4 3 0 4

7 1-2-3-4 3.0 4 0 4

4 1-3-4 3.2 3 0 4

6 3-4-1 4.5 3 1 5

5 2-1-4 4.7 3 1 5

8 1-4-3-2 4.7 4 1 6

9 1-4-2-3 5.2 4 2 7

10 1-3-2-4 5.2 4 2 6

15 1-2-3-4-3 5.7 5 1 5

11 2-4-3-1 6.2 4 1 6

13 2-1-4-3 6.4 4 2 6

16 1-2-3-4-2 65 5 1 6

14 4-2-1-3 6.7 4 6

12 3-1-4-2 7.1 4 2 8

18 1-3-2-4-3 8.6 5 3 7

17 1-3-1-2-4 9.2 5 2 8

19 1-4-3-2-4 9.2 5 2 8

20 1-4-2-3-4-1 10.1 6 3 11

21 1-3-2-4-1-3 10.6 6 4 11

22 1-4-2-3-1-4 10.6 6 4 12

23 1-4-3-1-2-4 11.7 6 2 10

25 3-2-4-1-3-4-2 13.0 7 4 12

24 4-1-3-4-2-1-4 13.5 7 3 13

Table 2 Means, standard deviations, and range of four item facets of the Knox Cube Test

Variable M SD Range

Item difficulty 7.00 3.44 1–13.5

Number of taps 4.54 1.32 2–7

Number of reversals 1.75 1.26 0–4

Distance covered 7.17 2.94 2–13



Testing Construct Theories 39

Table 3 Correlations among the four item facets of the Knox Cube Test

No. of taps No. of reversals Distance covered

Item difficulty 0.94 0.87 0.95

Number of tabs 0.82 0.90

Number of reversals 0.90

Table 4 Results of multiple regressional analysis of item difficulties on item characteristics

df SS R2 F p Predictors Beta F

Regression 2 253.23 0.93 139.8 0.01 Distance covered 0.56 14.8

Res, Jual 21 19.03 Number of taps 0.43 8.8

Total 23 272.56

three two-way interactions were entered as a second set. The first set of main effects
accounted for 93% of the variance in item difficulties. Although the addition of the
set of interactions increased the variance explained to 96%, the incremental variance
accounted for was not statistically significant (F = 4.7). In the second analysis, the
three independent variables were entered in a stepwise fashion. The results of this
analysis are presented in Table 4.

An inspection of Table 4 indicates that the construct-specification equation
requires only two variables, distance covered and number of taps. With this two-
variable model, we can account for 93% of the variance in item difficulties; we have a
firm understanding of what is governing item difficulties on theKnoxCube Test. This
model predicts that items become more difficult as the distance covered is increased
and the number of taps is increased. Since there is a high degree of multicollinearity
among the predictors, the regression results were subjected to commonality anal-
ysis. The commonality analysis indicated that each variable accounted for only a
small amount of unique variance. The unique contribution of distance covered and
the number of taps was 0.05 and 0.03 respectively. The variance shared in common
between the two variables was 0.85.

The empirically generated two-variablemodel of theKnoxCube Test is consistent
with our theoretical understanding of the processes which account for loss of infor-
mation from short-term memory. As previously discussed, the loss of information
can be attributed to two factors, interference and time decay, which are highly inter-
related. Distance covered corresponds directly with interference, and the number of
taps serves as a proxy for time decay. Interference, which can be conceptualized as
the ratio of signal to noise, is represented by the distance covered in a sequence. A
two-tap sequence such as “2–3” is easier than a two-tap sequence which is spread
out over more blocks, such as “1–4.” In the latter case, there is more background
noise which the individual must process and filter out.

The second factor, time decay, also has its analogue in the item components in
terms of the number of taps. As the number of taps increases, the string of blocks to
be recalled increases the memory load not only in terms of number but also in terms
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of time. That is, the second individual block tapped in a four-tap sequence must be
held in memory twice as long as the second block in a two-tap sequence.

The construct-specification equation derived from the Knox Cube Test provides
satisfying evidence that it is measuring what it purports to measure. From this illus-
tration, we now have a more clear and precise understanding of what characteris-
tics govern the item difficulties. Difficulty is determined by two item characteris-
tics (distance covered and number of taps) which conform nicely to the previously
discussed construct theory. In addition to providing confirming evidence for the
construct theory, the specification equation has an immediate practical application.
New items, with predictable item difficulties, can be quickly and easily generated by
manipulating the specification equation.

The construct-specification equation provides a means for testing different
conceptualizations of a hypothesized construct. For example, if a researcher suspects
that a self-concept instrument is actuallymeasuring verbal reasoning and social desir-
ability, then this hypothesis can be empirically tested by translating the hypothesis
into a specification equation. If the new equation reflecting the parameters of verbal
reasoning and social desirability of the items ac counts for a large percentage of the
variance, then the test is not measuring the construct its authors intended. Second,
the development and utilization of con struct-specification equations permits the test
designer to control systematically unwanted sources of variation. If a wide range
vocabulary scale was contaminated by items requiring fine discriminations among
word meanings, the resulting construct-specification equation could be employed to
create items which systematically controlled such influences.

Note that issues of item bias and culture-fairness are easily addressed under this
procedure. LISREL (Joreskog, 1976) can be used to test the hypothesis that the
same item-specification equation fits black, white, and Spanish populations. If it
does not, then items with high or low residuals can be identified and either modified
or discarded. Through an iterative procedure, an equation that fits all language and
cultural groups might be identified, ensuring that the measurement procedure is valid
(i.e., measures the same thing) for each group.

An admittedly untested intuitive leap is that for each component identified as an
important determinant of item scores, there exists an analogous person characteristic.
Such an inference could be tested by developing relatively pure component tests and
determining how well person scores on these components predict person scores on
the more componentially complex instrument. Profiles of person scores on these
components might prove more useful to teachers and diagnosticians than current
score profiles computed from scores of unknown composition.3

3 While conceptually very similar to componential analysis (Sternberg, 1977, 1980), the construct-
specification equation approach differs in terms of its orientation and level of inference. Although
bothmethodologies employ linear regressionmodels, componential analysis focuses upon the cogni-
tive process (components) that occur in a task, whereas construct-specification equations focus on
concrete observable characteristics of the task (i.e., item).
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4 Conclusion

As Cronbach (1957) has noted, a test interpretation is a claim that a test measures a
construct:

To decide how well a purported test of anxiety measures anxiety, construct validation is
necessary, i.e., we must find out whether scores on the test behave in accordance with
the theory that defines anxiety. This theory predicts differences in anxiety between certain
groups, and traditional correlational methods can test those predictions. But the theory also
predicts variation in anxiety, hence in the test score, as a function of experiences or situations,
and only an experimental approach can test those predictions (p. 767).

We believe that much can be gained from a more balanced perspective than that
suggested by Cronbach and others with its nearly exclusive emphasis on person score
variation. Let us return the stimulus (i.e., item) to its rightful place on the throne and
let it share equally in the load of testing construct theories. Item-score variation is
far more than an “accidental fact” and much can be learned about how and why
individuals vary from an examination of how and why items vary.
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Toward a Theory of Construct Definition

A. Jackson Stenner, Malbert Smith III, and Donald S. Burdick

The process of ascribing meaning to scores produced by a measurement procedure
is generally recognized as the most important task in developing an educational or
psychological measure, be it an achievement test, interest inventory, or personality
scale. This process, which is commonly referred to as construct validation (Cronbach,
1971; Cronbach&Meehl, 1955; ETS, 1979;Messick, 1975, 1980), involves a family
of methods and procedures for assessing the degree to which a test measures a trait
or theoretical construct.

Theorists and practitioners have not yet articulated a unified and systematic
approach to establishing the construct validity of score interpretations. Contemporary
measurement procedures are not, in general, supported by more convincing evidence
that they are “measuring what they purport to measure” than instruments developed
50 years ago. The absence of persuasive, well documented construct theories can be
attributed, in part, to the lack of formal methods for stating and testing such theories.
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Until the developers of educational and psychological instruments can adequately
explain variation in item scale values1 (i.e., item difficulty). The understanding
of what is being measured will remain unsatisfyingly primitive. In contrast, most
approaches to testing and elaborating construct theories focus on explaining person
score variation. Cronbach (1971), for example, in his review of construct validity,
emphasizes interpretation of correlations among person scores on theoretically rele-
vant and irrelevant constructs. A related approach is the use ofmultimethod-multitrait
matrices of correlations betweenperson scores (Campbell&Fiske, 1959). Explaining
variation in item scale values has rarely been used as a source of information about
construct validity.

The rationale for givingmore attention to variation in item scale values is straight-
forward. Just as a person scoring higher than another person on an instrument is
assumed to possess more of the construct in question (e.g., visual memory, reading
comprehension, anxiety), an item (or task) that scores higher in difficulty than another
item presumably demands more of the construct. The key question deals with the
nature of the “something” that causes some persons to score higher than other persons
and some items to score higher than other items. The process by which theories
about this “something” are tested is termed “construct definition,” where “definition”
denotes specification of meaning (Kaplan, 1964).

Stenner and Smith (1982) illustrate construct definition theory using data from the
Knox Cube Test (KCT). The KCT is purported to measure visual attention and short-
term memory (Arthur, 1947). Five cubes are placed in a row before the examinee,
who is to repeat various tap sequences, ranging from two-tap to seven-tap sequences.

To assess the extent to which the KCT measures short-term memory, item scale
values based on a sample of 101 subjects were analyzed. A two-variable equation
accounted for 93% of the variance in item scale values. The two variables, number
of taps and distance covered between taps, have direct analogues in several theories
about how information is lost from short-term memory (Gagne, 1977; Miller, 1956).
That is, as the number of taps increases and the distance (in number of blocks)
between tapped blocks increases, the combined effects of decay and interference
serve to make the tap sequence more difficult.

Traditional approaches to testing construct theories analyze between-person varia-
tion on a construct. By examining relationships of other variables to construct scores,
progressively more sophisticated construct theories are developed. As noted above,
the study of relationships between item characteristics and item scale values is much
less developed. Thurstone (1923) appears to have set the stage for a half century of
neglect of this alternative when he argued:

1 “Item difficulty” is the p value associatedwith an item and represents the proportion of respondents
answering that item correctly (e.g., 0.38 or 0.74). Common sense would suggest that such an index
be termed “item easiness,” but tradition prevails. Under the Rasch model, the “item scale values”
and “person scores” are expressed in comparable scale units. In addition, the “item scale values”
are not dependent on any particular sample of persons, and similarly, the “person scores” are not
dependent on any particular sample of items.
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I suggest that we dethrone the stimulus. He is only nominally the ruler of psychology.
The real ruler of the domain which psychology studies is the individual and his motives,
desires, wants, ambitions, cravings and aspirations. The stimulus is merely the more or less
accidental fact (p. 364).

Considering the symmetry of the person and item perspectives, it is somewhat
baffling that early correlationists were so successful in focusing the attention of
psychometricians on person variation. The practice, adopted early in this century, of
expressing the row (i.e., person) scores as raw counts and column (i.e., item) scores
as proportions may have distorted the symmetry, leading early test constructors, with
few exceptions, to ignore variation in item scores as a source of knowledge about a
measurement’s meaning. In terms of construct definition theory, the regularity and
pattern in item-scale-value variation is no less deserving of exploration than that
found in person-score variation. Only historical accident and tradition have blinded
educators and psychologists to the common purpose in the two forms of analysis.

1 Terminology

Constructs are the means by which science orders observations. Educational and
psychological constructs are generally attributes of people, situations, or treatments
presumed to be reflected in test performance, ratings, or other observations. We take
it on faith that the universe of our observations can be ordered and subsequently
explained with comparatively small number of constructs. Thurstone (1947) states:

Without this faith, no science could ever have any motivation. To deny this faith is to affirm
the primary chaos of nature and the consequent futility of scientific effort. The constructs in
terms of which natural phenomena are comprehended are man-made inventions. To discover
a scientific law is merely to discover that a man-made scheme serves to unify, and thereby
to simplify, comprehension of a certain class of natural phenomena (p. 51).

The task of behavioral science is to recast the seemingly unlimited number of
variously correlated observations in terms of a reduced set of constructs capable of
explaining variation among observations. For example, “Why does person A have a
larger receptive vocabulary than person B?”, and “Why is the meaning of the word
‘altruism’ known by fewer people than the word ‘compassion’?” The term “receptive
vocabulary” is a construct label that refers simultaneously to the attribute and the
construct theory which offers a provisional answer to these two questions. Construct
definition is the process whereby the meaning of a construct, such as “receptive
vocabulary,” is specified. We impart meaning to a construct by testing hypotheses
suggested by construct theories.
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Themeaning of ameasurement depends on a construct theory. The simple fact that
numbers are assigned to observations in a systematicmanner implies somehypothesis
about what is being measured. Instruments (e.g., tests) are the link between theory
and observation, and scores are the readings or values generated by instruments. The
validity of any given construct theory is a matter of degree, dependent, in part, on
how well it predicts variation in item scale values and person scores and the breadth
of these predictions.

Educational and psychological instruments are generally collections of stimuli
hypothesized to be indicators of a particular attribute. An instrument (or individual
item) may be characterized as being more or less well-specified depending upon
how well a construct specification equation explains observed variation in item
scale values. The specification equation links a construct theory to observations.
As Margenau (1978) stated:

If observation denoteswhat is coercively given in sensation, thatwhich forms the last instance
of appeal in every scientific explanation or prediction, and if theory is the constructive
rationale serving to understand and regularize observations, then measurement is the process
that mediates between the two, the conversion of the immediate into constructs via number
or, viewed the other way, the contact of reason with nature (p. 199).

The construct specification equation affords a test of fit between instrument-
generated observations and theory. Failure of a theory to account for variation in
a set of item scale values invalidates the instrument as an operationalization of the
construct theory and limits the applicability of that theory. Competing construct theo-
ries and associated specification equations may be suggested to account for observed
regularity in item scale values. Which construct theory emerges (for the time) victo-
rious, depends upon essentially the same norms of validation that govern theory
evaluation in other sciences.

Often, a construct theory begins as no more than a hunch about why, after expo-
sure to one another, items and people order themselves in a consistent manner.
The hunch evolves as hypotheses about item and person variation, suggested by
a construct theory, are systematically tested. The specification equation provides a
direct means for hypotheses to interact with measurement such that construct theory
and measurement each force the other into line (Kuhn, 1961).

Several terms to be used later require brief discussion. A response model is a
mathematical function that relates the probability of a correct response on an item
to characteristics of the person (e.g., ability) and to characteristics of the item (e.g.,
difficulty). Several such models are discussed by Lord (1980). Two of the most
popular are the one-parameter Rasch Model (Wright & Stone, 1979) and the three-
parameter logistic model (Birnbaum, 1968). In the former, person ability and item
difficulty are viewed as sufficient to estimate the probability of a correct response.
In the latter, two additional item characteristics, item discrimination and a guessing
parameter, are used.

The response model does not embody a construct theory. The fit of data to a
particular response model can be tested without knowledge of where the data came
from, whether the objects are people, nations, or laboratory animals, or whether the
indicants (i.e., items) are bar presses, scored responses to verbal analogy questions,
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or attitudinal responses. Nothing in the fit between response model and observation
contributes to an understanding of what the regularity means. In this sense, the
response model is atheoretical. Once a set of observations has been shown to fit a
responsemodel, the important task remains of ascribingmeaning to scaled responses.
In a way, the distinction is similar to that between classical reliability and validity.
Like awell-fitting responsemodel, high reliability suggests that “something” is being
measured; but what that “something” is remains to be specified.

Under the present formulation, a construct can, in largepart, bedefined by the spec-
ification equation, whereas a test is simply a set of items from the structured universe
bounded by the equation. This position might be interpreted as a neo-operationalist
perspective on the relationship between construct and test. A more classical opera-
tionalism is exemplified in Bechtoldt’s (1959) critique of construct validity: “Each
test defines a separate ability; several tests involving the ‘same content’ but different
methods of presenting the stimuli or of responding likewise define different abilities”
(p. 677). Our position is that two tests measure the same construct if essentially the
same specification equation can be shown to fit item scale values from both tests.
Note that if the equation fits, it is irrelevant that these two instruments differ radically
in name, method of presentation, scoring, scaling, or superficial appearance of the
items. Similarly, two nominally similar tests that appear to the naked eye to measure
the same construct may found to require different theories and construct labels. Such
has been found to be the case in our research on certain norm-referenced reading
comprehension tests. One publisher varies item difficulties by manipulating vocab-
ulary, sentence length, and syntactic complexity of the reading passages. Another
publisher, however, standardizes these variables over passages within a test level,
and manipulates the logical complexity of the questions asked about each passage.
Substantially different specification equations are needed to explain variation in
item scale values on the two kinds of tests. As the example indicates, even careful,
expert examination of educational and psychological tests may lead to erroneous
conclusions about what a test does or does not measure.

2 Advantages of Focusing on Variation in Item Scale Values

Construct definition theory assigns considerable importance to explaining variation
in item scale values. Availability of a good fitting specification equation is viewed
from both theoretical and practical perspectives as an absolutely essential feature of
a measurement procedure. There are at least four advantages to focusing on item-
scale-value variation as well as person-score variation in ascribing meaning to a
construct.

1. Stating theories so that falsification is possible. There is an obvious need
throughout the behavioral sciences for falsifiable construct theories that are broad
enough to yield predictions beyond those suggested by common sense. Most verbal
descriptions of constructs, or construct labels (with their trains of connotations and
surplusmeaning), are poor first approximations to theories regardingwhat a construct
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means or what an instrument measures. These verbal descriptions seldom lead to
definite predictions andus are not susceptible to challengeor refutation.Outsideof the
response-bias literature (Edwards, 1953, 1970), few studies offer testable alternative
theoretical perspectives on what an instrument measures or what a construct means.
Yet, history reveals that this type of “challenge research” is precisely what fosters
intellectual revolutions (Kuhn, 1970). The behavioral sciences need more of the type
of conflict such studies engender.

A suggested test interpretation is generally a claim that the measurement proce-
dure measures a certain construct. Implicit in the use of any such procedure is a
theory regarding the construct being measured. A major problem with the current
state of educational and psychological measurement is that it is not at all clear how
such claims about construct meaning can be falsified. Construct theories should
be regarded as tentative, transient, and inherently doomed to falsification. A major
reason for emphasizing item scale values is that theories about the meaning of a
construct can be precisely stated in the form of a specification equation. Such an
equation embodies a theory about the universe from which items have been sampled
and simultaneously provides an objective means of confirming or falsifying theories
about the meaning of scores.

2. Generalizability of dependent and independent variables. Estimated item
scale values are typically more generalizable (i.e., reliable) than are person scores. In
a simple person by items (p. xi) generalizability design with person as the object of
measurement, the error variance is divided by the number of items, whereas, if item
is viewed as the object of measurement, the error variance is divided by the number
of people (Cardinet et al., 1976). Because most data-collection efforts involve many
more people than items, the item scale values are typically more generalizable than
are person scores. In most studies involving psychological instruments where the
number of people is equal to or greater than 400, the generalizability coefficient
for item scale values is equal to or greater than 0.90. When items from nationally
normed instruments are examined, the generalizability coefficient for item scale
values generalizing over people and occasions approaches unity.

Many independent variables in construct specification equations can be measured
with a high degree of precision. Thus, in studying the item face of the person by
items matrix, it not unusual to analyze a network of relationships among variables
where each variable has an associated generalizability coefficient (under a broad
universe definition) approaching unity. For those researchers accustomed to working
with error-ridden variables, this new perspective can be refreshing.

3. Ease of experimental manipulation.2 Items are docile and pliable subjects.
They can be radically altered without informed consent and can be analyzed and

2 Although a correlational perspective is adopted in this paper, it should be noted that any number
of other procedures including experimental designs are easily incorporated under the proposed
methodology. Typically, a construct definition study of an existing instrument or instruments will
employ regression or path analytic techniques, whereas a construct definition study of an instrument
under development might employ more traditional experimental methods. The objective in either
case is to understand the features of items responsible for the lawful behavior of item scale values.
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reanalyzed as new theories regarding their behavior are developed. Controlled exper-
iments can be conducted in which selected item characteristics are systematically
introduced and their effects on item behavior assessed. Because the experimenter
can control items better than people, causal inference is simpler when the focus
is on items. Items are passive; people are active subjects on whom only minimal
experimental control can be exercised. All in all, items are better subjects for experi-
mentation than people. Effects can be estimated and interpreted with less ambiguity,
and the direct experimental manipulation is less costly and more efficient. Finally,
this new perspective should breathe life into Cronbach’s (1957) expressed hope that
the experimental method will become a proper and necessary means of validating
score interpretations.

4. Intentions can be explicitly tested. The notion that a test is valid if it measures
what it purports to measure implies that we have some independent means of making
this determination.Of course,we usually do not have an independent standard; conse-
quently, validation efforts devolve into circular reasoning where the circle generally
possesses an uncomfortably small circumference. Take, for example, Nunnally’s
(1967) statement, “A measuring instrument is valid if it does what it is intended
to do” (p. 75). How are we to represent intention independent of the test itself?
In the past, educators and psychologists have been content to represent intentions
very loosely, in many cases letting the construct label and its fuzzy connotations
reconstruct the intentions of the test developers. Unfortunately, when intentions are
loosely formulated, it is difficult to compare attainment with intention. This is the
essence of the problem faced by classical approaches to validity. Until intentions can
be stated in such a way that attainment can be explicitly tested, efforts to assess the
adequacy of a measurement procedure will be necessarily characterized by post hoc
procedures and interpretations. The next section shows that construct specification
equations offer a straightforward means of explicitly stating intentions and testing
attainment.

3 Building a Theory of Receptive Vocabulary

In our daily lives, we use language to communicate with ourselves and others, to
express emotions, to instruct, to abuse, to convey insight and intensity of feeling.
Language is useful in enabling us to remember, in facilitating thought, in creating,
in framing abstractions, and in adopting fresh perspectives.

To illustrate construct definition theory, we have started on a theory for receptive
vocabulary. The theory attributes difficulty of items to three characteristics of stim-
ulus words: (1) common logarithm of the frequency of a word’s appearance in large
samples of written material; (2) the degree to which the word is likely to be encoun-
tered across different content areas (e.g., mathematics, social studies, science, etc.);
and (3) whether the word is abstract or concrete. The theory is restricted in applica-
tion to pictorial representations of primary word meanings in the English language,
and to nouns, verbs, adjectives, and adverbs. The construct theory emphasizes the



50 A. J. Stenner et al.

importance of frequency of contact with words in context and thus is an exposure
theory of receptive vocabulary. Words that appear frequently in writing or in speech
are more likely to be learned, and thus are less difficult than are words that appear
less frequently. Similarly, words that are less dispersed over a range of content areas
(e.g., mathematics, cooking, music) are more difficult than words that are more
widely distributed. Finally, for words of equal frequency and comparable dispersion,
abstract words (i.e., referent cannot be touched, tasted, smelled, seen, or heard) are
more difficult than concrete words.

The construct theory predicts that: (a) words can be scaled from easy to hard;
(b) location on the scale will be highly predictable from a specification equation
combining the three variables described above: and (c) person scores will correlate
with any variable that reflects exposure to language in the environment. Research
support for the last prediction can be marshalled from several suggestive studies that
have found relationships between a child’s verbal ability and the verbal ability of the
teacher (Hanushek, 1972) and parents (Jordan, 1978; Kelly, 1963; Shipman & Hess,
1965; Wolbert et al., 1975). An illustration of how a construct specification equation
is built and tested follows.

The instrument used in the illustration is the Peabody Picture Vocabulary Test-
Revised (PPVT-R), Forms Land M (Dunn & Dunn, 1981).3 The authors state: “The
PPVT-R is designed primarily to measure a subject’s receptive (learning) vocabulary
for Standard American English. In this sense, it is an achievement test, since it shows
the extent of English vocabulary acquisition” (p. 2). Each item has four high quality,
black-and-white illustrations arranged in a multiple-choice format. The subject’s
task is to select the picture that best illustrates the meaning of a word spoken by the
examiner.

The Rasch item scale values for the 350 words of the PPVT-R were used as the
dependent variable in the analysis. The three predictor variableswereword frequency,
dispersion, and abstractness. Word frequency and dispersion of each word were
obtained by referencing each keyed response word in the extensive word sample of
Carroll et al. (1971). The Carroll et al., sample is based upon words selected from
schoolbooks used by third- to ninth-grade students in the United States. The third
measure, abstraction, was based upon independent ratings of each stimulus picture
by two educational psychologists. Each of these predictors is described inmore detail
below.

1. Log frequency.Our early work used the common log of the frequency with which
a word appeared in a running count of 5,088,721 words sampled by Carroll et al.
(1971) from a broad range of written materials. We subsequently discovered
that the log frequency of the “word family” was more highly correlated with
word difficulty. Consequently, this variable was used in the latter stages of our
work. A “word family” included: (1) the stimulus word; (2) all plurals (adding
s or changing y to ies); (3) adverbial forms; (4) comparatives and superlatives;
(5) verb forms (s, d, ed, ing); (6) past participles; and (7) adjective forms. The

3 The authors thank Dr. Gary Robertson and American Guidance Service for providing norming
data for the PPVT-R.
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frequencies were summed for all words in the family and the log of that sum was
entered in the specification equation.

2. Dispersion. This variable is a measure of dispersion of word frequencies over 17
subject categories specified by Carroll et al. (e.g., literature, mathematics, music,
art, shop). It appears to be highly useful in differentiating words that are equally
likely to appear in different kinds of verbal materials from words that tend to
appear only in specialized subject matter. The values for dispersion range from
0 to 1.0. Dispersion approaches the value of 0 for words that are concentrated in
only a few content areas, whereas dispersion approaches the value of 1.0 when
the word is distributed fairly evenly over the entire range of contents.

3. Abstract/concrete.As noted above, the abstract/concrete ratings were made inde-
pendently by two educational psychologists. Although several investigators have
employed a Likert-type scale for the measurement of this variable (e.g., Paivio
et al., 1968; Rubin, 1980), the operational definition of abstraction lends itself to a
dichotomous classification.Thedichotomywas created to differentiatewords that
refer to tangible objects (e.g., car, coin, ice cream) fromwords denoting concepts
(e.g., transportation, money, sweet). Abstract words were assigned a value of 1,
and concrete words were assigned a value of 0. Inter-observer agreement for the
two forms was 92% on Form L and 95% on Form M.

Table 1 presents the means, standard deviations, intercorrelations, raw score
regression equation, and R2 for the PPVT-L and PPVT-M. The construct specifi-
cation equation for Form L explains 72% of the observed score variance in item
scale values. Frequency and dispersion are highly correlated (r = 0.848) indicating
that less frequently appearing words are likely to be concentrated in a small number
of content areas, whereasmore frequently appearingwords tend to bemore uniformly
distributed over content areas. The abstract/concrete dichotomy is moderately corre-
lated with item scale values (r= 0.352) but negligibly correlated with frequency (r=
−0.033) and dispersion (r= −0.081). All relationships are consistent with the expo-
sure theory: Less frequently appearing words are more difficult than more frequently
appearing words, and abstract words are, on average, more difficult than concrete
words.

A comparison of FormsLandM reveals several similarities. First, there is less than
0.15 standard deviation difference in the means of item scale values, frequencies,
and dispersions. The largest difference appears on the abstract/concrete dichotomy
where Form M includes 67% abstract words and Form L only 60%. Second, the
variances are remarkably similar. Third, the pattern of intercorrelations appears to be
largely invariant over forms of the PPVT. Last, the proportions of variance explained
are similar (Form L, R2 = 0.722; Form M, R2 = 0.712.

The combined Form Land M analysis is presented in Table 2. Item scale values
for 350 items were regressed on the three variables in the construct specification
equation. As might be expected, the results are very similar to those obtained in
the individual Form Land M analysis. The R2 on the aggregate data set is 0.713
and the pattern of intercorrelations remains consistent with the previous results. The
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Table 1 Descriptive data and construct specification for forms L and M

Rasch
item
scale
value

Log of
frequency

Dispersion Abstract/
Concrete

Rasch
item
scale
value

Log of
frequency

Dispersion Abstract/
Concrete

Rasch item
scale value

−0.776 −0.736 0.352 −0.783 −0.791 0.359

Log of
frequency

0.848 −0.033 0.870 −0.146

Dispersion −0.081 −0.188

Mean %0.94 1.72 0.49 0.60 98.82 1.80 0.52 0.67

S.D. 26.05 0.86 0.26 0.49 25.95 0.91 0.27 0.47

Regression
coefficients

−17.53 −21.84 16.71 −11.59 −38.65 12.48

Standard
error of
coefficients

2.30 7.68 2.15 2.38 8.18 2.31

R′′′ =
0.722

Rl =
0.712

Table 2 Construct specification equation for combined forms PPVT-R

Rasch item scale
value

Log of frequency Dispersion Abstract/Concrete

Rasch item scale
value

−0.779 −0.763 0.354

Log of frequency 0.859 −0.086

Dispersion −0.130

Mean 98.88 1.76 0.51 0.64

S.D. 25.96 0.89 0.26 0.48

Regression
coefficients

−14.57 −29.73 14.70

Standard error of
coefficients

1.65 5.61 1.57

R′ = 0.713

only discernible difference is in the expected reduction of the standard errors of the
coefficients with the larger data set.4

The amount of shrinkage was examined by cross-validating each equation on data
from the opposite form. When the Form L equation was applied to FormM data, the

4 It should be noted that heterogeneity of the item set is not a satisfactory explanation for the
explanatory powers of the specification equation. We have examined the fit of the equation to items
with drastically restricted ranges and found the R2 to be smaller (as we might expect), but not
dramatically so. Furthermore, the form of the equation remained invariant.
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R2 fell slightly from 0.722 to 0.702. Likewise, application of the Form M equation
to Form L data resulted in a decrement from 0.712 to 0.709. As the cross-validation
studies indicate, the variables in the construct specification equation are stable and
reliable.

In an attempt to improve the amount of variance explained, 50 additional variables
were examined for inclusion in the specification equation. Among the variables
considered were: (1) part of speech; (2) phonetic complexity of the word; (3) number
of letters; (4) modal grade level at which the word appears in school materials; (5)
distractor characteristics; (6) experiential frequency; (7) content classification of
word; (8) semantic features; (9) frequencies based upon the Kucera and Francis
(1967) corpus; and (10) numerous interactions and polynomials. The results of this
search were disappointing in that only negligible improvement in fit was obtained
when the number of variables in the equation was increased to 8, 10, or 12.

4 Conclusion

Throughout the history of educational and psychological measurement, there has
been an abundance of attention to the statistical characteristics ofmeasurement proce-
dures and a disturbing lack of concern for the role that theory plays or should play
in measurement. We have confused quality of measurement with statistical sophis-
tication and high internal consistency coefficients. The related notions of construct
theories and specification equations may provide a vehicle for restoring theory as
the foundation of measurement in psychology and education. One conclusion seems
certain: Much can be learned from attempts at building construct specification equa-
tions for the major instruments used in education and psychology. Our expectation
is that there will be no shortage of surprises once such work begins.
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Most Comprehension Tests Do Measure
Reading Comprehension: A Response
to McLean and Goldstein

A. Jackson Stenner, Ivan Horabin, Dean R. Smith, and Malbert Smith III

Abstract There is nothing wrong with the NAEP reading exercises, the sampling
design, or the NAEPReading Proficiency Scale, these authors maintain. But adding a
rich criterion-based frame of reference to the scale should yield an even more useful
tool for shaping U.S. educational policy.

In the January 1988Kappan, LeslieMcLean andHarveyGoldstein fired off a vitriolic
attack on the design and interpretation of the National Assessment of Educational
Progress.1 In particular, they attacked the “fictional” properties of the NAEPReading
Proficiency Scale “RPS” and concluded with the bold assertion, “In reality, reading
achievement is not unidimensional.”2

Remarkably, this conclusion followed a summary of the NAEP’s study on the
dimensionality of reading, which concluded: “Overall, the four dimensionality anal-
yses of the NAEP reading items indicate that it is not unreasonable to treat the data as
unidimensional.”3 In addition it should be pointed out that the NAEP spent $150,000
trying to reject the unidimensionality hypothesis for reading,4 and this work stands

1 Leslie D. McLean and Harvey Goldstein, “The U.S. National Assessments in Reading: Reading
Too Much into the Findings,” Phi Delta Kappan, January 1988, pp. 369–372.
2 McLean and Goldstein, p. 371.
3 Albert E. Beaton, Implementing theNewDesign: TheNAEP1983–84Technical Report (Princeton,
N.J.: National Assessment of Educational Progress/Educational Testing Service, Report No. 15-
TR20, 1987), p. 273. See also Rebecca Zwick, “Assessing the Dimensionality of NAEP Reading
Data,” Journal of Educational Measurement, Vol. 24, 1987, pp. 293–308.
4 Albert Beaton, personal communication, May 1987.
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as probably the most carefully designed and skillfully implemented study of its kind
in the literature.

For most of this century, debate over the nature of reading comprehension and
over the behaviors measured by reading comprehension tests has waxed and waned.
Why should such questions be so important? The answers to these questions directly
affect the way we measure reading comprehension and the way we teach children to
read.

Comprehension testing and reading instruction in this nation have been frag-
mented into hundreds of objectives, skills, and taxonomies that may well be misdi-
recting the efforts of reading teachers. The dissection of reading comprehension into
a myriad of subskills has been fostered to a great extent by the way reading tests have
been constructed.Whenwe examined the reading comprehension tests inwidespread
use today, we are immediately struck by their diversity. The tests vary greatly in the
subskills each claims to measure. By the same token, item formats vary from single
sentences or paragraphs too lengthy passages. Some involve pictures; some, cloze
responses; and some, separate questions about each passage. The kinds of questions
that are asked of a student also appeared to vary, but some of this diversity may be
the result of the taxonomies used to catalog these differences.

With the sponsorship of the National Institute of Child Health and Human Devel-
opment “NICHHD”, we conducted a study of 3,000 reading comprehension items
appearing on 14 reading comprehension tests, one of which was the NAEP test. Our
study asked the question, is there a common dimension being measured by these
tests? To examine this question, we used the Lexile theory of reading comprehen-
sion,5 which states that the difficulty of text can be predicted from knowledge of the
familiarity/rarity of the vocabulary used and the demands the text places on short
term memory.

For our studywe correlated the difficulties of the test items (provided by published
norms) with the difficulties of the items (as measured by a computer analysis using
the Lexile theory). Table 1 shows the results of our computations, which produced
an average correlation of 0.93.

It seems reasonable to conclude from these results that most attempts to measure
reading comprehension—no matter what the item form, type of prose, or response
requirement—end up measuring a common comprehension factor captured by the
Lexile theory. In short, the majority of reading comprehension tests in use today
measure a construct labeled “reading comprehension.” Furthermore, it should be
evident from Table 1 that the RPS is no more a fiction than our scales derived from
the other 13 tests we examined.

The source of McLean and Goldstein’s confusion regarding the NAEP can be
traced to a failure to separate what a test measures from the usefulness of a score. By
failing to distinguish between what the NAEP Reading Proficiency Scale measures
and how useful it is as a communication device, McLean and Goldstein become their

5 A. Jackson Stenner, Dean R. Smith, Ivan Horabin, and Malbert Smith, “Fit of the Lexile Theory
to Item Difficulties on Fourteen Standardized Reading Comprehension Tests,” paper presented at
the National Reading Conference, St. Petersburg, FL, 1987.
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Table 1 Correlations
between the Lexile measure
of difficulty and the standard
scores for items from 14
reading comprehension Tests

Test Correlation

California achievement test (Form C) 1.00

SRA achievement series 0.99

Comprehensive test of basic skills 0.98

Iowa tests of basic skills 0.98

Lexile test of reading comprehension 0.97

Peabody individual achievement test 0.97

California achievement test (Form E) 0.97

Metropolitan achievement test 0.95

NAEP 0.94

Gates-MacGinitie (Form 2) 0.91

Stanford achievement test 0.90

Gates-MacGinitie (Form 1) 0.89

Woodcock-Johnson battery 0.84

Woodcock-Reading mastery test 0.77

own biggest detractors. The important point they raise about the utili-ty of a score is
obscured and eventually lost amid a welter of non sequiturs.

Bringing meaning to test scores is the single most important activity that test
designers engage in. Two frames of reference for interpreting test scores are generally
distinguished: norm referenced and criterion referenced.

A norm referenced framework for score interpretation involves locating a score in
a normal distribution; usually that distribution is normed on a national sample, and
the result is often expressed as a percentile. This is by far the most commonmeans of
imparting meaning to a score, but it has serious defects if used exclusively. Foremost
among these defects is that knowing that a student reads at the 80th percentile for
fourth-graders nationally does not help a teacher select instructional materials nor
does it tell us what the student can or cannot read. The NAEP has done a splendid
job of providing a normative frame of reference for reading test scores.

It is on the criterion-referenced side that improvement is both necessary and
achievable. The approach to criterion referencing adopted by the NAE P is to equate
points along the Reading Proficiency Scale and test items used in the assessment.
Thus a score of 250 on the RPS is matched with the test items that students who
scored 250 can answer correctly 80% of the time.

Such a strategy for imparting meaning to scores is clearly better than an exclusive
reliance on norm referencing. But it is context-bound in that only items used in the
assessment can be used in describing what a score at any given level means. What
is needed is a method for building a criterion-based frame of reference that is free
from the local context of the assessment. Such a frame of reference would enable us
to ask, for example, what RPS ability score is required for a student to read a local
newspaper with a 75% comprehension rate.
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Fig. 1 Lexile scale of reading

Using Lexile theory, it is possible to construct a scale of the difficulty of “real
world” prose encountered by fourth-grade students, high school seniors, or young
adults trying to find a job. Test scores can be expressed as the expected comprehen-
sion rate for an individual encountering a text with a given predicted “theoretical”
difficulty. An example of such a scale is found in Fig. 1.

The works listed in the far right column of Fig. 1 contain representative sample
passages that differ in difficulty by 100 Lexile increments. (There are also two anchor
titles that are used to establish the extremes of the scale.) These works represent the
kinds of prose that individuals with corresponding Lexile scores can read with a
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75% comprehension rate. To the right of the scale are bands represent-ing national
percentiles for grades 2 through 12.

By juxtaposing thenormative and criterion-based framesof reference, it is possible
to see what a student with a given ability is able to read. This knowledge pro-vides
the teacher with a way to operationalize the meaning of a test score. It can al-so help
the teacher place that student in a basal series or to select appropriate supplemental
materials. Finally, the criterion reference can provide policy makers with a tool that
can be used to answer such questions as the following:

• What proportion of our nation’s fourth-graders can read their fourth-grade basal
readers with at least a 75% comprehension rate?

• What proportion of our nation’s high school graduates can read USA Today with
at least a 75% comprehension rate?

• What ability level is required to comprehend warning labels, tax forms, insurance
policies, etc.?

In Literacy: Profiles of America’s Young Adults, Irwin Kirsch and Ann Jungeblut
note that “the important question facing our society today is not ‘Howmany illiterates
are there?’ but rather “What are the nature and levels of literacy skills demonstrated by
various groups in the population?” The question of the levels of skill can be answered
by means of the existing norm-referenced frame-work. The question of the nature of
those skills, however, requires a rich criterion-based frame of reference.

Thus the policy analyst in Washington, D. C., and the fourth-grade teacher in
Omaha both want to know what students can read. A satisfactory answer to this
question requires a criterion-based frame of reference that is independent of the as-
sessment context. That Lexile framework can yield interpretations of scores in terms
of what students can read at various levels of development, and this frame-work can
easily be imposed on the existing RPS.

McLean and Goldstein argued that “to have relevance for policy, however, such
assessments [as the NAEP] must use measures that are connected to teaching and
learning.”Wehope thatwe havemade it clear that it is through a criterion-based frame
of reference for score interpretation that we link test scores to teaching, learning, and
so-called “real-world” tasks.

There is nothing wrong with the NAEP reading exercises and sampling design-
or with the RPS. Adding a rich criterion-based frame of reference to the RPS should
address the objections of McLean and Goldstein and fashion an even more useful
tool for shaping our nation’s educational policy.
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Measuring Reading Comprehension
with the Lexile Framework

A. Jackson Stenner

Abstract Implicit in the idea of measurement is the concept of objectivity. When
we measure the temperature using a thermometer, we assume that the measurement
we obtain is not dependent on the conditions of measurement, such as which ther-
mometer we use. Any functioning thermometer should give us the same reading of,
for example, 75 °F. If one thermometer measured 40 °, another 250 and a third 150,
then the lack of objectivity would invalidate the very idea of accurately measuring
temperature.

1 Objectivity and the Idea of Measurement

It is this general objectivity that distinguishes physical science measurement from
behavioral science measurement. General objectivity requires a construct theory
embodied in a specification equation that is capable of estimating indicant cali-
brations. When these theory-based calibrations are employed in the Rasch model,
observations (i.e., raw scores) can be converted into measures without relying on
individual or group data on indicants (e.g., items) or objects of measurement (e.g.,
persons). The benefits of these methods include: (1) the construct theory is exposed
to falsification, (2) it is possible to build correspondence tables between observa-
tions and measures with recourse only to theory, (3) a generalized linking solution is
available for placing observations of all kinds on a common scale, (4) a reproducible
unit of measurement can be developed, (5) the framework for fit statistics that is
sample-dependent under the Rasch model becomes sample-independent, and (6) a
complete frame of reference for measure interpretation can be constructed.

This paper shows how the concept of general objectivity can be used to improve
behavioral science measurement, particularly as it applies to the Lexile Framework a
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tool for objectively measuring reading comprehension. We begin with a dialogue
between a physicist and a psychometrician that details some of the differences
between physical science and behavioral science measurement. Building on these
distinctions, we offer a definition of measurement that describes what goes on in
the physical sciences and that represents an attainable ideal of what should go on in
the behavioral sciences. This definition of measurement is formalized in an equation
that turns out to be the Rasch model, with the important difference that indicant
calibrations are obtained via theory, not data. Through the use of theory-based cali-
brations, we achieve a generally objective estimation of the measure parameter in the
Rasch model. The next section of the paper examines the differences between local
objectivity obtained with the Rasch model and general objectivity obtained with a
theory-enhanced version of that model. Next, we report on a 10-year study of reading
comprehension measurement that implemented the concept of general objectivity
through the development of the Lexile Framework. Finally, we summarize several
of the benefits of objective measurement and general objectivity as they might be
realized in the measurement of constructs other than reading comprehension.

2 The Problem of General Objectivity: A Dialog Between
the Behavioral and Physical Sciences

2.1 Psychometrician

As I understand our purpose here today, each of us will solve ameasurement problem
specific to our discipline, and then discuss our respective methods. Since I opened
the dialog, I will present you with your problem first.

In the box in front of you is a long thin glass tube open at one end, some
mercury, and a ruler. Your task is to answer the following question: ‘What change in
temperature is indicated by an increase of five centimeters in column height of the
mercury?’.

2.2 Physicist

I have completed my analysis and found that the answer is 18 ° Fahrenheit.
Mymethodwas straightforward. I calculated the volume ofmercury by first calcu-

lating the capacity of the glass tube and then estimating the fraction of that capacity
occupied by the mercury. Next, I consulted the table of expansion coefficients and
found the equation for mercury. Given the observation (column height of mercury),
I set up an equation and solved for the measure (i.e., temperature) corresponding
to each of two volumes of mercury separated by the indicated five centimeters. For
those of us trained in physics and chemistry, this is a standard measurement problem.
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Through theory, a context is created for expressing an observation as a measure. The
theory enablesme to extract the relevant information from the context surrounding an
observation (what somecall an observationmodel) anduse this information to convert
observations to measures. The theory specifies what is essential to record about the
context of an observation. All other features are either ignored as irrelevant (e.g., the
time of day the thermometer is used) or are considered during the process of obser-
vation (e.g., removing the potential contaminating effects of barometric pressure by
sealing the top of the thermometer).

Now here is your problem: In front of you is a newspaper, USA Today. Your task
is to construct a 50-item reading comprehension test and compute the increment in
reading comprehension that would be reflected in an increase from thirty to forty
correct responses on the test. You may consult any other references you choose.

2.3 Psychometrician

I spent the first few hours generating the 50-item measure and the last two hours
trying to understand how you were able to solve the temperature problem while I
cannot begin to imagine how to solve the reading comprehension problem. If given
more time, I would administer the test to, say, 200 high school seniors, analyze the
data with an appropriate measurement model (e.g., the Rasch model) and report the
difference between 60% correct and 80% correct on some appropriately transformed
logit scale. I can see, however, that this is a very different process from the one you
used in solving the temperature problem.

What I concluded is that I lack a theory and associated equations for transforming
observations into measures. Where possible, I attempt to make up for this lack of
theory by basing instrument calibrations on data instead of theory. Once I frame the
problem in this way, it is clear that all I would need to accomplish what you did with
the temperature problem is a good reading comprehension theory and associated
equations for calibrating the items. Then I could solve the reading comprehension
problem in amanner identical to the one you used in solving the temperature problem.
What is your view?

2.4 Physicist

First of all, I don’t think that most of my colleagues would agree that your data-based
calibration procedure is “measurement”. If you don’t know enough about the items
you use to specify their calibrations independent of data, how in the world can you
be sure that you end up measuring what you intended to measure?

Furthermore, this data-based calibration procedure-used in lieu of theory-seems to
impose a local boundedness on the measures you compute. It seems clear that a new
50-item reading comprehension test administered to a different group of high school
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seniors would yield measures on a different scale than did the first test. Each set of
measures is bound to the particulars of the instrument and local context of measure-
ment. As an aside, might this lack of objectivity in your measurement procedures
partly explain the behavioral sciences’ reliance on significance testing, correlation
coefficients, meta-analytic methods and other metric-insensitive procedures? Could
the excessive use of these methods be the inevitable consequence of working with
measures that lack complete objectivity?

2.5 Psychometrician

In response to your first observation, we have elaborate procedures for validating
inferences from behavioral science measurements. In general, the most persuasive
evidence that we know what we are measuring comes from high correlations among
instruments purporting to measure the same construct.

I will grant you that a construct theory capable of supporting theory-based item
calibrations might prove more persuasive, but at present, we have few such theories.
As for the second observation about lack of objectivity, we attempt to solve this
problem, first, by employing the Rasch model which yields “local objectivity” and
second, by using either a common-persons or common-items linking design, thus
bringing all measures onto one scale. These procedures may appear primitive and
cumbersome, but they do yield a kind of objectivity that is superior to what our
measures have enjoyed in the past.

Finally, from the new perspective you have givenme, I think it likely that, sincewe
have no standard metrics for major behavioral science constructs, it is not surprising
that we would gravitate towards measures of association and inference that ignore
this failing.

2.6 Physicist

Let me try to end on a positive note, for I do believe there is hope.
It should be clear from the temperature problem that measures of temperature

possess a special kind of objectivity (i.e., absolute measures are separated from
the conditions of measurement). The unavoidable consequence of using data-based
calibrations rather than theory- based calibrations when converting observations to
measures is that the resulting measures are expressed in units which, although of
equal intervals, possess a kind of location indeterminacy. The only means I know of
to remove this indeterminacy is to use theory rather than data to calibrate instruments.
If you can develop construct theories and associated equations capable of calibrating
your instruments, it seems possible that your measures can aspire to the kind of
objectivity enjoyed by temperature measurement.
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3 Measurement Defined

Measurement is the process of converting observations into quantities through theory.
Measurement as a “process” implies an “act of ascertainment of findingout” (Leonard
1962, p. 4). The term “observation” refers to the qualitative observation or count,
such as the height of a column of mercury in a thermometer. The “quantity”, or
measure, is the number assigned to the attribute of the object being measured (e.g., a
person). Quantities, unlike other collections of numbers, possess an additive conjoint
property (Luce & Tukey, 1964). The term “theory” in this definition makes clear that
“every instance of measurement presupposes an extensive background of explicitly
confirmed, scientific theory” (Leonard 1962, p. 4).

A construct theory, which, in its more colloquial form, is just a story about what it
means to move up and down a scale, is used to calibrate indicants. Examples of cali-
bration include the placement of lines on the tube of a liquid-in-a-glass thermometer
or the assignment of difficulty calibrations to a series of vocabulary test items. The
theory creates a context in which the observation can be understood as an estimator
for the measure. In the case of the attribute “reading comprehension”, the “process”
is the act of ascertaining the level of reading comprehension attained by a person.

Measurement is a process of which the product is a quantity. The “observation” is
often a raw score or count correct on some set of items. The “quantity” is the amount
of reading comprehension ability that a person possesses expressed in some metric.
The actual conversion of observations into measures through theory is accomplished
using the Rasch (1980) model, which states a requirement for the way that theory
(expressed as item calibrations) and observations (count of correct items) interact in
a probability model to make measures.

4 Local and General Objectivity

Objectivity is the foundation of valid measurement. Indeed, it is central to the whole
idea ofmeasurement.When I report a number to be used as ameasure, the underlying
assumption is that the measure is objective, that is, it has been sufficiently well-
separated from the conditions of measurement that I can ignore these conditions
when I report the measure. As noted earlier, if I report that it is 75 ° Fahrenheit,
the inherent assumption is that the validity of this measure does not depend on any
conditions of measurement, such as which thermometer was used.

As seen in the previous dialog, this objectivity, which is the foundation of physical
science measurement, has not been achieved to the same degree in the behavioral
sciences, although it has been sought after beginning with Thurstone:

It should be possible to omit several test questions at different levels of the scale without
affecting the individual score.
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It should not be required to submit every subject to the whole range of the scale. The
starting point and the terminal point being selected by the examiner should not directly affect
the individual score. (Thurstone, 1926, p. 446)

It is clear that Thurstone believed that person measures should be independent of
the particular items used in the measurement instrument.What is not clear is whether
or not Thurstone intended that relative scores (i.e., differences) or absolute scores
(i.e., point locations) should be free of effects due to indicants. Two years later, he
stated:

The scale must transcend the group measured. One crucial experimental test must be applied
to ourmethodofmeasuring attitudes before it can be accepted as valid.Ameasurement instru-
ment must not be seriously affected in its measuring function by the object of measurement.
To the extent that its measuring function is so affected, the validity of the instrument is
impaired or limited. If a yardstick measured differently because of the fact that it was a rug,
a picture or a piece of paper that was being measured, then to that extent the trustworthiness
of that yardstick as a measuring device would be impaired. Within the range of objects for
which the measuring instrument is intended, its function must be independent of the object
of measurement. (Thurstone, 1928, p. 547)

From 1926 to 1931, Thurstone published examples of “objectivity”, including
weight and height, that suggest an interest in sample-free, absolute measurement,
although all his models result in an approximation of specific objectivity only. Thus
Thurstone’s philosophizing on the attributes of “good” measures focused on general
objectivity (absolute scale locations are independent of the instrument), whereas
his mathematical models and research applications realized only local objectivity
(differences among persons are independent of the measuring instrument) (Stenner,
1994).

Although Thurstone did not use the word objectivity, he clearly had this concept at
the forefront of his thinking. Georg Rasch, however, made objectivity the centerpiece
of a new psychometric model. Rasch (1960) states:

Individual-centered statistical techniques require models in which each individual is char-
acterized separately and from which, given adequate data, the individual parameters can be
estimated. It is further essential that comparisons between individuals become independent
of which particular instruments-tests or items or other stimuli-within the class considered
have been used. Symmetrically, it ought to be possible to compare stimuli belonging to the
same class-’measuring the same thing’-independent of which particular individuals within
a class considered were instrumental for the comparisons. (Rasch, 1980, p. x)

Where this law can be applied, it provides a principle of measurement on a ratio scale of
both stimulus parameters and object parameters, the conceptual status ofwhich is comparable
to that of measuring mass and force. Thus, by way of an example, the reading accuracy of a
child-as ascertained by means of any of the oral reading tests catalogued in the appendix-can
be measured with the same kind of objectivity as we may tell its weight, though not with the
same degree of precision, to be sure, but that is a different matter. (Rasch, 1980, p. 115)

Thus, if a set of empirical data cannot be described by the [Rasch] model, then
complete specifically objective statements cannot be derived from them. Firstly, the
failing of specific objectivity means that the conclusions about, say, any set of person param-
eters will depend on which other persons also are compared. As a parody we might think of
the comparison of the volumes of a glass and a bottle as being influenced by the heights of
some books on a shelf.
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Secondly, the conclusions about the persons would depend on just which terms were
chosen for the comparison, a situation to which a parallel would be that the relative height
of two persons would depend on whether the measuring stick was calibrated in inches or in
centimeters.“ (Rasch, 1968, p. 7)

Thus, in principle, the [Mp’s] stand for properties of the objects per se, irrespective of
which [Ci’s] might be used for locating them. Therefore, they really ought to be appraised
without any reference to the [Ci’s] actually employed for this purpose, just like reading
the temperature of an object should give essentially the same result whichever adequate
thermometer was used. (Rasch, no date, p. 5)

Rasch (1960) coined the term “specific objectivity” and realized that his model
achieved a separation of instrument and measure long sought after, but never
achieved. Whether or not Rasch used a distinction between specific or local and
general objectivity is not clear.

On the one hand, he was always careful to point out that it was comparisons (i.e.,
relativemeasures) that were independent of the instrument, suggesting that he clearly
understood the distinction. On the other hand, his favorite physical science examples
(mass and temperature) clearly possess a more general and complete objectivity not
shared by the reading comprehension tests he developed.

Finally, Wright (1968) offered an accessible and complete statement on specific
objectivity. He wrote:

Let us call measurement that possesses this property ‘objective’. Two conditions are neces-
sary to achieve it. First, the calibration of measuring instruments must be independent of
those objects that happen to be used for calibration. Second, themeasurement of objectsmust
be independent of the instrument that happens to be used for measuring. In practice, these
conditions can only be approximated, but their approximation is what makes measurement
objective.

Object-free instrument calibration and instrument-free objectmeasurement are the condi-
tions that make it possible to generalize measurement beyond the particular instrument used,
to compare objects measured on similar but not identical instruments, and to conceive or
partition instruments to suit new measurement requirements.“ (Wright, 1968).

Wright (1991) continues a quarter-century of exploration of “objectivity” as a
fundamental requirement of measurement. He states:

Objectivity is the expectation and, hence, requirement that the amount and meaning of a
measure has been well enough separated from the measuring instrument and the occasion
of measurement that the measure can be used as a quantity without qualification as to which
was the particular instrument or what was the specific occasion.

Although a measuring occasion is necessary for a measure to result, the utility of the
measure depends on the specifics of the occasion disappearing from consideration. It must
be possible to take the occasion for granted and, for the time being, to forget about it. Were
such a separation of meaning from the circumstances of its occasion not possible, not only
science, but also commerce, and even communication, would become impossible. (Wright,
1991, p. 1)

Thus, objectivity is clearly the cornerstone of all measurement. Measures must be
completely independent of the particular instruments used and the particular condi-
tions of measurement surrounding their use. A critical distinction exists between



70 A. J. Stenner

specific or local objectivity, as achieved by Rasch, and the general objectivity that is
inherent in the concept of measurement used in the physical sciences.

“Local objectivity” is a consequence of a set of data fitting the Rasch model.
When the data fit, differences between object measures and indicant calibrations
are sample-independent. This means that two indicants must be found to differ by
the same amount no matter which sample of objects actually responds to the indi-
cants. Similarly, two objects must be found to differ by the same amount no matter
which samples of indicants (from the relevant universe) are used to implement the
measurement procedure. Consequently, if the data fit the Rasch model then the rela-
tive locations of objects and indicants on the underlying continuum for a construct
are sample-independent.

An ideal, approximated by measures in physics and chemistry (e.g., thermome-
ters), is that absolute location of an object on, for example, the Fahrenheit scale, is
independent of the instruments and conditions of measurement. Temperature theory
is well enough developed that thermometers can be constructed without reference to
any data. In fact, routine manufacture of thermometers occurs without even checking
the calibrations against data with known values prior to shipping the instruments to
customers. Such is our collective confidence in temperature theory.We know enough
about liquid expansion coefficients, gas laws, glass conductivity and fluid viscosity
to construct a usefully precise measurement device with recourse only to theory.

By operating with a construct theory and associated calibration equations, we
achieve general objectivity. Measurement of the temperature of two objects results
in not just sample independence for the difference between their temperatures but
sample independence for the point estimate of each object’s temperature reading.

Under a generally objective measurement framework however, thanks to the suffi-
ciency of raw scores, object measures are also entirely free of any reference to indi-
vidual or group data. In short, specific or local objectivity as achieved with the Rasch
model ensures only that relative measures, that is, the differences between people,
are independent of the conditions of measurement. In contrast, general objectivity
ensures that absolute measures, the amounts themselves, are similarly independent.

The fundamental requirement of a measurement procedure, therefore, is that it be
capable of converting an observation (raw count) into a measure without recourse to
individual or group data on indicants or objects.We call this feature of ameasurement
procedure “general objectivity”:

The difference between local and general objectivity is seen not to be a consequence of the
fundamental natures of the social and physical sciences, nor to be a necessary outcome of the
method of making observations, but to be entirely a matter of the level of sophistication of
the theory underlying the construction of the particular measurement instruments. (Stenner,
1990, p. 111)

We turn now to an application of these methods to the measurement of reading
comprehension.
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5 An Application to Reading Comprehension

Reading comprehension is the most tested construct in education. Among students
aged six to 18, reading comprehension ability probably is measured more frequently
than temperature, height, or weight. It is widely recognized as the best predictor of
success in higher education and on the job performance. Economists and educators
have joined in identifying low literacy rates as a causal factor in the United States’
dwindling economic prowess.

The importance of reading comprehension is underscored in today’s “information
age”, in which the ability to read easily and well has become a survival skill. Even
in production jobs, workers must be able to read complex operational and safety
manuals in order to run the computerized equipment on which the modern factory
depends. Strong reading skills also are necessary for the continuing education that
rapidly changing technology and economic conditions demand, as well as for the
requirements of citizenship, such as keeping up with political issues and current
events.

Sadly, as many as one-third of Americans are functionally illiterate, unable to read
standard adult-level text, such as employee manuals and newspaper articles, with
reasonable comprehension. As the need for strong reading skills for work continuing
education and citizenship rises, these Americans are at an increasing disadvantage.
Hence, the importance that educators and society attach to the construct of reading
comprehension.

The Ninth Mental Measurements Yearbook (Mitchell, 1985) reviews 97 reading
comprehension tests. Associated with each of these tests is a conceptual rationale
(however primitive) and a scale.With no unifying theory for reading comprehension,
it is impossible to convert a raw score (i.e., count correct) on one test into a scale score
on another test. The current status of reading comprehension measurement is remi-
niscent of late seventeenth-century temperature measurement, in which the absence
of a unifying temperature theory resulted in some 30 different scales competing for
favor throughout Europe. The consequence for science and commerce was chaos.
In a similar fashion, the presence of dozens of competing reading comprehension
scales results in confusion for educators, researchers, policy makers, and parents.

6 The Lexile Theory

People communicate using various symbol systems, including mathematics, music,
and language. All symbol systems share two features: a semantic component and a
syntactic component. In mathematics, the semantic units are numbers and operators
that are combined according to rules of syntax into mathematical expressions. In
music, the semantic unit is the note, arranged according to rules of syntax to form
chords and phrases. In language, the semantic units are words. Words are organized
according to rules of syntax into thought units and sentences (Carver, 1974). In
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all cases, the semantic units vary in familiarity and the syntactic structures vary in
complexity. The comprehensibility or difficulty of a message is governed largely by
the familiarity of the semantic units and by the complexity of the syntactic structures
used in constructing the message.

7 The Semantic Component

As far as the semantic component is concerned, it is clear that most operationaliza-
tions are proxies for the probability that a person will encounter a word in context
and thus infer its meaning (Bormuth, 1966). This is the basis of exposure theory,
which explains the way receptive or hearing vocabulary develops (Miller & Gildea,
1987; Stenner et al., 1983). Klare (1963) builds the case for the semantic component
varying along a familiarity-to-rarity continuum, a concept that is further developed
by Carroll et al., (1971), whose word-frequency study examined the reoccurrence
of words in a five- million-word corpus of running text. Knowing the frequency of
words as they are used in written and oral communication provides the best means
of inferring the likelihood that a word will be encountered and thus become a part
of an individual’s receptive vocabulary.

Variables such as the average number of letters or syllables per word are actually
proxies for word frequency. They capitalize on the high negative correlation between
the length of words and the frequency of word usage. Polysyllabic words are used
less frequently than monosyllabic words, making word length a good proxy for the
likelihood of an individual being exposed to them.

Stenner et al., (1983) analyzed more than 50 semantic variables in hopes of iden-
tifying those elements that contributed to the difficulty of the vocabulary items on
Forms L and M of the Peabody Picture Vocabulary Test-Revised (Dunn & Dunn,
1981). Variables includedwere part of speech, number of letters, number of syllables,
themodal grade atwhich theword appeared in schoolmaterials, content classification
of the word, the frequency of the word from two different word counts, and numerous
algebraic transformations of these measures. We then ran correlations between the
logit difficulties of the test items and each predictor variable. We found that the best
operationalization of the semantic component of reading was word frequency.

The word frequency measure used was the raw count of how often a given word
appeared in a corpus of 5,088,721 words sampled from a broad range of school
materials (Carroll et al., 1971). Through exploratory data analysis, we tested the
explanatory power of this variable. This analysis involved calculating the mean word
frequency for each of 66 reading comprehension test passages from the Peabody
Individual Achievement Test (Dunn & Markwardt, 1970). Correlations were then
run between algebraic transformations of these means and the rank order of the test
items. Since the items were ordered according to increasing difficulty, the rank order
was used as the observed item difficulty. The mean of the log word frequencies
provided the highest correlation with item rank order.
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8 The Syntactic Component

Sentence length is a powerful proxy for the syntactic complexity of a passage. One
important caveat is that sentence length is not the underlying causal influence (Chall,
1988). Researchers sometimes incorrectly assume that manipulation of sentence
length will have a predictable effect on passage difficulty. Davidson and Kantor
(1982), for example, illustrate rather clearly that sentence length can be reduced and
difficulty increased and visa versa.

Klare (1963) provides a possible interpretation for how sentence length works
in predicting passage difficulty. He speculates that the syntactic component varies
in the load placed on short-term memory. This explanation also is supported
by Crain and Shankweiler (1988), Shankweiler and Crain (1986), and Liberman,
Mann, Shankweiler, and Westelman (1982), whose work has provided evidence that
sentence length is a good proxy for the demands that structural complexity places
upon verbal short-term memory.

Again, we correlated algebraic transformations of the mean sentence length for
the 66 Peabody Individual Achievement Test (PIAT) reading comprehension items
with item rank order. We found that the log of the mean sentence length was the best
predictor of passage difficulty.

9 The Calibration Equation

We then combined the word-frequency and sentence-length measures in hopes of
producing a regression equation that could explain most of the variance found in any
set of reading comprehension task difficulties. A provisional equation was developed
from a regression analysis of the PIAT reading comprehension items. The log of the
mean sentence length and the mean of the log word frequencies combined to explain
85% of the variance (r = 0.92) in PIAT item rank order.

Using the regression equation produced by this analysis, we assigned theoretical
difficulties to 400 pilot test items (see Fig. 1). The pilot items were ordered by diffi-
culty and administered to approximately 3,000 students ranging from grades two to
12.Misfitting itemswere removed, leaving a total of 262 test items forwhichobserved
logit difficulties were computed using M-scale (Wright, Rossner, and Congdon,
1985).

The mesa plain had an appearance of great antiquity, and of incompleteness; as if,
with all the materials of world-making assembled, the Creator had desisted, gone
away and left everything on the point of being brought together, on the eve of being
arranged into mountain, plain, plateau. The country was still waiting to be made into
a landscape. It looked ____________

A. arid
B. deserted
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C. fertile
D. unfinished

The final specification equation was based upon the observed logit difficulties for
the remaining 262 pilot test items. Again, the sentence length and word frequency
variables were entered into a regression analysis of these logit difficulties. The
resulting correlation between the observed logit difficulties and the theoretical diffi-
culties was 0.97 after correction for range restriction and measurement error. The
respectiveweights produced by the regression run formulated the following equation:

(9.82247 ∗ LMSL) - (2.14634 ∗ MLWF) - constant = Theoretical Logit (1)

where: LMSL = Log of the Mean Sentence Length
MLWF = Mean of the Log Word.

10 The Lexile Scale

Once we established this equation, we re-scaled the theoretical logit difficulties.
The logit scale is limited in that it has no fixed zero and, therefore, comparisons
amongdifferent itemsor different populations are difficult (i.e.,measures lackgeneral
objectivity). The method of imposing such a scale is quite simple.

For example, when a set of test items from a generic achievement test is given
to fifth- graders from Podunk Primary, item difficulties will range from -4 to + 4
logits, centered around the average item difficulty. When the same items are given to
fifth-graders from Excel Elementary, the item difficulties also will be in logits from
-4 to + 4, again centered around the average difficulty. The average zero, however,
floats depending upon the population taking the items. The students fromExcel have,
on average, a higher ability, and so the logit values will be lower (i.e., the items will
appear to be easier). The logit values from the Podunk students will be higher (i.e.,
the items will appear to be more difficult) because the students have less ability.

Relative to a construct theory, though, test items have a fixed difficulty. The
observedvariation in difficulty occurswhen the test item is given to people of different
ability. Unless the logit scores obtained from a test administration are tied to a fixed
zero, there is no way to compare the results of these test items given to two different
populations.

The method of imposing a scale with a fixed zero point is simple. First, identify
two anchor points for the scale. They should be intuitive, easily reproduced, and
widely recognized. For thermometers, the anchor points are the freezing and boiling
points of water. For the Lexile Scale, the anchor points are the text from seven basal
primers for the low end and text from the Electronic Encyclopedia (Grolier, 1986)
for the high end.
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Second, using the regression equation, obtain the logit difficulty of the two
anchors. For the Lexile scale, the mean logit difficulty of the primer material was
-3.3 and the mean logit difficulty for the encyclopedia samples was +2.3.

Third, decide what the unit size should be. For the Celsius thermometer, the unit
size (a degree) is 1/100 of the difference between freezing (0 °) and boiling (100 °)
water. For the Lexile scale the unit size was defined as 1/1000. Therefore, a Lexile
by definition equals l/l000th of the difference between the comprehensibility of the
primers and the encyclopedia.

Fourth, assign a value to the lower anchor. Tominimize the occurrence of negative
Lexile values, we did not use zero as the low-end value, but instead assigned a value
of 200.

Finally, we developed an equation that converts logit difficulties to Lexile cali-
brations. When the regression equation is used to analyze the anchors, the resulting
difficulties are -3.3 logits for the primers and 2.3 logits for the encyclopedia. In
order to set the -3.3 logits for the primer anchor equal to 200, we used the following
equation:

(−3.3 + 3.3) + 200 = 200 Lexiles (2)

The 3.3 that offsets the negative difficulty of the primer now becomes one of
the two constants in the final formula. The second constant is determined when this
equation is made to equal 1200 Lexiles, which is where the encyclopedia has been
located.

[(2.26 + 3.3) ∗ Constant] + 200 = 1200 Lexiles (3)

The second constant turns out to be 180, which is the amount needed to convert
the logit difficulty of the encyclopedia to 1200 Lexile units. The final equation that
converts theoretical logit difficulties produced by the Lexile equation into Lexile
units is as follows:

[(Logit + 3.3) ∗ 180] + 200 = Lexile calibration (4)

Measurements for persons and text are now reportable inLexiles,which are similar
to the degree calibrations on a thermometer. Essentially, the higher theLexilemeasure
for a text, the more difficult the material and the more ability a student must possess
to comprehend the text.

Text measures are located on the Lexile map at the point corresponding to a
person with the ability to achieve 75% comprehension. People are located on the
scale by analyzing their performance on calibrated reading tasks. They are located
on the map at the point where they are forecasted to achieve 75% comprehension. A
person with a Lexile measure of 1000L is expected to answer correctly 75% of native
Lexile items sampled from a text with a 1000L measure. This provides the means
for directly matching a person’s measure with a measure for a text. The difference
between these two measures is used to forecast the comprehension that the person
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will have with that text. Comprehension is always relative to the difference between
person measure and text measure.

The Lexile map can be used to bring meaning to these Lexile measures of text and
persons. This richly annotated four color, poster-sized graphic provides an extensive
list of texts, from novels and non-fiction books to newspapers and magazines, at
various levels of Lexile measurement. The map makes it easy to “see” how reading
develops and to select other reading materials as students progress in their reading
development.

11 Testing the Lexile Equation

A computer program incorporating the Lexile equation is available that analyzes
continuous prose and reports the difficulty in Lexiles (MetaMetrics 1995). In order
to test the power of the theory, we analyzed 1,780 reading-comprehension test items
appearing on nine nationally normed tests (Stenner et al., 1987). The study involved
correlating Rasch item difficulties provided by the publisher with the Lexile cali-
brations generated from the computer analysis of the text of each item. In those
cases where multiple questions were asked about a single passage, we averaged the
reported item difficulties to yield a single observed difficulty for the passage.

We obtained the observed difficulties in one of three ways. Three of the tests
included observed logit difficulties from either a Rasch or three-parameter analysis
(e.g., NAEP). For four others, logit difficulties were estimated based upon item p-
values and raw score means and standard deviations (e.g., CAT). To obtain these
logit difficulties, we used TestCalc (), a computer program for analyzing test data.
Two of the tests provided no item parameters, but in each case items were ordered
on the test in terms of difficulty (e.g., PIAT). For those tests, the observed difficulty
was approximated by the difficulty rank order of the item.

Once theory-based calibrations and data-based item difficulties were computed,
we correlated the two arrays and plotted them separately for each test. The plots were
checked for unusual residual distributions and curvature, and we discovered that the
equation did not fit poetry items or non-continuous prose items (e.g., recipes, menus,
or shopping lists). This indicated that the universe to which the Lexile equation could
be generalized was limited to continuous prose, which still accounts for a majority
of reading material. The poetry and non-continuous prose items were removed and
correlations were again obtained and used to describe the fit of observation to theory.

Two major influences other than model misspecification operate to artificially
deflate the relationship between theory and observation. The first is range restriction
in the item difficulties. Some tests purposely do not cover the full developmental
continuum for reading comprehension. The NAEP (1983), for example, is adminis-
tered to grades four, eight, and 11. As might be expected, the resulting restriction in
the range of item difficulties tends to attenuate the relationship between theory and
data. Thorndike (1949) gives the procedure for correcting a correlation for restriction
in range where the range of the variable in the unrestricted group is known.



Measuring Reading Comprehension with the Lexile Framework 77

A second influence that operates to reduce the correlation between theory and data
is unreliability in the theory-based item calibrations. Theories are rarely perfectly
operationalized. As we have noted, the Lexile equation contains two terms that are
both proxies for the presumed underlying causes of item difficulty. Proxies are imper-
fect substitutes for the theoretical causes and, as such, act to attenuate correlations.
The data-based difficulties, on the other hand, are so well estimated that the reliabil-
ities are typically near 0.99. Stanley (1971) gives the procedure for disattenuating a
correlation for unreliability in one of the variables.

Finally, note that the Lexile analysis was applied only to the passages and did
not include the questions and their respective answers. This decision most likely
introduced error, since it has long been recognized that the questions themselves add
to the overall difficulty of a test item. The magnitude of these influences is difficult to
estimate, but we can safely assume that some of the remaining differences between
theoretical calibrations and data-based difficulties are due to these factors.

Table 1 presents the results of correlating the theoretical calibrations and observed
difficulties. The last three columns of the table show the raw correlation between
observed (O) item difficulties and theoretical (T) item calibrations, with the corre-
lations corrected for restriction in range and measurement error. The mean of the
raw correlations is r(OT) = 0.84. When corrections are made for range restriction and
measurement error, the average disattenuated correlation between theory-based cali-
bration and data-based difficulty in an unrestricted group of reading comprehension
items is R’(OT) = 0.93.

r (OT) = raw correlation between observed difficulties (O) and theory-based
calibrations (T).

R (OT) = correlation between observed difficulties (O) and theory-based calibra-
tions (T) corrected for range restriction.

R’ (OT) = correlation between observed difficulties (O) and theory-based calibra-
tions (T) corrected for range restriction and measurement error.

Table 1 Correlation Between Theory-Based Calibrations Produced by the Lexile Equation and
Data-Based Item Difficulties

Test Number of questions Number of passages r(OT) R(OT) R’(OT)

SRA 235 46 0.95 0.97 1.00

CAT-E 418 74 0.91 0.95 0.98

Lexile 262 262 0.93 0.95 0.97

PIAT 66 66 0.93 0.94 0.97

CAT-C 253 43 0.83 0.93 0.96

CTBS-U 246 50 0.74 0.92 0.95

NAEP 189 70 0.65 0.92 0.94

Battery 26 26 0.88 0.84 0.87

Mastery 85 85 0.74 0.75 0.77

Total grand means 1780 722 0.84 0.91 0.93
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It seems reasonable to conclude from these results that most attempts to measure
reading comprehension, no matter what the item form, type of skill objectives
purportedly being measured, or response requirement used, all end up measuring a
common comprehension factor specified by the Lexile theory (Stenner et al., 1988).

In a second study, we obtained Lexile measures for units within 11 basal series.
It was assumed that each basal series was sequenced by difficulty. So, for example,
the latter portion of a third-grade reader is presumably more difficult than the first
portion of that same book.

Likewise, a fourth-grade reader is presumed to be more difficult than a third-
grade reader. We estimated observed difficulties for each unit in a basal series by
the rank order of the unit in the series. Thus, the first unit in the first book of the
first-grade was assigned a rank order of one and the last unit of the eighth-grade
reader was assigned the highest rank order number. Correlations were computed
between the ranked order and the Lexile calibration of each unit. After correction for
range restriction and measurement error, the average correlation between the Lexile
calibration of text comprehensibility and the rank order of the basal units was 0.99
(see Table 2).

r(OT) = raw correlation between observed rank order (O) and theory-based
calibrations (T).

R(OT) = correlation between observed rank order (O) and theory-based calibra-
tions (T) corrected for range restriction.

R’(OT) = correlation between observed rank order (O) and theory-based
calibrations (T) corrected for range restriction and measurement error.

*Means are computed on Z transformed correlations.
The fact that the Lexile theory accounted for the unit rank ordering of 11 basal

series is all the more noteworthy when we recognize that the series differ in prose
selections, the developmental range addressed, the types of prose introduced (i.e.,

Table 2 Correlations between the Lexile Calibration and The Rank Order of Units

Basal series Number of units r(OT) R(OT) R’(OT)

Ginn rainbow series (1985) 53 0.93 0.98 1

HBJ eagle series (1983) 70 0.93 0.98 1

Scott foresman focus series (1985) 92 0.84 0.99 1

Riverside reading series (1986) 67 0.87 0.97 1

Houghton-Mifflin reading series (1983) 33 0.88 0.96 0.99

Economy reading series (1986) 67 0.86 0.96 0.99

Scott foresman American tradition (1987) 88 0.85 0.97 0.99

HBJ odyssey series (1986) 38 0.79 0.97 0.99

Holt basic reading series (1986) 54 0.87 0.96 0.98

Houghton-Mifflin reading series (1986) 46 0.81 0.95 0.98

Open court headway program (1985) 52 0.54 0.94 0.97

Totals means 660 0.86 0.97 0.99
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narrative versus expository), and the purported skills and objectives they emphasize.
The theory works throughout the full developmental range, from pre-primer (-200
Lexiles to 200 Lexiles) through advanced graduate school material (1400 Lexiles to
1800 Lexiles).

12 Lexile Measures and Probable Error

A fundamental concept in the use of ameasure is “probable error”, or howmuch error
is attributable to that measure. A well-known feature of all measurement procedures
is that repeated measurement of the same thing results in a series of non-identical
amounts. The root mean square of the differences among repetitions is the standard
deviation of the distribution, also called the standard error of measurement (SEM).
This statistic describes how close together are the repeated measurements. The SEM
also defines the prediction interval for the question, “What would happen if we
measured again?”.

There aremanyways of definingwhatwemean by “measuring again”. Definitions
of a “repetition” differ in what facets of the measurement procedure vary from one
repetition to another. As more facets vary, more variation is observed in the replicate
measures and the SEM increases. A highly restricted recipe for replicationmay result
in a smaller SEM, but may overstate the precision of measurement that results from
“normal use” of the measurement procedure.

With regard to the Lexile Framework, if we were to process 20 pages of text again
and again, we would see a standard deviation of 40 Lexiles. Similarly, if we were
to test individuals according to a broad recipe-different items on different days-we
would end up with a standard deviation of 70 Lexiles.

13 Application of the Lexile Scale

One of the major weaknesses of current testing procedures is the limited usefulness
of the normative interpretation of a score. A normative interpretation only expresses
how a student did on the test compared to other students of the same age or grade.
A student’s performance is typically reported as a percentile. A percentile of 65
for a third-grade girl indicates that she scored better than 65% of all third-grade
students involved in the norming study. Percentile scores on standardized reading
tests, however, do not provide any information about what a student can or cannot
read. What does a teacher or parent actually do with a percentile score? What kind
of instruction can a teacher give a student when the only information provided is
that a particular child is reading at the 65th percentile of all third-graders across the
nation?

TheLexile scale is designed to provide both a normative and a criterion-referenced
interpretation of a measure. Since the Lexile scale is based upon the Rasch model,
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the probability of a person answering a reading item correctly is governed only by the
difference between the person’s measure and the task’s calibration. This relationship
is captured in the following equation:

O = ∑
i

e(Mo−Ci )

1+e(Mo−Ci )

O = observation (count correct)

Pni = the probability of a correct response

Mo = the person’s measure

Ci = item calibration
If a person’s measure is equal to the task’s calibration, then the Lexile scale

forecasts that the individual has a 75% comprehension rate on that task. If 20 such
tasks were given to this person, one would expect three-fourths of the responses to
be correct. If the task is more difficult than the person is able, then the probability is
less than 75% that the response of the person to the task will be correct; similarly, if
the task is easier compared to a person’s measure, then the probability is greater that
the response will be correct.

A person with a Lexile ability of 600L who is given a text measured at 600L will
have a 75% comprehension rate. If the same student is given a text measured at 350L,
the forecast comprehension rate improves to 90%. Give the same student a 100L title,
and comprehension improves to 96%. The more a person’s Lexile measure surpasses
the Lexile measure for a task the higher the forecasted comprehension rate. The
more the Lexile measure for a task surpasses a person’s Lexile measure, the lower
the forecasted comprehension rate. See Tables 3 and 4 illustrate the relationship
between person measure, text measure and the forecasted comprehension rate.

Empirical evidence supporting a 75% target comprehension rate, as opposed to,
say, a 50% or 90% rate, is limited. Squires et al., (1983) did find that reading achieve-
ment for second-graders peaked when the success rate reached 75%. A 75% success
rate also is supported by the findings of Crawford et al., (1975). It may be, however,
that there is no one optimal rate, but rather a range in which individuals can operate

Table 3 Comprehension Rates for the Same Individual with Materials of Varying Comprehensi-
bility

Person measure Text calibration Sample titles Forecast comprehension

1000 500 Are You There God? It’s Me,
Marqaret - Blume

96%

1000 750 The Martian Chronicles -
Bradbury

90%

1000 1000 Reader’s Digest 75%

1000 1250 The Call Of The Wild -
London

50%

1000 1500 On the Equality Among
Mankind—Rousseau

25%
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Table 4 Comprehension
Rates of Different Ability
Person with the Same
Material

Person measure Calibrated for Sports
Illustrated

Forecast
comprehension rate

500 1000 25%

750 1000 50%

1000 1000 75%

1250 1000 90%

1500 1000 96%

Note that it is the difference in Lexiles between person and text
that governs comprehension. The difference between a 200L text
and a 450L reader results in the same success rate as with a 600L
text and an 850L reader. Each case produces a 90% comprehension
rate

to improve optimally their reading ability. We have found, however, that te subjec-
tive report of readers reading at 50% comprehension is frustration whereas readers
reading at 75% comprehension report comfort and confidence with the text.

Since the Lexile theory provides complementary procedures formeasuring people
and text, the scale can be used tomatch a person’s level of comprehension with books
that the person is forecast to read with a high comprehension rate. Up to this time,
trying to identify possible supplemental reading for students has, for the most part,
relied on a teacher’s familiarity with the tittles. For example, an eighth-grade girl
who is interested in sports but is not reading at grade level might be able to handle
a biography on a famous athlete. The teacher may not know, however, whether that
biography is too difficult or too easy for the student. The Lexile Framework can
provide a person measure and text measure on the same scale. Armed with this
information, a teacher or parent can plan for success. This ability to provide strong
linkages between test results and reading material, among students, teachers and
parents, and between schools and workplaces is one of the primary advantages of
the Lexile Framework.

Improving student’s progress in reading requires that they read properly targeted
prose accompanied by frequent response requirements. Response requirements
range from having a more competent reader ask occasional questions as the reader
progresses through the prose to embedding questions in the text, much as is done
with Lexile test items. The reason for requiring that readers do more than simply
read is that unless there is some evaluation, there can be no assurance that the reader
is properly targeted and comprehending the material. Students should be given text
on which they can practice being a competent reader (Smith, 1973). The above
approach does not represent a fully articulated instructional theory, but its prescrip-
tion is straightforward. Students should readmore targeted prose and teachers should
monitor this reading with some efficient response requirement. One implication of
these notions is that some of the time spent on skill sheets might be better spent
reading targeted prose with attendant response requirements (Anderson, Hiebert,
Scott, and Wilkinson, 1984).
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As the reader improves, new titles with higher text measures can be chosen to
match the growing person measure, thus keeping the comprehension rate at the
chosen level. In essence, we need to locate a reader’s “edge” and then systematically
expose the reader to text that plays on that edge. When this approach is followed in
any domain of human experience, the edgemoves and the capacities of the individual
are enhanced.

What happens when the “edge” is over-estimated and repeatedly exceeded? In
any kind of physical exertion, if you push beyond the edge you feel pain; if you
demand evenmore performance on the part of the muscle, you will experience severe
muscle strain or ligament damage. In reading, playing on the edge is a satisfying and
confidence-building activity, but exceeding that edge by over-challenging readers
with materials well out of their reach reduces self-confidence, stunts growth and
eventually results in the individual “tuning out”. With the tremendous emphasis
placed on reading in daily activities, virtually every encounter with written text
becomes a reconfirmation of a poor reader’s inadequacy. Is it any wonder that 15 to
20% of U. S. high school students decide to find some other way to spend their days
(Hahn, 1987)?

For students to become competent readers, they need to be exposed to text that
results in a comprehension rate of 75% or better. If an 850L reader is faced with
an 1100L text (resulting in a 50% comprehension rate), there will be too much
unfamiliar vocabulary and too much of a load placed on the reader’s tolerance for
syntactical complexity for that reader to attend to meaning. The rhythm and flow of
familiar sentence structures will be interrupted by frequent unfamiliar vocabulary,
resulting in inefficient chunking and short-term memory overload. When readers are
properly targeted, they read fluently with comprehension; when improperly targeted,
they struggle both with the material and with maintaining motivation and their self-
esteem. In reality, there are no poor readers-only mistargeted readers who are being
challenged inappropriately.

Leading researcher Jeanne S. Chall states that the Lexile Framework, while under-
girded by highly sophisticated statistical procedures, stands firmly in the tradition
of classic readability formulas with its emphasis on comprehension as a function of
semantic and syntactic components. In contrast with cognitive-structural readability
researchers, she notes that the developers of the Lexile Framework view compre-
hension as a unidimensional ability that subsumes different types of comprehension.
Under the Lexile theory, no special consideration is given to prior or special subject
knowledge.

Chall also points out several unique features of the Lexile Framework, including
the use of calibrated scores to represent equal units of difficulty and the fact that
the same scores measure both the difficulty of text and the ability of readers. These
Lexile scores correlate well with nine classic readability formulas and with item
difficulties on several tests of reading comprehension (Chall, 1995).
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14 Benefits of Objective Measurement

What has been proposed in this paper can be characterized as a minor adjustment
to a well-known model that results in profound implications for what we can do
with behavioral science measures. Truly objective measurement can be achieved by
simply replacing the data-based difficulties of the Rasch model with theory-based
calibrations. When this is done, several benefits accrue: (1) the construct theory is
exposed to falsification, (2) it is possible to build correspondence tables between
observations and measures with recourse only to theory, (3) a generalized linking
solution is available for placing observations of all kinds on a common scale, (4) a
reproducible unit of measurement can be developed, (5) the framework for fit statis-
tics that is sample-dependent under the Rasch model becomes sample-independent,
and (6) a complete frame of reference for measure interpretation can be constructed.

15 A Refutable Construct Theory

Aconstruct theory is a story aboutwhat itmeans tomove up and down a scale. A spec-
ification equation is a regression model, based on the theory, that forecasts indicant
calibrations on the scale. To the extent that the theory is adequate and the specification
equation forecasts accurately, it is possible to achieve generally objective parameter
estimation. Construct theories embodied in specification equations are exposed to
test and falsification. Through such attempts at falsification, construct theories are
sharpened, specification equations are made more accurate and understanding of
what our measures, in fact, do measure is enhanced.

16 Correspondence Tables via Theory

Measurement is the process of converting observations into quantities through theory.
The graphic that represents the essential correspondence between observation and
measure (i.e., quantity) is termed a “correspondence table”. This table is constructed
via theory in physical science measurement and via data in behavioral science
measurement. General objectivity means that two observers will arrive at the same
numbers to assign as a measure, given that they begin with the same observation.
Objectivity refers to the process of converting observations into measures and is not
meant to imply that two applications of the same measurement procedure will arrive
at identical measures.
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17 A Generalized Linking Solution

Rasch measurement recognizes two linking designs: common objects and common
indicants. Under the common-objects design, different instruments (sets of indi-
cants) are administered to the same sample of objects, thus establishing calibration
differences between the various measurement procedures. The common-indicants
design involves administering a sub-set of indicants taken from two or more instru-
ments to a sample of persons and using the differences in mean calibrations to
equate scales. Unfortunately, the most frequently encountered situation that requires
a linking procedure involves two tests that share no indicants and that have not
been administered to the same group of persons. This situation has been considered
intractable.

Objective measurement provides a means for linking or equating instruments in
the case of uncommon objects and uncommon items. The procedure uses a common
theory embodied in a common specification equation to link instruments. The speci-
fication equation provides theory- based calibrations for each indicant, thus equating
all measures of a construct to a common theory-referenced scale. Under this new
procedure, all reading comprehension tests developed in the last century can now be
placed on a common scale (Stenner et al., 1988).

18 A Reproducible Unit of Measurement

Most units of measurement used in the behavioral sciences are fractions of some
sample standard deviation. The unit, as such, cannot be reproduced in the same way
that a degree Celsius can be reproduced, but an approximation can be gained through
a common-objects or common-indicants design.

A sounder strategy is to select as a unit some fraction of the difference between
two publicly reproducible states or artifacts. In the case of the Celsius scale, the
unit is l/100 of the distance between freezing and boiling “normal” water at sea
level. In the case of the Lexile framework, the unit is 1/1000 of the distance between
the comprehensibility of first-grade primers and encyclopedias. This unit also is
reproduced easily from the Lexile theory and associated specification equations.

19 Model Fit

Objective measurement shifts the focus away from fit to the model to theory and
measure validation. Theory validation is tested by checking the correspondence
between theory-based and data-based estimates of indicant parameters. The analysis
of interest is the plot between theory-based calibrations of the indicant and data-
based difficulties. The construct theory and associated specification equation is well
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confirmed to the extent that the above correlation approaches r = 1.0 upon repeated
application of the specification equation to indicants from different instruments.

Measure validation corresponds to person fit in the Raschmodel and uses the iden-
tical statistics and interpretive framework. The difference is that Rasch measurement
does not require an a priori statement of intention. Rather, “intention” is arrived at
a posteriori in the form of estimated difficulties. Fit is then checked against this
data-dependent statement of intention. Surely, intention must be stated prior to data
analysis and its argument must be framed in language that moves beyond the imme-
diate materials and moment of measurement. Objective measurement through the
specification equation and theory-based indicant calibrations makes an explicit a
priori statement of intention. Whether our intention is realized is examined at the
theory or specification equation level and at the individual object measure level.
Thus, we speak of construct theory validation and of measure validation.

Elsewhere, we have argued that the conventional approach to validity confuses
the question of whether an instrument measures what it is intended to measure with
the question of how useful the obtained measures are in the description and predic-
tion of phenomena (Stenner et al., 1988). Objective measurement clearly distin-
guishes between these two questions. It is quite possible for an instrument to generate
measures that are valid in the sense discussed above, but have no known use. The
absence of measure utility, however, does not mean the construct theory is invalid or
that the measures produced are invalid. On the other hand, low theory validity and
or measure validity does reduce the expected utility of a measure.

20 Frames of Reference

For most of this century, the dominant frame of reference for score interpretation
has been a normative one. Early attempts at criterion-reference score interpretation
either emphasized objectives or proposed so-calledmastery or cut-scores. The former
generally had little to do with what was actually being measured by an instrument
and the latter proved unsatisfyingly primitive as a means of attaching meaning to
various score levels.

Perhaps the best-known break with this tradition was the scale annotation
procedure illustrated by Thurstone (1925), used to good advantage by Woodcock
(1974) and now employed by NAEP (1987). The Keymath test manual (Connolly,
Nachtman & Pritchett, 1971) provided a graphic that annotated selected points along
the scale with items taken from the test. The test user could examine these items and
“see” the progression in math ability as scale scores increased.

This criterion-referencing procedure represented a major advance over objective-
based and mastery-level procedures. The disadvantage is that the annotation proce-
dure is context-bound. Only items used in the test or linked to the test through a
common-objects or common-indicants design can be used in the annotation process.
With objective measurement, the specification equation can be used to build a rich
criterion frame-of-reference that is independent of any particular set of indicants. In
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the reading comprehension domain, for example, a specification equation is used to
generate Lexile measures for books and periodicals. These titles are then arranged
along the scale to describe what readers at various levels of reading comprehension
can read at selected comprehension rates. We refer to this process as scale specifica-
tion. It is distinguished from scale annotation by the use of specification equations
that can compute theory-based calibrations (in a common metric) for any task from
the construct universe governed by the construct theory. Just as we don’t need data
to know what a particular hash mark on a thermometer means, we don’t need data
to know what a given raw count or raw score means on a theory-referenced task or
measure.

Most, if not all, norms in use today reflect norm-group performance on a particular
test. Rasch measurement practitioners and theoreticians have written on the prospect
of norming a reference scale (Wright & Stone, 1979), but, in the absence of general
objectivity, it has not beenworth the effort. Objectivemeasurement changes this state
of affairs. Since absolute scale locations for persons are sample-independent, when
measures are generally objective, it makes sense to norm-reference the measurement
scale and not just scores produced by a single instrument. Once this has been done
and a norm-maintenance program has been established, all past and future measures
of the construct in question are norm-referenced.
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Readability and Reading Ability

Benjamin D. Wright and A. Jackson Stenner

1 Uniform Measures

Theworld of education has long beenwaiting for a sunrise. Believe it or not, a popular
compilation of educational tests lists 97 different reading tests (Mitchell, The Ninth
MentalMeasurements Yearbook, University of Nebraska Press, 1985). This situation
produces 97 different “reading ability measures.” What a mess! But now, with the
dawn of uniform educational measures, the sun is rising here in Melbourne.

When I was a physicist, I came to appreciate the essential part uniform measures
play in science. In the seventeenth century, there were many ways to observe the
effects of heat. It was thought, therefore, that there were many kinds of heat. That
was a brutal barrier to progress. Nevertheless, seventeenth century scientists thought
theywere observing “57 varieties.” After all, is not bathtub heat different from teacup
heat, different from cauldron heat, different from fireplace heat—all of which are
different from the heat of the sun? Eventually, it was discovered that it was not only
desirable but also necessary to have just one kind of heat. Today, for science and
commerce, we do our thinking about heat in terms of one entirely abstract unit, the
“degree.” Whether it’s a Kelvin, Celsius, or Fahrenheit degree does not matter. We
know exactly how to get from one to another. They all measure, what we insist is,
the same one kind of heat. Measures are older than talking. Birds measure. So do
bees. Our own measures evolved from our bodies—our feet, our arms, our hands,
our fingers. An inch is the distance from thumb to knuckle. A span is the distance
between thumb tip and little finger. A cubit is the length of a forearm. A fathom is
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2. The length of one curtain shall be eight and twenty cubits, and the breadth of one 
curtain four cubits; and every one of the curtains shall have one measure.

Fig. 1 Exodus 26

13. Thou shalt not have in thy bag diverse weights, a great and a small.  14. Thou shalt not 
have in thine house diverse measures, a great and a small.  15. Thou shalt have a perfect 
and just weight, a perfect and just measure.

Fig. 2 Deuteronomy 25

the distance between outstretched arms. A pace is two steps. A furlong is 200 paces.
A mile 1,000.

Abstractly equal units of length were counted on before the oldest fragments of
writing. Figure 1 is Moses’ plan for the Tabernacle.

Without approximations to equal units, Babylonians, Egyptians and Hebrews
could not have imagined, let alone built, their towers.

Fair measurement is embedded in Judeo-Christian morality. But the “perfect and
just measure” demanded in Deuteronomy 25, Fig. 2, is an ideal that can only be
approximated in practice.

The “weight” referred to is a shekel stone, understood to weigh 11.4 oz. However,
archeologists have never found two shekel stones that weighed exactly the same. No
technology, no matter how advanced, can fabricate perfect weights. Nevertheless,
even when Deuteronomy was written, we already understood the essential necessity
and justice of fair units.

The necessity of uniformity in the representation of quantity appears again inKing
John’s Magna Carta, Fig. 3. Without the ideal of uniform measures, there would be
no money. There would be no fitted clothes, because there would be no way to fit
them. Imagine what life would be like if there were no abstract unit of length like
the inch.

Suppose that taking an inch were complex—differing with every situation and
material. Imagine that wood inches were different from brick inches, were different
from steel inches. We would not have civilization. We would have a mess—a mess
like the mess that permeates most of what we misleadingly refer to as “educational
tests and measurements.”

35.  There is to be one measure of wine and ale and corn within the realm, namely the 
London Quarter, and one breadth of cloth, and it shall be the same with weights.

Fig. 3 The Magna Carta
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A Ruler of Science-....-..-.,...

Fig. 4 A tree of knowledge

2 The Evolution of Science

The study of any subject begins with tangles of speculations. Ideas branch in all
directions. But as we work through the tangle, we connect what we experience with
what we see. We coax our ideas into shape, form unities, develop lines of inquiry.
We fit our ideas together and make them something. We evolve our bush of ideas
into a tree of knowledge, Fig. 4.

The bush was a tangle. The tree has direction. Our final step in wrestling a useful
abstract assertion from a complex concrete confusion is to carve a ruler out of our
tree. The ruler does not exist until we imagine it and carve it. The carving is not
perfect. It is just an approximation. But what it approximates—a perfectly straight
line—enables us to use it as though it were marked off in perfectly equal intervals.

We can pace off land in somewhat equal steps. But steps inevitably vary according
to conditions. To produce reliable measurements, we need something more repro-
ducible than pacing. The scientific measurement of length was born as we connected
our experience of stride with man made marks on straight pieces of wood extracted
from tree trunks. A piece of tree is more stable than anyone’s paces. A ruler does
not change its bench marks. When we grow a confusing bush of tangled ideas into a
tree of useful knowledge and make a ruler, then we can plan and build a pyramid, a
temple, a house—and also measure the height of a child (Rasch, 1980).

3 The Imaginary Inch

An inch is pure, abstract and without content. It has no meaning of its own. It is an
imaginary unit of length. A height of inches, however, has meaning. As we grow,
we learn the advantages to growing taller. Brick size has meaning. As we build, we
learn the advantages of same-sized bricks. What makes bricks useful is that their
interchangeability is maintained by approximations to the fiction we call an inch.
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It is essential that our idea of an abstract inch is always the same. If we let our
idea of an inch change each time we made a measure, we would not produce useful
bricks or keep track of a child’s growth. As our child grew, we would not know by
how much they had grown. But with a uniform unit of measure, like an inch, we can
measure the height of our children, we can refer to last year—or perhaps to the height
of an average second grader because, as it turns out, child height is related to school
grade. We can guess what grade a child is in by how tall they are–and how tall they
are by what grade they are in. That is an understanding based entirely on applications
of rulers. The applications would be useless without that single, unvarying inch that
our rulers approximate.

No metric has content of its own. The ruler, with its equal measurement units is
merely an approximate realization of a pure idea—an ideal which we invented from
tangled experiences of length—invented to make uniformmeasures available for any
application we care to undertake.

4 One Kind of Reading Ability

Let’s turn to the measure of reading. We can think of reading as the tree in Fig. 5.
It has roots like oral comprehension and phonological awareness. As reading ability
grows, a trunk extends through grade school, high school and college branching at
the top into specialized vocabularies. That single trunk is longer than many realize.
It grows quite straight and singular from first grade through college.

Reading has always been the most researched topic in education (Thorndike,
1965). There have been many studies of reading ability, large and small, local, and
national. When the results of these studies are reviewed, one clear picture emerges.
Despite the 97 ways to test reading ability (Mitchell, 1985), many decades of empir-
ical data document definitively that no researcher has been able to measure more
than one kind of reading ability. This has proven true in spite of intense interest in
discovering diversity. Consider three examples: the 1940s Davis Study, the 1970s
Anchor Study and six 1980s and 1990s ETS studies.

4.1 Davis—1940s

Fred Davis went to a great deal of trouble to define and operationalize nine kinds of
reading ability (1944). He made up nine different reading tests to prove the separate
identities of his nine kinds. He gave his nine tests to hundreds of students, analyzed
their responses to prove his thesis, and reported that he had established nine kinds
of reading. But when Louis Thurstone reanalyzed Davis’ data (1946), Thurstone
showed conclusively that Davis had no evidence of more than one dimension of
reading.
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Fig. 5 A tree of reading

4.2 Anchor Study—1970s

In the 1970s, worry about national literacy moved the U.S. government to finance a
national Anchor Study (Jaeger, 1973). 14 different reading tests were administered
to a great many children in order to uncover the relationships among the 14 different
test scores. Millions of dollars were spent. Thousands of responses were analyzed.
The final report required 15,000 pages in 30 volumes—just the kind of document
one reads overnight, takes to school the next day and applies to teaching (Loret et al.,
1974). In reaction to this futility, and against a great deal of proprietary resistance,
Bashaw and Rentz were able to obtain a small grant to reanalyze the Anchor Study
data (Rentz & Bashaw, 1975, 1977). By applying new methods for constructing
objective measurement (Rasch, 1980; Wright & Stone, 1979), Bashaw and Rentz
were able to show that all 14 tests used in the Anchor Study—with all their different
kinds of items, item authors, and publishers—could all be calibrated onto one linear
“National Reference Scale” of reading ability.

The essence of the Bashaw and Rentz results can be summarized on one easy-to-
read page (1977)—a bit more useful than 15,000 pages. Their one page summary
shows how every raw score from the 14 Anchor Study reading tests can be equated to
one linear National Reference Scale. Their page also shows that the scores of all 14
tests can be understood as measuring the same kind of reading on one common scale.
The Bashaw and Rentz National Reference Scale is additional evidence that, so far,
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no more than one kind of reading ability has ever been measured. Unfortunately,
their work had little effect on the course of U.S. education. The experts went right
on claiming there must be more than one kind of reading—and sending teachers
confusing messages as to what they were supposed to teach and how to do it.

4.3 ETS Studies—1980s and 1990s

In the 1980s and 1990s, the Educational Testing Service (ETS) did a series of studies
for theU.S. government. ETS (1990) insisted on three kinds of reading: prose reading,
document reading and quantitative reading. They built a separate test to measure
each of these kinds of reading—greatly increasing costs. Versions of these tests
were administered to samples of school children, prisoners, young adults, mature
adults, and senior citizens. ETS reported three reading measures for each person and
claimed to have measured three kinds of reading (Kirsch, Jungeblut, & Campbell,
1991). But reviewers noted that, no matter which kind of reading was chosen, there
were no differences in the results (Kirsch & Jungeblut, 1993, 1994; Reder, 1996;
Salganik & Tal, 1989; Zwick, 1987). When the relationships among reading and age
and ethnicity were analyzed, whether for prose, document, or quantitative reading,
all conclusions came out the same.

Later, when the various sets of ETS data were reanalyzed by independent
researchers, no evidence of three kinds of reading measures could be found (Bern-
stein & Teng, 1989; Reder, Rock & Yamamoto, 1994; 1996; Salganik & Tai, 1989;
Zwick, 1987). The correlations amongETS prose, document and quantitative reading
measures ranged from0.89 to 0.96. Thus, once again and in spite of strong proprietary
and theoretical interests in proving otherwise, nobody had succeeded in measuring
more than one kind of reading ability.

5 Lexiles

Figure 6 is a reading ruler. Its Lexile units work just like the inches. The Lexile ruler
is built out of readability theory, school practice, and educational science. The Lexile
scale is an interval scale. It comes from a theoretical specification of a readability
unit that corresponds to the empirical calibrations of reading test items (Rasch, 1980;
Stenner, 1997). It is a readability ruler. And it is a reading ability ruler.

Readability formulas are built out of abstract characteristics of language. No
attempt is made to identify what a word or a sentence means. This idea is not new.
The Athenian Bar Association used readability calculations to teach lawyers to write
briefs in 400 B.C. (Chall, 1988; Zakaluk & Samuels, 1988). According to the Athe-
nians, the ability to read a passagewas not the ability to interpretwhat the passagewas
about. The ability to read was just the ability to read. Talmudic teachers who wanted
to regularize their students’ studies, used readability measures to divide the Torah
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Fig. 6 Educational status by
average Lexile

readings into equal portions of reading difficulty in 700 A.D. (Lorge, 1939). Like the
Athenians, their concern in doing this was not with what a particular Torah passage
was about, but rather the extent to which passage readability burdened readers.

In the twentieth century, every imaginable structural characteristic of a passage
has been tested as a potential source for a readability measure: the number of letters
and syllables in a word; the number of sentences in a passage; sentence length;
balances between pronouns and nouns, verbs and prepositions (Stenner, 1997). The
Lexile readability measure uses word familiarity and sentence length.

5.1 Lexile Accuracies

Table 1 lists the correlations between readability measures from the ten most studied
readability equations and student responses to different types of reading test items.
The columns of Table 1 report on five item types: Lexile Slices; SRA Passages;
Battery Test Sentences; Mastery Test Cloze Gaps; Peabody Test Pictures.

The item types span the range of reading comprehension items. The numbers in
the table show the correlations between theoretical readability measures of item text
and empirical item calibrations calculated from students’ test responses. Consider the
top row. The Lexile readability equation predicted how difficult Lexile slices would
be for persons taking a Lexile reading test at a correlation of 0.90, the SRA passage
at 0.92, the Battery Sentence at 0.85, the Mastery Cloze at 0.74 and the Peabody
Picture at 0.94 (Stenner, 1996, 1997). With the exception of the cloze items, these
predictions are nearly perfect. Also note that the simple Lexile equation, based only
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Table 1 Correlations between empirical and theoretical item difficulties

Ten readability
equations

Lexile slice Five SRA
passage

Test item types
battery sentence

Mastery cloze Peabody picture

Lexile 0.90 0.92 0.85 0.74 0.94

Flesch 0.85 0.94 0.85 0.70 0.85

ARI 0.85 0.93 0.85 0.71 0.85

FOG 0.85 0.92 0.73 0.75 0.85

Powers 0.82 0.93 0.83 0.65 0.74

Holquist 0.81 0.91 0.81 0.84 0.86

Flesch-1 0.79 0.92 0.81 0.61 0.69

Flesch-2 0.75 0.87 0.70 0.52 0.71

Coleman 0.74 0.87 0.75 0.75 0.83

Dale-Chall 0.76 0.92 0.82 0.73 0.67

on word familiarity and sentence length, predicts empirical item responses as well
as any other readability equation—no matter how complex. Table 1 documents, yet
again that one, and only one, kind of reading is measured by these reading tests.
Were that not so, the array of nearly perfect correlations could not occur. Table 1 also
shows that we can have a useful measurement of text readability and reader reading
ability on a single reading ruler!

An important tool in reading education is the basal reader. The teaching sequence
of basal readers records generations of practical experience with text readability and
its bearing on student reading ability. Table 2 lists the correlations between Lexile
readability and basal reading order for the 11 basal readers most used in the United
States Each series is built tomark out successive units of increasing reading difficulty.
Ginn has 53 units—from book 1 at the easiest to book 53 at the hardest. HBJ Eagle
has 70 units.

Teacherswork their students through these series fromstart tofinish. Table 2 shows
that the correlations between Lexile measures of the texts of these basal readers and
their sequential positions from easy to hard are extraordinarily high. In fact, when
corrected for attenuation and range restriction, these correlations become approach
perfection (Stenner et al., 1992, 1996, 1997, 1998).

Each designer of a basal reader series used their own ideas, consultants and theory
to decide what was easy and what was hard. Nevertheless, when the texts of these
basal units are Lexiled, these Lexiles predict exactly where each book stands on its
own reading ladder—more evidence that, despite differences among publishers and
authors, all units end up benchmarking the same single dimension of reading ability.

Finally there are the ubiquitous reading ability tests administered annually to
assess each student’s reading ability. Table 3 shows how well theoretical item text
Lexiles predict actual readers’ test performances on eight of themost popular reading
tests. The second column shows how many passages from each test were Lexiled.
The third column lists the item type.
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Table 2 Correlations between basal reader order and Lexile readability

Basal reader Series Basal units r R R’

Ginn 53 0.93 0.98 1.00

HB JE Agle 70 0.93 0.98 1.00

SF FOCUS 92 0.84 0.99 1.00

Riverside 67 0.87 0.97 1.00

HM (1983) 33 0.88 0.96 0.99

Economy 67 0.86 0.96 0.99

SF Amer Trad 88 0.85 0.97 0.99

HB J Odyssey 38 0.79 0.97 0.99

Holt 64 0.87 0.96 0.98

HM (1986) 46 0.81 0.95 0.97

Open court 52 0.54 0.94 0.97

Table 3 Correlations between passage Lexiles and item readabilities

Tests Passages analyzed Item type r R R’

SRA 46 Passage 0.95 0.97 1.00

CAT-E 74 Passage 0.91 0.95 0.98

CAT-C 43 Passage 0.83 0.93 0.96

CTBS 50 Passage 0.74 0.92 0.95

NAEP 70 Passage 0.65 0.92 0.94

Lexile 262 Slice 0.93 0.95 0.97

PIAT 66 Picture 0.93 0.94 0.97

Mastery 85 Cloze 0.74 0.75 0.77

Once again there is a very high correlation between the difficulty of these items
as calculated by the entirely abstract Lexile specification equation and the live data
produced by students answering these items on reading tests. When we correct for
attenuation and range restriction, the correlations are just about perfect. Only the
Mastery Cloze test, well-known to be idiosyncratic, fails to conform fully (Stenner,
1997).

What does this mean? Not only is only one reading ability being measured by
all of these reading comprehension tests, but we can replace all the expensive data
used to calibrate these tests empirically with one formula—the abstract specification
equation. We can calculate the reading difficulty of test items by Lexiling their text
without administering them to a single student!

Putting the relationship between theoretical Lexiles and observed item difficulties
into perspective, the uncorrected correlation of 0.93, when disattenuated for error and
corrected for range restrictions, approaches 1.00. The Lexile equation produces an
almost perfect correlation between theory and practice (Stenner, 1997).
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Variation comes from item response options that have to compete with each other
or they do not work. But there has to be one correct answer. Irregularity in the
composition of multiple choice options, even when they are reduced to choosing one
word to fill a blank, is unavoidable. What the item writer chooses to ask about a
passage and the options they offer the test taker to choose among are not only about
reading ability. They are also about personal differences among test writers.

There are also variations among test takers in alertness andmotivation that disturb
their performances. In view of these unavoidable contingencies, it is surprising that
the correlation between Lexile theory and actual practice is so high.

How does this affect the measurement of reading ability? The root mean square
measurement error for a one item test would be about 172 Lexiles (Stenner, 1997).
What are the implications of that much error? The distance from First Grade school
books to Second Grade school books is 200 Lexiles. So we would undoubtedly be
uneasy withmeasurement errors as large as 172 Lexiles. However, whenwe combine
the responses to a test of 25 Lexile items, the measurement error drops to 35 Lexiles.
And when we use a test of 50 Lexile items, the measurement error drops to 25
Lexiles—one eighth of the 200 Lexile difference between First and Second Grade
books. Thus, when we combine a few of Lexile items into a test, we get a measure of
where a reader is on the Lexile reading ability ruler, precise enough for all practical
purposes. We do not plumb their depths of understanding. But we do measure their
reading ability.

5.2 Lexile Items

One might now ask, how hard is it to write a Lexile test item? Fig. 7 describes a
study to find out whether Lexile items written by different authors produce usefully
equivalent results (Stenner, 1998).

Five apprentice item authors were each asked to choose their own text passages
and to write their own response illustrated missing word options (Fig. 8) each author

5 different item authors compose
5 different sets of 60 Lexile items evenly sequenced from 900 to 1300 Lexiles

5 different 60 item tests are assembled
Each test containing 12 items selected at random from each author's set of 60

7 grade school students take a different 60 item test each day for 5 days

This produces, for each student
5 measures across 5 days balanced over authors 
and
5 measures across 5 authors balanced over days

Fig. 7 Stability study
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hated them. The sheep loathed them. Mr. and Mrs. Zuckerman were always 
complaining about them, and putting up screens.
Everyone _________ about them.
a) agreed
b) gathered
c) laughed
d) learned

Wilbur likes Charlotte better and better each day. Her campaign against insects 
seemed sensible and useful. Hardly anybody around the farm had a good word to say 
for a fly. Flies spent their time pestering others. The cows hated them. The horses 

Fig. 8 An 800 Lexile slice test item

wrote 60 items spanning 900 to 1300 Lexiles. From these (5 × 60 = 300) items,
five 60 item tests were constructed by drawing 12 items at random from each author.
Then seven grade school students were given a different test each day for five days.
This produced five measures for each student over the five days. And, by pooling
days, five measures for each student over the five authors.

The question becomes “Is the variation by author in a student’s reading ability
measure any larger than the variation by day?” If not, that would imply that writing
useful Lexile test items, as in Fig. 8, was not a problem, since even apprentice authors
can do it well enough to obtain measures as stable as the differences in a person’s
reading performance from day to day.

Findings indicate that no more noise is introduced into the Lexile way of making
a reading measure by a difference among item authors than by the difference a day
makes.

These five Lexile item authors were not experts. They were just well educated
persons, instructed inLexile itemwriting for four hours.Courtney, 27, is a psychology
student. John, 23, is a math student. Gail, 35, is a law student. Chris, 22, is a football
player. Gayle, 45, is a teacher.

5.3 Calculating Lexiles

Lexile measures of reading are easy to understand and easy to use. Lexile read-
ability—measured by word familiarity and sentence length—establishes how diffi-
cult a text is to read. Lexile reading ability—measured by how well a reader is able
to recognize words and connect them into sentences—establishes how able a reader
is to read a text (Stenner, 1982, 1983, 1987).

Readability is passage reading difficulty.

Reading Ability is ability to read passages.

Lexile reading ability is measured by finding out what Lexile passage readability a person
can read with 75 percent success.

Success is defined as recognizing what words are needed to mend gaps inserted in
passages.
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Divide the BOOK into natural SLICES of 125-140 words.
For each TEXT SLICE i, determine:

Log mean sentence length = SLi

Mean log word frequency = WFi

Then

CALIBRATE SLICE i
at
Readability = 582 + 1768* SLi - 386*WFi Lexiles

The Lexile Measure of a Book is equal to the Lexile Level of a Reader
Who succeeds at 75% of that Book’s Slices

Fig. 9 How to Lexile a book

The Lexile formula is based on two axioms.

The semantic axiom: the more familiar the words, the easier the passage is to read;

The more unfamiliar the words, the harder.

The syntactic axiom: the shorter the sentences, the easier the passage is to read; the longer
the sentences, the harder.

These axioms apply to whatever is read, quite apart from content. They apply
whether we like what we are reading or not, whether it is prose, document or
quantitative.

The Lexile system calculates passage readability from just these two characteris-
tics—both of which are explicit in the passage. Sentence lengths are there to see. We
count and average them. Word familiarities are obtained from compilations of word
usage. The Lexile Analyzer uses John Carroll’s sample of 5 million words (Carroll,
Davies, & Richmond, 1971).1

If readers do not know the words, they cannot read the passage. If they do know
the words, they can begin to make the passage take shape by stringing its words
into sentences. If they can make the sentences, they can read the passage and then,
and only then, begin to think about what the passage has to say. Knowing the words
and making the sentences sets the threshold for reading (Hitch & Baddeley, 1974;
Lieberman et al., 1982; Shankweiler & Crain, 1986; Miller & Gildea, 1987).

To Lexile a passage, we look up the occurrence frequency of each word. The
Lexile Analyzer uses the average log word frequency and the logarithm of average
sentence length. The final Lexile measure for the passage is a weighted sum of these
two logarithms. Figure 9 shows how to Lexile a book.

1 The familiarity of the words used in a passage can be estimated from any comprehensive word
usage compilation—A Basic Vocabulary of Elementary School Children (Rinsland, 1945); The
Teacher’s Word Book of 30,000 Words, Thorndike and Lorge (1952); The Word Frequency Book,
Carroll, Davies and Richman (1971); The Educators’ Word Frequency Guide, Zeno, Ivens, Millard
and Davvuri (1995).
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Test the READER
with L Response IllustratedLexile Calibrated SLICES
of Average slice Lexile = H

and slice Lexile Standard Deviation = S

Then

Count the READER'S right answers for Score= R
This Reader's Lexile MEASURE is
Reading Ability= H+ (180+ S2/1040) log [R/L-R)]

The Lexile Measure of a Reader is equal to the Lexile Level of a Text
For which a Reader succeeds on 75% of the Slices

Fig. 10 How to Lexile a reader

The coefficients in the formula are set to provide themost efficient balancebetween
log word familiarity and log sentence length and to define a metric that reaches 1000
Lexiles from the books used in First Grade at 200 Lexiles to the books used in Twelfth
Grade at 1200 Lexiles. The full Lexile range of readability goes from zero to 1800.
The equation is simple. Word familiarity and sentence length are all there is to it.
Figure 10 shows how to Lexile a reader.

5.4 Lexile Relationships

When a reader with a Lexile ability of 1000L is given a 1000L text, we expect them
to experience a 75% success rate (Stenner, 1992). If the same reader is given a 750L
text, then we expect their success rate to improve to 90%. If the text is at 500L, their
success rate should improve to 96%. The more readers’ Lexile abilities surpass the
Lexile readability of a text, the higher their expected success rates. However, the
more a text Lexile readability surpasses readers’ Lexile reading abilities, the lower
their expected success rates.

Success rates are relative. They are the results of Lexile differences between
readers and texts. The 250L difference between a 750L text and a 1000L reader
results is the same success rate as the 250L difference between a 1000L text and a
1250L reader. Each reader-text combination produces 90% reading success. Success
rates are centered at 75% because readers forced to read at 50% success report
frustration, while readers reading at 75% report comfort, confidence and interest.2

Each reader has their own range of reading comfort. As a result, there is a natural
range of text readability that most motivates each reader to improve their reading
ability. Some readers are challenged by a success rate as low as 60%. Others find

2 Squires, Huitt and Segars (1983) found that reading achievement for second-graders peaked when
their success rate reached 75%. A 75% rate is also supported by the findings of Crawford, King,
Brophy and Evertson (1975).
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that burdensome. Once a reader places themselves and their books in the Lexile
Framework, they can discover what Lexile difference between their reading ability
and text readability challenges them in the most productive way.

Book readability varies from page to page. Some books have a narrow range,
their passages cluster around a common level. As we read these books, the reading
challenge stays level. There are no hills or valleys. Other books have a wide range
of readability. There are easy passages and hard passages. These books can enable
us to use the momentum we gain from the easier passages to surmount the challenge
of the harder ones. Overcoming this kind of resistance improves reading ability.

When we want to help a student read, we can Lexile them and then offer them
books with a readability that matches their reading ability. It is also helpful to know
the book’s passage difficulty variation. If we want our students to learn to read by
reading, then we want to give them material that fascinates, motivates, absorbs and
also challenges them.

We do that best by giving them books they want to read that are a little too hard
for them, with passages that vary in passage difficulty. Then as they read along, they
speed up and slow down. The speed-ups give them the energy and confidence needed
to work through the slow-downs.

5.5 Using Lexiles

Books are brought into theLexile FrameworkbyLexiling the books. Tests are brought
into the Framework by Lexiling their items and using these Lexile calibrations as the
basis for estimating readers and reading ability.

To write a Lexile test item, we can use any natural piece of text. If we wish to write
an item at 1000 Lexiles, we select books that contain passages at that level. We select
a 1000 Lexile passage and add a relevant continuation sentence at the end with a
crucial word missing. This is the “response illustration.“ Then we compose four one
word completions, all of which fit the sentence but only one of which makes sense.
Thus, the only technical problem is to make sure all choices complete a perfectly
good sentence, but that only one choice fits the passage.

The aim of a Lexile item is to find out whether the student can read the passage
well enough to complete the response illustrated sentence with the word that fits the
passage. Lexiled items like this are available at the Lexile website (www.lexile.com).

The Lexile Slice is a simple, easy to write item type. But in practice, we may not
even need the slice to determine how well a person reads. Instead, we may proceed
as we do when we take a child’s temperature. Since, the Lexile Framework provides
a ruler that measures readers and books on the same scale, we can estimate any
person’s reading ability by learning the Lexile level of the books they enjoy.

http://www.lexile.com
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6 The One Minute Self-report

When our child says, “I feel hot!” we infer they have a fever. When a person says, “I
like these books,” and we know the books’ Lexile levels, we can infer that the person
reads at least that well.

7 The Three Minute Observation

To find out more about our child, we feel their forehead. The three minute way to
measure a person’s reading is to pick a book with a known Lexile level and ask the
person to “Read me a page.” If they read without hesitation, we know they read at
least that well. If they stumble, we pick an easier book. With two or three choices,
we can locate the Lexile level at which the person is competent, just by having them
read a few pages out loud.

With aworkbookofLexile calibrated passages,we can implement the threeminute
observation this simply by opening the workbook and turning the pages to give them
successive passages to read.

8 The Fifteen Minute Measurement

To find out more, we use a thermometer to take our child’s temperature, perhaps
several times. For reading, we give the person some Lexiled passages ended with an
incomplete sentence. To measure their reading ability, we find the level of Lexiled
passages at which that person correctly recognizes what words are needed to replace
the missing words 75% of the time.

TheLexile reading ruler connects reading,writing, speaking, listeningwith books,
manuals, memos and instructions. This stable network of reproducible connections
empowers a world of opportunities of the kind that the inch makes available to
scientists, architects, carpenters and tailors (Luce & Tukey, 1964).

In school, we can measure which teaching method works best and manage our
reading curriculaemore efficiently and easily. In business,we canLexile jobmaterials
and use the results to make sure that job and employee match. When a candidate
applies for a position, we can know ahead of time what level of reading ability is
needed for the job and evaluate the applicant’s reading ability by finding out what
books they are reading and asking them to read a few sentences of job text out loud.
This quick evaluation of an applicant’s reading ability will show us whether the
applicant is up to the job. When an applicant is not ready, we can counsel them, “You
read at 800 Lexiles. The job you want requires 1000 Lexiles. To succeed at the job
you want, you need to improve your reading 200 Lexiles. When you get your reading
ability up to 1000, come back so that we can reconsider your application.”
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8.1 Lexile Perspectives

Jobs—Twenty-five thousand adults reporting their jobs to the 1992 National Adult
Literacy Study (Campbell et al., 1992;Kirsch et al., 1993, 1994). Their reading ability
was also measured. In 1992, the average laborer read at 1000 Lexiles. The average
secretary at 1200. The average teacher at 1400. The average scientist at 1500.

When we can see so easily how much increasing our reading ability can improve
our lives, we cannot help but be motivated to improve, especially when what we
must do is so obvious. If we want to be a teacher at 1400 Lexiles but read at only
1000, it is clear that we have 400 Lexiles to grow to reach our goal. If we are serious
about teaching, the Lexile Framework shows us exactly what to do. As soon as we
can take 1400 Lexile books off the shelf and read them easily, we know we can read
well enough to be a teacher. But if we find that we are still at 1000 Lexiles, then we
cannot avoid the fact that we are not ready to qualify for teaching, not yet, not until
we teach ourselves how to read more difficult text.

School—Reading is learned in school. The 1992 National Adult Reading Study
shows that there is a strong relationship between the last school grade completed and
subsequent adult reading ability. On average, we are never more literate than the day
we left school. The average 7th grade student reads at 800 Lexiles. The average high
school graduate reads at 1150 Lexiles. College graduates can reach 1400 Lexiles.
For many of us the last grade of school we successfully complete defines our reading
ability for the rest of our lives. Once we leave school—and we no longer benefit from
the reading challenge that school provides—we tend to stop learning.

Income—Reading ability also limits howmuchwecan expect to earn.The average
incomes of readers in the 1992 National Adult Literacy Study indicated that, on
average, an adult reading at 950 Lexiles made $10,000, at 1200 Lexiles, $30,000, at
1400 Lexiles, $60,000 and at 1500 Lexiles, $100,000. From 1000 to 1300 Lexiles,
each reading ability increases of 150 Lexiles doubles our earning expectations. If we
read at 1000 Lexiles and want to double our potential, then we have to improve are
reading to 1150 Lexiles.

When students can see the financial consequences of reading ability on an easy to
understand scale that connects reading ability and income, then they have a persua-
sive reason to spend more time improving their reading abilities. No need to berate
students, “Do your homework!” Instead, we can show them, “Youwantmoremoney?
You want to be a doctor? Here is the road. Learn to read better. It’s up to you. But
we’ll help you learn.”

8.2 Reading Education

Education can only succeed if we connect learning to each learner’s selfish motives.
We need to involve our students individually, to engage their desires and arouse their
drives. When we do that, student education will drive itself. Then, all we need do is
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to add support and guidance. Otherwise, we will continue to deceive ourselves into
running a penitentiary system that keeps some troublesome kids off the street, but
only for a while.

Remember, when we know text readability, all we need do to learn how well a
student reads is to ask them to read a page or two aloud. If they succeed, we can give
them a harder page. If not, we know their reading ability is below the readability of
the text we asked them to read. No need for debate. No need for guesswork. No need
for confession or reproach. The student’s status is plain to us and plain to them. We
have not tricked them with a mysterious test score. All we have done is to help them
see for themselves how high they can read.
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Mapping Variables

Mark H. Stone, Benjamin D. Wright, and A. Jackson Stenner

Abstract This paper describes Mapping Variables, the principal technique for plan-
ning and constructing a test or rating instrument. A variable map is also useful for
interpreting results. Modest reference is made to the history of mapping leading to
its importance in psychometrics. Several maps are given to show the importance and
value of mapping a variable by person and item data. The need for critical appraisal
of maps is also stressed.

TheMap of a Variable is the beginning and end of assessment. But we must imme-
diately add that variable construction never ends because it is never complete; it is
ever continuing. Variables require continuous attention for their development and
maintenance. The map of a variable is a visual representation of the current status
of variable construction. It is a pictorial representation of the “state of the art” in
constructing a variable.

1 The Origin of Mapping

Maps are visual guides. They ground us in a stable frame of reference and give a
sense of direction. How frequently we use expressions of belief implying vision, “Do
you see?”, “Now I see.”, “Show me what you mean.”, and “Put me in the picture.”
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These expressions testify to the visual power inherent in pictorial representations and
conveyed in speech and writing. Mapping visualizes the extent of our knowledge.

Maps are indispensable to planning and traveling. Map making has great utility.
The inability to understand or make use of maps is a handicap to understanding the
world.

The earliestmaps usednaturally occurring phenomena—celestial and terrestrial—
to identify features. If we look at the sky on a starry night we can use the “pointers”
of the Big Dipper to locate Polaris, the pole star. Although both dippers move, they
rotate aroundPolariswhich appears fixed and determines north. From this “fixed” star
we orient ourselves to the points of the compass. More comprehensive maps of the
heavens include the popular constellations of the Zodiac, lesser known constellations
and other celestial features. The more celestial features we know, the better oriented
we become to a starry night.

Terrestrial markers also serve to orient. A lake, a river, or a mountain may be used
to anchor locations. Celestial and terrestrial maps have been used for centuries and
are sometimes brought into relationship with one another. Today’s roadmaps are but
a current update of the state of knowledge in local geography. A map is an analogy,
an idea that pictures an abstraction. While the map may initially seem superficial,
incomplete, or even inaccurate, it still serves a purpose. The map shows the current
status of what is known about a domain.

Maps by their very nature, invite improvement. Every edition of a map calls
attention to its accuracy and inaccuracy. Each new edition incorporates changes
from a previous one resulting in a new and more accurate version.

Consider a map with the lines of longitude and latitude. This illustrates the bene-
fits of superimposing an abstraction upon the natural contours of land and sea.
Abstractions enhance maps by expediting generalization.

Natural reference points also explain by serving as markers to ground our obser-
vations. The more natural reference points we can employ, the fewer the resulting
errors. The wider apart the natural markers, the greater the possibility of error. Brown
(1949) provides a comprehensive history of map building with numerous illustra-
tions that record howmaps have become increasingly more accurate. Wilford (1981)
has produced a similar, but more recent history. Edward Tufte’s recent publications
(1979, 1983) offer a panorama of useful visual strategies together with his critique
of how visual displays can facilitate the interpretation of data or mislead.

The use of maps illustrates several important aspects:

1. Maps are useful pictures of experience.
2. Inaccuracies are successively and inevitably corrected.
3. Abstractions, such as longitude and latitude, enhance mapping.
4. More knowledge produces greater accuracy.
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2 Maps of Variables

Map topography is a useful application to psychometrics because amap is an abstrac-
tion of a variable. The variable implied by a test can first be pictured as a line
(Wright&Stone, 1979, pp. 1–6). It is a linewith direction illustrated by an arrow. The
variable is defined by items and persons, but other useful characteristics can also be
incorporated on themap. Continuous improvement is irresistible.Maps invite further
corrections. Themore informationwegather about the variable, themore accurate our
representation becomes. Finally, this pictorial representation of the variable invites
yet further abstractions that generalize understanding.

Rudolph Carnap wrote:

The nineteenth-century model was not a model in this abstract sense (i.e., a mathematical
model). It was intended to be a spatial model of a structure, in the same way that a model
ship or airplane represents an actual ship or plane. Of course, the chemist does not think
that molecules are made up of little colored balls held together by wires; there are many
features of his model that are not to be taken literally. But, in general spatial configuration,
it is regarded as a correct picture of the spatial configuration of atoms of the actual module.
As has been shown, there are good reasons sometimes for taking such a model literally—a
model of a solar system for example, or a crystal or molecule. Even when there are no
grounds for such an interpretation, visual models can be extremely useful. The mind works
intuitively, and it is often helpful for a scientist to think with the aid of visual pictures. At
the same time, there must always be and awareness of the model’s limitations. The building
of a neat visual model is no guarantee of a theory’s soundness, nor is the lack of a visual
model and adequate reason to reject a theory. (Carnap, 1966, p. 176)

Carnap’s exposition clearly indicates the value of a map in fostering pictures by
which to visually conceptualize an intuitive idea. He also cautions that maps are not
substitutes for reality, but pictures and as such they cannot be interpreted literally.

3 Using Maps

There are three uses of maps:

To DIRECT… where are we planning to go,
To LOCATE… where we are, along the way, and
To RECORD… where we have been.

These three uses indicate that a map is the beginning and end of test construction
(Stone, 1995). In the beginning stages, a map defines our intentions. At the end, it
is a realization of progress to date. In between are markers along the way. Maps of
variables are never finished because they invite constant correction and improvement.
When maps embody abstractions derived from experience they connect the world of
the mind to the world of experience. Abstraction is validated by correspondence to
experience and experience is understood by abstraction.

Mapping illustrates the dialogue that must take place between these two worlds
in order to communicate constructively. A map is a visual, operational definition of
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a variable. While maps are necessarily only models, their pictorial representation
invites continual correction, ever increasing their accuracy.

4 Graphs as Maps

Graphs of functions aremaps showing the relationship between twovariables.Graphs
make it easy to see by looking whether a useful function is emerging.

Graphs make functions recognizable and familiar. We recognize linearity in a
straight line, and special curves describe a parabola or a quadratic relation. Other
well-known functions like the undulating curve for the sine are easily recognized by
their shape. The graphs of functions are maps as familiar to their users as roadmaps
are to motorists. They aid understanding by simplifying the process and allowing us
to “see” a complex representation.

5 A Map Is an Analogy

Measurement is made by analogy. Our most efficient and utilitarian measures rely
upon visual representation. The ruler, the watch face, the mercury column, and the
dial are common analogies used to record length, time, temperature, and weight.
The utilitarian success of analogy in these measuring tools is demonstrable by their
ubiquity.

• The “intended map” of the variable is the idea, plan, and best formulation of our
intentions.

• The “realized map” of the variable which is made from item calibrations and
person measures implements the plan.

• Continuous dialogue between intention (idea) and realization (data) produces and
maintains the validity of the variable.

• A “Map of a Variable” is. the scope and sequence of instruction because it shows
how to sequence instruction and how to relate it to assessment.

• Progress from instruction and resultant learning can be located on the variable.
Growth can be seen and measured.

• There are shortcomings to maps, especially evident if their use is “pushed” to
extremes.

What writers like Carnap (1966) and Kaplan (1964) present in their discussions
about the shortcomings of models also applies to maps. We must be careful not to
expect too much of a map and ascribe more substance to what is produced than can
be justified. Constant monitoring of map building is necessary. Monmonier’s (1996)
book “How to Lie With Maps” presents in a useful and amusing way the fallacies
that can result from viewing a map as a “finished product” rather than as a “fiction,”
an approximation of the outcome and one that is in process and never completed.
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Braithwaite (1956) has also cautioned, “The price of the employment of models
[maps] is eternal vigilance.”

Psychometric maps serve as the plan for instrument development and revision.
The map of a variable is a blueprint for a test. When a map is logical and well
constructed, its implementation can be straightforward in the form of ordered items.

Figure 1 is a flowchart of the steps in bringing a variable into existence. Its
development is guided by a map of intention.

When the map is empirically verified, it documents a successful realization of
an idea. The map of the variable pictures both the idea and its realization in the
form of calibrated items and measured persons (Wright & Stone, 1996, Chap. 14).
It embodies the construct validity of the instrument.

Figure 2 is the item/person map for the Knox Cube Test (Stone & Wright, 1980)
generated by BIGSTEPS (Wright & Linacre, 1991 to date) This map as well as

Fig. 1 Flowchart for variable construction
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Fig. 2 Item/person map

others generated from WINSTEPS (Linacre, 1999) greatly assist the psychometrist
in variable construction. However, it is simple maps like this one that make psycho-
metric analysis understandable to content specialists and other persons interested in
the results, but not concerned about methodology.

Binet’swork in test development beganmore than 100 years ago.Hiswork implies
mapping although he did not employ the term.

First of all, it will be noticed that our tests are well arranged in a real order of
increasing difficulty. It is as the result of many trials, that we have established this
order; we have by no means imagined that which we present. If we had left the field
clear to our conjectures, we should certainly not have admitted that it required the
space of time comprised between 4 and 7 years, for a child to learn to repeat 5 figures
in place of 3. Likewise we should never have believed that it is only at ten years that
the majority of children are able to repeat the names of the months in correct order
without forgetting any; or that it is only at 10 years that a child recognizes all the
pieces of our money. (Binet, 1916, p. 329).

Binet clearly indicates how data from experience was used to establish a hierarchy
of item difficulty. Hemakes special note of the requirement for “well-arranged” items
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expressing a “real order”. Binet also relied on “numerous” replications of ordered
items in order to produce the level of accuracy he desired.

One might almost say, ‘It matters very little what the tests are so long as they are
numerous’ (Binet, 1916, p. 329).

Binet clearly stressed (1) itemarrangement bydifficulty order, (2) numerous items,
sufficient for precision. How else can one be successful? There is no other way except
to do as Binet did: begin with an idea for a variable, illustrate the variable by items,
arrange them by their intended difficulty, and measure persons by their locations
among the items. The hallmark of Binet’s efforts is his early effort at benchmarking
items and persons on a variable. Hemust have had a mental map of what he intended,
although there is no indicate of one in his writings.

An early example of a psychometric map is Thurstone’s “Scale of Seriousness of
Offense” (1927, 1959) shown in Fig. 3. His map marks out the severity of offenses
from “vagrancy” located at the bottom end to “rape” at the top.

The scale is further subdivided into three offense categories: (1) sex offenses,
located at the top of the scale, (2) injury to the person, located from the top to the
middle, and (3) property offenses, located from the middle of the scale and down.
Thurstone’s map provides insight into a hierarchy of criminal acts and a practical
“ruler” for determining, not only the location of offenses, but the “distance” between
them.

Figure 4 is a map of an achievement variable: WRAT3 (Wilkinson, 1993). This
test of achievement measures (1) word naming, (2) arithmetic computation, and
(3) spelling from dictation. Items are arranged according to difficulty These maps
progress from left to right indicating increases in item difficult and person ability.
The arrangement of items indicates the expected arrangement of persons according
to their abilities. Less able persons will be located to the left of more able persons.
Able persons will find the items on the left easier than those items further along to
the right. These three variables follow developmental lines of learning, correspond
to instructional goals and make test administration efficient and informative. The
map of each WRAT3 variable is enhanced by sample items illustrating progressive
difficulty and below the items is an equal-interval scale indicating the measures.

These maps have immediate application. Like the marks made on a door jamb
to show the increasing height of a child, this map shows student progress on three
achievement variables. The maps show order to the items and measures. Progress of
pupils along this educational ruler is enhanced by criterion and normative locations.
The grade and age norms show growth. The map provides useful information to
students, teachers and parents.

Figure 5 is a reduction of the “map” of the Lexile Scale of Reading© copyright
Metametrics (1995).

Themastermap is larger andmore comprehensive and requires a chart greater than
2’ by 3’ in order to picture only some of the large amount of available information.
Lexile calibration values have been computed for a substantial number of trade
books, texts, and tests. The title column indicates the content validity of the scaling.
The educational levels column shows the increase in difficulty corresponding to
readingmore difficultmaterials. Construct validity can be demonstrated by thesemap
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Fig. 3 Scale of seriousness of offense. From Thurstone (1959, p. 75)
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Fig. 4 Wide range achievement test: WRAT3. FromWilkinson (1993). The Wide Range Achieve-
ment Test (1993 Edition). Wilmington, DE: Wide Range

Fig. 5 The Lexile framework. From MetaMetrics (1995) [For a more legible version, see https://
www.isbe.net/Documents/lexile.pdf]

https://www.isbe.net/Documents/lexile.pdf
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locations. Educational levels, ages, and other information can be positioned on the
LexileMap. Criterion and construct validity are demonstrated by these relationships.

Mapping technology offers a powerful tool for conjointly ordering objects of
measurement i.e., readers and indicants i.e., texts. Meaning accrues as this conjoint
ordering of reader and text is juxtaposed with other orderings including grade
level, income or job classification. Collections of these “orderings” constitute a rich
interpretive framework for bringingmeaning to themeasurement of human behavior.

A good leap in understanding and utility is accomplished when the ordering
of indicants along the line of the variable can be predicted from theory. In every
application of physical sciencemeasurement, instrument calibration is accomplished
via theory not data. Social sciencemeasurement stands alone in its reliance on data in
the construction of instrument calibration and co-calibrations between instruments.

Perhaps the key advantage of theory based calibrations is that an absolute frame-
work for measure interpretation can be constructed without reference to any indi-
vidual or group measures on objects or indicants. The prospect of absolute measure-
ment, long taken for granted in the physical sciences, has until recently eluded social
scientists. The building of maps for the major dimension of human behavior is now
possible because of the theoretical work of Rasch andWright, amplified by the work
of colleagues.

One pretender to the kind ofmapping process outlined above is evident in NAEP’s
use of the Reading Proficiency Scale (RPS). The RPS is a transformed Rasch scale
with an operating range of 0 to 500. NAEP describes performance at grades 4, 8,
and 12 as rudimentary, basic, intermediate, adept or advance depending upon the
RPS attained by each student. Thus, a rudimentary reader, has an RPS = 150, an
intermediate reader at RPS = 250 and an advanced reader at RPS = 350. So far so
good, since all we have done is “name” certain “anchor” points on the RPS scale.

Problems develop when reader performance on the RPS scale is described using
relative language such as stating that a rudimentary reader “can follow brief written
directions” or “can carry out simple, discrete reading tasks” or a basic reader “can
understand specific or sequentially related information.”An intermediate reader “can
search for specific information, interrelate ideas, andmakegeneralizations.”Anadept
reader “can analyze and integrate less familiar material and provide reactions to and
explanations of the text as a whole.” An advanced reader “can understand the links
between ideas even when those links are not explicitly stated.”

These statements are not appropriate descriptions of scale points along the RPS
scale. Rather they are good descriptions of the behavioral consequences of more or
less accurately matching the demands of a text with the capabilities of a reader. Thus,
rather than describing absolute scale positions, these annotations, in fact, describe
differences between a reader measure and a text measure. When a text’s measure
exceeds a reader’s measure, comprehension is low and the kinds of reader behaviors
used above describe a “basic” result.

When a reader’s measure exceeds a test’s measure the kinds of reader behaviors
used to describe adept and advanced readers are evident. The key point is that each
of these behaviors can be elicited in the same reader simply by altering the level of
text that is presented to the reader. Thus we can make a 400L (second grade level)
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reader adept by presenting a 100L text or a 400L reader rudimentary by presenting
800L text. Comprehension rate is always relative to the match between reader and
text and it is this rate, rather than the reader’s measure, that is appropriately described
in behavioral and proficiency terms. Much confusion has resulted from a failure to
recognize this distinction.

6 Summary

Successful item calibration and person measurement produces a map of the variable.
The resulting map is no less a ruler than the ones constructed to measure length.

The map indicates the extent of content, criterion, and construct validity for the
variable. The empirical calibration of items and the measures of persons should
correspond to the original intent of item and person placement, but changes must be
made when correspondence is not achieved. There should be continuous dialogue
between the plan, personmeasures, and item calibrations. Variables are never created
once and for all. Continuous monitoring of the variable is required in order to keep
the map coherent and up-to-date. Support for reliability and validity does not rest in
coefficients, but in substantiating demonstrations of relevant and stable indices for
items and measures. Such indications must be continuously monitored in order to
maintain the variable map and assure its relevancy.
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Theory Referenced Measurement:
Combining Substantive Theory
and the Rasch Model

A. Jackson Stenner

Abstract A construct theory is the story we tell about what it means to move up and
down the scale for a variable of interest (e.g., temperature, reading ability, short term
memory). Why is it, for example, that items are ordered as they are on the item map?
The story evolves as knowledge regarding the construct increases. We call both the
process and the product of this evolutionary unfolding "construct definition" (Stenner
et al., Journal of Educational Measurement 20:305–316, 1983). Advanced stages
of construct definition are characterized by calibration equations (or specification
equations) that operationalize and formalize a construct theory. These equations,
make point predictions about item behavior or item ensemble distributions. The
more closely theoretical calibrations coincide with empirical item difficulties, the
more useful the construct theory and the more interesting the story. Twenty-five
years of experience in developing the Lexile Framework for Reading enable us to
distinguish five stages of thinking. Each subsequent stage can be characterized by an
increasingly sophisticated use of substantive theory. Evidence that a construct theory
and its associated technologies have reached a given stage or level can be found in
the artifacts, instruments, and social networks that are realized at each level.

1 Level 1

At this stage there is no explicit theory as to why items are ordered as they are on the
itemmap.Data are used to estimate both personmeasures and itemdifficulties. Just as
with other actuarial sciences, empirically determined probabilities are of paramount
importance. When data are found to fit a Rasch Model, relative differences among
persons are independent of which items or occasions of measurement are used to
make the measures. Location indeterminacy abounds: Each instrument/scale pairing
for a specified construct has a uniquely determined “zero.”. At Level 1, instruments
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don’t share a common “zero” i.e., location parameter. A familiar artifact of this stage
is the scale annotated with empirical item difficulties (Artifact 1). Most educational
and psychological instruments in use today are Level 1 technologies.

2 Level 2

A construct theory can be formalized in a specification equation used to explain
variation in item difficulties. If what causes variation in item difficulties can be
reduced to an equation, then a vital piece of construct validity evidence has been
secured.We argue elsewhere that the single most compelling piece of evidence for an
instrument’s construct validity is a specification equation that can account for a high
proportion of observed variance in item difficulties (Stenner et al., 1983). Without
such evidence only very weak correlational evidence can be marshaled for claims
that “we know what we are measuring” and “we know how to build an indefinitely
large number of theoretically parallel instruments that measure the same construct
with the same precision of measurement”.

Note that the causal status of a specification is tested by experimentally manipu-
lating the variables in the specification equation and checking to see if the expected
changes in item difficulty are, in fact, observed. Stone (2002) performed just such an
experimental confirmation of the specification equation for the Knox Cube Test—
Revised (KCT_R), when he designed new items to fill in holes in the item map and
found the theoretical predictions coincided closely with observed difficulties. Can
we imagine a more convincing demonstration that we know what we are measuring
than when the construct theory and its associated specification equation accord well
with experiments (Stenner & Smith, 1982; Stenner & Stone, 2003)?

Similar demonstrations have now been realized for hearing vocabulary (Stenner
et al., 1983), reading (Stenner & Wright, 2002), quantitative reasoning (Enright and
Sheehan, 2002), and abstract reasoning (Embretson, 2002).Artifacts that signal Level
2 use of theory are specification equations, RMSE’s from regressions of observed
item difficulties on theory, and evidence for causal status based on experimental
manipulation of item design features (Artifact 2).

3 Level 3

The next stage in the evolving use of theory involves application of the specification
equation to enrich scale annotations. We move beyond using empirical item difficul-
ties as annotations. One example of this use of the specification equation is in the
measurement of text readability in the Lexile Framework for Reading. In this appli-
cation, a book or magazine article is conceptualized as a test made up of as many
“imagined” items as there are paragraphs in the book. The specification equation is
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then used to generate theoretical calibrations for each paragraph which then stand in
for empirical item difficulties (Stone et al., 1999).

For instance, the text measure for a book is the Lexile reader measure needed to
produce a sum of the modeled probabilities of correct answers over paragraphs, qua
items, equal to a relative raw score of 75%. We can imagine a thought experiment
in which every paragraph (say 900) in a Harry Potter novel is turned into a reading
test item. Each of the 900 items is then administered to 1000 targeted readers and
empirical item difficulties are computed from a hugely complex connected data
collection effort. The text measure for the Harry Potter novel (880L) is the amount
of reading ability needed to get a raw score of 675/900 items correct, or a relative
raw score of 75% (Artifact 3).

The specification equation is used in place of the tremendously complicated and
expensive realization of the thought experiment for every book we want to measure.
The machinery described above can also be applied to text collections (book bags
or briefcases) to enable scale annotation with real world text demands (college,
workplace, etc.).

Artifacts of aLevel 3 use of theory include constructmaps (Artifact 3) that annotate
the reading scale with texts that, thanks to theory, can be imagined to be tests with
theoretically derived item calibrations.

4 Level 4

In biochemistry, when a substance is successfully synthesized using amino acids and
other building blocks, the structure of the purified entity is then commonly considered
to be understood. That is, when the action of a natural substance can be matched by
that of a synthetic counterpart, we argue that we understand the structure of the
natural substance. Analogously, we argue that when a clone for an instrument can
be built and the clone produces measures indistinguishable from those produced by
the original instrument, then we can claim we understand the construct under study.
What is unambiguously cumulative in the history of science is not data text or theory
but is rather the gradual refinement of instrumentation (Ackerman, 1985).

In a Level 4 use of construct theory there is enough confidence in the theory and
associated specification equation that a theoretical calibration takes the place of an
empirical item difficulty for every item in the instrument or item bank. There are
now numerous reading tests (e.g., Scholastic Reading Inventory- Interactive and the
Pearson PA Series Reading Test) that use only theoretical calibrations. Evidence
abounds that the reader measures produced by these theoretically calibrated instru-
ments are indistinguishable frommeasures made using the more familiar empirically
scaled instruments (Artifact 4). At Level 4, instruments developed by different labo-
ratories and corporations share a common scale. The number of unique metrics for
measuring the same construct (e.g., reading ability) diminishes.
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5 Level 5

Level 5 use of theory builds on Level 4 to handle the case inwhich theory provides not
individual item calibrations but rather a distribution of “potential” item calibrations.
Again, the Lexile Framework has been used to build reading tests incorporating this
more advanced use of theory. Imagine a Time magazine article that is 1500 words
in length. Imagine a software program that can generate a large number of “cloze”
items (see Artifact 5) for this article. A sample from this collection is served up to
the reader when she chooses to read this article. As she reads, she chooses words
to fill in the blanks (missing words) distributed throughout the article. How can
counts correct from such and experience produce Lexile reader measures, when it
is impossible to effect a one-to-one correspondence between a reader response and
an item and at theoretical calibration, specific to that particular item? The answer
is that the theory provides a distribution of possible item calibrations (specifically,
a mean and standard deviation), and a particular count correct is converted into a
Lexile reader measure by integrating over the theoretical distribution (Artifact 6).

6 In Conclusion

“There is nothing so practical as a good theory.” Kurt Lewin.
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Matching Students to Text: The Targeted
Reader

A. Jackson Stenner

Abstract Teachers make use of these two premises to match readers to text.
Knowing a lot about text is helpful because “text matters” (Hiebert, 1998). But
ordering or leveling text is only half the equation. We must also assess the level of
the readers. These two activities are necessary so that the right books can be matched
to the right reader at the right time. When teachers achieve this match intuitively,
they are rewarded with students choosing to read more.

Teachers share two intuitions:

• Texts can be ordered according to the difficulty each presents for a reader.
• Readers can be assessed according to the success eachwill havewith any particular

text.

Teachers make use of these two premises to match readers to text. Knowing a lot
about text is helpful because “text matters” (Hiebert, 1998). But ordering or leveling
text is only half the equation. We must also assess the level of the readers. These two
activities are necessary so that the right books can be matched to the right reader at
the right time. When teachers achieve this match intuitively, they are rewarded with
students choosing to read more.

When texts are selected that align with all the facets of the reading process, the
reader is truly “targeted.” The targeted reader benefits from a caring adult (teacher,
library-media specialist, parent)who takes the time to understand the reader not just in
the terms of reading level, but also in the terms of interests,motivation, developmental
maturity, prior knowledge, purpose for reading, and available scaffolding support.
An ideal of “targeted” context for reading practice and deepening comprehension
can be created when this caring adult helps a student to select appropriate reading
material (Five, 1986). The objective reality is that targeted readers comprehend a
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high percentage of the passages they read. The subjective reality is that they report
confidence, capability, and control when reading. Finally, targeted readers choose
to read, and thus read more and read better. Targeted reading is self-reinforcing,
pleasurable, and productive. Poorly targeted reading can be discouraging, or worse—
it can produce frustrated students who do not choose to read or like to read.

The best of my own teachers were gifted diagnosticians who seemed to have
a second sight about the next chapter or book I should read. They built upon my
strengths with just the right mix of success and failure, soaring and stumbling, clarity
and confusion. As a learner, I felt centered and on target. However, it can take
decades for teachers to polish intuition, to learn a 200-book classroom text collection
from the lowest-level book to the highest, and to refine field-based techniques for
leveling readers. And because the product of these thousands of hours of professional
practice is a private, non-exchangeable metric for simultaneously ordering books and
assessing readers, the profession at large does not advance.

1 The Lexile Framework® for Reading

The Lexile Framework for Reading is a system for measuring texts and readers by
the same metric (a Lexile®). When a reader’s Lexile measure and a book’s Lexile
measure are both known, a forecast can be made about the success that the reader
will have with that book (Stenner, 1997). Over 40,000 books and 40 million articles
now have Lexile measures, and tests such as the Scholastic Reading Inventory (SRI,
print and electronic versions); the Harcourt SAT-9, SAT-10, MAT-8 and SDRT-4; the
CTB/McGraw-Hill TerraNova Assessment Series (CAT/6, CTBS/5); the Riverside
Publishing Educational Assessments (The Iowa Tests, GMRT-4); NWEA Achieve-
ment Level Tests, and other well-known reading achievement tests have been linked
to the Lexile Framework. In addition, the Lexile Framework is used in states and
districts throughout the nation. Such links make it possible for the users of these
tests to request equivalent Lexile measures for any specific score. Today, more than
14 million students get at least one Lexile measure each year from a standardized
test report. Educators, librarians, and parents can use a student’s Lexile measure to
search the LexileWebsite and build a customized, targeted reading list for the reader.
Former Assistant Superintendent of Schools in North Carolina, Dr. Suzanne Triplett,
states:

The Lexile Framework manifests what good teachers try to do anyway, which is to judge
where a student is and find material that will challenge him adequately without being so
difficult that he loses his motivation. The problem is that as children get into the latter stages
of elementary school, the variance in texts and among students increases dramatically. The
choice of material expands and the range of reading skills widens, so it becomesmuch harder
for teachers to make accurate judgements about where children are and what materials are
good choices for them. By using the Lexile Framework, schools can take the guesswork out
of this equation and operationalize the selection of developmentally appropriate material for
their students.
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“Empowerment” has become a hackneyedword, but that’s the key advantage of the Lexile
Framework—it gives students, parents, teachers, and administrators accurate information
that empowers them. With a Lexile measure, you know precisely where a student stands in
terms of an absolute scale of reading comprehension, and you know exactly what steps that
student needs to take to achieve higher levels of reading performance.

The Lexile Framework is a tool that can be combined with other tools, techniques,
and strategies to optimize instruction. The Lexile Framework offers an open standard
and a public, exchangeable metric for measuring text and readers.

2 The Lexile Map

The Lexile Map (Fig. 1) is a visual display of the reading continuum, ranging from
early first grade texts (100L) to advanced graduate school texts (1200L). The Lexile
Map combines nouns (books) with numbers (Lexile measure). Every book ever
written in English has a theoretical location on this Map. Once measured, a book
takes a unique and invariant position in relation to every other book. In this sense,
a Lexile measure is absolute in that it is independent of other books that might be
measured or reader performances that might be observed. Readers can be visualized
as “in motion,” moving up the Lexile Map, each on an individual growth trajectory
as he or she encounters various new and enriching texts. If we were to plot a “poor”
reader’s growth trajectory, we would find that a high proportion of the assigned
reading registers above the growth trajectory—sometimes far above (250L+). In
contrast, for a “good” reader, we find a high proportion of assigned reading falling
below the growth trajectory—often far below. The consequence is that the “poor”
readers get reinforced in the belief that they can’t read for meaning, and the “good”
readers receive reinforcement that they can. There are, in absolute sense, no “good”
or “poor” readers. Comprehension is relative; it is a simple function of the match
between reader and text. We can control the text level and thereby gain control over
the motivational consequences of reading “on” and “off” target.

3 The Shoe Store Story

Some time ago, I went into a shoe store and asked for a fifth-grade shoe. The clerk
looked at me suspiciously, and asked if I knew how much shoe sizes varied among
11-year-olds. Furthermore, he pointed out that shoe size was not nearly as important
as purpose, style, color, etc., but if I would specify the features I wanted and size, he
could walk to the back and magically reappear with several options to my liking. He
further noted—somewhat condescendingly—that the store used the same metric to
measure feet and shoes, and that when there was a match between foot and shoe, the
shoes got worn, there was no pain, and the customer was happy and became a repeat
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The Life and Times of Frederick Douglass by Frederick Douglass 1400
Silent Spring by Rachel Carson 1340
Great Expectations by Charles Dickens 1200

Lexile Level:  1100L
The War of the Worlds by H.G. Wells 1170
Animal Farm by George Orwell 1170
Ethan Frome by Edith Wharton 1160
A Separate Peace by John Knowles 1110
Pride and Prejudice by Jane Austen 1100

Lexile Level:  1000L
Anne Frank:  The Diary of a Young Girl by Anne Frank 1080
One More River to Cross by Jim Haskins 1070
20,000 Leagues Under the Sea by Jules Verne 1030
The Pearl by John Steinbeck 1010
Freak the Mighty by Rodman Philbrick 1000

Lexile Level:  900L
Exploring the Titanic by Robert Ballard 980
Beauty:  A Retelling of the Story of Beauty and the Beast 970
by Robin McKinley
The Abracadabra Kid:  A Writer’s Life by Sid Fleischman 940
Dogsong by Gary Paulsen 930
Roll of Thunder, Hear My Cry by Mildred Taylor 920

Lexile Level:  800L
Anthony Burns: The Defeat and Triumph of a Fugitive Slave 860
by Virginia Hamilton
Julie of the Wolves by Jean Craighead George 860
Johnny Tremaine by Esther Forbes 840
Call It Courage by Armstrong Sperry 830
The Dark is Rising by Susan Cooper 820

Lexile Level:  700L
And Now Miguel by Joseph Krumgold 780
Red Scarf Girl: A Memoir of the Cultural Revolution by Ji-Li Jiang 780
Harriet the Spy by Louise Fitzhugh 760
Pacific Crossing by Gary Soto 750
From the Mixed Up Files of Mrs. Basil E. Frankweiler by E.L. Konigsburg 700

Lexile Level:  1200L-1700L
Benchmark Literature:  First Inaugural Address by George Washington 1700
The Good Earth by Pearl S. Buck 1530

Fig. 1 Lexile leveled reading framework
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Lexile Level 600L
Charlotte’s Web by E.B. White 680
Henry Huggins by Beverly Cleary 670
Sadako and the Thousand Paper Cranes by Eleanor Coerr 630
Flossie and the Fox by Patricia McKissack 610
…If You Sailed on the Mayflower in 1620 by Ann McGovern 600

Lexile Level 500L
Buffalo Woman by Paul Gable 590
The True Story of the Three Little Pigs by A. Wolf by Jon Scieszka 570
Encyclopedia Brown, Boy Detective by Donald J. Sobol 560
Red Riding Hood by James Marshall 520
The Magic School Bus Inside the Earth by Joanna Cole 500

Lexile Level 400L
Madeline by Ludwig Bemelmans 480
Dinosaur Bones by Aliki 460
How My Parents Learned to Eat by Ina R. Friedman 450
Henry and Mudge and the Forever Sea by Cynthia Rylant 420
Frog and Toad Are Friends by Arnold Lobel 400

Lexile Level 300L
Babushka’s Doll by Patricia Polacco 360
The Best Way to Play by Bill Cosby 360
Arthur’s Nose by Marc Brown 350
Noisy Nora by Rosemary Wells 320
Pet Show! by Ezra Jack Keats 300

Lexile Level 200L
Mr. Rabbit and the Lovely Present by Charlotte Zolotow 280
The Cat in the Hat by Dr. Seuss 260
Play Ball, Amelia Bedelia by Peggy Parish 220
Clifford, the Big Red Dog by Norman Birdwell 220
Danny and the Dinosaur by Syd Hoff 200

Fig. 1 (continued)

customer. I called home and got my son’s shoe size, and then asked the clerk for an
8½, red, hightop basketball shoe.

After a brief credit-card transaction, I had my shoes. Then I walked next door to
my favorite bookstore and asked for a fifth-grade fantasy novel. Without hesitation,
the clerk and I walked to a shelf where she gave me three choices. I chose “The
Hobbit,” a 1000L classic that I had read three times, and went home. My son, I later
learned, reads at 850L. As I write this, my son is passionately practicing free throws
in the driveway.

Today, we can apply the Lexile Framework to avoid this kind of mismatch. It
is available to bring the art of good teaching and the science of technology to a
classroom, library, or living room near you.
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Matching students to texts at appropriate levels helps to increase their confi-
dence, competence, and control over the reading process. The Lexile Framework is
a reliable and tested tool designed to bridge two critical aspects of student reading
achievement—leveling text difficulty and assessing the reading skills of each student.
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Does the Reader Comprehend the Text
Because the Reader Is Able or Because
the Text Is Easy?

A. Jackson Stenner and Mark H. Stone

Abstract Does the reader comprehend the text because the reader is able or because
the text is easy? Localizing the cause of comprehension in either the reader or the
text is fraught with contradictions. A proposed solution uses a Rasch equation to
models comprehension as the difference between a reader measure and text measure.
Computing such a difference requires that reader and text are measured on a common
scale. Thus, the puzzle is solved by positing a single continuum along which texts
and readers can be conjointly ordered. A reader’s comprehension of a text is a func-
tion of the difference between reader ability and text readability. This solution forces
recognition that generalizations about reader performance can be text independent
(reader ability) or text dependent (comprehension). The article explores how reader
ability and text readability can be measured on a single continuum, and the implica-
tions that this formulation holds for reading theory, the teaching of reading, and the
testing of reading.

1 Introduction

A koan is a Zen riddle designed to provoke meditation and open the mind to new
ways of thinking and understanding. We begin by offering a koan: Does the reader
comprehend the text because the reader is able or because the text is easy? To seek an
answer to this riddle, we must question howwe think about the relative contributions
of reader and text to comprehension.

One possibility, whichwas popular formost of the last century up to about 25 years
ago, is the “behaviorist” argument that the text is preeminent in dictating themeaning
that a reader takes from a reading. To a behaviorist, readers are exchangeable, and
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what matters most is the schedule of challenges and rewards that surrounds the
exercise of reading. A second possibility, which has been the dominant approach
in reading research in the last few decades, is the “constructivist” argument that the
reader’s prior knowledge and expectations shape themeaning that is constructed from
a reading, so that comprehension lies in the mind of the reader. A third possibility
is that the riddle may be a trap, in the sense that reader and text measurement are
incommensurable and so their contributions to reading comprehension cannot be
usefully compared.

It is characteristic of riddles that they only rarely can be solved by adhering to the
rules. The reading riddle asks for an either-or choice; that is, does comprehension
result from reader ability or text readability? Our answer to the riddle is to break out
of the either-or choice, and to answer that both reader and text share in accounting for
comprehension. We begin this paper by arguing that much of contemporary research
on reading, in which reading comprehension is placed in the mind of the reader,
is based on a fundamental conceptual flaw that makes the results open to multiple
interpretations. We will then argue that reader ability and text readability can be
measured on a single numerical scale, called Lexiles. We introduce and discuss the
Lexile Framework and both practical and conceptual aspects of how it measures
text readability, reader ability, and comprehension. Using this framework, reader
comprehension is determined by the gap between reader ability and text readability.
Using both reader ability and text readability to explain reading comprehension leads
to new perspectives for research on reading, the teaching of reading, and reading
assessment.

2 The Problem of Placing Reading Comprehension
in the Mind of the Reader

For the past quarter century, much reading research has ignored text when accounting
for what happens when a reader engages a text. Instead, much contemporary reading
research and theory attempts to solve the “reading riddle” by placing reading compre-
hension in the mind of the reader. From this “constructivist” perspective, meaning
is constructed in the reader’s head, and because readers vary greatly in their back-
ground knowledge, a single text evokes such varied meanings that any universal
representation of text (which, say, a measurement of the readability of the text neces-
sarily would be) is a chimera. Constructivists argue that text is needed to trigger a
reader reaction, but what the reader brings to an encounter with text is the dominant
explanatory mechanism in accounting for what the reader comprehends.

In this view, it becomes unnecessary even to contemplatemeasuring the readability
of text. This perspective explains why approximately 3,000 pages of reading theory
and research spread across three volumes and two decades in the three Handbooks
of Reading Research (Barr et al., 1984, 1996; Kamil et al., 2000) can manage with
less than a handful of references to text readability.
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Similarly, the Rand Corporation published a study about framing future research
on reading comprehension that includes one disparaging reference to readability
(Snow, 2002): although “text” is frequently mentioned, its measurement is not. In
the modern vernacular, “text is not where it’s at” (Hiebert, 2004).

A weaker version of this ontology holds that although text measurement can
be helpful in some circumstances, this admission should not mask the reality that
the reader is the dominant actor in reading comprehension. In this version, the role
of text is not openly dismissed, but rather quietly neglected. This strategy of quiet
neglect has been rhetorically quite successful. After all, an open assertion that a well-
researched construct with a century-long tradition, like the readability of text, should
simply be dismissed from modem reading theory and practice would have required
assuming a heavy intellectual burden of explanation and justification. Simple neglect,
on the other hand, leaves the unwary with the incorrect notion that, in human science
research, constructs come and go, and the time for looking at readability of text has
passed.

However, choosing reader over text, as many contemporary reading theorists have
done, leads to certain confusions (Stenner &Wright, 2002). To understand the impli-
cations of this problem for reading research, suppose an investigator is interested in
the relationship between reading and summarizing. Data on 100 fourth graders’
reading ability is collected by administering a grade-appropriate reading achieve-
ment test. After examinees read and answer written questions, they are asked to
summarize orally the content of the passage.

These oral summaries are evaluated for quality by five raters. A correlation is
computed between the reading scale scores and the summary measure, and the
researchers discover a relatively high correlation of r = 0.70. The investigators
conclude, “Good readers possess summarization skills that are much better devel-
oped than those of poor readers.” Thousands of studies using this general design have
allowed researchers to estimate statistical relationships between reading performance
and dozens of so-called reading process correlates (Pressley, 2000).

But this research design suffers from a fatal flaw. There are two conceptually
distinct reader behaviors: “reading ability”, which does not depend on the text being
read, and “reading comprehension”, which does depend on the text being read. In
any study where all examinees respond to the same text, those examinees with high
measured reading ability also experience high comprehension rates, and those exam-
inees with low reading ability experience correspondingly low comprehension rates.
Thus, those who are identified as “good” readers in this experimental design are
both readers with high reading ability and readers who enjoy (with this text) high
comprehension rates. So called “poor” readers in this experimental design have both
low reading ability, relative to the other fourth graders in the study, and experience
low comprehension rates.

Even after finding a strongpositive correlation between thewritten reading test and
the oral summary, this research design cannot conclude whether the oral summariza-
tion performance is correlated with reading ability or comprehension rate. Perhaps
persons with high reading ability summarize well regardless of what they read, or
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perhaps when readers engage text that they comprehend well—regardless of their
reading ability—they summarize well.

Conversely, perhaps thosewith low reading ability have difficulty summarizing, or
perhapswhen anyone engages text that they comprehend poorly, theywill summarize
poorly, whatever their reading ability. In this latter interpretation, summarization
performance results from reading comprehension and only appears to be correlated
with reading ability (in the hypothetical study) because the research design confounds
text-dependent performance and text-independent performance.

Thousands of studies have sought to contrast “good” or “mature” readers on
the one hand and “poor” or “immature” readers on the other. Usually, the research
report makes a claim about what good readers can do that poor readers cannot,
but it is often not clear to what kind of reading behavior the epithets good and
poor refer. Two extended quotations below summarize the reader characteristics
that differentiate good, skilled, and mature readers on the one hand and poor, less
skilled, and immature readers on the other. The first quotation is from Daneman
(1996); the second is from (Pressley, 2000). Each quotation includes at least a dozen
generalizations about good vs. poor readers. Consider which of these generalizations
are text-independent claims about reading ability and which generalizations are text-
dependent claims about reading comprehension—or if it is even possible to tell which
argument is being made.

Relatively few studies have examined exactly which of the high-level processes shared by
reading and listening are responsible for the individual differences. However, from the little
evidence we do have, a consistent picture seems to emerge. Poor readers are at a particular
disadvantage when they have to execute a process that requires them to integrate newly
encountered information with information encountered earlier in the text or retrieved from
semantic memory. So, for example, poor readers have problems interrelating successive
topics (Lorch et al., 1987) and integrating information to derive the overall gist ormain theme
of a passage (Daneman & Carpenter, 1980; Oakhill, 1982; Palincsar & Brown, 1984; Smiley
et al., 1977). They have more difficulty making inferences (Masson &Miller, 1983; Oakhill
et al., 1986) and tend to make fewer of them during text comprehension (Oakhill, 1982).
Poor readers also have more difficulty computing the referent for a pronoun (Daneman &
Carpenter, 1980; Oakhill et al., 1986). Other researchers have found that poor readers do not
demand informational coherence and consistency in a text, and often fail to detect, let alone
repair, semantic inconsistencies (Garner, 1980).

Good readers are extremely active as they read, as is apparent whenever excellent adult
readers are asked to think aloud as they go through text (Pressley & Afflerbach, 1995). Good
readers are aware of why they are reading a text, gain an overview of the text before reading,
make predictions about the upcoming text, read selectively based on their overview, associate
ideas in text to what they already know, note whether their predictions and expectations
about text content are being met, revise their prior knowledge when compelling new ideas
conflicting with prior knowledge are encountered, figure out the meanings of unfamiliar
vocabulary based on context clues, underline and reread and make notes and paraphrase to
remember important points, interpret the text, evaluate its quality, review important points
as they conclude reading, and think about how ideas encountered in the text might be used
in the future. Young and less skilled readers, in contrast, exhibit a lack of such activity (e.g.,
Cordón & Day, 1996).

Neither quotation contains any reference to text measurement, so the presumption
appears to be that claims about good and bad readers are independent of the text. But
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even a reader with a fairly high reading abilitymight do a poor job of comprehending,
say, the relatively difficult text of a SupremeCourt decision. Conversely, even a reader
of fairly low ability may provide a rich summary of a children’s story like Frog and
Toad Are Friends (Lobel, 1979).

To the unwary, a research design in which all participants have the same text
may seem like a perfect way to ensure that text plays no role in drawing inferences
about good and bad readers, but this approach is deeply misguided. In the attempt to
focus on only the reader, rather than embracing the duality of reading ability and text
readability, comprehension rate and reading ability are hopelessly confounded. We
are left with the current predicament: thousands of studies that calculate correlations
between a reading test performance and some process that may be connected to
reading, and no way at all to determine which of these correlations support text-
dependent generalizations about reading comprehension and which support text-
independent generalizations about reading ability.

The Lexile Framework, discussed in the next section, will separate reading ability,
text readability, and reading comprehension. Thus, it requires that claims about
“good” and “poor” readers must be qualified as to whether the discussion is about
reading ability or reading comprehension, and further requires that claims about
“easy” or “hard” textsmust be qualified as towhether they refer to the text in isolation
from readers or whether they refer to a particular sample of readers having difficulty
comprehending the text (Stenner & Stone, 2003; Stenner et al., 1988; Stone et al.,
1999; Wright & Stone, 2004).

3 A Lexile Framework Primer

When a reader confronts a text, is required to carry out some task in response to
that text, and the reader’s response is subsequently rated by some mechanism, the
situation may appear so amorphous and complex that it is easy to despair that any
simple model can account for and measure what happens. Yet all science progresses
by inventing workable simplifications of complex reality. The Lexile Framework
for Reading purports to measure in a common unit, called Lexiles, the traits of
reader ability and text readability. Based on these measures, reading comprehension
can be calculated based on the gap between reader ability and text readability. When
reader ability far exceeds text readability, then comprehension should approach unity.
Conversely, when text measure far exceeds reader measure, then the probability of
little or no comprehension should approach unity.

The way of formulating the connection from reader ability and text readability
to reader comprehension raises a number of concerns, which will be discussed in
this section: (1) the readability of text must be measured; (2) reading ability must
be measured, which given the readability of the text will lead to a prediction about
reading comprehension; (3) the conceptual framework and assumptions that allow
a researcher to subtract text readability from reader ability and calculate a compre-
hension rate must be spelled out; (4) the approach should be flexible enough to
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include other aspects of the reading environment like subjective assessments of
reading and different tasks for measuring reading. This section will discuss how
the Lexile framework addresses these concerns.

3.1 Measuring the Readability of Text

All systems of communication through symbols share two features: a semantic
component and a syntactic component. In language, the semantic units are words,
which are organized according to rules of syntax into thought units and sentences
(Carver, 1974). Thus, the readability of text is governed largely by the familiarity of
the words and by the complexity of the syntactic structures used in constructing the
message.

Regarding the semantic component, most methods of measuring difficulty use
proxies for the probability that a person will encounter a word in context and infer
its meaning (Bormuth, 1966). “Exposure theory,” which is the main explanation for
the development of receptive or hearing vocabulary, is based on how often people
are exposed to words (Miller & Gildea, 1987; Stenner et al., 1983). Knowing the
frequency of words as they are used in written and oral communication provides the
best means of inferring the likelihood that a word will be encountered and become
a part of an individual’s receptive vocabulary. Klare (1963) built the case for the
semantic component varying along a continuum of familiarity to rarity, a concept
that was further developed by Carroll et al. (1971), whose word-frequency study
examined the reoccurrences of words in a five-million-word corpus of running text.

Sentence length is a powerful proxy for the syntactic complexity of a passage.
However, sentence length is not the underlying causal influence (Chall, 1988).
Davidson and Kantor (1982), for example, illustrated that reducing sentence length
can increase difficulty and vice versa. The underlying factor in the difficulty of syntax
probably involves the load placed on short-term memory, and a body of evidence
suggests that sentence length is a good proxy for the demands of structural complexity
on verbal short term memory (Crain & Shankweiler, 1988; Klare, 1963; Liberman
et al., 1982; Shankweiler & Crain, 1986).

The Lexile equation combines into an algebraic equation the measurements of
word frequency and sentence length drawn from a certain text, and produces a
measure in Lexiles. A simple children’s book would have a text measure of about
200L; a complex and specialized work might have a text measure of 1700L or more.
The body of text used for measuring the likelihood of encountering particular words
makes use of a 550-million-word corpus, comprising the full text for more than
30,000 books. The Lexile Analyzer—a software program for measuring text read-
ability—is freely available for noncommercial use at lexile.com. Also, the Lexile
website contains a search program that allows you to insert book titles and see their
Lexile measures, or to insert a range of Lexile scores and see a list of book titles in
that range.
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3.2 Measuring Reader Ability and Comprehension

Reader ability is defined in reference to the text readability—althoughnot in reference
to any particular tests. For example, Harry Potter has a text readability of 880L.
Imagine that the book was turned into a test with 1000 questions, each question
appearing in a standard Lexile form called the “native form,” illustrated in Fig. 1.
We then say that a reader with the ability to answer correctly 750 of the 1000 items
correctly has a Lexile reading ability of 880L.

An important conceptual insight of the Lexile framework is that text itself could be
viewed as a virtual test made up of standard-sized “native form” 125-word passages.
(If the 125th word is not the end of a sentence, the passage is extended until it reaches
the sentence-ending punctuation.) The degree of difficulty of each passage can be
calibrated using the Lexile equation that takes vocabulary and syntax into account.
Thus, this approach produces a measure of readability expressed in the same metric
used to express reader ability.

Choosing one type of reading task, like the “native item” format, does not cause
a loss of generality. Any reading behavior that systematically varies as a function
of the reader/text difference can in principle be used to measure reading ability; for
example, the accuracy with which words are read aloud from text can be used as a
measure of reading. As we will discuss in a later section, the Lexile approach can
allow making comparisons across reading tasks, so that the results from different
tasks can still be measured in Lexiles.

A passage of text can be understood as entailing a large number of propositions,
each of which can form the basis for making a “native item” reading test question.
The set of all such allowable items for a passage is the “ensemble.” Each indi-
vidual test item in the ensemble can be imagined to have an observed difficulty, and
the average over this distribution of difficulties is the ensemble mean. The Lexile
Theory claims that these ensemble means are predictable from knowledge of the
semantic and syntactic features of text passages (Stenner et al., 2004). Thus, the
Lexile Theory replaces statements about individual reading item difficulties with
statements about ensembles (Kac, 1959). Because text readability is a property of
the entire text passage and not a characteristic of any particular test item, the ensemble

Fig. 1 An example Lexile test item
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interpretation produces the right level of aggregation for the empirical variation that
the Lexile Theory attempts to explain.

The choice of a 75% comprehension rate on the virtual test items is arbitrary, but
highly useful. At a conceptual level, this thought experiment of breaking a text into
virtual test questions enables combining a substantive theory of text difficulty, based
on word familiarity and syntax, with a psychometric model for reader ability. At
the practical level, 75% comprehension represents a balance between reading skill
and difficulty of text that allows the reading experience to be both successful and
challenging.

When given a measure of text readability, it is often useful to imagine what reader
characteristics match this text readability; for example, a text at 880L like Harry
Potter would match the 880L reading ability of a fiftieth percentile sixth grader.
Similarly, when given a reader measure (1200L), imagine the texts that this reader
can read with 75% comprehension; someone with reading ability of 1200L, for
example, could read Cold Mountain (1210L) or The Trumpeter of Krakow (1200L)
with 75% comprehension.

The gap between reader ability and text difficulty will determine the extent of
comprehension, as measured by the proportion of correct answers on the reading
test. For example, a 1200L reader can read text such as in USA Today (1200L) with
75% comprehension andwould have 92% comprehension ofHarry Potter (880L) but
would have only 60% comprehension of the typical College Board SAT text (1330L).
Figure 2 shows the expected level of comprehension for a reader with ability of 750L
with texts at different levels of readability.

Finally, this framework implies that differences in text readability can be traded
off for differences in reader ability to hold comprehension constant, which as we
shall see is a protean concept with important implications for reading theory and
practice.

Reader
Ability

Text
Readability Title

Expected
Comprehen-
sion Rate

750L 250L Play Ball Amelia Bedelia 95%

750L 500L Harold and The Purple Crayon 90%

750L 750L The Adventures of Pinocchio 75%

750L l000L Island of The Blue Dolphins 50%

750L 1250L The Midwife's Apprentice 25%

Fig. 2 Expected comprehension rates for a 750L reader reading books with varying text measures



Does the Reader Comprehend the Text … 141

3.3 The Conceptual Framework

Perhaps the preeminent idea underlying the Lexile Framework is the measurement
of reading ability and text readability on a common scale, followed closely by the
realization that text and task used to evaluate reading must be conceptually separated
if the measurement of reading is to be unified (Stenner et al., 1983, 1988; Wright &
Stone, 1979). This movement frommeasures of reading ability and text readability to
a measure of reading comprehension rests on a solid and well-developed conceptual
framework.

This conceptual framework is based on four key assumptions. The first assumption
is sufficiency, which means that the number of correct answers on a reading test
contains all of the information in the response record that is informative about a
reader’s ability (Andersen, 1977; Fisher, 1922). In particular, sufficiency means that
which specific items the reader got correct or incorrect contributes no information
about the reader’s ability beyond what is given by the total count correct. In addition,
the sufficiency assumption means that the measure of text readability summarizes
everything about the text that is important in accounting for comprehension.

The second assumption is separability, which means reader ability and text read-
ability have separate effects that can be isolated from one another (Rasch, 1960
[1980]). The third assumption, specific objectivity, means that reader measures can
be estimated independently of the particular text used, the particular form of the
response (for example, whether the response is an essay or some other response),
and the method used to rate the essay or constructed response (Rasch, 1960 [1980]).

A final assumption of latent additivity means that the measures of reader ability
and text readability, when related to reading comprehension, are connected to one
another by addition or subtraction (Luce & Tuckey, 1964). This represents a test of
the quantitative hypothesis that the construct being measured adds up in the same
way that the numbers representing it do (Michell, 1999). An important implication of
latent additivity is that reader ability and text readability are measured on a common
scale and differences between them can be traded off to hold success rate constant.
Lest the assumption of an additive representation seem overly restrictive, we note
that an additive representation can be transformed into amultiplicative representation
and vice versa quite easily (by using logarithms).

Thus, the assumption of an additive form actually includes the possibility of a
multiplicative relationship, suitably transformed. Because it is often easier to concep-
tualize addition (or subtraction) than multiplication (or division), from this point on
wewill stipulate that reader ability and text readability are related through subtraction
and have equal potential in affecting the outcome of an encounter between reader
and text. Thus:

reader ability− text readability = probability of comprehending the text.

Only one model meets the four assumptions set forth above, and thus allows
us to subtract text readability from reader ability to determine the probability of
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comprehension. It is one of a family ofmodels named after theDanishmathematician,
Rasch (1960 [1980]). The Rasch model is a mathematical function that relates the
probability of a correct response of an item/text to the difference between one reader
parameter (in this case, reader ability) and one text parameter (in this case, text
readability). This probability may be interpreted as a comprehension rate for the
item/text. Reader comprehension for a multi-item passage is a function of the sum
of these modeled probabilities of a correct answer. A high reader ability relative
to the text readability produces a high probability of a correct response to a test
item—that is, a high comprehension rate. Conversely, a low reader ability relative to
a high text readability results in a low-model probability of a correct answer. In this
latter case when the probabilities associated with a number of these reader/paragraph
and counters are summed, the result is a low forecasted comprehension rate. This
probabilistic perspective thus admits reasonable uncertainty regarding what may
happen with a particular reader, reading a particular text on a particular occasion,
while focusing attention on average performances of readers of a particular ability,
on typical occasions, reading texts of a particular difficulty.

The Rasch model states a set of requirements for the way observations and theory
combine in a probability model to make meaningful measures. The Rasch Model
combines the three components in any definition of measurement—observation,
theory, and measure—into a simple, elegant, and, in some important respects, unique
representation (Wright & Stone, 2004).

This algebraic framework will also allow for testing the assumptions behind the
idea that reader comprehension can be modeled as the gap between reader ability and
text readability. For example, it will test whether differences in text readability can
be traded off against differences in reader ability to keep comprehension constant.
These kinds of trade-offs or invariance’s are only possible if additivity obtains.

Text readabilities computed using up-to-date technology like the Lexile method
are highly reliable (Stenner et al., 2004). Indeed, uncertainty over text readability can
be effectively ignored in many applications of the Lexile Framework. Uncertainty in
reader abilities, as opposed to text readabilities, is by far the major source of error in
forecasted comprehension.

The combination of theLexile Framework and theRaschmodel is thus not amatter
of collecting a body of data and then trying “to model the data” with strategies like
fitting various functional forms, inserting different variables, and trying out different
interaction terms between variables. Instead, the Lexile Framework in cooperation
with the Rasch model set forth a set of requirements that data must meet if the
data are to be useful in constructing meaningful reader measures. If the data do not
meet these requirements, then the appropriate response is to question the way that
the observations were made and ask what contaminants to the observation process
might have introduced unintended dependencies in the data.

The overall goal of this conceptual framework is to create measures of reading
ability and text readability that transcend the initial conditions of measurement. This
standard holds true for most measurement procedures in use in the so-called “hard”
sciences—for example, thermometers for measuring temperature. The way is now
clear to achieve this standard in the measurement of reading. Measures of reading
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should provide the same result, even if they are carried out using different methods,
just like temperature measurements using Fahrenheit or Celsius scales, or using
different types of physical thermometers, provide a common result. By using the
Lexile framework, we can leave behind the particulars of the method and moment of
measurement as we move forward to use the measure in description and prediction
of reader behavior.

3.4 Different Tasks and Subjective Raters

Along with measuring text readability and reader ability, a full version of the Lexile
Framework will also address two other important aspects. A full model of reading
would include not only reading ability and text difficulty, but alsowhether the reading
task involved something other than the “native form,” and whether a computer based
or human rating system was employed to judge a readers performance. For example,
observations on readers might include the read-aloud accuracy rate, words read
correctly per minute, number of correct answers to multiple choice questions, quality
rating of summary, and retelling. These tasks are all different from the 125-word
“native form” at the basis of the Lexile framework. However, these different task
types can be shown to measure the same reading ability as is measured by traditional
reading tests and therefore, can be rescaled in Lexiles (Stenner & Wright, 2002).

In its simplest manifestation, which has been the focus up to this point, the Lexile
approach uses a single multiple-choice task type, thus eliminating the need for a
rater/observer parameter.Moreover, the task type can be restricted to a basic common
format, the so-called “native item” format illustrated earlier. Thus, in its simple
form, the Lexile Framework reduces to a measure of reader ability and a measure of
text readability. But the Lexile framework can be used to adjust for the severity of
subjective raters or observers and to adjust for the difficulty of the tasks demanded
across different tests.

An expanded version of the Rasch model enables the measurement of four facets
of reading—readers, texts, tasks, and raters—on a common scale (Linacre, 1987). If
data fit the multi-faceted Rasch model, so that the four key assumptions discussed in
the previous section aremet, then (1) each facet can be estimated independently of the
other facets; (2) the facets can be added to each other; (3) differences inmeasurements
on one facet can be traded off for equal differences on other facet(s) to hold constant
the probability of reading comprehension. In this case, the many-facet Rasch model
enables the estimation of measures of reader ability, text readability, the reading task,
and the subjectivity of the rater all expressed in equal interval Lexile measures.

For an intuitive sense of how such conversions might work, note that it is straight-
forward to describe how performance on other tasks will correspond to a particular
comprehension rate on a “native form” Lexile test. For example, perhaps a 75%
comprehension rate on a “native form” Lexile test represents performance equal to
98% word call accuracy in a read-aloud study. There are probably dozens of task
types that can be ordered on a “task continuum” for reading, all measuring the same
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reading ability construct but doing it with added easiness or hardness relative to the
native item format. Once the demands of a certain task type have been located on the
task continuum, then test results using this type of task can be converted into Lexiles
(Wright & Masters, 1982; Wright & Stone, 1979).

There are numerous philosophical,mathematical, and practical implications of the
way that substantive reading theory and themany-facet RaschModel are combined in
theLexileFramework forReading.The reader interested inmore extensive treatments
might begin with Linacre (1989) and Boomsma et al. (2001).

4 Implications for Reading Research

The last 50 years of reading research has amassed a staggering array of studies, which
seek to correlate somemeasure of reading performancewith some “process variable,”
which is a putative cause or effect of reading performance. These relationships are
sometimes presented as correlations between variables and sometimes presented as
differences in the averages between groups of “good” and “poor” readers. However,
results presented in either form can be re-expressed in the other form, and so in this
section, we will for convenience refer only to correlations.

About the process variables that are more or less correlated with reading perfor-
mance, Stanovich (1986) asked an embarrassingly simple question: “Is there evidence
that the correlate is in fact a cause (worthy of instructional focus), or is it in fact an
effect or consequence of reading performance?” After all, if the process variable
causes better reading performance, then it might be worth spending precious instruc-
tional time and money on trying to use that variable to improve reading performance,
but if the variable is a result of better reading performance, then while it may serve as
a marker of pedagogical success, it cannot be used to improve reading performance.

The previous discussion has argued that there are two kinds of reading perfor-
mance: “reading ability,” which is a reader trait that is independent of text, and
“comprehension,” which is modeled as a function of the difference between reader
ability and text readability. These two kinds of reading performance can be crossed
with four kinds of relationships: (1) The process variable causes one of the two
reading performances; (2) The process variable is caused by (is a consequence of or
is an effect of) one of the two reading performances; (3) There is a reciprocal causal
relationship between the process variable and one of the two reading performances;
or (4) An observed correlation between the process variable and reading performance
is spurious (perhaps due to a third variable that is causing both of them).

Figure 3 juxtaposes the two kinds of reading performance—reading ability and
comprehension—with three kinds of relationship—cause, effect, and reciprocal
causation. (Spurious relationships are not considered further in this discussion.) The
candidate variables listed in this table should be taken as provisional. We have not
conducted a proper review of the literature to solidify their placement in the classifi-
cation. Thus, we offer these candidate variables to provoke thought and, perhaps, to
inflict some gentle bruises upon prevailing intuitions.
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   Causes  Effects  Reciprocal  
       Causation  
   (Type 1)  (Type 2)  (Type 3) 

Trait:   Accessibility Last Grade Vocabulary 
   of text  completed 

Reading Ability  Targeting text Many process Amount of  
(text independent) on reader  variables  text read 
   ability (long- Life earnings Syntactic facility 
   term)       

State:   (Type 4)  (Type 5)  (Type 6) 

Reading Comp-  Reader ability Eye movement Engagement 
rehension  minus text Retelling  Motivation 
(text dependent)  readability Inferencing Distractibility 
   Rereading Many process 
     Variables:  
     accuracy, 
     fluency, etc.

Fig. 3 A framework for thinking about reading performance, its correlates, and causations

Type 1 relationships are candidate causes of reading ability. The first mechanism
suggests that readers cannot improve their reading if they cannot access text (Krashen,
2002). A second candidate cause of reading ability is that exposure to text that is well
matched to the reader’s ability promotes faster development than repeated exposure
to text that is too hard or too easy (Carver, 2000).

Type 2 relationships include effects of reading ability. For example, continuing
in college is a difficult prospect for an 800L reader, because college texts have
measures in the 1200L–1400L range, which results in an expected comprehension
rate approaching 25% (Williamson, 2004). In this scenario, a decision to forego
college is an effect of low reading ability. Many correlates of reading ability that
have been proposed as causes are probably effects of comprehension (Stanovich,
1986).

Type 3 relationships share a reciprocal causation with reading ability. Vocab-
ulary grows, primarily, as a result of listening up to about 600L–700L, and then
reading becomes a major avenue for vocabulary growth. However, because vocab-
ulary (semantic facility) is one of the two key variables in the Lexile equations, it
is viewed as causal for reading ability. A virtuous circle characterizes high ability
readers: they read more so their vocabulary grows and because their vocabulary
grows, they can comprehend increasingly difficult texts.

Type 4 relationships include those variables that, when experimentally manipu-
lated, change the reader’s comprehension. The Lexile theory asserts that the “match”
between reader ability and text readability is the major cause of comprehension.
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Type 5 relationships are probably vast in number. Many constructs have been
proposed as causes of reading performance that are, in fact, effects of reader compre-
hension. As one example, Stanovich (1986, p. 365) reviewed the evolving view in
the research on eye movements as a cause of reading performance:

The relationship of certain eye movement patterns to reading fluency has repeat-
edly, and erroneously, been interpreted as indicating that reading ability was deter-
mined by the efficiency of the eye movements themselves. For example, researchers
have repeatedly found that less skilled readers makemore regressive eyemovements,
make more fixations per line of text, and have longer fixation durations than skilled
readers (Rayner, 1985a, 1985b). The assumption that these particular eye move-
ment characteristics were a cause of reading disability led to the now thoroughly
discredited “eye movement training” programs that repeatedly have been advanced
as “cures” for reading disabilities. Of course, we now recognize that eye movement
patterns represent a perfect example of a causal connection running in the opposite
direction. Poor readers do show the inefficient characteristics listed above; but they
also comprehend text more poorly. In fact, we now know that eye movements rather
closely reflect the efficiency of ongoing reading—with the number of regressions and
fixations per line increasing as the material becomes more difficult, and decreasing
as reading efficiency increases (Aman& Singh, 1983; Just & Carpenter, 1980; Olson
et al., 1983; Rayner, 1978, 1985a, 1985b; Stanley et al., 1983; Tinker, 1958)—and
this is true for all readers, regardless of their skill level.

In short, “eyemovement” migrated fromwhat we are calling a Type 1 relationship
to a Type 5 relationship—that is, from a cause of reading ability to an effect of
reading comprehension. We wonder how many of the currently popular “reading
process variables” or “comprehension processes” are in fact consequences of reader
comprehension rates.

We should avoid, however, being too quick to dismiss all process variables that
are correlated with reading comprehension as unimportant if they are not causal. In
some cases, effects of reading comprehension may be important outcomes in their
own right. For example, perhapsmanipulations of readingfluency are not a usefulway
to cause greater comprehension, but gains in comprehension can help to encourage
greater reading speed—and reading speed (or fluency) may be important in its own
right. Given two prospective employees both reading at 1300L, the employer may
choose the one who reads at 250 wpm over one who reads at 175 wpm.

Finally, Type 6 process variables exhibit reciprocal causation with reading
comprehension. A reader who is motivated to read about basketball will compre-
hend more and, because of the comprehension, will be further motivated to read.
Again, a virtuous circle on a shorter time scale develops.

The classification scheme in Fig. 3 has a number of useful applications. It empha-
sizes that reading research should always specify whether reading ability or compre-
hension is under study, and should attempt to specify the causal status of each process
variable. This matrix of causes and consequences of reading ability and comprehen-
sion can be used to consider instructional implications of research findings. Also, the
classification scheme may prove useful in carrying out meta-analyses that attempt
to summarize the results of many studies in the reading literature, by helping such
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analyses avoid the “apples-and-oranges criticism” that they are jumbling together
causes and effects for different reading performances.

Reading research has more than academic implications. Its results play out in
the development of reading programs and technologies and influence how teachers
view the reading process, both of which influence how reading is taught. Indeed,
today’s top-selling reading technologies each include one or more process variables
that were originally developed in academic research before finding their way from
the researcher’s lab to the publisher’s boardroom.

But there are also more subtle examples of how research on reading ability, text
readability, and comprehension might directly affect pedagogy. For example, the
dominant instructional model used in U.S. middle school through college courses,
with the exception of some classes that use laboratories or case studies, relies on core
textbooks. All students use the same textbook, regardless of their reading ability.

However, in a typical classroom, student reading abilities vary over an 800L–900L
range which implies the stunning conclusion that comprehension rates vary within a
class from less than 25% to more than 95%. Thus, many students cannot access the
majority of content in the textbook because their comprehension rates are too low.

If students were better targeted to textbook material according to their reading
ability, would their content knowledge increase? Krashen (2002, p. 30) argues the
skeptical view that “there is no evidence at all for the ‘targeting hypothesis’ as a cause
of non-reading,” and states, “In fact, what little data there is on this issue suggests
that matching for reading level is not the problem.” Carver (2000), on the other hand,
devoted a chapter in his book, The Causes of High and Low Reading Achievement,
to reviewing the research that the “match”—that is, that reader ability matches text
readability—is causally implicated in a wide range of important behaviors, not the
least of which is the improvement of reading ability itself.

If the “match” is, in fact, causally implicated in promotinggrowth in reading ability
and also a controlling influence in how much science, social studies, health, and so
on a student learns in different classes, then the one-textbook-fits-all instructional
philosophy may need to be revisited.

More broadly, the prospect of linking reading test scores to particular books (or
more generically, connecting readers to text) has been the single most compelling
application that has sustained the unification of reading. Teachers and parents want
reading test scores to be more actionable and refrigerator-friendly. It is empowering
for teachers, students, and parents to be able to forecast the success that a reader will
have with a text.

5 Implications for Reading Assessment

Reading assessments may be the most common tests in education, so a change in
perspective could have substantial consequences for test theory and practice.

The evidence seems overwhelming that we can usefully treat reading ability,
text readability, and comprehension as if they are one-dimensional constructs. The
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strongest support for such a treatment comes from the fact that when using the Lexile
measures, differences between two reader ability measures can be traded off for an
equivalent difference in two text readability measures, while holding comprehension
constant.

Consequently, there is no justification for reporting separate components of
reading ability, other than the semantic and syntactic facility measures that are
implicit within the Lexile measures.

If reading ability is “one thing,” then it makes sense to unify the measurement
and reporting of this quantity around a single metric. At present, hundreds of reading
tests report in proprietary and non-exchangeable metrics. The life of the professional
educator can be simplified tremendously by unifying the reading construct. In the
1700s, countries unified the measurement of temperature (Celsius and Fahrenheit).
In the 1800s, nations unified the measurement of time (Greenwich mean time). All
major norm-referenced reading tests have now been linked to the Lexile scale so as to
enable test publishers to report in both their own proprietary metrics and a common
supplemental metric. In particular, the linking technology already exists to translate
reading scores into Lexiles from the SAT-10, Iowa Tests, TerraNova, NWEA-MAPS,
Gates MacGinitie, Stanford Diagnostic Reading Test, and Scholastic Reading Inven-
tory, among others. Moreover, dozens of text publishers and text aggregators have
adopted the Lexile scale as the standard for representing the readability of text and
19 million K-12 students now get a Lexile measure at least once a year.

Once unification of reading assessments has been realized, it will prove useful
to link progress assessments to the common metric, so that reading assessment isn’t
done only once a year, but monthly and even weekly. Periodic classroom-based
progress assessments that report in the same metric as the high-stakes instruments
will shift the reporting focus away from status (“how well is the student reading
on this May morning?”) to growth (“on what growth trajectory is this reader, and
what do we forecast reading ability to be at high school graduation?”). Indeed, a
common metric spanning the full developmental continuum makes it possible to
build individual growth trajectories for each student.

When the causes of test item difficulty are known, it even becomes possible
to engineer reading test items on demand, either by having human item writers
follow a protocol or by teaching a computer to develop reading items with associated
theoretical calibrations. The implications of this possibility are far-reaching and a
little unsettling. Suppose, for example, that a future edition of a high stakes reading
test did not involve a test nor bank of questions, but instead comprised a set of rules
for generating appropriate test items, along with an adaptive algorithm for choosing
the next best text/question for an examinee depending on what reading ability is
revealed, and a richly annotated scale that links reported reader ability to appropriate
texts (Stenner & Stone, 2003).

Reproducible measures of reader ability can thus be made from counts correct
on items that have never been administered before and may never be used again.
In this scenario, test items are disposable commodities. Test security is guaranteed
because no one sees the items until the computer builds them. In this case, releasing
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“the test” would mean either releasing sample items from the test or releasing the
item-generating algorithm itself.

Perhaps the main difficulty with this approach is that among the randomly gener-
ated individual test questions, somewill inevitablywork better than others tomeasure
ability. Because each item is used only once with one examinee, there would be no
means of comparing whether some questions create a wider or narrower spread of
answers than other questions, or whether certain groups of students perform better
on a certain question. With each test item used only once, the problem of comparing
text questions that are better or worse would be less accessible to study. But the hope
would be that in a text of reasonable length, these random differences would largely
balance out.

This ultimate unification in the measurement of reading ability need not diminish
the role of normativemetrics for reading ability such as percentiles, stanines (inwhich
students are ranked in nine groups, with the bottom three being below-average, the
middle three being average, and the upper three being above average), and “normal
curve equivalent” scores (in which students are measured along a scale from 1 to 99
based on how their score would rank them in a normal-curve distribution). However,
measuring reading performance in terms of grade-equivalents should be abandoned
in favor of text based descriptions of reader performance, such as “This reader can
read typical third grade text (500L–600L) with 75% comprehension.” With this
formulation, it becomes possible to give a coherent answer to a common refrain of
parents and school board members, “What does it mean to be on grade level?” For
example, minimally acceptable end of third grade performance can be described as
the level needed to read fourth grade textbooks with 60% or better comprehension,
which emphasizes that the reading goal is not being set relative to other students,
but is in place to ensure that students can handle the text readability of the grade to
which they are being promoted.

6 Conclusion

We claim that the measurement of reading is philosophically, mathematically, and
practically analogous to the measurement of temperature. Temperature theory is
adequately developed so that thermometers can be constructed without reference
to any data. We know enough about liquid expansion coefficients, the gas laws,
glass conductivity, and fluid viscosity to construct a remarkably precise temperature
measurement devicewith recourse only to theory. Routinemanufacture of thermome-
ters occurs without even checking the calibrations against data with known values
prior to shipping the instruments to customers. Furthermore, a second instrument
developer can follow the same specification and produce another thermometer that
measures temperature on the same scale and with a precision comparable to the
first instrument. If two people are measured with two different thermometers, our
confidence in temperature measurement is such that the readings can be usefully
compared.
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In recent decades, reading measurement has proceeded in a radically different
manner: instruments (collections of items) are field-tested on thousands of readers,
and empirical difficulties are estimated for each item. The potential is now upon us
to move reading assessment from a data-driven to a theory-driven enterprise. The
consequences of this shift for research and practice are hard to over-estimate (Stone,
2002). The Lexile approach is built on a theory of what makes text readable (word
choice and syntax), how a measure of reader ability can be connected to this measure
of text readability, and how to combine the readability of text and the ability of readers
into a useful measure of comprehension. The ultimate result of building measures of
reading on a strong theoretical base may be that if two people are tested for reading
ability with two different tests, their scores will be comparable.

Moreover, if anyone wants to generate a new reading test, then as long as they
follow the same underlying specification, anyone using that test will have comparable
results as well.

Text matters! Paradoxically, the last 25 years of reading research has celebrated
the role of text but, for the most part, avoided measuring it. In much of the current
literature, “reading performance” conflates reader ability, which does not depend on
text, and reader comprehension, which does. However, reader ability and reading
comprehension are conceptually and operationally separable. We have described
how reader ability and text readability, measured in the common scale of Lexiles,
can be used to model reading comprehension.
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From Model to Measurement
with Dichotomous Items

Don Burdick, A. Jackson Stenner, and Andrew Kyngdon

Abstract Psychometric models typically represent encounters between persons and
dichotomous items as a random variable with two possible outcomes, one of which
can be labeled success. For a given item, the stipulation that each person has a
probability of success defines a construct on persons. Thismodel specification defines
the construct, but measurement is not yet achieved. The path to measurement must
involve replication; unlike coin-tossing, this cannot be attained by repeating the
encounter between the same person and the same item. Such replication can only be
achieved with more items whose features are included in the model specifications.
That is, themodelmust incorporatemultiple items. This chapter examinesmulti-item
model specifications that support the goal of measurement. The objective is to select
the model that best facilitates the development of reliable measuring instruments.
From this perspective, the Rasch model has important features compared to other
models.

1 The Atomic Model

This chapter examines the role of the Rasch (1960) model for dichotomous data
from the perspective of first principles concerning the measurement of psychometric
constructs. The chapter therefore begins with an atomic model for a single, dichoto-
mous item. The descriptive term atomic implies that single-item models appear as
basic units in more elaborate so-called molecular models that incorporate multiple
items. Typically, 1 of the 2 outcomes for the dichotomous item is the favored or
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successful response, and this is denoted as 1. The atomic model defines a construct
on persons by specifying that each person has a probability of responding 1 to the
item, and this probability varies from person to person. This success probability can,
if we choose, be taken as the person parameter, that is, the true measure of a person
on the construct defined by the atomic model. The variability from person to person
is a sine qua non for the construct-defining property of the atomicmodel. Amodel for
the tossing of a coin, in which each person has the same probability of obtaining the
favored outcome (i.e., heads), does not define a construct on persons (Wood, 1978).

Two important observations can bemade about the atomicmodel and its associated
construct: (1) the quantity that represents the construct is a latent variable (i.e., it is
not directly observable as data); and (2) the essential character of this latent variable
is ordinal. We consider the implications of both of these observations in some detail,
beginning with the latter.

The ordinal character referred to in the second observation above does not imply
that the atomicmodel has only order relationships among the objects ofmeasurement
(i.e., persons). The success probabilities are a valid numerical representation of the
construct. Ordinal character instead implies that any monotonic transformation of
the success probabilities would be as valid a representation of the construct as the
success probabilities themselves. Thus, the probabilities could be converted to logits
or probits, perhaps followed by multiplicative rescaling. Transforming the probabil-
ities from an atomic model into logits yields a Rasch model with the difficulty for
the single item set to zero. Setting the difficulty parameter to something other than
zero in the Rasch model for a single item produces an alternative monotonic trans-
formation. If that transformation is followed by a multiplicative rescaling,1 the result
is the two-parameter model for a single item with specified location and discrimina-
tion parameters (Birnbaum, 1968). Because of the ordinal character of the construct
obtained from the atomic model, there is no inherent reason to prefer any particular
monotonic transformation of the probabilities compared to any other. Within the
confines of the atomic model, the choice of a numerical structure to represent the
order relationships is a matter of personal preference.

The first of the two important observations has critical implications for measure-
ment. When the objective is measurement, it is not enough to define the construct
in terms of a latent variable. The sine qua non for measurement is the ability to use
observable data to discriminate reliably between objects that differ on the construct by
an amount large enough to matter. In almost all situations, the one bit of information
produced by the observable response to a single dichotomous item does not yield the
reliable discrimination required for measurement. Reliable discrimination requires
replication, and that in turn requires we broaden the atomic model to accommodate
more items.

1 Multiplicative rescaling will change the numerical distance between person measures without
changing the substantive difference. And analogy with temperature helps to clarify this point. An
object that is warmer than another by 5 °C is warmer by 9 °F; 9 is larger than 5, but the substantive
difference in temperature is unaffected by the multiplicative rescaling.
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Some of the previously introduced concepts (e.g., a construct difference that is
considered large enough to matter) as well as concepts to be introduced subsequently
are context-dependent. It is helpful to have a prototype example to which to refer
when discussing these context-dependent concepts. As such an example, consider an
item from a reading test in which a passage is presented followed by a task, scored
as correct or incorrect, to assess the reader’s understanding of the passage. The
construct is reader ability. We assume that better readers have higher probabilities of
succeeding at the assessment task.

The inadequacy of the discrimination obtainable from a single dichotomous item
is easy to see in this example. The difference between a reader with a 40% chance of
success and a reader with an 80% chance of success is almost certainly large enough
to matter. There is a less than even chance of successful detection of this difference
with the single item. Hence, replication is needed.

The purpose of replication is to generate new information that can be used to
estimate the value of the latent variable with less uncertainty. In many other dichoto-
mous experiments (e.g., coin-tossing), the experiment can be repeated and the second
outcome assumed to be independent of the first, but the assumption of independence
for a repeat encounter is not appropriate in the current context. If a reader is presented
again with the same passage and the same assessment task, the same outcome is
virtually assured to occur. When the second outcome is independent of the first, it
provides new information that can be used to reduce uncertainty about the latent
variable; when the second outcome is perfectly predictable from the first, no new
information is produced. This dependence problem can be overcome by introducing
a new passage and task as the replication, but in this situation, the single-item atomic
model is no longer adequate. There are now at least two atoms to consider. Contin-
uing the metaphor, a model that represents two or more dichotomous items will be
called molecular.

2 Molecular Models

With two dichotomous items, call them Item A and Item B, each could be represented
by its own atomic model. Thus, each person has two probabilities, pA and pB, that
represent the probability of a correct response on Item A and Item B, respectively.
These two latent variables could potentially represent two distinct constructs. A
third possible construct, represented by the latent variable equal to the sum of the
two probabilities, comes readily to mind.

The replication needed to achieve measurement requires multiple items whose
atomic models represent the same construct. What conditions must be imposed on
the molecular model to ensure that its constituent atomic models define the same
construct? The answer lies in the essential ordinal character of the construct obtained
from the atomic model.

In the two-atom molecular model, the set of success probabilities for Item A
generates a rank ordering of persons that allows the possibility of ties. A similar
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statement applies to Item B. The two atomic models define the same construct if and
only if the success probabilities for the two items generate the same rank ordering of
persons, including ties. A set of two or more items whose atomic models define the
same construct is said to satisfy the unidimensionality condition. It is worth noting
that unidimensionality may depend on the population of persons. A set of items that
satisfies unidimensionality for a given population may not be unidimensional when
the population is extended.

When the unidimensionality condition is satisfied for a two-atom molecular
model, the constructs derived from the two atomic models and the construct obtained
from the sumof the two success probabilities are all identical. The latent variables that
arise from the two atomic models are related by a strictly monotonic transformation.
The proof of this assertion is straightforward. Define a function h as follows:

If a person has success probabilities pA and pB, then h(pA) = pB.
The preservation of ties implies that h is unambiguously defined. The preserva-

tion of rank order implies that h is strictly monotonic. The ordinal character of the
construct implies that any strictly monotonic transformation of a valid numerical
representation is another valid numerical representation of the same construct.

More than two items of replication are generally necessary to achieve themeasure-
ment objective. Amulti-item instrument can provide adequate replication if the items
satisfy the unidimensionality condition (Stout, 1990). The question is whether unidi-
mensionality is a reasonable assumption in a given context. For an answer in the
context of the prototype example, consider a test of reader ability that consists of 40
dichotomous items. The assumption of unidimensionality asserts that examinees can
be ordered by reading ability such that for every item on the test, more able readers
have higher success probabilities than less able readers.

3 Parameterizations

As mentioned above, any monotonic transformation of the success probabilities in
an atomic model can be used as a numerical representation of the person parameter
for the construct defined by that model. Let θ = θ(p) be the result of applying a
monotonic transformation to a success probability p. The change from p to θ can
be regarded as a reparameterization of the atomic model. The inverse function p =
p(θ), which is also monotonic, is called the item characteristic function. Note that
the form of the item characteristic curve depends on the reparameterization, and the
selection of the reparameterizing monotonic transformation is arbitrary. If success
probabilities are converted to logits, the item characteristic curve will be the logistic
ogive. If success probabilities are converted to probits, the item characteristic curve
will be the normal ogive.

In a molecular model that incorporates multiple items, each person has multiple
success probabilities, one for each item in the model. If the model satisfies the unidi-
mensionality condition, it unambiguously determines a single construct of ordinal
character. When a parameterization of that construct is selected, each person can be
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mapped to the construct with a parametric value that determines all of that person’s
success probabilities.

For example, the construct from a unidimensional molecular model could be
parameterized in terms of the success probabilities for a single canonical item, say
Item A. For any other item in the model, say Item B, there is a monotonic function,
hB that satisfies pB = hB(pA) for all persons. For this parameterization, the item
characteristic curve for Item A will be a straight line from the origin to the point (1,
1). For Item B, the item characteristic curve need not be a straight line but will start
at the origin and increase monotonically until it reaches (1, 1). If instead values for
a latent variable θ are obtained by transforming the success probabilities for Item A
into logits or probits, the item characteristic curve pA(θ) for A will be the logistic or
normal ogive, and Item B’s characteristic curve will be hB(pA(θ)).

4 Unidimensionality, Replication, and Measurement

At this point it is appropriate to return to the prototype example to examine the
progress toward the goal of achieving measurement. Two questions should be raised
when a new item is included in the assessment instrument: (1) Is the new item
on the construct? and (2) Does its inclusion provide new information about the
person’s location on the construct (i.e., the person parameter)? To achieve our goal
of measurement, we need affirmative answers to both questions. The first question
can be answered yes when the unidimensionality condition holds, and the second
can be answered yes if the new item has the property of local independence with
the other items in the instrument. Local independence occurs when the responses
to two items by the same person are statistically independent. In a model in which
the person parameter is not represented as a random variable, local independence is
identical to statistical independence. If the person parameter is a random variable,
as in some Bayesian models, local independence is a conditional independence,
given the person parameter. In either case, the addition of new items with the local
independence property produces replication that leads to a reduction in the standard
error of measurement.

Achieving the measurement objective requires replication, but how much repli-
cation is required to achieve reliable discrimination between objects that differ by
an amount large enough to matter? The answer depends on the context. The finer
the differences to be discriminated and the higher the desired level of confidence
in the discrimination, the more replication is needed. In the prototype example, if a
valid reading test does not have sufficient reliability for the purpose at hand, it may
be possible to find more items with affirmative answers to Questions #1 and #2 that
could be appended to the test to increase the reliability to the desired level.

At this stage, the unidimensional molecular model can be enhanced with a repli-
cation capability by assuming an inexhaustible supply of new on-construct items.
Without making further assumptions, what are the measurement implications of this
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replication-enhanced, unidimensional model? The answer is that reliable discrimi-
nation can be achieved between two objects whose construct values differ but only
to the extent of determining the order relationship between the two objects. In the
prototype example, suppose John and Alice have different reading abilities. If repli-
cation is available via an inexhaustible supply of reading items, but all that can be
said of these items is that they have local independence and are on construct (the
unidimensionality assumption), then a test that consists of a sufficient number of
these items can determine who is the better reader but not by how much. Just being
on construct (i.e., ordering persons identically) is not an adequately stringent assump-
tion about items to measure any more detailed information about persons than their
order relationships. Measurement on an interval scale requires more specificity in
the assumptions about the atomic models for the items.

5 The Stringency Construct for Model Specifications

It is possible and often useful to contemplate a stringency construct defined for statis-
tical models. Ordinal position on this construct is determined by the stringency of the
assumptions incorporated into the statistical model. These assumptions are called the
model’s specification, and a so-called tight specification has more stringent assump-
tions than a loose one. The molecular model that asserts only that there is some
encounter-specific probability of success associated with each encounter between a
person and an item is a loose specification—the loosest under consideration. Incorpo-
rating local independence and unidimensionality tightens the specification but only
enough to allow ordinal measurement even though the model is based on a numerical
latent variable. The Rasch model is clearly an even tighter specification because it
assumes more about the items’ atomic models.

If we denote by ULI the model that assumes only unidimensionality and local
independence, there is a stringency difference between ULI and the Rasch model.
Twoquestions naturally arise: (1)What further tightening assumptionsmust be added
to the ULI model to yield the Rasch model specification? and (2) Are there any
important model specifications located between ULI and the Rasch model on the
stringency construct?

The answer to the second question is yes. When the roles of persons and items
are reversed in the molecular model, the success probabilities associated with a
person can constitute an atomic model for a construct on items. There are as many
such atomic models as there are persons. Application of the assumption of unidi-
mensionality to these atomic models tightens the specification. Models can satisfy
person unidimensionality without satisfying item unidimensionality. Models that
satisfy both unidimensionality conditions are called doubly monotonic models. As
the discussion in the next section demonstrates, the doubly monotonic model spec-
ification is tighter than person unidimensionality but looser than the Rasch model
specification.
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6 Doubly Monotonic Models

In the prototype example, it may happen that for each reader, the success probability
is lower for ItemB than for ItemA.As a possible explanation for this feature, perhaps
the passage in Item B presents more of a challenge to comprehension than does the
passage for Item A (e.g., more complex syntax and more difficult vocabulary). This
suggests the possibility that a text readability construct for items might be obtainable
from amolecular model that incorporates multiple persons and items. So far, persons
have been the objects of measurement and items have been regarded as instruments
formeasuring the person construct. These roles can be reversed. Consider amolecular
model with multiple persons and items and a success probability for each encounter
between a person and an item. There is an atomic model associated with each person,
and each of these atomic models defines a construct on items. The unidimensionality
condition will be satisfied if the rank order of items is consistent for all persons’
atomic models. In the prototype example, this unidimensionality of the persons’
atomic models implies that the text readability rank of two passages will not depend
on who happens to be reading them.

Amolecularmodelwithmultiple items and persons has two sets of atomicmodels:
one set provides rankings of persons for each item and the other provides rankings
of items for each person. If unidimensionality is satisfied for both sets, it is called
a doubly monotonic model. If a doubly monotonic model is capable of replication,
then ordinal measurement is enabled for persons if enough items are included and
for items if enough persons are included.

When a molecular model has double monotonicity, the item characteristic curves
do not cross regardless of the parameterization. Conversely, if a unidimensional
model does not have double monotonicity, the item characteristic curves will be
monotonic, but at least one pair of curves will cross. In a doubly monotonic model,
the person characteristic curves also do not cross. If the atomic models for persons
define a unidimensional construct on items, the person characteristic curves will be
monotonic. If there is any crossingof these person characteristic curves, themolecular
model will not define a unidimensional construct on persons.

7 Numerical Conjoint Measurement Models

The Rasch model is an example of a numerical conjoint measurement model. With
the Rasch model, when the success probabilities are transformed to logits, the result
is an array of numbers that can be expressed as differences between a person param-
eter that does not change from item to item and an item parameter that does not
change from person to person. In other words, the interaction in the array of success
probabilities can be removed by transforming them to logits. This feature, existence
of a monotonic transformation to remove the interaction from the array of success
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probabilities, characterizes a numerical conjoint measurement model. A numerical
conjoint measurement model is necessarily doubly monotonic.

The absence of interactionmeans that the transformed success probabilities can be
expressed as differences between a latent variable for persons and a latent variable for
items. Consequently, the constructs for persons and items (e.g., reader ability and text
readability in the prototype example), can be expressed on a common interval scale.
The absence of interaction also implies that item and person characteristic curves
are horizontally parallel, that is, any item characteristic curve can be transformed
to any other by moving it either left or right. A similar statement applies to person
characteristic curves. The parallelism implies the trade-off of a difference between
two reader measures for an identical difference between two text measures to hold
constant the success probability (i.e., comprehension rate).

The Rasch model specification is not the only one with the numerical conjoint
measurement property. For every numerical conjoint measurement model, there is
a monotonic transformation that removes the interaction from the array of success
probabilities. An important feature of the logistic transformation, and thus a feature
unique to the Rasch model, is the property that the raw scores for persons and the
item p values are sufficient statistics for estimating the respective latent variables.

This is not to say that the Rasch model is an instantiation of the theory of conjoint
measurement (Luce & Tukey, 1964; Krantz, Luce, Suppes, & Tversky, 1971). The
Rasch model is not concerned with the ordinal and equivalence relations necessary
and sufficient for additive representation (i.e., those entailed by the hierarchy of
cancellation axioms (Scott, 1964)).2

8 The Score Sufficiency Condition and Its Implications

Sufficiency is an important technical term in the language of statistical inference. It
is especially important in the current context because of its implications with respect
to the Rasch model, which is unique in having the property that the raw score—
the total number of correct responses—is a sufficient statistic for estimation of the
person parameter. Raw score sufficiency means that, once we know the total number
of correct responses, we can learn nothing more about the person parameter from
the response pattern.

The precise statement of this result is as follows. Assume that the multi-item,
multi-person molecular model is unidimensional for persons and that local inde-
pendence holds. If, in addition, the raw score is a sufficient statistic for the person
parameter, then the molecular model is necessarily a Rasch model. In other words, in
the context of a unidimensional molecular model with local independence, the repa-
rameterization obtained by transforming the success probabilities to logits produces
horizontally parallel item characteristic curves.

2 For a debate on this issue, see Borsboom and Zand Scholten (2008), Kyngdon (2008a, 2008b),
and Michell (2008).
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The proof is rather straightforward. Let itemAand itemB represent two arbitrarily
selected items, and let pA(θ) and pB(θ) denote the success probabilities for these items
expressed as an arbitrary monotonic function of a person parameter θ. Raw score
sufficiency implies that the conditional probability distribution of response patterns
with the same rawscore does not dependon the personparameter.Consider a response
pattern in which item A is answered correctly but item B is not in comparison to
a pattern in which the only change is to reverse these two responses (i.e., item B
correct, item A not). These two patterns have the same raw score. The ratio of the
probabilities of these patterns in the conditional distribution is the same as their ratio
in the unconditional distribution.

If this ratio is denoted by R, it is defined by the equation:

pA(1− pB) = R(1− pA)pB, (1)

where the common factors for the responses to other items have been canceled out.
Dividing this equaion by (1-pA) (1-pB) and taking logarithms yields:

ln
pA

(1− pA)
= ln

pB
(1− pB)

+ ln R.

Because the ratio R applies to the conditional as well as to the unconditional
distribution and the unconditional distribution is independent of the personparameter,
R cannot depend on the person parameter θ. This implies that the item characteristic
curves are horizontally parallel when the success probabilities are transformed to
logits. That is the defining characteristic of the Rasch model.

9 Tightening via Theory

Although the Rasch model, in which person abilities and item difficulties are param-
eters to be estimated from data, is the tightest model yet considered, further tight-
ening of the model specification is possible and desirable. As an alternative to a
data-based empirical approach for the estimation of item difficulties, a theory might
be used to predict an item’s difficulty from characteristics of the item. In the proto-
type example, a readability formula for the text passage might be used as a predictor
of item difficulty.

Tightening a model’s specifications is, however, a two-edged sword. This process
increases the number of ways in which a model can be wrong, which can hamper a
model’s usefulness. On the other hand, tightening can enhance a model’s capability
formeasurement,which adds value to themodel.What then is the enhanced capability
afforded by a theory of item difficulty? For an answer to this question, consider the
prototype example and the enhancement that occurs at various stages of tightening
the model specification.



162 D. Burdick et al.

In the prototype example, the assumption of unidimensionality under replication
allows the comparison between John and Alice as to who is the better reader. That
specification is too loose to allow a data-based answer to the question of how much
better. The Rasch model specification with person and item parameters to be esti-
mated is tighter still and with the assumption of adequate replication for both items
and persons, this model can answer the question of how much better Alice is than
John. The answer to this question does not change when other items that satisfy the
specification are used instead of the original items. The capability of providing a
measure of the difference in reading ability between John and Alice independent of
the items (qua instrument) used to effect themeasurement is called specific objectivity
(Rasch, 1977).

How well does Alice read? This is a question about Alice’s reading ability apart
fromany comparisonwith the reading ability of Johnor anyone else. Suppose the only
data available fromwhich to infer an answer to this question areAlice’s responses to a
set of dichotomous reading items. The Rasch model specification with undetermined
item difficulties does not have the capability to provide an answer. When the Rasch
model is tightened by using theory to determine item difficulties, the question can
be answered using only the data from Alice’s responses. The enhancement provided
by the theory-based determination of item difficulties is substantial. Alice now has
an absolute measure on the reading ability construct, as distinct from her measure
relative to another person’s, which is independent of the items (qua instrument) used
to make the measure.

The use of substantive theory in the form of a construct specification equation
(Stenner et al., 1983) adds stringency to the model specification. Other uses of the
specification equation include: (1)Explaining the variation detected by an instrument.
The specification equation includes just those features of the measurement context
that cause variation in success probabilities. In the prototype example, the construct
theory states that as we move up the scale, we will encounter text that places higher
syntactic and semantic demands on the reader. The specification equation includes
proxies for these two text features. As these text features are manipulated, the theory
predicts changes in the observed item difficulties. Some argue that there is no more
compelling validity evidence than causal control over the variation an instrument
detects; (2) Bringing nontest behavior into the measurement frame of reference. In
the Lexile Framework for Reading, books are imagined to be tests with theoretical
calibrations provided by the specification equation. TheRaschmodel is solved for the
reader ability given an arbitrary but useful relative raw score of 75% and the theoret-
ical item calibrations. The resulting reader measure required to answer correctly 75%
of the virtual test items is the text readability measure assigned to the book. Thus,
an important nontest behavior, comprehension of a particular book by a particular
reader, can be forecasted; and (3) Generating item calibrations for reading items that
have been built by a software program. This application enables one-off instruments
to be used with each examinee and then disposed of as with disposable (single-use)
thermometers. The specification equation and item engineering rules maintain the
unit from instrument to instrument (Stenner et al., 2006).
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10 Applying the Framework

There are important issues to consider when formulating and evaluating models
for the purpose of effecting measurement from dichotomous data. Dimensionality,
differential item functioning, and the number of parameters needed to represent
item characteristics are examples of such issues. The developments presented in this
chapter can provide a framework for addressing these issues when we formulate and
evaluate models.

As an example of the framework in action, suppose the items on a test of verbal
ability have been organized into subtests labeled comprehension and vocabulary.
Do these subtests measure two distinct person constructs or is the full test unidimen-
sional? The framework provides a basis for the conduct of data analysis to answer this
question. At issue is the question of whether the ordering of persons is the same for
the two subtests. Unidimensionality within subtest and the ability to replicate are all
the assumptions needed to make it possible for measurement to provide the answer.
In practice, however, there could be a reason to tighten the specification. Observed
between-subtest differences in the rankings of persons could occur despite overall
unidimensionality as a result of measurement error. An assessment of the statistical
significance of the departure from overall unidimensionality may require more strin-
gent assumptions than within-subtest unidimensionality about the interrelationships
between the atomic models of the items.

This is just one example. Other important questions can be similarly addressed
from the perspective of the framework.

11 Summary and Conclusion

A typical psychometric model represents the encounter between a person and a
dichotomous item as a probability. For a given item, the probabilities associated with
persons define a construct that is ordinal in character, that is, the probabilities can be
arbitrarily subjected to a monotonic transformation without changing the character
of the construct. Although a construct may be defined by the model for a single item,
the single itemmodel is insufficient formeasurement, which requires replication, and
replication requires multiple items that all define the same construct. Because single
item models are the basic building blocks for multiple item models, it is natural
to use the terms atomic and molecular for single item and multiple item models,
respectively.

Molecularmodels involve assumptions about the relationships between the atomic
models of the items, and these assumptions vary as to their stringency. This varia-
tion enables us to locate model specifications on an ordinal stringency construct
where less stringent specifications are described as loose and more stringent ones
as tight. Tighter specifications have less data-fitting flexibility but compensate with
features that enhance their usefulness for measurement. The Rasch model is a tight
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specification that enables conjoint measurement. Although other, equally tight spec-
ifications enable conjoint measurement, the Rasch model is the only one for which
the raw scores and item p-values provide all of the information that is relevant to
the measurement of persons and items on the same scale. When the Rasch model
is further tightened with item difficulties specified by theory, each person can be
measured on an absolute scale with a measurement derived from single-use items.

For a given measurement application, the choice of model is likely to depend on
particulars of the context. The concepts of atomic and molecular models and the
location of a model specification on the stringency construct provide a framework
that can help guide the choice of a model. The framework can also help to guide
analyses of issues such as multidimensionality and differential item functioning that
can threaten the validity of model-based inferences.
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Generally Objective Measurement
of Human Temperature and Reading
Ability: Some Corollaries

A. Jackson Stenner and Mark Stone

Abstract Weargue that a goal ofmeasurement is general objectivity: point estimates
of a person’smeasure (height, temperature, and reader ability) should be independent
of the instrument and independent of the sample in which the person happens to find
herself. In contrast, Rasch’s concept of specific objectivity requires only differences
(i.e., comparisons) between person measures to be independent of the instrument.
We present a canonical case in which there is no overlap between instruments and
persons: each person is measured by a unique instrument. We then show what is
required to estimate measures in this degenerate case. The canonical case encourages
a simplification and reconceptualization of validity and reliability. Not surprisingly,
this reconceptualization looks a lot like the way physicists and chemometricians
think about validity and measurement error. We animate this presentation with a
technology that blurs the distinction between instruction, assessment, and generally
objective measurement of reader ability. We encourage adaptation of this model to
health outcomes measurement.

In this paper we look closely at two latent variables (temperature and reading) and
two instruments used in their measurement. At first glance the conceptual founda-
tions for these constructs seem to represent quite different entities. A thermometer
measures human temperature widely assumed to be a physical attribute, while a test
for measuring reader ability clearly represents a mental attribute. Common sense
tends to assert fundamentally dissimilar ontologies. We intend to show that under-
neath this surface dissimilarity there are striking parallels that can be exploited to illu-
minate the “oughts” of human sciencemeasurement.Moreover, our expectation is this
comparison will offer important insights to health outcome researchers by showing
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the efficiency of linear measurement for establishing closed knowledge systems.
Closed knowledge systems offer important benefits to effective rehabilitation by
isolating key constructs affecting patient functional status. Their parameterization in
a closed system diminishes treatment uncertainty and increases measurement effi-
ciency. Both thermodynamics and Lexile Theory emphasize latent constructs that are
operationally defined not only by units but comprehensive “deep structure” substan-
tive theories, which guide general system formulation. Both thermodynamics and
Lexile Theory are systems that manipulate only a few key constructs, which are
applicable across broad classes of physical and mental activity. This approach to
latent traits suggest health outcome measurement is also probably defined by several
deep structure constructs that permeate outcome measurement. Closed systems
conforming to substantive theories that follow thermodynamics and Lexile models
can likely be developed to govern these constructs.

Before comparing and contrasting temperature and reader ability we assert the
physical science construct temperature and the human science construct reader
ability share common philosophical foundations. Both latent constructs signify real
entities whose causal action can bemanipulated and their effects observed on interval
scales. Neither construct should be conceived of as “just a useful fiction.” Thus, we
reject a constructivist interpretation for either construct. Both constructs are attributes
of human beings, and we are entity realists. The relationship between the latent
variable and the measurement outcome is causal at both the intra-individual and
interindividual levels, stated more formally, the conditional probability distribution
of the measurement outcome given the latent variable is to be given a stochastic
subject interpretation (Holland, 1990). We reject a repeated sampling interpretation
of the conditional probability distribution.We assert for both temperature and reading
ability the measurement model takes the same form within and between persons,
what Ellis and Van den Wollenberg (1993) called the local homogeneneity assump-
tion. We assert this assumption is testable in the theory referenced measurement
context (Stenner et al., 1983).

Figure 1 presents an aspect chart for two latent variables: temperature and reader
ability. For our purposes we assume that the object of measurement in both cases is
a person. In each case the instrument (thermometer or reading test) is brought into
contact with the person. Ameasurement outcome (number of cavities (0–45) that fail
to reflect green light or count correct on 45 theoretically calibrated reading items)
is recorded by a professional (nurse or teacher). Note that both instruments have
been targeted on the appropriate range for each person. The thermometer measures
from 96° to 104.8 °F and let’s assume the reading test has been targeted for a typical
fourth grader (500–900 L). The substantive theory provides the link between the
measurement outcome and the measure denominated in a conventional unit (degrees
Fahrenheit (°F) or Lexiles (L). Note that substantive theory is used to build the
respective instrument and to convert cavity counts and counts correct on the reading
test into a measure. Cavity counts and counts correct are sufficient statistics for their
respective parameters, i.e., measures. Sufficient statistics exhaust the information
in the data that is relevant to estimate the parameter/measure. In each case a point
estimate of the measure is produced for the person without recourse to information
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Anatomy of Two Measurement Procedures
Aspect/Construct Temperature Reader Ability

Object of measurement Person Person

Instrument Thermometer Reading test

Measurement outcome Number of theory calibrated cavities (0-45) that 
fail to reflect green light

Count correct on a collection of 
theory calibrated test items

Substantive theory Thermodynamic Theory Lexile Theory

Unit of measurement Degree Fahrenheit (°F) Lexile (L)

Correspondence table/ 
Calibration equation

Exploits a chemical reaction and light 
absorption to table temperature as a 
function of a sufficient statistic

Exploits semantic and syntactic 
features of test items to table

reading ability as a function 
(Rasch model) of

a sufficient statistic

Measure/Quantity Measurement outcome converted into a quan-
tity via substantive theory

Measurement outcome converted into
a quantity via substantive

theory

Readable technology NexTemp Thermometer™ MyReadingWeb™

General objectivity Point estimates of temperature are inde-
pendent of the thermometer

Point estimates of reader ability are in-
dependent of the reading test

Fig. 1 Temperature versus reader ability measurements

about other persons’ measures. Instrument calibrations come from theory and indi-
vidual instruments may be disposable—have never been used before and will never
be used again. We turn now to a more detailed look at the Nextemp® Thermometer
and My Reading Web™ to further draw out the parallel structures underlying the
measurement of these two latent variables.

1 Human Body Temperature

Temperature is a physical property of systems including the human system that imper-
fectly corresponds to the human sensation of hot and cold. Temperature as a latent
variable is a principal parameter in thermodynamic theory. Like other latent vari-
ables temperature cannot be directly observed but its effects can be and thermome-
ters are instruments that detect these effects. A thermometer has two key compo-
nents: The sensor (e.g., cavities of fluid that differentially reflect light) which detects
changes in temperature and a correspondence table that converts the measurement
outcome (cavity count) into a scale value (degrees Celsius) via theory (thermody-
namic). Awide range of so-called primary thermometers have been built each relying
on radically different physical effects (electrical resistance, expansion coefficients
of two metals, velocity of sound in a monatomic gas, and gamma ray emission in
a magnetic field). For primary thermometers the relationship between a measure-
ment outcome and its measure is so well understood that temperature readings can
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be computed directly from the measurement outcomes. So-called “secondary” ther-
mometers (e.g., mercury thermometers) producemeasurement outcomeswhose rela-
tionship to temperature is not yet so well understood that temperature readings can
be directly computed. In these by far more common cases secondary thermometer
readings are often calibrated against a primary thermometer and a correspondence
table is generated that links the measurement outcome to temperature expressed in,
say, degrees Celsius. Celsius measures can then be converted directly into Kelvin,
Fahrenheit, Rankine, Delisle, Newton or other metrics that find use in, for example,
special engineering applications or high energy physics.

In 1861 Carl Wunderlich reported in a study of one million persons that the
average human body temperature was 37.0 °C. This value converts precisely to 98.6
°F and is believed to be the source for the putative “normal” temperature.Mackowiak
et al. (1992) measured 148 healthy men and women multiple times each day for
three consecutive days with electronic oral thermometers. The authors found that
the average temperature was 36.8 °C which converts to 98.2 °F. They speculate
that Wunderlich rounded his “average” up to 37 °C and then the rounded measure
was converted to 98.6 F and subsequently popularized. Mackowiak, Wasserman and
Levine recommend that the popular value of 98.6 F for oral temperature be abandoned
in favor of the new value of 98.2 and that “normal” ranges be similarly revised.

Figure 2 provides a black line sketch of a NexTemp® disposable thermometer
for measuring human temperature. The NexTemp thermometer is a thin, flexible,
paddle-shaped plastic strip containing multiple cavities. In the Fahrenheit version,
the 45 cavities are arranged in a double matrix at the functioning end of the unit. The
columns are spaced at 0.2 °F intervals covering the range of 96.0–104.8 °F. Each
cavity contains a chemical composition comprised of three cholesteric liquid crystal
compounds and a varying concentration of a soluble additive. These chemical compo-
sitions have discrete and repeatable change-of-state properties, the temperatures of
which are determined by the concentrations of the additive. Additive concentrations
are varied in accordance with an empirically established formula to produce a series
of change-of-state temperatures consistent with the indicated temperature points on
the device. The chemicals are fully encapsulated by a clear polymeric film, which
allows observation of the physical change but prevents any user contact with the
chemicals. When the thermometer is placed in an environment within its measure
range, such as 98.2 °F (37.0 °C), the chemicals in all of the cavities up to and including
98.2 °F (37.0 °C) change from a liquid crystal to an isotropic clear liquid state. This
change of state is accompanied by an optical change that is easily viewed by a user.
The green component of white light is reflected from the liquid crystal state but is
transmitted through the isotropic liquid state and absorbed by the black background.
As a result, those cavities containing compositions with threshold temperatures up to
and including 98.2 °F (37.0 °C) appear black, whereas those with transition temper-
atures of 98.2° (37.0 °C) and higher continue to appear green (Medical Indicators,
pp. 1–2).

In-vitro accuracy of the NexTemp liquid crystal thermometer equals or exceeds
glassmercury and electronic thermometers. More than one hundred million produc-
tion units have shown agreement with calibrated water baths to within 0.2 °F in
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Fig. 2 NexTemp thermometer

the range of 98.0–102.0 °F and within 0.4 °F elsewhere (0.1 °C in the range of
37.0–39.00 C and within 0.2 °C elsewhere).

In-vivo tests in the U.S., Japan and Italy resulted in excellent agreement with
measurements using specially calibrated glass-mercury thermometers. The mean
difference between the NexTemp thermometers and the calibrated glass-mercury
equilibrium device was only 0.12 °F (0.07 °C). The NexTemp thermometer also
achieves equilibrium very rapidly, due to its small “drawdown” (cooling effect on
tissue upon introduction of a room-temperature device) and the small amount of
energy required to make the physical phase transition.

A competitive marketing analysis reported the following advantages of this new
technology over the market dominant older mercury in a tube technology. These
“technical advantages” will prove useful in our comparison and contrast with reading
test technology:

• Cost—The NexTemp temperature measurement technology provides lower costs
when compared to other temperature devices.

• Safety—The safety advantages of NexTemp technology are substantial. There is
no danger, as with a conventional thermometer, of glass ingestion or mercury
poisoning if a child bites the active part of the unit. NexTemp® and its packaging
are latex-free.

• Speed and ease-of-use—The NexTemp thermometer is quick, portable, non-
breakable and easy to use (e.g., no shakedown or resetting).

• Reduced chance of cross-contamination of patients—The NexTemp disposable
product comes individuallywrapped and is intended to be used and then discarded.
The reusable version of the product is for single patient use over timewith cleaning
between uses (Medical Indicators, p. 4).

2 Reader Ability

Of approximately 6000 spoken languages in the world only about 200 are written
and many fewer than that have an extensive test base. Reader ability is the capacity
of the individual to makemeaning from text. Reader ability like other latent variables
cannot be directly observed. Rather its existence must be inferred from its effects on
measurement outcomes (count correct). A reading test is an instrument designed to
detect variation in reading ability. A reading test has three key components:

(1) Text (e.g., a newspaper article on global warming), (2) a response require-
ment (e.g., answering multiple choice questions embedded in the passage), and (3)
a correspondence table that converts the measurement outcome (counts correct) to
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a scale value (Lexiles) via a theory (Lexile Framework for Reading). Although the
ubiquitous multiple choice item type dominates as the response requirement in the
measurement of reading ability other task types have found use for specific ranges
of the reading ability scale, including: retelling, written summaries, short answers,
oral reading rate and cloze. Because the notion of scale unification is still foreign in
the human sciences common practice associates a unique measurement scale with
every published instrument. Many dissertations are written that involve development
of a new instrument and a new scale purportedly measuring the intended construct
in an equal interval metric unique to that instrument. At this writing the authors are
unaware of any dissertation that reports on the unification of multiple measures of
the same latent variable (e.g., depression, anxiety, spatial reasoning, mathematical
ability) denominated in a common unit of measure. Failure to separate the instru-
ment from the scale has had pernicious effects on human science. Because different
reading instruments often employ different task types different test names (test of
reading ability, test of reading comprehension, test of reading achievement) and the
aforementioned different scales it should not surprise us that many test users and
reading researchers perceive that these various reading tests measure different latent
variables. The unwary are fooled by the fact that looks can be deceiving.

WEB based reading technology (MyReadingWeb™) has been developed to
accommodate Lexile measurement. Accompanying text and associated machine
generated cloze items is a “key” to score (mark correct or incorrect) reader responses
and a correspondence table relating count correct to Lexiles. Any continuous prose
can be loaded into MyReadingWeb™ and the software will instantly turn text into a
reading measurement instrument. The first step involves measuring the text be it an
article, chapter, or book. The Lexile Analyzer computes various statistics on word
frequency and sentence length. These statistics are then combined in an equation that
returns a Lexile measure for the text. MyReadingWeb™ uses this measure to “cloze”
vocabulary words that are at a comfortable range for a reader’s vocabulary who has
a reading ability equal to the text readability of the article. A-part-of-speech parser
then chooses three foils (incorrect answers) that are the same part of speech and
have a similar Lexile level as the closed word but that are not synonyms or antonyms
of the closed word. Finally, the four choices are randomized before presentation.
On average a response requirement is imposed on the reader every 50–70 words of
running text.

Counts correct on a text are evaluated by a dichotomous Rasch model in which
the location and dispersion parameters of an item difficulty distribution are treated
as known. The Lexile measure that maximizes the likelihood of the data is the reader
measure reported for each particular encounter between reader and text. A Baysean
growth model is used to combine individual article measures within and across days
over the complete MyReadingWeb™ history for a reader.

Table 1 presents results from a large study designed to test howwell Lexile Theory
could predict percent correct on machine generated items like those described above.
First grade through twelfth grade students (N= 1,743) read a total of 289,345 articles
comprised of 194,968,617 words.
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They spent 2 years 157 days 23 h 16 min in the program and averaged 150
words read per minute (WPM). Of the 3,051,341 unique cloze items generated by
the computer the participants answered 2,245,741 or 73.90% of the items correctly.
The model forecasted 2,291,787 correct or 75.11%. Figure 3 presents a histogram of
differences between theory and observation. One thousand and five (1,005) students
had observed counts correct within ±3% of the model expectation for a subsample
of 1,325 students.

The best explanation for the close agreement between theoretical comprehension
rate and observed comprehension rate is that the Lexile theory and Rasch model
are cooperating in providing (l) good text measures for the articles, (2) good reader
measures for the students, and (3) well modeled comprehension rates. The coopera-
tion between substantive theory and theRaschmodel evidences cross sectional devel-
opmental consistency, i.e., the theory works throughout the reading range reflected
in Table 1 (100–1500 L). Invoking the “no miracles argument” currently fashion-
able among philosophers of science of the realist persuasion: the congruence between
theory and observation is explained by the fact that the theory is at least approximately
right.

In summary, themeasurement of human temperature and reading ability if concep-
tualized in a particular way can be seen to share a common deep structure. Both

Fig. 3 Differences between Lexile theory and observations
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constructs are latent variables which assign a causal role to an unobservable attribute
of persons. Conditioning on the latent variable renders the measurement outcomes
(cavity count and count correct) statistically independent. Temperature and reading
ability are real entities that can be manipulated and the effects of these manipulations
can be detected. Persons possess a true value on each construct that is approached by
repeated measurement but is never precisely determined. The two attributes apply
equally well to between person variation and within person variation. For human
temperature measurement with the NexTemp® technology we can trade off a change
in the amount of the soluble additive for a change in temperature to hold the number
of cavities that “turn black” constant. Similarly, for reading we can trade-off a differ-
ence in reader ability for an equivalent difference in text readability to hold constant
the count correct. In both cases enough is known about the measurement proce-
dure and the relevant active processes that two persons with equal temperature or
reading abilities can be made to produce different measurement outcomes (cavity
count or count correct) by systematically manipulating the respective instruments.
In short the two latent variables are under precise experimental control and that is
why an indefinitely large number of parallel instruments can be manufactured for
each construct.

Both thermodynamic theory andLexile reading theory force a distinction notmade
before the theories were put forth. The sensation of hot and cold was formalized as
temperature and was later distinguished from the common parlance synonym “heat.”
Reading ability was likewise distinguished from the common parlance synonym
“reading comprehension.” The former is a text independent characterization of reader
performance, whereas, the latter is a text dependent characterization. Both theories
have made extensive use of the ensemble interpretation first proposed by Einstein
(1902) and Gibbs (1902).

The two constructs temperature and reader ability figure in laws that are strikingly
parallel in conception and structure. The combined gas law specifies the relationship
between volume and temperature conditioning on pressure. Specifically, log pressure
and log volume—log temperature= a constant, given a frame of reference specified
by the number of molecules. Similarly, the reading law specifies the relationship
between reader and text conditioning on comprehension rate. Logit transformed
comprehension rate plus text measure—reader measure = the constant 1.1, given
a frame of reference that specifies 75% comprehension whenever text measure =
reader measure. Therefore a + b − c = constant, holds for both the combined gas
law and the Lexile reading law (Burdick et al. 2006).

Finally, the NexTemp® and MyReadingWeb™ technologies share several addi-
tional features: (l) they are both inexpensive (NexTemp cost is 9 cents, MyRead-
ingWeb’s cost per item is fractions of a penny), (2) they function within an intended
range and are useless outside that range, (3) the respective technologies produce
instruments that are one-off and disposable, (4) both instruments are theoretically
calibrated and this produces generally objective measures, (5) both are readable
technologies—the user does not need to understand even the rudiments of thermo-
dynamic theory or Lexile theory to produce valid and useful measures, and (6) both
can measure growth or change within and between persons.
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In conclusion, although closed knowledge systems have not been developed for
health outcomes, corollaries between temperature and reading ability presented in
this paper should offer valuable insights to their formulation. For example, functional
assessment in rehabilitation currently defined by separate CAT measures could be
consolidated into a closed system defined by deep structure common across func-
tional measures. Separate functional items could be reduced to a single structure that
includes not only outcome but intervention constructs. In this system, variation of
intervention treatment values would be systematically related to outcome measures.
Consequently, treatment effectiveness could be specified in advance of delivery and
terminated at maximum effectiveness.

Acknowledgements Authors extend special thanks to Nikolaus Bezruczko for improving this
paper.
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A Technology Roadmap for Intangible
Assets Metrology

William P. Fisher Jr. and A. Jackson Stenner

Abstract Measurement plays a vital role in the creation of markets, one that hinges
on efficiencies gained via universal availability of precise and accurate information
on product quantity and quality. Fulfilling the potential of these ideals requires close
attention to measurement and the role of technology in science and the economy. The
practical value of a strong theory of instrument calibration and metrological trace-
ability stems from the capacity to mediate relationships in ways that align, coordi-
nate, and integrate different firms’ expectations, investments, and capital budgeting
decisions over the long term. Improvements in the measurement of reading ability
exhibit patterns analogous to Moore’s Law, which has guided expectations in the
micro-processor industry for almost 50 years. The state of the art in readingmeasure-
ment serves as a model for generalizing the mediating role of instruments in making
markets for other forms of intangible assets. These remarks provide only a prelimi-
nary sketch of the kinds of information that are both available and needed for making
more efficient markets for human, social, and natural capital. Nevertheless, these
initial steps project new horizons in the arts and sciences of measuring and managing
intangible assets.

1 Introduction

Standards ensure the performance, conformity, and safety of innovative new prod-
ucts and processes. Manufacturing and the provision of services require standards to
coordinate the matching of services (as in telecommunications), the fitting of parts,
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or the gauging of expectations (Allen & Sriram, 2000). Measurement, then, plays an
essential economic role in the creation ofmarkets centering on the efficiencies gained
from the universal availability of precise, accurate, and uniformly interpretable infor-
mation on product quantity and quality (Barzel, 1982; Benham & Benham, 2000;
Callon, 2002; Miller & O’Leary, 2007). Clear, fully enforced property rights and
transparent representations of ownership are other forms of standards that reduce
the costs of transactions further by removing sources of unpredictable variation in
social factors (Ashworth, 2004; Beges et al., 2011; Birch, 2008; Lengnick-Hall et al.,
2004). When objective measurement is available in the context of enforceable prop-
erty rights and proof of ownership, economic transactions can be contracted most
efficiently in the marketplace (Baker et al., 2001; Jensen, 2003). The emergence
of objective measures of individual abilities, motivations, and health, along with
service outcomes, organizational performance and environmental quality, present a
wide array of new potential applications of this principle.

Proven technical capacities for systematic and continuous improvements in the
quality of objective measures enable the alignment, coordination, and integration
of expectations, investments, and capital budgeting decisions over the long term.
The relationship between standards and innovation is complex and dynamic, but a
general framework conducive to innovation requires close attention to standards.
The trajectory of ongoing improvements in instrumentation in the psychosocial
and environmental sciences suggests a basis for a technology road map capable
of supporting the creation of new efficiencies in human, social, and natural capital
markets. New efficiencies are demanded by macroeconomic models that redefine
labour and land as human and natural capital, respectively, and that add a fourth
form of capital—social—to the usual three-capitals (land, labour, and manufactured)
framework.

Thesemodels enhance sensitivity to the full complexity of intangible assets, enable
the conservation and growth of their irreplaceable value, and frame economics in
terms of genuine progress, real wealth, sustainability, and social responsibility not
captured in accounting and market indexes restricted to the value of property and
manufactured capital. Of special interest is the fact that the technical features of
improvements in rigorously defined and realized quantification are likely to be able
to support the coordination of capital budgeting decisions in ways analogous to those
found in, for instance, the microprocessor industry relative to Moore’s Law.

The state of reading measurement (Burdick et al., 2006; Stenner et al., 2006)
is sufficiently advanced for it to serve as a model in extrapolating the principle to
further developments in the creation of literacy capital markets, and for generalizing
the mediating role of instruments in creating markets to other constructs and forms
of capital in the psychosocial, health, and environmental sciences.

Instruments, metrological standards, and associated conceptual images play
vitally important mediating roles in economic success. For instance, the technology
roadmap for the microprocessor industry, based inMoore’s Law and its projection of
doubled microprocessor speeds every two years, has successfully guided semicon-
ductor market expectations and coordinated research investment decisions for over
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40 years (Miller & O’Leary, 2007). Moore’s Law is more than a technical guide-
line—it has served as a businessmodel for an entire industry for almost 50 years. This
paper pro- poses the form similar laws and technology roadmaps will have to take to
be capable of guiding innovation at both the technical level and at the broader level
of human, social, and natural capital markets, comprehensively integrated economic
models, accounting frameworks, and investment platforms.

The fulfilment of the potential presented by these intentions requires close atten-
tion to measurement and the role of technology in linking science and the economy
(Callon, 2002; Miller & O’Leary, 2007). Of particular concern is the capacity of
certain kinds of instruments to mediate relationships in ways that align, coordi-
nate, and integrate different firms’ expectations, investments, and capital budgeting
decisions over the long term.

Instruments capable of mediating relationships in these ways are an object of
study in the social studies, history, and philosophy of science and technology. In
this work, the usual sense of technology as a product of science is reversed (Bud &
Cozzens, 1992; Hankins & Silverman, 1999; Ihde, 1983; Ihde & Selinger, 2003;
Latour, 2005; Price & Science, 1986; Rabkin, 1992). Instead of seeing science as
rigidly tied to data and rule-following behaviours, the term technoscience refers to a
multifaceted domain of activities in which theory, data, and instruments each in turn
serves to mediate the relation of the other two (Ackermann, 1985; Ihde, 1991, 1998).

2 Measurement, Mediating Instruments, and Making
Markets

In psychosocial research to date, there has been little recognition of the poten-
tial scientific and economic value of universally accessible, uniformly defined, and
constant units. This article draws from the history of the microprocessor industry to
project a model of how instruments measuring in such units can link science and
the economy by coordinating capital budgeting decisions within and between firms.
Links between the psychosocial sciences and industries such as education and health
care are underdeveloped in large part because of insufficient attention to the medi-
ating role some kinds of instruments are able to play in aligning investments across
firms and agencies in an industry.

Instruments capable of mediating relationships do so by telling the story of a
shared history and by envisioning future developments reliably enough to reduce the
financial risks associated with the large investments required. In the microprocessor
industry, for instance, Moore’s Law describes a constant and predictable relation
between increased functionality and reduced costs. From 1965 on, Moore’s Law
projected a detailed image of commercially viable applications and products that
attracted investments across a wide swath of the economy. When it became clear
in the early 1990s that the physical limits of existing technologies might disrupt or
even end this improvement cycle, the Semiconductor Industry Association convened
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a special meeting aimed at creating a detailed common vision, a roadmap, for the
next 15 years’ developments in semiconductor technology (Miller &O’Leary, 2007).

This roadmap made it possible for the industry to navigate a paradigm shift in
its basic technology with no associated economic upheaval and with the continua-
tion of the historically established pattern of increased functionality and lower costs.
Education, healthcare, government, and other industries requiring intensive human
and social capital investments lack analogous ongoing improvements in their primary
products’ reliability, precision, and cost control. Where the microprocessor industry
is able to reduce costs and improve quality while maintaining or improving prof-
itability, education, healthcare, and social services seem only to always cost more,
with little or no associated improvement in objective measures of quality.

To what extent might this be due to the fact that these industries have not yet
produced mediating instruments like those available in other industries? If such
instruments are necessary for articulating a shared history of past technical improve-
ments and economies, and a shared vision of future ones, should not their develop-
ment be a high priority?Within any economy, individual actors are able to contribute
to the collective estimation of value only insofar as the information they have at
hand is sufficient to the task. Ideally, with that information, those demanding higher
quality can identify and pursue it, rewarding producers of the higher quality. Without
that information, purchasers are unable to distinguish varying levels of quality
consistently, so investments in improved products are not only unrewarded, they
are discouraged. Philanthropic capital markets have lately been described in these
terms (Goldberg, 2009).

Not yet having satisfactory mediating instruments in industries relying heavily
on intangible assets is not proof of the impossibility of obtaining them. There are
strong motivations for considering what appropriate mediating instruments would
look like in human- and social-capital-intensive industries. Foremost among these
motivations is a potential for correcting the significant capital misallocations caused
when individual organizations make isolated investment decisions that cannot be
coordinated across geographically distant groups’ competing proprietary interests
and temporally separated inputs and outputs.

The question is one of how to align investment decisions without compro-
mising confidential budgeting processes or dictating choices. Simply sharing data
on outcomes is a proven failure (Ho, 2008; Murray, 2006) and was never attrac-
tive to for-profit enterprises for which such information is of proprietary value. But
instead of focusing on performance measured in locally idiosyncratic units incapable
of supporting standard product definitions, might not a better alternative be found in
defining a constant unit of increased learning, functionality, or health, and evaluating
quality and cost relative to it? The key to creating coherent industry-wide communi-
ties and markets is measurement. Fryback (Fryback, 1993; Kindig, 1999) succinctly
put the point, observing that the U.S. health care industry is a $900 + billion [over
$2.5 trillion in 2009 (Data, 2011)] endeavor that does not know how to measure its
main product: health. Without a good measure of output we cannot truly optimize
efficiency across the many different demands on resources.
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Quantification in health care is almost universally approached using methods
inadequate to the task, resulting in ordinal and scale-dependent scores that cannot
capitalize on the many advantages of invariant, individual-level measures (Andrich,
2004). Though data-based statistical studies informing policy have their place, virtu-
ally no effort or resources have been invested in developing individual-level instru-
ments traceable to universally uniform metrics that define the outcome products
of health care, education, and other industries heavily invested in human, social,
and natural capital markets. It is well recognized that these metrics are key to effi-
ciently harmonizing quality improvement, diagnostic, and purchasing decisions and
behaviours (Berwick et al., 2003). Marshalling the resources needed to develop,
implement them, and maintain them, however, seems oddly difficult to do until it
is recognized that such a project must be conceived and brought to fruition on a
collective level and against the grain of cultural presuppositions as to the objective
measurability of intangible assets (Cooter, 2000; Fisher, 2009).

Probabilistic models used in scaling and equating different tests, surveys, and
assessments to common additive metrics offer a body of unexamined resources rele-
vant to the need for mediating instruments in the domains of human, social, and
natural capital markets (Fisher, 2009). Miller and O’Leary (2007) complement the
accounting literature’s overly narrow perspective on capital budgeting processes with
the fruitful lines of inquiry opened up in the history, philosophy, and social studies
of science. In this work, mathematical models and instruments are valued for their
embodiment of the local and specific material practices through which mediation is
realized.

In these practices, instruments capable of serving as reliable andmeaningfulmedia
must simultaneously represent a phenomenon faithfully and facilitate predictable
control over it. Though the philosophy of science has long focused attention on the
nature of objective representation, the history and social studies of science have,
over the last 30 years or so, shifted attention to the role of technology in theory
development and in determining the outcome of experiments. By definition, instru-
ments capable ofmediatingmust exhibit properties of structural invariance across the
locally defined contexts of different organizations’ particular investments, policies,
workforces, and articulations of the relevant issues. It is only through the conjoint
processes of representation and intervention that, for instance, the steam engine
became the medium facilitating development of work in the sense of engineering
mechanics and in the economic sense of a new source of labour (Wise, 1988). The
medium is the message here, in the sense that mediating instruments like the steam
engine both represent the lawful regularity of the scientific phenomenon and provide
a predictable means of intervening in the production of it.

The unique importance and value of Rasch’smodels formeasurement lie precisely
here. Rasch-calibrated instruments have long been in use on a wide scale in appli-
cations that combine the representation of measured amounts for accountability
purposes with instructional or therapeutic interventions that take advantage of the
meaningful mapping of abilities relative to curricular or therapeutic challenges
(Alonzo& Steedle, 2009; Chang&Chan, 1995; Kennedy&Wilson, 2007; Leclercq,
1980). These models are structured as analogies of scientific laws’ three-variable
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multiplicative form (Burdick et al., 2006; Fisher, 2010a) and so enable experimental
tests of possible causal relations (Bunderson & Newby, 2009; Stenner & Smith,
1982). When data fit such a model, demonstrably linear units of measurement may
be calibrated and maintained across instrument configurations or brands, and across
measured samples. Clear thinking about the measured construct is facilitated by the
invariant constancy of the unit of measurement—one more unit always means one
more unit of the same size. When instruments measuring the same thing are tuned to
the same scale, mediation is achieved in the comparability of processes and outcomes
within and across subsamples of measured cases.

Linear performance measures are recommended as essential to outcome-based
budgeting (Jensen, 2003), and will require structurally invariant units capable of
mediating comparisons in this way. Without instruments mediating meaningfully
comparable relationships, it is impossible to effectively link science and the economy
by coordinating capital budgeting decisions. The lessons so forcefully demonstrated
over the course of the history of the microprocessor industry need to be learned and
applied in many other industries.

The potential for a new class of mediating instruments resides here, where the
autonomyof the actors and agencies forming a techno-economic network is respected
and uncompromised. Rasch’s parameter separation theorem is a scientific counter-
part of Irving Fisher’s economic separability theorem (Fisher, 2011). It is essential
to realize that Rasch’s equations model the stochastically invariant uniformity of
behaviours, performances or decisions of individuals (people, communities, firms,
etc.), and are not statistical models of group-level relations and associations between
variables (Fisher, 2010b). Data fit a Rasch model and mediation is effected so far as
the phenomenon measured (an ability, attitude, performance, etc.) retains its proper
ties across samples and instrument brands or configurations. Given this fit, the unit
of measurement becomes a common currency for the exchange of value within a
market defined by the model parameters (Fisher, 2011). How could this implicit
and virtual market be made explicit and actual? By devising mediating instruments
linking separate actors and arenas in a way that conforms to the requirements of
the techno-economic forecasts of a projection like Moore’s Law or of a technology
roadmap based in such a law. As Miller and O’Leary (2007) say,

Markets are not spontaneously generated by the exchange activity of buyers and sellers.
Rather, skilled actors produce institutional arrangements, the rules, roles and relationships
that make market exchange possible. The institutions define the market, rather than the
reverse.

What are the rules, roles and relationships that skilled actors need to arrange for
their institutions to define efficient markets for human, social, and natural capital?
What are the rules, the roles, and the relationships thatmakemarket exchangepossible
for these forms of intangible assets? How can standard product definitions for the
outcomes of education, healthcare, and social services be agreed upon? Where are
the lawful patterns of regularities that can be depended on to remain constant enough
over time, space, firms, and individuals to support industry-wide standardizations of
measures and products based on them? What trajectories can be mapped that would
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enable projections accurate enough for firms and agencies to rely on in planning
products years in advance?

Answers to questions such as these provide an initial sketch of the kind of
grounded, hands-on details of the information that must be obtained if the endless
inflationary spirals of human- and social-capital- intensive industries are ever to be
brought under control and transformed into profitable producers of authentic value
and wealth.

3 The Rasch Reading Law and Stenner’s Law

It is a basic fact of contemporary life that the technologies we employ every day are
so complex that hardly anyone understands how they do what they do. Technolog-
ical miracles are commonplace events, from transportation to entertainment, from
health care to industry. And we usually suffer little in the way of adverse conse-
quences from not knowing how automatic transmissions, thermometers, or digital
video reproduction works. It is enough to know how to use the tool.

This passive acceptance of technical details beyond our ken extends as well into
areas in which standards, methods, and products are much less well defined. And so
managers, executives, researchers, teachers, clinicians, andotherswhoneedmeasure-
ment but who are unaware of its technicalities tend to be passive consumers accepting
the lowest common denominator of measurement quality.

And just as the mass market of measurement consumers is typically passive and
uninformed, in complementary fashion the supply side is fragmented and contentious.
There is little agreement among measurement experts as to which quantitative
methods set the standard as the state of the art. Virtually any method can be justified
in terms of some body of research and practice, so the confused consumer accepts
whatever is easily available or is most likely to support a preconceived agenda.

It may be possible, however, to separate the measurement wheat from the chaff.
For instance, measurement consumers may value a means of distinguishing among
methods that emphasizes their interests in, and reasons for, measuring. Such a
continuum of methods could be one that ranges from the least meaningful and gener-
alizable to the most meaningful and generalizable, which is equivalent to ranging
from the most to the least dependent on the local particulars of the specific questions
asked, sample responding, judges rating, etc.

The aesthetics, simplicity, meaningfulness, rigor, and practical consequences of
strong theoretical requirements for instrument calibration provide such criteria for
choices as to models and methods (Andrich, 2002, 2004; Busemeyer &Wang, 2000;
Myung, 2000; Myung & Pitt, 2004; Wright, 1997, 1999). These criteria could be
used to develop and guide explicit considerations of data quality, construct theory,
instrument calibration, quantitative comparisons, measurement standardmetrics, etc.
along a continuum from the most passive and least objective to the most actively
involved and most objective.
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The passive approach to measurement typically starts from and prioritizes content
validity. The questions asked on tests, surveys, and assessments are considered rele-
vant primarily on the basis of the words they use and the concepts they appear to
address. Evidence that the questions actually cohere together and measure the same
thing is typically deemed of secondary importance, if it is recognized at all. If there
is any awareness of the existence of axiomatically prescribed measurement require-
ments, these are not considered to be essential. That is, if failures of invariance are
observed, they usually provoke a turn to less stringent data treatments instead of a
push to remove or prevent them. Little or no measurement or construct theory is
implemented, meaning that all results remain dependent on local samples of items
and people. Passively approaching measurement in this way is then encumbered by
the need for repeated data gathering and analysis, and by the local dependency the
results. Researchers working in this mode are akin to the woodcutters who say they
are too busy cutting trees to sharpen their saws.

An alternative, active approach to measurement starts from and prioritizes
construct validity and the satisfaction of the axiomatic measurement requirements.
Failures of invariance provoke further questioning, and there is significant practical
use of measurement and construct theory. Results are then independent of local
samples, sometimes to the point that researchers and practical applications are not
encumbered with usual test- or survey-based data gathering and analysis.

3.1 Six Developmental Stages

As is often the case, this black andwhite portrayal tells far from thewhole story. There
are multiple shades of grey in the contrast between passive and active approaches
to measurement. The actual range of implementations is much more diverse than
the simple binary contrast would suggest. Spelling out the variation that exists could
be helpful for making deliberate, conscious choices and decisions in measurement
practice.

It is inevitable that we would start from the materials we have at hand, and that
we would then move through a hierarchy of increasing efficiency and predictive
control as understanding of any given variable grows. Previous considerations of the
problem have offered different categorizations for the transformations characterizing
development on this continuum. Stenner and Horabin (Stenner & Horabin, 1992)
distinguish between (1) impressionistic and qualitative, nominal gradations found
in the earliest conceptualizations of temperature, (2) local, data-based quantitative
measures of temperature, and (3) generalized, universally uniform, theory-based
quantitative measures of temperature.

The latter is prized for the way that thermodynamic theory enables the calibration
of individual thermometers with no need for testing each one in empiric studies of its
performance. Theory makes it possible to know in advance what the results of such
tests would be with enough precision to greatly reduce the burden and expenses of
instrument calibration.
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Reflecting on the history of psychosocial measurement in this context, it then
becomes apparent that these three stages can be further broken down. The distin-
guishing features for each of six stages in the evolution of measurement systems are
expanded from a previously described five stage conception (Stenner et al., 2006).

In Stage 1, conceptions of measurement are not critically developed, but stem
from passively acquired examples. At this level, what you see is what you get, in
the sense that item content defines measurement; advanced notions of additivity,
invariance, etc. are not tested; the meanings of the scores and percentages that are
treated as measures are locally dependent on the particular sample measured and
items used; and there is no theory of the construct measured. Data must be gathered
and analyzed to have results of any kind.

In Stage 2, measurement concepts are slightly less passively adopted. Additivity,
invariance, etc. may be tested, but falsification of these hypotheses effectively derails
the measurement effort in favour of statistical models with interaction effects, which
are accepted as viable alternatives. Typically little or no attention is paid at this stage
to the item hierarchy or the construct definition. An initial awareness of measurement
theory is not complemented by any construct specification theory.

In Stage 3, measurement concepts are more actively and critically developed,
but instruments still tend to be designed relative to content, not construct, specifica-
tions. Additivity and invariance principles are tested, and falsification of the additive
hypothesis provokes questions as to why, where, and how those failures occurred.
Models with interaction effects are not accepted as viable alternatives, and signif-
icant attention will be paid to the item hierarchy and construct definition, but item
calibrations remain empirical. Though there is more significant use of measurement
theory, construct theory is underdeveloped, so no predictive power is available.

In Stage 4, the conceptualization of measurement becomes more active than
passive. Initial efforts to (re-)design an instrument relative to construct specifica-
tions occur at this level. Additivity, invariance, etc. are explicitly tested and are built
into construct manifestation expectations. The falsification of the additive hypoth-
esis provokes questions as to why and corrective action, models with interaction
effects are not accepted as viable alternatives, significant attention is paid to the
item hierarchy and construct definition relative to instrument design, but empirical
calibrations remain the norm. Some construct theory gives rise to limited predictive
power. Commercial applications that are not instrument-dependent (as in computer
adaptive implementations) exist at this level.

In Stage 5, all of the Stage 4 features appear in the context of a significantly
active approach to measurement. The item hierarchy is translated into a construct
theory, and a construct specification equation predicts item difficulties and person
measures apart from empirical data. These features are used routinely in commercial
applications.

In Stage 6, the most purely active approach to measurement, all of the Stage 4 and
5 features are brought to bear relative to construct specification equations that predict
the mean difficulties of ensembles of items each embodying a particular combination
of components. Commercial applications of this kind have been in development for
several years.
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Various degrees of theoretical investment at each stage can be further specified,
along with speculations as to the extent of application frequency in mainstream
and commercial instrument development. Stage 1, with no effective measurement
or construct theory, remains the mainstream, most popular approach in terms of its
application frequency, which likely exceeds 90% of all efforts aimed at quantifying
human, social, or natural capital. It is, however, commercially the least popular in
application frequency (<10%?) in high stakes educational and psychological testing.

Stage 2, implementing very limited use of measurement theory and no construct
theory is the next most popular mainstream psychosocial application frequency at
perhaps eight percent, overall. It also has a somewhat higher commercial application
frequency (10–20%).

Stage 3, with a strong use of measurement theory and little or no construct theory,
may be used as much as one or two percent of the time in mainstream applications,
and may be dominant methodologically in commercial applications (55–65%?).

Stage 4’s strong use of measurement theory and use of some construct theory in
informing instrument design have very limited psychosocial application frequency in
mainstream applications (<0.5%?) but have made some significant starts in commer-
cial applications (3–5%?). Stage 5’s strong theoretical understanding of constructs
is virtually unknown in mainstream psychosocial application, but has also begun to
see some commercial developments. Stage 6’s mature theoretical understanding of
constructs is only just emerging in some well-supported commercial applications.

3.2 The Rasch Reading Law

Measurement theory sets the stage for thinking about constructs by focusing attention
on the meaningfulness of the quantities produced, by facilitating the construction of
supporting evidence, by testing construct hunches, and by supporting theory devel-
opment. Construct theory then sets the stage for following through on measurement
theory’s fundamental principles by making it possible to more fully transcend local
particulars of respondent and item samples. It does so by recognizing that failures
of invariance are valuable as anomalous exceptions that “prove” (L. probus, test
goodness of) the rule embodied in the measurement technology.

That is, data-model misfit is not considered to result from model failure, but from
uninterpretable inconsistencies in the data stemming from under- eveloped theory
and/or low quality data. Thus, failure to fit a model of fundamental measurement
is not a sign of the end of the conversation or of the measurement effort. Rather,
negative results of this kind provide needed checks on the strength of the object to
withstand the rigors of propagation acrossmedia, which is the ultimate goal of having
each different manufacturer’s tool capable of functioning as a medium traceable to
the same reference standard metric (Latour, 1987, 2005).

The predictability of a trajectory for the evolution of measurement allows the
specification of a law capable of shaping fundamental expectations as to in- creases in
the power and complexity of psychosocialmeasurement technology, and the timingof
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those increases. This practical law is applicable to business relationships in a manner
analogous to the way the basic law describes scientific relationships. This is so even
if the definition of work in engineering mechanics is of little immediate interest in
gauging the economic value of labour. Despite the lack of immediate relevance, the
practical utility of the widely used horsepower measure of engine pulling capacity
depends on the scientific validity of the proportionate relations between mass, force,
and acceleration in Newton’s laws.

The same simultaneous instantiation of scientific and economic value must
be possible for instruments to mediate relationships in ways that can effectively
and efficiently coordinate capital budgeting decisions. Thus, the Rasch Reading
Law describes invariantly proportionate ratios between reading comprehension,
text complexity, and reader ability (Burdick et al., 2006; Stenner et al., 2006). As
text complexity increases (the words used become less commonly encountered,
and sentence length increases), reading comprehension rates decrease relative to
a fixed reading ability measure. Conversely, given a fixed text complexity, reading
comprehension rates increase as reading ability increases.

The practical value of this law is realized insofar as it then becomes possible
to employ it productively in both (a) representing students’ reading abilities in
summative accountability measures and (b) intervening in ways likely to change
those measures in formative instructional applications (Alonzo & Steedle, 2009;
Chang & Chan, 1995; Kennedy & Wilson, 2007; Leclercq, 1980). Concerning the
latter, it is well understood that learning is inherently a matter of leveraging what
is already known (the alphabet, numbers, words, grammar, arithmetical operations,
etc.) to frame and understand what is not yet known (new vocabulary, constructions,
specific problems, etc.). It is therefore vitally important to target instruction at the
sweet spot where enough is known to support comprehension, but where what is not
known is still substantial enough to make the lesson challenging. This range along
the measurement continuum just above the student’s measure is known as the Zone
of Proximal Development (Vygotsky, 1978) and is valued for indicating the range
of curriculum content the student is developmentally ready to learn (Griffin, 2007).
When measures are appropriately targeted, learning is maximized and measurement
error is minimized. The same kind of strategy has proven useful in prescribing reha-
bilitation therapies (Chang & Chan, 1995) and likely has other as yet unexplored
applications.

Targeting will be a key element in any future technology roadmap for educa-
tion. Though there is no substitute for attention to other substantive aspects of the
educational process, this indicator is of potentially central importance as a summary
indicator of how accurately and precisely educational outcomes are represented, and
how efficiently instructional interventions are implemented.

Rasch measurement isolates and focuses attention on empirical and theoretically
tractable test item difficulty scale orders and positions. Then it estimates student
abilities relative to that scale and describes them in terms of the probabilities of
successful comprehension up and down the scale, whether or not all of the items
potentially available have actually been administered. The goal of education, after
all, is not to teach students only how to deal with the actual concrete problems
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encountered in instruction and assessment. The goal is rather to teach students how
to manage any and all problems of a given type at a given level of difficulty.

Though a dialectic between part and whole is necessary, we cheat students and
society when education becomes fixated on particular content and neglects the larger
context in which skills are to be applied. The overall principle is effectively one
of mass customization. Instruction and assessment, or any bidirectional method of
simultaneous representation and intervention, benefits from forms of quantification
coordinating substantive content with metrics that remain stable and constant no
matter which particular test, survey, or assessment items are involved. The same prin-
ciples apply in any other enterprise focused on intangible outcomes, such as health
care, social services, or human resource management. We short change ourselves
by failing to demand mediating instruments enabling a kind of virtual coordination
of improvement, purchasing, hiring, and other investment decisions across different
individuals, firms, agencies, and arenas in the economy. The architecture of proba-
bilistic models open to the integration of new items and samples embodies the prin-
ciples of invariance characteristic of the mediating instruments needed for aligning
legally and geographically separated firms’ decisions within a common inferential
framework.

3.3 Stenner’s Law

Of course, even though it has been almost 60 years since Rasch (1960) first did his
foundational research (Andrich, 1988; Bond& Fox, 2007;Wright, 1985) on reading,
integrating assessment and instruction on the basis of the Rasch Reading Law is not
yet the norm in educational practice. Accordingly, most instruction is not integrated
with assessment, and few examination results are reported so as to illustrate the
alignment of a developmental continuum with the curriculum. Furthermore, and
more specifically, most reading instruction is not appropriately targeted at individual
students’ Zones of Proximal Development. This is problematic, given that reading
abilities within elementary school classrooms can easily range from two grade levels
below to two grade levels above the reading difficulty of the textbook.

Figure 1, modelled on the first of two figures in Moore’s original 1965 paper
(Moore, 1965, 1975), shows a hypothetical but not unrealistic projection of the rela-
tion of average targeting accuracy with cost, by decade, from 1990 to 2030. Precision
measurement is considered here to be realized when the targeted comprehension rate
is realized to within 5%. Few reading tests were adaptively administered or well
targeted before 1990; though a few were, computerization of test administration was
difficult and expensive, as was (and remains) printed test production. Further, even
fewer tests were administered for diagnostic or formative purposes before 1990,
which is just as well as few would have been able to provide information useful for
those applications.

It is plausible to suppose that, as the quality of testing has improved in the years
after 1990, costs have been reduced and the targeting accuracy of assessment items
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Fig. 1 Hypothetical
projection of mean
percentages of students
comprehending text at a rate
of 60% or less by average
relative cost of producing a
single precision reading
measure by year

and instructional text has been enhanced, so the difference between the average item
difficulty and the average measure of the targeted student approaches 0, to the left.
The upper limit of targeting accuracy remains constant because the impact of new
methods of test construction and administration are unevenly distributed. Costs are
driven down as theory is able to inform the automatic production and administra-
tion of targeted text and test items in computerized contexts effectively integrating
assessment and instruction. Costs may be dropping by an order of magnitude every
decade, with the rate in reductions in mistargeting slowing as it nears 0. At some
future date, accurate targeting may become universal, and the right, off-target end of
the range may also drop to near 0.

Figure 2, is also patterned on the first figure inMoore (Moore, 1965), is a variation
on the same information as that shown in Fig. 1. Mistargeted text and test items may
bore able readers encountering material that is much too easy, but poor readers
unable to make any headway with readings far too complex for them to comprehend
are doomed to learn little or nothing. Figure 2 is thus intended to convert Fig. 1’s
targeting information into the implied percentage of students comprehending text at
a rate of 60% or less.

Figure 3, patterned on the second figure in Moore (1965), describes what may be
referred to as Stenner’s Law: the expectation that the number of precision reading
measures estimated will double every two years, with no associated increase in cost.
The figure has historical validity in that the line begins not long after the 1960
introduction of Rasch’s work in Chicago, is in the range of 350,000 in the 1970s,
during theAnchor Test Study (Jaeger, 1973; Rentz&Bashaw, 1977), and is about 20–
30 million in the period of 2005–2008, which is approximately how many measures



192 W. P. Fisher Jr. and A. J. Stenner

Fig. 2 Hypothetical
projection of mean targeting
accuracy (0–400 L) by
average relative US$ cost of
producing a single precision
reading measure by year

were being produced annually at the time by users of the Lexile Framework for
Reading (Stenner et al., 2006).

Fig. 3 Rate of increase in number of precision reading measures estimated
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4 A Technology Roadmap for Intangible Assets

New and urgent demands challenged Moore’s Law when it was realized in the 1990s
that the physical limits of silicon could potentially disrupt the expectations that had
allowed themicroprocessor industry to coordinate its investment decisions so consis-
tently for over 20 years (Schulz, 1999). The threat of a crisis led to the convening
of an industry-wide meeting in 1992 by Gordon Moore, then chairman of the Semi-
conductor Industry Association’s technology committee (Miller & O’Leary, 2007).
This and subsequent meetings of the group resulted in the annual publication of an
International Technology Roadmap for Semiconductors.

These charts provided a level of specificity and detail not present in the more
bare-bones projections of Moore’s Law. The established history of past successes,
combined with new uncertainties compelled leaders in the field to seek out a basis on
which newmediating instrumentsmight be founded.Risks associatedwith evaluating
several different methods of resolving the technical problem of continued reductions
in microprocessor size and cost had to be mitigated so that no firms found themselves
making large capital investments with no product or customers in sight (which,
unfortunately, is the status quo in education, healthcare, and other industries making
intensive investments in human, social, and natural capital).

Table 1 presents a reading measurement variation on the 2001 version of the
semiconductor industry’s roadmap (Miller & O’Leary, 2007). The basic structure of
the table (the columns labelled “Year of first production” and “Technology node”,
and the subheadings focusing on “Expected shifts in product functionality and cost”,
Introductory volumes, and Innovations) is identical with the produced by the semi-
conductor industry. The remaining elements have been changed to focus on the kinds
of functionality, cost, and innovations that have taken place historically in the domain
of reading instruction and assessment.

Some of these suggested elements may prove less important in articulating a
shared history and projecting an accessible vision of the future, and others may be
needed. The point here is less one of specifying what exactly should be tracked and
is more focused on conveying the general conceptual framework in.

which new possibilities for coordinating investment decisions in education might
be explored. Plainly, it would be essential for themajor stake holding actors and agen-
cies involved in education, from academia to business to government, to themselves
determine the actual contents of a roadmap such as this.

5 Conclusion

Themediation of individual and organizational levels of analysis, and of the organiza-
tional and inter-organizational levels, is facilitated byRaschmeasurement.Miller and
O’Leary (2007) document the use of Moore’s Law in the microprocessor industry
in the creation of technology roadmaps that lay out the structure, processes, and
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Table 1 Sketch of a possible technology roadmap for literacy education (elements to be
determined)

Year of first production

Technology node 1980 1990 2000 2010 2020 2030

Expected shifts in product functionality
and cost—high volume targeted items

Number of steps in item production and administration

Multiple per 3-year technology cycle

Affordable production cost per item at introduction

Rate of cost reduction per cycle (%)

Annualized cost reduction/item (%)

Improvements in instructional targeting accuracy

Reduction in students reading at <60% comprehension (%)

Increase in number of precision reading measures (%)

Available item volume at introduction

Uncalibrated

Calibrated bank

From specification equation

Innovations in item administration

Paper and pencil adaptive formats

Computer adaptive (bank)

Theory adaptive (specified)

Innovations integrating assessment & instruction

Examinations aligned with curricula (%)

Differentiated instruction aligned with adaptive tests (%)

Writing assessment included (%)

outcomes that have to be aligned at all three levels to coordinate an entire industry’s
economic success. Such roadmaps need to be created for each major form of human,
social, and natural capital, with the associated alignments and coordinations put in
play at all levels of every firm, industry, and government.

It has been suggested that economic recovery in the wake of the Great Recession
could be driven by a new major technological breakthrough, one of the size and
scope of the IT revolution of the 1990s. This would be a kind of Manhattan Project
or international public works program, providing the unifying sense of a mission
aimed at restoring and fulfilling the promises of democracy, justice, freedom, and
prosperity. Industry-wide systems of metrological reference standards for human,
social, and natural capital fit the bill. Such systems would be a new technological
breakthrough on the scale of the initial IT revolution. They would also be a natural
outgrowth of existing IT systems, an extension of existing global trade standards,
and would require large investments from major corporations and governments. In
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addition, stepping beyond those suggestions that have appeared in the popular press,
systematic and objectivemethods ofmeasuring intangible assets would helpmeet the
widely recognized need for socially responsible and sustainable business practices.

Better measurement will play a vital role in reducing transaction costs, making
human, social, and natural capital markets more efficient by facilitating the coordi-
nation of autonomous budgeting decisions. It will also be essential to fostering new
forms of innovation, as the shared standards and common product definitions made
possible by advanced measurement systems enable people to think and act together
collectively in common languages.

Striking advances have been made in measurement practice in recent years. Many
still assume that assigning numbers to observations suffices asmeasurement, and that
there have been no developments worthy of note in measurement theory or practice
for decades. Nothing could be further from the truth.

Theorymakes it possible to know in advance what the results of empirical calibra-
tion tests would be with enough precision to greatly reduce the burden and expenses
associated with maintaining a unit of measurement. There likely would be no elec-
trical industry at all if the properties of every centimetre of cable and every appliance
had to be experimentally tested. This principle has been employed in measuring
human, social, and natural capital for some time, but has not yet been adopted on a
wide scale.

This might change with the introduction of Stenner’s Law, and in conjunction
with technology roadmaps for literacy capital and for other forms of human, social,
and natural capital that project rates of increase in psychosocial measurement func-
tionality and frame an investment appraisal process ensuring the ongoing creation of
markets for advanced calibration services for the next 10–20 years or more.

A progression of increasing complexity, meaning, efficiency, and utility can be
used as a basis for a technology roadmap that will enable the coordination and
alignment of various services and products in the domain of intangible assets. A
map to the theory and practice of calibrating instruments for the measurement of
intangible forms of capital is needed to provide guidance in quantifying constructs
such as literacy, health, and environmental quality. We manage what we measure, so
when we begin measuring well what we want to manage well, we’ll all be better off.
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How to Model and Test
for the Mechanisms That Make
Measurement Systems Tick

A. Jackson Stenner, Mark Stone, and Donald Burdick

Abstract One must provide information about the conditions under which [the
measurement outcome] would change or be different. It follows that the general-
izations that figure in explanations [of measurement outcomes] must be change-
relating… Both explainers [e.g., person parameters and item parameters] and what
is explained [measurement outcomes] must be capable of change, and such changes
must be connected in the right way (Woodward, 2003). Rasch’s unidimensional
models for measurement tell us how to connect object measures, instrument cali-
brations, and measurement outcomes. Substantive theory tells us what interventions
or changes to the instrument must offset a change to the measure for an object of
measurement to hold the measurement outcome constant. Integrating a Rasch model
with a substantive theory dictates the form and substance of permissible conjoint
interventions. Rasch analysis absent construct theory and an associated specification
equation is a black box in which understanding may be more illusory than not. The
mere availability of numbers to analyze and statistics to report is often accepted as
methodologically satisfactory in the social sciences, but falls far short of what is
needed for a science.

1 Introduction

The vast majority of psychometric thought over the last century has had as its focus
the item. Shortly after Spearman’s (1904) original conception of reliability as whole
instrument replication proved to be difficult when there existed little understanding
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of what psychological instruments actually measured. The lack of substantive theory
made it difficult indeed to “clone” an instrument—to make a genetic copy. In the
absence of a substantive theory the instrument maker does not know what features of
test items are essential to copy andwhat features are incidental and cosmetic (Irvine&
Kyllonen, 2002). So, faced with the need to demonstrate the reliability of psycho-
logical instruments but lacking a substantive construct theory that would support
instrument cloning early psychometrics took a fateful step inward. Spearman (1910)
proposed estimating reliability as the correlation between sum scores on odd and
even items of a single instrument. Thus was the instrument lost as a focus of psycho-
metric study and the part score and inevitably the item became ascendant. The spawn
of this inward misstep is literally thousands of instruments with non–exchangeable
metrics populating a landscape devoid of unifying psychological theory. And, this
is so because… “The route from theory or law to measurement can almost never be
traveled backwards” (Kuhn, 1961).

There are two quotes that when taken at extreme face value open up a new
paradigm for measurement in the social sciences:

It should be possible to omit several test questions at different levels of the scale
without affecting the individuals [readers] score [measure] (Thurstone, 1926).

… a comparison between two individuals [readers] should be independent of
which stimuli [test questions] within the class considered were instrumental for
comparison; and it should also be independent of which other individuals were also
compared, on the same or some other occasion (Rasch, 1961).

Both Thurstone and Rasch envisioned a measurement framework in which indi-
vidual readers could be compared independent of which particular reading items
were instrumental for the comparison. Taken to the extreme we can imagine a group
of readers being invariantly ordered along a scale when there is not a single item
in common. No two readers are exposed to the same item. This would presumably
reflect the limit of “omitting” items and making comparisons “independent of the
items” used to make the comparison. Compare a fully crossed data collection design
in which each item is administered to every reader with a design in which items are
nested in persons, i.e., items are unique to each person. Although easily conceived it
is immediately clear that there is no data analysis method that can extract invariant
reader comparisons from the second design type data. But is this not exactly the kind
of data that is routinely generated say when parents report their child’s weight on
a doctor’s office form? No two children (except for siblings) share the same bath-
room scale nor potentially even the same underlying technology and yet we can
consistently and invariantly order all children in terms of weight? What is different
is that the same construct theory for weight has been engineered into each and every
bathroom scale even though the specific mechanism (digitally recorded pressure vs.
spring driven analog recording) may vary. In addition, the measurement unit (pounds
or kilograms) has been consistently maintained from bathroom scale to bathroom
scale. So, it is substantive theory and engineering specifications not data that is used
to render comparable measurements from these disparate bathroom scales. We argue
that this illustrates the dominant distinguishing feature between physical science and
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social science measurement. Social science measurement does not, as a rule, make
use of substantive theory in the ways that the physical sciences do.

Validity theory and practice suffers from an egalitarian malaise, all correlations
are considered part of the fabric of meaning and like so many threads each is treated
equally. Because we live in a correlated world, correlations of 0.00 are rare, non-
zero correlations abound and it is an easy task to collect a few statistically significant
correlates between scores produced by virtually any human science instrument and
other meaningful phenomena. All that is needed to complete our validity tale is
a story about why so many phenomena are correlated with the instrument we are
making. And so it goes hundreds and thousands of times per decade, dozens of
new instruments are islands unto themselves accompanied by dozens of hints of
connectivity whispered to us through dozens of middling correlations. This is the
legacy of the nomological network (Cronbach &Meehl, 1955). May it rest in peace!

Validity, for us, is a simple straightforward conceptwith a narrow focus. It answers
the question “What causes the variation detected by the instrument?” The instrument
(a reading test) by design comes in contact with an object of measurement (a reader)
and what is recorded is a measurement outcome (count correct). That count is then
converted into a linear quantity (a reading ability).Why didwe observe that particular
count correct? What caused a count correct of 25/40 rather than 20/40 or 30/40? The
answer (always provisional) takes the form of a specification equation (Stenner et al.,
1983) with variables that when experimentally manipulated produce the changes
in item behavior (empirical item difficulties) predicted by the theory. In this view
validity is not about correlations or about graphical depictions of empirical item
orderings called Wright maps (Wilson, 2004). It is about what is causing what?
Is the construct well enough understood that its causal action can be specified?
Clearly our expectation is unambiguous. There exist features of the stimuli (test or
survey items) that if manipulated will cause changes in what the instrument records
(what we observe). These features of the stimuli interact with the examinee and the
instrument records the interaction (correct answer, strong agreement, tastes good
etc.). The window onto the interaction between examinee and instrument is fogged
up. We can’t observe directly what goes on in the mind of the examinee but we
can dissect and otherwise manipulate the item stimuli, or measurement mechanism,
and observe changes in recorded behavior of the examinee (Stenner et al., 2009a).
Some of the changes we make to the items will matter (radicals) to examinees and
others will not (incidentals). Sorting out radicals (causes) from incidentals is the hard
work of establishing the validity of an instrument (Irvine & Kyllonen, 2002). The
specification equation is an instantiation of these causes (at best) or their proxies (at
a minimum).

Typical applications of Rasch models to human science data are thin on substan-
tive theory. Rarely is there an a priori specification of the item calibrations (i.e.,
constrained models). Instead the analyst estimates both person parameters and item
parameters from the same data set. For Kuhn this practice is at odds with the function
of measurement in the “hard” sciences in that almost never will substantive theory be
revealed from measurement (Kuhn, 1961). Rather “the scientist often seems rather
to be struggling with facts [e.g., raw scores], trying to force them to conformity with
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a theory he does not doubt” (Kuhn, 1961). Here Kuhn is talking about substantive
theory not axioms. The scientist imagines a world and formalizes these imaginings
as a theory and then makes measurements and checks for congruence between what
is observed and what theory predicted: “Quantitative facts cease to seem simply the
‘given’. Theymust be fought for andwith, and in this fight the theory with which they
are to be compared proves the most potent weapon”. It’s not just that unconstrained
models are less potent; they fail to conform to the way science is practiced and most
troubling they are least revealing of anomalies (Andrich, 2004).

Andrich (Andrich, 2004) makes the case that Rasch models are powerful tools
precisely because they are prescriptive not descriptive and when model prescrip-
tions meet data, anomalies arise (Andrich, 2004). Rasch models invert the traditional
statistical data-model relationship. Rasch models state a set of requirements that
data must meet if those data are to be useful in making measurements. These model
requirements are independent of the data. It does notmatter if the data are bar presses,
counts correct on a reading test, or wine taste preferences, if these data are to be useful
in making measures of rat perseverance, reading ability, or vintage quality all three
sets of data must conform to the same invariance requirements. When data sets fail
to meet the invariance requirements we do not respond by, say, relaxing the invari-
ance requirements through addition of an item specific discrimination parameter to
improve fit; rather, we examine the observation model and imagine changes to that
model that would bring the data into conformity with the Rasch model requirements.

A causal Rasch model (item calibrations come from theory not the data) is
doubly prescriptive (Stenner et al., 2009a). First, it is prescriptive regarding the
data structures that must be present.

“The comparison between two stimuli [text passages] should be independent of
which particular individuals [readers] were instrumental for the comparison; and it
should also be independent of which other stimuli within the considered class [prose]
were or might also have been compared. Symmetrically, a comparison between two
individuals [readers] should be independent of which particular stimuli within the
class considered [prose] were instrumental for [text passage] comparison; and it
should also be independent of which other individuals were also compared, on the
same or on some other occasion” (Rasch, 1961).

Second, Causal Rasch Models (CRM) (Burdick et al., 2006; Stenner et al., 2008)
prescribe that item calibrations take the values imposed by the substantive theory.
Thus, the data, to be useful in making measures, must conform to both Rasch model
invariance requirements and substantive theory invariance requirements as repre-
sented in the theoretical item calibrations. When data meet both sets of requirements
then those data are useful not just for making measures of some construct but are
useful for making measures of that precise construct specified by the equation that
produced the theoretical item calibrations. We note again that these dual invariance
requirements come into stark relief in the extreme case of no connectivity across
stimuli or examinees. How, for example, are two readers to be measured on the same
scale if they share no common text passages or items? If you read aHarry Potter novel
and answer questions and I read a Lord of the Rings novel and answer questions,
how is it possible that from these disparate experiences an invariant comparison of
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our reading abilities is realizable? How is it possible that you can be found to read
250L better than I and, furthermore, that you had 95% comprehension and I had 75%
comprehension of our respective books. Given that seemingly nothing is in common
between the two experiences it seems that invariant comparisons are impossible, but,
recall our bathroom scale example, different instruments qua experiences underlie
every child’s parent reported weight. Why are we so quick to accept that you weigh
50lbs less than I do and yet find claims about our relative reading abilities (based
on measurements from two different books) inexplicable. The answer lies in well
developed construct theory, instrument engineering and metrological conventions.

Clearly, eachof us has had ample confirmation that the constructWEIGHTdenom-
inated in pounds and kilograms can be well measured by any carefully calibrated
bathroom scale. Experience with diverse bathroom scales has convinced us that
within a pound or two of error these instruments will produce not just invariant rela-
tive differences between two persons (as described in the Rasch quotes) but the more
stringent expectation of invariant absolute magnitudes for each individual indepen-
dent of instrument. Over centuries, instrument engineering has steadily improved to
the point that for most purposes “uncertainty of measurement” usually reported as
the standard deviation of a distribution of imagined or actual replications taken on a
single person canbe effectively ignored formost bathroomscale applications. Finally,
by convention (i.e., the written or unwritten practice of a community) in the U.S. we
denominate weight in pounds and ounces. The use of pounds and ounces is arbitrary
as is evident from the fact that most of the world has gone metric, but what is decisive
is that a unit is agreed to by the community and is slavishlymaintained through consis-
tent implementation, instrument manufacture, and reporting. At present READING
ABILITY does not enjoy a commonly adhered to construct definition, nor a widely
promulgated set of instrument specifications nor a conventionally accepted unit of
measurement, although, the Lexile Framework for Reading (Stenner et al., 2006)
promises to unify the measurement of READING in a manner precisely parallel to
the way unification was achieved for LENGTH, TEMPERATURE, WEIGHT and
dozens of other useful attributes (Stenner & Stone, 2010).

A causal (constrained) Rasch model (Stenner et al., 2009b) that fuses a substan-
tive theory to a set of axioms for conjoint additive measurement affords a much
richer context for the identification and interpretation of anomalies than does an
unconstrained Rasch model. First, with the measurement model and the substan-
tive theory fixed it is self evident that anomalies are to be understood as problems
with the data ideally leading to improved observation models that reduce unintended
dependencies in the data. Recall that The Duke of Tuscany put a top on some of the
early thermometers thus reducing the contaminating influences of barometric pres-
sure on the measurement of temperature. He did not propose parameterizing baro-
metric pressure so that the boiling point of water at sea level would match the model
expectations at 3,000 feet above sea level. Second, with both model and construct
theory fixed it is obvious that our task is to produce measurement outcomes that fit
the (aforementioned) dual invariance requirements. By analogy, not all fluids are
ideal as thermometric fluids. Water, for example, is non-monotonic in its expansion
with increasing temperature. Mercury, in contrast, has many useful properties as a
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thermometric fluid. Does the discovery that not all fluids are useful thermometric
fluids invalidate the concept of temperature? No! In fact, a single fluid with the
necessary properties would suffice to validate temperature as a useful construct. The
existence of a persistent invariant framework makes it possible to identify anoma-
lous behavior (water’s strange behavior) and interpret it in an expanded theoretical
framework. Analogously, finding that not all reading item types conform to the dual
invariance requirements of a Rasch model and the Lexile theory does not invali-
date either the axioms of conjoint measurement theory or the Lexile reading theory.
Rather, anomalous behaviors of various item types are open invitations to expand
the theory to account for these deviations from expectation. Notice here the subtle
shift in perspective. We do not need to find 1000 unicorns; one will do to establish
the reality of the class. The finding that reader behavior as a single class of reading
tasks can be regularized by the joint actions of the Lexile theory and a Rasch model
is sufficient evidence for the reality of the reading construct.

2 Model and Theory

Equation (1) is a causalRaschmodel for dichotomous data,which sets ameasurement
outcome (raw score) equal to a sum of modeled probabilities

Expected raw score =
∑

i

e(bn−di )

1+ e(bn−di )
(1)

Themeasurement outcome is the dependent variable and themeasure (e.g., person
parameter, b) and instrument (e.g., the parameters di pertaining to the difficulty d
of item i) are independent variables. The measurement outcome (e.g., count correct
on a reading test) is observed, whereas the measure and instrument parameters are
not observed but can be estimated from the response data and substantive theory,
respectively. When an interpretation invoking a predictive mechanism is imposed on
the equation, the right-side variables are presumed to characterize the process that
generates the measurement outcome on the left side. The symbol =: was proposed
by Euler circa 1734 to distinguish an algebraic identity from a causal identity (right
hand side causes the left hand side). The symbol =: exhumed by Judea Pearl can be
read as manipulation of the right hand side via experimental intervention will cause
the prescribed change in the left hand side of the equation.

A Rasch model combined with a substantive theory embodied in a specifica-
tion equation provides a more or less complete explanation of how a measurement
instrument works (Stenner et al., 2009a). A Rasch model in the absence of a spec-
ified measurement mechanism is merely a probability model. A probability model
absent a theory may be useful for describing or summarizing a body of data, and
for predicting the left side of the equation from the right side, but a Rasch model in
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which instrument calibrations come from a substantive theory that specifies how the
instrument works is a causal model. That is, it enables prediction after intervention.

Causal models (assuming they are valid) are much more informative than proba-
bility models: “A joint distribution tells us how probable events are and how prob-
abilities would change with subsequent observations, but a causal model also tells
us how these probabilities would change as a result of external interventions… Such
changes cannot be deduced from a joint distribution, even if fully specified.” (Pearl,
2000).

A satisfying answer to the question of how an instrument works depends on under-
standing how to make changes that produce expected effects. Identically structured
examples of two such narratives include (a) a thermometer designed to take human
temperature and (b) a reading test.

2.1 The NexTemp® Thermometer

The NexTemp® thermometer is a small plastic strip pocked with multiple enclosed
cavities. In the Fahrenheit version, 45 cavities arranged in a double matrix serve
as the functioning end of the unit. Spaced at 0.2 °F intervals, the cavities cover a
range from 96.0 to 104.8 °F. Each cavity contains three cholesteric liquid crystal
compounds and a soluble additive. Together, this chemical composition provides
discrete and repeatable change-of-state temperatures consistent with the device’s
numeric indicators. Change of state is displayed optically and is easily read.

2.2 The Lexile Framework for Reading®

Text complexity is predicted from a construct specification equation incorporating
sentence length and word commonality components. The squared correlation of
observed and predicted item calibrations across hundreds of tests and millions
of students over the last 15 years averages about 0.93. Available technology for
measuring reading ability employs computer-generated items built “on-the-fly” for
any continuous prose text. Counts correct are converted into Lexile measures via a
Rasch model estimation algorithm employing theory-based calibrations. The Lexile
measure of the target text and the expected spread of the cloze items are given by
theory and associated equations. Differences between two readers’ measures can be
traded off for a difference in Lexile text measures.When the item generation protocol
is uniformly applied, the only active ingredient in the measurement mechanism is
the choice of text complexity.

In the temperature example, if we uniformly increase or decrease the amount of
soluble additive in each cavity, we change the correspondence table that links the
number of cavities that turn black to degrees Fahrenheit. Similarly, if we increase
or decrease the text demand (Lexile) of the passages used to build reading tests, we
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predictably alter the correspondence table that links count correct to Lexile reader
measure. In the former case, a temperature theory that works in cooperation with a
Guttman model produces temperature measures. In the latter case, a reading theory
that works in cooperation with a Rasch model produces reader measures. In both
cases, the measurement mechanism is well understood, and we exploit this under-
standing to address a vast array of counterfactuals (Woodward, 2003). If things had
been different (with the instrument or object of measurement), we could still answer
the question as to what then would have happened to what we observe (i.e., the
measurement outcome). It is this kind of relation that illustrates the meaning of the
expression, “there is nothing so practical as a good theory” (Lewin, 1951).

3 Distinguishing Features of Causal Rasch Models

Clearly the measurement model we have proposed for human sciences mimics key
features of physical science measurement theory and practice. Below we highlight
several such features.

1. The model is individual centered. The focus is on explaining variation within
person over time.

Much has been written about the disadvantages of studying between person variation
with the intent to understand within person causal mechanisms (Barlow et al., 2009;
Grice, 2011). Molenaar (2004) has proven that only under severely restrictive condi-
tions can such cross level inferences be sustained. In general in the human sciences
we must build and test individual centered models and not rely on variable or group
centered models (with attendant focus on between person variation) to inform our
understanding of causal mechanisms. Causal Raschmodels are individually centered
measurement models. The measurement mechanism that transmits variation in the
attribute (within person over time) to the measurement outcome (count correct on a
reading test) is hypothesized to function the same way for every person (the second
ergodicity condition of homogeneity) (Molenaar, 2004). Note, however, that the fact
that there are different developmental pathways that led you to be taller than me and
me to be a better reader than you does not mean that the attributes of height and
reading ability are somehow necessarily different attributes for both of us.

2. In this framework the measurement mechanism is well specified and can be
manipulated to produce predictable changes in measurement outcomes (e.g.,
percent correct).

For purposes of measurement theory we don’t need a sophisticated philosophy of
causal inference. For example, questions about the role of human agency in the
intervention/manipulation based accounts of causal inference are not troublesome
here.Allwemeanby the claim that the right hand side ofEq. 1 causes the left hand side
is that experimental manipulation of each will have a predictable consequence for the
measurement outcome (expected raw score). Stated more generally all we mean by x
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causes y is that an intervention on x yields a predictable change in y. The specification
equation used to calibrate instruments/items is a recipe for altering just those features
of the instrument/items that are causally implicated in the measurement outcome.
We term this collection of causally relevant instrument features the “measurement
mechanism”. It is the “measurement mechanism” that transmits variation in the
attribute (e.g., temperature, reading ability) to the measurement outcome (number of
cavities that turn black or number of reading items answered correctly).

Two additional applications of the specification equation are: (1) the maintenance
of the unit of measurement independent of any particular instrument or collection of
instruments (Stenner & Burdick, 2011), and (2) bringing non-test behaviors (reading
a Harry Potter novel, 980L) into the measurement frame of reference.

3. Item parameters are supplied by substantive theory and, thus, person parameter
estimates are generated without reference to or use of any data on other persons
or populations.

It is a feature of the Rasch model that differences between person parameters are
invariant to changes in item parameters, and differences between item parameters are
invariant to change in person parameters. These invariances are necessarily expressed
in terms of differences because of the one degree of freedom over parameterization of
the Rash model, i.e., locational indeterminacy. There is no locational indeterminacy
in a causal Rasch model in which item parameters have been specified by theory.

4. The quantitivity hypothesis (Michell, 1999) can be experimentally tested by
evaluating the trade-off property for the individual case. A change in the
person parameter can be off-set or traded-off for a compensating change in text
complexity to hold comprehension constant. The trade-off is not just about the
algebra in Eq. 1. It is about the consequences of simultaneous intervention on the
attribute (reader ability) and measurement mechanism (text complexity). Careful
thinking about quantitivity makes the distinction between “an attribute” and “an
attribute asmeasured.” The attribute “hardness” asmeasured on theMohs scale is
not quantitative but as measured on the Vickers scale (1923) it is quantitative. So,
it is confusing to talk about whether an attribute, in and of itself, is quantitative or
not. If an attribute “as measured” is quantitative then it can always be represented
as merely ordinal. But the obverse is not true. twenty-first century science still
uses the Mohs scratch test which produces more-than-less-than statements about
the “hardness” of materials. Pre 1923 it would have been inaccurate to claim
that hardness “as measured” was a quantitative attribute because no measure-
ment procedure had yet been invented that produced meaningful differences (the
Mohs scratch test produces meaningful orders but not meaningful differences).
The idea of dropping, with a specified force, a small hammer on a material and
measuring the volume of the resulting indentation opened the door to testing
the quantitivity hypothesis for the attribute “hardness”. “Hardness” as measured
by the falling hammer passed the test for quantitivity and correspondence tables
now exist for re expressing mere order (Mohs) as quantity (Vickers).
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Michell (1999) states “Because measurement involves a commitment to the
existence of quantitative attributes, quantification entails an empirical issue: is the
attribute involved really quantitative or not? If it is, then quantification can sensibly
proceed. If it is not, then attempts at quantification are misguided. A science that
aspires to be quantitative will ignore this fact at its peril. It is pointless to invest
energies and resources in an enterprise of quantification if the attribute involved is
not really quantitative. The logically prior task in this enterprise is that of addressing
this empirical issue (p. 75).”

As we have just seen we cannot know whether an attribute is quantitative inde-
pendent of attempts to measure it. If Vickers’ company had Michell’s book available
to them in 1923 then they would have looked at the ordinal data produced by the
Mohs scratch test and concluded that the “hardness” attribute was not quantitative
and, thus, it would have been “misguided” and “wasteful” to pursue his hammer test.
Instead Vickers and his contemporaries dared to imagine that “hardness” could be
measured by the hammer test and went on to confirm that “hardness as measured”
was quantitative.

Successful point predictions under intervention necessitate quantitative predictors
and outcomes. Concretely, if an intervention on the measurement mechanism (e.g.,
increase the text complexity of a reading passage by 250L) results in an accurate
prediction of the measurement outcome (e.g., how many reading items the reader
will answer correctly) and if this process can be successfully repeated up and down
the scale then text complexity, reader ability and comprehension (success rate) are
quantitative attributes of the text, person and reader/text encounter respectively. Note
that, if say, text complexity was measured on an ordinal scale (think Mohs) then
making successful point predictions about counts correct based on a reader/text
difference would be impossible. Specifically, successful prediction from differences
requires that what is being differenced has the same meaning up and down the
respective scales. Differences on an ordinal scale are not meaningful (will lead to
inconsistent predictions) precisely because “one more” means something different
depending on where you are on the scale.

Note that in the Raschmodel performance (count correct) is a function of an expo-
nentiated difference between a person parameter and an instrument (item) parameter.
In the Lexile Framework for Reading (LF) Eq. 1 is interpreted as:

Comprehension = Reader Ability - Text Complexity (success rate)

The algebra in Eq. 1 dictates that a change in reader ability can be traded-off for an
equal change in text complexity to hold comprehension constant. However, testing
the “quantitivity hypothesis” requires more than the algebraic equivalence in a Rasch
model.What is required is an experimental intervention/manipulationon either reader
ability or text complexity or a conjoint intervention on both simultaneously that yields
a successful prediction on the resultant measurement outcome (count correct). When
manipulations of the sort just described are introduced for individual reader/text
encounters andmodel predictions are consistentwithwhat is observed the quantitivity
hypothesis is sustained. We emphasize that the above account is individual centered
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as opposed to group centered. The LF purports to provide a causal model for what
transpires when a reader reads a text. Nothing in the model precludes averaging
over readers and texts to summarize evidence for the “quantitivity hypothesis” but
the model can be tested at the individual level. So, just as pressure and volume
can be traded off to hold temperature constant or volume and density can be traded
off to hold mass constant so can reader ability and text complexity be traded off
to hold comprehension constant. Following Michell (1999) we note that a trade-
off between equal increases (or decrements) in text complexity and reader ability
“identifies equal ratios directly” and “Identifying ratios directly via trade-offs results
in the identification of multiplicative laws between quantitative attributes. This fact
connects the theory of con- joint measurement with what Campbell called derived
measurement” (Michell, 1999).

Garden variety Rasch models and IRT models are in their application purely
descriptive. They become causal and law like when manipulations of the putative
quantitative attributes produce changes (or not) in the measurement outcomes that
are consistent with model predictions. If a fourth grade reader grows 100L in reading
ability over one year and the text complexity of her fifth grade science textbook also
increases by 100L over the fourth grade year textbook then the forecasted compre-
hension rate (whether 60%, 70%, or 90%) that that reader will enjoy in fifth grade
science remains unchanged. Only if reader ability and text complexity are quanti-
tative attributes will experimental findings coincide with these model predictions.
We have tested several thousand students’ comprehension of 719 articles averaging
1150 words. Total reading time was 9794 h and the total number of unique machine
generated comprehension items was 1,349,608. The theory based expectation was
74.53% correct and the observed 74.27% correct.

4 Conclusion

This article has considered the distinction between a descriptive Rasch model and a
causal Raschmodel.We have argued for the importance ofmeasurementmechanisms
and specification equations. The measurement model proposed and illustrated (using
NexTemp thermometers and the Lexile Framework for Reading) mimics in several
important ways physical science measurement theory and practice. We plead guilty
to “aping” the physical sciences and despite the protestations of Michell (Michell,
1999) and Markus and Boorsboom (Markus & Borsboom, 2011) do not view as
tenable any of the competing go forward strategies for the field of human science
measurement.
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Can Psychometricians Learn to Think
Like Physicists?

A. Jackson Stenner and Donald S. Burdick

Abstract The last 50 years of human and social science measurement theory and
practice havewitnessed a steady retreat fromphysical science as the canonicalmodel.
Humphry (2011) unapologetically draws on metrology and physical science analo-
gies to reformulate the relationship between discrimination and the unit. This brief
note focuses on why this reformulation is important and on how these ideas can
improve measurement theory and practice.

In principle, any characteristic of the instrument, objects ofmeasurement, ormeasure-
ment contexts that influences the change in probability of a modeled response (i.e.,
slope of the item response function) is a threat to unit invariance. Such influences
produce instability in the unit. Progress in science requires stable unit specifications
because it is only through such conventions that a unit is reproduced and shared.
A large fraction of the metrology budget for more mature sciences is devoted to
identifying and engineering around threats to unit stability.

A big step in realizing the metrology program outlined by Humphry is the aban-
donment of descriptive Rasch models in favor of an explicit causal interpretation of
the regression of the response probability on the exponentiated difference between a
person parameter and an instrument/ item parameter. All that is meant by this causal
claim is that an intervention on the person parameter can be traded off for an offset-
ting intervention on the item parameters to hold the probability of a correct response
constant. If this trade-off property is experimentally verified throughout the range of
the attribute and is invariant across task types, person characteristics, and measure-
ment contexts, then, a stable reproducible unit for measuring persons and items has
been specified and actualized. If invariance is lacking, say for a new task type, the first
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thing to check is whether the new task type purportedlymeasuring the same construct
as the task type evidencing invariance has unexpected added easiness/hardness or is
measuring in a differently sized unit. In writing research we have found that human
and machine scoring of student writings need to be adjusted for differences in unit
size, and once this adjustment is made the concordance between machine scoring
and human ratings is striking.

A measurement instrument is built to detect variation of a kind. The specification
equation answers the question what causes the variation the instrument detects? It is
also clear that non-test behaviors (e.g., reading a Harry Potter novel) can be brought
into a readingmeasurement frameof referenceby imagining that the novel contains an
ensemble of test items the distribution properties of which may be treated as known.
The text complexity for the novel is then the reader ability required to correctly
answer, say, 75% of the virtual itemsmaking up the novel. The specification equation
is the tool used to calibrate these non-test behaviors. A third use of the specification
equation is to calibrate actual test items making it possible to convert counts correct
into quantities for, for example, computer-generated reading items. However, all of
the above uses of the specification equation pale in relation to the role the specification
equation can and should play in maintaining the unit of scale for an attribute. Once a
specification equation for an attribute is “lockeddown” the unit origin andunit size are
fixed. New task types and measurement contexts (e.g., machine vs. human scoring)
can be linked back to the fixed unit. Tampering with the specification equation by
changing the intercept or adjusting the regression weights alters the origin and unit
size, respectively. Thus, the specification equation defines the unit, independent of
any particular test form or linking study, and maintains that unit over widely varying
instrumentation and measurement contexts.

It often happens that new task types, improved theory or improved technology
necessitate changes to the specification equation that, if not taken into account, will
result in a “new” unit. Adjustments to the specification equation can be made to
ensure that the “old” unit and “new” unit are comparable as to origin and unit size.
Typically some standard artifact (boiling point of normal water, platinum meter bar,
or collection of empirically calibrated texts) is used to ensure unit stability over time.

Scale unification is awell-understood theme in the history of science. The obverse,
scale proliferation, is a prominent feature of measurement theory and practice in the
human and social sciences. Today there are dozens of scales for measuring every
important attribute (anxiety, depression, reading ability, spatial reasoning). There is
often debate aboutwhether the fact that the task types vary in added easiness/hardness
or unit size may signal that something different is being measured. Infrequently,
attempts are made to document that the same attribute is being measured by the
various instruments and then linking studies are launched that result in correspon-
dence tables or equations that link the respective scales (similar to the equation that
links the Fahrenheit and Celsius scales).

Humphry has sketched a metrology program for the human and social sciences
to follow as we begin the arduous task of building a system of units. Although the
far-term goal is a system of units for the human and social sciences, the near-term
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goal should be an invariant unit shared by a relevant community for a single attribute.
We will learn much as these first attempts play out.
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Metrology for the Social, Behavioral,
and Economic Sciences

William P. Fisher Jr. and A. Jackson Stenner

Abstract A metrological infrastructure for the social, behavioral, and economic
sciences has foundational and transformative potentials relating to education, health
care, human and natural resource management, organizational performance assess-
ment, and the economy at large. The traceability of universally uniform metrics to
reference standard metrics is a taken-for-granted essential component of the infras-
tructure of the natural sciences and engineering. Advanced measurement methods
and models capable of supporting similar metrics, standards, and traceability for
intangible forms of capital have been available for decades but have yet to be imple-
mented in ways that take full advantage of their capacities. The economy, education,
health care reform, and the environment are all now top national priorities. There is
nothing more essential to succeeding in these efforts than the quality of the measures
we develop and deploy. Even so, few, if any, of these efforts are taking systematic
advantage of longstanding, proven measurement technologies that may be crucial
to the scientific and economic successes we seek. Bringing these technologies to
the attention of the academic and business communities for use, further testing, and
development in new directions is an area of critical national need.

1 The Technologies to Be Developed

Science underwrites the value of tangible forms of economic capital by ensuring
that measures of commodities from minutes to kilowatts to barrels are universally
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verifiable and comparable. Increasing interest in the economic value of the intangible
forms of human and social capital studied in the social and behavioral sciences raises
the question as to whether the quality of measurement in these areas might one day
approximate the scientific rigor and practical convenience of measures in the natural
sciences. Over 80 years of research strongly suggests that the answer to this question
is yes (Fisher, 2009; Stenner et al., 2006).

There are two phases in the development of universally uniform metric systems.
The first determines whether something exists in a persistent, stable and measurable
state independent of the sample measured, the equipment and operator measuring,
time, and space. In this first phase, things themselves act as agents compelling agree-
ment among observers as to their separate and real status as objective phenomena in
the world.

The second phase in the process of establishing metrological uniformity trans-
forms this agent of agreement into a product of agreement. Now, given a measurable
phenomenon, research technicians collaborate on the unit size and range, nomen-
clature, and terminology by which its quantitative and qualitative features will be
communicated. Systems for calibrating instruments in the standard metric, and
checking their traceability to it, are devised and implemented.

The first phase in the process of establishing metrological uniformity for intan-
gible forms of capitalmeasured via ability tests, surveys, assessments, and ratings has
effectively been underway for at least 50 years, since the work of Rasch in the 1950s,
and for more than 80 if Thurstone’s pioneering work from the 1920s is included.
Though virtually unknown outside psychometric circles, the facts of additive, inde-
pendent, transitive, linear, ratio, and separable parameters for constructs measured
in the human and social sciences are not controversial.

Much of this work has been conducted by researchers trained in the natural
sciences who turned their attention to the social sciences, such as Thurstone (an
electrical engineer), Rasch (a mathematician), and Wright (a physicist who worked
as an assistant to Nobelists Townes and Mulliken before taking up psychometrics).
A number of reviews of this work are available (for instance, Bezruczko, 2005).

There are, however, few signs of any research programs, funding, or practical
demands targeting the second phase in the work required for universally avail-
able metrologic uniformity in the measurement of intangible forms of capital. The
viability of such a goal is suggested repeatedlywith every calibration of an instrument
producing data that meets demands for separable, independent model parameters.
New instrument calibrations are published every day, providing evidence of another
construct that is a possible candidate for a standardized metric.

A critical national need exists for a widespread awareness of the viability and
desirability of reference standard metrics for human, social, and natural capital.
Barriers include:

• the huge cost of developing and deploying these metrics;
• a general lack of awareness of the decades of research proving the viability and

special advantages of reference standards in the behavioral sciences;
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• an underdeveloped public appreciation for both the high returns provided by
investments in metrology and the vital role played by metrology in the history of
science and capitalism;

• institutional orientations better able to serve the needs of existing paradigms than
the emergence of new ones; and

• deeply rooted cultural presuppositions about the nature of number and the alleged
limits of psychosocial measurement.

Over 80 years of research successfully refutes the assumption that measurement
in the social sciences is epistemologically inferior to that of the natural sciences.
We need research exploring possibilities for more rigorously defined metrics and the
benefits that could be obtained from them. The primary results that could be obtained
in an economic context informed by universally uniform, linear and ratio metrics for
intangible forms of capital follow from the oft-repeated saying, “You manage what
you measure.” Most of the metrics currently used in the management of human,
social, and natural capital are nonlinear and ordinal scores, ratings, and percentages.
Because their unit magnitudes are dependent on locally variable score distributions,
these alleged “metrics” are often uninformative, confusing, or deceptive. The incom-
mensurability of these so-called measures effectively locks up human, social, and
natural capital markets by making individual information transactions so expensive
that decisions are made with no information, or with the wrong information.

Though advanced measurement applications have demonstrated highly desirable
advantages and capabilities for decades, they have not become the mainstream
paradigm. This may in part be due to the opinion held by many that improved
measurement is an academic nicety, an end in itself, or is an expression of particular
researchers’ special theoretical investments.

Despite these opinions, and thoughwe rarely stop to think about it,we all know that
fair measures are essential to efficient markets. When different instruments measure
in different units, market transactions are encumbered by the additional steps that
must be taken to determine the value of what is being bought and sold. Health care
and education are now so hobbled by myriad varieties of measures that common
product definitions for the outcomes of these industries seem beyond reach.

As has been pointed out in a wide variety of works over the last several decades,
we need to broaden the focus of business management beyond investments, facto-
ries, equipment, property, and labor. Instead of the traditional three forms of capital
(land, labor, andmanufactured equipment), we actually employ four (natural, human,
manufactured equipment, and social). Land and labor are far more complex than a
mere piece of ground and the functionality of a job description. These complexities
are captured by the multifaceted concepts of natural and human capital, which have
to include diverse and distinct dimensions of the resources brought to bear. And
social capital is of such vital importance that capitalism itself could not have gotten
off the ground without it.

In order to make capitalism live up to its own accounting principles, we need
better measures fit into an accounting framework that redefines profit so that it is
less a matter of liquidated capital, and more a matter of removing wasted resources
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from within a closed system of limited capacities. In order to learn how to reduce
the waste and increase the stocks of human potential, community trust, and natural
resources, we must better learn the truth of the maxim, we manage what we measure.

Calibrated instruments traceable to reference standards express value in univer-
sally uniform metrics that function as common currencies. New efficiencies for
human, social, and natural capital markets come from the reduced friction in trans-
actions, which are made meaningful and comparable via metrological networks not
much different from the one connecting all the clocks. The intangibles of health
care, education, social services, and human/natural resource management may not
be forever doomed to locally dependent product definitions that defy pricing.

What we need are ways of extending the basic capitalist ethos into the domain
of the intangibles. How can we set up markets so that the invisible hand efficiently
promotes social and environmental ends unintended by individuals maximizing their
own gains? Howmight we extend the free play of self-interest into more comprehen-
sively determined returns for the global dividend?Bettermeasurementwill inevitably
be of central concern in answering these questions.

In this context, the existence of an actual market of shared uniform information
would coordinate the collective decisions of purchasers andproviders tomatch supply
and demand far more efficiently than could ever be the case in the current system of
high-friction, ordinal, and locally dependent “metrics.”

Innovation is increasingly seen as best conceived as a group effort. The wisdom of
crowds phenomenon makes it possible for actors coordinated by shared information
to accomplish in short order tasks that either could not be done by independent
individuals at all, or only by using much more time and resources. The profit motive
is an energy source of incredible power and potential. Creating an economic and
social context in which innovation on the broadest scale could be brought to bear on
issues of human, organizational, and environmental performance and management
would be productively disruptive and transformative on the highest levels.

2 Justification for NSF SBE Attention

The societal challenges associated with the development and deployment of a metro-
logical infrastructure for human, social, and natural capital are of a magnitude that
prevent even the largest corporations or research institutes from undertaking the task
alone. And piecemeal efforts often are not just inadequate to the task, they actually
make things worse as uncoordinated and mutually contradicting efforts compete for
attention and resources.We need broad efforts undertaken by society as a whole, with
everyone’s interests represented. No individual, small business, major corporation,
or nonprofit foundation could ever hope to succeed alone in a task of this scale and
scope.

Likely proposers to a funding competition in this area would include commercial
agencies already making use of the available advanced measurement techniques. In
education, these include the Northwest Evaluation Association; MetaMetrics, Inc.;
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Educational Testing Service; ACT; Pearson; and many others. State departments of
educationwith longstanding expertise in this area include those inOregon,Michigan,
Illinois, Vermont, and in many other states. In health care, research groups with
relevant expertise include QualityMetric, FOTO, Inc., the Rehabilitation Institute of
Chicago, PeaceHealth, and others.

Academic departments of psychology, education, sociology, public health, health
systemsmanagement, and others conducting research and teaching in this areawould
also likely propose projects for funding. Academic departments with particularly
high profiles in this area can be found at the University of California, Berkeley;
University of Illinois, Chicago; Johns Hopkins University; University of Toledo
(Ohio); Emory University; Northwestern University; Boston College; University of
Denver; University of Michigan; the ChicagoMedical School; and elsewhere around
the world.

The societal challenges related to the improved measurement of human, social,
and natural capital are not being addressed for a number of reasons. First, despite the
longstanding existence of data, instruments, and theory to the contrary, it is widely
and mistakenly believed that the fundamental measurement of constructs measured
byway of ordinal observations is impossible. Second, it is alsowidely andmistakenly
believed that all numbers are inherently and always effectively quantitative, or that
supposed differences in kinds of numbers are purely academic and of no practical
consequence.

Third, the metrological infrastructure is almost completely invisible to and taken
for granted by the public, meaning that local efforts aimed at expanding it into a new
domain are virtually meaningless and inevitably futile. Fourth, the existing system
of incentives and rewards makes it very difficult, if not impossible, for individual
researchers and teachers to have an impact on the behaviors and decisions of their
clients and students, as these are culturally rooted in the familiar, albeit misunder-
stood and misapplied, ordinal and local systems. Fifth, even when an individual or
organization does grasp the significance of the newmeasurement technologies, these
very few isolated and uncoordinated instances depend too heavily on local leadership,
and eventually starve for lack of sustenance from a larger networked metrological
culture.

The sum meaning of these five conditions is that research and development of
metrological infrastructure for intangible capital will not proceed at all without lead-
ership at the national level and without public funding. But the nation’s scientific
frontiers and commercial frontiers would potentially be greatly stimulated simply
by publicly introducing the idea that such an infrastructure could be possible, and
by suggesting that considerable benefits relative to existing goals for improving
education, health care reform, and environmental management could accrue from it.
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Causal Rasch Models

A. Jackson Stenner, William P. Fisher Jr., Mark H. Stone,
and Donald Burdick

Abstract Rasch’s unidimensional models for measurement show how to connect
object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-
generated cloze reading items), and observational outcomes (e.g., counts correct on
reading instruments). Substantive theory shows what interventions or manipulations
to the measurement mechanism can be traded off against a change to the object
measure to hold the observed outcome constant. A Rasch model integrated with
a substantive theory dictates the form and substance of permissible interventions.
Rasch analysis, absent construct theory and an associated specification equation, is a
black box in which understanding may be more illusory than not. Finally, the quan-
titative hypothesis can be tested by comparing theory-based trade-off relations with
observed trade-off relations. Only quantitative variables (as measured) support such
trade-offs. Note that to test the quantitative hypothesis requires more than manipula-
tion of the algebraic equivalencies in the Rasch model or descriptively fitting data to
the model. A causal Rasch model involves experimental intervention/manipulation
on either reader ability or text complexity or a conjoint intervention on both simul-
taneously to yield a successful prediction of the resultant observed outcome (count
correct). We conjecture that when this type of manipulation is introduced for indi-
vidual reader text encounters andmodel predictions are consistent with observations,
the quantitative hypothesis is sustained.
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The thermometer, as it is at present construed, cannot be applied to point out the exact
proportion of heat…. It is indeed generally thought that equal divisions of its scale represent
equal tensions of caloric; but this opinion is not founded on any well decided fact.

Gay-Lussac (1802)

Thirty years ago, three of the authors of this article introduced the concept of
the specification equation as a new model for measurement validity studies in the
human and social sciences (Stenner & Smith, 1982; Stenner et al., 1983; Stone &
Wright, 1983). The primary characteristic setting the concept of the specification
equation apart from other approaches to psychological and social measurement is its
decidedly mechanismic (causal) approach. In the years that have passed, the causal
notions associated with the specification equations have been variously endorsed
(Hobart et al., 2007) and ignored (Messick, 1989).

Perhaps the causal perspective on measurement would not be deserving of an
update were it not for the theoretical fruitfulness and widespread adoption of the
Lexile Framework for Reading. In this paper, the ideas presented in the initial papers
are situated in the contemporary psychometric context and some recent advances
are outlined. The framework for measurement in the human and social sciences
set out here adopts from 17th- and 18th-century physical science measurement a
focus on experimental manipulations of three variable systems (such as F = MA).
We conjecture that in three-variable systems of this kind, demonstrating that all
three variables are quantitative requires manipulations of one variable to result in
predictable changes to a second variable when the third is held constant. When this
manipulation works up and down the scale no matter which variable is held constant,
then all three variables are quantitative.

For instance, given that a change in mass can be offset by a change in acceleration
such that force is left unchanged, and this trade-off operates the same way at every
point along the mass scale and along the acceleration scale, then mass, acceleration,
and force are quantitative attributes. In what follows, we make some strong claims
regarding the possibility that human and social science measurement might find
foundations in causal relationships akin to those obtained in the physical sciences.
Measurement is conceived in this context as a three-variable equation involving an
attribute measure, a measurement mechanism and a measurement outcome (often
a count). The primary conjecture is that a prescribed change in a mechanism (such
as text complexity) is offset by a change in an attribute measure (such as reading
ability) to hold a measurement outcome (percent correct) constant. Our unproven
conjecture is that, when this trade-off functions precisely the same way up and down
the scale, then the three variables are quantitative (equal interval) variables. We
follow Pearl (2000, 158) in taking “the stand that the value of structural equations
lies not in summarizing distribution functions but in encoding causal information for
predicting the effects of policies.”

In other words, our purpose is to elaborate the intuition that if like differences
in differences have the same predictive outcomes wherever along the scale the
differences are experimentally induced, then the attributes are quantitative. A 100
L difference between text complexity and reader ability has the same implication
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for predicted success rates on reading items wherever along the scale the 100 L
difference is experimentally induced. If the predicted success rates are observed,
then 100 L means the same thing up and down the scale in the substantive terms
of real texts encountered by real readers. Is not this capacity to infer the repetition
of a qualitatively meaningful constant amount precisely what we mean by “equal
interval”?

1 Quantity Versus Heterogeneous Orders

Michell (1997, 2000, 2007) made the case for what measurement is and in his
earlier writings, exhorted psychologists to adopt this “standard model” in their prac-
tice. Over time, this eminently sensible call morphed into a diagnosis of so-called
pathological behavior on the part of the field of psychology and its high priests and
priestesses, called psychometricians. Most recently, some researchers have asserted
that no psychological attributes have been shown to be quantitative and have offered
the explanation that none will be because these attributes are actually heterogeneous
orders:

Scientists who care more about appearing to be quantitative and the advantages that might
accrue from that appearance, than they do about investigating fundamental scientific issues,
put expedience before the truth. In this, they do not conform to the values of science and
elevate non-scientific interests over those values, thereby threatening to bring science as a
whole into disrepute. If the attributes that psychometricians aspire to measure are heteroge-
neous orders then psychometrics, as it exists at present, is fatally flawed and destined to join
astrology, alchemy and phrenology in the dustbin of science. (Michell, 2012, 16)

Throughout this paper, we draw analogies to human temperature measurement
via the NexTemp thermometer1 and to English reading ability measurement via the

1 TheNexTemp thermometer is a thin, flexible, paddle-shaped plastic strip containingmultiple cavi-
ties. In the Fahrenheit version, the 45 cavities are arranged in a double matrix at the functioning end
of the unit. The columns are spaced 0.2 °F intervals covering the range of 96.0–104.8 °F … Each
cavity contains a chemical composition comprised of three cholesteric liquid crystal compounds and
a varying concentration of soluble additive. These chemical compositions have discrete and repeat-
able change-of-state temperatures consistent with an empirically established formula to produce
a series of change-of-state temperatures consistent with the indicated temperature points on the
device. The chemicals are fully encapsulated by a clear polymetric film, which allows observation
of the physical change but prevents any user contact with the chemicals. When the thermometer is
placed in an environment within its measure range, such as 98.6 °F (37.0 °C), the chemicals in all
of the cavities up to and including 98.6 °F (37.0 °C) change from a liquid crystal to an isotropic
clear liquid state. This change of state is accompanied by an optical change that is easily viewed
by a user. The green component of white light is reflected from the liquid crystal state but is trans-
mitted through the isotropic liquid state and absorbed by the black background. As a result, those
cavities containing compositions with threshold temperatures up to and including 98.6 °F (37.0 °C)
appear black, whereas those with transition temperatures of 98.6 °F (37.0 °C) and higher continue
to appear green (Medical Indicators, 2006, 1–2). Thus, the observed outcome is a count of cavi-
ties turned black. The measurement mechanism is an encased chemical compound that includes a
varying soluble agent that changes optical properties according to changes in temperature. Amount
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EdSphere™ technology2 (Hanlon et al., 2012). Both measurement systems share a
basic three-part structure in common with many other measurement technologies
(Hebra, 2010): (1) An observational outcome, often a count (number of NexTemp
cavities changing from green to black reflecting temperature change or count of
correct responses to EdSphere™ four-choice embedded cloze items reflecting change
in reading ability), (2) a causal mechanism that transmits variation in the intended
attribute (temperature or reading ability) to the observed outcome, and (3) an attribute
measure denominated in some unit (such as degrees Celsius or Lexiles). As Michell
(2012) correctly observed, “Only quantitative attributes can be measured because
only they possess the necessary kind of homogeneity” (7). The crucial question is:
How does one test for the necessary homogeneity that distinguishes quantity from
mere order?

The history of science reveals a developmental course traveled by every attribute
that figures in advanced scientific discourse. For some of these attributes, the full
course took centuries and for othersmanydecades, but in no casewas an attribute born
quantitative.Most quantities that are now recognized began as qualitative distinctions
(hot, cold, or good reader, poor reader), were later understood to be ordinal and grew
to adulthood as a quantity that admits of homogeneous differences. Historical and
philosophical treatments that ignore this developmental pathway and the struggles
along the way, whether purposeful or not, only confuse (Chang, 2004; Sherry, 2011).
In ancient times, only extensive attributes (time, volume, weight, etc.) were consid-
eredmeasurable. Attributes such as temperature, density, and electromagnetismwere
in their infancy and were specifically not thought to be measurable (Heilbron, 1993;
Roche, 1998).

It took hundreds of years of science and a solution to the particularly knotty
problem of forsaking human sense impression as the final arbiter of disputes
concerning quantitative attributes. In the case of temperature, degreeswere obviously
not homogeneous because one more had such ridiculously discontinuous conse-
quences (e.g., a nominal one-degree change makes water freeze or boil). The lesson
here is that perceived qualitative distinctions are a poor guide as to whether an
attribute is quantitative as measured. Magnitudes of the same quantitative attribute
appear to differ in dozens of ways. In the infancy and adolescence of many attributes

of soluble agent can be traded off for change in human temperature to hold number of black cavities
constant.
2 The EdSphere™ technology for measuring English language reading ability employs computer
generated, four-option, multiple choice cloze items built on the fly for any prose text. Counts correct
on these items are converted into Lexile measures via an applicable Rasch model. Individual cloze
items are one off and disposable; an item is used only once. The cloze and foil selection protocol
ensures that the correct answer (cloze) and incorrect answers (foils) match the vocabulary demands
of the target text. The Lexile text complexity measure and the expected spread of the cloze items are
given by a proprietary text theory and associated equations. Thus, the observed outcome is a count
of correct answers. The measurement mechanism is a text with a specified Lexile text complexity
and an item generation protocol consistent with that text complexity measure. The text complexity
measure can be traded off for a change in reading ability to hold constant the number of items
answered correctly.
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that today are considered quantitative, quantitative homogeneity was impure. Quan-
titative measurement has been a hard-fought and dearly won battle; it has never been
and never will be a given or something to be decided solely by speculation about
perceived qualitative distinctions and heterogeneous orders. The historical record
includesmany attributes thought at one time to indicate mere order and later rendered
as quantities and is void of confirmed quantitative attributes that are later found to be
merely ordinal. This does not mean that every ordered attribute will, given time, be
rendered quantitative, but science has taught us to leave the door ajar because, over
and over, science has found ways to render some of today’s orders as tomorrow’s
quantities.

Yet another argument is due to Sherry (2011): if treating an attribute such as text
complexity or reading ability as quantitative allows one to employ mathematical
models to bring order to the data, “then a plausible explanation for this success is
that the attribute is approximately quantitative” (523).

So, if speculation about a hierarchy of states, stages, discontinuities, heteroge-
neous orders, and conceptual inclusions are unworthy guides to whether or not
an attribute is quantitative, how does one proceed? As we will show, there is a
simple, powerful test for essential homogeneity: the trade-off property. Inmany three-
variable systems, such as, for example, a causal Rasch model that relates observed
outcome (dependent variable) to a difference (or product) between the measure-
ment mechanism (e.g., item difficulties) and the measurement attribute (e.g., reading
ability), the trade-off property asserts that a manipulation on the measurement mech-
anism (e.g., increasing text complexity by 100 L) can be traded off for an off-setting
manipulation on the measurement attribute (increasing reader ability by 100 L) to
hold constant the observed outcome (percent correct).

We conjecture that when this trade-off property can be experimentally verified
up and down the scale, all variables in the system are quantitative and differences
(units) are monotonic, invariant, and homogeneous. As suggested by Trendler (pers.
commun., 2011), and expanding on Burdick et al. (2006), the capacity to success-
fully predict differences from differences up and down a scale are an acid test for
quantity. This trade-off property (in the service of successful substantive theory) is
all that matters in demonstrating causality, deep understanding of the construct, and
predictive control over interventions. There will always be extraneous qualities that
can be identified in rhetorical arguments against a quantitative claim. Endless spec-
ulations can be made about why this or that feature of an attribute is a qualitative
distinction worthy of notice (such as variation in the freezing point of water, relative
to temperature), thus, appearing to render the unit non-homogeneous.

But such speculations are unable to offer distinctions that make a difference when
evidence supports the trade-off property. This does not, however, mean that data fit
to a descriptive (not explicitly causal) Rasch model implies that all three variables in
the system are quantitative. Such fit may be suggestive in the same way that highly
correlated data are a good place to look for causal relationships, but it is inconclusive
as to the quantitative claim until experimental manipulation sustains the trade-off
relation.
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Perhaps an intuitively accessible illustration of the power of the trade-off rela-
tion would be helpful. Suppose Lexile reader measures and Lexile text complexity
measures were replaced with randomly spaced numbers that preserve mere order.
In this case, a text complexity difference between two articles might be increased
from +10 to 150 L and the adjacent 10 L article difference might be increased to
160 L. Thus, order is preserved but essential homogeneity is destroyed. Clearly,
the trade-off relation would be violated even though strict order was maintained.
Each trade off would produce wildly varying predicted observed outcomes, not the
constant observed outcome asserted under the trade-off property. Order is not suffi-
cient; differences must be preserved and retained as invariant ranges up and down
the scale.

Note that there is a crucial difference between the trade-off property and order-
restricted inference tests such as double and triple cancelation (Kyngdon, 2008;
Michell, 1997). The trade-off relation is a claim about what will happen in the
individual case or a token test of a causal model. Most tests of double and triple
(and so on) cancelation with which we are familiar test between-person orders, not
within-person (intra-individual) differences (but see von Winterfeldt et al., 1997;
Luce, 1998). The trade-off property can and should be tested within persons over
time. We further develop this idea later in the paper.

Process talk localizes the active features of a measurement process within the
person or object of measurement.Mechanism talk conceptualizes the active ingredi-
ents as a tunable mechanism within the instrument. In temperature measurement, it
seems awkward to talk about a response process that functions within the person and
that interacts with the instrument to produce the cavity count on a NexTemp ther-
mometer (see footnote 1). It is often more useful to reflect on the instrument features
(tunablemechanisms) that transmit variation in the attribute to the cavity count.When
the attribute reader ability is measured with a machine-generated, multiple choice,
cloze test, the tunable mechanism involves the text complexity of the passage and the
decision as to which words are “clozed” and how the foils are chosen. A causal Rasch
model may be seen as formalizing how a measurement mechanism and an attribute
measure cooperate to produce (cause) the observed outcome. The difference between
calibrated mechanism and measured attribute causes the observed outcome. When
viewed this way, it is clear that manipulations of the mechanism (e.g., added text
complexity) can be offset (traded off) by a manipulation of the attribute (more prac-
tice reading) to hold the observed outcome (success rate or comprehension) and the
measure based on it constant.

In this formulation of the measurement process, we require that the way the
mechanism works and the way it trades off against the attribute measure to cause
changes in the observed outcome must be invariant both within and between objects
of measurement (e.g., persons). Note that if the mechanism is well explicated and
functions invariantly across objects ofmeasurement, it does notmatter how the object
arrived at its position on the attribute scale. Process talk can confuse on this point
and may cause worry about the how. For example, two persons, Jane and Dave, may
both have a fever of 104 °F. For purposes of human temperature measurement (as
opposed to, say, treatment regime), it is not relevant that Jane has a bacterial infection
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and Dave a viral infection. What is relevant is that temperature and the measurement
mechanism cooperate in the same way for Jane and Dave, and for every other person,
independent of what might have caused a deviation from normal human temperature.
Similarly, two fourth-grade readers may both read at 800 L, but one got there with
a particularly fortuitous genetic makeup (Castles et al., 1999) and the other because
of 1 h of daily practice for 5 years. It is clarifying to maintain focus on exposing and
explicating the measurement mechanism and not on distractions such as the myriad
causes responsible for any specific attribute measure, be it temperature or reading
ability.

In what we have termed theory-referenced measurement, instrument calibra-
tions are provided by a construct theory and specifically not by data. For example,
NexTemp thermometers and EdSphere™ reading tests2 are calibrated via theory.
Person-fit statistics become not just checks on how similar a person’s response data
are to the reference group’s data but on howwell each person conforms to theoretical
expectations. What is intended to be measured (e.g., temperature or reading ability)
is made explicit with the theory-based instrument calibrations, and the fit statistics
confirm or disconfirmwhether the respective observed outcomes and their associated
measures are consistent with theoretical expectations in the individual case (Smith,
2000).

One way in which causal Rasch models differ from descriptive Rasch models
is in the pattern of counterfactual dependencies inherent in the former. Woodward
(2003) referred to these dependencies as “w questions” (11): What if things had been
different with either the attribute or the measurement mechanism?What value would
the observed outcome take? We document these counterfactual dependencies by
manipulating the attribute or themeasurementmechanismor conjointlymanipulating
them both and seeing whether the expected score outcome is in fact observed. The
trade-off property is a special kind of counterfactual dependence that can be used to
test the quantitative status of constructs, as shown below.

2 The Measurement Mechanism

Equation (2) is the familiar Rasch model for dichotomous data, which sets an
observed outcome (raw score) equal to a sum of modeled probabilities. The observed
outcome is the dependent variable and the measure (e.g., person parameter b)
and instrument (e.g., item parameters di) are independent variables. The concrete
outcome (e.g., count correct on a reading test) is observed, whereas the measures
and instrument parameters are not observed but can be estimated from the response
data. In Eq. (3), a mechanismic interpretation is imposed on the equation; the right-
hand side (r.h.s.) variables are presumed to characterize the process that generates
the observed outcome on the left-hand side (l.h.s.). An illustration of how such a
mechanism can be exploited is given in Stone (2002). The item map for the Knox
cube test (a test of short-term memory) revealed a 1 logit gap with no items. The
specification equation was used to build an item that theory asserted would fill in
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the gap. Subsequent data analysis confirmed the theoretical prediction of the items’
scale location:

Comprehension = Reading Ability− Text Complexity

Conceptual Rasch Model (1)

Raw Score =
∑

i

e(bn−di )

1+ e(bn−di )

Descriptive Rasch Model (2)

Raw Score =:
∑

i

e(bn−di )

1+ e(bn−di )

Causal Rasch Model (3)

where raw score is the observed outcome, b is the attribute measure, and di’s are
mechanism calibrations. The observed outcome is thus, modeled as a sum of success
probabilities. Typically, the item calibrations (di) are assumed to be known and the
measure parameter is iterateduntil the equality is realized (i.e., the sumof themodeled
probabilities equals the observed outcome). How is this equality to be interpreted?
Is something more happening than simply the algebra?

In an effort intended to clarify the practical value of the algebra, Freedman (1997)
proposed three uses for regression equations like those above:

(1) To describe or summarize a body of data,
(2) To predict the l.h.s. from the r.h.s., and
(3) To predict the l.h.s. after manipulation or intervention on one or more r.h.s.

variables (measure parameter and/or mechanism parameter.

Description and summarization possess a reducing property in that they abstract
away incidentals to focus onwhatmatters in a given context. In a rectangular persons-
by-items data matrix (with no missing data), there are Np × Ni observations. Equa-
tions like those above summarize the data using only Np + Ni − 1 independent
parameters. Description and summarization are local in focus. The relevant concept
is the extant data matrix with no attempt to answer questions that might arise in the
application realm about “what if things were different.” Note that if interest centers
only on the description and summarization of a specific data set, additional parame-
ters can be added, as necessary, to account for or better describe the data (e.g., as in
fitting a polynomial equation).

Prediction typically implies the use of the extant data to project into an as yet
unobserved context/future in the application realm. For example, item calibrations
from the extant data are used to compute a measure for a new person, or person
parameters are used to predict how these persons will perform on a new set of items.
Predictions like these rest on a set of invariance claims. New items and new persons
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are assumed to behave as persons and items behaved in the extant data set (Andrich,
1989). Rasch fit statistics (for persons and items) are available to test for certain
violations of these assumptions of invariance (Smith, 2000).

To explain how an instrument works is to detail how it generates the count it
produces (the observed outcome) andwhat characteristics of themeasurement proce-
dure affect that count. This kind of explanation is neither just statistical nor synony-
mous with prediction. Instead, the explanation entails prediction under intervention:
If onewiggles this part of themechanism, the observed outcomewill imply ameasure
different by this amount. As noted by (Hedström, 2005), “Theories based on ficti-
tious assumptions, even if they predict well, give incorrect answers to the question
of why we observe what we observe” (108). Rasch models, absent a substantive
theory capable of producing theory-based instrument calibrations, may predict how
an instrument will perform with another subject sample (invariance) but can offer
only speculation in answer to the question, “How does this instrument work?” Rasch
models without theory are not predictive under intervention and thus, are not causal
models.

In 1557, theWelshmanRobert Recorde remarked that no two things could bemore
alike (i.e., more equivalent) than parallel lines, and thus, was born the equal sign, as
in 3+ 4= 7. We propose that the distinction between descriptive Rasch models and
causal Rasch models should be signaled by the use of a 250-year-old symbol (=:)
attributable to Euler (circa 1730) and exhumed by Pearl (1999), which denotes that
interventions/manipulations on the r.h.s. of the equation causes a change to the l.h.s.
of the equation (Pearl, 1999; Stenner et al. 2009). Allowable manipulations include
changes to just reading ability, just text complexity, or conjointly to both. These equa-
tions purport to predictwhatwill happen in the individual case (token causation) to the
observed outcome (raw score, count correct, or percent correct) if allowable manip-
ulations are made. Manipulations of reader ability and/or text complexity presume
that these two variables (attributes of persons and text respectively), are well enough
understood that manipulation is possible. Our recommended symbol also suggests
that we adopt the more precise and explicit definition, as indicated above, to avoid
the metaphysical implications of using causation in any narrative without an explicit
understanding of what is implied. The symbol and definition reins in speculation
surrounding the so-called swamp of language.

Cook and Campbell (1979) observed, “The paradigmatic assertion in causal rela-
tionships is that manipulation of a causewill result in themanipulation of an effect….
Causation implies that by varying one factor [variable] I canmake another vary” (36).
Holland (1986) reduced this to an aphorism: “No causation without manipulation”
and Freedman (1997) distinguished the merely descriptive from the causal:

Causal inference is different, because a change in the system is contemplated: for example,
there will be an intervention. Descriptive statistics tell you about correlations that happen
to hold in the data: causal models claim to tell you what will happen to Y if you change X.
(116)

The descriptive Rasch model above, which employs a simple equality relating
raw score to an exponentiated difference between ability (b) and item difficulty (di),
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is a descriptive model (Eq. 2). Algebraic manipulation of the ability parameter or
item difficulty parameter can be evaluated for consequences to the raw score, but
this says nothing about what would result following an experimental manipulation
of b or d or a conjoint intervention on both simultaneously. Following Woodward
(2003), we require causal Rasch models to be modular in the sense that it is possible
to intervene on (manipulate) one variable in the equation on the right side without
affecting another right-hand variable. Specifically, a manipulation of text complexity
(e.g., choosing a more difficult text) should not alter reader ability and vice versa.
A causal Rasch model should expose the mechanism that transmits variation in
the attribute to the observed outcome: “One would also like to have more detailed
information about just which interventions on X [r.h.s. of the equation] will change
Y [the score or comprehension rate] and in what circumstances and exactly how
they will change Y” (Woodward, 2003, 66). Reflecting on the distinction between
a descriptive use and a causal use of a Rasch equation, asymmetry is apparent. A
causal model can always be used for merely descriptive purposes even though it can
do more, whereas a descriptive (e.g., correlational) model can offer no predictions
about what would happen if right-side variables were manipulated as in Eq. (3).

It is often argued in garden-variety Rasch applications that the best evidence that
an instrument is doing what it is supposed to do is data fit to the Rasch model,
which implies that the observed outcome (e.g., count correct on a reading test) is a
sufficient statistic for the attribute measure and so exhausts the information in the
data about the attribute measure. Conditional on the difference between attribute
measure (e.g., temperature) and measurement mechanism (amount of additive in a
NexTemp cavity) the residuals taken over persons and taken within person over time
are uncorrelated. Unfortunately, nothing in the fact that data fit the model licenses
the conclusion that what is being measured is “temperature” or “reading ability”
(Maraun, 1998). Typical so-called science tests are often poorly disguised reading
tests. More than good fit of data to the model are needed to decide among competing
claims regarding what attribute an instrument measures. We speculate that this fact
is poorly understood because it is believed that conditioning on a variable is the
same thing as intervening to fix the value of that variable. The former is a statistical
manipulation and the latter is an experimental manipulation: “When one conditions,
one takes as given the probability distribution. When one intervenes, one changes
the probability distribution” (Hausman, 1998, 233). This is an important difference
between descriptive Rasch models and causal Rasch models.

Measurement mechanism is the name given to just those manipulable features of
the instrument that cause invariant observed outcomes for objects of measurement
that possess identical measures. A measurement mechanism explains by opening the
black box and showing the cogs and wheels of the instrument’s internal machinery. A
measurement mechanism provides a continuous and contiguous chain of causal links
between the encounter of the object of measurement and instrument and the resulting
observed outcome (Elster, 1989). We say that the observed outcome (e.g., raw score)
is explained by explicating the mechanism by which those outcomes are obtained. In
this view, to respondwith a recitation of theRasch equation for converting counts into
measures, to reference a person by item map, to describe the directions given to the
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test-taker, to describe an item-writing protocol, or simply to repeat the construct label
more slowly and loudly (e.g., extroversion), provide non-answers to the question,
“How does this instrument work?”.

Measurement mechanisms as theoretical claims, made explicit as specification
equations, make point predictions under intervention:When one changes (viamanip-
ulation or intervention) either the object measure (e.g., reader experiences growth
over a year) or measurement mechanism (e.g., increase text complexity measure by
200 L), the result will be a predictable change in the observed outcome. Notice how
this process is crucially different from the prediction of the change in the observed
outcome based on the selection of another, previously calibrated instrument with
known instrument calibrations. Selection is not intervention in the sense used here.
Sampling from banks of previously calibrated items is likely to be completely atheo-
retical, relying, as it does, on empirically calibrated items/instruments. In contrast, to
modify the measurement mechanism requires intimate knowledge of how the instru-
ment works. A theoretical psychometrics is characterized by the aphorism “test
the predictions, never the postulates” (Jasso, 1988, 4), whereas theory-referenced
measurement, with its emphasis on measurement mechanisms, says test the postu-
lates, never the predictions. Those who fail to appreciate this distinction will confuse
invariant predictors with genuine causes of observed outcomes.

We assert that a Rasch model combined with a substantive theory embodied in
a specification equation provides a more or less complete explanation of how a
measurement instrument works (Stenner et al., 1983). A Rasch model in the absence
of a specified measurement mechanism is merely a probability model; a probability
model absent a theory may be useful for Freedman’s (1) and (2), whereas a Rasch
model in which instrument calibrations come from a substantive theory that speci-
fies how the instrument works is a causal model; that is, it enables prediction after
intervention [i.e., Freedman’s (3)].

3 Distinguishing Features of Causal Rasch Models

Admittedly, the measurement model we have proposed for the human sciences
mimics key features of physical science measurement theory and practice (Bond &
Fox, 2007). Below we highlight several such features.

First, the model is individual-centered. The focus is on explaining variation
within person over time. Much has been written about the disadvantages of studying
between-person variation with the intent to understand within-person causal mecha-
nisms (Molenaar, 2004;Molenaar&Newell, 2010).Molenaar proved that only under
severely restrictive and generally untenable conditions can such cross-level infer-
ences be sustained. In general, in the human sciences, it is necessary to build and test
individual-centered models and not rely on variable- or group-centered models (with
attendant focus on between person variation) to inform one’s understanding of causal
mechanisms. Causal Rasch models are individually centered measurement models.
The measurement mechanism that transmits variation in the attribute (within-person
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over time) to the observed outcome (count correct on a reading test) is hypothe-
sized to function the same way for every person (the second ergodicity condition of
homogeneity; Molenaar & Newell, 2010).

Second, in this framework, the measurement mechanism is well specified and
can be manipulated to produce predictable changes in observed outcomes (e.g.,
percentage correct). For purposes of measurement theory, a sophisticated philosophy
of causal inference is not necessary. For example, questions about the role of human
agency in the intervention- and manipulation-based accounts of causal inference are
not troublesome here. All that is meant by the claim that the r.h.s. of Eq. (3) causes the
l.h.s. is that experimental manipulation of each r.h.s. variable will have a predictable
consequence for the observed outcome (expected raw score). Stated more generally,
what is meant by x causes y is that an intervention on x yields a predictable change
in y. The specification equation used to calibrate instruments/items is a recipe for
altering just those features of the instrument/items that are causally implicated in the
observed outcome. As noted, we term this collection of causally relevant instrument
features themeasurement mechanism, which transmits variation in the attribute (e.g.,
temperature, reading ability) to the observed outcome (number of cavities that turn
black or number of reading items answered correctly). Two additional applications of
the specification equation are: (a) the maintenance of the unit of measurement inde-
pendent of any particular instrument or collection of instruments, and (b) bringing
non-test behaviors (reading a Harry Potter novel, 980 L) into the measurement frame
of reference (Stenner & Burdick, 2011).

Third, item parameters are supplied by substantive theory and thus, person-
parameter estimates are generated without reference to or use of any data on other
persons or populations. When data fit a Rasch model, a consequence is that item
parameters are estimated independent of person parameters and person parameters
are estimated independent of item parameters (Andrich, 1989, 2002; Rasch, 1960).
In a causal Rasch model, item/instrument calibrations are supplied by a substantive
theory and associated specification equation. In the former, the separation is statis-
tical; in the latter it is experimental. Karabatsos (2001) commented on the impos-
sibility of complete separation when the same response data are used to estimate
both person measures and item calibrations. Effects of the examinee population
are completely eliminated from consideration in the estimation of an individual’s
person parameter and, thus, no information on other persons is needed because the
item/instrument calibrations come from theory.

Fourth, the quantitative hypothesis (Michell, 1999) can be experimentally tested
by evaluating the trade-off property for the individual case. A change in the reader
parameter can be offset or traded off for a compensating change in text complexity to
hold comprehension constant. The trade off is not just about the algebra in Eqs. (1–
3). It is about the consequences of simultaneous intervention on the attribute (reader
ability) and measurement mechanism (text complexity).

Finally, we conjecture that successful point predictions under intervention neces-
sitate quantitative predictors and outcomes. Concretely, if an intervention on the
measurement mechanism (e.g., increase the text complexity of a reading passage by
250 L) results in an accurate prediction of the observed outcome (e.g., how many
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reading items the reader will answer correctly), and if this process of offsets can be
successfully repeated up and down the scale, then text complexity, reader ability,
and comprehension (success rate) are quantitative attributes of the text, person, and
reader/text encounter, respectively. When text complexity is measured on an ordinal
scale, successful point predictions about counts correct based on a reader/text differ-
ence are impossible to make. Specifically, successful prediction from differences
requires that what is being differenced has the samemeaning up and down the respec-
tive scales. Differences on an ordinal scale are not meaningful (will lead to inconsis-
tent predictions) precisely because one more means something different depending
on the location of the text or reader on the scale.

The algebra in Eq. (2) dictates that a change in reader ability can be traded off
for an equal change in text complexity to hold comprehension constant. However,
to test the quantitative hypothesis requires more than the algebraic equivalence in a
Rasch model. Rather, what is required is an experimental intervention/manipulation
on either reader ability or text complexity or a conjoint intervention on both simulta-
neously that yields a successful prediction on the resultant observed outcome (count
correct). We maintain that when manipulations of the type just described are intro-
duced for individual reader/text encounters andmodel predictions are consistent with
what is observed, the quantitative hypothesis is sustained.

We emphasize that the above account is individual-centered as opposed to group-
centered. The Lexile Framework for Reading purports to provide a causal model
for one aspect of what transpires when a reader reads a text. Nothing in the model
precludes averaging over readers and texts to summarize evidence for the quantitative
hypothesis, but the model can be tested at the individual level. These individual-level
tests follow through from Rasch’s (1960, 110–115) care in structuring his models in
the same mathematical form as Maxwell’s analysis of force, mass, and acceleration.
Bydeliberately requiringmodels of this form,Rasch employsMaxwell’s ownmethod
of analogy (Nersessian, 2002; Turner, 1955) and enables us to apply it, as Maxwell
did, in setting up individual-level tests of hypotheses about potential causal relations
among the model parameters (Fisher, 2010).

Maxwell’s use of the method of analogy in developing electromagnetic theory
has been shown to extend and focus everyday thinking processes into generic scien-
tific model-based reasoning processes (Nersessian, 2006, 2008). In these reasoning
processes, formal and structural analogies do not in any way imply content-based
analogies. Thus, Rasch’s analogy from masses and forces to persons and test items
has no psychophysical connotations implying a role for mass and force in the way
people respond to assessment questions. The point here extends beyond the present
concerns to concept formation in science generally: neither Rasch’s models nor
Newton’s laws are conclusions drawn from observations, being based as they are
in reasoning from geometry, other equations, and information (see Crease, 2004a,
2004b for lists of similar mathematical laws).

The analogy is purely formal, and could involve anynumber of similarly structured
relations from a wide variety of other domains in which lawful causal patterns are
found, such as chemistry or genetics. No special value beyond their familiarity is
to be inferred from the choice of physical constructs in the analogies made. That
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said, just as pressure and volume can be traded off to hold temperature constant or
mass and volume can be traded off to hold density constant, so can reader ability and
text complexity be traded off to hold comprehension constant. Michell (1999) made
the following remarks on this point: “Identifying ratios directly via trade-offs results
in the identification of multiplicative laws between quantitative attributes. This fact
connects the theory of conjoint measurement with what Campbell called derived
measurement” (204). See Kyngdon (2008) for a particularly clear discussion of this
connection.

Garden-variety Rasch models and IRT models are in their application purely
descriptive. They become causal and law-like when manipulations of the putative
quantitative attributes produce changes (or not) in the observed outcomes that are
consistent with model predictions. If a fourth-grade reader grows 100 L in reading
ability in 1 year and the text complexity of the student’s fifth-grade science text-
book also increases by 100 L over the fourth-grade textbook, then the forecasted
comprehension rate (whether 60, 70, or 90%) that the reader will enjoy in fifth grade
science remains unchanged from that experienced in fourth grade. We offer without
proof that only if reader ability and text complexity are quantitative attributes will
experimental findings coincide with model predictions such as these. We have tested
several thousand students’ comprehension of 719 articles that averaged 1150 words
in length. Total reading time was 9794 h and the total number of unique machine-
generated comprehension items was 1,349,608. The theory-based expectation was
74.53% correct and the observed was 74.27% correct.

A measurement instrument comprises two kinds of features: radicals and inci-
dentals (Irvine & Kyllonen, 2002). The radicals are those features that transmit
variation in the attribute to the observed outcome. Radicals are tunable and when
intervened upon, will change what is observed (count correct or number of cavities
turning black). Incidentals include all features of the measurement instrument that if
manipulated will not change the observed outcome. To change sentence length and
vocabulary level will alter a text’s complexity and will change count correct on an
embedded reading test (observed outcome), whereas to change the font style will
not. Stenner et al. (1983) and Stone and Wright (1983) proposed that radicals could
be organized into a specification equation and could be used to provide theory-based
calibrations for items, instruments, and ensembles. A powerful demonstration that
a measurement process is under control is provided by a tradeoff between an inter-
vention on the attribute measure (e.g., reading ability) for an intervention on the
measurement mechanism/specification equation (e.g., text complexity) to hold the
observed outcome (relative raw score, percentage correct) constant. Only when an
instrument can be tuned to produce a desired change in the observed outcome when
holding the attribute measure constant is the measurement mechanism well under-
stood. This is, of course, the feature that enables the manufacture of large numbers
of instruments that share the same correspondence table linking observed outcome
to attribute measure. We call such instruments strictly parallel.

We maintain that when data fit a descriptive Rasch model, there is an important
sense in which we remain dissatisfied. The source of this dissatisfaction resides in the
fact that scientists eschew theories and models that contain many “free parameters…
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the values of which are not determined by the theory itself but rather must, as it
is commonly expressed, ‘be put in by hand’—introduced with no other rationale
than they are required by the data” (Woodward, 1989, 364). In descriptive Rasch
models (and all IRT models), item and instrument calibrations are estimated from
data, whereas in a causal Raschmodel, the item, ensemble, or instrument calibrations
are provided by theory, thus, dramatically reducing the free parameters in the model
and not so coincidentally reducing the sense of arbitrariness.

We cannot overstate the importance of describing the measurement mechanism
when explaining why a particular scored outcome was observed or how it came to
be. If a Rasch or IRT study is submitted for publication and it makes no attempt to
explicate the mechanism or active ingredients that transmit variation in the attribute
to the observed outcome, then a truth-in-advertising disclaimer such as, “unfortu-
nately, no mechanism is known to underlay the Rasch equation that we use,” should
accompany the report.

The simple fact that data fit a Rasch model where the dependent variable is count
correct on a test and the predictor is a difference between a person parameter and
an instrument parameter does not elicit understanding of the mechanism at work
and thus, does not explain: “Because to explain is to exhibit or assume a (lawful)
mechanism. This is the process—whether causal, random, or mixed that makes the
system work the way it does…. This kind of explanation is usually called mecha-
nistic. I prefer to call it mechanismic, because most mechanisms are not mechanical”
(Bunge, 2004, 203). Without a mechanism (modeled as a specification equation), a
Rasch model is unsatisfyingly functional and descriptive rather than mechanismic
and explanatory. If editors embraced this position, attentionmight shift to explications
of the mechanisms that underlie the human and social science instrumentarium.

The role of causal inference in human science measurement theory has been
underdeveloped in part because causal inference is philosophically complex and
more specifically the so-called mechanismic interpretation of measurement (Stenner
et al., 2009) has lived in the shadow of sampling-based frameworks such as facet
theory (Guttman, 1971), generalizability theory (Brennan, 2011), true score theory
(Lord & Novick, 1968) and behavior domain theory (McDonald, 2009).

4 Illustrating the Tradeoff Property

In adopting the tradeoff property as a useful test for quantity in the human and social
sciences, we reasoned that the symmetry of a Rasch model lends itself to thought
about offsetting manipulations on the r.h.s. of Eq. (3) producing no change to the
l.h.s. Concretely, a manipulation that increases text complexity by 200 L, if offset by
an increase of 200 L in reader ability, should yield no change in observed compre-
hension rate. So, offsetting manipulations in two distinct attributes, text complexity
and reader ability, can be experimentally shown to hold constant a third attribute
(comprehension). If this tradeoff property holds up and down the scales for all three
variables in the Lexile equation, the attributes (text complexity, reader ability, and
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comprehension) we conjecture must be quantitative attributes of text, reader, and the
reader-text encounter, respectively. As we have seen, a particularly attractive feature
of this approach to testing the quantitative hypothesis is that one can perform the
test within-person with no reference to any between-person relations. Specifically,
over a 13-year period (grades K-12), a reader is growing in reading ability and the
computer trades off growth for new texts that have just the right amount of added
complexity to hold the comprehension rate constant. Over the 13 years, the reader
may read thousands of articles and millions of words, but the whole history can be
summarized by the expected minus observed count correct. We assert without proof
that only if text complexity, reader ability, and comprehension are quantitative, will
we consistently observe a close correspondence between expected (under the theory)
and observed count correct on machine-generated cloze items. Because one always
wants the quantitative hypothesis to be sustained within-person over time, it seems
best to test the hypothesis at the individual level and not resort to cross-level infer-
ences (e.g., attempts to infer from between-person relationships something about
within-person processes), which often find dubious rationales (Molenaar & Newell,
2010).

Figure 1 is an individual-centered growth trajectory for reading ability denomi-
nated in Lexiles. Student 1528 is a seventh grademale who read 347 articles (138,695
words) between May 2007 and April 2011. Each solid dot corresponds to a monthly
average Lexile measure. The growth trajectory fits the data quite well, and this young
man is forecasted (big dot on the far right of the figure) to be a college-ready reader
when he graduates from high school. The open dots distributed around O on the
horizontal axis are the expected performance minus observed performance for each
month. Expected performance is computed using the Rasch model and inputs for
text complexity and the reader’s ability measure. Given these inputs, the apparatus
forecasts a percentage correct. The observed performance is the observed percentage
correct for the month. The difference between what the substantive theory (Lexile
Reading Framework) in cooperation with the Rasch model expects and what is actu-
ally observed is plotted by month. The upper left-hand corner of the graphic summa-
rizes the expected percentage correct (73.5%) and observed percentage correct
(71.7%) across the 3342 items taken by this reader during 4 years. What may not be
immediately obvious is that the apparatus is dynamically matching text complexity
to the developing reader’s ability to hold comprehension (percentage correct) at 75%.
So, this graphic describes a within-person (intra-individual) test of the quantitative
hypothesis: Can the apparatus trade off a change in reader ability for a change in text
complexity to hold constant the success rate (comprehension)?

When a wide range of data fit a causal Rasch model, does the model assume the
status of a law such as F=MA?Although the lines of demarcation between invariant
generalizations and laws are difficult to draw, one feature seems paramount. How
phenomena relate to one another must be independent of the particular mechanism
used tomeasure each phenomenon. This independence presumes that multiplemech-
anisms exist for measuring each phenomenon that figures in the law. F=MAwould
not be a law if it mattered how exactly mass were measured (what kind of weighing
apparatus was employed) and similarly for acceleration and force. In fact, the very
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Fig. 1 Growth in reading ability relative to the reading demands of adulthood

claim for existence of a phenomenon (reader ability or text complexity) depends
upon the fact that different calibrated mechanisms return the same amounts.Without
demonstrated invariance of a phenomenon over measurement mechanisms, a coun-
terclaim remains open that the hypothesized phenomenon is artifactually dependent
on one particular instrument ormeasurementmechanism.We conjecture that laws are
laws, in part, because they are invariant under changes inmeasurementmechanism(s).

So, what does it mean to claim that the r.h.s. of Eq. (3) is causal on the l.h.s. and
thus, that the causal operator (=:) should be used in place of (=). Borrowing from
Woodward (2003), we mean that an intervention or manipulation of the measure-
ment mechanism and/or the attribute measure changes the observed outcome. The
mathematical model explains how observed outcomes (counts correct on a reading
test) are dependent on the measurement mechanism (text complexity and task type)
and measured attribute (reader ability). The substantive theory specifies precisely
what kinds of interventions on the object of measurement and measurement mecha-
nism will change the observed outcome and, by omission, what interventions should
have no effect on the observed outcome. In this sense, measurement as envisioned
in the standard measurement model is about manipulation and control and not about
correlation, description, and classification.

Figure 2 presents the results of a 5-year study of the relationship between theoret-
ical text complexity as provided by a computer based text complexity engine (Lexile
Analyzer) and empirical text complexity as provided by the EdSphere™ platform.
The Lexile Analyzer computes the semantic demand of a text proxied by the log
transformed frequency of each word’s appearance in a multibillion word corpus of
published text and the syntactic demand of each text proxied by log transformedmean
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Fig. 2 Predicted versus observed text complexity measure

sentence length. The text preprocessing, what constitutes a word and what consti-
tutes a sentence ending, involves thousands of lines of code. Modern computing
enables the measurement of Tolstoy’s War and Peace in a couple of seconds. The
Lexile Analyzer has taken 25 years to build and optimize and is freely available for
non-commercial use (Lexile.com).

The EdSphere™ platform enables students to select articles of their choosing from
a vast range of content. Selected articles are targeted to ±100 L of each student’s
developing reading ability. Thus, as students’ reading ability grows, the machine
adjusts the text complexity of the articles from which the student chooses the next
reading. The target success rate is 75%. The machine generates a reading compre-
hension item on the fly about every 70 words such that two students sitting side by
side at computers and reading the same article will respond to different items.

Because only very rarely will more than one student take any particular item,
a new kind of Rasch model was needed. The ensemble Rasch model exploits the
raw score sufficiency property of Rasch models to convert counts correct on unique
sets of items into Lexiles (Lattanzio et al., 2012; Stenner et al., 2006). The text
complexitymeasure for the present article is 1480 L, which also is themean difficulty
of all the allowable cloze reading items that could be machine constructed for this
article. Given this ensemble mean and a theory-specified ensemble variance, counts
correct can be converted into a Lexile measure by sampling item calibrations from
the ensemble and using these item calibrations to solve the Rasch equation. The key
intuition that makes this possible is that it does not matter which particular sampled
item calibrations are attached to which particular machine-generated items because
a consequence of raw score sufficiency is that there is no information in the pattern
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of rights and wrongs about the reader parameter; thus, it does not matter how the
sampled item calibrations are attached to individual items.

The 719 articles in this study were chosen because they were the first articles to
meet the dual requirements of at least 50 readers and at least 1000 item responses.
Well-estimated reader measures were available prior to an encounter between an
article and a reader. The ensemble Rasch equation (not given) was rearranged to
solve for text complexity given a count correct, a reader ability, and an ensemble
variance. Thus, each of the 719 articles had a theoretical text complexity from the
Lexile Analyzer and an empirical text complexity from EdSphere™. The correlation
between theoretical text complexity and empirical text complexity is r = 0.968
(r2 = 0.938). Reliability of the empirical text complexity measures is rtt = 0.997
and the RMSE = 89.6 L. The RMSE is the square root of the average squared
difference between the empirical and theoretical text complexities. Work has been
ongoing for two decades to isolate new linguistic variables that might account for
the 6% of uncontrolled variance. More recent work has shifted to a focus on possible
artifacts (measurement error, range restriction, text preprocessor variation, and task
specificity) that might account for the small remaining uncontrolled variation.

When data fit a descriptive Rasch model, relative differences between objects of
measurement on the attribute of interest are independent of the instrument.When data
fit a causal Rasch model in which instrument calibrations (item difficulty estimates)
come from theory, then absolute measures are independent of instrument. Rasch
called the former specific objectivity, and we called the latter general objectivity
(Stenner, 1994). Both the temperature and reading attributes used as illustrations in
this paper have available, well-developed, generally objective measurement systems.
Equation (3) is an individual-centered measurement model (token causal model)
and can be distinguished from SEM models and much philosophical discussion on
causation that focuses on type causal models.

There is an unfortunate tendency in reading research and psychometrics to equate
changes in measurement mechanism (e.g., task type) with change in the attribute
being measured. For example, it is asserted that multiple-choice tests of reading
must measure something other than short-answer, constructed responses because the
former measure superficial, fact-based understanding and the latter measure higher
level inferences. Thirty years ago, reading part scores were reported for subtests that
mistakenly were thought to measure something else because the questions focused
on different levels of Bloom’s taxonomy. The idea that a reader constructs a meaning
model and that all reading items interrogate that meaning model (Kintsch, 1974) and
that different item types might measure the same attribute (reader ability) but with
different added easiness or difficulty relative to some standard task type was a foreign
notion. Adoption of the Lexile Reading Framework was resisted in part because it
appeared to be too simple. The assertion that reading ability, like temperature, is a
unidimensional attribute that can be measured with many mechanisms that appear
different has been slow to take hold. That said, some measurement mechanisms
may confound two or more attributes. Mercury in a tube thermometer without a top
confounds the measurement of temperature with the measurement of atmospheric
pressure. To seal the top of the thermometer eliminates the confound. Similarly, to



242 A. J. Stenner et al.

ask readers to summarize in writing what they have just read may confound reading
ability and writing ability. Both attributes of language facility are important, but for
purposes of measurement, it is important to have mechanisms that transmit only one
kind of variation and not a confounded mixture of two or more distinct kinds of
variation.

5 Instrument Validity and Instrument Validation

Consider the following statements about validity and ponder the theoretical and prac-
tical implications thatmight follow for themeasurement, respectively, of temperature
and reading ability:

Validation of an instrument calls for an integration of many types of evidence. The varieties
of investigation are not alternatives any one of which would be adequate. The investigations
supplement one another…. For purposes of exposition, it is necessary to subdivide what in
the end must be a comprehensive, integrated evaluation of the test. (Cronbach, 1971, 445;
emphasis in original)

[Validity is] an integrated evaluative judgement of the degree towhich empirical evidence
and theoretical rationales support and adequacy and appropriateness of inferences and
actions based on test scores or other modes of assessment. (Messick, 1989, 13; emphasis in
original)

Validation involves the evaluation of the proposed interpretations and uses of measure-
ments. The interpretive argument provides an explicit statement of the inferences and assump-
tions inherent in the proposed interpretations and uses. The validity argument provides an
evaluation of the coherence of the interpretive argument and of the plausibility of its infer-
ences and assumptions. It is not the test that is validated and it is not the test scores that are
validated. It is the claims and decisions based on the test results that are validated. There-
fore, for validation to go forward, it is necessary that the proposed interpretations and uses
be clearly stated. (Kane, 2006, 59–60)

So, from the above, validity calls for synthesis or integration of diverse sources
of evidence. It is useful, for purposes of exposition, to group these sources. Not
mentioned in the quotes above but described elsewhere are dozens of validity cate-
gories [face, criterion, concurrent, convergent, discriminant, predictive, construct,
and 200 more documented by Shaw and Newton (2012) and Newton and Shaw
(2012)]. For Cronbach, Messick, and Kane validity does not apply to the instrument
(thermometer or reading test) nor just to the numbers produced by these instruments
but rather to the claims and decisions that are made by users based on these numbers.

Even a casual reading of the history of science reveals a stunning disconnect
between the quotations above and how instruments are invented, improved, and justi-
fied in the physical sciences. What holds center stage in physical science measure-
ment is substantive theory (Maraun, 1998; Sherry, 2011) followed by intense focus
on precision of measurement and to a lesser degree by an imperative for readable
technologies (directly perceivable quantities for the latent variable being measured).
Great care is taken in physics, for example, to separate what is being measured
by an instrument from the uses to which measurements might be put and from the
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consequences of these uses. It is not that these consequential considerations are unim-
portant but that they have nothing to do with what an instrument measures. Validity,
for us, is all about what an instrument measures.

Contrast the quotes from Cronbach, Messick, and Kane with those of Stenner
et al., (1983) and Borsboom (2005):

The notion that a test is valid if it measures what it purports to measure implies that we have
some independent means of making this determination. Of course, we usually do not have an
independent standard; consequently, validation efforts devolve into circular reasoning where
the circle generally possesses an uncomfortably small circumference. Take, for example,
Nunnally’s (1978) statement, “A measuring instrument is valid if it does what it is intended
to do” (86). How are we to represent intention independent of the test itself? In the past,
educators and psychologists have been content to represent intentions very loosely, in many
cases letting the construct label and its fuzzy connotations reconstruct the intentions of the test
developers. Unfortunately, when intentions are loosely formulated, it is difficult to compare
attainment with intention. This is the essence of the problem faced by classical approaches to
validity. Until intentions can be stated in such a way that attainment can be explicitly tested,
efforts to assess the adequacy of a measurement procedure will be necessarily characterized
by post hoc procedures and interpretations. (Stenner et al., 1983, 31)

Thus, validity theory has gradually come to treat every important test-related issue as
relevant to the validity concept, and aims to integrate all these issues under a single header. In
doing so, however, the theory fails to serve either the theoretically oriented psychologist or
the practically inclined tester; the theoretically oriented are likely to get lost in the intricate
subtleties of validity theory, while the practically oriented are unlikely to derive a workable
conceptual scheme with practical implications from it. (Borsboom, 2005, 150)

If we follow this thread, where does it lead? First, let’s observe that the past
400 years of successful physical science have managed with only the rudiments
of a formal measurement theory. Progress in every physical science measurement
armament has been realized from improved theory and improved engineering in the
service of ever-increasing precision of measurement, and that is about it. Human
science measurement, in contrast, has expended virtually no energy on substantive
theory development, nor on increasing, say by an order of magnitude, the precision
of ability, personality, or attitude measurement. Rather, we psychometricians expend
much energy on mathematizing everything we do in a kind of caricature of physical
science measurement without grasping the significance of just what physical science
is accomplishing (Maraun, 1998; Sherry, 2011).

At present, much of the human science is too frequently actuarially driven rather
than theory-driven. Consider themultitrillion dollar insurance industry as an analogy.
The foundations of the industry are highlymathematized and predictions in the aggre-
gate are highly precise, but there is no body of increasingly integrated substantive
theory. Actuarial science has given us some wonderfully useful mathematics and in
turn has found uses for some elegant pure mathematics. This sophisticated mathema-
tization operates in the service of a simple criterion: prediction of how a population
(humans, container ships, orange trees) will fare next year or next decade. As useful
as this may be within the limits of the insurance industry’s interests, theory-driven
science optimizes a completely different kind of criterion.

The notion that validity is about the conformance of what an instrument actually
measures to what the developers intended or what they purport tomeasure is vacuous
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unless intent can be independently formulated as, for example, in a specification
equation. Too often in practice the instrument is offered as evidence both of intent and
attainment of that intent. The specification equation breaks the relationship between
intention and attainment by independently formalizing intent as an equation that
can produce item calibrations or ensemble means that are in close correspondence
with empirical estimates. Instruments are designed to detect variation of a kind.
The specification equation specifies the kind and provides a means by which to test
whether the variation detected by the instrument aligns with that specified by the
construct theory:

The construct specification equation affords a test of fit between instrument-generated obser-
vations and theory. Failure of a theory to account for variation in a set of empirical item scale
values invalidates the instrument as an operationalization of the construct theory and limits
the applicability of that theory. Competing construct theories and associated specification
equations may be suggested to account for observed regularity in item scale values. Which
construct theory emerges (for the time) victorious, depends upon essentially the same norms
of validation that govern theory evaluation in other sciences. (Stenner et al., 1983, 307)

Everything important to instrument justification cannot be subsumed under the
validity banner. Validity is not constituted by a bucket of correlations. It was these
realizations among other deficiencies in the concept that led us to reformulate validity
as a correspondence between intent and attainment where intent is formalized as a
specification equation. Borsboom (2005) said it best:

The argument to be presented is exceedingly simple, so simple, in fact, that it articulates an
account of validity thatmay seemalmost trivial. It is this: if something does not exist, then one
cannot measure it. If it exists, but does not causally produce variations in the outcomes of the
measurement procedure, then one is either measuring nothing at all or something different
altogether. Thus, a test is valid for measuring an attribute if and only if (a) the attribute
exists, and (b) variations in the attribute causally produce variations in the outcomes of the
measurement procedure.

The fact that the crucial ingredient of validity involves the causal effect of an attribute
on the test scores implies that the locus of evidence for validity lies in the processes that
convey this effect. This means that tables of correlations between test scores and other
measures cannot provide more than circumstantial evidence for validity. What needs to be
tested is not a theory about the relation between the attribute measured and other attributes,
but a theory of response behavior. Somewhere in the chain of events that occurs between
item administration and item response, the measured attribute must play a causal role in
determining what value the observed outcomes will take; otherwise the test cannot be valid
for measuring the attribute. Importantly, this implies that the problem of validity cannot be
solved by psychometric techniques or models alone. On the contrary, it must be addressed
by substantive theory. (151)

It is often difficult to conduct experimental manipulation (in the short term) of the
latent variable (e.g., reader ability) of interest. We can and do, however, exploit the
symmetry in the Rasch model and experimentally manipulate the items (e.g., text
complexity) to produce the observed outcome (e.g., success rate or comprehension)
expected under the construct theory. Manipulation of the text by the use of the
specification equation results in changes consistentwith theoretical expectations. The
specification equation is one vehicle by which to introduce substantive theory into
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a psychometric model. The potential of this approach can perhaps be grasped most
easily by setting up an equivalence relation. Suppose one wants to set the observed
outcome (e.g., count correct on a reading test) equal for two readers who differ in
reading ability. One could use the specification equation to build and calibrate items
for the better reader that are just enough more difficult than the easier items given to
the less able reader to cancel the way the first reader’s ability surpasses that of the
second reader. This trade off, or cancellation property, characterizes additive conjoint
measurement frameworks (Kyngdon, 2008;Michell, 2005). In the Lexile Framework
for Reading, a difference in reader ability of 200 L can be traded off for a difference
in text readability of 200 L to hold constant the comprehension rate (Burdick et al.,
2006). Relying only on substantive theory, the specification equation enables these
causal manipulations.

In summary, validity is a straightforward concept with a specific meaning; it is
not an amalgamation of dozens of kinds of evidence. Validity does not reduce to
the scientific method and there is nothing in need of unification in the concept.
The usefulness of measures and the consequences (intended and unintended) of
their use, although important, have nothing to do with validity. In fact, “validity
is not a judgment at all. It is the property being judged” (Borsboom, 2005, 154).
When asserting that an instrument is a valid measure of an attribute, one makes an
ontological claim that the attribute exists (a realist stance), that the instrument detects
variation in the attribute, and that experimental manipulation of the attribute or the
instrument (mechanism) will cause theoretically expected changes in the observed
outcome (count correct).

If ameasurement instrument’s primary purpose is to detect variation of a kind then
the paramount validity question is what causes the variation detected by the instru-
ment. The specification equation provides an answer to this question by formalizing
what it means to move up and down a scale for an attribute.

How well empirical item difficulties or ensemble means align with theoretical
calibrations is a matter of degree (Stenner et al., 2006). Alternative construct theories
and their attendant formalizations as specification equations compete in accounting
for the variation detected by an instrument. As such, we adopt a causal rather than
a correlational view of validity. We accentuate the role of substantive theory in our
approach and have advanced the term theory-referenced measurement to label the
method (Stenner et al., 2009).

6 Conclusion

Causal Rasch models expose the mechanism that transmits attribute variation to the
observed outcome. Specification equations are one useful way to expose and express
a mechanism’s action. Although a specification begins its life as a local descriptive
account of specifically objective item/instrument variation on a single form of a test,
it can evolve into a universal causal account of the behavior of items/instruments
previously used to measure an attribute and all items and instruments that might yet
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be manufactured. The specification equation bridges the here and now of the test in
hand and the infinity of possible instruments that can be engineered andmanufactured
for the measurement of an attribute. The equation provides not only a specification
for instrument manufacture but also yields the calibrations that can be used to convert
counts into quantities.

So, an early use of the specification equation is to operationalize Rasch’s (1960)
notion of a frame of reference in a way that extends the frame beyond the specific
objectivity obtained in the context of one or two tests for an attribute to an indefinitely
large collection of actual and imagined instruments. Theory-based instrument cali-
bration eliminates the need to use data both to calibrate instruments and to measure
persons. The payoff of using theory instead of data to calibrate instruments is large
and immediate. When data fit a Rasch model, differences among person measures
are free of dependencies on other facets of the measurement context (i.e., differences
are specifically objective). When data fit a causal Rasch model, absolute person
measures are free of the conditions of measurement (items, occasions, contexts) and
thus, absolutemeasures are objective.Under a causalRaschmodel, attributemeasures
(temperature or reading ability) are individually centered statistics precisely because
no reference to other person(s) data figures in their estimation.

Applications of descriptive Rasch models have (over the last 50 years) identified
thousands of data sets that fit. For only a handful of these has there been an attempt to
explicate the mechanism that transmits attribute variation to the observed outcome.
We do not, however, want to miss the real possibility that there exist mechanisms for
a non-negligible subset of these applications and that some mechanisms will explain
observed outcomes across multiple applications. A starting point for this search
might begin with the question, “How does this instrument work?” What are the
characteristics of the items/instrument that, if experimentally manipulated, could be
expected to change the observed outcome? Even tentative answers to these questions
will move psychometrics into a closer alignment with the standard measurement
model (Fisher & Stenner, 2011, 2012).

There has been a groundswell of negativity regarding the potential of psychology
to realize measurement as that term is understood in the physical sciences (Barrett,
2008; Cliff, 1992; Grice, 2011; Michell, 2000; Schönemann, 1994). More recently,
Trendler (2009) concluded, “Psychological phenomena are not sufficiently manage-
able. That is, they are neither manipulable nor are they controllable to the extent
necessary for an empirically meaningful application of measurement theory. Hence
they are not measurable” (592). For Trendler, psychology cannot have measurement
because it cannot manipulate and control its constructs. This paper offers a demon-
stration that psychological measurement might be possible. Furthermore, a roadmap
is presented for the realization of measurement for those attributes that, like early
conceptions of temperature, are today merely ordinal.
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Comparison Is Key

Mark H. Stone and A. Jackson Stenner

Abstract Several concepts from Georg Rasch’s last papers are discussed. The key
one is comparison because Rasch considered themethod of comparison fundamental
to science. From the role of comparison stems scientific inference made operational
by a properly developed frame of reference producing specific objectivity. The exact
specifications Rasch outlined for making comparisons are explicated from quotes,
and the role of causality derived from making comparisons is also examined. Under-
standing causality has implications for what can and cannot be produced via Rasch
measurement. His simple examples were instructive, but the implications are far
reaching upon first establishing the key role of comparison.

Rasch (1977) addressed science and objectivity in his last published paper: On
Specific Objectivity: An Attempt at Formalizing the Request for Generality and
Validity of Scientific Statements. In Section III (p. 68), he rhetorically asked, “What
is Science?” His answer specified two conditions. Science is:

1. Making comparisons, and
2. Making these comparisons objectively.

Rasch (1977) further explained these two conditions.

Two features seem indispensible in scientific statements. They deal with comparisons, and
the comparisons should be objective. However, to complete these requirements I have to
specify the kind of comparisons and the precise meaning of objectivity. (p. 68, our italics)

Rasch (1977) follows the above quote by another one taken from an earlier paper
(Rasch, 1967) but with each part given an important heading:
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Specifying Comparisons. Consider a class of ’objects’ to be mutually compared. The sense
in which they should be compared is specified through a class of ’agents,’ to each of which
each object may be ’exposed.’ On each exposure an ’observation’—quantitative or qualita-
tive—is made. The whole set of such observations made when a finite number of objects
of O1…,On are exposed to a finite number of agents A1…, Ak from the data from which
comparisons of the O’s…to such agents as the A’s can be inferred reactions.

Specifying Objectivity. Now, within this framework, which I have taken from
psychophysics, the ‘objectivity’ of a comparative statement on, say two objects, O1 and
O2 is taken to mean that although being based upon the whole matrix of data it should be
independent of which set of agents A1,…,Ak out of the available class were actually used
for the comparative purposes, and also of which objects…other than O1 and O2 were also
exposed to the set of agents chosen.

Specific objectivity, some general properties. In order to distinguish this type of objec-
tivity from other use of the same word I shall call it ’specific objectivity,’ and in passing I beg
you notice the relativity of this concept: it refers only to the framework specified by the class
of objects, the class of agents and the kind of observations which define the comparison.
(pp. 2–3, our italics)

Rasch (1967) adds this important qualification:

...the objects and/or agents are subject to comparison…the data themselves are not directly
compared, they only serve as the instruments for the comparison aimed at. The consequences
of introducing these two concepts: (specific) comparisons and specific objectivity, completed
by the requirements that a comparison is always possible and its result always unambiguous,
are really overwhelming. (pp. 2-3, our italics)

The above quotes serve to introduce what is required in the method of comparison
as well as the consequences from making such comparisons. It is not the data, but
what it stands for that is the goal of science. The essential conditions are two: (1)
specify ’the kind of comparisons’ and (2) specify the precise meaning of objectivity.’

These stipulations suggest the following paradigm:

Propositions: Specifications:
1. Scientific statements by the kind of comparisons made.
2. Objective comparisons by the precise meaning and achievement of specific

objectivity.

Scientific statements are the consequences of specifying comparisons. Objective
comparisons are the consequences emanating from comparisons exemplifying the
precise meaning of specific objectivity. Rasch (1977) draws attention to the ubiquity
of observations made by comparisons:

...comparisons form an essential part of our recognition of our surroundings: we are cease-
lessly faced with different possibilities for action, amongwhich we have to choose just one, a
choice that requires that we compare them. This holds both in everyday life and in scientific
studies. (p. 68)

These remarks appear general, obvious, and rather simple. Every day finds us
comparing prices and products or deciding activities. Rasch’s observations onmaking
comparisons in everyday life or pursuing science are self-evident, but clearly essen-
tial. However, a careful exam nation of the exact role for making comparisons is
required.
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Rasch (1977) next responds to those who suggest measurement as primary in
making comparisons or conducting science:

That science should require observations to be measurable quantities is a mistake, of course;
even in physics observations may be qualitative—as in the last analysis they always are.
(p. 2)

This statement is vitally important in the social sciences because it challenges two
common beliefs.

First, Rasch dismisses the notion of measurement as a prerequisite for science to
proceed. His quote echoes Louis Guttman ’s comments of a similar nature,

I have avoided the term ’measurement’ in all my writings and teachings. I have found it
neither useful nor necessary.... No fixed a priori collection of abstract, contentless techniques
or principles can be universally appropriate for scientific progress. (1971, pp. 330–331)

Second, Rasch raises qualitative observations to the prominence rightly deserved.
Guttman shared this view also.

The basic data of most mental tests are qualitative, yet no treatment is given of the theory of
such qualitative data. (in Levy, 1994, p. 324)

Guttman (1971) argued that his approach to science is via “…hypothesis construc-
tion for aspects of a universe of observations recorded” (p. 333). He eschewed
measurement while promoting better investigations driven by theory. Guttman’s
remarks further suggest interesting comparisons between these two iconoclasts of
traditional measurement practice. Andrich (1982, 1985, 1988) has made important
psychometric comparisons of Guttman and Rasch perspectives. Engelhard (2008)
has examined both perspectives critical to invariant measurement.

A contemporary expression of many of these same issues has been given by
Rein Taagepera (2008) whose bookMaking Social Sciences More Scientific pursues
these same goals (among others) by re-focusing attention to constructing predictive
models. Theneed to repeat calls to the goal of predicting serves to showhow important
these matters are, but how neglected in practice they have been.

The important issue developed from Rasch thus far is that only specific compar-
isons, grounded in substance/objects, produce generalities and laws. It is the proper-
ties of these generalities and laws that we employ for guidance and direction. Data
and its analyses are only a means to this end, and should not be mistaken for the
conclusion. In practice, this means that what is derived from data must reach beyond
to become a generalized outcome. Whether it does or not is critical.

1 The Strategy of Comparison

Comparison is driven by theory and experiment. Basic statements about making
comparisons may initially appear simplistic. What makes these elementary concerns
worthy of further investigation? Why such attention to making comparisons? Rasch
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Falling Distance

H1 H2 H3 H4 H5 H6

Heavy ashtray + + + + - -
Light ashtray + + - - - -

Fig. 1 Ashtray breakage by falling distance

illustrates his points with two examples. The first example involves a comparison of
ashtrays. His choice of this example is unfortunate for these times, but illustrative
nevertheless. Data from this experiment is produced by dropping heavy and light
ashtrays from six different heights. It is reported as shown in Fig. 1.

Survival intact is denoted +, and breakage is denoted -. While the experiment is
simple, Rasch reminds us that qualitative comparisons are fundamental to science.
He stresses the importance of recognizing qualitative methodology as fundamental
in science. This example, likewise for any example, requires confronting each object
with an action to produce a reaction—a tripartite condition. But objects and actions
must be systematically arranged to allow a valid observation to be made. A theory
is stimulated by a thought experiment, an intuitive insight, or a historical review of
relevant literature.

The experiment consists of a tripartite condition of object, agent, and resulting
reaction. In a psychometric application this triplet could be person, item, and
response. Rasch describes the process:

1. To determine whether an object has a certain property one must do something to
the object, confront it with some action or different actions liable to create one
of a number of reactions.

2. If knowledge gained in this way is to be used in making a choice it must be
obtained for several objects of the kind in question so that a comparison becomes
possible (Rasch, 1977, p. 69).

Rasch (1977) introduces his second example showing the sequential development
of gas equations (IV:l–IV:15) not discussed here. The essential points that Rasch
draws from the more rigorous exposition of this second example (pp. 71–73) are the
following:

1. Varying the two parameters of temperature and pressure introduces a stepwise
series of systematic experiments,

2. The results show “linearity to be a pervading trait,”
3. This results in “a law of greater generality,”
4. The sequence progresses from observations of volume, pressure and tempera-

ture and passes through a series of stepwise comparisons leading to summary
equations.

Rasch concluded:

This procedure, it seems, can be taken as a prototype of the experimental charting of a
complex field…only through systematic comparisons—experimental or observational—is
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it possible to formulate empirical laws of sufficient generality to be—speaking frankly—of
real value, whether for furthering theoretical knowledge or for practical purposes…I see
systematic comparisons as a central tool in our investigation of the outer world. (p. 74, our
italics)

Great importance is given by Rasch to building sequence of experiments. It is
not a singular, critical experiment that typifies science although it has occurred at
times. It is a series of them, each of which builds upon the other. Parameters may be
experimentally manipulated to observe outcomes, and confirm or deny theoretical
predictions. The way that Rasch demonstrates development of the gas law brings a
theory to an encompassing state built from and supported by a succession of critical
experiments whose hypotheses are sequential, stepwise, and linear. This process
constitutes Rasch’s causal model. We have earlier stipulated, “The Rasch model in
concert with a substantive theory is a powerful tool for discovering and testing the
adequacy of formulations” (Burdick et al., 2006, p. 1059), and specified, “It takes
a substantive theory to unambiguously distinguish between a latent variable and an
index.” (Stenner et al., 2008, p. 1177). Rasch was clearly proposing that comparisons
be made in the context of substantive theory driving experimental studies. Only in
this context can claims against latent variables be made following the specification
outlined above.

InComparisons and SpecificObjectivity,Rasch (1977) generalizes and formalizes
the implications of his two examples (p. 75). He begins with explanations and equa-
tionsmore rigorously defining comparison and specific objectivity that are abstracted
below but sequenced by Rasch’s order of them:

...two collections of elements O and A denoted here objects and agents…single elements
and indices Ov and A1…enter into a well-defined contact C…every contact an outcome R.

…the three collections of elements…the frame of reference

F = [O, A, R] (1)

the concept of comparison…contact C determines outcome R as a function of object O and
agent A

R = r(O, A). (2)

Within a specified determinate frame of reference a comparison between two objects O1
and O2—with regard to their reactions to containing the agent A—is defined as a statement
about them which is based solely on those reactions.

R1 = r(O1, A), R2 = r(O2, A) (3)
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…this comparing function u (R1, R2) form a collection U

…the elements…may be qualitative

…inserting function U in

U (R1, R2) = u(r(O1, A), r(O2, A)) (4)

and a statement about O1 and O2…will depend on A, the agent.

…the comparing function U(R1, R2) as a function of O1 and O2 conditioned by A

U (r(O1, A) r(O2, A)) = u(O1, O2|A) (5)

as a comparator for O1 and O2, conditioned by agent A (in analogy to the concept of
conditional probability).

Statements dependent on the agent [object] are said by Rasch to be local comparisons.

Clarity is given about what is not, and what is objective, and what is local or
specific in the frame of reference:

Local comparisons are…useful as pointers…a comparing statement.

…for O1 and O2 to be more than locally valid, the comparator must be independent of
which ai from A has been used to produce the reaction

... if the condition is fulfilled ... denote the comparison between these two objects as for
agents between these two objects:

U (R1, R2) = u(r(O1, A), r(O2, A)) u (O1, O2). (6)

…if this globality with A holds for any two objects O1 and O2 in O [then]

…the pairwise comparison defined by (4) is specifically objective within frame of
reference F.

The term ‘objectivity’ refers to the fact that the result of any comparison of two objects
within O is independent of the choice of the agent ai within A and also of the other elements
in the collection of objectsO; in other words: independent of everything else within the frame
of reference, than the two objects which are to be compared and their observed reactions.

…the qualification “specific” is added because the objectivity of these comparisons is
restricted to the frame of reference

F in [1] …denoted as the frame of reference for the specifically objective comparisons
in question. (pp. 75–77)

Rasch makes very clear,

... specific objectivity is not an absolute concept, it is related to the specific frame of reference

...this definition concerns only comparisons of objects, butwithin the same frame of reference
it can be applied to comparisons of agents as well. (p. 77)
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The philosophic issues encompassing the history of objectivity appear circum-
spectly avoided in these statements. Rasch specifies,

The concept has therefore not been carved out in a conceptual analysis, but on the contrary
its necessity has appeared in my practical [statistical] activity. (p. 58)

Why avoid the philosophic issue of causation? Speculation suggests it was not in
good taste at the time he was writing to speak of causation in general. The zeitgeist
did not appear to support objectivity and causality in this context. The consequences
of quantum mechanics and the influence of logical positivism may have kept Rasch
from wanting his methods contaminated by any digression into philosophy, or to
have metaphysical issues injected into his systematic discourse. The strategy seems
very clear in light of the quotes given in the opening paragraphs of this paper. Rasch
wants to make his case without contending with excessive philosophical baggage
concerning causality and objectivity. To illustrate the zeitgeist Rasch was avoiding,
consider the opening sentence to Waismann’s chapter entitled “The Decline and Fall
of Causality” Chapter V in Turning Points in Physics (1961).

1927 is a landmark in the evolution of physics—the year which saw the obsequies of the
notion of causality. (p. 84)

Hoover (2004) offers another illustration:

[in reference to causality] ... a dip of about twenty percent in the occurrence of the causal
family from the 1950s [for ‘causally’, ’causality’, or ’causation’ in econometric literature].
(p. 152)

Rasch is by no means conservative regarding the promotion of objectivity via
theory/experiments constructed with a view to exploring results based upon engi-
neered methods. He employs the word “law” in a favorable connotation more than
a dozen times throughout his 1977 paper. While Rasch does not venture into “cau-
sation” stated explicitly, he does so implicitly via employment of comparison as
described above. It seems clear, except for evading the philosophic realm of causality,
Rasch advocates a causal mode of investigation by means of comparisons founded
upon hypotheses and data.

It is important to observe his distinction between “indicators” and “specific
objectivity”. Rasch (1977) specifies,

... if this globality within A holds for any two objects O1 and O2 in O ... the pairwise
comparison defined by (4) is specifically objective within the frame of reference F.

The term ’objectivity’ refers to the fact that the result of any comparison of two objects
within O is independent of the choice of the agent ai within A and also of the other elements
in the collection of objects O; in other words: independent of everything else within the frame
of reference, than the two objects which are to be compared and their observed reactions.
(p. 76)

The essential point rests upon the comparison of two objects (or agents) indepen-
dent of agent (or object) in the collection of objects (or agents) and their observed
reactions within a specified frame of reference. As indicated earlier in the quotes
given above, not all comparisons meet the conditions of specific objectivity. A key
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issue is distinguishing “... those statements dependent on the agent (object),” speci-
fied by Rasch to be “local comparisons” from those which emanate from “specific
objectivity.”

Returning to Rasch’s ashtray example, we find there are no differences observed
for the two ashtrays dropped from heightsH1, andH2 because both survive breakage.
No difference results from heights H5 and H6, also because neither ashtray survives
the fall. The first two heights, H1 and H2, allow no comparison to be made, and
the same occurs from observing H5 and H6. But every result occurs from making
comparisons without knowledge of the heights or the composition of the ashtrays.
This is a subtle but critical point in Rasch’s methodology of comparisons. Nothing
is required beyond the gross descriptions of the ashtray’s composition/construction,
and a sequence of heights for these drops. Rasch (1977) concludes:

Comparing ashtrays at H3 and H4 shows the two middle distances with the heavier ones
surviving breakage while the lighter ones do not…objects type—2 elements (heavy, light);
agent distances—6 elements (each one ordered above the other); and reaction elements—2
results (survived breakage, did not survive breakage). (p. 69)

These specified elements reiterate Rasch’s earlier contention that it is the qualities
which are engaged while measurement quantities are not required.

What is required, ... is to do something specific to the object, confront it with some action
or different actions liable to create one of a number of actions. If knowledge gained in this
way is to be used in making a choice it must be obtained for several objects of the same kind
in question so that a comparison becomes possible. (p. 69)

Rasch (1977) draws these inferences from his ashtray experiment.

A possible comparing function could be the assertion ‘No. 1 ismore solid thanNo. 2,’ defined
operationally by the sequence of reactions + -, that is, the first one holds and the second
one breaks. This comparison is not global, it has the value ’true’ for the intermediate falling
distances and ’false’ for the others. (p. 77)

Another comparing function is ‘No. 1 is at least as solid as No. 2,’ defined operationally
by the observed reactions ++ or +-: either they both hold or they both break or only No. 1
holds. This comparison is global within the frame of reference of the described experiment
and can even be expected to be global also if more ashtrays and more falling distances are
included in the frame of reference. (pp. 77–78)

This brings about the ashtray conclusions:

1. Ashtray No.1 is not more solid than No. 2 across all heights. It is not global because
it is true for some heights, but not all. A general statement cannot be made for the two
types of ashtrays over all heights.

2. Ashtray No. 1 is as solid as No. 2 can be supported as global in the No. 1 (heavy) is
equal to or exceeds No. 2 (light) in heights 1 to 4 although both break at heights 5 and 6.

Raschnext delineates specificobjectivity as separate fromconsiderationof general
objectivity:

...specific objectivity is not to be expected from an arbitrarily chosen comparing function of
u(R1, R2)
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Fig. 2 Light vs. heavy
ashtray breakage

Heavy 
Survives Breaks 

 Survives  H1, H2  no data 
Light 
 Breaks  H3, H4  H5, H6

...bifactorial frames of reference...[where] every reaction is characterized by a so-called
scalar parameter...characteristic of object, agent or reaction. [Given…]

…parameters Ov, Ai, and Rvi…denoted by ωv, αi, ξvi .

…the reaction is assumed to be uniquely determined by object and agent [in]…

ξvi = �(ωv,αi) the parametric reaction function.

The condition corresponding to equation (6) for specific objectivity of comparisons of
objects… ωλ and ωv is:

u(ρ(ωλ, α), ρ(ωv, α)) = v(ρ(ωλ, ωv))

Under these conditions a decisive statement can be made on the properties of the reaction
function �(ωv,αi) that are necessary for establishing specific objectivity of comparisons of
objects within the framework F. (p. 78)

Rasch advocates strategies of comparison designed to tease out knowledge. His
first example builds the case. The outcomes from the ashtray experiment can be
arranged in a 2 × 2 table as shown in Fig. 2.

We already know enough about ashtrays and height to dismiss his simple example
as unnecessary, but then we would miss the point of his generalizations that follow.
Rasch’s experiment establishes these major points.

1. Systematic comparisons made under specified conditions produce stochastically
consistent results.

2. It becomes insightful science to systematically arrange each encounter between
an object and an agent, and then observe the result, the classic experiment for
determining an outcome.

3. Given enough such experiments, wisely contrived, we can often predict outcomes
whenever we gain an understanding of the matter under study, and our theory is
sound. But sometimes our predictions are surprising, and wrong!

There is a clear difference between the heavy and light ashtrays from the results
for H3 and H4 because the heavy one survives, and the light one does not. This
establishes Rasch’s critical point illustrated by this experiment; comparisons are
fundamental to measurement. Rasch also reminds us the results were produced by
qualitative observations, and he indicates this is frequently the case with many scien-
tific investigations in the physical sciences. There has been no requirement or need
for prior quantitative measures in order to produce these results. We might wish to
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bring further clarification and more sophistication to this experiment by refining the
conditions (introducing different heights with different ashtrays) and observing the
results, but specific units for height and mass are not required. Order suffices.

2 Constructing Experimental Comparisons

Rasch argues that the process and strategy of constructing comparisons is the essence
of scientific methodology. In his ashtray experiment every object comes in contact
with every agent via a frame of reference. Each interaction produces some outcome
resulting from this intersecting occurrence of agents with objects. Outcomes are
recorded by one of two qualitative values in a dichotomous frame of reference defined
by ashtrays and heights.

A 2 × 2 frame of reference permits these comparisons to be ordered in a system-
atic way. The outcome may be qualitatively the same or different as in the ashtray
example. Further comparisons aremade possible by progressing through a larger data
frame, and subsequently aggregating all such useful comparisons regarding height
and ashtrays. Order remains fundamental regardless of how complex the comparison
framework grows.

Rasch (1977) characterizes pair-wise comparisons of objects (or agents) as
“specifically objective within the frame of reference” (p. 77, our emphasis), and
he delineates the process:

The term ’objectivity’ refers to the fact that the result of any comparison of two
objects within O is independent of the choice of the agent ai, within A and also
of the other elements in the collection of objects O, in other words: independent
of everything else within the frame of reference than the two objects which are to
be compared and their observed reactions. And the qualification ’specific’ is added
because the objectivity of these comparisons is restricted to the frame of reference
F. This is therefore denoted as the frame of reference for the specifically objective
comparisons in question. This also makes clear that specific objectivity in not an
absolute concept, it is related to the specified frame of reference. (p. 77, our emphasis)

Designating ωv, αi, and ξvi as parameters for Ov, Ai, and Rvi gives ξvi = �(ωv,αi)
as the parametric reaction function. This condition for the specific objectivity of
comparisons for objects ωλ and ωv is:

u(ρ(ωλ, α), ρ(ωv, α)) = v(ρ(ωλ, ωv))

Rasch then formulates his main theorem of specific objectivity:

Let objects and agents in the bifactorial determinate frame of reference be characterizable
by scalar parameters ω and α and reactions by a scalar reaction function of ’convenient’
mathematical properties:
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ξ = ℘(ω, α)

with three monotonic functions:

ω′ = φ(ω), α′ = ψ(α), ξ ′ = χ(ξ)

transforming the scalar reaction function to an additive one:

ξ ′ = ω′ + α′

…a necessary and sufficient condition for specifically objective comparability of objects as
well as agents. (p. 79)

The model now becomes the source of objective measurement and not the details
of the data. Hence, the sometimes used phrase, “When data fit the Rasch model ...”
might be better expressed “The Rasch model has (1) identified a fit of data to the
model across a frame of reference implied by this experiment, or (2) identified a lack
of fit between the same.”

Rasch (1960) had earlier alluded to this same condition:

It is tempting, therefore, in the cases with deviations of one sort or other to ask whether it is
the model or the test that has gone wrong...the question is meaningful...the applicability of
the model must have something to do with the construction of the test. (p. 51, our emphasis)

Themodel confirms or identifies inconsistencies bymaking experimental compar-
isons of agents, objects, and outcomes from the data. Inconsistent comparisons in an
experiment suggest theory, data or both are suspect.Rasch’s penchant for constructing
data plots as a “check on the model” indicates his awareness of the importance
of quality control. We further draw attention to the role of construction or engi-
neering as critical. Every experiment is a fabrication in the sense of manufacturing
a desired outcome from theory and data. To the degree that we succeed we know
what is required to produce the desired outcome. Failure or deviations indicate full
knowledge is lacking.

In such instances, theory, data or both require further investigation. This is an
important point for applying the model to data. To use an illustration from physics,
as Rasch often did, Newton’s law of motion rests upon his model and not on data. It is
the law and not the data towhichwe attend. Furthermore, we recognize data is fraught
with contamination frommany sources of error. Hence, we generalize fromNewton’s
model of force/mass—his abstraction produced from contaminated data. Continuous
validation has supported his theory until the advent of quantum physics required a
new viewpoint, but even this evolutionary change has not obviated Newton’s law.

Rasch’s example began with six ashtrays, but only two ashtrays provided unique
and key information. With a supply of additional ashtrays made of different types
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(shapes, composition, etc.) we can proceed to make every two-way comparison of
different ashtrays dropped from various heights until we have exhausted all the
two-way (height by ashtray) comparisons useful for this crash test. Summarizing
the findings provides types of ashtrays arranged by their capacity to withstand
breakage according to height employed. From a simple comparison of two similar
ashtrays from different heights (or two different ones from the same height) this
simple comparison may be extended as far as desired. We do not need to physi-
cally order the ashtrays, although we could do so, because a record of success and
failure is sufficient. A summary of all the two-by-two comparisons will produce an
ordered arrangement of all the ashtrays by all the heights employed. This process
results in a durability/survival variable identifying ashtrays from the most fragile to
the most durable, and from the lowest to highest heights in the frame of reference
deemed useful for the experiment. We can also move from a two-way comparison to
a multi-variable frame if desired.

Any expansion embodies the essence of experimentation guided by theory. It
produces an ever encompassing frame of reference for determining durability for a
variety of ashtrays dropped fromavariety of heights.We can confirmprevious predic-
tions from theory as well as make further predictions about unexamined ashtrays and
unexamined heights. As we proceed, it may be possible to derive other predictive
hypotheses regarding what is expected to occur. A theory of ashtray composition
dropped from various heights will probably produce additional predictive insight.
Outcomes may be increasingly predictive compared to what was known initially.
Theory regarding ashtray composition and heights may become increasingly better
understood. Essential to the process is confirmation by cross-validation. If desired,
we can describe the results by numeric values noting oncemore that such “measures”
follow comparison.

Campbell (1921) offers a relevant remark,

If measurement is really to mean anything, there must be some important resemblance
between the property measured, on the one hand, and the numerals assigned to represent
it on the other hand. In fundamental measurement this resemblance (or the most important
part of it) arises from the fact that the property that is susceptible to addition is following
the same rules as that of numbers. There is left resemblance in respect of “order.” ...Order
then is characteristic of numerals; it is also characteristic of the properties represented
by numerals. This is the feature which makes “measurement" significant. (p. 126–127, our
emphasis)

The key to measurement in psychometrics is (1) making systematic comparisons
(items, persons, judges, etc.) and (2) making these comparisons objectively. Order
becomes paramount. Assigning numerals in such cases is really an after-thought
stemming from the initial pair-wise comparisons of ashtrays so as to systematize
the findings and quantify the results. The numerals/numbers assigned and utilized
become the summary of the experimental findings. They follow the experiment, but
do not dictate it. Only when the results are valid and confirmed can we successfully
apply/substantiate numeric/algebraic abstractions, and not the other way around. We
construct measurement from results of the theory/experiment. We have Celsius and
Fahrenheit scales, but one and the same temperature at a simultaneous measurement.
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In Rasch’s words (1977),

“Objectivity is achieved when a comparison of any two objects is independent of everything
else within the frame of reference other than the two objects which are to be compared and
their observed reactions.” (p. 77)

Rasch (1977) also shares his emphasis upon comparison with the English
philosopher Hume (1949) who wrote,

All kinds of reasoning consist in nothing but a comparison, and a discovery of those relations,
either constant or inconstant, which two or more objects bear to each other. (p. 77, italics in
original)

Making systematic comparisons constitutes the fundamental process by which
we determine essential differences. Systematic comparisons when possessing tran-
sitivity produce order. Measures considered to be quantitative actually result from
qualitative ordering. Comparison first makes clear how any two objects/agents relate
to each other by whether one is “more” than the other. This is the ground of measure-
ment. Hume stated the importance of comparison as a logico-philosophical deductive
principle. Rasch specified it using a simple inductive example to deliver a mathemat-
ical generalization. Generalization from order via comparison produces a ground to
measurement. Systematic comparisons produce order and understanding without the
necessity of any a priori measurement scheme. Ricoeur (1977) speaks to their value
and power:

... the power ofmaking things visible, alive, actual is inseparable from either a logical relation
of proportion or a comparison… Thus one and the same strategy of discourse puts into play
the logical force of analogy and of comparison—the power to set things before the eyes, the
power to speak of the inanimate as if alive, ultimately the capacity to signify active reality.
(pp. 34–35)

The two-way frame is the data analysis procedure by which to determine order
from the results observed by systematic comparisons produced from the tripartite
elements of agent, object and outcome. Comparisons derived from this two-way
frame are objective whenever “they are independent of everything else within the
frame of reference.” We restate this principle by some alternate expressions:

1. The frame of reference provides the basis for making objective comparisons.
2. Comparisons produce order in a frame of reference guided by theory.
3. Order (for agents, objects and results) is demonstrable (or not) by the frame of

reference.
4. Comparisons are specifically objective when made within the frame of reference

(2 and 3).

In a deterministic framework the consequences of comparison remain categorical
(Guttman). In a stochastic framework the consequences of comparison are proba-
bilistic (Rasch).Not every drop of a specified ashtray froma specified height produces
the exact same outcome. There will be a distribution of errors surrounding each
comparing event. But if the experimental conditions are the same, then a proba-
bilistic result provides the answer. Residual analysis and misfit analysis become the
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important tools by which to evaluate every outcome resulting from every compar-
ison. Rasch did not address quality control directly in his 1977 paper, but he did
give careful consideration to always confirming the model to data as shown by his
constant attention tomaking plots and graphs. He relied on data plots not correlations
to show confirmation or identify deviance. This is good advice for today also.

The conclusions to be drawn from Rasch’s exposition are as follows:

1. We construct science by making comparisons. These comparisons must be made
by following a procedure leading to specific objectivity. Theory guides this
process, but experimentationdetermines the outcomeof hypotheses. This strategy
assures clarity in the process and allows replications to confirm or refute the
results.

2. The two-way frameof reference specifies the agent, object and resultant outcomes
in a predictive guise.

3. The two-way frame of reference arranges and subsequently summarizes the
comparisons. These comparisons are fundamental to what Rasch designated as
specific objectivity.

4. Measurement follows from the results of qualitative comparisons that have been
constructed in a systematic way using order as the fundamental characteristic.

3 Additive Conjoint Measurement

Rasch’s experimental conditions demonstrate the first of two specifications essential
for additivity, i.e., the rows and columns of a data matrix are monotonic for the data
(Krantz et al., 1971). The independent variables of ashtrays; composition, height
and result, were ordered in the ashtray experiment by a two-way frame of refer-
ence. Continued experimentation could sustain and expand upon the range thereby
extending the frame of reference through additional experimentation.

A second property, double cancellation, identifies departures from additivity
(Krantz et al., 1971). Luce and Tukey (1964, p. 3) show a simple way to graph
the effects of two factors for demonstrating this property. Boorsboom (2005) sees
double cancellation the consequence of additivity which “brings out the similarity
between additive conjoint measurement and the Rasch model.” He indicates that the
condition of independence is “similar to what Rasch called parameter separation”
(p. 97).

Perline et al. (1979) presented data to argue Rasch’s psychometric model is a
special case of additive conjointmeasurement.Additivity is ascertained by examining
these two necessary ordinal properties. Coombs et al. (1970) declare all independent
variables are measured on an interval scale with a common unit when additivity
exists.

The essential point of Perline et al. (1979) in their analysis of two studies was
that Rasch model estimates (when data are orderly) correspond to the conditions
for additive conjoint measurement, but data fit does not have to be ideal to be
demonstrable.
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Boorsboom (2005) argues,

...the Raschmodel has little to dowith fundamental measurement. In fact, the only things that
conjoint measurement and Rasch models have in common, in this interpretation is additivity.
(p. 132)

Indirectly, this simply confirms the comparability of Rasch estimates of person
and item parameters to additive conjoint measurement. The key property of additive
conjoint measurement rests upon order determined frommaking comparisons which
returns us once more to the points made from Rasch’s ashtray example.

Newby et al. (2002) provide a clear statement of the mathematical relationship
between additive conjoint measurement (ACM) and the Rasch model saying,

... it is not the case that, given any data, the Rasch model will provide a natural numerical
representation of the data that is comparable with ACM. (p. 350)

Why should the Rasch model address any data except to show if the conclusions
drawn from making constructive comparisons are justified or not within the frame
of reference. Our point is that a so-called Rasch model analysis does not cleanse
data. Nor does it not signify the conclusion of data analysis. Further analysis must be
conducted in the context of theory with clearly stated hypotheses Removed from the
context of theory, no analysis sui generis provides substantive answers except inci-
dentally (Stenner et al., 2008). For example; no statistical transformation of so-called
raw scores to IQ values, etc., makes any improvement to a substantive understanding
of intelligence or cognition.

Comparisons are the experimental results/consequence of an interaction of agents
and objects guided by theory/hypotheses (Brogden, 1977). Comparison remains
the key to any investigation. Content and substance are embodied in the selected
comparisons made.

Are the results obtained from any Rasch analyses descriptive, or are they predic-
tive? Does the ashtray frame of reference only describe, or can it predict? Does
what we learn from dropping a variety of ashtrays from a variety of heights yield
merely descriptive observations? Can these results predict stochastically suggested
outcomes? Rasch answered these questions by the quotes we provided earlier.

Concerning parole data from Perline et al. (1979), we ask whether or not causality
can be ascribed to the outcome emanating from this Rasch frame of reference?What
dowe learn from the parole data that provides a prediction? Is it a truly causal matter?
Canwe ascertain any information from an experimental manipulation of the tripartite
object, agent, and outcome in a frame of reference to produce expected outcomes
thought to be causal? If so, the variable moves beyond mere description to prediction
and the consequences move to a higher plane (Stenner et al., 2008). But how do we
truly ascertain prediction and causality in Rasch measurement?

Our answer ascribes the typical Rasch analysis as largely descriptive and lacking
evidencewithout a causal connectionor experimentalmanipulation.ARasch analysis
addresses order in the data, and may describe association or correlation, but not a
direct instance of causal inference—suggestive, maybe, but not confirmatory. Lack
of evidence suggests a crucial next step because (Stenner et al., 2008) argue,
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There is no single piece of evidencemore important to a construct’s definition than the causal
relationship between the construct and its indicators (p. 1153).

With respect to the parole data we ask, how can these nine items be placed in an
experimental framework so as to examine their usefulness and predictive validity?
The answer is to put these comparisons in a context for testing causality. The Rubin-
Holland (Holland, 1980, 1986) framework for demonstrating causal inference spec-
ifies no causation without manipulation. Rasch analysis has produced considerable
understanding of the variables exemplified in the resultingmap of items, persons, and
results from the two-way framework. The results remain descriptive unless contained
within an experimental context guided by theory. Supporting any experiment should
be a theory guiding inferences about what produced these outcomes. In the matter
of parole, for example, how is granting or not granting parole to be experimentally
controlled? How will outcome be determined? The hallmark of success is formula-
tion of a specification equation to predict and validate successful manipulation of the
variables required in a probabilistic causal model portrayed in themeasuring variable
(Pearl, 2000).

We therefore specify a process model for classifying Rasch investigations as
shown in Fig. 3.

1. The comparison process begins with an idea, a conjecture, or history which develops
into a thought experiment.

2. The experiment is designed and conducted:

Input → Manipulation → Output

3. An equation may be formulated and specified:

Domain → Function → Range

4. Data plots, the analysis of misfit and residuals provide information and data/model
control.

5. From these strategies come the properties of comparison and order guided by theory
which produce the essential ingredients for achieving specific objectivity.

Fig. 3 Strategies of comparison and order guided by theory leading to specific objectivity
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Individual-Centered Versus
Group-Centered Measures

Mark H. Stone and A. Jackson Stenner

The Preface to Probabilistic Models for Some Intelligence and Attainment Tests
(Rasch, 1960) cites Skinner (1956) and Zubin (1955a, 1995b). In an argument
whereby, “… individual-centered statistical techniques require models in which each
individual is characterized separately and from which, given adequate data, the indi-
vidual parameters can be estimated” (Rasch, 1960, p. xx). The Skinner reference is
easily located. The mimeographed work by Zubin has not been found, but we did
find another Zubin paper given at the 1955 ETS Invitational Conference on testing
problems in which he writes, “An Example of the application of individual-centered
techniques which keeps the sights of the experimenter focused on the individual
instead of on the group…” (p. 116) may have helped Rasch situate his thinking.
Rasch goes on to state “…present day statistical methods are entirely group-centered
so that there is a real need for developing individual-centered statistics” (p. xx).What
constitutes the differences in these statistics?

While it is individual persons and groups of persons that are the focus of discus-
sion, we begin with an even more simple illustration because human behavior is
complex, and a single mechanical-like variable is a better illustration to one that
is complex. We choose temperature for this illustration because measuring mecha-
nisms (Stenner, Stone & Burdick, 2008) for temperature are well established and all
report out in a commonmetric or degree (disregarding wind-chill, etc.). Ameasuring
mechanism consists of (1) guiding substantive theory, (2) successful instrument fabri-
cation, and (3) demonstrable data by which the instrument has established utility in
the course of its developmental history.
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Consider six mercury-tube outdoor thermometers that are placed appropriately
in a local environment, but near each other. They all register approximately the
same degree of temperature, independently verified by consulting NOAA for the
temperature at this location.One by one each thermometer is placed in a compartment
able to increase/decrease the prevailing temperature by at least ten degrees. Upon
verifying the artificially induced temperature change for each thermometer, it is
returned to its original location and checked to see if it returns to its previous value
and agrees with the other five.

If each of the six thermometers measured a similar and consistent degree of
temperature before and after the induced environmental intervention/manipulation,
this consistency of instrument recording validates a deep understanding of the
attribute “temperature” and its measurement. Each thermometer initially recorded
the same temperature, and following a change to and from the artificial environment
returned to the base degree of temperature. Furthermore, all the measurements agree.

Interestingly, the experimentally induced change of environment also produced
what may be called causal validity, not unlike constructive validity (Cronbach &
Meehl, 1955) inasmuch as the temperature was manipulated, fabricated, engineered,
etc. via construction and use of the artificial environment. When measuring mech-
anism(s) such as outdoor thermometers are properly manufactured this result is to
be expected, and this experimental outcome and its replication would be predicted
prior to environmental manipulation from all we know about temperature and ther-
mometers. This outcome might further be termed validity as theoretical equivalence
(Lumsden & Ross, 1973) because the replications produced by all six thermometer
recordings might be considered “one” temperature. Our theoretical prediction is
expected as a consequence of the causal process produced by the experiment, and
reported by all the instruments. Causal validity is a consequence of the successful
theoretical predictions realized in the experiment. Its essence is “prediction under
intervention.“ The manipulable characteristics of our experiment involving the base
environment, changemadebywayof an artificial environment, and thefinal change of
recorded temperature are the consequence of a well-functioning construct theory and
measuring mechanism. Each of the six individual thermometers records a similarly
induced experimental deviation and a return to the base state. Each thermometer
constitutes an individual unit, and the six thermometers constitute a group albeit
without variation, which is exactly what would be predicted.

Now consider a transition to human behavior. Height is the new outcome measure
and the determination of height at a point in time can be obtained from another well-
established measuring mechanism—the ruler, which provides a point-estimate for
one individual measured at a single point in time. When this process is continued for
the same individual over successive time periods we produce a trajectory of height
for the person over time (purely individual centeresd as no reference to any other
person(s) is required). From these values one may determine growth over time inter-
vals as well as any observed plateaus and spurts well-known to occur in individual
development. The individual’s trajectory ratemay also vary because of illness and old
age, sowe could discover different rates over certain time periods aswell as determine
a curvilinear average to describe the person’s total trajectory. Growth in height is a
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function of time, and the human characteristics entailed in a person’s overall devel-
opment result from genetic and environmental makeup. These statistics are intra-
individually determined. Such statistical analyses produce the “individual-centered
statistics” that Rasch spoke about.

Aggregating individual measurements of height into a group or groups is a
common method for producing “group-centered statistics” often employing some
frequency model such as the normal curve. This is most common when generalizing
the characteristics of human growth in overall height based upon a large number
of individuals. The difference between measuring a group of individuals compared
to our first illustration using a group of thermometers is that while we expected no
deviation among the thermometers, we do not expect all individuals to gain the same
height over time, but rather to register individual differences. Hence, we resort to
descriptive statistics to understand the central trend, and the amount of variation
found in the group or groups. An obvious group-centered statistical analysis might
aggregate by gender; comparing the typical height of females to males or provide
norms tables.

The measurement of height is sstraightforward and the measurement mecha-
nism has been established over several thousand years. The same cannot be said
for measuring mental attributes occurring in psychological, health, and educational
investigations.Determining the relevant characteristics for theirmeasurement ismore
difficult although the procedures for their determination should follow those already
discussed. The major statistical hurdle is moving from the ordering of a variable’s
units to its “measurement application.“ The measurement models of Georg Rasch
have been instrumental in driving this process forward.

Dowe know enough about themeasurement of reading that we canmanipulate the
comprehension rate experienced by a reader in a way that mimics the above tempera-
ture example? In theLexile Framework forReading (LFR) thedifferencebetween text
complexity of an article and the reading ability of a person is causal on the success rate
(i.e., count correct). It is true that short termmanipulation of a person’s reading ability
is, at present, not possible, but manipulation of text complexity is possible because
we can select a new article that possesses the desired text complexity such that any
difference value can be realized. Concretely, when a 700L reader encounters a 700L
article the forecasted comprehension rate is 75%. Selecting an article at 900L results
in a decrease in forecasted comprehension rate to 50%. Selecting an article at 500L
results in a forecasted comprehension rate of 90%. Thus we can increase/decrease
comprehension rate by judicious manipulation of texts, i.e., we can experimentally
induce a change in comprehension rate for any reader and then return the reader to the
“base” rate of 75%. Furthermore, successful theoretical predictions following such
interventions are invariant over a wide range of environmental conditions including
the demographics of the reader (male, adolescent, etc.) and the characteristics of text
(length, topic/genre, etc.).

Many applications of Rasch models to human science data are thin on substantive
theory. Rarely proposed is an a priori specification of the item calibrations (i.e.,
constrained models). Causal Rasch Models (Burdick et al., 2006; Stenner & Stone,
2010; Stenner et al., 2013; Stenner, Stone & Burdick, 2009a, 2009b) prescribe (via
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engineering and manufacturing quality control) that item calibrations take the values
imposed by a substantive theory. For data to be useful in making measures, those
data must conform to the invariance requirements of both the Rasch model and the
substantive theory. Thus, Causal Rasch Models are doubly prescriptive. When data
meet both sets of requirements; the data are useful not just for making measures of
some construct, but are useful formakingmeasures of that precise construct specified
by the equation that produced the theoretical item calibrations.

A Causal (doubly constrained) Rasch Model that fuses a substantive theory to a
set of axioms for conjoint additive measurement affords a much richer context for the
identification and interpretation of anomalies than does an unconstrained descriptive
Rasch model. First, with the measurement model and the substantive theory fixed it
is self-evident that anomalies are to be understood as problems with the data ideally
leading to improved observation models that reduce unintended dependencies in the
data (Andrich, 2002). Second,with bothmodel and construct theoryfixed it is obvious
that our task is to produce measurement outcomes that fit the (aforementioned) dual
invariance requirements. An unconstrained model cannot distinguish whether it is
the model, data, or both that are suspect.

Over centuries, instrument engineering has steadily improved to the point that for
most purposes “uncertainty of measurement,” usually reported as the standard devia-
tion of a distribution of imagined or actual replications taken on a single person, can
be effectively ignored. The practical outcome of such successful engineering is that
the “problem” of measurement error is virtually non-existent; consider most bath-
room scale applications. The use of pounds and ounces also becomes arbitrary as is
evident from the fact that most of the world has gone metric although other standards
remain. What is decisive is that a unit is agreed to by the community and is slav-
ishlymaintained through substantive theory togetherwith consistent implementation,
instrument manufacture, and reporting. We specify these stages:

The doubly prescriptive Rasch model embodies this process.
Different instruments qua experiences underlie everymeasuringmechanism; envi-

ronmental temperature, human temperature, children’s reported weight on a bath-
room scale, reading ability. From these illustrations and many more like them
we determine point estimates and individual trajectories and group aggregations.
This outcome lies in well-developed construct theory, instrument engineering and
manufacturing conventions that we designate measuring mechanisms.



Individual-Centered Versus Group-Centered Measures 273

References

Andrich, D. (2002). Understanding resistance to the data-model relationship in Rasch’s paradigm:
A reflection for the next generation. Journal of Applied Measurement, 3, 325–359.

Burdick, D. S., Stone, M. H., & Stenner, A. J. (2006). The combined gas law and a Rasch reading
law. Rasch Measurement Transactions, 20(2), 1059–1060.

Cronbach, L., &Meehl, P. (1955). Construct validity in psychological tests. Psychological Bulletin,
52, 281–302.

Lumsden, J., & Ross, J. (1973). Validity as theoretical equivalence. Australian Journal of
Psychology, 25(3), 191–197.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. The University
of Chicago Press.

Skinner, B. F. (1956). A case history in scientific method. The American Psychologist, 11, 221–233.
Stenner, A. J., Burdick, D. S., & Stone, M. H. (2008). Formative and reflective models: Can a Rasch
analysis tell the difference? Rasch Measurement Transactions, 22(1), 1152–1153.

Stenner, A. J., Stone, M. H. & Burdick, D. S. (2009a). Indexing vs. measuring. Rasch Measurement
Transactions, 22(4), 1176–1177.

Stenner, A. J., Stone, M., & Burdick, D. (2009b). The concept of a measurement mechanism. Rasch
Measurement Transactions, 23(2), 1204–1206.

Stenner, A. J., & Stone, M. H. (2010). Generally objective measurement of human temperature and
reading ability: Some corollaries. Journal of Applied Measurement, 11(3), 244–252.

Stenner, A. J., Fisher, W. P., Stone, M. H., & Burdick, D. S. (2013). Causal Rasch models. Frontiers
in Psychology, 4, 536. https://doi.org/10.3389/tpsyg.2013.00536

Zubin, J. (1955a).Experimental abnormal psychology (mimeographed). ColumbiaUniversity Store.
Zubin, J. (1955b). Clinical vs. actuarial prediction: A pseudo-problem. In Proceedings of the 1955b
Invitational Conference on Testing Problems (pp. 107–128). Princeton: Educational Testing
Service.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3389/tpsyg.2013.00536
http://creativecommons.org/licenses/by/4.0/


Theory-Based Metrological Traceability
in Education: A Reading Measurement
Network

William P. Fisher Jr. and A. Jackson Stenner

Abstract Huge resources are invested in metrology and standards in the natural
sciences, engineering, and across a wide range of commercial technologies. Signifi-
cant positive returns of human, social, environmental, and economic value on these
investments have been sustained for decades. Provenmethods for calibrating test and
survey instruments in linear units are readily available, as are data- and theory-based
methods for equating those instruments to a shared unit. Using thesemethods, metro-
logical traceability is obtained in a variety of commercially available elementary and
secondary English and Spanish language reading education programs in the U.S.,
Canada, Mexico, and Australia. Given established historical patterns, widespread
routine reproduction of predicted text-based and instructional effects expressed in
a common language and shared frame of reference may lead to significant devel-
opments in theory and practice. Opportunities for systematic implementations of
teacher-driven lean thinking and continuous quality improvement methods may be
of particular interest and value.

1 Introduction

Metrology connects measurement applications across industrial, scientific, and prac-
tical tasks separated by space and time. Significant fractions of many nations’
economic productivity are invested in ensuring traceability to standards for various
units of measurement. The human, social, environmental, and economic value of the
returns on these investments depends on the transparency of the measures and their
integration into a wide range of decision processes at multiple organizational levels.
Huge resources are required to create and maintain technologically produced effects,
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such as volts, seconds, or meters, with the primary return on those resources being
the illusion that the effects seem to be products of nothing but completely natural
processes occurring with no human intervention.

New insights into how cognitive, social and technological resources aid in creating
shared cultural frames of reference have emerged from close critical study of histor-
ical and contemporary scientific modelling and metrological practices. From this
perspective, science is not qualitatively different from everyday ways of thinking
and relating, except in more deliberately extending laboratory processes into the
world as distributed cognitive systems supporting a range of associated problem-
solving methods (Hutchins, 1995, 2012; Latour, 1987, 2005; Nersessian, 2012). Of
particular interest here is the linking of specific ways in which organizations align
and coordinate their processes and relationships relative to technical developments
and expectations. A positive result of adopting this point of view is recognition of the
value of previously obscured accomplishments in, and opportunities for, advancing
the quality of research and practice in psychology and the social sciences. An illustra-
tive example is found in the scientificmodelling andmetrological practices informing
integrated reading assessment and instruction in education.

1.1 Transparent Instruments, Invisible Production

Bydefinition,metrologists are doing their jobs bestwhen no one knows they are there.
Experimental scientists, for instance, may take little notice of their instrumentation
until it breaks down or does not conform to expected standards. The general public
and researchers in psychology and the social sciences are, then, also largely unaware
of the resource-intensive work involved in establishing uniform unit standards and
traceability to them (Latour, 1987, 2005; Schaffer et al., 1992; Wise, 1995).

The uniformity of the various phenomena described by natural laws allows scien-
tists the convenient efficiency of not needing to specify scale units in statements of
laws. Force equals mass times acceleration in kilograms, Newtons, and meters just
as well as in pounds, poundals, and feet. The ability to skip over uniform details
supports a division of labour in science that separates theoretical work from the cali-
bration of instruments and both of these from the use of theory and instruments in
experiments (Galison, 1997).

The convenience of separating theoretical, experimental and instrumental
concerns has its drawbacks, too. Not knowing when or how reference standard units
are established reinforces unexamined metaphysical assumptions—such as the idea
that the universe or nature is inherently and innately numerical, quantitative, or
mathematical—that rarely become explicit objects of attention.

The effect of these presuppositions is significant. Huge social, industrial, and
economic efficiencies are gained by universal consensus on the facts of complex
phenomena like electricity, temperature, distance, mass, and time. Though the
dynamics of that consensus are complex and sometimes counterintuitive (Galison,
1997), making quantities seem natural is a cultural achievement of the highest order.
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The advancement of science is put at risk when the historic and historical mathe-
matical understanding of scientific objects is reified as unquestioned and unquestion-
able. Two questions emerge here: (1) how did the natural sciences succeed in making
quant ties seem so thoroughly natural (Dear, 2012; Latour, 1987, 2005; O’Connell,
1993; Shapin, 1989; Sundberg, 2011), and (2) how might the social sciences learn
from those successes? Recent advances in reading measurement embody important
lessons in this regard for the social sciences.

1.2 Shortsightedly Focusing Attention on the Local
Measurement Outcome

The technical processes of measurement were historically cut out of the picture of
science by the positivist focus on empirical observation, as well as by the later anti-
positivist focus on theoretical constraints on observation (Galison, 1997). Sometimes
this omission was literal and deliberate, as when a woodcut of a laboratory scene
printed in its entirety in one place is trimmed in a later publication to exclude the
means by which a technical effect was produced (Shapin, 1989). Other times the
omission wasmetaphorical, as when technical processes were illustrated in summary
form by angelic cherubs producing effects by means of divine intervention (Shapin,
1989).

Transparency in measurement is a two-edged sword. Wide access to comparable
measures is achieved only to the extent that technical complexities can be ignored.
This point was emphasized by Whitehead (1911), who observed that “Civilization
advances by extending the number of important operations which we can perform
without thinking about them” (p. 61). But what happens when those making these
advances do not record—or do not themselves fully understand—how they extended
the number of important operations that can be performed by persons unversed in
their technicalities?

In his study of the geometric assumptionsGalileo employed in his physics,Husserl
(1970) was sensitive to theways inwhich a hidden agenda set priorities. LikeGalileo,
we find ourselves in a situation, in accord with the philosophical problems attending
measurement, in general, where

Metrology has not often been granted much historical significance…Intellectualist conde-
scension distracts our attention from these everyday practices, from their technical staff, and
from the work which makes results count outside laboratory walls (Schaffer et al., 1992).

Researchers in the natural sciences make use of commercially available precision
tools calibrated to universally uniform reference standards, standards capitalizing on
the value of invariant laws. Transparentmeasures communicated in a network sharing
common values situates metrology’s often unrecognized historical significance in a
complex overall context offering important lessons for psychology and the social
sciences (Dear, 2012; Galison, 1997; Hutchins, 1995, 2012; Latour, 1987, 2005;
Nersessian, 2012; O’Connell, 1993; Schaffer et al., 1992; Shapin, 1989; Sundberg,
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2011; Wise, 1995). The culture of science rewards a mix of convergent, divergent,
and reflective thinking in ways that have proven their productivity and inform a vital
culture of ongoing innovation (Dear, 2012; Galison, 1997; Shapin, 1989; Sundberg,
2011; Woolley & Fuchs, 2011).

1.3 Consequences for Psychology and the Social Sciences

But in the social sciences, the lack of metrological institutions, methods, and tradi-
tions, and the associated absence of the intercalated disunity of distinct theoret-
ical, experimental, and instrumental communities observed by Galison in the natural
sciences (Galison, 1997), has been catastrophic. As social scientists have long recog-
nized for themselves (Cohen, 1994; Salsburg, 1985; Wilson, 1971), mainstream
research methods and statistical models employ scale-dependent ordinal data in a
search for a kind of significance that is often irrelevant to and even antithetical to
the production of new knowledge. Even when regularities akin to natural laws are
sought and found in psychological and social phenomena (Burdick et al., 2006;
Fisher, 2009; Luce, 1978; Luce & Tukey, 1964; Rasch, 1960), results are typically
assessed in the language and methods of statistics rather than of measurement and
metrology,meaning the focus is on data analysis and not on theory development or the
calibration of instruments traceable to a standard unit. The human, social, economic,
and scientific consequences of this failure to coordinate and balance convergent,
divergent, and reflective field-defining activities are profound. Ideas on how such
activities might be organized in education have recently been pro- posed (Fisher &
Wilson, 2015).

The lack of institutions and traditions concerning metrological traceability and
standards in psychology and the social sciences may have more to do with broad
and deep cultural presuppositions than with an actual lack of a basis for them in
evidence. After all, what systematic program of experimental evaluation has ever
irrefutably established that uniform metrics based in lawful regularities are impos-
sible in psychology and the social sciences? Evidence indicates that provisional
possibilities exist in some circumstances (Burdick et al., 2006; Fisher, 2009; Fisher&
Wilson, 2015; Luce, 1978; Luce & Tukey, 1964; Rasch, 1960).

2 Metrological Traceability for Reading Measurement

The longstanding need to provide students with reading challenges appropriate to
their reading abilities is usually approached in terms of general curricular structures,
and teacher training and experience. Theory has not been of significant interest
(Engelhard, 2001; Sadoski & Paivio, 2007). Rasch’s development of a new class
of measurement models in the 1950s was an important step forward in improving
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the quantification of reading ability (Sadoski & Paivio, 2007). This research led to
improvements in the matching of readers to text.

When Rasch’s concept of specific objectivity (the modelled independence of the
ability and difficulty parameters, as shown in Eq. (1)) as it was obtained in local
measures was combined with a general predictive theory of English text complexity
in the 1980s, following the work of Stenner and colleagues (Stenner & Smith, 1982;
Stenner et al., 1983, 2006), the stage was set for the efficient creation of a network
of reading measurement instruments calibrated in a common unit. By the late 1990,
all of the major high stakes English reading tests in the U.S. had been brought into
the system. These are today complemented by the hundreds of thousands of books,
tens of millions of short articles and hundreds of millions of readers that have been
brought into the system in the intervening years.

In this system, reader abilities and text complexities are measured in the same
unit. The scale ranges from below 200 for beginning readers to over 1600 for very
high level readers and texts. Knowing the text measure of a book and the reader’s
measure predicts the degree to which the book will be comprehensible to the student.

More than 30 million measures annually are reported in the U.S. from state and
commercial assessments, and from classroom reading program assessments, in a
common unit of measurement (Stenner et al., 2006). The 21 U.S. state departments
of education that have formally adopted this unit for use are shown in the map in
Fig. 1.

Traceability to the common unit is determined via both empirical, data-based
equating studies and theory-based text analyses (Stenner et al., 2006). Additional
features of the system include electronic tools integrating instruction and assessment
for mass customized diagnosis (Rivero, 2011), and others charting growth in reading
ability relative to college and career readiness (Williamson, 2008; Williamson et al.,
2013). Establishing this network of comparable assessments required formal rela-
tionships with book and test publishers, teachers, schools and school districts, state
departments of education, and psychometric researchers. Furthermore, a new array
of material practices was needed to give all the parties involved ongoing and verifi-
able confidence in the theory. Though great efficiencies stood to be gained, credibility
demanded a cautious approach to their implementation. Formal documentation of the
birth of this traceability systemwould be a valuable contribution to the sociotechnical
qualities of education.

3 Implications for Psychology and the Social Sciences

In 1965, the National Academy of Sciences published a report articulating common
assumptions as to the sequence of events supposed to take place in the development
of new instrumentation (Rabkin et al., 1992). Four stages were identified:

1. discovery of suitable means of observing some phenomenon,
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Fig. 1 Map of U.S. states employing a common unit of measurement (two tones indicate common
units in use for both reading and mathematics)

2. exploration of this phenomenonwith special, homemade instruments or commer-
cial prototypes,

3. widespread use of commercial instruments,
4. routine applications of the instrument to control industrial production as well as

research.

Textbook assumptions and presentations of this sequence have indoctrinated
researchers in the human sciences to believe, mistakenly, that this is the normal
sequence of events. Because hardly anyone is involved in every part of the process,
unexamined assumptions cohere into a “just-so” narrative that says more about
cultural expectations than about historical complexities. Scientists and non-scientists
alike accept this story, against the grain of actual events. Rabkin (Rabkin et al., 1992)
points out that

this scheme seems to be at variance with much of the evidence in the history of science. It
has been shown that the integration of instruments has been rarely due to the demand on the
part of the researcher. Rather it occurs through vigorous supply of advanced instruments on
the part of the industry. The company that proposes these four stages in the report has itself
had experience when stages 3 and 4 occur in the reverse order and, moreover, stage 4 is by
far the most decisive factor in the development of new instrumentation.

The “vigorous supply of advanced instruments”, and not demand, also character-
izes the introduction of popular electronic appliances. Just as Rabkin points out has
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been the case in research, there was little or no clamour among the public for tele-
phones, televisions, faxes, the Internet, microwaves, blenders, or cell phones before
they were developed and introduced.

Scientists and the public both tend to think of instrumentation only as tools
employed in the service of the individuals who use them. This perspective is at
odds with the historical evidence as well as with philosophers’ observations, such
as, for instance, Thoreau’s realization that humanity has become the tool of its tools
(Thoreau, 1854) and Nietzsche’s insight that the victory of science is better cast as
a victory of method over science (Nietzsche, 1967).

This alternative perspective is important because, in the history of science, theory
follows from extensive experience with instruments more often than instruments
are designed and built from theoretical projections. Standardized and commercially
available instrumentation make possible the predictable and routine reproduction of
scientific effects essential to the conduct of controlled experiments—and so also to
the development of precise and accurate theoretical predictions. As stated by Price,

Historically, we have almost no examples of an increase in understanding being applied
to make new advances in technical competence, but we have many cases of advances in
technology being puzzled out by theoreticians and resulting in the advancement of knowl-
edge. It is not just a clever historical aphorism, but a general truth, that’ thermodynamics
owes much more to the steam engine than ever the steam engine owed to thermodynamics.’
…historically the arrow of causality is largely from the technology to the science (Price,
1986).

In the context of reading measurement, the repeated reproduction of consistent
results following the work of Rasch and others led to the Anchor Test Study in the
1970s (Rentz & Bashaw, 1977). This study equated seven major reading tests in the
U.S. and involved over 350,000 students in all 50 states. But the purely empirical
basis of the calibration and the lack of predictive theory meant that the value of the
common unit of measurement was lost as soon as new items were added to the tests,
which was immediately.

A plain feature of the equated test results, however, was the similarity of the
items from different tests that calibrated in the same locations. The stability of this
phenomenon may not surprise anyone able to read, but its practical application in a
predictive theory relating text complexity, comprehension rates, and reading ability
was difficult to achieve (Stenner & Stone, 2010).

4 Theory for Reading Measurement

The ability to read is fundamental to education, and it is accordingly tested and
measured more often than any other subject area. The index to the eighteenth edition
of the Buros Mental Measurements Yearbook (Spies et al., 2010) includes over 140
tests with the word “reading” in their titles. This count does not include tests focused
on vocabulary or word meaning, which are also numerous.
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Though the issues are complex, literacy remains essential to productivity in
the global economy (Hamilton & Pitt, 2011). The need for effective and efficient
reading education will only intensify as communication, teamwork, and information
management are increasingly demanded as basic skills (Neuman & Roskos, 2012).

And despite the longstanding fundamental importance of reading as the tool most
essential to learning, reading research remained atheoretical until 1953, and interest
in a unified theory of reading is a relatively new phenomenon (Engelhard, 2001;
Sadoski & Paivio, 2007). Further, in the years since 1953, available reading theories
have not generally been used to inform the design or interpretation of assessments
of reading ability (Sadoski & Paivio, 2007).

Though it may seem counterintuitive, this failure to apply theory in the course
of empirical measurement research is not unusual, nor is it restricted to reading
research. On the contrary, measurement technologies in the natural sciences have
historically been developed through socially-contextualized trial-and-error solutions
to practical engineering problems, such as consistent, stable results, and not directly
from theoretical principles (Bijker et al., 2012; Galison, 1997; Latour, 1987, 2005;
Nersessian, 2012; Price, 1986; Rabkin et al., 1992; Schaffer et al., 1992;Wise, 1995).
Theory generally comes later, after researchers have had the opportunity to employ
standardized technologies in the routine and repeated reproduction of a controlled
phenomenon. Only then do applicable general principles emerge as useful insights
that can be fed back into technical refinements.

4.1 Syntactic and Semantic Elements

In the same way putting things in words reduces an infinite variety of ways an
experience might be expressed into a particular set of words expressed in a particular
language, science reduces the infinite variations that phenomena exhibit to simpler
models. The truth of the models is less an issue than their usefulness (Box et al.,
1979; Rasch, 1973). Simplification is usually achieved only in contexts that respect
constraints and accept limited goals. The efficiency and power obtained when useful
tools can be created, however, confers great value on a simplified process.

In the 1950s, Rasch’s parameter separability theorem, concept of specific objec-
tivity, and models useful in practical measurement applications combined in an
important step forward in educational measurement (Loevinger, 1965). These devel-
opments were followed byWright’s introduction of improved estimation algorithms,
model fit tests, and software in the 1960s, along with his vigorous championing of
Rasch’s ideas (Rasch, 1972). By the 1970s, enough data from reading tests had been
successfully fit to Rasch models in the U.S. to support the viability of the Anchor
Test Study (Rentz & Bashaw, 1977). Success in this large project and additional
research predicting item difficulties on the Peabody Vocabulary Test and the Knox
Cube Test (a measure of short term memory and attention span) (Stenner & Smith,
1982; Stenner et al., 1983), led to a new effort focused on developing explanatory
theory for reading.
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Reading theories build on the fact that all symbol systems share two features: a
semantic component and a syntactic component. In language, the semantic units are
words. Words are organized according to rules of syntax into sentences (Carver,
1974). Semantic units vary in familiarity and the syntactic structures vary in
complexity. The readability of a text passage is dominated by the familiarity of the
semantic units and by the complexity of the syntactic structures used in constructing
the message. Many readability equations therefore use a two-variable equation to
forecast text difficulty. The word-frequency and sentence-length measures combine
to produce a regression equation, known as a construct specification equation
(Stenner & Smith, 1982; Stenner et al., 1983). This equation provides a theoretical
model evaluated in terms of the proportion of the variance of reading comprehension
task difficulties (or, more recently, the means of specification-equivalent ensem-
bles of item difficulties, following Gibbs (1981)) that can be explained as plausibly
structured by causal relationships (Stenner et al., 2013).

4.2 The Specification Equation

One approach to such a specification equation first employs themean of the logarithm
of the frequencies with which words in a text appear in a 550-milion word corpus
of K-16 texts. More specifically, the log frequency of the word family, which is
more highly correlated with word difficulty, comprises one term in the equation.
Word families include the stimulus word, all plurals, adverbial forms, comparatives,
superlatives, verb forms, past participles, and adjectival forms. The frequencies of all
words in the family are summed and the log of that sum is used in the specification
equation.

The second term of the specification equation is the logarithm of the text’s mean
sentence length. This parameter is operationalized simply by counting and averaging
the number of words in each sentence.

The theoretical logit is then a function of sentence length and word frequencies
in the language stated in the specification equation:

Reading difficulty (or readability) = A ∗ log(MSL) − B ∗ log(WF) + C (1)

where MSL is the mean sentence length andWF is the word frequencies. Log(MSL)
and the mean log(WF) are used as proxies for syntactic complexity and semantic
demand, and the coefficients are drawn from the empirical regression study
(Stenner & Burdick, 1997). Research is continuing into the decimal place signifi-
cance of the coefficients and measurement uncertainty for the values of A (9.82247),
B (2.14634), and C (a constant). The resulting logits are then scaled as follows:

(logit + 3.3) ∗ 180 + 200 (2)
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The relationship of word frequency and sentence length to text readability was
investigated in research that extended a previous study on semantic units (Stenner
et al., 1983). The original study found success on items at about 3.3 logits as indicating
the earliest reading ability, and set that level at 200. A practical top to the scale for
the end of high school was at 2.3 logits, and this was set 1000 units higher, to 1200.
There is no upper limit to the scale, but text measures above 1600L are rare.

In this unit, when student and text measures match, a 75% comprehension level is
expected. A student with a measure of 500L is expected to answer correctly 75% of
the questions on an assessment made from any text that also measures 500L, within
the range of uncertainty. The 75% comprehension rate differs from the default rate
of 50% comprehension usually associated with matching measures and calibrations.
Though the lowest uncertainty is associated with the 50% rate, teachers find that
instruction has a firmer basis in student confidence when success is more likely.
For this reason, the relation of ability to difficulty was shifted from 50 to 75%
comprehension.

The uncertainty (standard error) of the individual measures (Wright & Stone,
1979) is

SE = X ∗ [L/(r(L − r))](1/2) (3)

which is the square root of the test length L divided by the count correct r times
the L − r count incorrect, times an expansion factor X that depends on test width.
This logit is then converted to the standard unit. A standard unit uncertainty for a
well targeted 36-item test measuring with an uncertainty of about 0.40 logits is the
original logit range of 2.3 (−3.3) = 5.6 divided into the 1000L range, times 0.40,
which comes to about 71L.

The analysis reported in the original study (Stenner et al., 1983) involved calcu-
lation of the mean word frequency and the log of the mean sentence length for each
of the 66 reading comprehension passages on the Peabody Individual Achievement
Test. The observed difficulty of each passage was the mean difficulty of the items
associated with the passage (provided by the publisher) converted to the logit scale.

A regression analysis based on the word-frequency and sentence-length measures
produced a regression equation that explained much of the variance found in the set
of reading comprehension tasks. The resulting correlation between the observed
logit difficulties and the theoretical calibrations was 0.97 after correction for range
restriction and measurement error (Stenner & Burdick, 1997).

The regression equation was further refined based on its use in predicting the
observed difficulty of the reading comprehension passages on eight other stan-
dardized tests (see Table 1). Repeated and ongoing comparisons of theoretically
expected calibrations with data-based estimates produced from test data analysis
provide continually updated validity evidence.

The regression equation links the syntactic and semantic features of text to the
empirically determined difficulty of text. That link, in turn, is reproduced across
thousands of test items and millions of examinees.
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Table 1 Correlations of theory-based calibrations produced by the specification equation and data-
based item difficulties

Test # of questions # of passages r(OT)a R(OT)b R*(OT)c

SRA 235 46 0.95 0.97 1.00

CAT-E 418 74 0.91 0.95 0.97

Lexile 262 262 0.93 0.95 0.97

PIAT 66 66 0.93 0.94 0.97

CAT-C 253 43 0.83 0.93 0.96

CTBS-U 246 50 0.74 0.92 0.95

NAEP 189 70 0.65 0.92 0.94

Battery 26 26 0.88 0.84 0.87

Mastery 85 85 0.74 0.75 0.77

Totals Means 1780 722 0.84 0.91 0.93

a r(OT) = raw correlation between observed difficulties (O) and theory-based calibrations (T)
b R(OT) = correlation between observed difficulties (O) and theory-based (T) corrected for range
restriction
c R*(OT) = correlation between observed difficulties (O) and theory-based calibrations (T) corrected
for range restriction and measurement error

In applications the consistent display of the link over time provides a basis for
using the equation to perform theory-based calibrations of test items and texts, thus
rendering empirical calibrations necessary only as checks on the system.

This specification equation joins together previously separated but analogous
developments in measures of information. Hartley’s (1928) log(N) measure of infor-
mation content (the number of signs in amessage), for instance, is akin to the sentence
length parameter in Eq. (1). Similarly, the word frequency parameter is akin to
Shannon’s (1948) classic expression p*log(p), where more information is implied
by a word’s greater rarity in the language. Including Shannon’s extra p (multiplying
the log of the probability of observing a sign by that probability) indicates the entropy
of the area under the curve in the logistic ogive (Linacre, 2006).

5 Benefits of Metrological Comparability

Awide range of applications for textmeasures have emerged in recent years (Coviello
et al., 2014;Williamson, 2008;Williamson et al., 2013; Zhang et al., 2008).Measures
of information content are taking a wide range of forms, many involving entropy.
These statistical approaches tend to be dependent on particular data sets and algo-
rithms. Little, if any, attention is put into identifying and implementing an invariant
unit of measurement, or into designing and maintaining a metrological network of
instruments traceable to such a unit.
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The benefits of metrological comparability for measuring reading ability extend
from the advancement of education science’s basis in theory to practical quality
improvementmethods in schools and classrooms (Fisher, 2013). The natural sciences
and the monetary economy both enjoy a degree of efficiency in their markets for the
exchange of information and prices. This efficiency stems in large part from the exis-
tence of rules, roles, and responsibilities (Dear, 2012; Galison, 1997; Hutchins, 1995,
2012; Latour, 1987, 2005; Miller & O’Leary, 2007; Nersessian, 2012; O’Connell,
1993; Schaffer et al., 1992; Wise, 1995) associated with the institutionalization of
common units of measurement, such as meters, grams, degrees Celsius, or dollars.
Suppliers, manufacturers, marketers, accountants, advocates, and customers are able
to better coordinate and align their investments in physical capital when information
systems employ common languages. Similar kinds of coordinations can be expected
to emerge as teachers, researchers, and psychometricians establish firmer expecta-
tions for educational outcomes and the exception that prove (in the sense of test)
the rules. For instance, quality circles will facilitate the exchange of instructional
outcome information across classrooms, grades, and schools in ways not possible
with test scores reported in traditional percentages correct. Curriculum publishers are
already developing individualized reading instruction modules that integrate assess-
ment information in ways that make student learning trajectories portable across
proprietary tests, schools, and countries.

6 Discussion

Projected comprehension rates should not be the only factor influencing text selec-
tion. To make the quantified measure the sole determinant of a curricular decision
would be analogous to reducing a table to its physical dimensions when its colour,
style, or sentimental or historical value might also be relevant.

Initial efforts at deploying the unit of measurement quickly encountered a chicken
and egg question from book publishers: why should they adopt the unit as a means
of indicating the text complexity of their books and articles if there were no schools
or students prepared to take advantage of that information? Conversely, state depart-
ments of education and school districts asked, why should they be interested in a
universally uniform measure of reading ability if there were no books or articles to
match with students’ ability measures?

The solution arose when one publisher incorporated the unit in their own system,
involving both a reading curriculum and a reading assessment system. This coordi-
nated reader-text matching made the link to the unit more attractive to testing agen-
cies, who could now point to an additional use for their results; to book publishers,
who now were assured of a population of students with measures to match with their
books; and to state departments of education and school districts, who could now
effectively put the matching system to work.

TheEnglish-based system is in use in theU.S.,Canada andAustralia (with applica-
tions emerging in NewZealand, South Africa, and England), and in ESL applications
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in Korea, Japan, Malaysia, Hong Kong, and elsewhere in Asia. A Spanish system for
matching readers and texts in the same unit is in use in Mexico and the Philippines.
Researchers in various parts of the world are exploring possibilities for expanding
the reader-text matching system to Mandarin, French, Arabic, and other languages.

Educational textbook and curriculum publishers have developed online software
applications for tracking individual student growth in reading ability. A report from
one such system is shown is Fig. 2.

Figure 3 shows the relationship between expected and observed text complexity
measures in the online system. This plot illustrates the power of theory. Traceability
to the standard unit is achieved not only by estimating student reading abilitymeasure
s from data, but by gauging text complexity from its syntactic and semantic makeup.
Given theory-based estimates of item difficulty, items can be adaptively selected for
custom-tailored individualized administration, and those students’ measures may
then be estimated from their comprehension rates relative to the scale values of those
items.

The specification equation operationalizes Rasch’s notion of a frame of reference
in a way that extends the frame beyond the specific objectivity obtained in the context
of a particular test or set of equated tests to an indefinitely large collection of actual

Fig. 2 Individual student online reading measure tracking system report, text domains from left
to right are: High School (11–12), SAT 1 ACT AP, Military, Citizenship, Workplace, Community
College, University, Graduate Record Exam
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Fig. 3 Empirical versus
theoretical Lexile text
complexity estimates

or virtual instruments, students, and texts. Theory-based instrument calibration elim-
inates the need to use data to both calibrate instruments and measure persons. The
pay-off from using theory instead of data to calibrate instruments is large and imme-
diate. When data fit a Rasch model, differences among person measures are, within
the limits of uncertainty and response consistency, free of dependencies on other
facets of the measurement context (i.e., the differences are specifically objective).
When data fit a causal or theory-enhanced Rasch model, absolute person measures
are free (again, within the limits of uncertainty and response consistency) of the
conditions of measurement (items, occasions, etc.) making them objective beyond
the limits of a specific frame of reference tied to local samples of examinees and
test items (Stenner & Burdick, 1997; Stenner et al., 2013). In the theory-referenced
context, person measures are individually-centered statistics; no reference to another
person(s) figures in their estimation.

One of the most important uses of reading test scores is to predict how a reader
will perform on non-test tasks. For example, imagine that first year college textbooks
are virtual reading tests with item calibrations provided by the specification equation.
Arbitrarily, but usefully, fixing a success rate on the virtual items for each textbook
enables solving for the reader measure needed to correctly answer that percentage of
those items. The individual reader’s measure is then interpreted relative to the text
complexity measure for each text in the freshman book bag. If the likely success rate
in correctly answering the virtual items is high, so is the expectation of having the
reading skills needed to complete the first year of college.

High school graduates’ reading measures can thus be compared to college text
demands and a reasoned prediction can be made as to the likelihood of having the
reading level needed for first year completion. The efficiencies this system realizes
from its use of validated predictive theory shows special promise as a tool for tracking
reading readiness for post-secondary experiences in college, the work place, and the
responsibilities of citizenship (Williamson, 2008; Williamson et al., 2013).
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7 Conclusion

Historians of science have repeatedly documented the roles in theory development
played by researchers with hands-on experience with instrumentation, as when
Kuhn (1977) notes that seven of the nine pioneers in quantifying energy conver-
sion processes were either trained as engineers or were working with engines when
they made their contributions. Indeed, this attitude that an instrument can make a
science was taken from physics into economics by both Stanley Jevons and Irving
Fisher in their uses of the balance scale as a model of market equilibrium (Boumans
et al., 2001; Maas et al., 2001).

But history shows that instruments alone are insufficient to the task of making
a science. Furthermore, interestingly, equilibrium models have failed as guides to
economic phenomena in large part because of problems in stochastic aggregation and
variation in individual consumer behaviours (Ackerman, 2002). In specific circum-
stances (Dear, 2012; Galison, 1997; Hutchins, 1995, 2012; Latour, 1987, 2005; Ners-
essian, 2012; O’Connell, 1993; Schaffer et al., 1992; Shapin, 1989; Sundberg, 2011;
Wise, 1995), however, instruments providing consistent information expressed in
a common language throughout interconnected nodes of a network, as with the
readingmeasurement systemdescribed here,may serve as amedium for coordinating
spontaneous individual behaviours and decisions over time and space.

The historical success of science increasingly appears to stem from its embod-
iment of evolving ecologies of this kind of data-theory-instrument assemblage.
Current conceptualizations and institutional systems prioritizing centralized design,
data analysis, and policy formation stand in paradigmatic opposition to this ecolo-
gizing perspective (Arthur, 2014;Hayek, 1988;Hidalgo, 2015;Latour, 1995;Weitzel,
2004). Howwill cultures of decentralized innovation, complex self-organization, and
authentic engagement with substantive, meaningful processes emerge in education
and the social sciences? The organic integration of theory, data, and instruments
in institutional contexts sensitive to ground-up self-organizing processes requires
systematic conceptualizations of measurement as a distributed process, where scien-
tific fields, markets, and societies operate as massively parallel stochastic computers
(Arthur, 2014; Hidalgo, 2015). Recent comparisons of engineering and psychometric
perspectives on the possibility of such systems in education suggest a viable basis for
such conceptualizations (MariWilson, 2013; Pendrill, 2014; Pendrill & Fisher, 2013,
2015; Turetsky & Bashkansky, 2016; Wilson et al., 2015). Metrological traceability
systems of this kind (Fisher & Wilson, 2015) will integrate qualitative progressions
in learning defined by predictive theories of causal relations (Stenner et al., 2013),
constructmaps (Wilson, 2009), and associated itemhierarchies in educational assess-
ments generally. Systematically introduced infrastructural supports could effectively
exploit the proven value of formative assessment (Hattie, 2008) in a hopeful devel-
opment for broadly enhancing educational outcomes via research and local quality
improvement efforts.
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Towards an Alignment of Engineering
and Psychometric Approaches
to Uncertainty in Measurement:
Consequences for the Future

William P. Fisher Jr. and A. Jackson Stenner

Abstract The International Vocabulary of Measurement (VIM) and the Guide to
Uncertainty in Measurement (GUM) shift the terms and concepts of measurement
information quality away from an Error Approach toward amodel-basedUncertainty
Approach. An analogous shift has taken place in psychometrics with the decreasing
use of True Score Theory and increasing attention to probabilistic models for unidi-
mensional measurement. These corresponding shifts emerge from shared roots in
cognitive processes common across the sciences and they point toward new oppor-
tunities for an art and science of living complex adaptive systems. The psychology
of model-based reasoning sets the stage for not just a new consensus on measure-
ment and uncertainty, and not just for a new valuation of the scientific status of
psychology and the social sciences, but for an appreciation of how to harness the
energy of self-organizing processes in ways that harmonize human relationships.

1 Introduction

While only rarely ever thinking about it, we use language to manage the uncertainty
of the future. Everyone benefits from being able to connect words, ideas, and things
in the world—to communicate—but without knowing very much about how the
language in use came to be, or why it is written, pronounced, or structured as it is.
We have simply learned that we can rely on our words to mean about the same thing
the next time we use them as they did the last time. We derive a great deal of security
from knowing we can manage the uncertain future using words that have served us
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well in the past. If memory failed us all, or if it was impossible to link concepts and
things with some material visual or auditory representation, we would have to invent
new words for things in a constant process of reinvention. In that kind of world,
life’s unpredictability would make experience very different from what it has been
for humanity.

Science extends and refines language in ways enabling the management of
new, previously inaccessible tasks. Theoretical conceptualizations and experimental
substantiations of new phenomena, such as disease-causing germs and electricity,
are embodied in technologies like vaccines and appliances distributed throughout
interconnected networks (Latour, 1988, 2005). Science systematically associates new
words with new concepts in order to bring new things into the social world (Hutchins,
2014; Nersessian, 2012). These word-concept-thing assemblages are kept in close
contact with standards by technicians trained in the creation and use of the relevant
tools. But all of this effort is expended so that end users can employ the new words
and ideas in the same way as any other words, which is to say, without understanding
the technical details of exactly how specifically unforeseeable future connections
with something real in the world were made predictable and manageable.

Though it is not often articulated in this way, uncertainty and its management are
plainly a matter of central importance in science. Measurement is the crucial activity
that brings together in a portable technology (an instrument) what was learned in
the past from data. That learning hinges, first, on the data being explained well
enough by theory to predict future observations, and second, on the reduction in
uncertainty realized in the precision of the instrument calibration. The calibration of
new classes of instruments intended to measure previously unknown phenomena is,
then, fundamentally a process of bringing new things into language by establishing
consistent and reproducible relationships between their properties and the theoretical
ideas andwords instrumental to their communication. Science goes beyond everyday
language in ascertaining and systematically reducing the uncertainty of the number
words representing quantities, and in so doing opens up new opportunities for the
creation of shared meanings and communities.

2 Uncertainty in Metrology and Psychometrics

It is in this context thatwe come to themost recent editions of the InternationalVocab-
ulary of Metrology (VIM) and the Guide to Uncertainty in Measurement (GUM),
which document a shift in the terms and concepts used in communications on uncer-
tainty andmeasurement information quality (Committee and forGuides inMetrology
(JCGM, WG 1) Evaluation of measurement data–Guide to the expression of uncer-
tainty in measurement 2008; Joint Committee for Guides in Metrology (JCGM/WG
2) International vocabulary of metrology: basic and general concepts and associ-
ated terms 2012). The change is away from an Error Approach (also known as the
Traditional Approach or the True Value Approach) and in favour of an Uncertainty
Approach. Instead of assuming that the goal of measurement is the closest possible
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estimation of an unknown true value (the Error Approach), metrology now holds that
measurement information supports only an assignment of a range of values, given
that no mistakes have been made. This range varies depending on what information
is taken into account, leading to the development of uncertainty budgets (Bucher,
2012; Ratcliffe et al., 2015).

An analogous shift has taken place in psychometrics, where recent research
presented at a series of symposia jointly sponsored by several International
Measurement Confederation (IMEKO) technical committees (TC-1, TC-7, and TC-
13) suggests provocative new practical and theoretical correspondences between
metrology and psychometrics (Andrich, in press; Fisher & Stenner, 2016; Mari &
Wilson, 2014; Pendrill & Fisher, 2015). In accord with those similarities, differ-
ences between the psychometric binomialmodel’s TrueScoreTheory (and associated
Classical Test Theory) and measurement theoretical approaches to error/uncertainty
(Andrich, in press) parallel aspects of the shift documented in the VIM and GUM.

First, both metrology’s Error Approach and psychometrics’ True Score Theory
focus on an assumed distinction between random and systematic errors. In both
metrology and psychometrics, these sources of error are always assumed distin-
guishable, should be treated differently, and cannot be combined to form a total error.
Second, bothmetrology’s UncertaintyApproach and developments in psychometrics
involving the evaluation of uncertainty relative to interval units ofmeasurement focus
on mathematical treatments of measurement uncertainty by employing an explicit
measurement model characterizing the measurand in terms of an essentially unique
value.

The GUM and IEC documents provide guidance on the Uncertainty Approach
to end users as to the case of a single reading of a calibrated instrument. No
such guidance has yet been systematically available in psychometrics, in large part
because instruments calibrated and traceable to uniform and universally available
consensus unit standards are still unusual, though not unknown (Fisher & Stenner,
2016). Routine estimation of individual measurand uncertainties is, then, encum-
bered by widespread reliance on True Score Theory’s scale- and sample-dependent
ordinal score units, and associated statistical methods. True Score Theory’s sampling
approach to group-level uncertainty supports one motivation for the probabilistic
form of statistical models evaluated via significance tests, while measurement theory
is instead motivated by the response process itself in deriving a scientific model eval-
uated in terms of explanatory theory, meaningfulness, ethical criteria, and practical
utility (Andrich, 1989; Duncan, 1992; Duncan & Stenbeck, 1988; Wilson, 2013a).
The latter is then able to characterize unit traceability in terms of a unique value
systematically qualified relative to the effects of local uncertainty, model fit, bias
and DIF, range restriction, etc.
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3 The Contrasting Shapes of Uncertainty

One especially salient contrast between True Score Theory’s and psychometric
measurement theory’s approaches to uncertainty concerns their different U-shaped
vs arch shaped error distributions (Fig. 1) (Linacre, 2007).

This contrast stems from the lack of expectations concerning the response struc-
ture in True Score Theory, and the explicit expectations for it in measurement theory
(Wilson, 2013b). In True Score Theory, the motivation for making models proba-
bilistic is rooted in statistical sampling. Items are assumed to be of equal difficulty.
The normal distribution is assumed, meaning that the tendency toward the mean
dominates model conceptualization. Uncertainty is contingent on the probability of
a response being near the middle part of the distribution, where there are 50–50 odds
of success, and not toward one extreme or the other, where scores of 0% or 100%
have the lowest possible uncertainty.

In measurement, in contrast, variation in item difficulties is expected and
modelled, with the goal of obtaining a sufficient statistic, one “that summarizes the
whole of the relevant information,” as Ronald Fisher put it in 1922 (Fisher, 1922).
Statistical sufficiency formulated at the individual level, per Rasch (Rasch, 1960;
Wright, 1997), is conceptually identical with invariance in measurement (Andersen,
1977; Hall et al., 1965).

The identification of invariant profiles in the difficulty or agreeability of test and
survey items enables use of the item location hierarchy in qualitative, substantive
interpretation and theory-building otherwise inaccessible to psychological and social
measurement (Stenner et al., 2013;Wilson, 2005;Wright&Masters, 1982;Wright&
Stone, 1979). A close match between a student’s measure and a test item’s difficulty,

Fig. 1 , Standard errors of measures versus scores (Linacre, 2007)
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for instance, indicates the border between the instructional materials the student has
mastered (the easier items onwhich the student has a high probability of success), and
those not yet mastered (the harder items on which the student has a low probability
of success).

Uncertainty in this context becomes useful in allocating resources appropriate
to the budgeting constraints of varying applications. Instructionally useful formative
applications in the classroom, for instance, may be diagnostically valid for day to day
use within wider confidence limits than can be tolerated for quality improvement,
research, or accountability applications. Fewer test items and more uncertainty can
be tolerated in individual applications given the background knowledge and famil-
iarity with the student possessed by the teacher. High stakes assessments in which
new interventions are being evaluated, or that are used as the basis for graduation,
admissions, or other decisions,must necessarily obtainmore and higher quality infor-
mation with less uncertainty, typically by askingmore questions in amore rigorously
controlled environment.

The statistical sampling approach to uncertainty taken by True Score Theory, in
contrast, is less applicable to instructional problems. Uncertainty is lowest when
scores are at the extremes, when the student knows nothing or everything, but this
minimal uncertainty does nothing to indicate either how much too difficult the test
items are, or how much too easy they are.

4 The Role of Uncertainty in Unit Definition

Andrich (Andrich, in press) shows the role played by randomly unimodal error
distributions with smooth density functions in the formulation and realization of
measurement invariance using Rasch’s probabilistic models. Ordered categories for
scoring responses to test and survey items are required to partition a range of variation
meaningfully to be useful as a basis for measurement. True Score Theory stops with
these ordinal categories and scores, manipulating the numbers as though they stand
for a qualitatively meaningful and substantive property (intelligence, achievement,
health, etc.) that adds up like the numbers do. Rasch models interval properties
in a way useful for experimentally testing ordinal data to assess its capacity for
substantiating the hypothesis of an additive, invariant unit. Asserting the need for
such amodel, and for experimental tests of the existence of a unit of comparison, goes
against the grain of the methods typically employed in psychology and the social
sciences. Considerable resistance to the use of Rasch’s models has come from those
wedded to simpler and less demanding numerical methods, though the scientific
defensibility and practical utility of Rasch-based results has led to the routine use of
the models in many high-stakes domains of research and practice.

Broader scale applications of Rasch’s models are likely to follow from the results
described byAndrich (Andrich, in press).What he proposes should decisively resolve
the “attenuation paradox” (Engelhard, 1993; Loevinger, 1954), namely, that higher
reliability coefficients are not necessarily associated with better measurement. In
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True Score Theory, a perfectly discriminating test, for instance, is one that separates
all examinees into two groups, one with no correct responses and the other with all
correct responses. This can be seen to follow from True Theory’s peaked uncertainty
distribution, where uncertainty is lowest at the extremes (Fig. 1).

The situation becomes more complex in the context of Guttman’s deterministic
approach to measurement. Here, the expectation of an ordered sequence of item
difficulties contrasts with True Score Theory’s supposition of equal item difficulties.
But after an incorrect response is obtained, Guttman expects there to be no further
correct responses to more difficult items. This rarely occurs in practice, so large
percentages of data are often deemed unscalable in Guttman applications, leading to
the method’s rare application.

Rasch’smodels are basically a probabilistic formulation ofGuttman’s requirement
of monotonic consistency in item responses (Andrich, 1982, 1985). The attenuation
paradox takes a more specific form in the Guttman context than it does in True Score
Theory. Guttman requires perfect reliability and discrimination in every score group,
so that everyone with a score of 3 correct responses to 10 questions has exactly the
same pattern. The end result, however, is that it becomes impossible to formulate
any method for estimating how much more difficult one item is than another. This
problem follows from the lack of information, the absence of any kind of a stochastic
resonance, from which the magnitude of the difference might be estimated.

Duncan (Duncan, 1984) accordingly observes that “It is curious that the stochastic
model of Rasch, which might be said to involve weaker assumptions than Guttman
uses [in his deterministic models], actually leads to a stronger measurement model.“
Andrich’s (Andrich, in press) explanation of the role randomly unimodal error distri-
butions play in applications of Rasch’s models may satisfy Duncan’s curiosity. It
seems to me that Andrich’s account is likely to turn out to be an image of the
deep structure of how certain kinds of noise-induced order (Gammaitoni et al.,
1998; Matsumoto & Tsuda, 1983) come about. To what extent are the “suffi-
cient conditions for a system to exhibit stochastic resonance” (Hess & Albano,
1998) the same as or different from the conditions sufficient for fit to a stochastic
Rasch measurement model (Andersen, 1977; Andrich, 1989; Rasch, 1960; Wilson,
2013a; Wright, 1997)? How similar or different from the True Score Theory-Rasch
or Guttman-Rasch contrasts is “the transition from chaotic behavior to ordered
behavior induced by external noise…observed in a certain class of one-dimensional
mappings” (Matsumoto & Tsuda, 1983)? To what extent could individual-based
ecological models and agent-based economic models (Grimm & Railsback, 2013)
be informed by Rasch’s individual-level stochastic measurement models based in
sufficient statistics?

This phenomenon of stochastic resonance provides a metaphor that meets the
terms of Galison’s (Galison, 1997) search for a way to talk about the unity-through-
disunity observed in the social and conceptual discontinuities characterizing some
complex systems, such as science (Fisher &Wilson, 2015; Fisher press, 1992, 2011a,
2011 in). Galison notes the insufficiency of Peirce’s and Wittgenstein’s multistrand
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cable and thread analogies as images of how communities of theoreticians, experi-
mentalists, and instrumentarians interact. He suggests that instead of these homoge-
nous images in which the whole is the sum of the parts, we need images of discon-
tinuous structures, like amorphous semiconductors with disordered atomic prop-
erties, or laminated structural engineering materials. In these cases, microscopic
failure and disorder provide otherwise-unattainable signal–noise ratios and struc-
tural integrity. A great deal more research and study is needed to see if the resonance
properties exhibited in Rasch’s stochastic measurement models’ randomly unimodal
error distributions (Andrich, in press) provide the combined harmonies and discor-
dances needed to coordinate the varied material and symbolic processes creating the
binding culture of science (Fisher & Wilson, 2015; Fisher press, 1992, 2011a, 2011
in; Galison, 1997).

5 Uncertainty Budgets

Andrich (Andrich, in press) notes that.

Measurement in the social sciences has not reached a level where the degree of precision is
routinely stated in advance. To be able to do so, substantive research in the construction of
ordered categories will require the same detailed empirical research that natural scientists
carry out in constructing their instruments. The PRM [Polytomous Rasch Model] provides
a basis for assessing the precision of measurement achieved.

Theory-informed empirical research on reading ability has begun to approximate
the level of detail obtained in the construction of instruments in the natural sciences
(Andrich, in press; Fisher & Stenner, 2016; Mari &Wilson, 2014; Pendrill & Fisher,
2015; Pendrill, 2014a; Stenner et al., 2013; Wright, 1997). Implications for uncer-
tainty budgets and the practical interpretation of psychometric measures begin from
a distinction between Type A and Type B uncertainties (Committee and for Guides in
Metrology (JCGM,WG 1) Evaluation of measurement data–Guide to the expression
of uncertainty in measurement 2008; Ratcliffe et al., 2015).

Type A uncertainties are statistical and random, whereas Type B uncertainties
are usually systematic. The True Value Approach did not allow uncertainties to be
combined, but the more recent Uncertainty Approach allows the estimation of a total
uncertainty from the accumulation of Type A and Type B uncertainties. Uncertainty
components are no longer classified as random or systematic because of this capacity
to bring all uncertainty estimates together into a single frame of reference in which
they are comparable.

What might an uncertainty budget for psychometric measures look like? Table 1
proposes some elements, following the model provided by Bucher (Bucher, 2012).
Type A uncertainties may emerge primarily from sampling considerations. As to
Type B, the usual modelled measurement uncertainty, estimated as a function of the
number of items administered, is complemented by a version inflated by positive
values of the mean square model fit statistic (a chi-square divided by the degrees
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Table 1 A possible psychometric uncertainty budget [modelled from example in 7]: How to fill in
the blanks?

Type A
uncertainty

Uncertainty
description

Uncertainty Distribution Divisor Standard
uncertainty

Variance

1 Repeatability

2 Combined
Type A
Uncertainty

Type B
Uncertainty

Uncertainty
description

Uncertainty Distribution Divisor Standard
uncertainty

Variance

1 Modeled 1 /
(
√∑

(Pni(1
-Pni))

Randomly
unimodal

2 Fit-inflated Modeled *
MnSq > 1

3 Range
restriction

4 Bias

Combined
Type B
Uncertainty

of freedom) (Wright, 1995). Additional sources of uncertainty introduced by range
restriction or bias might be imagined.

Before uncertainty contributors can be combined (using a root sum square
method), they must be random, independent, and normalized to a standard uncer-
tainty using the divisor suited to the relevant distribution, as specified in the GUM
(Committee and for Guides inMetrology (JCGM,WG1) Evaluation ofmeasurement
data–Guide to the expression of uncertainty in measurement 2008).

6 Implications for a New Art and Science
of Self-Organizing Complex Adaptive Systems

Chaitin (Chaitin, 1994) observes that the deterministic conceptualizations of Newto-
nian mechanics and the arithmetic of the natural numbers have given way to chaos
and randomness. Reductionist approaches can no longer tenably posit that informa-
tion on individuals will aggregate into reliable information on groups. The whole
is no longer the sum of the parts, even in the areas of life where that seems most
obviously true (Garfinkel & pp., 1991). Instead of fully unique, independent, and
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separable individual elements, even in physical phenomena like the combined gas
law, structural presuppositions at the microlevel are unavoidable.

It seems as though a transition is occurring in fundamental concepts, a transition
analogous to the difference between True Score Theory and Guttman, on the one
hand, and Rasch models, on the other. True Score Theory and Guttman assume all
individuals are interchangeable, that the whole is the sum of the parts, and that there
is no need for structural presuppositions. Rasch, in contrast, shows that individuals
are not entirely unique, that they exhibit interdependencies, that the whole is more
than the sum of the parts, and that group-level structure consistently emerges whether
or not one is looking for it. The question is how to set upmedia for the self-organized,
bottom-up repeatable and reproducible display and communication of these complex
adaptive multilevel structures (Arthur, 2014; Fisher, in press). New opportunities are
opening up in this direction across the sciences. For instance, in a recent book on
complexity economics, Arthur (Arthur, 2014) points out that.

Science and mathematics are shedding their certainties and embracing openness…there is
no reason to expect that economics will differ in this regard.

New agent-based models re-orient psychology and social science away from poli-
cies imposing mechanically aggregated statistical results from the top down toward
bottom-up initiations of grassroots efforts. The overall effect is akin to the difference
between quality control and continuous quality improvement methods in industry
(Fisher, 2013). The former were characterized by “tail-chopping” methods that
merely removed the undesired end of a quality distribution, just to have it filled
again in the next iteration. The latter, “curve- shifting” methods empower everyone
on the front line to act to improve the production system itself via bottom-up, organic,
self-organizing approaches to creating genuine value (Arthur, 2014; Fisher, in press).
Providing teachers, clinicians, andmanagerswith the coherent information tools they
need to manage their responsibilities across the discontinuities inherent to multilevel
communications systems (Fisher, 2013; Fisher et al., in press; Star&Ruhleder, 1996)
will likely result in quality revolutions in education, health care, human resource
management, and other areas equal to or greater than that experienced in manufac-
turing (Fisher, 2009, 2011b, 2012). Realizing the practical value of measurements as
objective bases for decision supports demands close attention to uncertainty (Fisher
et al., 2010; Pendrill, 2014b). Communicating the value of educational, health, human
resource, and other psychological and social measures in common units with known
uncertainties coordinated across levels of complexity is essential to grasping the
opportunities for improved outcomes we have within our reach.
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The Unreasonable Effectiveness
of Theory Based Instrument Calibration
in the Natural Sciences: What Can
the Social Sciences Learn?

A. Jackson Stenner, Mark H. Stone, and William P. Fisher Jr.

Abstract In his classic paper entitled “The Unreasonable Effectiveness of Math-
ematics in the Natural Sciences,” Eugene Wigner addresses the question of why
the language of Mathematics should prove so remarkably effective in the physical
[natural] sciences. He marvels that “the enormous usefulness of mathematics in
the natural sciences is something bordering on the mysterious and that there is no
rational explanation for it.” We have been similarly struck by the outsized benefits
that theory based instrument calibrations convey on the natural sciences, in contrast
with the almost universal practice in the social sciences of using data to calibrate
instrumentation.

1 Introduction

Why is mathematics so remarkably effective in the natural sciences, and what
might the social sciences have to learn from the way it is used in those sciences?
Is the effectiveness of mathematics in the natural sciences truly “unreasonable,”
as Wigner (1960) put it? Previous research on Maxwell’s foundational contribu-
tions shows the effectiveness of mathematical model-based reasoning to be rooted
in everyday thinking (Nersessian, 2002), and not in any special capacities associ-
ated with scientists or their objects of study. Rasch’s (1960) adoption of Maxwell’s
method of analogy (Nersessian, 2002) set the stage for extending the effectiveness
of mathematics into the social sciences (Fisher, 2010; Fisher & Stenner, 2013).
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In our ongoing explorations of the ways the natural sciences and social sciences
invoke, define, and engage in measurement, we have identified a number of differ-
ences that are not as epistemologically necessary or predetermined as is popularly
imagined (Stenner & Smith, 1982; Stenner et al., 1983, 2006, 2013; Williamson
et al., 2013; Burdick et al., 2006; Stenner & Stone, 2010; Fisher, 2009; Fisher &
Stenner, 2016). We have, to some benefit, contrasted human temperature thermom-
etry (NexTemp™ thermometersMedical Indicators Inc (2006); seeAppendixA)with
the testing of mathematical ability and the measurement of English language reading
ability. Although cataloging these differences has been useful, we now believe they
are all traceable to a common cause. Physical science measurement virtually without
exception takes place in the context of well-developed substantive theory, experi-
mental evidence, and instruments calibrated to uniform unit standards. In the natural
sciences, theories are not just compelling stories about the relationships between
measurement outcomes (such as the count of cavities turning black on a NexTemp
thermometer), unit standards (degrees Celsius), and measurement mechanisms (a
chemical specification equation). They are instead sufficiently elaborated and precise
in their specifications that they can be used to calibrate instrumentation.

In contrast, throughout the behavioral and social sciences, instrument calibration
depends on data, is typically devoid of theory, and is not traceable to a unit stan-
dard. We hypothesize that most of the observed differences between behavioral and
physical science measurement are traceable to these foundational differences. The
absence of theory is the primary determinant of the need for data-based calibration
and the lack of efficient methods for defining units and traceability to them. Further,
we offer an example of a theory-referenced reading and text measurement system
in the educational sciences that exhibits key theoretical, experimental, and instru-
mentation features analogous to those of human thermometry. Finally, we review the
affordances shared by human thermometry and reading measurement (Cano et al.,
2016).

2 A Reading Example

Aconsensus unit and systems for ensuring traceability to it are typical ofmost natural
science measurement. Sometimes, as in temperature measurement, the unification
process is not fully completed, but for the vast majority of natural science attributes
(referred to as constructs in psychometrics), a unification process has resulted in
diverse instrument makers sharing a unit of measure even when the measurement
mechanisms vary from manufacturer to manufacturer. Mercury in glass tube ther-
mometers for human temperature measurement differ substantively with NexTemp
technology, but produce comparable results. Though the measurement mechanisms
are drastically different they both report out in either Fahrenheit or Celsius units.
In the case of NexTemp thermometry, a chemical specification equation calibrates
the instrument in °C or °F. The chemical specification equation derived from exper-
imental evidence enforces the unit, which is embodied in the instrument to a known
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degree of uncertainty. Similarly, in reading measurement, a text complexity specifi-
cation equation enforces the unit and ensures that 100L of difference between two
readers, two texts or a reader/text encounter is invariant over any of 100 + English
reading tests that, at present, employ the unit (Fisher & Stenner, 2016).

Strictly parallel instruments are typical in the natural sciences. Such instruments
share a common correspondence table that links a measurement outcome (count of
cavities turning black on a NexTemp thermometer) to a °C or °F. The ability to manu-
facture essentially identical instruments in large quantities is a hallmark of natural
science measurement. The specification equation is the recipe for manufacturing and
calibrating clones of an instrument. The social sciences borrow the concept and talk
about ‘parallel’ instruments or ‘alternate forms’ and advertise that say, form A and
B produce exchangeable measures. But without a specification equation it is impos-
sible to manufacture copies or clones that share the same correspondence table. The
reading measurement specification equation can be used to build strictly parallel
clones of any reading test (see Appendix B). No such capability exists, for example,
for mathematics, and this is so precisely because, at present, there exists no speci-
fication equation for mathematical ability that can calibrate mathematics test items
(see Appendix C). Different mathematics tests are empirically linked to a common
scale through large scale, expensive field studies typically involving thousands of
students.

Typical Rasch model applications in the social sciences are singly prescriptive.
The major prescription that data must meet is non-intersecting item characteristic
curves (ICCs), which relate the probability of a correct response to the difference
between person ability and item difficulty. The data are used to estimate person
and item parameters with no a priori constraints on the item parameters. Mathe-
matics ability measurement is achieved in this way, as is typical of much social
science measurement. Because there is no strong substantive theory for ‘mathemat-
ical ability,’ there is no specification equation and, thus, no potential for theoretically
calibrating items/instruments. Instrument calibrations depend on sample data and a
property of the Rasch model: when data fit the model differences between persons
and differences between items are independent of items and persons, respectively.

Contrast this singly prescriptive measurement framework with the doubly
prescriptive models underlying NexTemp human thermometry and the theoretical
framework for reading. In both these cases strong substantive theory coupled with
either a Guttmanmodel or a causal Raschmodel requires not just data fit to the model
but also data fit to the theory specified item/instrument calibrations. For NexTemp a
chemical specification equation is used as a recipe for the chemical compound that
fills each cavity. By precisely varying the amount of additive the difference between
any two adjacent cavities in sensitivity to the green component of light is precisely
0.2 degrees Fahrenheit. The chemical specification equation enforces this common
unit difference for each of the 44 adjacent cavity differences across the 9 °F operating
range for the instrument.

When data fit a doubly prescriptive Rasch model absolute person measures (not
merely differences) are independent of items and instruments and are independent of
person sample precisely because no person data figures in the instrument calibration
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process. Theory calibrated Rasch models are, thus, doubly prescriptive: prescrip-
tive as to Rasch model requirements and prescriptive as to the substantive theory i.e.,
item/instrument calibrations. Personmisfit to a doubly prescriptivemodel signals that
the measurement mechanism that transmits variation in the attribute to the measure-
ment outcome (often a count) is not working as intended for that individual. Frequent
failures of theoretical invariance forces reexamination of the substantive theory, the
measurement mechanism and instrument calibration procedures. Theoretical invari-
ance can be tested within person over time (e.g. reading ability growth trajectories)
and when intra individual theoretical invariance holds across persons then inter-
individual theoretical invariance necessarily holds i.e., the attribute is homologous
(Borsboom&Dolan, 2007; Borsboom et al., 2009b; Hamaker et al., 2007;Molenaar,
2004; Molenaar & Newell, 2010).

Molenaar (Hamaker et al., 2007; Molenaar, 2004; Molenaar & Newell, 2010)
shows that inferences moving in the reverse direction, inferring from inter-individual
factor structures something about intra-individual factor structures, is fraught with
complications. The fact that so much of social and psychological measurement is
based upon factor analysis of inter-individual variation prompted Molenaar (Mole-
naar, 2004; Molenaar & Newell, 2010) to call for a Kuhnian revolution, a paradigm
shift in the concepts and methods of measurement in psychology. This paper is
intended as another in a series of contributions to this revolution (Fisher, 2009, 2010;
Stenner & Smith, 1982; Stenner et al., 1983).

3 Conclusion

Unification of measurement refers to a 200-year-old process whereby dozens if not
hundreds of distinct scales for measuring a common attribute are, sometimes quickly
and more often slowly, reduced to one, two or three exchangeable units of measure.
The history of temperaturemeasurement is a paradigmatic case (Chang, 2004; Sherry,
2011) that parallels many contemporary measurement movements in the social and
behavioral sciences. Typically, an attribute (construct) captures the imagination of a
community of scholars and engineers and different tests, instruments, mechanisms,
and scales are proposed formeasuring the attribute, and each is uniquely named.Once
there is consensus that the selfsame attribute is being measured across these various
devices small scale linking studies are undertaken to build conversion tables to re
express one unit in one or more other units. More advanced linking studies reduce the
link to an equation °F= °C * 9/5+ 32 making for quick and easy conversions. Since
at this stage there is often not much to elevate one scale about the competition the
market place takes over and ‘unification’, with all its time and cost savings eventually
prevails. Sometimes unification is swift and decisive but more often, particularly in
the social sciences, metrology is poorly understood and unification plods along.

Auseful case study of unification in the social sciences is the longstanding network
of reading measures that has linked 100+ English language reading tests across the
world, 250,000 book measures and 200 million article measures. The unification
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process is 27 years old and is accelerating but is far from complete. This effort drew
inspiration and strategies from the history of the unification of temperature (Chang,
2004; Molenaar & Newell, 2010; Stenner et al., 2013).

Rather than using factor analysis of inter individual data to define an attribute
structure and then asking if this structure obtains when examining intra individual
data we suggest the use of substantive theory (in the form of specification/calibration
equations) to establish the universality of attribute structure and measurement mech-
anism at the individual level. Once this is accomplished there is no puzzle about
whether between person differences have the same structure as within person differ-
ences—of course they do. So, what this analysis reveals is that it is problematic to
study between person variation at one point in time to glimpse truths about within
person structures over time (Hamaker et al., 2007; Williamson et al., 2013). But the
surprise is that if we start with within-person theory-referenced measurement, where
in the extreme no two persons have any items in common over 5 years of measure-
ment, then we would not stop for a moment to puzzle about the validity of the claim
that at the end of year 1 Jane was higher than Bob but at the end of year 5 Bob was
higher than Jane (i.e., a claim about inter-individual variation.) This is yet another
benefit of theory based instrument calibration.

Several key features distinguishing physical science and behavioral science
measurement systems can be traced to the absence of substantive theory sufficiently
developed that said theory can be used to calibrate measurement instruments. Once
such a calibration/specification equation is available most of these distinguishing
features can quickly and easily be imported into the behavioral sciences.

Appendix A. The NexTemp Thermometer

“The NexTemp Thermometer is a thin, flexible, paddle-shaped plastic strip
containing multiple cavities. In the Fahrenheit version, the 45 cavities are arranged
in a double matrix at the functioning end of the unit. The columns are spaced 0.20 F
intervals covering the range of 960 F to 104.80 F…. Each cavity contains a chemical
composition comprised of three cholesteric liquid crystal compounds and a varying
concentration of a soluble additive. These chemical compositions have discrete and
repeatable change-of-state temperatures consistent with an empirically established
formula to produce a series of change-of-state temperatures consistent with the indi-
cated temperature points on the device. The chemicals are fully encapsulated by a
clear polymeric film, which allows observation of the physical change but prevents
any user contact with the chemicals. When the thermometer is placed in an envi-
ronment within its measure range, such as 98.60 F (37.00 C), the chemicals in all
of the cavities up to and including 98.60 F (37.00 C) change from a liquid crystal
to an isotropic clear liquid state. This change of state is accompanied by an optical
change that is easily viewed by a user. The green component of white light is reflected
from the liquid crystal state but is transmitted through the isotropic liquid state and
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absorbed by the black background. As a result, those cavities containing composi-
tions with threshold temperatures up to and including 98.60 F (37.00 C) appear black,
whereas those with transition temperatures of 98.60 F (37.00 C) and higher continue
to appear green” (Medical Indicators Inc., 2006). Thus, the observed outcome is a
count of cavities turned black. The measurement mechanism is an encased chem-
ical compound that includes a varying soluble agent that changes optical properties
according to changes in temperature. Amount of soluble agent can be traded off for
change in human temperature to hold number of black cavities constant.

Appendix B. Edsphere

The Edsphere™ technology for measuring English language reading ability employs
computer-generated, four-option, multiple choice cloze items built on the fly for any
prose text. Counts correct on these items are converted into reading measures in
the standard unit via an applicable Rasch model. Individual cloze items are one-off
creations and disposable; an item is used only once. The cloze and foil selection
protocol ensures that the correct answer (cloze) and incorrect answers (foils) match
the vocabulary demands of the target text. The text complexity measure and the
expected spread of the cloze items are given by a proprietary text theory and asso-
ciated equations. Thus, the observed outcome is a count of correct answers. The
measurement mechanism is a text with a specified complexity and an item gener-
ation protocol consistent with that text complexity measure. The text complexity
measure can be traded off for a change in reading ability to hold constant the number
of items answered correctly.

Appendix C. Mathematics ability measurement

Mathematics ability measurement consists of a common supplemental metric that
locates students relative to a taxonomy of mathematical skills, concepts, and applica-
tions. In order to develop the framework, several tasks were undertaken: (1) develop
a structure of mathematics that spans the developmental continuum from first grade
content through Algebra I, Geometry, and Algebra II content, (2) develop a bank of
items that have been field tested, (3) develop the unit scale (multiplier and anchor
point) based on the calibrations of the field-test items, (4) validate the measurement
of mathematics ability as defined by the framework, and (5) link extant tests of math-
ematical ability to the scale. The process of scale unification for mathematics ability
is well underway (Simpson, et al., 2015).

At present the attribute “mathematical ability” is unspecified; i.e. there is no spec-
ification equation and associated analyzer that can be used to locate ‘math text’ on the
scale. Rather, data intensive methods are employed to calibrate instrumentation and
human intensive qualitative analysis is employed to locate math text (e.g., a chapter
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on adding fractions with uncommon denominators) on the scale. The vast majority
of social science attributes are similarly unspecified. By contrasting NexTemp ther-
mometry, theory-based reading measurement, and data-based mathematics ability
measurement we hope to illuminate the chasm of difference between instrumenta-
tion that employs strong substantive theory and that which does not. For the vast
majority of measurement systems, it is the case “that the difference between any
two points for one individual is qualitatively the same as a corresponding difference
between two individuals at one time point” (Borsboom et al., 2009a); that is, the
attribute is homologous. The same cannot be said for many measurement systems
used in the social sciences. We propose that the routine adoption of theory-based
instrument calibrations will pave the way for homologous attributes in the social
sciences, thus assuring that the attribute on which I differ from myself over time is
the same attribute on which I differ from my brother (Borsboom, 2005).
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On the Complex Geometry
of Individuality and Growth: Cook’s
1914 “Curves of Life” and Reading
Measurement

William P. Fisher Jr. and A. Jackson Stenner

Abstract Growth in reading ability varies across individuals in terms of starting
points, velocities, and decelerations. Reading assessments vary in the texts they
include, the questions asked about those texts, and in the way responses are scored.
Complex conceptual and operational challenges must be addressed if we are to
coherently assess reading ability, so that learning outcomes are comparable within
students over time, across classrooms, and across formative, interim, and account-
ability assessments. A philosophical and historical context in which to situate the
problems emerges via analogies from scientific, aesthetic, and democratic values. In
a work now over 100 years old, Cook’s study of the geometry of proportions in art,
architecture, and nature focuses more on individual variation than on average general
patterns. Cook anticipates the pointmade byKuhn andRasch that the goal of research
is the discovery of anomalies—not the discovery of scientific laws. Bluecher extends
Cook’s points by drawing an analogy between the beauty of individual variations in
the Parthenon’s pillars and the democratic resilience of unique citizen soldiers in
Pericles’ Athenian army. Lessons for how to approach reading measurement follow
from the beauty and strength of stochastically integrated variations and uniformities
in architectural, natural, and democratic principles.

1 Growth in Reading Ability

Over the last several years in the U.S., new standards for reading education, termed
the Common Core State Standards (CCSS), have been criticized for tendencies to
focus too narrowly on quantitative representations of text complexity. This focus is
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said to come at the expense of broader qualitative aspects of what makes reading easy
or difficult. Many fear that inordinate concern with raising the complexity of text
may displace legitimate concerns with other problems affecting education outcomes
(Gamson et al., 2013; Hiebert, 2012). Debates have been contentious for the early
grades, as these set the stage for later growth but lack clear guidelines for evalu-
ating text complexity (Hiebert, 2013). Suggestions for such guidelines (Fitzgerald
et al., 2015) are augmented by Williamson (2018), who notes individual differ-
ences in reading growth, marked by variation in starting points, rates of change, and
decelerations as learning reaches the diminishing returns of higher levels.

Williamson (2018) also points out that few individuals grow in reading ability
along the smooth path defined by the average trajectory. Any given end point might
be achieved by one student who started from a higher level, showed slow, steady
growth, and barely decelerated through middle and high school. Another student
starting from a lower level of reading ability might progress very rapidly, with a
moderate amount of deceleration, and could reach the same twelfth-grade reading
ability as the first student, but via different individual growth curve.

Addressing these key features of growth (status, velocity, and deceleration) in
educational policy and pedagogy could lead to new approaches to improving reading
outcomes (Williamson et al., 2014). Initial status might be elevated on broad scales
via early-intervention reading programs, velocity could be increased by means of
intensive practice, and deceleration might be counter-acted by creative approaches
to summer school.

These practical suggestions fit well, perhaps unexpectedly, in a larger context of
aesthetic, scientific, and democratic values. This expanded perspective is opened by
Theodore Cook’s 1914 book, The Curves of Life (Cook, 1914/1979). In it, Cook
anticipates a number of later developments in the philosophy of science, measure-
mentmodelling, and political philosophy that hinge in large part on understanding the
relation of individual differences to larger population-based proportions and patterns.
Cook anticipates fractal and chaotic concepts concerning the role irreducible random-
ness plays even in arithmetic andNewtonian physics Chaitin (1994). Cook’s perspec-
tive on the roles of deviations and exceptions to growth in nature and its adoption
in art and architecture is related to Kuhn’s (1977) and Rasch’s (1980) emphases on
the role of anomalies in measurement, and to Bluecher’s (1968) analogy between
the uniqueness of the Parthenon’s pillars and the individuality of Periclean citizen-
soldiers. Improving growth in reading might find an enlarged base of support in a
context foregrounding these aesthetic, scientific, and democratic values.

2 Aesthetics

Cook (1914/1979, p. 325) points out that “The ‘straight lines’ of the Parthenon…are
in reality subtle curves.” Details of the many delicate irregularities in the Parthenon
(see Fig. 1) include the facts that
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Fig. 1 Exaggerated view of unique Parthenon pillars (Pollitt, 1972)

No two neighbouring capitals correspond in size, diameters of columns are unequal, inter-
columnar spaces are irregular, themetope spaces are of varying width, none of the apparently
vertical lines are true perpendiculars, the columns all lean towards the centre of the building,
as do the side walls, the antae at the angles lean forward, the architrave and frieze lean
backward, the main horizontal lines of construction are in curves which rise in vertical
planes to the centre of each side, and these curves do not form parallels (Cook, 1914/1979,
pp. 328–329).

These variations fromperfection in the Parthenon tend to be explained using one of
three approaches: the compensation theory, the exaggeration theory, and the tension
theory (Pollitt, 1972, pp. 75–76). Compensation suggests that the deviations are built
into the structure in order to correct the deficiencies of perception, to make things
look more proportionate than they would look if they were actually as proportionate
as possible. The exaggeration theory takes the view that the intention was to make
the building look more impressive or larger than it really was. The tension theory
suggests that the deviations combine into wholes greater than the sum of the parts,
and so give the structure a vitality it would otherwise lack.

Pollitt (1972, p. 78) suggests that the tension theory “seems to reflect most
naturally the intellectual experience of the age,” since the measured variations

are intentional deviations from ‘regularity’ for the purpose of creating a tension in themind of
the viewer between what he expects to see and what he actually does see. The mind looks for
a regular geometric paradigm of a temple with true horizontals, right angles etc., but the eye
sees a complex aggregate of curves and variant dimensions. As a result, the mind struggles
to reconcile what it knows with what the eye sees, and from this struggle arises a tension and
fascination which make the structure seem vibrant, alive, and continually interesting (Pollitt,
1972, p. 76).
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Cook (1914/1979) similarly asserts that “…phenomena of life and beauty are
always accompanied by deviations from any simple mathematical expression we
can at present formulate” (p. 434).

3 Science

The task of science was long considered discovery of scientific laws, and scientific
method was a set of routinely repeatable steps in a process sure to lead to new
knowledge. But questions about the roles of language and technology in theory
development and data acquisition led to new ideas about scientific change. One
result was the realization, as Kuhn (1977, p. 219) put it, that

The road from scientific law to scientific measurement can rarely be travelled in the reverse
direction. To discover quantitative regularity one must normally know what regularity one
is seeking and one’s instruments must be designed accordingly.

In this context, theoretical expectations embodied in measuring instruments come
to the fore as themedia inwhich facts become either salient ormeaningless. InKuhn’s
(1977, pp. 205–206) words,

To the extent that measurement and quantitative technique play an especially significant role
in scientific discovery, they do so precisely because, by displaying significant anomaly, they
tell scientists when and where to look for a new qualitative phenomenon.

Like Kuhn, Cook (1914/1979) makes repeated statements concerning the same
point, for instance, that “Clearly it will be unprofitable to emphasize the value of
variations unless we also suggest some standard by which those variations can be
measured” (p. 400; also see pp. 431, 434–435). Cook (1914/1979, p. 431) further
maintains the parallel with Kuhn, remarking on the anomalies in the orbit of Uranus
that led to the discovery of Neptune, a parallel also noted in theory-informed Rasch
measurement (Burdick & Stenner, 1996; Linacre, 1997).

Rasch (Bluecher, 1968, p. 124), writing before Kuhn, similarly noted that “Once
a law has been established within a certain field then the law itself may serve as a tool
for decidingwhether or not added stimuli and/or objects belong to the original group.“
Rasch (1972/2010, p. 1254) speaks of modelling and instruments as delimiting the
field of validity; i.e., finding those agents and objects with the properties that belong
within the specified frame of reference. A basic goal of measurement then ought to be
to support the identification of anomalous and unique patterns, and the deployment of
methods for translating those patterns into opportunities for individual, community,
or organizational growth.
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4 Democracy

An ethical and political theme emerges here in the identification of anomalies. A
common but mistaken assumption is that measurement excludes test or survey items,
and examinees or respondents, associated with inconsistently ordered responses. An
alternative approach allows the exceptional observations to inform the interpretation
and application of the measure (Bohlig et al., 1998). Tools facilitating use of all data,
qualitative and quantitative, fitting themeasurementmodel and not fitting it, are avail-
able. The KidMap (Masters, 1994), for instance, is a graphical illustration of correct
and incorrect test answers, or agreeable and disagreeable survey responses. Strong
theoretical reasons and empirical support for the overall validity of the measurement
process and results (Stenner et al., 2013; Wilson, 2005) sets the stage for integrating
local departures from general expectations (Fisher Jr. & Stenner, 2018).

Individual variability is less a threat to objectivity than an opportunity for learning.
Extending Cook’s point, Wonk (2002), recounting Bluecher (1968), notes that Greek
temple pillars

are unique, curved, each one slightly different. They are harmonized in a united effort.
They are a democracy. Whereas, the temples of the older, Eastern empires are supported by
columns that are simply straight sticks, interchangeable. The phalanx of individual citizens
was stronger than the massed army of slaves [which enabled 9,000 Greek citizen soldiers to
defeat 50,000 Persian mercenaries and slaves at the Battle of Marathon in the fifth century
BCE].

In that same spirit, should we not today expect to incorporate universal standards
for reading education outcomes into the new electronic universe of digital learning
environments? Could doing so aid in extending universal human rights to literacy?
In the same way that each pillar in the Parthenon is unique but bears its full share of
the roof’s weight, each citizen in a democracy is a distinct individual but shares full
responsibility for the governance of the community. So, too, each reading student
should be recognizable for her or his separate value while still having access to valid
information on where he or she stands relative to everyone else and relative to basic
expectations for success as an adult.

5 Conclusion

Cook (1914/1979) emphasizes that:

…there are many more interesting instances of deliberate and delicate divergence from
mathematical accuracy, and it is this divergence which gives the Parthenon its living beauty.
For the essential principle of life and growth is constant variation from the rigid type.

What might we take from Cook’s sense of wonder and awe before architectural
and natural expressions of unique individuality that nonetheless conform to universal
patterns? How might divergences from mathematical perfection be seen to bring out
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the living beauty of growth in reading? Can constant variation from the rigid type
in the varying starting points, velocities, and decelerations of growth in reading be
understood as an expression of the essential principle of life and growth? If so, it may
have the potential to aid in correcting the larger problems in education potentially
glossed over by inordinate focus on matters of increased text complexity (Gamson
et al., 2013).
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