
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

The Gross-Saccoman Conjecture is True
Pablo Romero1,2,3*
1Instituto de Matemática y Estadística, Prof.
Ing. Rafael Laguardia (IMERL). Facultad de
Ingeniería, Universidad de la República.
Montevideo, Uruguay.
2Instituto de Computación. Facultad de
Ingeniería, Universidad de la República.
Montevideo, Uruguay.
3Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires. Argentina.
Correspondence
Facultad de Ingeniería, Universidad de la
República. Julio Herrera y Reissig 565, PC
11300. Montevideo, Uruguay
Email: promero@fing.edu.uy

Consider a graph with perfect nodes but independent edge
failures with identical probability ρ. The reliability is the
connectedness probability of the random graph. A graph
with n nodes and e edges is uniformly optimally reliable (UOR)
if it has the greatest reliability among all graphs with the
same number of nodes and edges, for all values of ρ. In
1997, Gross and Saccoman proved that the simple UOR
graphs for e = n , e = n + 1 and e = n + 2 are also optimal
when the classes are extended to include multigraphs [6].
The authors conjectured that the UOR simple graphs for
e = n + 3 are optimal in multigraphs as well. A proof of the
Gross-Saccoman conjecture is introduced.
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1 | PRELIMINARIES
In this work a graph may have multiple edges. Consider a graph G = (V , E ) with n nodes and e edges whose failures
are independent, with identical probability ρ. The unreliability polynomial, UG (ρ) , is the probability that the resulting
random graph is not connected:

UG (ρ) =
e∑
k=0

mk (G )ρk (1 − ρ)e−k , (1)

wheremk (G ) is the number of edge-cuts of size k . The reliability is RG (ρ) = 1−UG (ρ) . A graphG is uniformly optimally
reliable (UOR), if RG (ρ) ≥ RH (ρ) for all ρ ∈ [0, 1] and all graphs H with the same number of nodes and edges. This
concept has been introduced by Boesch in 1986 [2]. However, the progress in this field is slow, and there are several
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open conjectures. It is obvious that if mk (G ) ≤ mk (H ) for all k ∈ {0, 1, . . . , e } and all graphs H , then G is UOR. The
converse is an enigmatic conjecture posed by Boesch in his foundational article [2].

Let us denote by Ω (n, e) the set of all graphs with n nodes and e edges, and by Ωs (n, e) the subclass of simple
graphs. All the trees share the same unreliability polynomial, and they are UOR in the class Ωs (n, n − 1) . The UOR
graphs in the class Ωs (n, n) are elementary cycles. The first non-trivial UOR graphs were discovered by Boesch et
al. [3]. The authors formally proved that some elementary subdivisions of a θ-graph and K4 are UOR in the respective
classes Ωs (n, n + 1) and Ωs (n, n + 2) ; see Figure 1 for a representation of a θ-graph. They conjectured that special
subdivisions of the complete bipartite graph K3,3 are UOR for the classes Ωs (n, n + 3) , and Wang formally proved
that the conjecture is true [9]. A natural question is to determine if the optimality is a hereditary property from
Ωs (n, e) to Ω (n, e) . This question is intrinsically attractive from a theoretical viewpoint, and it also finds applications
in communication systems, where a trade-off between redundancy (i.e., repeated links) andmulti-path diversity should
be met. Gross and Saccoman proved that the UOR graphs from the previous classes e = n , e = n + 1 and e = n + 2 are
also UOR for multigraphs. They conjectured that the elementary subdivisions of K3,3 that Wang proved to be UOR in
the classes Ωs (n, n + 3) are also UOR for multigraphs. Here it is proved that the Gross-Saccoman conjecture is true.

This article is organized in the following manner. Section 2 presents the families of UOR graphs for the respective
classes e = n+1, e = n+2 and particularly when e = n+3, which is our focus. A proof-strategy is presented in Section 3,
where the set Ω (n, n + 3) is partitioned into different sub-classes. The study of different hierarchical sub-classes is
presented in Section 4, while the main result is proved in Section 5.

Without loss of generality, we will restrict our attention to connected graphs solely. For general graph-theoretic
terminology, the reader is invited to consult the excellent book authored by Harary [7]. Some concepts are presented
here for our specific purpose. A cut-node is a node v such that G − v is not connected. A graph is biconnected if it has
no cut-nodes. A chain is an elementary path, whose internal nodes have degree 2 and the external nodes have degree
strictly greater than 2. A θ-graph consists of two nodes with degree 3 joined by three chains.

u v

z1 z2 zt−1

y1 y2 ys−1

x1 x2 xr−1

F IGURE 1 θ-graph with lengths r , s and t .

The co-rank of a biconnected graphG with n nodes and e edges, is c (G ) = e −n+1. A bridge is an edge e such that
G −e is not connected. A cut is an edge-set C ⊆ E such thatG −C is not connected. The number of cuts of size k for a
graph G , or k -cuts, is here denoted mk (G ) . A graph G is stronger than H , and it is denoted G � H , if both graphs have
the same number of nodes and edges, and mk (G ) ≤ mk (H ) for all k ∈ {0, . . . , e }. We also say that H is weaker than
G . The relation � will be used in the proof, and it is a partial order in the set Ω (n, e) . A graph G is the strongest in an
arbitrary graph class Ω, if G � H for all H ∈ Ω. The strongest graph in Ωs (n, e) is UOR, whenever it exists. There are
infinite pairs of (n, e) such that a UOR does not exist in simple graphs [8], and in multigraphs [4]. The reader is invited
to consult [1] for an overview of the discovered UOR graphs so far. A reliability-increasing transformation is a bijective
edge-mapping f : E (G ) → E (G ′) , such that RG′ (ρ) ≥ RG (ρ) for all ρ ∈ [0, 1]. Furthermore, a reliability-increasing
transformation f is strong if the inverse function f −1 assigns cuts in G ′ to cuts in G . Observe that if such a function
exists, then G has at least as many cuts as G ′, and G ′ � G .
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2 | UNIFORMLY OPTIMALLY RELIABLE SIMPLE GRAPHS
Boesch et al. proved that a sequence θn of θ-graphs are UOR graphs in the classes Ωs (n, n + 1) , when the length
of its chains differ at most by one. In the class Ωs (n, n + 2) , the same authors proved that some special elementary
subdivisions of K4 are UOR for all n ≥ 4. To define the corresponding family K (n, n + 2) of UOR graphs, first observe
that K4 accepts an edge-partition into three perfect matchings, E (K4) = {e1, e2 } ∪ {e3, e4 } ∪ {e5, e6 }. Consider the
natural division n−4 = 6s + r for some r ≤ 5. We must insert n−4 nodes into the six edges such that the lengths of the
resulting chains are lei = s +2 if i ≤ r , or lei = s +1 otherwise; see Figure 2 for an illustrative description. Boesch et al.
observed that K3,3 also accepts a tri-partition of perfect matchings, and they conjectured that identical subdivisions
lead to a novel family Gu (n, n + 3) of graphs, which are also UOR for the class Ωs (n, n + 3) . The conjecture is true,
and a full proof was introduced by Wang [9]. Later, Gross and Saccoman proved that the elementary cycles, balanced
θ-graphs and K (n, n + 2) are UOR even when the classes are extended to multigraphs. The authors proposed the
following:
Conjecture 1 (Gross-Saccoman [6]) Gu (n, n + 3) is UOR in the extended set of multigraphs Ω (n, n + 3) , for all n ≥ 6.

A proof is here included. First, an explicit definition forGu (n, n+3) is given. First, consider an arbitrary partition of the
edge-set of K3,3 into three perfect matchings: E (K3,3) = {e1, e2, e3 } ∪ {e4, e5, e6 } ∪ {e7, e8, e9 }. Consider the natural
division n − 6 = 9s + r , for some r ≤ 8. The lengths of the respective chains are lei = s + 2, if i ≤ r , or lei = s + 1otherwise. In Figure 2, Gu (n, n + 3) is represented when n = 16. The nodes are labeled following the insertion order.
In this case le1 = 3, and lei = 2 for all i ∈ {2, . . . , 9}.

1
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F IGURE 2 Graphs K (n, n + 2) for n = 11 (left), and Gu (n, n + 3) for n = 16 (right).
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3 | PROOF STRATEGY
Lemma 1 restricts our study to biconnected graphs. It was proved by Wang [9] and rediscovered by Canale et al. [5]:
Lemma 1 For every non-biconnected graphG ∈ Ω (n, e) , there exists a strong reliability-increasing transformation f : G →
G ′ such that G ′ is biconnected, whenever e ≥ n .

In particular, for every non-biconnected graph G there exists some biconnected graph G ′ such that G ′ � G .
Figures 3 and 4 illustrate the idea of the proof, where the bridges are first included in cycles one-by-one (Figure 3),
and then shortcuts are considered to avoid cut-nodes (Figure 4). The authors proved the result for the set Ωs (n, e) ,
but the same transformations work in Ω (n, e) . In fact, observe that after Step 1, e = (vw ) is not a bridge any more
in the graph G1 = G − (x y ) + (yv ) , where the edge (x y ) belongs to some elementary cycle from G . A bridgeless
graph G1out is obtained after an iterative application of Step 1. The resulting graph G1out could have some cut-node w .
However, in Step 2 we consider G2 = G1out − (wx ) + (x y ) , and w is not a cut-node any more. A biconnected graph
G2out is obtained after an iterative application of Step 2, and the authors in [5] proved that G2out � G1out , and G1out � G .Finally, Lemma 1 is proved choosing G ′ = G2out . The reader is invited to consult [5] for further details.

v

w x

y

P

F IGURE 3 Step 1: avoiding the bridge e = (vw ) .

w

x y

F IGURE 4 Step 2: avoiding the cut-node w .
The co-rank of a biconnected graph G ∈ Ω (n, n + 3) is c (G ) = 4. In biconnected graphs m0 (G ) = m1 (G ) = 0,

and if we remove five edges or more, the resulting subgraph is not connected: mi (G ) = (n+3
i

) , for all i ≥ 5. From
Expression (1), the simultaneousminimization of the cutsm2 (G ) ,m3 (G ) andm4 (G ) , is enough for a biconnected graph
to become the strongest. Observe that the co-rank is increased a unit when a repeated edge is included. Recall that the
addition of an open ear in a graph G is the addition of an external elementary path Pu,v (this is, Pu,v ∩G = {u,v }), that
connects non-adjacent nodes u and v in the graph G . A celebrated work fromWhitney states that every biconnected
graph is an iterative augmentation of open ears, starting from an elementary cycle [10]. Observe that the addition of
an open ear of an elementary cycle is always a θ-graph. Then the biconnected graphs in Ω (n, n +3) can be partitioned
into four sub-classes:
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1. Ω1: Cycles with three repeated edges.
2. Ω2: θ-graphs with two repeated edges.
3. Ω3: θ-graphs with one open ear and one repeated edge.
4. Ω4: Simple graphs: Ω4 = Ωs (n, n + 3) .
Given two graph-sets Ω and Ω′, we say that Ω′ dominates Ω and denote Ω → Ω′, if for everyG ∈ Ω there exists some
stronger graphG ′ ∈ Ω′. In this case, Ω is dominated by Ω′. This relation is transitive, as well as the precedence relation
� between graphs.

The proof-strategy follows a laddering-domination technique, where we formally show that Ωi → Ωi+1, that is, Ωi
is dominated by Ωi+1, for i ∈ {1, 2, 3}. In order to prove the chain of dominations Ω1 → Ω2 → Ω3 → Ω4, four steps
are considered:
1. Prove the existence of the strongest graph C ∗ ∈ Ω1 (Subsection 4.1).
2. Show that C ∗ is weaker than some graph H ∈ Ω2 (Subsection 4.2).
3. For every graph G ∈ Ω2, find a stronger graph G ′ ∈ Ω3 (Subsection 4.3).
4. Prove the existence of the strongest graph K ∗ ∈ Ω3 (Subsection 4.4).
5. Find a simple graph Hs ∈ Ω4 = Ωs (n, n + 3) such that Hs � K ∗ (Subsection 4.5).
The main result follows from the previous statements and the transitivity of the domination. In fact, by Steps 1-4 we
immediately obtain that Ω1 → Ω2 → Ω3 → Ω4, andGu (n, n +2) is the strongest graph in the strongest family Ω4. The
aforementioned relations will be proved using elementary combinatorics (counting cuts) in some cases, and exploiting
the following property shared by some sequences of UOR graphs in some others:
Property 1 (Self-Similarity) A graph-sequence {Gn }n≥1 verifies the self-similarity property if there exists some natural n0
such that Gn+1 ∗ en+1 = Gn , for all n ≥ n0, where the symbol ∗ stands for edge-contraction, for some edge-sequence
en+1 ∈ E (Gn+1) .

Since the contraction is the inverse operation of the subdivision, the three sequences θn ∈ Ωs (n, n + 1) , K (n, n + 2) ∈
Ωs (n, n+2) andGu (n, n+3) ∈ Ωs (n, n+3) share the self-similarity property. In fact, these graph-sequences are derived
by iterative elementary subdivisions, and the previous graph is recovered after the contraction of the subdivided edges:
Gn+1 ∗ en+1 = Gn .

A curious fact is that the intermediate graph K ∗ is derived using the self-similarity property shared by all the
members from the sequence K (n, n + 2) . Using the fact that K (n, n + 2) is the strongest sequence in Ωs (n, n + 2) , we
will duplicate the last subdivided edge e , denoted by e′, and K ∗ = K (n, n + 2) ∪ {e′ } will be the strongest in the family
Ω3. Gross and Saccoman pointed out that the analysis in Ω (n, n +3) is involved, given its large number of sub-classes.
This self-similarity property greatly simplifies the proof, and avoids an exhaustive classification of the sub-class Ω3, as
we will see in Subsection 4.4. Additionally, it could also be considered for future work in the study of new graph-sets
Ω (n, e) .
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4 | HIERARCHICAL SUB-CLASSES
4.1 | Strongest graph in Ω1

The strongest graph C ∗ ∈ Ω1 will be found by counting cuts. Figure 5 presents the three types of graphs belonging to
Ω1. The three types C (3) , C (2,1) and C (1,1,1) can be identified with the corresponding partitions: 3 = 2 + 1 = 1 + 1 + 1,
where 3 means that the same edge is picked 3 times to include repeated edges, and three different edges are picked
for the case 1 + 1 + 1. The repeated edges are contiguous in Figure 5; however, the number of cuts does not depend
on the relative position of the repeated edges.

x1

x2

x3

x4

x5

x6

x7

xn

x1

x2

x3

x4

x5

x6

x7

xn

x1

xn

x2

xn

x3

xnx4 xn

x5

xn

x6

xn

x7

xn

F IGURE 5 Graph-types C (3) (left), C (2,1) (middle) and C ∗ = C (1,1,1) (right).

Lemma 2 C (1,1,1) = C ∗ (n) is the strongest graph in the class Ω1.

Proof We count cuts and use the identity (n+1
i

)
=

(n
i

)
+

( n
i−1

) :
m2 (C (3) ) =

(
n − 1
2

)
>

(
n − 2
2

)
= m2 (C (2,1) ) >

(
n − 3
2

)
= m3 (C (1,1,1) ) ;

m3 (C (3) ) =
(
n − 1
3

)
+ 4

(
n − 1
2

)
=

(
n − 2
3

)
+ 5

(
n − 2
2

)
+ 4(n − 2) > m3 (C (2,1) )

=

(
n − 2
3

)
+ 5

(
n − 2
2

)
+ n − 2 =

(
n − 3
3

)
+ 6

(
n − 3
2

)
+ 5(n − 3) + n − 2

>

(
n − 3
3

)
+ 6

(
n − 3
2

)
+ 3(n − 3) = m3 (C (1,1,1) ) ;

m4 (C (3) ) =
(
n − 1
4

)
+ 4

(
n − 1
3

)
+ 6

(
n − 1
2

)
=

(
n − 2
4

)
+ 5

(
n − 2
3

)
+ 10

(
n − 2
2

)
+ 6(n − 2) > m4 (C (2,1) )

=

(
n − 2
4

)
+ 5

(
n − 2
3

)
+ 10

(
n − 2
2

)
+ 4(n − 2)

=

(
n − 3
4

)
+ 6

(
n − 3
3

)
+ 15

(
n − 3
2

)
+ 14(n − 2)

>

(
n − 3
4

)
+ 6

(
n − 3
3

)
+ 15

(
n − 3
2

)
+ 12(n − 3) = m4 (C (1,1,1) )�
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4.2 | The Sub-Class Ω1 is dominated by Ω2

By Lemma 2, we know that C ∗ is the strongest in Ω1. If we find a member H ∈ Ω2 that is stronger than C ∗, the whole
sub-class Ω1 is dominated by Ω2.

x1

x2

x3

x4

x5

x6

x7

xn

x1

x2

x3

x4

x5

x6

x7

xn

F IGURE 6 Graphs C ∗ ∈ Ω1 (left) and H ∈ Ω2 (right)

Lemma 3 H � C ∗ for some H ∈ Ω2.

Proof ConsiderH = C ∗−(x3, x4)∪{(x1, x4) } depicted in Figure 6. By direct counting, we show thatmk (H ) ≤ mk (C ∗)
for k ∈ {2, 3, 4}:

m2 (C ∗) =
(
n − 3
2

)
≥

(
n − 4
2

)
= m2 (H ) ;

m3 (C ∗) =
(
n − 3
3

)
+ 6

(
n − 3
2

)
+ 3(n − 3) =

(
n − 4
3

)
+ 7

(
n − 4
2

)
+ 6(n − 4) + 3(n − 3)

≥
(
n − 4
3

)
+ 6

(
n − 4
2

)
+ (n − 4) + 2 = m3 (H ) ;

m4 (C ∗) =
(
n − 3
4

)
+ 6

(
n − 3
3

)
+ 15

(
n − 3
2

)
+ 12(n − 3) =

(
n − 4
4

)
+ 7

(
n − 4
3

)
+ 21

(
n − 4
2

)
+ 15(n − 4) + 12(n − 3)

≥
(
n − 4
4

)
+ 6

(
n − 4
3

)
+ 15

(
n − 4
2

)
+ 8(n − 4) + 7 = m4 (H ) .�

4.3 | The Sub-Class Ω2 is dominated by Ω3

Recall that Ω2 consists of a θ-graph with two repeated edges. These repeated edges can either belong to the same
chain (graph-types A and C ) or not (graph-type B ). Then, all the graphs belonging to Ω2 have types A, B or C . The
reader can appreciate that the number of cuts does not depend on the position of the repeated edges in the chain.
Then, Figure 7 presents an exhaustive list of the graph-types GA , GB and GC to be analyzed in Ω2. We will show that
for every graph GX ∈ Ω2 there exists some stronger graph G ′X ∈ Ω3. The key is to adequately replace a repeated
edge by another simple edge, for each graph-type. Figure 8 presents the respective graphs G ′

A
, G ′B and G ′

C
∈ Ω3. Let

r , s and t be the lengths of the left, middle and right chains of the underlying θ-graph. Intuitively, the left chain is
more robust under single failures in the respective graphs belonging to Ω3. This is the rationale behind the presented
construction.
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z1

v

u
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z2

z1

F IGURE 7 Graph-types GA , GB , GC ∈ Ω2.
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F IGURE 8 Graph-types G ′
A
, G ′B , G ′C ∈ Ω3.

Lemma 4 The graph G ′X ∈ Ω
3 is stronger than GX ∈ Ω2 for all X ∈ {A,B ,C }.

Proof We will prove that mk (G ′X ) ≤ mk (GX ) for all k ∈ {2, 3, 4} and X ∈ {A,B ,C }. In order to count 2-cuts,
observe that we must pick two edges belonging to the same chain; otherwise, the resulting graph is connected. The
graphs G ′X were constructed in such a way that the number of 2-cuts in each chain of G ′X and GX are identical. Then,
m2 (G ′X ) = m2 (GX ) , for each X ∈ {A,B ,C }. The differences between GX and G ′X exist only in the left chain. In order
to compare 3-cuts, the differences in counting occur when the three edges are picked from the left chain, or when a
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single edge is picked from each chain, and:

m3 (GA) −m3 (G ′A) = [
(
r − 2
3

)
+ 4

(
r − 2
2

)
+ 2(r − 2) + (r − 2)st ] − [

(
r − 2
3

)
+ 4

(
r − 2
2

)
+ (r − 2) + (1)st + 1]

= (r − 3) (st + 1) ≥ 0;
m3 (GB ) −m3 (G ′B ) = [

(
r − 1
3

)
+ 2

(
r − 1
2

)
+ (r − 1) + (r − 1) (s − 1)t ] − [

(
r − 1
3

)
+ 2

(
r − 1
2

)
+ (r − 1) + (1) (s − 1)t ]

= (r − 2) (s − 1)t ≥ 0;
m3 (GC ) −m3 (G ′C ) = [

(
r − 1
3

)
+ 3

(
r − 1
2

)
+ (r − 1)st ] − [

(
r − 1
3

)
+ 3

(
r − 1
2

)
+ r − 1] = (r − 1) (st − 1) ≥ 0.

Finally, in order to compare m4 we count the number of spanning-trees or the tree-number, which is the comple-
ment: τ (GX ) = (n+3

4

)
− m4 (GX ) . Alternatively, we will show that τ (G ′X ) ≥ τ (GX ) for each X ∈ {A,B ,C }. Let usstudy graph-type A first. Recall that spanning-trees are maximally acyclic subgraphs. Then, we must pick precisely

four edges in order to break all the cycles, and the spanning-tree cannot have multiple edges either. Let us denote
for convenience τ (r , s, t ) = r s + r t + st , the tree-number of a θ-graph with lengths r , s and t . Closed forms for the
tree-numbers can be found if we consider all the possible states of the repeated edges, breaking all the cycles (and
repeated edges). For graph-type A, there are (2

1

)
×

(2
1

)
= 4 ways to obtain a simple subgraph, and each selection has

τ (r − 2, s, t ) possible spanning-trees (those links cannot be picked twice to avoid repetitions). There are also (4
3

)
= 4

ways to pick precisely three elements of the repeated edges, and each selection provides s + t ways to pick an edge
from a different chain. A similar reasoning holds for G ′

A
, and:

τ (GA) = 4θ (r − 2, s, t ) + 4(s + t ) = 4θ (r , s, t ) − 4(s + t ) ;
τ (G ′A) = 2θ (r − 1, s, t ) + 2(r − 2) (st + s + t ) + (r − 1) (s + t )

≥ 2θ (r − 1, s, t ) + 2θ (r − 2, s, t ) + (r − 1) (s + t ) = 4θ (r , s, t ) + (r − 6) (s + t ) .

Since the graph G ′
A
makes sense when r ≥ 4, clearly (r − 6) (s + t ) ≥ −4(s + t ) , and τ (G ′

A
) ≥ τ (GA) .

An analogous reasoning holds forGB andG ′B . The main difference is that we can remove the four repeated edges
in GB , adding a unit in the tree-number:
τ (GB ) = 4θ (r − 1, s − 1, t ) + 2(t + s − 1) + 2(t + r − 1) + 1 = 4θ (r − 1, s − 1, t ) + 2(t + s − 1) + r + t + (r + t − 1) ;
τ (G ′B ) = 2θ (r , s − 1, t ) + 2(r − 1) ( (s − 1)t + s − 1 + t ) + r + t + (r − 1) (1 + t )

≥ 4θ (r − 1, s − 1, t ) + 2(t + s − 1) + r + t + (r − 1) (1 + t ) .

Since the graph G ′B makes sense when r ≥ 3, then (r − 1) (1 + t ) = r + t (r − 1) − 1 ≥ r + t − 1, and τ (G ′B ) ≥ τ (GB ) .
Finally, to count τ (GC ) we must pick either two or three edges from the triple repetition, and:

τ (GC ) = 3θ (r − 1, s, t ) + s + t ;
τ (G ′C ) = 2θ (r − 1, s, t ) + s + t + 2(r − 1)st + st .

It suffices to prove that 2(r − 1)st + st ≥ θ (r − 1, s, t ) = (r − 1)s + (r − 1)t + st . But this inequality holds if and only if
2st ≥ s + t , which is true, since 2st ≥ 2max{s, t } ≥ s + t .
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Observe that the constructed graphs G ′X are stronger whenever r ≥ 4 for graph-type A, r ≥ 3 for graph-type B

and r ≥ 2 for graph-type C . In fact, the equality G ′X = GX is obtained when r = 3, r = 2 or r = 1 in the respective
graphs X ∈ {A,B ,C }. Let us discuss the applicability of the previous reasoning as a function of r and s :
• Graph-type A: if r = 3, we get G ′

A
= GA . However, we can adjust G ′A , replacing (x1, xr−1) by (x1,v ) . The previousreasoning works with minor variations. It is clear that r ≥ 2 in the graph GA , so the last case is r = 2. In this case,

we can consider G ′′
A
= GA − (u, x1) ∪ {(x1, y1) } ∈ Ω2. A direct calculation shows that G ′′

A
is stronger than GA .

• Graph-type B : if r = 2, we get G ′B = GB . In this case, we can consider G ′′B = G ′B − (u, xr−1) ∪ {(u,v ) }, and this
new graph is stronger than GB . If r = 1 but s ≥ 2, we consider G ′C , and by symmetry G ′

C
it is stronger than GB . In

fact, the roles of the left and middle chains are just exchanged. Finally, if r = s = 1, we get GB = C (3) ∈ Ω1, and
it does not belong to Ω2 (in fact, C (3) is weaker than C ∗ by Lemma 2).

• Graph-type C : if r ≥ 2, the previous reasoning works. Finally, if r = 1 we obtain an elementary cycle GC =

Cn ∪ {e1, e2, e3 }, where the e i are three repeated edges linking non-adjacent nodes in the cycle (if such nodes
were adjacent, we would get C (3) ∈ Ω1). Consider G ′′

C
= GC − e1 ∪ {e }, where e = (y bs/2c , z bt/2c ) is an edge

that connects the middle points between the chains of lengths s and t . The study of this crossing is analogous to
Lemma 3, and with a similar calculation it can be checked that G ′′

C
is stronger than GC . �

4.4 | Strongest graph in Ω3 and Self-Similarity
The subclass Ω3 is the repetition of an edge in particular graphs belonging to the set Ωs (n, n + 2) . Here, we exploit
the self-similarity property 1 to build the strongest graph K ∗ = K (n, n + 2) ∪ {e′ }, where e′ is the repeated edge of
e : K (n, n + 2) ∗ e = K (n − 1, n + 1) . First, a technical lemma that avoids loops will be used:
Lemma 5 If G � H in Ω (n, e) , then G ∪ {l } � H ∪ {l } in Ω (n, e + 1) , where l = (v ,v ) is an arbitrary loop.

Proof The loop can appear in the cuts or not. IfG � H , thenmk+1 (G∪{l }) = mk (G )+mk+1 (G ) ≤ mk (H )+mk+1 (H ) =
mk+1 (H ∪ {l }) , for all k . Additionally, the connectedness is not modified with loops, and m0 (G ∪ {l }) = m0 (G ) ≤
m0 (H ) = m0 (H ∪ {l }) , so G ∪ {l } � H ∪ {l }.

Normally, loops are out of the scope in reliability analysis, since they are useless. However, Lemma 5 is considered
in the following:
Proposition 6 (Self-Similarity) K ∗ = K (n, n + 2) ∪ {e′ } is the strongest in the set Ω3.
Proof Consider an arbitrary graph G ∈ Ω3. Then, G = H ∪ {f }, where f is a repeated edge in a simple graph
H ∈ Ωs (n, n+2) . The cuts fromG = H ∪ {f } and K ∗ = K (n, n+2) ∪ {e′ } either contain the repeated edge (respectively,
f and e′), or not. By sum-rule:

mi (G ) = mi−1 (H ) +mi (H ∗ f ∪ {l }),

mi (K ∗) (n) = mi−1 (K (n, n + 2)) +mi (K (n − 1, n + 1) ∪ {l }),

where H ∗ f denotes the edge-contraction, and l represents a loop that appears after the contraction of the repeated
edge f . Since H ∈ Ωs (n, n + 2) and K (n, n + 2) is the strongest in this class, mi−1 (H ) ≤ mi−1 (K (n, n + 2)) . It suffices
to prove that mi (K (n − 1, n + 1) ∪ {l }) ≤ mi (H ∗ f ∪ {l }) .
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Recall that Gross and Saccoman already proved that K ∗ (n − 1, n + 1) is the strongest family of graphs, even in the

set Ω (n − 1, n + 1) of graphs with multiple edges [6]. Since H ∗ f ∈ Ω (n, n + 2) , we have K ∗ (n − 1, n + 1) � H ∗ f . By
Lemma 5, K ∗ (n − 1, n + 1) ∪ {l } � H ∗ f ∪ {l }, and in particular mi (K (n − 1, n + 1) ∪ {l }) ≤ mi (H ∗ f ∪ {l }) . �

4.5 | The Sub-Class Ω3 is dominated by Ω4

It suffices to prove that Gu (n, n + 2) � K ∗ (n) . Consider Hs depicted in Figure 9:

1

7
3 5

6 4

2

1

7
3 5

6 4

2

l1
l3 l5

l6 l4

l2

F IGURE 9 Respective graphs K ∗ (left), Hs (middle) and lengths of the respective chains (right)

Proposition 7 There exists a simple graph Hs ∈ Ω4 = Ωs (n, n + 3) such that Hs � K ∗ (n) .

Proof Consider the chain in K ∗ that contains the repeated edge, C = {(x0, x1), . . . , (x l1−1, x l1 ) }, where e = (x0, x1) isrepeated, and define Hs = (K ∗ − {e }) ∪ {(x0, x l1−1) }. Both graphs are depicted in Figure 9. It is clear that m2 (Hs ) =
m2 (K ∗) . In order to compare m3 and m4, the key is to note that the resulting chain C′ induced in Hs is stronger than
the original chain C induced in K ∗. If we pick two edges or more from the same chain, the cuts appear in both cases.
A difference is appreciated when three edges are picked from different chains. Further, the three chains must be
adjacent in order to obtain cuts. Therefore, if we pick single edges from triads of adjacent chains, most of the terms
are cancelled, and the following difference is met:

m3 (K ∗) −m3 (Hs ) = [l4 l6 (l1 − 1) + l3 l5 (l1 − 1) + l2 l3 l6 + l2 l4 l5 ] − [l4 l6 × 1 + l3 l5 × 1 + l2 l3 l6 + l2 l4 l5 ]

= l4 l6 (l1 − 2) + l3 l5 (l1 − 2) ≥ 0,

since the chain C, with at least one inserted node, has length l1 ≥ 2. Similarly, the only difference in the cuts for m4

is found when the four edges are picked from different chains:

m4 (K ∗) −m4 (Hs ) = [
6∑
i=2

∏6
j=2 l j

l i
+ 2(l2 l3 l6 + l2 l4 l5) + (l1 − 1)

∑
2≤i<j<k≤6

l i l j lk ]

− [
6∑
i=2

∏6
j=2 l j

l i
+ l1 (l2 l3 l6 + l2 l4 l5) + 1 ×

∑
2≤i<j<k≤6

l i l j lk ]

= (l1 − 2)
∑

2≤i<j<k≤6
l i l j lk − (l1 − 2) (l2 l3 l6 + l2 l4 l5) ≥ 0.

Therefore, mi (K ∗) ≤ mi (Hs ) for all i , and Hs � K ∗ (n) . �
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5 | MAIN RESULT
The main result is just a corollary of the previous study: Conjecture 1 is true. A synthesis of the whole reasoning is
included here for completeness:
Theorem 8 Gu (n, n + 3) is UOR in the extended set of multigraphs Ω (n, n + 3) , for all n ≥ 6.

Proof The partition Ω (n, n + 3) = ∪4
i=0Ω

i is considered, where 4 − i is the number of repeated edges in Ωi . The set
Ω0 contains non-biconnected graphs, and they can be discarded by Lemma 1. The set Ω4 contains simple graphs, and
Wang proved thatGu (n, n +3) are the strongest in this class. The strongest member from Ω1 is C ∗ (see Lemma 2), and
by Lemma 3, it is weaker than some member H ∈ Ω2. Similarly, for every graph in Ω2, there exists a stronger member
belonging to Ω3 (Lemma 4). By the self-similarity property and Proposition 6, the graph K ∗ = K (n, n + 2) ∪ {e′ } is the
strongest in the class Ω3. By Proposition 7, Hs is stronger than K ∗. Since Gu is stronger than Hs , it is also true that
Gu is stronger than K ∗. Therefore, the following chain of domination holds: Ω1 → Ω2 → Ω3 → Ω4, and Gu is the
strongest in Ω4. This implies that Gu is the strongest in the set Ω (n, n + 3) , and the Gross-Saccoman Conjecture is
true. �
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