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Introduction

An Invitation

In many cases, events and objects are given to observation as extended through time and
space, and so the data about these is local and distributed in some fashion. For now, we can
think of this situation in terms of the data being indexed by, or attached to, given delimited
regions or domains of some sensors. In a very general and rough way, by local we typically
understand that something is being compared to what is around or nearby it; this is as
opposed to the global, generally understood to mean compared to everything or across an
entire domain of interest. Satisfying a property at a local level does not necessarily entail
that the same will obtain at the global level. In saying that the data is local, we just mean
that it holds throughout, or is defined for, a certain limited region; that is, its validity is
restricted to a prescribed region or partial domain or reference context. We also use this
language of locality to describe a way of evaluating a property or data ascribed to a part
or point of its extended domain in terms of what that property or data looks like viewed
from its immediate surroundings—that is, whenever it holds somewhere, it should also
hold nearby.

We collect temperature and pressure readings and thus form a notion of ranges of possi-
ble temperatures and pressures over certain geographical regions; we record the fluctuating
stockpile of products in a factory over certain business cycles; we accumulate observations
or images of certain patches of the sky or the earth; we gather testimonies or accounts
about particular events understood to have unfolded over a certain region of space-time;
we build up a collection of test results concerning various parts of the human body; we
amass collections of memories or recordings of our distinct interpretations of a certain
piece of music; we develop observations about which ethical and legal principles or laws
are respected throughout a given region or network of human actors; we form a concept
of our kitchen table via various observations and encounters, assigning certain attributes
to those regions of space-time delimiting our various encounters with the table, where we
expect that the ascribed properties or attributes are present throughout the entirety of a
region of their extension. Even if certain phenomena are not intrinsically local, frequently
their measurement or the method employed in data collection may still be local.

But even the least scrupulous person does not merely accumulate or amass local or par-
tial data points. From an early age, we try to understand the various modes of connections
and cooperations between the data, to patch these partial pieces together into a larger whole
whenever possible, to resolve inconsistencies among the various pieces, to go on to build
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2 Introduction

coherent and more global visions out of what may have been given to us only in pieces. As
informed citizens or as scientists, we look at the data given to us on arctic sea-ice melting
rates, on temperature changes in certain regions, on concentrations of greenhouse gases at
various latitudes and various ocean depths, and so on, and we build a more global vision
of the changes to our entire planet on the basis of the connections and feedbacks between
these various data. As investigators of a crime, we must piece together a complete and con-
sistent account of the events from the partial accounts of various witnesses. As doctors, we
must infer a diagnosis and a plan of action from the various individual test results concern-
ing the parts of a patient’s body. We take our many observations concerning the behavior
of certain networks of human actors and try to form global ethical guidelines or principles
to guide us in further encounters.

Yet sometimes information is simply not local in nature. Roughly, one might think of
such nonlocality in terms of how, as perceivers, certain attributes of a space may appear to
us in a particular way but then cease to manifest themselves in such a way over subparts
of that space, in which case one cannot really think of the perception as being built up
from local pieces. For a different example: in the game of ScrabbleTM, one considers the
assignment of letters, one by one, to the individual squares in a lattice of squares, with
the aim of building words out of such assignments. One might thus suspect that we have
something like a “local assignment” of data (letters in the alphabet) to an underlying space
(15 × 15 grid of squares). Yet this assignment of letters to squares to form words is not
really local in nature, since, while we do assign letters one by one to the grid of squares,
the smallest unit of the game is really a legal word, but not all subwords or parts of words
are themselves words, and so a given word (data assignment) over some larger region of
the board may cease to be a word (possible data assignment) when we restrict attention to
a subregion.

Even when information is local, there are many instances where we cannot synthesize
our partial perspectives into a more global perspective or conclusion. As investigators, we
might fail to form a coherent version of events because the testimonies of the witnesses can-
not be made to agree with what other data or evidence tells us regarding certain key events.
As musicians, we might fail to produce a compelling performance of a piece because we
have yet to figure out how to take what is best in each of our trial interpretations of certain
sections or parts of the entire score and splice them together into a coherent single per-
formance or recording of the entire piece. A doctor who receives conflicting information
from certain test results, or testimony from the patient that conflicts with the test results,
will have difficulty making a diagnosis. In explaining the game of rock-paper-scissors to
children, we tell them that rock beats scissors, scissors beats paper, and paper beats rock,
but we cannot tell the child how to win all the time, that is, we cannot answer their pleas to
provide them with a global recipe for winning this game.

For distinct reasons, differing in the gravity of the obstacle they represent, we cannot
always lift what is local or partial up to a global value assignment or solution. A problem
may have a number of viable and interesting local solutions but still fail to have even a
single global solution. When we do not have the “full story,” we might make faulty infer-
ences. Ethicists might struggle with the fact that it is not always obvious how to pass from
the instantiations or particular variations of a seemingly locally valid prescription, valid or
binding for a subset of a network of agents, to a more global principle, valid for a larger
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network. In the case of the doctor attempting to make a diagnosis out of conflicting data, it
may simply be a matter of either collecting more data, or perhaps resolving certain incon-
sistencies in the given test results by ignoring certain data in deference to other data. Other
times, as in the case of rock-paper-scissors, there is simply nothing to be done to overcome
the failed passage from the given local ranking functions to a global ranking function, for
the latter simply does not exist. The intellectually honest person will eventually want to
know if their failure to lift the local to the global is due to the inherent particularity or con-
textuality of the phenomena being observed or whether it is simply a matter of their own
inabilities to reconcile inconsistencies or repair discrepancies in data-collecting methods
so as to patch together a more global vision out of these parts.

Sheaf theory is the roughly seventy-year-old collection of concepts and tools designed
by mathematicians to tame and precisely comprehend problems with a structure like the
sorts of situations introduced above. I hope the reader will have noticed a pattern in the
various situations just described. We produce or collect assignments of data indexed to
certain regions where, whenever data is assigned to a particular region, we expect it to
be applicable throughout the entirety of that region. In most cases, these observations or
data assignments come already distributed in some way over the given network formed
by the regions; but if not, they may become so over time, as we accumulate and com-
pare more local or partial observations. In certain cases, together with the given value
assignments and a natural way of decomposing the underlying space, revealing the rela-
tions between the regions themselves, there may emerge correspondingly natural ways of
restricting assignments of data along the subregions of given regions. In such cases, in this
movement of decomposition of the space and restriction of the data assigned to the space,
the glue or system of translations binding the various data together, permitting some sort of
transit between the partial data items, becomes explicit. In this way, an internal consistency
among the parts may emerge, enabling the controlled gluing or binding together of the local
data into an integrated whole that now specifies a solution or system of assignments over
a larger region embracing all of those subregions. Such structures of coherence emerging
among the partial patches of local data, once explicitly acknowledged and developed, may
enable a unique global observation or solution, that is, an observation that no longer refers
merely to yet another local region but now extends over and embraces all the regions at
once. As such, it may even enable predictions concerning missing data or at least enable
principled comparisons between various given groups of data.

Sheaves provide us with a powerful tool for precisely modeling and working with the
sort of local-global passages indicated above. Whenever such a local-global passage is pos-
sible, the resulting global observations make transparent the forces of coherence between
the local data points by exhibiting to us the principled connections and translation formulas
between the partial information, making explicit the glue by which such partial and distinct
clumps of data can be fused together, and highlighting the qualities of the distribution of
data. And once in this framework, we may even go on to consider systematic passages or
translations between distinct such systems of local-to-global data.

On the other hand, when faced with obstructions to such a local-global passage, we typ-
ically revise our basic assumptions, or perhaps the entire structure of our data, or maybe
just our manner of assigning the data to our regions. We are usually motivated to do this
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in order to allow precisely such a global passage to come into view. When we can sat-
isfy ourselves that nothing can be done to overcome these obstructions, we examine what
the failure in this instance to pass from such local observations to the global can tell us
about the phenomena at hand. Sheaf cohomology is a tool used for capturing and revealing
precisely obstructions of this sort.

The very natural distinction between local and global, hinted at above, in fact posits a
large class of problems involving relations between the local and global. For instance, given
an overall domain of interest, or space, if we consider some part of that, when is it possible,
just through knowledge of such portions, to deduce knowledge about the whole domain of
interest? Perhaps unsurprisingly, the antagonism between the local and the global found its
initial articulation within the frameworks of geometry and topology (the study of space),
where there is a very natural account of locality or what it means for something to hold
locally. One of the virtues of sheaves and associated techniques (like sheaf cohomology) is
to have allowed for an appreciation of how this local-global dialectic is still more universal
and reaches beyond its initial appearance in the context of topology and geometry.

The main purpose of this book is to provide an inviting and (I hope) gentle introduction
to sheaf theory, where the emphasis is on explicit constructions and applications, using a
wealth of examples from many different contexts. Sheaf theory is typically presented as
a highly specialized and advanced tool, belonging mostly to algebraic topology and alge-
braic geometry (the historical homes of sheaves), and sheaves accordingly have acquired
a somewhat intimidating reputation. Even when the presentation is uncharacteristically
accessible, emphasis is typically placed on abstract results, and it is left to the reader’s
imagination (or “exercises”) to consider some of the things they might be used for or some
of the places where they can be found. This book’s primary aim is to dispel some of this
fear, to demonstrate that sheaves can be found all over (and not just in highly specialized
areas of advanced math), and to give a wider audience of readers a more inviting tour of
sheaves.

Especially over the last few years, the interest in sheaves among less specialized groups
of people appears to be growing immensely, but whenever I spoke to newcomers about
sheaves, they often expressed that the existing literature was either too specialized or too
forbidding. This book accordingly also aims to fill a gap in the existing literature, which
for the most part tends to either focus exclusively on a particular use of sheaves or assumes
a formidable preexisting background and high tolerance for abstraction. I do not share the
view that applications or concrete constructions are mere corollaries of theorems, or that
examples are mere illustrations with no power to inform deeper conceptual advances. I am
not sure if I would go as far as to endorse Vladimir Arnold’s idea that “the content of a
mathematical theory is never larger than the set of examples that are thoroughly under-
stood,” but I do believe that one barrier to the wider recognition of the immense power of
sheaf theory lies in the tendency to present much of it as if it were a forbiddingly abstruse
or specialized tool, or as belonging mainly to one area of math. One thing this book aims
to show is that it is no such thing. Moreover, well-chosen examples are not only use-
ful, both pedagogically and psychologically, in helping newcomers get a better handle on
the abstract concepts and advance forward with more confidence but they can even jostle
experts out of the rut of the “same old examples” and present interesting challenges both
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to our fundamental intuitions of the underlying concepts and to preconceptions we might
have about the true scope of applicability of those concepts.

Before outlining the contents of the book and discussing some of its unique features, the
next section offers a more explicit, but still naive, glimpse into the idea of a sheaf via a toy
construction, with the aim of better establishing intuitions about the underlying sheaf idea.

A First Pass at the Idea of a Sheaf

Suppose we have some region, which, for the moment, we can represent very naively and
abstractly as

We are less interested in the “space itself” and more in how the space serves as a site
where various things take place. In other words, we think of this region as really just an
abstract domain supporting various happenings, where such happenings carry information
for appropriate sensors or measuring instruments (in a very generalized sense), so that
interrogating the space becomes a matter of asking the sensors about what is happening
on the space.1 For instance, the region might be the site of some happenings that supply
visual information, so that as a sensor monitors the happenings over a region (or some part
of it), it collects specifically visual information about whatever is going on in the area of
its purview:

1. The description of sheaves as “measuring instruments” or the “meter sticks” associated to a space that we
are invoking—so that the set of all sheaves on a given space supply one with an arsenal of all the meter sticks
measuring it, yielding “a kind of superstructure of measurement”—ultimately comes from Grothendieck, who
was largely responsible for many of the key ideas and results in the early development of sheaf theory. In speaking
of (another early sheaf theorist) Jean Leray’s work in the 1940s, Grothendieck said this:

The essential novelty in his ideas was that of the (Abelian) sheaf over a space, to which Leray associated a corresponding
collection of cohomology groups (called “sheaf coefficients”). It is as if the good old standard “cohomological metric” which
had been used up to then to “measure” a space, had suddenly multiplied into an unimaginably large number of new “meter
sticks” of every shape, size and form imaginable, each intimately adapted to the space in question, each supplying us with
very precise information which it alone can provide. This was the dominant concept involved in the profound transformation
of our approach to spaces of every sort, and unquestionably one of the most important mathematical ideas of the 20th century.
(Grothendieck 1986, promenade 12)

Then the sheaves on a given space will incorporate

all that is most essential about that space . . . in all respects a lawful procedure (replacing consideration of the space by
consideration of the sheaves on the space), because it turns out that one can ‘reconstitute,’ in all respects, the topological
space by means of the associated ‘category of sheaves’ (or ‘arsenal’ of measuring instruments). . . . [H]enceforth one can
drop the initial space. . . . [W]hat really counts in a topological space is neither its ‘points’ nor its subsets of points, nor the
proximity relations between them; rather, it is the sheaves on that space, and the category that they produce. (Grothendieck
1986, promenade 13).

The reader for whom this is overwhelming should press on and rest assured that we will have a lot more to say
about all this later in the book, and the notions and results alluded to in the above will be motivated and discussed
in detail.

The related “sensor” perspective has been developed more recently, to great effect, in the work of Robert
Ghrist, Michael Robinson, and Justin Curry, for example, Curry (2014, chap. 10).
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6 Introduction

There might then be another sensor, taking in visual information about another region or
part of some overall space, offering another “point of view” on another part of the space;
and it may be that the underlying regions monitored by the two sensors overlap in part:

Since we are ultimately interested in the informative happenings attached to the space, we
want to see how the distinct perspectives on what is happening throughout the space are
themselves related; to this end, a very natural thing to do is to ask how the data collected
by such neighboring sensors are related. Specifically, it is very natural to ask whether and
how the perspectives are compatible on such overlapping subregions, whenever there are
such overlaps between the underlying regions over which they, individually, collect data.

A little more explicitly: if we assume the first sensor collects visual data about its region
(call it U1), we may imagine, for concreteness, that the particular sort of data available to
the sensor consists of sketches, say, of characters or letters (so that the underlying region
acts as some sort of generalized sketchpad or drawing board):
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Introduction 7

While not really necessary, the sensor might even be supposed to be equipped to process
the information it collects, translating such visual inputs into reasonable guesses about
which possible capital letter or character the partial sketch is supposed to represent. In any
event, attempting to relate the two points of views by considering their compatibility on the
region where their two surveyed regions overlap, we are really thinking about first making
a selection from each of the collections of data assigned to the individual sensors:

Corresponding to how the underlying regions are naturally related by a relation of inclu-
sion, the compatibility question, undertaken at the level of the selections (highlighted in
gray above) from the collections of all informative happenings on the respective regions,
will involve looking at whether those data items “match” (or can otherwise be made “com-
patible”) when we restrict attention to that region where the individual regions monitored
by the separate sensors overlap:
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8 Introduction

If the given selection from what they individually “see” does match on the overlap, then,
corresponding to how the regions U1 and U2 may be joined together to form a larger region,

at the level of the data on the happenings over the regions, we can pull this data back into an
item of data given now over the entire space U1 ∪U2, with the condition that we expect that
restricting this new, more comprehensive, perspective back down to the original individual
regions U1 and U2 will give us back whatever the two individual sensors originally saw for
themselves:
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Introduction 9

In other words, given some selection from what sensor 1 sees as happening in its region
U1 and from what sensor 2 sees as happening in its region U2, provided their “story”
agrees about what is happening on the overlapping region U1 ∩U2, then we can paste their
individual visions into a single and more global vision or story about what is happening
on the overall region U1 ∪U2—and we expect that this story ultimately “comes from” the
individual stories of each sensor, in the sense that restricting the “global story” to region
U1, for instance, will recover exactly what sensor 1 already saw on its own.

Another way to look at this is as follows: while the sensor on the left, when left to its
own devices, will believe that it may be seeing a part of any of the letters {B, E, F, P, R},
checking this assignment’s compatibility with the sensor on the right amounts to constrain-
ing what the left sensor believes by what the sensor on the right knows, in particular that
it cannot be seeing an E or an F. Symmetrically, the sensor on the right will have its own
“beliefs” that might, in the matching with the left sensor, be constrained by whatever the
left sensor “knows.” In matching the two sensors along their overlap, and patching their
perspectives together into a single, more collective perspective now given over a larger
region (the union of their two regions), we are letting what each sensor individually knows
constrain and be constrained by what the other knows.

In this way, as we cover more and more of a “space” (or, alternatively, as we decompose
a given space into more and more pieces), we can perform such compatibility checks at
the level of the data of the happenings on the site (our collection of regions covering a
given space) and then glue together, piece by piece, the partial perspectives represented by
each sensor’s local data collection into more and more embracing or global perspectives.
More concretely, continuing with our present example, suppose there are two additional
regions, covering now some southwest and southeast regions, respectively, so that, alto-
gether, the four regions cover some region (represented by the main square), where we
have left implicit the obvious intersections (U1 ∩U2, U3 ∩U4, U1 ∩U3, etc.):
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10 Introduction

With the four regions U1, U2, U3, and U4, to each of which there corresponds a particular
sensor, we have got the entire region U = U1 ∪U2 ∪U3 ∪U4 “covered.” Part of what this
means is that, were you to invite another sensor to observe the happenings on some further
portion of the space, in an important sense this extra sensor would be superfluous—since,
together, the four regions monitored by the four individual sensors already have the overall
region covered.

For concreteness, suppose we have the following further selections of data from the data
collected by each of these new (southwest and southeast) sensors, so that altogether, having
performed the various compatibility checks (left implicit), the resulting system of points
of view on our site can be represented as follows:
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This system of mutually compatible local data assignments or “measurements” of the hap-
penings on the space—where the various data assignments are, piece by piece, constrained
by one another, and thereby patched together to supply an assignment over the entire space
covered by the individual regions—is, in essence, what constitutes our sheaf. The idea is
that the data assignments are being “tied together” in a natural way
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where this last picture is meant to serve as motivation or clarification regarding the
agricultural terminology of “sheaf”:

Here one thinks of various regions as the parcels of an overall space covered by those
pieces, the collection of which then serves as a site where certain happenings are held to
take place, and the abstract sensors capturing local snapshots or measurements of all that
is going on in each parcel are then regarded as being collected together into “stalks” of
data, regarded as sitting over (or growing out of) the various parts of the ground space
to which they are attached. A selection of a particular snapshot made from each of the
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individual stalks (collections of snapshots) amounts to a cross-section and the process of
restriction (along intersecting regions) and collation (along unions of regions) of these
sections captures how the various stalks of data are bound together.

To sum up, then: the first characteristic feature of this construction is that some infor-
mation is received or assigned locally, so that the records or observations made by each of
the individual sensors are understood as being about, or indexed to, the entirety of some
limited region, so that whenever something holds or applies at a point of that region, it
will hold nearby as well. Next, since together the collection of regions monitored by the
individual sensors may be seen as collectively covering some overall region, we can check
that the individual sensors that cover regions that have some overlap can “communicate”
their observations to one another, and a natural expectation is that, however different their
records are on the nonoverlapping region, there should be some sort of compatibility or
agreement or mutual constraining of the data recorded by the sensors over their shared,
overlapping region; accordingly, we ask that each such pair of sensors covering overlap-
ping regions “check in” with one another. Finally, whenever such compatibility can be
established, we expect that we can bind together the information supplied by each sensor,
and regard them as patching together into a single sensor supplying data over the union of
the underlying (and partially overlapping) individual regions, in such a way that were we
to restrict that single sensor back down to one of the original regions, we would recover
exactly the partial data reported by the original sensor assigned to that individual region.

While most of the more fascinating and conspicuous examples of such a construction
come from pure and applied math, something very much like the sheaf construction appears
to be operative in so many areas of everyday life. For instance, related to the toy example
discussed above, even the way our binocular vision system works appears to involve some-
thing like the collation of images into a single image along overlapping regions whenever
there is agreement (from the input to each separate eye).2 More generally, image and face
recognition appears to operate, in a single brain (where clusters of neurons play the role of
individual sensors), in something like the patchwork “sum of parts” way described above.
Moving beyond the individual, collective knowledge itself appears to operate in a funda-
mentally similar way: a society’s store of knowledge consists of a vast patchwork built
up of partial records and data items referring to delimited (possibly overlapping) domains
of interest, each of which data items can be (and often are!) checked for compatibility
whenever they involve data that refers to, or makes claims about, the same underlying
domain.

The very simple and naive presentation given to it above admittedly runs the risk of
downplaying the power and scope of this construction; it would be difficult to overstate
just how powerful the underlying idea of a sheaf is. An upshot of the previous illustration,
though, is that while sheaves are often regarded as highly abstract and specialized con-
structions whose power derives from their sophistication, the truth is that the underlying
idea is so ubiquitous, so “right before our eyes,” that one might even be impressed that it

2. That visual information processing itself seems to fundamentally involve some sort of sheaf-like process
appears even more acutely in other species, such as certain insects, like the dragonfly, whose compound eyes
contain up to 30,000 facets, each facet within the eye pointing in a slightly different direction and taking in light
emanating from only one particular direction, resulting in a mosaic of partially overlapping images that are then
integrated in the insect brain.
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was finally named explicitly so that substantial efforts could be made to refine our ideas of
it. In this context, one is reminded of the old joke about the fish, where an older fish swims
up to two younger fish, and greets them, “Morning, how’s the water?” After swimming
along for some time, one of the younger fishes turns to the other and says,

“What the hell is water?”

In this same spirit, Grothendieck would highlight precisely this “simplicity” of the
fundamental idea behind sheaves (and, more generally, toposes):

As even with the idea of sheaves (due to Leray), or that of schemes, as with all grand ideas that
overthrow the established vision of things, the idea of the topos had everything one could hope
to cause a disturbance, primarily through its “self-evident” naturalness, through its simplicity (at
the limit naive, simple-minded, “infantile”)—through that special quality which so often makes
us cry out: “Oh, that’s all there is to it!” in a tone mixing betrayal with envy, that innuendo of the
“extravagant,” the “frivolous,” that one reserves for all things that are unsettling by their unforeseen
simplicity, causing us to recall, perhaps, the long buried days of our infancy. (Grothendieck 1986,
promenade 13)

Outline of Contents

The rest of the book is structured as follows. The first three chapters, together with the sixth
and seventh chapters, are dedicated to exposition of the most important category theoretic
concepts, tools, and results needed for the development of sheaves. Category theory is
indispensable to the presentation and understanding of the notions of sheaf theory. While
in the last decade there have appeared a number of accessible introductions to category
theory,3 feedback from readers of earlier drafts of this book convinced me that the best
approach to an introduction to sheaves that aims to reach a much wider audience than
usual would need to be as self-contained as possible. In these chapters, all the necessary
categorical fundamentals are accordingly motivated and developed. The emphasis here, as
elsewhere in the book, is on explicit constructions and creative examples. For instance,
the concept of an adjunction, and key abstract properties of such things, is introduced
and developed first through an extended example involving “dilating” and “eroding” an
image, then through the development of “possibility” and “necessity” modalities applied
to modeling the consideration of attributes of a person applied to them qua the different
“hats” they wear in life, and then applied to graphs of traveling routes.

Chapter 1 introduces categories, some important examples of categories, and some of
what one can do with categories.

Chapter 2 develops functors and presheaves in considerable depth. It discusses four
main perspectives on presheaves, works through some notable examples of each of them,
and develops some useful ways of understanding such constructions more generally.
This is done both for its own sake and in order to build up to the following chapters,

3. The general reader without much, or any, background in category theory is especially encouraged to have a look
at the engaging and highly accessible Spivak (2014). Readers with more prior mathematical experience may find
Riehl (2016) a compelling introduction, displaying as it does the ubiquity of categorical constructions throughout
many areas of mathematics. Lawvere and Rosebrugh (2003) are also highly recommended, especially for those
readers content to be challenged to work many things out for themselves through thought-provoking exercises,
often giving one the feeling of rediscovering things for oneself.
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especially chapter 5, dedicated to the initial development of the sheaf concept. Natural
transformations are also introduced in this chapter.

Chapter 3 covers universal properties and some important universal constructions.
All that is needed to offer a definition of a sheaf is the notion of a presheaf (covered

in chapter 2) and some basic notions from topology, such as that of a cover. With the aim
of exposing the reader to the sheaf notion sooner rather than later, chapter 4 covers the
requisite notions from general topology, and raises some more philosophical questions that
are taken up in later parts of the book (including the appendix).

Chapter 5 introduces sheaves (on topological spaces) and some key sheaf concepts and
results through some initial examples. Throughout this chapter, some of the vital concep-
tual aspects of sheaves in the context of topological spaces are motivated, teased out, and
illustrated through the various examples.

Chapter 6 is dedicated to the Yoneda results—perhaps the most important idea in
category theory—and the associated Yoneda philosophy.

Chapter 7 returns to, and completes, the treatment of categorical foundations for sheaves,
by covering adjunctions. As usual, the key features of this construction are teased out
through a variety of examples and worked-out constructions.

Chapter 8 returns to sheaves and covers some more involved results, rooted in histori-
cally significant examples. This chapter also includes a section on what is not a sheaf, or
when and how the sheaf construction fails, as well as an important case where the notions
of sheaf and presheaf coincide.

Chapter 9 is dedicated to a “hands on” introduction to sheaf cohomology. The center-
piece of this chapter is an explicit construction, with worked-out computations, involving
sheaves on complexes. There is also a brief look at cosheaves and an interesting example
relating sheaves and cosheaves.

Chapter 10 revisits and revises a number of earlier concepts, and develops sheaves from
the more general perspective of Grothendieck toposes. The important notions are motivated
and developed through a variety of examples.

We move through various layers of abstraction, from sheaves on a site (with a
Grothendieck “topology”) to elementary toposes, the topic of chapter 11. The later sections
of chapter 11 are devoted to illustrations, through concrete examples, of some slightly more
advanced topos-theoretical notions. The book concludes with an abridged presentation of
some special topics, including a brief glimpse into cohesive toposes. There are many other
directions the book could have taken at this point, and more advanced sheaf-theoretical
topics that might have been considered, but in the interest of space, attention has been
confined in that final section to the special topic of cohesive toposes.

Finally, there is an appendix, dedicated to exploring in greater depth the open philosoph-
ical questions raised in chapter 4 on general topology and the concept of space, doing so by
building on some of the constructions introduced in chapter 7’s treatment of adjunctions.

Remarks on Distinct Features of This Book

This book has three notable features that may deserve brief discussion:

1. an emphasis on pictures;
2. an emphasis on detailed worked-out examples from different areas of application; and
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3. an emphasis on ideas.

Regarding the first of these: a colleague once told me that they had read an entire book on
sheaf theory, but it was not until years later, after they saw a simple and evocative picture
drawn of a certain sheaf, that they finally felt like they understood what sheaves were about.
I suspect that this person is by no means alone in their experience. If this is really a fair
description of the experience of some newcomers to sheaves, you could say that, at least as
far as sheaves are concerned, a picture is worth not a thousand words but many thousands
of words! Inspired by this experience, I have tried to include, throughout the book, a great
many pictures.

The second feature of the book is that it takes part in the burgeoning area of applied
category theory, and as such aims to expand the repertoire of examples of sheaves, beyond
those that have already had great impact within mathematics. As in any area of life, there
can be a kind of “groupthink” that takes over an academic niche, and examples are usu-
ally the first things to suffer the negative consequences of this common phenomenon—for
instance, many standard texts on sheaves start with the constant sheaf and then are satisfied
to mention a handful of other standard examples and well-established uses within mathe-
matics, before pressing on with abstract results. Especially in recent years, there has been
something of a push against this, with a number of exciting new applications of sheaves to
topological data analysis,4 to sensor networks,5 to opinion dynamics (including selective
opinion modulation and lying) on social networks,6 to target tracking,7 to dynamical sys-
tems and behavior types,8 to name just a few. This book has been greatly inspired by such
efforts.

Regarding the third feature of this book: throughout each chapter, I occasionally pause
for a few pages to highlight, in a more philosophical fashion (in what I call “Philosophical
Passes”), some of the important conceptual features to have emerged from the preceding
technical developments. The overall aim of the “Philosophical Pass” sections is to period-
ically step back from the technical details and examine the contributions of sheaf theory
and category theory to the broader development of ideas. These sections may provide some
needed rest for the reader, letting the brain productively switch modes for some time, and
giving them something to think about beyond the formal details. A lot of category theory,
and the sheaf theory built on it, is deeply philosophical, in the sense that it speaks to, and
further probes, questions and ideas that have fascinated human beings for millennia, going
to the heart of some of the most lasting and knotty questions concerning, for instance:

• What is an object (and can we give an entirely relational account of objects, that is,
display an object in terms of all its relations)?

• What is universality?
• What is negation?
• What fundamental notions are codified by our concept of space?

4. As in Curry (2014).
5. As in Robinson (2016b).
6. As in Hansen and Ghrist (2020).
7. As in the work of Robert Ghrist.
8. As in Schultz and Spivak (2017) and Schultz, Spivak, and Vasilakopoulou (2016).
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While a number of other issues will be discussed, some of the main philosophical issues
that will be explored in the book engage a few decisive dialectics, notably that of the

• local-global,
• continuous-discrete,
• particular-universal, and
• object-relation.

The struggle to articulate the peculiar relations and antagonisms between each of the mem-
bers of such pairs has been ongoing for centuries, and while mathematics has advanced
inquiry into these matters more than any other discipline, it remains the case that there is
a great history to investigating such dialectics, and they are not the sole property of math-
ematics. Occasionally stepping back to ground specialized treatments of these matters in
the broader discussion is useful not only for reminding us of some of the stakes of our
formalism, but also for connecting the activity of mathematics back to the longer history
and future of inquiry, as human beings, into such fundamental questions.

A word about philosophy.9 Specialization has manifold benefits, and even if it didn’t,
it seems to be the price we must pay, as beings with very limited resources, for doing
something well. At times though—especially during times like ours, an age of increased
specialization—the incentive structures for engaging with something outside one’s special-
ization and subspecializations can deteriorate. Whether the thick boundaries of the adult’s
specialized world have barely been felt by them, or because they still have the luxury of
not being overly concerned with the pursuit of excellence, children are good at refreshingly
disrespecting the adult’s divided world. As we grow out of being a child, those boundaries
become more and more real for us, yet most of us (even the hardened specialist) do not
really entirely outgrow or utterly forget that state of the child, nor do we ever come to fully
believe in the reality of those boundaries. And even if we tell ourselves that we do, the child
seems to return, however faintly or mischievously, in unexpected ways. We find ourselves
wondering if such a thing as humor can be defined within music in a purely musical way, or
if certain growth patterns found throughout nature can tell us something about the impulse
movements of financial markets. Through a mixture of curiosity, a drive to unify and orga-
nize, or sometimes just a stupid whim, we retain something of this impulse to take concepts
beyond where we are told they belong. Such inquiries can only be vague and tentative at
first, and there is always a risk they will not lead anywhere. Over time, certain inquiries
mature and start to appear a little differently to us: we find ourselves seriously considering
if there is life on other planets, or how we can get machines to learn complicated behav-
iors purely using reinforcements built into the environment, the way so many animals do.
If we look carefully, even in those more established questions we can still recognize that
same childlike impulse to disregard the myriad cues that exert pressure on the questioner
to leave concepts where they belong: “‘Life’ is a here thing!” “Learning is something only
carbon-based beings can do!”

9. No part of this book rests on the remarks made in the next three paragraphs. They are provided for context,
and were prompted by questions I received from separate mathematician colleagues curious about how I, as a
professional philosopher, understood “philosophy” and its relation to category theory.
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When it works, taking concepts beyond the confines of their native setting can have the
effect of attaining greater generality. This impulse to attain greater generality—which is
born out of taking concepts beyond where they belong—is the minimal working sense of
“philosophical” that I intend in the present context. In this sense, philosophy is something
that we all do and that does not at all belong to “the philosopher.” And while it is perhaps
one of the greatest beneficiaries of the advantages of specialization, mathematics funda-
mentally shares this same strong drive toward the general—which may in part account for
why, throughout the centuries, there has been a great deal of interaction between the disci-
plines of philosophy and mathematics, even to the point that for much of history it would
have been difficult to draw a sharp line between the two. This intimate bond becomes espe-
cially evident with category theory. One could argue that, at least in large part, philosophy
(in a more traditional sense) has evolved as the informal study of universality (and uni-
versal phenomena). One could argue that category theory is the formal study of formal
universality. As such, it is no surprise that there appear to be a number of especially strong
connections between the matters pursued by category theorists and those of philosophers.

I happen to believe that many of the staple questions that were originally the provenance
of the philosopher will eventually be handled with the care they deserve once they are ade-
quately framed as problems within category theory, and that in the near future every major
philosophical dialectic—universal-particular, continuous-discrete, global-local, quality-
quantity—and even less obvious problems, such as those of “personal identity,” will be
handed over to, and considerably enriched by, the category theorist. In the other direction,
a variety of basic elements of category theory appear to raise philosophical questions of
their own, and certain more advanced developments (such as with cohesive toposes, dis-
cussed in chapter 11) seem almost inherently philosophical, and poised to attack a number
of the traditional philosophical problems. But we are probably at least 100 years away from
a world in which one can adequately realize that category theory is everything philosophy
ever strove to be, and let that long, rich, and frustrating tradition take on a new form. In the
meantime, one of the aims of this book is to encourage those from each camp to engage
with the other—and the “Philosophical Pass” sections are opportunities to step back from
the formal details, gather our thoughts, relate the mathematical concepts to broader or tan-
gential conceptual developments, and occasionally engage in a little pushing of the formal
concepts beyond where they belong.

I would encourage all readers to pursue the philosophical sections of this book—though
they are set off in boxes to mark them off from the rest of the text so that the more narrowly
focused reader can easily find their way around them should they insist on reading only
the mathematics. To encourage the more strictly mathematical reader to engage with those
sections, though, I will just add that it seems that nearly all great mathematicians of the past
have let themselves be provoked by, and at times have even engaged with, the philosophical
dimensions of their work.

Finally, while emphasis on concrete examples from unexpected areas beyond the con-
fines of pure mathematics is already unusual enough for a text on sheaf theory, and while
engagement with philosophical dimensions of the mathematics is itself atypical for a pri-
marily mathematical text, the reader might be even more surprised to find these two things
paired together. In response to this reaction, let me bastardize the philosopher Kant and say
this: knowledge of examples and applications without a sense of the general ideas these
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exemplify and are powered by is blind, while knowledge of general ideas without a famil-
iarity with all sorts of examples and applications is empty. Various philosophers of the past,
like Aristotle and Spinoza, have set as an ideal for the most demanding and adequate kind
of knowledge one that can look past the apparent immediacy of the universal and the par-
ticular, taken on their own, and instead achieve a more unified understanding of the subtle
mediations between our knowledge of the universal and of the particular. Moreover, it has
been my experience that often the only way to really grasp the most general, and to appre-
ciate the various needs to keep pushing things in the direction of the more general, is to
sink as deeply as possible into certain particular problems. In a peculiar slogan: often what
is furthest (most general) can be most readily approached through closer consideration of
what is nearest (least general). In this connection, I believe that the ideal mathematician
would represent some sort of fusion between the Grothendieckian impulse toward extreme
abstraction and general ideas, on the one hand, and the intimate exploration and care for
particulars embodied by the likes of a Ramanujan, on the other. While I would not pretend
to achieve anything remotely close to this fusion for myself, I do believe that it is a noble
ideal to strive for, and the atypical pairing of engagement with general ideas and respect
for examples found in this book has been influenced by that belief.

What the Book Is (and Requirements of the Reader)

I should add a word about what this book aims to be and who it is for. One reviewer of an
earlier version characterized the book’s most significant contribution as

providing an accessible sheaf theory book filled with fun examples, with a broad philosophical
bent.

I think this is a very clear statement of what I have wanted to achieve with this book. There
also happens to be a great gap between the few accessible books on the basic category
theory (and other prerequisites) needed to develop sheaves and any currently published
book on sheaf theory. Anyone who would find a bridge over that chasm useful, or who
would be engaged by a sheaf theory book that meets the above description, will likely find
this book valuable.

Realistically, though, anyone who would find their way to this book will likely have
some prior mathematical training and interests. The primary audience of this book should
include open-minded mathematicians, scientists and engineers with some broader math-
ematical interests, and mathematically inclined philosophers. Because of the distinctness
of these three groups, I highlight, at the beginning of each chapter, the mathematical and
philosophical goals and topics explored. As for those with interests of the practical sort:
there are a number of examples, constructions, and discussions that should be of interest;
however, there may be certain sections (appealing to those with more abstract aspirations
or those with a philosophical bent) that might be of less interest to such a reader. Such read-
ers might try dipping their toes into those sections and skimming on first reading, focusing
most of their attention on the examples.

As for general requirements of the reader, I have tried to make this book as self-contained
as possible and minimize the prerequisites in order to extend the reach as far as possible
to nonexperts. I thus assume only some basic familiarity with set theory and mathematical
reasoning—all other concepts needed for the formulation and understanding of sheaves,
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including the basics of category theory, topology, and anything else, are motivated and
introduced in this book.

In the end, I have tried to write the book I wish I had when I was first learning sheaf the-
ory. There are some outstanding books on sheaf theory—notably Mac Lane and Moerdijk’s
Sheaves in Geometry and Logic—but such texts can be rather demanding on the beginner,
assume a great deal of mathematical maturity, and generally appeal to a rather expert and
self-sufficient audience. In this book, I have tried to assume a great deal less than such
texts, to engage a broader audience, and generally adopt a more gentle approach.

What the Book Is Not

As one might already imagine, given its unique aims and approach, this book is not meant
to be a standard textbook for experts learning about sheaf theory as it is usually taught in
one of its specialized contexts, such as algebraic geometry. An expert reader who has cer-
tain expectations about what this book should be, based on standard specialized references
on sheaves, will surely have those expectations violated.

In this connection, this book deliberately minimizes treatment of applications to prob-
lems in algebraic geometry, one of the historical homes of sheaf theory. This was
intentional—in part since these applications require a level of mathematical maturity which
this book tries not to assume of the reader, in part because there are already many references
devoted to sheaves in algebraic geometry. Beyond this, the omission is also somewhat
philosophical. Tom Leinster wrote, in 2010, a blog post entitled “Sheaves Do Not Belong
to Algebraic Geometry”:

They are, of course, very useful in algebraic geometry (as is the equals sign). Also, human beings
discovered them while developing algebraic geometry, which is why many of them still make the
association. But. . . sheaves are an inevitable consequence of general ideas that have nothing to do
with algebraic geometry.

This is a perspective I share, and I have accordingly sought to avoid including applications
to algebraic geometry, with the aim of redistributing the somewhat disproportionate control
algebraic geometers have taken over these (demonstrably more general and far-reaching)
ideas.

This book is also not meant to be a complete reference. This is part of a trade-off one
must make when attempting to appeal to, and sustain the interest of, a wider audience of
nonexperts. There are a number of additional topics I would have loved to cover, and further
examples I would have loved to include, yet doing so with the aim of completeness could
have easily made this book extend to over 1,000 pages. It seemed to me more desirable to
welcome more newcomers to sheaves with a book of a more manageable size.
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