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1 Introduction

Optimization algorithms have long been discussed in the literature, and many
are used as benchmarks to test different hardware infrastructures and/or al-
gorithms performance. Nowadays, Large Scale Optimization (LSO) problems,
i.e. problems involving very large search spaces and/or a considerable number of
optimization variables, appear in many important real-world applications. Dif-
ferent areas of computer science and other disciplines have problems in which
computational methods are applied, such as artificial intelligence, operations re-
search, bioinformatics and electronic commerce. Prominent examples are tasks
such as finding shortest or cheapest round trips in graphs, finding models of
propositional formula or determining the 3D-structure of proteins.

For most combinatorial optimization problems, the space of potential so-
lutions for a given problem instance is at least exponential in the size of that
instance [53]. The efficiency of most state-of-the-art optimization algorithms de-
teriorates rapidly as the dimensionality of the search space increases, so different
techniques must be used to have reasonable execution times.

Distributed computing comes to help researchers to face LSO problems by
applying a cooperative approach that proposes splitting a big problem into many
smaller (sub-)problems in order to speed up the search [49]. Parallel comput-
ing techniques, i.e. techniques used to implement an algorithm in a distributed
environment, have long been used in the scientific community to implement dis-
tributed algorithms to solve LSO problems exploiting large clusters of heteroge-
neous computers [48, 89, 91, 63, 94, 9, 60, 46]. Nevertheless, parallel computing
adds many difficulties that have to be taken into account when developing and
executing a distributed application. Communication among different process
of different computers in the network, synchronization of different process, fail-
ure tolerance and data replication are among the most common problems when
implementing a distributed algorithm.

The last decade has been witness of the dramatical growth of the digital
information generated and being able to analyze all these information is a pow-
erful tool for any organization and also, a difficult task. Information is generated
from vast sources: systems logs, web searches, online transactions, user actions
like sending an image or a text message o when buying something online, etc.
Currently, the information generated by each person keeps growing each day.
Moreover, the advent of new technologies like mobile devices has contributed to
the growth of data generated by users and therefore, any practical application
must be able to scale up to datasets of interest. As a result, the community
has paid a lot of interest in distributed computing for data analysis and other
complex information processing problems [97]. Different frameworks have been
created to analyze big amounts of information in a distributed environment.

Hadoop is the most known framework for analyzing big amounts of informa-
tion in a distributed environment, providing fault tolerance, replication, com-
munication between different process [92]. Hadoop has been designed to execute
applications in clusters of commodity computers with little effort, by providing
an infrastructure to run MapReduce jobs over a distributed file system [92].

MapReduce programming paradigm was designed to execute data intensive
algorithms, and it has scarcely been applied for optimization algorithms [16].
MapReduce was created to easily implement algorithms to solve large scale prob-
lems in a distributed environment without having to address all the problems
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of distributed algorithms. It comes to provide an easy to understand model
for parallelizing an algorithm without the need learn parallel computing tech-
niques, resulting in shorter developing times and easy to maintain distributed
algorithms. MapReduce provides a powerful tool to anymore wanting to analyze
huge volumes of information in a cluster of computers.

Solving a LSO problem with a sequential algorithm usually takes huge exe-
cution times and usually, the approach taken is to solve a small version of the
problem to keep the algorithm in reasonable execution times. Learning parallel
computing techniques and correctly implementing them is not an easy task and
requires deep understanding in communication and synchronization of process
in a distributed environment. Although Hadoop was designed to solve data
intensive algorithms [92], it provides a promising environment and computing
model to solve hard optimization problems by applying a cooperative approach
that allows facing very large problem instances using distributed computing
resources.

This work presents advances on applying MapReduce approach for designing
a solver for LSO problems over Hadoop, as well as its benefits and limitations.
MapReduce and Hadoop infrastructure could be used to easily solve a LSO prob-
lem in a distributed environment, without having to learn parallel computing
techniques. The LSO problem used as an example in this work is the 3-SAT, a
classical combinatorial problem used many times in the scientific community to
test new algorithm approaches [43]. This work presents different algorithms to
solve the 3-SAT on Hadoop and problems and limitations of implementing a LSO
algorithm in Hadoop are presented. The main contribution of our research are:
i) studying the advantages and challenges of developing LSO using MapReduce
over Hadoop; ii) implementing three main MapReduce 3-SAT solver variants;
iii) the experimental evaluation that shows that the collaborative approach is
a promising option for LSO in the cloud and iv) Hadoop and MapReduce is
indeed a promising solution for large scale optimization problems.

This work is structured as follows. An introduction to combinatorial prob-
lems and large scale optimization problems is presented in Section 2 as well as
an introduction to the 3-SAT, its formulation, codification and importance. Dif-
ferent distributed computing techniques are introduced in Section 3, including
a brief introduction to the MapReduce paradigm. Hadoop and its MapRe-
duce execution environment is introduced in Section 4. Section 6 presents the
devised algorithms to solve the 3-SAT using divide and conquer, cumulative
learning techniques as well as a randomized approach. The the problems pre-
sented when solving a LSO problem in Hadoop using MapReduce paradigm
and the experimental analysis is also reported. Finally, Section 7 presents the
conclusions and formulates the main lines for future work.
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2 Large Scale Optimization Problems

This section introduces optimization problems and its relevance. Different exam-
ples of large scale optimization problems are presented. Optimization problems
are analyzed based on its computational complexity, which is also introduced
in this section as well as the different classes of complexity available. Differ-
ent search algorithms, which are used in the devised algorithms presented in
this work, is presented in this section. Finally, the SAT problem is introduced,
which is the optimization problem to be solved in this work and its codification,
formulation and importance.

2.1 Combinatorial optimization problems

Combinatorial optimization problems are problems that consist in finding an op-
timal solution from a finite set of possible solutions [53]. Optimization problems
are a family of problems inside combinatorial problems, where the solutions are
additionally evaluated by an objective function and the objective is to find solu-
tions with optimal objective functions values [53, 43]. Large Scale Optimization
problems (LSO) are optimization problems involving very large search spaces
and/or a considerable number of optimization variables. These kind of prob-
lems appear in many areas in which computational methods are used such as
artificial intelligence, machine learning, bioinformatics and electronic commerce.
Examples of Large Scale Optimization problems are finding the shortest path,
graph coloring, determining the 3D-structure of proteins, scheduling tasks in a
large cluster with priorities, resource allocation or hardware design and genome
sequencing. These kind of problems typically involve searching for assignments
given certain condition, grouping information, ordering or performing certain
actions in an efficient manner given certain constraints.

Many combinatorial problems are decision problems where the solution for a
given problem instance is specified by a set of logical conditions. The Proposi-
tional Satisfiability Problem (SAT), which is the problem solved in this work, is
one of the classical combinatorial problems [17] which consists in finding a truth
assignment value for a list of variables that make a set of clauses simultaneously
true, each being a disjunctive set of literals. The SAT problem is further ex-
plained in section 2.4. Another classical combinatorial problem are the Graph
Coloring Problems which, given a graph G and a number of colors, the problem
consists in finding an assignment of colors to the vertices of the graph such that
two vertices that are connected by an edge have never the same color.

A candidate solution satisfying the logical conditions are called feasible, valid
or satisfiable. Decision problems can be extended or formulated as an optimiza-
tion problem by defining an objective function. For example, an optimization
problem for Graph Coloring Problems could have the objective function defined
by the number of colors, minimizing the number of colors needed to assign colors
to the vertices.

Solving combinatorial decision and optimization problems implies, given a
problem instance, to search for solutions in the space of the problem instance.
For this reason, these problems are also characterized as search problems [43].
Brute force algorithms are not suitable for solving combinatorial problems as,
for a given problem instance, the search space is exponential in the size of the
input and would take years to be solved. For example, a SAT instance with 100
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variables has 2100 possible assignments and a brute force algorithm evaluates
all possible assignments to the problem. If to evaluate 100 billon assignments
takes 1 millisecond, then the execution time to evaluate the whole search space
would be more than 4 billon years.

2.2 Computational Complexity

This section introduces the computational complexity classes, which categorize
combinatorial and optimization problems based on their complexity. The com-
plexity of an algorithm is defined in terms of the space and time requirements of
computer power to solve such algorithm, for turing machines and other formal
machine or programming models.

2.2.1 Complexity Classes

There are two complexity classes: P, the class of problems that can be solved
by a deterministic machine in polynomial time, and NP, the class of problems
that can be solved by a nondeterministic machine in polynomial time [33]. Non-
deterministic machines are hypothetical machines which can be thought of as
having the ability to make correct guesses for certain decisions. Every problem
in P is also contained in NP, because deterministic calculations can be emulated
on a nondeterministic machine.

The question whether NP ⊆ P , and consequently P = NP , is one of the
most prominent open problems in computer science. Since many extremely
application-relevant problems are in NP, but possibly not in P (i.e., no polynomial-
time deterministic algorithm is known). For these computationally hard prob-
lems, the best algorithms known so far have exponential time complexity. There-
fore, for growing problem size, the problem instances becomes quickly intractable
and even improvements in state-of-the-art technology have little to no effect in
keeping execution times in reasonable times.

Many hard problems from NP are closely related and can be translated into
each other by an algorithm with polynomial deterministic time, these transla-
tions are called polynomial reductions [33]. A problem that is at least as hard as
any other problem in NP, in the sense that can be polynomially reduced to it, is
called NP -hard. Thus, NP -hard problems can be regarded as at least as hard as
every problem in NP, but do not necessarily have to belong to the class NP as
their complexity may actually be higher. NP -hard problems that are contained
in NP are called NP -complete and are the hardest problems in NP [33].

Different combinatorial problems are NP -Hard. The SAT, as mentioned
before, was the first algorithm to be proven to be NP -Hard [17]. Another
example of a NP -Hard classical problem is the TSP [33]. The same holds for
many special TSP cases, such as Euclidean TSPs and even TSPs in which
all edge weights are either one or two. In all of these cases, the associated
decision problem for optimal solution quality is NP -complete. However, there
exist a number of polynomially solvable special cases of the TSP, such as fractal
TSP instances that are generated by Lindenmayer Systems [65] or specially
structured Euclidean instances where, for example, all vertices lie on a circle [10,
74]. Besides SAT and TSP, other well-known combinatorial problems are NP -
hard or NP -complete, including the Graph Coloring Problem, the Knapsack
Problem, as well as many scheduling and timetabling problems [33].
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One fundamental result of complexity theory states that it suffices to find
a polynomial time deterministic algorithm for one single NP-complete problem
to prove that NP = P . This is a consequence of the fact that all NP-complete
problems can be encoded into each other in polynomial time by a polynomial
reduction. Today, most experts believe that P 6= NP . However, so far all efforts
of finding a proof for this inequality have been unsuccessful, and there has been
some speculation that the mathematical methods might be too weak to solve
this fundamental problem.

Although many combinatorial problems are NP-hard, not every computa-
tional task that can be formulated as a combinatorial problem is difficult. A
well-known example for a problem that seems to require searching an exponen-
tially large space of candidate solutions is the Shortest Path Problem: given an
edge-weighted graph G (where all edge weights are positive) and two vertices
u,v in G, find the shortest route from u to v, that is, the path with minimal
total edge weight. This problem is efficiently solved by Dijkstra’s algorithm [26]
which can find shortest paths in quadratic time. In many cases, efficient algo-
rithms for solving combinatorial problems are based on a general method called
dynamic programming [7].

Many practically relevant combinatorial problems, such as scheduling and
planning problems, are NP-hard and therefore not exists an algorithm to solve
them in polynomial execution time. However, being NP-complete or NP-hard
does not mean that it is impossible for a problem to be solved efficiently. Prac-
tically, there are at least three ways of dealing with these problems:

• Find a special case of the problem with relaxed conditions or a subclass
of the problem that can be solved efficiently.

• Use efficient approximation algorithms to find suboptimal solutions.

• Use stochastic approaches.

The first strategy means that, although a specific problem is of type NP -
hard, it does not mean that the entire set of problem instances are of that type
of complexity. Taking for example the satisfiability problem (SAT), which is
NP -Hard, but there exists a polynomial time algorithm to solve the problem
when having 2 literals by each clause [3]. The NP -Hardness results characterize
the worst-case complexity of the problem and typical problem instances are eas-
ier to solve. For example, solving a problem instance of the SAT problem with
many variables and clauses with only one solution is practically more difficult
than to solve another problem instance which has hundreds of possible solu-
tions. The same example applies to time complexity of concrete algorithms for
combinatorial problems. A well-known example is the Simplex Algorithm for
linear optimization, which has worst-case exponential time complexity, but has
been empirically shown to achieve polynomial run-times in the average case [52].

In the case of a NP-hard optimization problem that cannot be narrowed
down to an efficiently solvable subclass, one option is to accept suboptimal so-
lutions. Formally, the degree of sub-optimality of a solution quality x is typically
expressed in the form of the approximation ratio r > 1, defined by the Eq. 1,
where f : A → S is the optimization function, x∗max is the optimal solution
for a maximization problem, x∗min is the optimal solution for a minimization
problem, for the given problem instance.

7



x∗max : f(x∗) ≥ f(x)∀x ∈ S.
x∗min : f(x∗) ≤ f(x)∀x ∈ S.

x is a suboptimal for x ∗min :
x

x∗min
> r > 1

x is a suboptimal for x ∗max :
x∗max

x
> r > 1 (1)

For a given optimization problem, an associated approximation problem can
be defined. These problems, the objective is to find solutions with an approxi-
mation ratio bounded from above by a given constant r. Often, as r is increased,
the computational complexity of these approximation problems decreases and
they become practically solvable. In some cases, allowing a relatively small
margin from the optimal solution quality renders the problem deterministically
solvable in polynomial time. In other cases, the approximation problem re-
mains NP -hard, while for practical problem instances, suboptimal solutions of
acceptable quality can be found in reasonable time [43, 53]. Many examples
of hard-to-solve problems are usually efficiently solved by accepting suboptimal
solutions. Taking the TSP instance with arbitrary edge weights for example,
there is no deterministic algorithm that is guaranteed to find solutions of quality
within a constant factor of the optimum for a given problem instance in polyno-
mial time [76]. Nevertheless, for instances satisfying the triangle inequality, the
algorithm of Christofides guarantees a solution in a polynomial type with an
approximation ratio of at most 1.5 [15]. Furthermore, in the case of Euclidean
TSP instances, a polynomial time approximation scheme exists, where solutions
can be found efficiently for arbitrary approximation ratios larger than one [2].

However, sometimes even reasonably efficient approximation methods can-
not be devised. In these cases, one option is to use probabilistic rather than
deterministic algorithms [43]. In many cases, probabilistic algorithms have been
found to be considerably more efficient on NP -complete or NP -hard problems
than the best deterministic alternative. In other cases, probabilistic methods
and deterministic methods complement each other in the sense that for cer-
tain types of problem instances one or the other has been found to be supe-
rior [69, 43]. Moreover, many times deterministic and probabilistic approaches
are both used to increase the efficiency of an algorithm.
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2.3 Search Algorithms

The fundamental idea behind the search approach is to iteratively generate and
evaluate possible solutions for a problem. In the case of combinatorial decision
problems, the procedure means to decide whether it is an actual solution or not.
Evaluating candidate solutions for a NP -Hard combinatorial problem is usually
fast, in polynomial execution time. For example, evaluating a 3-SAT instance
means to evaluate if a specific literal assignment makes all clauses in the formula
true, which is fast to evaluate. Generally, the evaluation of candidate solutions
depends on the given problem.

The fundamental differences between search algorithms are in the way in
which candidate solutions are generated, which can have a very significant im-
pact on the algorithm theoretical properties and practical performance. A search
algorithm could be deterministic or stochastic, and constructive or perturbative.
A deterministic search algorithm walks through the search space of a problem
instance in a deterministic manner. This search guarantees that eventually ei-
ther a (optimal) solution is found, or, if no solution exists, this fact is determined
with certainty for a given search space. On the other hand, stochastic differ-
entiate from deterministic search algorithms in that the decisions on first are
performed randomly. In this case, if a stochastic search algorithm fails to find a
solution, does not guarantee that the problem instance does not have a solution.

An example of a deterministic search algorithm compared to a stochastic
approach is shown in Figure 1. The example presents the problem of finding a
truth assignment for three literals x1, x2, x3. The search space for this problem
is all possible combinations of assignments for literals x1, x2, x3. Both algorithms
start at the initial state with the candidate solution x1, x2, x3 = {0, 0, 0} but the
following steps are taken differently. Whereas the deterministic algorithm selects
which literal to flip in each step in a specific manner, selecting x3 first, then x2
and then x1. The stochastic approach randomly selects the literals to flip in each
step. In the example shown, the stochastic algorithm selects x1, then x3 and in
the third step selects x1 again. Note that the stochastic algorithm repeats not
only selected literals but also could repeat candidate solutions generated.

2.3.1 Constructive Search

The task of generating complete candidate solutions by iteratively extending
partial candidate solutions is formulated as a search problem in which the goal
is to obtain a good candidate solution. In the case of optimization problems,
a good solution corresponds to the value of the objective function. Algorithms
for solving this type of problem are called constructive search methods or con-
struction heuristics.

An example of a constructive search algorithm for the 3-SAT with two literals
is shown in Figure 2. The problem consists to find a truth assignment for literals
x1 and x2. The constructive algorithm sets in each step a truth value for one
literal extending the given partial candidate solution of previous step.

Constructive search algorithms can be used to generate candidate solutions
for any combinatorial problem. For example, a constructive search algorithm
could be used to generate candidate solutions for the TSP problem by, starting
at a randomly chosen vertex in the graph, iteratively follow an edge with min-
imal weight connecting the current vertex to one of the vertices that has not
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Figure 1: Search example comparing a stochastic approach vs a deterministic
approach

Figure 2: Simple constructive search example for the 3-SAT.

yet been visited. This method generates a path that, by adding the starting
vertex as a final element to the corresponding list, can be easily extended into a
Hamiltonian cycle in the given graph. This simple construction heuristic for the
TSP is called the Nearest Neighbor Heuristic. On its own, it typically does not
generate candidate solutions with close-to-optimal objective function values but
it is commonly and successfully used in combination with perturbative search
methods.

2.3.2 Perturbative Search

Candidate solutions for instances of combinatorial problems are composed of
solution components. Usually, candidate solutions can be changed into new
candidate solutions by modifying one or more of the corresponding solution
components. For example, in the SAT problem, each literal is a solution com-
ponent and changing from one candidate solution to another can be to flip one
literal truth value. This search approach is known as a perturbative search al-
gorithm. For example, applying this technique to solve the SAT problem would
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start with a complete truth assignment and then, in each step, generate other
truth assignment changing the truth value of a number of variables in such
assignment. An example of a simple perturbative search algorithm to solve a
3-SAT problem instance is shown in Figure 3, where the algorithm searches for
assignments for literals x1, x2, x3. The algorithm, in the first step sets a truth
assignment for literals x1, x2, x3 and then, in each iteration, a literal truth value
is changed, creating a new candidate solution to be evaluated.

Figure 3: Simple perturbative search example to solve a 3-SAT problem instance.

2.3.3 Stochastic Local Search

Local search algorithms, start at some location of the given search space and
subsequently move from the present location to a neighboring location in the
search space. Each location has only a relatively small number of neighbors and
each of the moves is determined by a decision based on local knowledge only.
As an example for a simple local search method for SAT, consider the following
algorithm: given a propositional formula F over n propositional variables, ran-
domly pick a variable assignment as a starting point. Then, in each step, check
whether the current variable assignment satisfies F. If not, randomly select a
variable, and change its truth value from true to false or vice versa. Termi-
nate the search when a solution is found or after a specified number of search
steps have been performed unsuccessfully. This algorithm is called Uninformed
Random Walk.

Many widely known and high-performance local search algorithms make use
of randomized choices in generating or selecting candidate solutions for a given
combinatorial problem instance. These algorithms are called stochastic local
search (SLS) algorithms, and they constitute one of the most successful and
widely used approaches for solving hard combinatorial problems. SLS algo-
rithms have been used for many years in the context of combinatorial opti-
mization problems. Among the most prominent algorithms of this kind are
the Lin-Kernighan Algorithm for the Travelling Salesman Problem [56] as well
as general search methods such as Evolutionary Algorithms [5] and Simulated
Annealing [51]. Stochastic local search algorithms can also be used to solve
NP -complete problems such as the Graph Coloring Problem (GCP) [42, 13] or
the Satisfiability Problem [79, 80].

Local search algorithms start by selecting an initial candidate solution, and
then iteratively move from one candidate solution to a neighboring candidate

11



solution, where the decision on each search step is based on a limited amount
of local information only. In stochastic local search algorithms, these decisions
as well as the search initialization can be randomized. Furthermore, the search
process may use additional memory, for example, for storing a limited number
of recently visited candidate solutions.

2.3.4 Stochastic Local Search Example: Random Walk

The two simplest SLS strategies are Uninformed Random Picking and Unin-
formed Random Walk. Both do not use memory and are based on an initializa-
tion function that returns the uniform distribution over the entire search space.
SLS algorithms based on this initialization function randomly select any element
of the search space S with equal probability as a starting point for the search
process.

For Uninformed Random Picking, a complete neighborhood relation is used
(i.e., N = S×S for the search space S) and the step function maps each point in
S to a uniform distribution over all elements in S. Uninformed Random Walk
uses the same initialization function, but for a given arbitrary neighborhood
relation N ⊆ S × S, its step function returns the uniform distribution over the
set of neighbors of the given candidate solution. A uniform, random selection
from that neighborhood is implemented in each step. Both of these uninformed
SLS strategies are quite ineffective, since they do not provide any mechanism
for directing the search towards solutions. Nevertheless, in combination with
more directed search strategies, both Uninformed Random Picking and variants
of Uninformed Random Walk are used for overcoming premature stagnation in
complex and much more effective SLS algorithms.

An example of a Random Walk is described in Figure 4. The random walk
takes in each step a non-deterministic decision of moving in any of fourth direc-
tions: forward, left, backward or right. The walker performs each step based on
the current location, moving to a neighboring candidate solution.

1

2

34

5

Figure 4: Random walk example
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2.4 The SAT Problem

This section presents the k-SAT, the Propositional Satisfiability Problem (SAT)
problem having at most k literals in each clause. The 3-SAT problem, which
is a special case of the k-SAT, which is the problem solved in this work, is
presented as well as its importance, formulation and codification. The SAT
problem is the prototypical NP -complete problem and was the first problem for
which NP -completeness was established [17].

2.4.1 The k-SAT Problem

The k-SAT is the propositional satisfiability problem restricted to clauses with k
literals, and the 3-SAT problem is a special case for which k = 3. The k-SAT for
k > 3 can always be mapped to an instance of a 3-SAT. The 3-SAT was the first
problem to be demonstrated to be NP-Complete [17]. When k = 2 the problem
is in the complexity class P, as it can be solved in polynomial time [3]. On the
other hand, the k-SAT problem is NP-Complete when k ≥ 3; in fact, it was the
first problem proved to be NP-Complete and many NP-complete problems have
been proven so, by reducing them to an instance of 3-SAT. Thus, if a polynomial
time algorithm to solve the k-SAT for k ≥ 3 is known, then every NP-complete
problem can be solved in polynomial time. However, no such efficient algorithm
to solve the 3-SAT is known. The k-SAT for k > 3 can be reduced to the 3-SAT
by increasing the number of clauses.

The best algorithms known that solve the 3SAT all have exponential order.
The stochastic algorithms [69] have been specially successful to solve hard-to-
solve algorithms like the 3SAT, one of the is the Schöning algorithm [77]. The
Schöning algorithm starts from a random state and performs a local search on a
space of 3n elements. In case of not finding a solution, the algorithm randomly
chooses another value and repeats the process.

In propositional logic, a literal is either a logical variable or its negation, and
a Boolean expression in its conjunctive normal form (CNF) is a conjunction of
a set of m clauses, each of whom is a disjunction of literals. Given a Boolean
expression,t the Boolean Satisfiability Problem (SAT) consists of determining,
if it exists, a truth assignment for the variables that makes a given boolean
expression true. The mathematical formulation of the 3-SAT problem is as
follows:

• Let there be a set of n literals X ≡ {x1, . . . , xn}, where xr = {0, 1}.

• Let there be a Boolean expression Φ =
i=m
∧
i=1

Ci, formed by a set of m clauses

C = {C1, . . . , Cm}, with where Ci =
3
∨

j=1
x̃rij with rij ∈ [1, n] and, either

x̃rij = xr or x̃rij = ¬xr. Ci =
3
∨

j=1
lij , where lij is either a literal xr or its

negation ¬xr.

• The 3-SAT problem consists in determining the set of values for the literals
X ≡ {x1, . . . , xn} that makes Φ true.

The stochastic algorithms have been specially successful to solve hard-to-
solve algorithms like the 3SAT, one of the is the Schöning algorithm. The
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Schöning algorithm starts from a random state and performs a local search on a
space of 3n elements. In case of not finding a solution, the algorithm randomly
chooses another value and repeats the process. The problem considers a set of
literals that can take the value 0 or 1 and a set of clauses where each clause is a
disjunction of k literals or a negation of them. The problem consists on finding
an assignment of literals such that all clauses are true, in that case the problem
is said to be satisfiable [33].

2.4.2 3-SAT Codification

One of the most common codifications of the 3-SAT problem is in CNF form. A
3-CNF expression is a boolean expression such that each clause is a disjunction
of exactly 3 literals. An example of a clause in CNF form is shown below. The
clauses can be represented as integers. A positive integer represents the literal is
presented not negated in the clause and a negative integer value represents that
the literal is present negated in the clause. In the example shown, the clause
x1 ∨ ¬x2 ∨ x3 is represented by the integers 1− 23.

¬x1 ∨ x2 ∨ ¬x3

The first line of the file has the number of clauses and literals in the problem
as p number of literals number of clauses. A problem with 100 literals and
500 clauses would have p 100 500 as the first line of the file.

2.4.3 Randomly Generated SAT Instances

Many empirical studies of SAT algorithms have made use of randomly generated
CNF formula and have been proposed and studied in the literature [80]. In most
cases, they are obtained by means of a random instance generator that samples
SAT instances from an underlying probability distribution over CNF formula.
The probabilistic generation process is typically controlled by various param-
eters, which mostly determine syntactic properties of the generated formula,
such as the number of variables and clauses, in a deterministic or probabilistic
way [64].

One of the earliest and most widely studied classes of randomly generated
SAT instances is based on the random clause length model: Given a number
of variables, n, and clauses, m, the clauses are constructed independently from
each other by including each of the 2n literals with fixed probability p [31]. A
variant of this model was used in Goldberg’s empirical study on the average
case time complexity of the Davis Putnam algorithm [37]. Theoretical and
empirical results show that this family of instance distributions is mostly easy
to solve on average using rather simple deterministic algorithms [18, 32]. As
a consequence, the random clause length model is no longer widely used for
evaluating the performance of SAT algorithms.

To date, the most prominent class of randomly generated SAT instances that
is used extensively for evaluating the performance of SAT algorithms is based on
the fixed clause length model and known as Uniform Random k-SAT [31, 64].
For a given number of variables n, a number of clauses m and a clause length k,
Uniform Random k-SAT instances are obtained as follows. To generate a clause,
k literals are chosen independently and uniformly at random from the set of 2×n

14



possible literals (the n propositional variables and their negations). Clauses are
not included into the problem instance if they contain multiple copies of the
same literal, or if they are tautological, that is, they contain a variable and its
negation. Using this mechanism, clauses are generated and added to the formula
until it contains m clauses overall.

The 3-SAT problem instances used in this work were generated by the G3
algorithm [68], creating problem instances with few solutions. The G3 algorithm
is based on creating a random solution for the 3-SAT problem and then generate
m clauses related to such solution. Experimental results of the G3 algorithm
shows that the algorithm generates unique solution problems for m > 440 with
high probability [68]. The relation between the number of literals n and the
number of clauses m use to generate hard-to-solve 3-SAT problem instances is
defined by Eq 2. The relation is based on a theoretical and exhaustive experi-
mental analysis of hard-to-solve 3-SAT problem instances [19, 93].

m ≥ 4, 26× n+ 6, 24 (2)

2.5 Summary

This section introduced optimization and combinatorial problems. Large scale
optimization problems were introduced in this section and few classical examples
were mentioned. The k-SAT problem was introduced and the particular case
when k=3 was presented, which is is the problem solved in this work. Finally, the
3-SAT mathematical formulation, codification and problem instance generation
was presented.
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3 Distributed Computing Techniques

Distributed computing techniques are usually used to solve LSO problems. Dif-
ferent models of communication between process as well as different approaches
to implement a distributed algorithm and libraries available is presented in this
section. Section 3.2 introduces the different parallel computing models used to
implement a distributed algorithm. This section also introduces the MapReduce
programming model in Section 3.3.1, which is the programming model used in
this work to solve the LSO problem presented.

3.1 Parallel Computing paradigms

Distributed algorithms are used to improve an algorithm performance distribut-
ing its workload among different process. These process can run on the same
physical node, exploiting multicore architectures, or distributed in a cluster of
computers, horizontally scaling to hundreds of computers. There are two main
parallel computing techniques: parallel computing with shared memory and par-
allel computing with distributed memory [59].

3.1.1 Parallel Computing with Shared memory

The shared memory paradigm is based on that different threads or processes
that belong to the same parallel algorithm share a space of memory, through
physical memory or belong to the same process, being able to exploit multicore
architectures. The main advantages of this programming model is that it’s rel-
atively easy to develop and has low latency as the different processes or threads
run or are executed in the same computer. The main disadvantage of this pro-
gramming paradigm is that it cannot exploit distributed architectures such as
grids or cluster of computers [12]. Figure 5 shows a graphical representation of
the communication of four threads using shared memory.

Figure 5: Parallel algorithm example using shared memory

Among the most known libraries to implement parallel algorithms using
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shared memory is openMP [12], which is an API composed by compiler flags
and a set of routines and environment variables that enable an easy and fast
parallelization of a sequential algorithm.

3.1.2 Parallel Computing with Distributed Memory

The distributed memory model is based on that different process that work as a
whole to solve one problem are executed in different computers and the commu-
nication among them is based on message communication. The main advantage
of the distributed memory programming model is that it exploits distributed
environments such as grids of cluster of computers. The main disadvantage of
this programming model is the cost of communication. All the processes are ex-
ecuted on different physical computers so network communication cost have to
be considered when designing the algorithm. If the distributed algorithm com-
municates too often, it can have a negative impact on the performance of the
algorithm. An example of a distributed algorithm using the distributed memory
paradigm is shown in Figure 6, where three nodes communicate between each
other through the network.

Figure 6: Parallel algorithm example using distributed memory

The most known library to implement distributed algorithms is the Message
Passing Interface (MPI) [28]. MPI is the standard library for parallel program-
ming under the paradigm of communication between processes using messages.
The library was first developed by IBM, Intel, PVM and nCUBE whose objective
was to design an efficient standard for parallel programming with distributed
memory.

3.2 Models of communication between process

Parallel computing has been used in cluster for many years to run distributed
algorithms in hundreds of nodes. The idea of a distributed algorithm is that
different process cooperate between each other for a common goal. Depending
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on the goal, there are three main models of communicating such process running
on distributed computers.

3.2.1 Master-Slave

This is the simplest paradigm of communication between process and is the
most common model used to implement a distributed algorithm [85]. In this
paradigm, a problem is split into a set of subproblems and related process that
solve such subproblems are created. There are two kinds of processes: the master
and the slave. The master process is unique and controls the set of slaves, and
the slaves process information. The master process is responsible for starting
the slaves and for sending necessary information to process. The slave process,
process information received from the master process. The communication is
usually from the master to the slave. The slaves communicate with the master
only to send execution results. The communication and control is centralized
in the master and, although communication could exists among slaves, usually
is none. An example of Master-Slave paradigm of communication is shown in
Figure 7.

Figure 7: Example of process communication using master-slave model.

3.2.2 Client - Server

This paradigm of communication identifies two processes: the client process
that request services to process of another type, the servers, that attend those
requests [59]. The client/server model provides a mechanism of communication
for distributed applications in which the process can work as client and server
simultaneously for different services. The model client/server is the dominant
model for distributed applications over the internet and is a model massively
used in the TCP/IP protocol and web services. The main process, the server,
is permanently active waiting for requests from clients and usually many clients
consume services from only one server. An example of the client-server paradigm
of communication is shown in Figure 8.
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server

client 1 client n. . .

request response request response

Figure 8: Example of process communication using client-server model.

3.2.3 Peer to peer

The peer-to-peer parallel computing model of communication is based on that
each process has the same capabilities to establish communication. This model
can be implemented as a client-server model in which each process is a server
and a client at the same time. An example of the peer-to-peer paradigm of
communication is shown in Figure 9.

peer 1 peer n

peer m

Figure 9: Example of process communication using peer-to-peer model.

3.3 Computational models for BigData & Graph Process-
ing

3.3.1 MapReduce Programming Model

The MapReduce paradigm was first introduced by Google [23] as a mean to
develop inverted indexes for web search. MapReduce was inspired in ideas
from functional programming, distributed computing and data base systems.
MapReduce jobs process the information in batch, allowing the processing of
huge amounts of unstructured information in reasonable execution times, being
this the main feature of a MapReduce job. MapReduce was designed to being
able to implement a distributed algorithm to analyze huge amounts of informa-
tion without having to solve the problems of a distributed algorithm over and
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over [23].
The MapReduce paradigm is based on applying a map function that per-

forms (in parallel) filtering, sorting, and/or computation and a reduce function
that performs a summary operation based on the results of the map function.
The MapReduce paradigm was first introduced by Google [23] as a mean to
develop inverted indexes for web search to avoid being solving the same prob-
lem over and over again. MapReduce was inspired in ideas from functional
programming, distributed computing and data base systems.

A MapReduce job has two main phases: the map phase and the reduce
phase. The map phase of a MapReduce job is composed by the following steps:
record reader, mapper, combiner, partitioner. The output of the map phase of a
MapReduce job is a set or group of keys and values, named intermediate keys
and values. The intermediate keys and values are a set of keys and values that
are grouped by key, which will be sent to the reduce phase of the algorithm. The
reduce phase of a MapReduce job is composed by the following steps: shuffle,
sort, reduce, output format.

Traditional relational databases are often compared with the MapReduce
paradigm as both are used for similar purposes: storing and reading informa-
tion. The MapReduce paradigm and relational databases are usually comple-
mentary and not substitutes. A comparison between traditional databases and
the MapReduce paradigm is presented in Table 1. The table shows the type of
information to be saved in each type of structure by how the data is manipulated
and used. The main difference between MapReduce and a traditional database
is the volume of information managed and the structure of the information ma-
nipulated. MapReduce works best for big volumes of unstructured data. On
the other hand, traditional databases work best with gigabytes of information,
structured information with high integrity.

Traditional RDBMS MapReduce

Data size gigabytes petabytes
Access interactive & batch batch
Updates read & write many times write once, read many times
Structure static schema dynamic schema
Integrity high low
Scaling nonlinear linear

Table 1: Traditional RMDB vs MapReduce paradigm

MapReduce Design Patterns

The MapReduce design patterns are a general framework for solving problems
with the MapReduce paradigm. The MapReduce patterns are divided in six
families: summarization patterns, filters patterns, data organization patterns,
join patterns, meta patterns, IO patterns.

Summarization Patterns The algorithms included in this pattern family
are based on calculating summarization of information or counting specific in-
formation in large sets of data. Examples of the application of this pattern are:
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counting the visits of a particular web page, counting the number of transactions
in a specific country, calculate the summary of web visits by country, number
of transactions by user, etc.

Filters Patterns This pattern family is based on finding a subset of a set
of information, without modifying the original set of information. Examples
of this kind of problems are: top-ten listing, the information generated by a
particular user in a period of time. They are based on reducing information to
a smaller set so that it can be deeply analyzed.

Data Organization Patterns This pattern family is based on the transfor-
mation of the information or the reorganization of it. Many times, the infor-
mation manipulated by a MapReduce algorithm is the input to another data
analysis tool or data warehouse. An example of application of this pattern is
a job that process information, orders and sorts it and then saves it to a data
warehouse.

Join Patterns This family is based on joining information from different
sources or types of information. To implement a join in MapReduce two different
sets of data are manipulated at the same time, typically with different structures.
Joining information in MapReduce is network expensive, as the data is not
filtered before the reduce phase so all the information has to travel to reducers
to be processed.

Meta Patterns This family is based on patterns of patterns before men-
tioned, such as job chaining and job merging. An example of application of this
pattern family is when a MapReduce output is the input for another MapReduce
job.

IO Patterns This family is based on the customization of the IO of MapRe-
duce jobs. The transformation of how Hadoop saves or reads the information.
An example of application of this pattern family is when the output of a MapRe-
duce job is saved to Hbase, or when the input is read from a source other
than HDFS, which is the default source of information for MapReduce jobs in
Hadoop.

WordCount example

The word count example is the most basic example of a MapReduce job, is
the “Hello World” for MapReduce. Summarization patterns are used to imple-
ment the word count , which consists of finding the frequency (or number of
appearances of different words) of the words in a very large set.

In the summarization patterns, the mappers return the key by which are
summarizing and as value the sum. In the word count example, the key used
by the mappers is the word, and the value is the number one (meaning that the
word appeared once in the received line). The reducers receive as key the keys
emitted by the mappers (a word), and as value a list of numbers meaning the
number of appearances of that word in all the dataset. The reducer sums all
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values received and returns as key the received word, and as value the calculated
sum.

The word count example is shown in Figure 10, where two input files are
received containing two lines each. In this example, four mappers are created,
each one receiving one line. Each mapper emits the word as key and the number
one as value, for each word received. Finally, the reducer receives the informa-
tion emitted by the mappers grouped by word (the key used by the mapper)
and sums the values, resulting in the final output of the problem. The code for
the mapper is presented in Listing 1, and the code for the reducer is shown in
Listing 2.

Peter Rafaela Orange
Orange Tree Spider

Ruby Orange Dog
Spider Orange Rafaela

Peter Rafaela Orange

Orange Tree Spider

Ruby Orange Dog

Spider Orange Rafaela

Peter, 1
Rafaela, 1
Orange, 1

Orange, 1
Tree, 1
Spider, 1

Ruby, 1
Orange, 1
Dog, 1

Spider, 1
Orange, 1
Rafaela, 1

Peter, 1

Rafaela, 1
Rafaela, 1

Tree, 1

Orange, 1
Orange, 1
Orange, 1
Orange, 1

Spider, 1
Spider, 1

Ruby, 1

Dog, 1

Peter, 1

Rafaela, 2

Orange, 4

Tree, 1

Spider, 2

Ruby, 1

Dog, 1

Peter, 1
Rafaela, 2
Orange, 4
Tree, 1
Spider, 2
Ruby, 1
Dog, 1

Input files from HDFS 4 mappers receives 
each one line

each mapper 
counts the words

Sort and shuffle Reducer output 
(key, value)

Final output

Figure 10: Wordcount example

pub l i c c l a s s WordCountMapper extends MapReduceBase implements
Mapper<LongWritable , Text , Text , IntWritable> {
// I n i t i a l i z e Hadoop types to use
p r i v a t e f i n a l s t a t i c IntWritab le one = new IntWritab le (1 ) ;
p r i v a t e Text word = new Text ( ) ;

pub l i c void map( LongWritable key ,
Text value , OutputCol lector<Text , IntWritable> output ,
Reporter r e p o r t e r ) throws IOException {

// tak ing one l i n e at a time and to ke n i z i n g i t
S t r ing l i n e = value . t oS t r i ng ( ) ;
S t r ingToken i ze r t o k e n i z e r = new Str ingToken ize r ( l i n e ) ;

// i t e r a t i n g through a l l the words a v a i l a b l e in that l i n e ,
c r e a t e the key value pa i r forming the key value pa i r

whi l e ( t o k e n i z e r . hasMoreTokens ( ) ) {
word . s e t ( t o k e n i z e r . nextToken ( ) ) ;
output . c o l l e c t ( word , one ) ;

}
}

}

Listing 1: Code for the mapper for the word count example
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pub l i c c l a s s WordCountReducer extends MapReduceBase implements
Reducer<Text , IntWritable , Text , IntWritable> {

pub l i c void reduce ( Text key ,
I t e r a t o r <IntWritable> values ,
OutputCol lector<Text ,
IntWritable> output ,
Reporter r e p o r t e r ) throws IOException {

i n t sum = 0 ;
/∗ i t e r a t e s through a l l the va lue s a v a i l a b l e , add them and

return the r e c e i v e d key as the key and sum of i t s va lue s as
va lue ∗/

whi l e ( va lue s . hasNext ( ) ) {
sum += va lues . next ( ) . get ( ) ;

}
output . c o l l e c t ( key , new IntWritab le (sum) ) ;

}
}

Listing 2: Code for the reducer for the word count example

3.3.2 Pregel Programming Model

As web and social media evolved, many companies are in the need to process and
analyze large scale information. Many web and social media problems concern
large graphs with more than a billion vertices [14]. For example, finding the
shortest friendship path among two users of a social network or to find which
users have more influence over the others in a specific social network like twitter.
Despite MapReduce was first proposed to analyze large datasets in a cluster or
grids, it is not suitable to solve graph algorithms. Different approaches can be
taken to tackle graph problems in a large scale, being some of them [61]:

• Developing a custom distributed infrastructure requiring effort to be re-
peated for each new algorithm.

• Relying on existing distributed infrastructure like MapReduce leading to
suboptimal solutions.

• Using single computer for solving graph algorithms, but that does not
scale for big problems.

• Using existing parallel graph system that do not address important issues
in distributed environments like fault tolerance.

Graph processing systems are suitable for social science problems where
communication between nodes is needed and the model can be represented
as a graph, where the nodes communicate with each other. Pregel [61] was
first proposed to tackle large scale graph processing in a cluster of computers
in an efficient manner, without having to address distributed algorithm prob-
lems. Pregel is a flexible, scalable and fault-tolerant computing model based on
Valiant’s Bulk Synchronous Parallel model [90]. Pregel programs are expressed
as a sequence of iterations (or supersteps) where in each iteration the following
actions can be done:

• A vertex can receive a message (or messages) sent in the previous iteration
of the algorithm by another vertex.
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• A vertex can send messages to other vertices (messages that will be re-
ceived in the next iteration). Typically, one vertex can send a message
along one of its outgoing edges to another vertex.

• A vertex can modify its state and the state of its outgoing edges (in a
directed graph).

• Mutate graph topology.

Pregel model is an efficient, scalable and fault-tolerant framework to run
graph algorithms on clusters of thousands of commodity computers, and its
implied synchronicity makes reasoning about programs easier [61]. Pregel is a
proprietary implementation from Google. There exists some open sources imple-
mentations that implement the Pregel paradigm such as Giraph [62], GraphX [95,
38] and GraphLab [57].

Giraph is an open source implementation of Pregel which uses Apache Hadoop
MapReduce implementation to process graphs. Giraph is currently used at Face-
book to analyze the social graph formed by users and their connections and has
been successfully used to process a graph with over one trillion edges [14]. The
key aspect of Giraph is that runs over Hadoop, which is now the most used
framework for big data processing in the industry.

GraphX is a graph processing framework, which also implements the Pregel
model but also many other graph algorithms. GraphX runs over Spark and
provides a simple api for graph processing operations like triangle count, number
of connected components, page rank, etc.

Pregel Example: Friends recommendations

This section presents a simple example of application of Pregel.The example
problem consists in finding friends recommendations for each user. A friend
recommendation (or potential friend) for a user A can be defined as the users
that share a common friend with A. Consider Facebook for example, where the
friendship relation is reciprocal, a user A is friend of the user B then, the user B
is also friend of user A. Facebook social network can be represented as a graph
where each vertex (node) is a user and nodes are connected by an edge if they
are friends.

The Figure 11 shows how to use Pregel paradigm to calculate the friends
recommendations for each user in a graph. The first step in a pregel process is
usually an initialization process, sometimes called superstep 0. In the example
shown, the set of friend recommendations is initialized as an empty set for
all vertices. In each iteration of the pregel algorithm, each node sends to its
neighbors the current list of recommended friends plus itself. So, in superstep 1,
each node has its neighbors as the set of recommended friends (e.g.: the set of
recommended friends for node a in superstep 1 is b, which is a’s only neighbor).
The process is repeated again but now the set of recommended friends is not
empty, so each node receives from its neighbors a set containing all neighbor’s
neighbors. For example, node a receives from node b all b’s neighbors, a,c,d.
Finally, each node removes duplicates from the list and all neighbors (because
they are already friends) and the algorithm ends.
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Figure 11: Example problem of using pregel to calculate friend recommendations for
each user in a social network.

3.4 Performance metrics

There are different performance metrics used to measure the performance of a
distributed algorithm. A metric of performance does not depend on the specific
hardware being used and must be a function of the size of the problem to be
solved. To evaluate the efficiency of an algorithm the number of steps required
to solve the problem is considered.

Intuitively two main factors can be taken into account to evaluate an al-
gorithm performance: the execution time and the usage of resources available.
The execution time is commonly used as a metric of performance to evaluate the
efficiency of an algorithm. The execution time depends on multiple factors such
as complexity, size of the problem, number of tasks used (in case of a parallel
algorithm) and of processing elements (hardware, networks, etc) [33].

Speedup

The speedup is a measure of the improvement in the performance of a parallel
algorithm using many processing nodes, compared to the efficiency of the same
algorithm using only one processing node. There are two types of speedup:
absolute speedup and algorithmic speedup.

Absolute Speedup The absolute speedup compares the execution time of
the best sequential algorithm that solves the problem (T0) with the execution
time of the parallel algorithm using N processors (TN ). The absolute speedup
is defined by Eq 3
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S absolute(N) =
T0
TN

(3)

Algorithmic Speedup The algorithmic speedup compares the execution time
of the same parallel algorithm executed in one processor (T1) with the execu-
tion time of the parallel algorithm executed using N processors (TN ). The
algorithmic speedup is defined by Eq 4.

S algorithmic(N) =
T1
TN

(4)

The algorithmic speedup is most commonly used to evaluate the improve-
ment of the performance of the parallel algorithms when using the executing
time as a measure of performance. The absolute speedup is difficult to calculate
because not always the best algorithm to solve a problem is known.

3.5 Summary

This section presented different distributed algorithm techniques and introduced
the performance metrics used to measure the performance of the algorithms
devised in this work.

The state of the art of many distributed algorithms to solve the 3-SAT are
based on the techniques described above and many of them use the libraries
before mentioned, like MPI. This work presents a novel idea to use MapReduce
programming paradigm to implement a distributed algorithm to solve a LSO
problem.
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4 Hadoop & MapReduce

This section introduces the Hadoop framework, its structure and the Hadoop
MapReduce job execution environment. A basic MapReduce example is pre-
sented as a basic example of how the MapReduce programming model works.
The Hadoop distributed filesystem and the Hadoop database are also introduced
in this section.

In the last decade, the information generated has grown exponentially. The
capability of analyzing all these information available is a powerful tool to an-
alyze human behavior. Digital information is doubled every two years and it is
estimated to reach 44 trillion gigabytes by 2020, increasing in a factor of 10 from
2013 to 2020 [1]. All this digital information comes from different sources, such
as geo-localization, multimedia information, web searches, logs, etc. The trend
is that the information generated by each person grows each year. Nevertheless,
digital information created by different systems is greater than the information
created by users. System information is created by GPS logs, sensors, tracking
information and many other systems.

Digital information is growing very fast and is composed by almost 80%
of unstructured information and 20% of structured information, growing the
unstructured information 15 times faster than the structured information [92].

Different frameworks have been proposed to analyze big volumes of unstruc-
tured information in a distributed environment. Hadoop is the most known
framework for analyzing unstructured information in a distributed environ-
ment [92]. Hadoop has been designed to execute algorithms in clusters of
commodity computers running MapReduce jobs, providing a distributed file
system.

4.1 Apache Hadoop

Hadoop is currently the most used framework to analyze large volumes of in-
formation using the MapReduce programming model. Hadoop is a distributed
system initially proposed as a framework to execute MapReduce tasks. Hadoop
includes an open source implementation of the Google File System (GFS) [35],
named Hadoop Distributed File System (HDFS) [81, 82]. Hadoop provides an
abstraction level that allows these developers, having little knowledge about dis-
tributed computing programming, to easily implement distributed algorithms
that could run on hundreds of commodity machines to analyze huge amounts
of information in reasonable execution times. Hadoop was not designed for
solving optimization problems or computer intensive problems. Nevertheless,
the framework provides the infrastructure needed to run MapReduce jobs solv-
ing the classical problems of distributed algorithms like fault-tolerance, process
communication and data replication transparently to the developer.

4.1.1 Hadoop Ecosystem

The Hadoop ecosystem is extended beyond the infrastructure to run MapReduce
jobs or the HDFS. Many different projects or frameworks run over the Hadoop
infrastructure. Some related projects of the Hadoop ecosystem are mentioned
below. Some of these projects are included in the Apache Hadoop distribution
and others (like Hbase) are currently full Apache projects.
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• Common: Includes the common artifacts of Hadoop for distributed sys-
tems and IO (serialization, remote procedure call, persistence).

• Avro: Is a data serialization system, which provides rich data structures
including compact and fast binary data formats. Also, remote proce-
dure calls (RPC) is including with simple integration with dynamic lan-
guages [29].

• MapReduce: Hadoop includes the MapReduce runner for running dis-
tributed algorithms using the MapReduce paradigm.

• HDFS: [82] Is Hadoop distributed file system that provides high-performance
access to data across Hadoop clusters of commodity machines. The file sys-
tem is designed to be fault-tolerant providing replication and scalability.
The Hadoop distributed file system is based on Google File System [35].

• Pig: Pig is an abstraction of MapReduce. Pig programs are developed
using a pseudo SQL language which creates MapReduce tasks.

• Hive: Hive is a distributed data warehouse. Hive manages and maps
HDFS information and enables a SQL-like language that is translated to
MapReduce jobs [86].

• Hbase: [34] A column oriented distributed database. Hbase uses HDFS
and supports MapReduce jobs. It is based on Google BigTable [11].

• ZooKeeper: Is a centralized service for maintaining configuration infor-
mation, naming, providing distributed synchronization. It enables the
communication and transfer of reduced scheduling information that help
the developer to develop distributed algorithms [45].

• Sqoop: Sqoop is a tool to efficiently transfer information from RDBMS
to the Hadoop ecosystem, mainly focused on HDFS and Hive [50].

4.2 Hadoop MapReduce implementation

The most known and widely used implementation of the MapReduce program-
ming model is the Hadoop implementation. Hadoop was designed and devel-
oped to run MapReduce jobs in a distributed environment [92]. Although the
MapReduce paradigm is easy to understand and describe, it is not always easy
to express an algorithm in terms of map and reduce functions.

The MapReduce paradigm works by splitting the processing of data in two
main steps, the map function and the reduce function. Usually, the input of
the mapper is raw data saved in the HDFS. Text input format is the default
format, which specifies the lines of the raw file as values for the mapper and
the byte offset of the beginning of the line from the beginning of the file as
key. A MapReduce job consists of the input data, the MapReduce program,
and configuration information. Hadoop runs the job by dividing it into tasks.
There are two types of tasks: map tasks and reduce tasks.

The main phases of a MapReduce job are briefly mentioned below where
the user code is executed on the map and on the reduce phases. Nevertheless,
the user can implement customs partitioners, record readers, input formats and
combiners depending on the algorithms needs [92].
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• InputFormat : The InputFormat specifies the input for the MapReduce
job. The MapReduce framework relies on the InputFormat to: i) validate
the input for the job; ii) split the input file into logical splits, each of
which is assigned to an individual mapper; iii) provide the RecordReader
an implementation to be used to translate input records from logical splits
to data structures understandable by the mappers.

• RecordReader : The RecordReader translates the generated splits created
by the InputFormat from the input files to key-value objects to be sent
to the mappers. By default, each mapper receives a line of the input file
at a time. The byte offset of the line in the input file is used as the key
and the line as the value. New RecordReaders could be implemented to
extend the default functionalities provided by Hadoop.

• Map: The mapper is where the developer maps the input retrieved from
the RecordReader in the format (key-value) and returns another set of
key-value pairs. The keys that the mappers write are the values to be
used to group in the reduce phase.

• Combiner : A Combiner is a reducer that runs in the same physical com-
puter as the mapper. The goal of the Combiner is to optimize the MapRe-
duce algorithm by running a reduce operation in the same physical node
as the mapper, thus reducing network traffic. The Combiner is run before
the intermediate sets key-value are sent to the reducers.

• Partitioner : The Partitioner takes the set of intermediate key-value pairs
that are outputs of the mappers and groups them by the keys.

• Reduce: Each reduce process receives a key, written by the mappers, and
a list of related values. The reducer groups and applies a given function
(implemented by the user) to the key-value pairs received as input. The
reducer writes the output as key-value pairs to an output folder, specified
in the MapReduce job. This is the last phase of a MapReduce algorithm
and the Reducer has the responsibility of calculating the final result or to
prepare the information for the next MapReduce job.

4.2.1 Job execution

A common Hadoop cluster includes the master node and multiple slave nodes.
The master node is composed by the several processes: a JobTracker, a Task-
Tracker, a namenode and a datanode. A slave node is composed by a the follow-
ing processes: a datanode and a TaskTracker. The JobTracker coordinates all
the jobs run on the system by scheduling tasks to run on TaskTrackers. Task-
Trackers run tasks and send progress reports to the JobTracker, which keeps a
record of the overall progress of each job. If a task fails, the JobTracker can
reschedule it to execute on a different TaskTracker. Both the namenode and the
datanode belong to the HDFS cluster. These are daemon processes and they are
used to manage the namespace and the distributed data and they are further
explained in Section 4.3.1. A graphical representation of Hadoop processes is
presented in Figure 12, including the MapReduce runner and the HDFS cluster.

Hadoop divides the input of a MapReduce job into pieces with a fixed size
called input splits. Hadoop creates one map task for each split. Each split is
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Figure 12: Hadoop diagram daemons

divided into records, and the map processes by running the user-defined map
function for each record in the split, emitting key-value pairs. The default split
size is of the size of a HDFS block (64 MB), although this parameter can be
configured or specified by the InputSplit used.

Hadoop runs the map tasks on the node where the input data resides in
HDFS. The output of the mapper task, named intermediate key-value pairs, is
written directly to the local disk on the node where the mapper was executed.
Usually, the input of a reduce tasks is the output from different mappers. Thus,
the sorted map outputs have to be transferred across the network to the node
where the reduce task is running. In this node, the results are merged and then
passed to the user-defined reduce function.

The output of the reduce task is normally stored in HDFS using replicas.
For each HDFS block of the reduce output, the first replica is stored on the local
node, while the other replicas are stored on off-rack nodes. Thus, writing the
reduce output does consume considerable network bandwidth. When multiple
reducers are used, the output of the mappers are partitioned. Each mapper
creates one partition for each reduce task, based on the key used as output
in the mapper process. Many keys and their associated values exist in each
partition, but the records for any given key are all in a single partition. Thus,
each reducer will receive a single partition as input. A basic execution of a
MapReduce task is shown in Figure 13, having three mapper tasks and a single
reduce task.
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Figure 13: MapReduce job execution having only one reducer.

Figure 14 shows the execution flow of a MapReduce job executed in Hadoop.
First, a MapReduce job is created in the client node; this job is executed inside
a JVM. The JobClient submits a new job to the JobTracker, which centralizes
all job executions and a new job id is returned. After that, in step three,
the execution jar, the distributed cache information and required resources are
copied to the nodes. The job is submitted to the JobTracker in step four and
the job id is retrieved in step 5. The JobTracker initializes the job and retry
the input for the job in step six. The TaskTrackers communicate with the
JobTracker using messages to send information about availability and running
capacity. The JobTracker assigns the job execution to a TaskTracker to run the
map or reduce task. Before starting the map or reduce task, the TaskTracker
retrieves the required resources to run the task, for example the executable jar
file and other information. Finally, in case there is not a JVM already created,
the TaskTracker creates a new JVM and launches the map or reduce task.

The JobTracker listens to TaskTracker control messages from the Task-
Trackers, known as heartbeat signals. Heartbeat signals are sent from each
TaskTracker to the JobTracker, who responds with specific commands to the
TaskTracker. The heartbeat signals are messages containing synchronization in-
formation between the TaskTracker and the JobTracker, which is used to track
tasks that are running in the Hadoop cluster. The data available in the heart-
beat messages includes data about the worker managed by the TaskTracker; e.g.
such as virtual memory and physical memory available, CPU information, etc,
if the process has started or restarted, an identification for the first heartbeat
of the tracking process or the first since a refresh; and a notification when the
worker is ready to receive new tasks to execute.

TaskTrackers run a loop that periodically send heartbeat signals to the Job-
Tracker, which in turn assigns a task from pending jobs to execute in the Task-
Tracker. TaskTrackers have a fixed number of slots for map tasks and for reduce
tasks(for example, a TaskTracker may be able to run two map tasks and two
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Figure 14: Example of a MapReduce job execution flow

reduce tasks simultaneously). Map tasks have higher priority than reduce tasks,
so if the TaskTracker has at least one empty map task slot, the JobTracker will
select a map task to execute; otherwise, it will select a reduce task. For a map
task, the JobTracker takes into account the TaskTracker network location and
picks a task whose input split is as close as possible to the TaskTracker, in order
to improve performance. In the optimal case, the task may run on the same
physical node where the data resides. Alternatively, the task may run on the
same rack but not on the same node as the split.

When there are tasks to execute and a TaskTracker indicates that a worker is
ready, the JobTracker creates the cleanup and setup tasks (one for each mapper).
These tasks are special processes that allow the JobTracker and the TaskTracker
to run the user programs without compromising the security and stability of
Hadoop. When a TaskTracker has a task assigned, it executes by copying the
the jar file of the job and all the data required for execution from the distributed
cache to the local node. After that, an instance of TaskRunner is created to
run the job. The TaskRunner launches a new JVM, which is reused in future
executions to run each task so any problem related to the user program does
not affect the TaskTracker.

When a task is running, it keeps track of the progress of completion of
the task. For map tasks, this is the proportion of the input that has been
processed. For reduce tasks, the system estimates the proportion of the reduce
input processed. Progress is not always measurable, but it is important as it
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used by Hadoop to know if a certain task is working. For example, a task
writing output records is making progress, even though it cannot be expressed
as a percentage of the total number that will be written, since the latter may
not be known.

4.2.2 Task Failure

The most common way for a child task failure is when the user code in the
map or the reduce task throws a runtime exception. If this happens, the child
JVM reports the error back to its parent TaskTracker, before it exits. The
TaskTracker marks the task execution attempt as failed, freeing up a slot to run
another task. Another failure situation is the sudden exit of the child JVM. In
this case, the TaskTracker notices that the process has exited and marks the
task execution attempt as failed.

When the TaskTracker notices that is not receiving progress updates for a
while from the executed task, it marks the task as failed. In this case, the child
JVM process is automatically killed. This is the case when the tasks hang or
are blocked.

When the JobTracker is notified by the TaskTracker that a task execution at-
tempt that has, the task that was being executed by the TaskTracker is resched-
uled by the JobTracker. The JobTracker tries to avoid rescheduling the task
on a TaskTracker where it has previously failed. Furthermore, if a task fails a
specific number of times (by default, configured to 4 times), the JobTracker does
not retries the execution further. In this case, the JobTracker finishes the job.
For some applications, it is undesirable to abort the job if a few tasks fail, as it
may be possible to use the results of the job despite some failures. In this case,
the maximum percentage of tasks that are allowed to fail without triggering job
failure can be set for the job. The number of map tasks and reduce tasks that
are allowed to fail is configured by two independent configuration properties.

4.2.3 TaskTracker Failure

The TaskTracker stops sending heartbeat signals to the JobTracker (or sends
them infrequently) by two main reasons: i) TaskTracker crashes; ii) TaskTracker
poor performance by running slow. The JobTracker will notice that a Task-
Tracker has stopped sending heartbeats if it has not received one for a specific
time period (by default, configured to 10 minutes). In this case, the JobTracker
removes the TaskTracker from its pool of TaskTrackers to schedule tasks on.
The map tasks that were completed successfully on a failing TaskTracker are
rerun, since their intermediate output is written to the local filesystem of the
the failed TaskTracker and could not be accessed to by the reduce task. Any
tasks in progress are also rescheduled.

A TaskTracker can be blacklisted by two reasons: i) an administrative user
can blacklist a TaskTracker from the command line; ii) if the TaskTracker fails
more than a specific number of times (by default, four times), then the Job-
Tracker marks the TaskTracker as blacklisted. A blacklisted TaskTracker can be
removed from the blacklist by: i) it is automatically removed from the blacklist
after a day from being blacklisted; ii) from the command line by an administra-
tive user; iii) if the TaskTracker is restarted
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4.2.4 JobTracker Failure

The most serious failure situation of Hadoop is when the JobTracker fails. The
JobTracker is a single point of failure and, currently, the Apache Hadoop dis-
tribution has no mechanism for dealing with failure of the JobTracker. In this
case, the whole job fails. Usually, depending on the physical machine where the
JobTracker runs, this failure situation has a low chance of occurring, since the
chance of a particular machine failing is low.

Fault-tolerance for the JobTracker have been studied and implemented using
checkpoints (but is not included in the main Apache Hadoop distribution). In
the proposed schema, the JobTracker saves snapshots of the system state at
certain times. If the JobTracker fails, the system automatically restarts the
JobTracker using the last snapshot saved. Short execution time overheads have
been reported after a JobTracker failure [55].

4.2.5 MapReduce Input Types and Input Formats

MapReduce has a simple model of data processing: inputs and outputs for the
map and reduce functions are key-value pairs. Hadoop supports different types
of input and output formats to be used as keys and values for mappers and
reducers.

The map and reduce functions in Hadoop MapReduce have the following
general form:

• map: (K1, V1) → list(K2, V2)

• reduce: (K2, list(V2)) → list(K3, V3)

In general, the map input key type K1 and the value type V1 are differ-
ent to the map output types (K2 and V2) respectively. The reduce input K3

and V3 must have the same types as the map output (K2=K3 and V 2=V3),
although the reduce output types may be different (K4 and V4). The partition
function applied to the mapper intermediate key and value types (K2 and V2
respectively), and it returns the partition index.

Hadoop provides a large list of types to be used by mappers and reducers
that are suitable for MapReduce algorithms. The list of types that come with
the default Apache Hadoop distribution is: BooleanWritable, ByteWritable, In-
tWritable, VIntWritable, FloatWritable, LongWritable, VLongWritable, Dou-
bleWritable, NullWritable, Text, BytesWritable, MD5Hash, ObjectWritable,
GenericWritable, ArrayWritable, TwoDArrayWritable, MapWritable, SortedMap-
Writable. Nevertheless, Hadoop provides the flexibility to implement custom
types that are needed, in some special cases, to represent the data managed by
a specific algorithm.

The InputFormat is used by Hadoop to read the data used as input by the
MapReduce job. The InputFormat sends the information to the mappers spec-
ifying the types of keys and values. For instance, a TextInputFormat generates
keys of type LongWritable and values of type Text. If not set explicitly, the de-
fault types for the intermediate keys and values is the same as the final output
types, which are LongWritable and Text respectively by default. OutputFor-
mats are used by Hadoop to write the final information, which is usually written
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by the reducers. Hadoop provides an extensive list of InputFormats and Out-
putFormats to be used that are suitable for most MapReduce algorithms. A
listo of InputFormats and OutputFormats is shown below:

• FileInputFormat - Reads all files from a specific directory and sends them
to the mapper task. This is the base class for all input format imple-
mentations that use files as input. Two main items are defined in the
FileInputFormat: which files are included as the input for a job and how
the input splits are generated.

• TextInputFormat - This is the default input format. Each record is a line
of input, the key is the byte offset in the file, and the value is the line
read. The key is of type LongWritable and the value is of type Text.

• NLineInputFormat - Reads N lines of the file. The key is a LongWritable
which specifies the byte offset in the file of the line received and the value
is the line received. Each mapper will receive N lines of the input file.

• KeyValueTextInputFormat - Reads a file with the following structure:
key+separator+value. The most known formats that follow this structure
are: tabs separated values (tsv) and comma separated values (csv). The
key is the value on the left of the separator, and the value is in the right
side of the separator. The default separator is the tab and can be changed
by setting the configuration parameter key.value.separator.in.input.line.

• SequenceFileInputFormat - This type of input format it applied to read
binary information stored as key-value pairs. The sequence file in Hadoop
is created with a defined key type and value type at the moment of its
creation. The keys and values received by the mappers when using the
SequenceFileInputFormat must be the types specified when the sequence
file was created.

• SequenceFileAsTextInputFormat - This type of input format is a variation
of the SequenceFileInputFormat that converts the keys and values of the
sequence file (which are stored as binary information) to strings or Text
objects.

• SequenceFileAsBinaryInputFormat - This type of input format is a varia-
tion of the SequenceFileInputFormat that converts the keys and values of
the sequence file (which are stored as binary information) to binary ob-
jects or BytesWritable objects. This input format is used when the binary
information has a specific custom type and the application knows how to
interpret the underlying byte array.

• TextOutputFormat This is the default output format. This output for-
mat just writes records as lines of texts. The keys and values can be of
any type and are separated by a separator (by default, a tab character).
The separator of the TextOutputFormat can be changed by settings the
configuration parameter mapred.textoutputformat.separator.

• NullOutputFormat This output format does not emit an output and sup-
press the corresponding output.
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• SequenceFileOutputFormat - This output format writes sequence files based
on the key-value pairs emitted by the MapReduce job. Usually, this out-
put format is used when the output of a MapReduce task is used as input
for another MapReduce task. This format is compact and compressed; it
reduces the time needed to write and read the information, this providing
an efficient method for data communication between tasks.

• SequenceFileAsBinaryOutputFormat - This output format writes keys and
values in raw binary format.

The InputFormats and OutputFormats provided by Apache Hadoop are
enough for most MapReduce applications. However, in some cases new In-
putFormats/OutputFormats are needed. Hadoop provides the flexibility to im-
plement custom input/output formats. For example, consider the csv file in the
Example 5, where the first field is a name and the next three values are coordi-
nates in a map. In the example, a custom input format could be implemented
that reads the file and outputs as the name as the key and a coordinate as the
value.

ball, 3.5, 12.11, 11.3 (5)

tree, 2.2, 54.3, 98.8

rice, 1.1, 0.9, 5.4

4.2.6 Hadoop MapReduce Counters

Hadoop counters are a useful tool for gathering statistical information about
a MapReduce job. Hadoop counters are used as diagnosis information if the
MapReduce algorithm is not working, or to improve its performance. Instead
of adding a log to a MapReduce program, it is better to add a counter which
is easier to read and manipulate. Hadoop counters are global as the Hadoop
aggregates them across all mappers and reducers to produce a total at the end
of the job.

The default counters are grouped by the type of information they provide,
defining three families: MapReduce framework counters, filesystem counters, job
counters. MapReduce framework counters gather information about the data
processed by the MapReduce job, like the number of records received by the
mappers, the number of records received by combiners, the number of records
skipped, the number of records received by the reducers, etc. The filesystem
counters gather information about the filesystem such as the number of bytes
read and written. The job counters gather information about the job execution,
like the number of mappers launched, the number of failed reduce tasks, the
number of data-local map tasks, etc.

Hadoop also allows the user to define custom counters, defined by a java
enum. A job may define an arbitrary number of enums, each with an arbitrary
number of fields. The group name of the counter is the name of the enum and
the fields of the enum are the counter names.
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4.2.7 Distributed Cache

The Hadoop Distributed Cache is a mechanism to distribute datasets in all nodes
in a Hadoop cluster. For some MapReduce jobs, specific files (e.g: configuration
files) are needed in all the nodes where map tasks and reduce tasks are executed.
The Distributed Cache provides a service to ensure that these files are copied to
every node and are accessible when map tasks and reduce tasks are executed.

The files to be copied by the distributed cache can be stored on any Hadoop
readable filesystem. When a job is launched, Hadoop copies the files specified
by the -files and -archives options to the filesystem of the JobTracker, which
is usually the hadoop distributed filesystem. Then, before starting the task,
the TaskTracker copies the files from the filesystem of the JobTracker to a local
disk, so the task can access the files efficiently.

The TaskTracker maintains a reference count for the number of tasks using
each file in the cache. Before a specific task starts execution, the reference
count of the file added to the distributed cache, used by the MapReduce job,
is incremented by one. Then, after the task finishes execution, the count is
decreased by one. Only when the count reaches zero, the file is eligible for
deletion from the distributed cache, because no tasks are using it. Files are
deleted to make room for new files when the cache exceeds a configurable size
(by default, 10GB).

The design of the distributed cache does not guarantee that subsequent tasks
from the same job running on the same TaskTracker will find the file in the cache,
but it is very likely that they will. Tasks from a MapReduce job are normally
scheduled to run at the same time, so usually there are not enough other jobs
executed at the same time to cause the original file to be deleted from the cache.
For CPU intensive algorithms, such as the approach for large-scale optimization
presented in this work, the file saved in the distributed cache is never deleted
because only one job is executed at a time and the files saved in the distributed
cache are not big enough to be deleted (not exceeding the maximum default
value of 10GB).

4.3 Hadoop Distributed File System

Distributed filesystems are filesystems that manage storage across a network of
computers. Usually, when a dataset outgrows the storage capacity of a single
physical computer is necessary to perform a distribution of the information
across many different computers.

The distributed file systems have the same challenges than designing dis-
tributed algorithms, including failure tolerance, synchronization and communi-
cation between nodes, data replication, etc. The Hadoop Distributed File Sys-
tem (HDFS) was originally designed to run MapReduce jobs in a distributed
manner. The HDFS provides a filesystem for storing very large files with stream-
ing data access patterns running on clusters of commodity hardware.

HDFS has the following characteristics:

• Large Files: HDFS was designed to store files of hundreds of gigabytes,
terabytes or petabytes of data, used for storing and analyzing big datasets.

• Streaming data access: The streaming data access implies that instead
of reading data as packets or chunks, data is read continuously with a
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constant bitrate. The application starts reading data from the start of
a file and keeps on reading it in a sequential manner without random
seeks. The streaming capability enables to read a file while is still being
written to HDFS. Usually the type of information saved to HDFS are logs
or information that needs to be analyzed afterwards, but not updated.

• Commodity hardware: HDFS was designed to run on clusters of commod-
ity computers to run MapReduce jobs. The chance of failure of a node
in a large cluster of commodity computers is high. Thus, HDFS was de-
signed to be fault tolerant without noticeable impact on the MapReduce
job performance.

HDFS is suitable for solving large scale problems as it was designed to be
used to run MapReduce jobs. Nevertheless, it does not work well in applications
that require low-latency data access, work with many small files or there are
many readers and writers. The following characteristics enumerate the scenarios
where HDFS is usually not the best choice to be used to save data.

• Low-latency data access; HDFS is designed and optimized to read huge
amounts of distributed information in expense of latency. Applications
that do require to read the information fast, such as real time applications,
not work well using HDFS.

Regarding low-latency data access, Hbase [34] is a better choice than
HDFS as it is optimized to read the information fast. Hbase was the
choice selected for the algorithm presented in this work and will be fur-
ther explained in Section 4.5.

• Many small files: HDFS keeps the filesystem information in system mem-
ory for a more performant access. Thus, the limit to the number of files
in a filesystem depends on the amount of system memory in the master
node keeping the filesystem information. Each file takes about 150 bytes
thus, a million files would take at least 300MB of system memory just
to hold the filesystem information. Although HDFS can handle problems
with millions of files, the number of files that HDFS can handle efficiently
depends on the capability of the hardware.

• Multiple writers and file modifications: HDFS does not provide support
for multiple writers or modifications at an arbitrary offset in a file.

4.3.1 Scheduling and Synchronization

The HDFS cluster works using a master-slave communication paradigm. Two
types of nodes are used: a namenode (the master) and a number of datanodes
(the workers). The namenode manages the filesystem namespace, maintaining
the filesystem tree and the metadata for all the files and directories in the tree.
This information is persistently stored on the local disk. The namenode knows
on which datanode all the blocks for a given file are located. However, the
namenode does not store block locations persistently, since this information is
reconstructed from datanodes when the system starts.

Datanodes store and retrieve blocks when they are requested by clients. The
datanodes report to the namenode periodically the lists of blocks that they are
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storing. Without the namenode, the filesystem cannot be used. If the computer
running the namenode fails, all the files on the filesystem are lost, because
there is no way of knowing how to reconstruct the files from the blocks on the
datanodes.

Hadoop provides two mechanisms, which are described next, for failure tol-
erance for the namenode: the back up mechanism and the secondary namenode
mechanism.

The first mechanism to provide fault tolerance to the namenode is to back up
the files that make up the persistent state of the filesystem metadata. Hadoop
can be configured so that the namenode writes its persistent state to multiple
filesystems. The second mechanism is the traditional primary-backup schema,
where a secondary namenode runs not acting as a real namenode. Instead,
the main role of the secondary namenode is to periodically save the namespace
state. Usually, the secondary namenode runs on a separate physical machine,
because it has large CPU demands and requires as much memory as the namen-
ode to save the namenode state. The secondary namenode keeps the required
information to be used in case of a failure of the primary namenode. In the case
of total failure of the primary namenode, the secondary namenode changes it
state as active and starts running as the new primary namenode.

Files in HDFS are divided into block-sized pieces, which are stored as inde-
pendent units. Having a block abstraction for a distributed filesystem brings
several benefits. A file can be larger than any single disk in the network. HDFS
can store the blocks from a file in different disks in the cluster. Using this ap-
proach, it would be possible to store a single file of the size of the sum of all the
disks in the HDFS cluster.

4.4 Cluster configuration

In order to run MapReduce jobs on Hadoop, the cluster must first be con-
figured by setting some configuration parameters to optimize the execution of
MapReduce jobs, which will be described next. There are three possible cluster
configurations: non-distributed, pseudo-distributed and distributed. By default,
Hadoop is configured in a non-distributed setup and it runs as a single Java
process. This setup is useful for debugging and testing MapReduce jobs, but
not for executing real applications.

A minimal configuration is needed to setup a Hadoop cluster by setting some
configuration parameters. Hadoop configurations are located in etc/hadoop in-
side the Hadoop installation directory. Hadoop has three main configuration
files: core-site.xml, hdfs-site.xml and mapred-site.xml.

To run MapReduce, a JobTracker node needs to be designated, which on
small clusters may be the same computer running the namenode. The con-
figuration parameter mapred.job.tracker is used to set the location where the
JobTracker will listen, setting the hostname or IP address and port of the Job-
Tracker. During the execution of a MapReduce job, intermediate data and
working files are written to temporary local files. This local temporary storage
is configured by setting the mapred.local.dir property. Since the written data po-
tentially includes a very large output of map tasks, using a disk with partitions
that are large enough is usually advisable. The mapred.local.dir property takes
a comma-separated list of directory names. The default filesystem is needed in
a default cluster configuration configured by setting the fs.default.name param-
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eter. The filesystem normally used in Hadoop is HDFS. Hadoop replicates the
information to different nodes to provide failure tolerance and this value can be
changed by setting the dfs.replication configuration parameter (by default, set to
3). The runtime framework used to run MapReduce jobs is changed by setting
the mapreduce.framework.name configuration parameter, having local, classic
or yarn as possible values. The local configuration is to run local MapReduce
jobs, the classic is to run MapReduce jobs using the first version of the Hadoop
MapReduce framework and the yarn configuration is to use the second version
of the Hadoop MapReduce framework

The pseudo-distributed setup configures Hadoop to run each Hadoop dae-
mon (e.g.: JobTracker, TaskTrackers, Datanode, Namenode) on its own Java
process, but on the same node. A configuration example of a pseudo-distributed
setup is shown in Listing 3, where the core-site.xml, hdfs-site.xml, mapred-
site.xml and yarn-site.xml configuration files are set. The example shows a
default configuration setting the fs.default.name parameter to specify the filesys-
tem used (in the example, HDFS), the replication value to one. In the example,
the JobTracker is also configured by setting the parameters mapred.job.tracker
configuration parameter and the second version of the Hadoop MapReduce
framework is used, setting the mapreduce.framework.name parameter to yarn.
Also, in order to run in a cluster, Hadoop must have ssh access to all the
configured nodes. In the pseudo-distributed setup, the only node available is
localhost.

hadoop−2.x . x/ e t c /hadoop/ core−s i t e . xml

<c o n f i g u r a t i o n>
<property>

<name> f s . d e f a u l t . name</name>
<value>h d f s : // l o c a l h o s t : 9 0 0 0</ value>

</ property>
</ c o n f i g u r a t i o n>

hadoop−2.x . x/ e t c /hadoop/ hdfs−s i t e . xml

<c o n f i g u r a t i o n>
<property>

<name>d f s . r e p l i c a t i o n</name>
<value>1</ value>

</ property>
</ c o n f i g u r a t i o n>

hadoop−2.x . x/ e t c /hadoop/mapred−s i t e . xml

<c o n f i g u r a t i o n>
<property>

<name>mapred . job . t r a c k e r</name>
<value> l o c a l h o s t : 9 0 0 1</ value>

</ property>
<property>

<name>mapreduce . framework . name</name>
<value>yarn</ value>

</ property>
</ c o n f i g u r a t i o n>

Listing 3: Pseudo-distributed Hadoop configuration
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The cluster configuration of Hadoop depends on the hardware available in
the cluster and the nodes available. How to configure a Hadoop cluster is
available online at the Hadoop Apache website (https://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html).

The mapred.tasktracker.map.tasks.maximum and
mapred.tasktracker.reduce.tasks.maximum properties allow to set the maximum
number of mappers and reducers that a TaskTracker will be able to execute.
The TaskTracker launches a new JVM process every time a mapper task or
reducer task is executed if no child JVM process was already launched. The
mapred.child.java.opts property allows to set the maximum available memory
for the JVM process.

Hadoop uses by default a buffer size of 4 KB for I/O operations. The
io.file.buffer.size property, available in the core-site.xml configuration file, al-
lows to set the buffer size to use. Usually, this parameter is modified increasing
the buffer size, having performance benefits using a larger buffer size such as
64 KB or 128 KB. The HDFS block size (by default, 64 MB) is set by the
dfs.block.size property, in the hdfs-site.xml configuration file, being 128 MB or
256 MB common choices. When increasing the HDFS block size gives more
data to process to each mapper task and the namenode has less blocks to track,
reducing the memory consumption.

4.5 Hbase

The Hadoop database (Hbase) is a column-oriented database, based on Google
BigTable [11], built on top of HDFS. Hbase is a real-time database which pro-
vides read/write random-access to very large distributed datasets. Hbase does
not compromise performance when working with distributed datasets. Hbase is
designed to scale linearly by adding nodes to the cluster and is able to host very
large sparsely populated tables on a cluster of commodity hardware.

In Hbase, tables are composed by rows and columns, and the intersection
of rows and columns is named a cell. The cells in Hbase are versioned and, by
default, the version is a timestamp auto-assigned by Hbase at the time of cell
insertion. In Hbase, the keys of a row are byte arrays, so any standard value
can serve as a row key, from strings to serialized data structures. The table
rows are sorted by row key, and all table accesses are via the primary key of the
table.

The columns in a row are grouped into column families. All column family
members have a common prefix; for example, the columns literals:invalid and
literals:valid are both members of the literals column family. The column family
of a table must be specified in the schema definition for the table, but new
column family members can be added on demand. For example, a new column
country:city can be offered by a client as part of an update, as long as the column
family country already exists on the targeted table. Physically, all column family
members are stored contiguos on the filesystem.

The main differences between Hbase and relational databases (RMDB) ta-
bles is that tables in Hbase have versioned cells, rows are sorted, and columns
can be added dynamically by the client without requiring that they are prede-
fined in the database schema.

The tables in Hbase are automatically partitioned horizontally into regions.
Regions are the units that get distributed over an Hbase cluster. In this way,
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a table that is too big to be stored on one server can be stored in a cluster of
computers, with each node in the cluster hosting a subset of the regions of a
table. Each region comprises a subset of rows of a table. A region is denoted
by the table it belongs to: its first row, inclusive, and the last row, exclusive.
Initially, a table comprises a single region, but as the size of the table grows
and after the region crosses a configurable size threshold, the region is split into
two new regions of approximately equal size. Until this first split happens, all
loading is performed by the single server hosting the original region. As the
table grows, the number of regions of the table grows.

Hbase uses a master-slave communication paradigm to distribute the Hbase
tables and to maintain the regions of the tables. Hbase is composed by a master
node orchestrating a cluster of one or more region server slaves. Hbase uses
Zookeeper to coordinate the communication between the master node and the
region servers. The basic schema of communication is shown in Figure 15 with
the master node and three region servers communicating using Zookeeper cluster
for coordination and HDFS to save data. The Hbase master is in charge of
initializing the Hbase cluster, for assigning regions to registered region servers
and for providing failure tolerance in case of region server failures. The master
node is lightly loaded to provide the best possible performance without having
to store data and to maintain region servers. The region servers have zero or
more regions and they respond to read/write requests from the clients. The
region servers also manage region splits created for a table when the table size
grows, informing the Hbase master node about new child regions to manage.

HDFS

Master

Regionserver Regionserver

ZooKeeper
cluster

Regionserver

Figure 15: Hbase Distributed Architecture
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4.5.1 Hbase Versus RDBMS

Hbase and other column-oriented databases are often compared to traditional
relational databases management systems (RDBMS) [?]. Hbase and RDBMS
significantly differ in their implementations and in the problems they were de-
signed to solve. Nevertheless, despite their differences, they are potential solu-
tions to the same problems.

On one hand, Hbase is a distributed, column-oriented data storage system
that provides random reads and writes on top of HDFS. Hbase is designed
from the start to handle huge amounts of distributed information to scale to
billions of rows and millions of columns. Hbase has automatic partitioning, as
the information grows and the table grows, the tables will be automatically
split into regions and distributed in the Hadoop cluster [34]. The schemas of
the tables in Hbase mirror the physical storage creating a system for efficient
data structure serialization and retrieval. Hbase does not have a query language
as expressive as the SQL query engine and the developer must use the storage
and retrieval procedures in an appropriate way. The insert performance in
Hbase is independent of the table size as rows are stored sequentially as well
as the columns within each row. Hbase scales linearly when adding new nodes.
Adding new nodes to the Hbase cluster has no performance penalty and the
regions are automatically rebalanced and spread evenly. Hbase is designed to
be fault tolerant to run on clusters of commodity hardware, it transparently
address individual nodes downtimes by having data replication.

On the other hand, RDBMS are row-oriented and they have ACID (Atomic-
ity, Consistency, Isolation, Durability) properties. RDMBS have fixed schemas
which cannot be changed dynamically. In relational databases, the emphasis is
on strong consistency, referential integrity, abstraction from the physical layer,
and complex queries through the SQL language. The main issue with relational
databases is when manipulating big volumes of information and when multiple
clients read and write at the same time. Scaling a relational database usually
involves loosening ACID restrictions, removing indexes and foreign keys and
properties that made relational databases a good choice for small to medium
applications. When scaling up a relational database and removing the properties
mentioned before, the RDBMS behaves like Hbase in how information is stored,
distributed and queried. Usually, for big datasets, all important information is
denormalized, no integrity is checked and secondary indexes are inefficient thus
all queries become primary key lookups.

The Table 2 summarizes the differences between Hbase and RDBMS pre-
sented. Hbase is used in this work as a centralized database for saving found so-
lutions and invalid assignments, further explained in Section 6. For the problem
solved in this work that uses the centralized database for saving small amounts of
information requiring fast read/write access, both RDBMS and Hbase are suit-
able solutions. The motivation for using Hbase instead of a traditional RDBMS
is because is tightly integrated with HDFS and MapReduce and it is easier and
faster to integrate.
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RDBMS Hbase

Focus on ACID properties Focus on performance and scalability
for big volumes of unstructured infor-
mation

Fixed database schema Dynamic database schema

Fixed partitioning and needs to be ad-
ministered by the user

Automatic and dynamic partitioning of
tables

Row oriented Column oriented

Performance of the queries depends on
the size of tables

Performance of the queries is indepen-
dent of the size of the tables

Uses the default filesystem Uses HDFS filesystem and stores the
information mirroring the underlying
filesystem for performant access

Supports an expressive query language
(SQL)

Does not support a query language and
the storage and retrieval has to be per-
formed in the appropriate way

Table 2: Summary of RMDB and Hbase comparison

4.6 Summary

This section described the Apache Hadoop MapReduce implementation and the
MapReduce job execution on Hadoop. The Hadoop distributed filesystem was
introduced including its main characteristics. The cluster configuration was in-
troduced including the main configuration parameters that can be changed to
improve performance of Hadoop job execution. Finally, the Hadoop Database
was introduced and the main differences between Hbase and RDBMS were pre-
sented.
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5 Related Work

This section presents a review of the state of the art of 3-SAT solvers. First,
the state-of-the-art exact solvers are presented, which use different approaches
to solve the 3-SAT problem. After that, different strategies using parallel pro-
gramming techniques to improve algorithm performance are described. Finally,
several heuristics and stochastic searches to solve the 3-SAT are introduced.

5.1 3-SAT exact solvers

The state-of-the-art exact solver for 3-SAT is the Davis–Putnam–Logemann–
Loveland (DPLL) algorithm [21], a backtracking search algorithm introduced
in 1962 to solve the problem. A schema of the DPPL algorithm is provided in
Algorithm 1.

Algorithm 1 DPLL Algorithm

1: Input: A set of clauses θ, a set Xinput of literals
2: Output: A truth value, a set Xoutput of literals
3: if Xinput is satisfiable for clauses θ then
4: return true, Xinput;
5: end if
6: if all literals are set in Xinput then
7: return false, Xinput;
8: end if
9: for every unit clause l in θ do

10: θ = unit-propagation(Xinput + l, θ);
11: end for
12: for every literal l that occurs pure in θ do
13: θ = pure-literal-elimination (Xinput + l, θ);
14: end for
15: l = choose literal(θ)
16: return DPLL(θ, Xinput + l) or DPLL(θ, Xinput + ¬l)

DPPL applies a divide and conquer approach, splitting the problem into
simpler sub-problems to be solved recursively. The input of the DPPL algorithm
is a set of clauses θ, in CNF form, and the output is true if exists a solution
to the problem (and the literal assignment that makes all clauses true) or false.
The DPPL algorithm starts by checking if the input literal assignment Xinput

makes the received set of clauses true (lines 3-5). If the Xinput is satisfiable, then
the algorithm ends. After that, the algorithm simplifies the formula by applying
the unit propagation [21] algorithm (lines 9-11). The DPPL algorithm further
simplifies the formula by applying the pure literal elimination [21] algorithm
(lines 12-14). The unit-propagation and pure-literal-elimination algorithms are
used to avoid exploring naive parts of the search space. Finally, the algorithm
chooses a literal to fix and recursively applies the DPPL to the received literal
assignment plus the chosen literal (lines 15-16). In case that satisfiability is
not fulfilled, the algorithm recursively checks using the opposite truth value
for the considered literal. The recursion ends when: i) all literals are set in
the input assignment and is a solution to the problem, then the formula is
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unsatisfiable (lines 6-8) or ii) all variables are assigned or all clauses are satisfied,
then the formula it is satisfiable. The DPLL algorithm is effective for solving
small problems but inefficient when solving large problem instances, because the
unsatisfiability of a given formula only is detected after performing an exhaustive
search of the solution space.

The unit-propagation is an algorithm to simplify the 3-SAT formula by prop-
agating a value of a literal that appears single in a clause. The unit propagation
algorithm is described in Algorithm 2. The algorithm checks all clauses in the
formula if there are unit clauses (e.g.: clauses that have only one literal). For
every unit clause, the algorithm sets the literal l that appears single in the clause
to true, or false if the literal appears negated in the clause (line 2). Then, for
every other clause that contains the literal l (line 3), the clause is removed from
the formula because the literal l is set to true(lines 4-6) and the clause will be
always true. If the clause contains the literal l negated (lines 7-9), then the
clause is simplified by removing the literal from the clause.

Algorithm 2 DPLL: Unit Propagation

1: for each unit clause cl (with single literal l) do
2: set l to true
3: for every clause c different from cl do
4: if c contains l then
5: delete clause c
6: end if
7: if c contains -l then
8: remove l from c
9: end if

10: end for
11: end for

After applying the unit propagation algorithm, an equivalent set of clauses
is obtained. Figure 16 shows an example the application of the unit propagation
algorithm.

1: Set of clauses: a v b, -a v c, -c v d, a
2: Simplify by propagating the unit clause a
3:  a v b: is removed
4: -a v c: a is deleted resulting in c
5: -c v d: not changed
6:  a    : is removed
7: resulting set: c, -c v d

Figure 16: Example of application of the unit-propagation algorithm

The pure elimination algorithm eliminates from the formula the literals that
appears only true or only false in all clauses. The algorithm is presented in
Algorithm 3.

An example of application of the Pure Literal Elimination algorithm is pre-
sented in Figure 17.
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Algorithm 3 DPLL: Pure literal elimination

1: if x only appears true in all clauses (-x does not appear) then
2: add x=true to the assignment
3: all clauses containing literal x are satisfied
4: end if
5: if y only appears in its negative form then
6: add x=false to the assignment
7: all clauses containing literal -x are satisfied
8: end if

1: Set of clauses: a v b v c, a v c v -d, -c v d, -b v -d
2: Simplify by setting a to true
3: a v b v c  is removed
4:  a v c v -d is removed
5: -c v d is not changed
6:  -b v -d is not changed
7: Formula is simpified to: -c v d, -b v -d

Figure 17: Example of application of the pure-literal-elimination algorithm

Another state-of-the-art exact solver is the Conflict Analysis Clause Learning
(CDCL) [83] algorithm, in which many 3-SAT solvers are based on [8, 54]. The
CDCL algorithm was inspired on DPLL solvers, but can learn new clauses by
applying conflict analysis algorithms and backtracking non-chronological. The
CDCL algorithm also applies conflict analysis algorithms to learn new clauses
from the formula. The conflict analysis algorithm generates new clauses based
on the conflicting literals of clauses. If two clauses A and B have the same
literals but differ only on the truth value of one of them, then a new clause C
can be created with the non-conflicting literals. This algorithm is known as the
resolution logic, and an example of application is shown in Figure 18.

A v B v  C
                   →   A v B      
A v B v -C

Figure 18: Example of application of the resolution logic algorithm

5.2 3-SAT Heuristics and Metaheuristics

Local search methods have long been used for solving computationally hard
optimization problems [43]. Local search algorithms search for solutions in the
search space of candidate solutions until an optimal solution is found or the
algorithm fails to find a solution given a specific time bound. A particular type
of local search methods are the stochastic local search (SLS) methods, where
randomness is introduced in the search algorithm to improve the algorithm
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performance [43]. Stochastic local search algorithms have been proposed to
solve the 3-SAT, being the GSAT [36] and the WalkSAT [43] two of the most
popular. Both techniques start by assigning a random value to each variable.
If the assignment satisfies all clauses, then the solution is found. Otherwise, a
variable is flipped and the procedure is repeated until all clauses are satisfied.

WalkSAT and GSAT heuristics to solve the 3-SAT differ in the selection of
the variable to flip: GSAT makes the change which minimizes the number of
unsatisfied clauses in the new assignment, or picks a variable at random; on
the other hand, WalkSAT selects a variable (from an unsatisfied clause) that
will result in the fewest previously satisfied clauses becoming unsatisfied, with
some probability of picking one of the variables at random. When selecting an
optimal variable, WalkSAT performs fewer calculations than GSAT (because it
considers fewer possibilities). When picking at random, WalkSAT has at least
a chance of 1/n (being n the number of variables of the problem) in the clause
of fixing a currently incorrect assignment. GSAT and WalkSAT are not just
“heuristics”. Both algorithms may restart with a new random assignment if no
solution has been found, implementing a diversification strategy to avoid getting
stuck in a local search in the search space.

Regarding metaheuristics methods to solve the 3-SAT, the state-of-the-art
is Schöning algorithm (or variations of it), introduced in 1999 [77]. Schöning is
a randomized search algorithm that runs in O(1.33n) for n literals and succeeds
with high probability to decide a 3-SAT formula. The probability of not finding
a satisfying assignment using Schöning algorithm after performing t = k×(4/3)n

restarts is at most e−k (i.e the error of not finding a solution after t = 30×(4/3)n

restarts for k = 30 is e−30). A schema of Schöning algorithm is provided in
Algorithm 4. The Schöning algorithm starts by selecting a candidate solution
at random (line 1). If the selected candidate solution is solution to the problem,
the algorithm ends (lines 4-6). If the candidate solution is not satisfiable, a
literal of the first false clause is selected at random and its truth value flipped
(lines 8-10). This process is repeated 3×n times or until a solution is found. If
a solution is not found after 3×n iterations, the algorithm is restarted selecting
another candidate solution, performing a diversification strategy (line 1).

Algorithm 4 Schöning Algorithm

1: pick an initial assignment x ∈ X uniformly at random
2: for 3n times do
3: if a satisfies all clauses of F then
4: if F is satisfied then
5: end
6: end if
7: else
8: pick any unsatisfied clause C (uniformly at random)
9: pick a literal l in C (uniformly at random)

10: flip the value of l
11: end if
12: end for

Several other metaheuristics algorithms have been proposed for 3-SAT, com-
bining ideas of heuristics and exact solvers. The PPSZ algorithm (Paturi, Pud-
lak, Saks, and Zane, 1998 and 2005) [70, 71] is a randomized search algorithm
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that runs in O(1.3631n) for n literals and succeeds with high probability to de-
cide 3-SAT. A schema of the PPSZ algorithm is provided in Algorithm 5. The
PPSZ algorithm first pre-process the formula, creating a new formula with more
clauses increasing the probability of finding unit clauses (clauses that contain
only one literal) in the formula (line 1). After that, the PPSZ algorithm forces
the assignment for the literals that appear in unit clauses (lines 4-5). For literals
that do not appear in unit clauses, set the literal at random (line 7). The inner
loop in Algorithm 5 executes in polynomial time and has exponentially small
probability of finding a satisfying assignment (lines 3-9). The randomized PPSZ
algorithm with independent repetitions executes in O(1.3633n) time. The cur-
rent best algorithm to solve the 3-SAT is the PPSZ-based algorithm presented
by Hertli [41]. The previous article proves that the PPSZ algorithm solves every
3-SAT instance in O(1.3071n)) time.

Algorithm 5 PPSZ Algorithm

1: pre-process formula F [assign literals that appear in unit clauses]
2: for t times do
3: for loop through variables in random order do
4: if x or − x belongs to unit clause then
5: force assignment [true for x and false for −x]
6: else
7: guess assignment at random from {0,1}
8: end if
9: end for

10: end for

5.3 Parallel algorithms to solve the 3-SAT

This section introduces parallel programming techniques applied to solve the
3-SAT problem. First, the challenges when solving the 3-SAT in a distributed
environment are introduced. After that, the different strategies used for tackling
the 3-SAT in a distributed environment are presented. Finally, this section
describes different algorithms that use parallel programming techniques to solve
the 3-SAT.

5.3.1 Challenges

Many approaches have been proposed to solve the 3-SAT using parallel pro-
gramming techniques. Some of the main challenges when designing a parallel
3-SAT solver are described by Hamadi [40]. The main aspects described by
Hamadi are mentioned below.

Dynamic resource allocation: Adding more computational resources not
always increases the algorithm performance. The first main challenge when
designing a parallel SAT solver is to find the optimal set of computational
resources to use to solve a specific problem instance, optimizing the use of
resources and reducing the communication overhead. One of the main challenges
is to design a dynamic resource allocation algorithm that can predict the optimal
amount of resources needed to solve the problem instance efficiently.
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Decomposition strategies: There are two main decomposition strategies
used: space decomposition and instance decomposition. The first splits the
search space in subspaces which are processed by different solvers. In the in-
stance decomposition, the problem instance is decomposed such that non of the
computing elements knows the whole problem instance. This kind of decomposi-
tion is particularly useful for big problem instances. The second main challenge
when designing a parallel SAT solver is to design a dynamic decomposition
technique that is efficiently computable and results in efficient decompositions.

Preprocessing techniques: Pre-processing techniques are commonly used
in the state-of-the-art heuristics such as the DPLL or CDCL algorithms, which
are proven techniques to reduce the overall execution time of the algorithm.
The third challenge when designing a parallel SAT solver is to design efficient
pre-processing algorithms that, with knowledge of the type of decomposition
being used, simplify the problem instance such that the overall performance is
increased. Moreover, for very large formulas, it may be infeasible to preprocess
the whole problem instance before solving the problem. It would be worth to
design parallel pre-processing algorithms to be executed before the SAT solver.

Strategies for knowledge sharing: The fourth challenge when designing
a parallel SAT solver is to share learnt clauses between workers of the paral-
lel algorithm. For big problem instances, the number of clauses to share can
grow impacting the algorithm performance. One challenge when designing a
parallel algorithm is to implement a dynamic limit for the number of clauses
to share, sharing the clauses that provide more value to the algorithm reducing
the communication cost associated with sending and receiving clauses.

Designing and implementation of new algorithms: Many algorithm are
based on currently existing algorithms such as the DPLL or CDCL algorithms,
such as the algorithm presented in this work. One of the main challenges when
designing a parallel SAT solver is to create new algorithms and data structures.

5.3.2 Strategies

Two main strategies have been proposed in the related literature to solve very-
large 3-SAT instances: divide and conquer (D&C) and the portfolio strategies.

The D&C approach divides the problem into small subproblems, successively
allocating to sequential (DPLL/CDCL) SAT solvers and have been extensively
used in many SAT solvers [24, 44, 91, 48, 60]. The problem can be split using
one of the two decomposition strategies: the domain decomposition strategy or
the instance decomposition strategy.

On the one hand, the domain decomposition strategy decomposes the search
space in subspaces, assigning each solver a different subspace. The domain de-
composition is usually implemented by sending each solver some fixed literals
with different values, which guarantees non-overlapping search spaces for each
solver. An example of a D&C approach using a domain decomposition strategy
is shown in Figure 19, where the first solver receives x1, x2, the second solver
receives −x1 and the third solver receives x1,−x2. The assignment generates
three non-overlapping search spaces. On the other hand, the instance decom-
position strategy splits the problem instance in subproblems. This approach is
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useful for big problem instances, where each solver can process a smaller part
of the problem instance by, for example, processing only a reduced amount of
literals.

The decomposition strategies usually do not generate balanced subproblems
by its hardness. Generating balanced subproblems by its hardness before exe-
cution of the solver is a hard to solve problem [47]. Because the subproblems
are usually not balanced, some solvers may end its execution before others, so
cooperation between solvers is achieved applying of a load balancing strategy
that dynamically transfers subspaces to idle workers. Another cooperation be-
tween solvers is achieved through the exchange of learnt clauses or invalid literal
assignments.

subproblem #1 
computing 
element #1 

subproblem #2 
computing 
element #2 

subproblem #3 
computing 
element #3 

divide and 
conquer 

original problem 

x1, x2 
x1, x2 

 x1 

Figure 19: Divide and Conquer approach for parallel 3-SAT solvers

The portfolio approach uses several sequential SAT solvers, which compete
and cooperate on solving the same formula. The sequential solvers can be
completely different solvers but are usually based on the DPLL or CDCL al-
gorithms [8, 54]. The solvers usually are differentiated between each other by
the configuration parameters used: the search algorithm, the literal selection
algorithm or its knowledge sharing technique. Since each solver works on the
whole formula, there is no load balancing overhead. Cooperation between solvers
is achieved through the exchange of learnt clauses which is usually limited to
avoid communication overhead when solving big problem instances [40]. Port-
folio solvers became prominent in the related literature since 2008. A basic
scheme of the portfolio approach is shown in Figure 20.

Figure 20: Portfolio approaches for parallel 3-SAT solvers

The ManySAT algorithm (2009) [39] is a portfolio-based algorithm to solve

51



the 3-SAT using DPLL based solvers. The ManySAT solver runs different ver-
sions of the DPLL algorithm, having each different restart policies, different
seeds and different heuristics for literal selection. The ManySAT algorithm
learns and shares invalid clauses and assignments using an extension of an impli-
cation graph [4]. The algorithm generates four variants of the DPLL algorithm
based on variation of five parameters: i) the restart policy; ii) the heuristic for
literal assignments; iii) the heuristic for setting the truth value for literals; iv)
the learning technique and v) the clause sharing technique. The ManySAT par-
allel algorithm was the winner of the 2008 SAT-Race contest (http://www-sr.
informatik.uni-tuebingen.de/sat-race-2008/index.html).

Another portfolio-based parallel SAT solver is the Plingeling (2010) [8] algo-
rithm. The Plingeling algorithm uses a master-slave paradigm of communica-
tion, where the worker threads run the same SAT solver with different configu-
rations. The master process sends to the slaves information to process and unit
clauses learnt from other slaves. The slaves communicate only with the master
process sending and receiving unit clauses. The worker solvers differ between
each other in the seed selected, the pre-processing algorithm used and in the
heuristic used for variable selection.

A similar approach is taken in the SArTagnan (2010) [54] algorithm, which
runs different algorithms and different search strategies using a multithread
algorithm. The algorithm shares clauses but just specific ones as the algorithms
running in the different threads are different and some clauses may not be valid
in other algorithms. Most threads use CDCL with the VSIDS heuristic [66] for
variables [27], Luby restarts [58] and phase-saving [72]. However, other threads
use different restart policies and different configuration parameters for the VSID
heuristic.

Other parallel algorithms to solve the 3-SAT use incomplete/local search
solvers, such as our parallel spatial quantum algorithm [60]. The proposed
algorithm combines a parallel Schöning algorithm applied to a subspace of the
search space performing a local search and a quantum search in the search space.
Another example is the GPU4SAT algorithm [25], that considers the number
of satisfied clauses as a quality function, and uses a local search to evaluate
neighborhoods, looking for the best literal to flip.

5.3.3 Parallel 3-SAT Solvers in the cloud

When proposing a parallel algorithm to solve the 3-SAT on a grid or cloud
system, there are some specific issues related to the main characteristics of the
infrastructure to take into account. Regarding cooperation, the communication
to/from running processes is extremely time-expensive in a distributed comput-
ing infrastructure. In addition, the distributed platform may impose resource
limitations, e.g. a predefined time limit for the solver execution.

In order to deal with the cooperation issue of a distributed infrastructure,
maintaining a master database of learnt clauses has been proposed [46]. The
database is used for clause sharing only when a solver starts, then the solver
imports a part D of the database permanently into the solver instance, i.e. it
solves (ϕ & D) instead of ϕ, and when a solver timeout is detected, then (a
subset of) the current learnt clauses is merged into the database (and simplify
with unit propagation, etc.). This approach is known as cumulative parallel
learning with hard restarting solvers (see Fig. 21).
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Figure 21: Problem Split in Pij with collaboration using clause database.

Different architectures have been used to implement parallel 3-SAT solvers.
The most common architecture for distributed computers are grids or cluster of
heterogeneous computers, but hardware acceleration and graphical processing
units have also been used to solve the 3-SAT in a distributed manner. Hardware
accelerated techniques have long been in related literature to improve algorithm
performance [75]. One of the most used hardware techniques used is the Field
Programable Gate Arrays (FPGA) [87].

FPGA have been used to solve the SAT problem by exploiting parallelism
in hardware [20], improving the performance of the unit propagation algorithm
by hardware. The proposed design uses a D&C approach to split the search
space in subproblems. The lookup and update of clauses is improved by hard-
ware by saving the instance information in Block RAM (BRAM), which is a
dedicated two-port memory containing several kilobits of RAM [75]. Moreover,
the presented implementation supports dynamic insertion and deletion of learnt
clauses. Usually, the hardware accelerated SAT solvers are based on variations
of the DPLL algorithm [84] and are hybrid implementations of hardware and
software.

Grids of commodity computers have long been used for solving the 3-SAT
problem [78, 91, 94, 9, 73]. The GridSAT algorithm [94] creates a distributed
implementation based on a variation of the DPLL algorithm using a conflict
clause algorithm and clause sharing, named Chaff [67]. The GridSAT is focused
on solving the 3SAT on a grid of heterogeneous commodity computers, opti-
mizing the use of resources. The proposed algorithm, implements a scheduling
technique that request resources on demand as needed so, for small problem
instances, it runs a sequentially on one node. The GridSAT uses a D&C ap-
proach sending different search spaces for each solver and its performance has a
speedup up to eight compared to the Chaff algorithm. Moreover, the GridSAT
algorithm is able so solve problem instances that the Chaff algorithm fails to
find.

The PaMiraXT [78] also uses a domain decomposition strategy using MPI
to implement a parallel SAT solver. Another 3-SAT solvers use openMP and
MPI to implement a distributed solver in the cloud [89]. Apart from the PaMi-
raXT algorithm that is designed to execute in cluster, an implementation to
be executed on Desktop Grids [9, 73], where the nodes are volatile and het-
erogeneous in hardware and software. The Desktop Grid parallel SAT solver
focuses on the scheduling and failure tolerance for a sudden leave of a node.
In this context, this work presents a novel approach by using Hadoop as a dis-
tributed infrastructure, seemingly handling failure tolerance, resource managing
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and communications between nodes.
The HordeSat [6] algorithm is a portfolio based algorithm in the cloud, ex-

ecuted in a cluster of commodity computers. The HordeSat algorithm uses a
master-slave communication paradigm implemented using MPI [28]. Each solver
runs a different algorithm in parallel and communicate to the master process
to share learnt clauses. The presented results show a significant speedup for
hard instances running on a cluster with up to 2048 cores. The HordeSat algo-
rithm implements a clauses sharing algorithm and diversification strategy from
the Plingeling algorithm [8]. Quantum mechanics has also been used to solve
the SAT problem [60], implementing its simulation using parallel programming
techniques executing in a cluster of computers. The presented approach uses
a D&C approach using an instance decomposition strategy. The algorithm is
an hybrid implementation with shared and distributed memory, using openMP
and MPI.

Graphic processor have also been used to solve the 3-SAT problem in par-
allel [63], taking advantage of the parallel processing power of graphic cards
using CUDA. The presented implementation uses a D&C approach, splitting
the search space to run hundreds of thousands of lightweight threads in paral-
lel. The main limitation of the presented work is the available on-chip memory,
so the hardware does not provide enough memory to save learnt clauses and
to share information between threads. Also, the hardware limitation does not
allow to solve big formulas with thousands of clauses because of the limited
memory resources.

5.4 Summary

This section described the related work, different algorithm approaches to solve
the 3-SAT. Different heuristic and metaheuristics were presented as well as
approaches to solve the 3-SAT in a distributed environment, using parallel pro-
gramming techniques. Hadoop and MapReduce have never been used to solve
the 3-SAT in a distributed environment. The approach presented in this thesis
could benefit the development of new parallel algorithms to solve the 3-SAT
without having to worry about the underlying problems of distributed algo-
rithms. The algorithms designed to run on Hadoop can easily be executed on
thousands of commodity computers, scaling horizontally by adding new nodes.
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6 The MapReduce 3-SAT Solver

This section introduces the devised algorithms to solve the 3-SAT using the
MapReduce programming model. First, design considerations for solving the
3-SAT algorithm using the MapReduce paradigm are described as well as the
problem codification. After, different variations and optimizations of the in-
troduced MapReduce algorithm for the 3-SAT are presented. Experimental
analysis of the different variations of the algorithm are introduced in this sec-
tion.

In this work, a candidate solution or a partial assignment is a subset of literals
of the problem instance with some specific truth value assignment, which may
or may not have all the literals fixed of the formula. A candidate solution is
said to be valid if it does not make any clause false and it is invalid (or false), if
it makes at least one clause false in the formula. In this context, a solution to
the 3-SAT problem is valid candidate solution which has all the literals of the
formula fixed.

6.1 3-SAT solver in Hadoop

The devised algorithm was created using an incremental approach, starting from
a simple solver to a more complex one, solving in each step the problems faced
when solving a LSO problem using the MapReduce programming paradigm.
The purpose of this Master Thesis is to explore the capabilities of Hadoop and
the MapReduce programming technique to solve large optimization problems.
The main approaches taken to devise the 3-SAT MapReduce solvers are based
on the portfolio with/without cooperation approach and divide & conquer ap-
proach.

For designing a 3-SAT algorithm using the portfolio approach, a master
database approach (i.e using Hadoop Distributed File System or HBase) is
needed for cooperation. Moreover, depending on the problem size, mostly one
million literals could be allowed in a grid solver [48] and an empirical analysis
of both the store criteria and number of solvers is needed.

The Divide & Conquer is a very promising approach for solving “very hard”
3-SAT instances. The strategy proposes dividing the workload among many
nodes so, the partitioning of the problem is crucial. Obtaining good partitioning
functions for the 3-SAT is usually challenging [48]. Even more, taking into
account that the distributed algorithm will run following a MapReduce schema
and many algorithms cannot be solved easily using MapReduce.

Algorithm using the MapReduce programming model are split among differ-
ent mappers in different nodes based on the data to be processed. In this way,
the problem split is easy, it is based on data. This work presents the problem
of solving a computer intensive problem using Hadoop and MapReduce where
the data is almost none, so the problem must be split differently from the usual
approach taken when using Hadoop and MapReduce.

A domain decomposition technique was used to split the problem with a
Master-Slave approach. The main MapReduce job is the master process, which
splits the domain in subproblems, which are processed by mapper processes
and reduce processes. The domain is decomposed by fixing d literals, so each
mapper searches for solutions in different (exclusive) search spaces. In this case,
each mapper evaluates candidate solutions in different spaces and two mappers
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cannot find the same solution to the problem. For this to happen, all mappers
(or reducers) must select the literals to fix in the same manner (and order).

In order to split the domain among different mappers, a file is written to
HDFS specifying a subproblem in each line. The problem is divided by fixing d
literals. For example, let the formula with 3 clauses defined in Eq. 6(a), the file
written to HDFS with the problem split, using x1, x2 as literals to fix, is shown
in Eq. 6(b).

x1 ∨ x2 ∨ x6
¬x1 ∨ x4 ∨ x3
¬x3 ∨ x1 ∨ x7

(a) 3-SAT Problem example

1 2
−1 2
1 − 2
−1 − 2

(b) File written to HDFS

(6)

With the problem decomposition used, each mapper receives one line de-
scribing a subproblem of the 3-SAT problem. Different alternatives were taken
for selecting the literals to fix. The first approach was to fix by order, fixing
literal 1 first, literal 2 as the second and so on. Another approach taken was to
fix literals based on frequency of appearance in the formula, selecting the literals
that appear more frequently in the clauses first. For example, if literal 2 is the
literal that appears in more clauses, then it will be fixed first, the second literal
that appears more frequently in the formula is selected second and so on. An
example of literal selection for problem decomposition is shown in Eq. 7 where
the literals that appear more frequently in the formula are 1, 3, 2, 4, 6, 7, 5
with a frequency of 4, 4, 3, 2, 2, 2, 1 respectively.

x1 ∨ x2 ∨ x6
¬x1 ∨ x4 ∨ x3
¬x3 ∨ x1 ∨ x7
¬x4 ∨ ¬x2 ∨ x6
¬x7 ∨ x3 ∨ x5
x2 ∨ x3 ∨ ¬x1

3-SAT formula example

(7)

The main MapReduce job, described in Figure 22, receives as input a HDFS
file which specifies the formula in CNF form. The initialization process consists
of uploading the CNF formula received to to the distributed cache (described
in Section 4.2.7) so its available to all mappers and reducers in different servers.
The domain decomposition is also performed in the initialization process by
setting r number of literals. The number of splits is controlled in the first devised
algorithms by an input parameter and then, is optimized (and calculated in the
MapReduce job) so memory consumption and performance is optimized for the
algorithm.

After the initialization process, the MapReduce job is launched using as
input format the NLineInputFormat with N=1 so that, in the example shown,
four mappers are created receiving one subproblem definition each. Depending
on the devised algorithm, different search algorithms are used in the mapper to
search for candidate solutions which will be described further below. Finally,
the reduce phase receives the candidate solutions found by the map phase and
checks if a solution is found. If a solution was found, it is saved to HDFS to a file
with name solution {problem instance name} (or to HBase in the randomized
approach described in Section 6.7) and increments in one the solutions counter.
If a solution was not found, valid candidate solutions received are emitted as
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key in the output, which will be used as input for a new MapReduce job created
afterwards.

The main MapReduce job, checks if a solution was found after each iteration
checking the solutions counter. If a solution was found, then the algorithm ends.
Otherwise, a new MapReduce job is created using the previous iteration output
as input and a new folder is created in HDFS to save the next iteration output.

mapper phase

Initialize

reduce phase

CNF
FORMULA

-1 -2
 1 -3
…

sol found?

END

YES

NO

The main job receives as input a CNF 3-SAT 
formula.

1

The CNF formula is saved to the distributed cache. 
The problem is split in 4 subproblems and a file 
with the assignments is saved to HDFS

2

Each mapper receives a literal assignment, e.g.: 
x=0, x2=0.
The mapper searches for solution fixing d 
literals. If the mapper receives 1, -2 as 
assignments and fixes 2 new literals, a possible 
output be: key=” same key” , value=”1 -2 3 4” 

3

The reducer checks if a solution was found. If a 
solution was found, the solutions counter is 
incremented and saved to HDFS.

If a solution is not found, the reducers emit the 
candidate solutions as output so are used as 
input for the next MapReduce job

4

Figure 22: 3SAT MapReduce general structure
(1) The main job receives 3-SAT formula as a file in HDFS in CNF form and saves it to the
distributed cache so it is available to all mappers; (2)The first devised algorithms split the
problem in a fixed number of subspaces (based on an input parameter) but this approach is
later changed to a more optimal value, based on the number of mappers; (3) each mapper
receives a candidate solution (fixed literals). The mapper emits as key the same key received
so that the number of reducers is the same as the number of mappers (unless a mapper
fails to find valid candidate solutions, in that case no candidate solution is emitted and that
mapper does not emit nothing); (4) the reducers in the first devised algorithms are dummy
and only prepare the data for the next iteration of the algorithm if no solution was found.
This is not performant as Hadoop anyway creates JVM for such executions and shuffles and
groups all mapper output. An approach taken later is to exploit the processing power of the
reduce phase. Another possible approach could be to just eliminate the reducer phase of the
algorithm.
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Hadoop framework has two special functions for MapReduce, in the map
and reduce phase where initialization and cleanup can be performed. The setup
and cleanup method are executed once by each mapper and reducer process at
the start and at the end of the process respectively. The setup method is used
in different proposed algorithms to retrieve the formula from HDFS (or from
HBase) or to retrieve solutions found in the collaborative approaches presented.
The cleanup method is not used in the presented algorithms.

In each iteration, d literals are fixed, generating 2d possible candidate solu-
tions. If the number of mappers is not limited, the algorithm could generate
2d mappers (using a NLineInputFormat with one line per mapper), resulting
in OutOfMemory errors (because of too many mappers are created, each one
demanding around 500 kb). Moreover, creating one mapper for each possible
assignment is not efficient, because Hadoop creates a new Java Virtual Ma-
chine process for each task, producing a significant overhead in both CPU and
memory.

The main MapReduce job, decomposes the problem using a constructive
search approach (by fixing r initial literals) and a DFS algorithm is then used
inside the Mappers. A better approach for a deterministic 3-SAT solver would
be a Depth First Search approach (DFS) to split the problem among Mappers.
Although MapReduce has been proposed to solve large scale graphs [16], it is
inappropriate for DFS algorithms as the mappers cannot communicate between
each other and a MapReduce job has a specific structure that must be followed.
The mappers cannot communicate between each other and output a list of
(key,value) pairs, which will be the received, grouped by key, by the reducers.

When a solution is found in a mapper, the standard MapReduce algorithm
cannot finish until all mappers finish processing their data. This is a big incon-
venient because, for large problems, it could mean the unnecessary processing
of thousands of possibilities (after a solution is found).

The main performance challenge when solving a LSO problem with MapRe-
duce are related to improving the computational efficiency (given the design
limitations of the framework), and controlling the memory consumption. The
main limitations of the framework and paradigm are:

• Mappers cannot communicate among each other.

• Mappers and reducers always work in (key,value) pairs, so everything must
be translated to that mapping structure.

• The number of mappers is controlled by the framework and the input
format. Special considerations must be taken to correctly manage the
number of mappers the framework creates.

• Iterations in Hadoop are expensive.

• Peer to peer distributed computing techniques cannot be used as clients
(in this case, mappers and reducers) cannot communicate.

• Intermediate keys and values, created by the mappers, must be thought
carefully as problems in balance of intermediate keys could significantly
impact in algorithm’s performance.
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6.2 The Noncooperative Domain Decomposition

The NonCooperative Domain Decomposition (NDD) approach uses a perturba-
tive search algorithm by fixing d literals in each iteration. An example of the
search algorithm is described in Figure 23. The algorithm receives as an input
parameter literals already fixed. In the Figure, literals 1 and 2 are already fixed
with true. After, a new candidate solution is created given the received literals.
In the example, the first candidate solution created is 1 2 3 4 5, where all literals
from 1 to 5 are set to true. Then, the candidate solution is evaluated to check
if is valid or not. If the candidate solution is valid, then it is emitted using
as output the same key received as input and as value the candidate solution
found. Afterwards, a literal’s truth value is flipped creating a new candidate
solution (in the example, the second candidate solution created is 1 2 -3 4 5) and
the process is repeated again until all candidate solutions for that search space
are evaluated. The reducer process in the NDD algorithm just checks if each
received candidate solution is a solution to the problem. Figure 23 shows the
Noncooperative Domain Decomposition approach presented and Algorithm 6
shows the mapper process.

1

2

4

3

Figure 23: 3SAT MapReduce - Noncooperative Domain Decomposition (NDD)
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1 2

1 2 3 4 5

1 2 -3 4 5

1 2 -3 -4 5

1 2 -3 -4 -5
1 2 3 -4 5

1 2 3 -4 -5

1 2 3 4 -5
1 2 -3 4 -5

1 2 -3 makes a clause false, so all 
candidate solutions with that 
assignment are invalid (shown with a 
red strikethrough in the tree)

Figure 24: Example of the 3-SAT Perturbative Search
The algorithm starts with literals 1 and 2 already fixed. In each leave of the search tree tests
if a new candidate solution can be solution to the problem (e.g: 1 2 -3 4 5). In this example,
1 2 -3 makes a clause false and so, all combinations with that assignment (e.g.: 1 2 -3 4 5, 1
2 -3 -4 -5) are invalid candidate solutions.

Algorithm 6 3-SAT Mapper

1: setup method:
2: problem formula ← from HDFS
3: mapper method:
4: (xi...xr) ← select d number of literals to set
5: while not all assignments tested do
6: X = set literals (xi...xr)
7: if X is candidate solution then
8: if all literals set then
9: save solution to HDFS

10: increment solutions counter
11: else
12: emit: key= input key, value = X
13: end if
14: end if
15: end while

The key emitted by each mapper is the same key received as input, thus
the number of reducers is the same as the number of mappers. The only of
drawback of this approach is that the algorithm have sever local imbalance in
the reducers (e.g.: one reducer process could receive many values for a key and
other reducer could receive few of them). Nevertheless, in this first approach,
the reducers only prepare the information for the next iteration, setting the
received values as output of the MapReduce algorithm.

Using this noncooperative domain decomposition approach, the Mapper al-
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Algorithm 7 3-SAT MapperReduce job

1: job ← createJob() [split problem in 2 × max mappers subproblems]
{initial job}

2: job.run job {creates max mappers mappers}
3: while solution not found and not finished do
4: if solution found then
5: finish algorithm (satisfiable: TRUE, solution stored in HDFS)
6: else
7: if all literals have been fixed then
8: finish algorithm (satisfiable: FALSE, problem without solution)
9: else

10: inputnew ← job.output {get previous job results}
11: subproblems number ← job.get number of subproblems()
12: jobnew ← createJob() {create new MapReduce job}
13: set number of mappers(new job, subproblems number)
14: setJobInputandOutput(jobnew, inputnew, outputnew)
15: jobnew.run job
16: end if
17: end if
18: end while

gorithm is very inefficient. No pruning can be performed on the search space.
For example, if each mapper fixes 20 literals, then each mapper will have to test
220 possible assignments. This approach do not scale for solving large 3-SAT
problems, and even when dealing with small problems the algorithm does not
solve the 3-SAT in reasonable execution time. In the noncooperative domain de-
composition approach, the mappers are all independent and do not collaborate,
having a negative impact the execution time of the algorithm. If one Mapper
finds a solution, the MapReduce algorithm do not end until all MapReduce
executions (including all the mappers and reducers).

The algorithm was not efficient in memory consumption, reaching memory
limits on a Intel i7 2.2 GHz 16GB RAM for even small problems with more than
30 literals. The main job splits the problem into 4 subproblems and suppose
each mapper tries to fix 15 literals. Suppose all candidate solutions are valid,
thus each mapper generates 215 = 32768 assignments and after the first iteration
4 × 32.768 = 131.072 subproblems are generated. In this example, the second
iteration of the algorithm would generate 131.072 mappers (and reducers) which
might cause an OutOfMemory error.

Literal configurations assignments that generates invalid candidate solutions
is not used to reduce the search tree. The perturbative search algorithm does
not prune branches of the tree based on literal configurations. Figure 24 shows
an example of the perturbative search algorithm where the literal configuration
1 2 -3 makes a clause false but it is not used to prune.

61



6.3 The Noncooperative Deep First Search with Partial
Assignments

The Noncooperative Deep First Search with Partial Assignments (NDFSwithPA),
described in Figure 26, is based on the NDD algorithm but improving the map-
per’s search algorithm used and the mapper output is changed to reduce the
whole MapReduce memory consumption by reducing the number of intermedi-
ate output keys and values. The mappers use a Deep First Search (DFS) with
pruning algorithm instead of using a perturbative search algorithm, as shown in
the example of Figure 25. Each time a candidate solution is invalid (e.g: cannot
generate a valid solution to the problem), that whole branch is pruned avoiding
searches in branches where there are no solutions.

1 2

1 2 3

1 2 3 4

1 2 3 4 5 1 2 3 4 -5

1 2 3 -4

1 2 3 4 5 1 2 3 4 -5

1 2 -3

1 2 3 4

1 2 3 4 5 1 2 3 4 -5

1 2 3 -4

1 2 3 4 5 1 2 3 4 -5

1 2 -3 makes a clause false, so all 
candidate solutions with that 
assignment are invalid (shown 
with a red strikethrough in the 
tree)

this whole branch is invalid because 1 
2 -3 makes a clause false. The whole 
branch is pruned.

all candidate 
solutions exist only 
in this branch

Figure 25: 3SAT MapReduce - mapper Deep First Search (DFS) search algorithm
example having literals 1 and 2 already set.

The NDFSwithPA algorithm tackles the OutOfMemory issues by reducing
the number of candidate solutions the mapper process emits. In each iteration
of the whole MapReduce algorithm, the mapper phase fixes d new literals and
outputs all the previously fixed literals plus the new fixed literals. The approach
taken in the NDFSwithPA algorithm is to emit only the new literals fixed,
grouping with the previously fixed literals so that the total number of new
candidate solutions each MapReduce job iteration emits is at least 2d. For
example, suppose the literals 1 and 2 are already fixed and the problem was
split in 4 subproblems generating 4 mapper process. The first mapper will
receive 1 and 2, the second 1 and -2, the third -1 and 2 and the fourth mapper
will receive as input -1 and -2. If each mapper tries to fix another 2 literals,
suppose the literals 3 and 4 and all candidate solutions composed by literals
1, 2, 3 and 4 are valid candidate solutions, then the NDD algorithm’s mapper
phase will output all possible combinations of literals 1, 2, 3 and 4. On the
other hand, the NDFSwithPA algorithm will output only the combinations of
literals 3 and 4 and save as path in HBase all combinations of literals 1 and 2
as keys with all combinations of literals 3 and 4 as values. The NDFSwithPA
algorithm, reconstructs previous assignments (paths) in the setup method of
mappers and reducers, which is called once by each mapper and reducer so
that new fixed literals are evaluated with all previous assignments to check if a
solution is found.
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Figure 26: 3SAT MapReduce - Cooperative with Partial Assignments (CPA)
(2) The algorithm decomposition is the same as the NDD approach; (3) All the mappers
retrieve previous assignments based on the received literal assignments. For example, if a
mapper receives as input 3 4, then it will use that as the key to search for assignments of
previous iterations. This information is used to evaluate if a candidate solution is valid; (4)
The mappers use as key the new assignments as output. For example, suppose -3 and 4 are
new assignments found and 1 2 are the received assignments, then the output of that mapper
will be key=3 4, value=1 2; (5) In order to correctly evaluate if a received assignment is
solution, the reducers also retrieve previous assignments from HBase. This is done in the
setup method, which is called only once before calling the reduce method; (6) If a solution is
found, the reducers increment the solutions counter and end the algorithm. If a solution is
not found, then only the received values (new assignments) are written to HDFS.
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The execution time of the mapper is considerably reduced by using a DFS
search algorithm, compared with the NDD algorithm. For a problem instance
with 30 literals and 134 clauses, the NDFSwithPA algorithm has a speedup up
to 50%, as shown in the Table 3.

literals clauses
execution time (seconds)

NDD NDFSwithPA
20 150 30 28
25 90 43 29
30 134 120 63

Table 3: Execution times of NDD and NDFSwithPA algorithms

The NDFSwithPA algorithm uses HBase to centralize the fixed literals the
mapper processes fixes in each iteration. The HBase table schema has one
table with one column family called path. The row used in the table is the
received literal assignment and the value are the new fixed literals. An example
of how the literals assignments are saved in Hbase after two iterations of the
MapReduce algorithm is shown in Figure 27.

The number of intermediate keys of the NDFSwithPA algorithm is greatly
exponentially reduced when compared with the NDD algorithm. Suppose d
literals are fixed in each iteration and after two iterations, all candidate solu-
tions are valid. The NDD algorithm generates up to 2d × 2d possible candidate
solutions, thus 2d × 2d mapper process and reducer process are created. On
the other hand, the NDFSwithPA generates 2d intermediate keys, significantly
reducing the number of process created.

Even though the NDFSwithPA significantly reduces the number of interme-
diate assignments, for medium problems (more than 30 literals and 150 clauses)
an OutOfMemory error is still easily reached in a computer with intel i7 2.2
GHz processor with 16 GB of RAM. Moreover, the overhead of saving the as-
signments to Hbase and retrieving them from the database in each iteration, in
every mapper and reducer is considerable.

Another problem with the devised algorithm is that it needs to query many
times Hbase for each mapper and reducer process consuming considerable mount
of time. For example, considering the previous example, the mapper input for
the third iteration would be different assignments for literals 5 and 6. The
mapper process that receives the fixed literals −5− 6 queries the database and
retrieves [3 4, -3 -4]. After, for each retrieved assignment (3 and 4, -3 and -4),
the database is queried again to retrieve the remaining previous assignments.
In this example, using (3, 4) as key the literal assignments (1,2) is retrieved and
using (-3, -4) as key, the literal assignments [(1 2), (-1 2), (-1 -2)] is retrieved.
Finally, for each retrieved assignment (1,2), (-1 2), (-1, -2) HBase is queried
again to check if a full candidate solution can be reconstructed. Hbase in this
last step returns no data so mappers and reducers know they have all information
to reconstruct the full candidate solution. In this example, each mapper and
reducer on the third iteration has to query HBase six times.

The NDFSwithPA algorithm is yet not collaborative; if a Mapper finds a
solution to the problem, the algorithm still has to execute all Mappers and
assignments until the end.
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Figure 27: 3SAT MapReduce - NDFSwithPA example of invalid literals
After two iterations, the following candidate solutions could be recreated using the information
saved on Hbase: [-5 -6 3 4 1 2], [-5 -6 3 4 1 2] , [-5 -6 -3 -4 1 2], [-5 -6 -3 -4 -1 2], [-5 -6 -3 -4
-1 -2], [-5 6 3 -4 1 2] , [-5 6 3 -4 1 -2] , [-5 6 3 -4 -1 -2], [-5 6 -3 -4 1 2], [-5 6 -3 -4 -1 2], [-5 6 -3
-4 -1 -2], [5 6 -3 -4 1 2], [5 6 -3 -4 -1 2], [5 6 -3 -4 -1 -2]
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6.4 The Noncooperative Deep First Search with Recalcu-
lated Mappers

The Noncooperative Deep First Search with Recalculated Mappers (NDFSwithRM)
is a variation of the NDFSwithPA algorithm reverts the NDFSwithPA approach
of emitting as output only the literals set in each iteration. Instead, it outputs
all the assignments as the NDD algorithm but recalculating in each iteration
the number of mappers to be created based on the candidate solutions found
in the previous iteration of the MapReduce algorithm. Instead of reducing the
number of assignments in order to reduce the number of mappers, this approach
fixes the number of mappers by changing the number of lines (i.e., problems)
each Mapper receives.

The number of mappers to be created by Hadoop depends mainly on the In-
putFormat and the input files. The maximum number of mappers (max mappers)
is specified as an input parameter of the MapReduce job and it is used to split
the problem in 2 × max mappers subproblems, fixing r literals, specified by
Eq. 8.

r = log(2×max mappers)
log(2) (8)

In order to have max mappers processes, the number of lines y each mapper
receives in each iteration is calculated by Eq. 9. The NLineInputFormat input
format is used using y as the number of lines each mapper receives.

y = number of lines input file
max mappers (9)

The NDFSwithRM algorithm selects the literals to fix based on the frequency
of appearance of the literals in the formula, improving the pruning of branches.
Selecting literals that appear more frequently in different clauses, the probability
of selecting an invalid candidate solution and thus, pruning that branch is higher.

The NDFSwithRM mapper process DFS search algorithm is implemented
in a recursive fashion. If a literal assignment both for true and false makes at
least one clause false, then the search for that mapper is over and the branch
is pruned. When the mapper succeeds in fixing d literals, then a pair key-value
is written, using as key the mapper key received as input (byte offset) and the
value is the concatenation of the received fixed literals string with the new fixed
ones.

The algorithm is yet not collaborative in the mappers when finding a solu-
tion or when sharing learning invalid literal assignments. The reducer process
(Algorithm 9) checks if a solution has been found. In that case, the solutions
counter is incremented and the solution is saved to HDFS. Otherwise, in case
not all literals are already set, it emits the received candidate solutions so they
are used as input for the next MapReduce iteration. The number of reducers
is the same as the number of mappers, controlled in Hadoop by the function
job.setNumReduceTasks(int).

66



Algorithm 8 3-SAT NDFSwithRM mapper (INPUT: depth to use in the DFS,
mapper key, mapper value, new fixed literals)

1: problem definition ← value
2: if depth == 0 then
3: emit key = inputkey, value = problem definition + new fixed literals
4: else
5: [get next literal to fix, in order, no repetition]
6: lit = get literal to fix(value+ new fixed literals)
7: if satisfiable(lit + value + new fixed literal) then
8: recursive call with: depth−1, value, lit + new fixed literals
9: end if

10: {check if the literal in false is a possible assignment}
11: if satisfiable(-lit + value + new fixed literals) then
12: recursive call with: depth−1, value, -lit + new fixed literals
13: end if
14: end if

Algorithm 9 3-SAT NDFSwithRM reducer (INPUT: subproblems found by
mappers as values)

1: for all values received do
2: if all literals are set then
3: if solution found then
4: save solution to file
5: increment counter of solutions found
6: end if
7: else
8: emit null, value
9: end if

10: end for

6.5 The Cumulative Learning Technique

In order to improve the algorithm performance, a cumulative learning technique
is applied, using a master database to store learnt clauses and solutions found
during the search. The master database is implemented using HBase, with two
column families: invalid literals and solutions found.

In each Mapper, the setup method retrieves from HBase solutions already
found in the search or a set of all invalid literals assignments that make at least
one clause false. In the mapper search, each time an assignment makes a clause
false, it is saved as an invalid assignment to HBase. This assignment could be
used by another Mapper in the next iteration. The set of invalid literals is used
to avoid unnecessary checks in order to speedup the mapper. When a solution
is found, it is send to HBase. This way, the solution will be available to all other
Mappers and Reducers to speed up the search.

Two cooperation methods were devised: collaborative with invalid literals
(CID), using the master database for both invalid literals and solutions found,
and collaborative without invalid literals (CnoID), using the master database
only for solutions found in the search.
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Figure 28: Basic cooperation schema where each solver shares information with other
solvers.

Algorithm 10 3-SAT Mapper setup method

1: setup method:
2: solution = search solution in HBase
3: if solution not found then
4: invalid literals = get invalid literals from HBase
5: end if
6: mapper method:
7: if solution found then
8: end mapper code
9: else

10: run previous Mapper code
11: end if

The structure of the CID and CnoID algorithms is shown in Figure 29

68



4

3

1

2

apply DFS 

5

Figure 29: Basic structure of CID and CnoID algorithms

(3) The CnoID algorithm does not use or retrieve invalid literal assignments. The CID
algorithm, retrieves found invalid literal assignments from HBase in the setup method, which
is called once for each mapper when the mapper is first created. (4) The CnoID algorithm,

does not send invalid literal assignments found in the execution. The invalid literal
assignments are not used in this variant of the algorithm. The CID algorithm saves invalid
literal assignments found in the execution in the cleanup method, which is called once when

the mapper ends.

6.6 Experimental Analysis

This section presents the experimental results for the proposed algorithms. The
analysis is focused on studying the efficacy of the combined D&C and cumulative
learning approaches for solving LSO problems over Hadoop, which was not
developed for solving this kind of problems and is focused on data intensive
problems.

The experimental analysis was performed in an AMD Opteron 6272 (24 cores
at 2.09GHz, 72GB RAM), using HBase with its default configuration and 24
mapper processes. The presented algorithms where executed first on a single
node i7 (4 cores at 2.2 GHz) with 16 GB of RAM to test the devised algorithm,
with Hadoop 2.2 with a pseudo-distributed configuration of Hadoop [30]. HBase
was used with its default configuration for a semi-distributed environment.
After, the algorithm was executed in the Cluster Fing [22] with the pseudo-
distributed configuration on an AMD Opteron 6272 (24 cores at 2.09GHz, 72GB
RAM). Five independent executions were executed, using 15 literals as d=depth
with 24 mappers when executed on the AMD Opteron node. Three variations
of the Map-Reduce algorithm are presented:
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• The MapReduce 3-SAT solver (MR 3-SAT)

• The Mapreduce 3-SAT solver using cumulative technique saving invalid
literal configurations and found solutions (CID)

• The MapReduce 3-SAT solver using cumulative technique only saving
found solutions (CnoID).

Table 4 reports the average execution times in seconds, computed 5 execu-
tions of each algorithm.

literals clauses
execution time (seconds)

MR 3-SAT CID CnoID
20 150 13 6 9
25 90 16 25 15
30 134 30 46 16
32 142 29 53 20
34 150 43 73 42
40 176 559 675 227
42 185 485 746 152
45 197 868 1023 365
50 280 1996 7260 1506

Table 4: Execution times of MR 3-SAT, CID and CnoID algorithms

1 

10 

100 

1000 

10000 

20 25 30 32 34 40 42 45 50 

ti
m

e
 (

se
co

n
d

s,
 lo

ga
ri

th
m

ic
 s

ca
le

) 

problem dimension 

3-SAT mapreduce 

collaborative with invalid literals 

collaborative without literals 

Figure 30: Execution time analysis.

The results show that small problem instances (less than 40 literals) are
solved in reduced running times.

The execution time of increases for problem instances having more than 34
literals, because the algorithm splits the problem fixing 6 literals according to

70



log(2×max mappers)
log(2) and then, in each iteration, 15 literals are fixed thus, at least

2 iterations of the MapReduce algorithms are needed to find a solution. Iterative
algorithms are not efficient in Hadoop because Hadoop job initialization process
is expensive, starting new tasks for job clients and possibly, creating new java
virtual machines for new executions. The information needed to execute a new
MapReduce job is not kept in the main system memory, so it is usually retrieved
from the hard drive.

In each iteration, the search space of each mapper has 215 elements, gener-
ating at most 215 new possible assignments. After each iteration, each mapper
has exponentially more search spaces to process from the previous iteration, ex-
ponentially increasing the execution times. The experimental results show this
behavior: the execution time for 40 literals, which needs only one additional
iteration to find a solution than the smaller problem instances, is significantly
higher.

The proposed algorithms differ from each other in the stop condition used
and how they evaluate if a literal assignment makes one clause false. The key
aspect that speeds up the CnoID algorithm is the stop condition used, reporting
a performance improvement by stopping the algorithm as soon as a solution is
found. The MR 3-SAT algorithm finishes only when all mappers have been
processed, slowing down the whole algorithm.

The CID algorithm has poor performance compared to the CnoID algo-
rithm. The difference in execution times between CID and CnoID grows with
the size of the problem, as more possible invalid literal assignments are found
and sent/retrieved to/from HBase, thus increasing the time needed to retrieve
all the information from the centralized database which is higher than simply
evaluating each possible candidate solution against the read formula.

Empirical analysis demonstrates that maintaining an invalid literal set in
a centralized repository has a huge impact on the performance when working
with many literals. The execution time of evaluating a particular assignment
in a formula is very low compared with the network cost of sending the literals
to HBase. Nevertheless, the proposed algorithm used the invalid literal set just
to speedup the evaluations of assignments. A smarter use of the invalid literal
set could exploit that information to reduce the mapper search space. Some
possible strategies to reduce the communication costs of the CID algorithm are:

1. Sending invalid literals configurations in the cleanup method of the mapper
(which is executed only once).

2. Using the invalid literal assignments found in the map phase to prune
search spaces in the reduce phase.

3. Use invalid literal configurations to fix literals and, doing so, pruning
branches of the search space.

All these experimental results give important hints about the main perfor-
mance issues of developing the deterministic Map-Reduce algorithm to solve a
LSO problem. Figure 31 shows a graphical comparison between the three de-
terministic algorithms devised, showing the performance slowdown of the CID
algorithm by using HBase as a repository of invalid literals.
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Figure 31: Graphical comparison of the execution time between MR, CID and CnoID
algorithms

6.7 The Randomized MapReduce 3-SAT

The Randomized MapReduce 3-SAT (RandMR) is described in this section.
The devised algorithm takes advantage of the processing power in mappers
and reducers and by using a hybrid implementation with well known deter-
ministic algorithm (Davis–Putnam–Logemann–Loveland (DPLL), described in
Algorithm 1) and non-deterministic algorithm (Schöning algorithm, described
in Algorithm 4) to solve the 3-SAT.

The motivation of an hybrid implementation is that, with some probability,
a solution can be found in any iteration of the algorithm. A comparison example
of the deterministic and randomized search algorithms are shown in Figure 32.

The problem starts by splitting the problem in 2 × number of mappers
problems. The Unit Propagation Pure Literal Elimination (Algorithm 1) algo-
rithm is employed in the reducer, to modify the formula based on fixed literals.
For each partial solution a new formula is generated, which is saved in Hbase.

Both, mappers and reducers, retrieve the formula associated to the partial
assignment received. If no formula is found in Hbase, then the default formula
it is used which was saved initially by the main MapReduce job. Each time a
mapper or reducer finds a solution or a new formula is generated by the UPPLE
algorithm, it is save to Hbase instead of HDFS. The Hadoop Distributed File
System is only used to save the intermediate keys and values of hadoop between
each iteration and between mappers and reducers. The use of Hbase for storing
all data related to the algorithm is an improvement over the use of HDFS, as
the information read and written is small and must be accessed fast in a write
many read many fashion.
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Figure 32: 3SAT randomized mapper process
(1) The red dot denote solutions to the problem. (2) The yellow circles are local searches of the
randomized algorithm. (3) The green areas are search spaces of the deterministic algorithm in
each iteration. In this example, the randomized algorithm succeeds to find a solution to the
problem in the first iteration. On the other hand, the deterministic algorithm finds a solution
in the third iteration (a different solution from the one that the randomized algorithm finds).

6.8 Randomized 3-SAT Mapper

The improvements implemented to speedup the Mapper algorithm are described
in this section. The mapper base structure is the same as the mapper algorithm
described in Algorithm 8 but adding the Schöning’s algorithm (Algorithm 4)
in the subspace of solution space, given the fixed literals result of the DFS
algorithm. A description of the mapper algorithm is presented in Figure 11.
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Figure 33: 3SAT randomized mapper process
(1) The main MapReduce job, saves the retrieved formula from HDFS to HBase to its available
to all mappers and reducers; (2) The setup method is called once for each mapper and reducer.
Each mapper and reduce task checks if a solution was not already found; (3) For each candidate
solution received by the mapper (e.g: list of fixed literals), the MD5 of the string composed
for such literals is used to retrieve the corresponding formula. For example, suppose mapper
1 receives fixed literals 1 and -2, the MD5(“1 2”) is used as key to retrieve the formula from
Hbase (because each time the UPPLE algorithm is applied, the formula changes based on
current assignments). The default formula is returned if no formula is found in Hbase for such
MD5; (4) The mapper uses a DFS search algorithm to fix d new literals and, in case of failing
to find a solution, the result of this algorithm will be emitted to the reducers; (6) Schöning’s
algorithm is applied to a subspace of the search space, using the received fixed literals and
the new fixed literals result of the DFS algorithm. If a solution is found, then it is saved to
HBase.
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A graphical representation of the search algorithm used in the mapper pro-
cess is presented in Figure 34. Each mapper searches for solutions in its own
subspace (gray and blue areas). The DFS algorithm is applied inside each map-
per subspace given the literals already fixed received as input parameters of
the mapper. After, if the DFS algorithm does not fix all literals, the Schöning
algorithm is executed inside the mapper search space given the literals fixed
received as input parameter and the literals fixed by the DFS algorithm (in
green in the figure). The Schöning algorithm is not deterministic and each time
it is executed, performs a local search (described in yellow in the figure) and
then jumps to another search space (inside the mapper search space, described
in yellow in the figure) to search for solutions. Every execution of the Schöning
algorithm is different and can succeed in finding a solution at any time with
some probability.

Figure 34: Example of the search approach used in the mappers for the randomized
solver.

The mapper starts by applying the DFS algorithm (described in section 6.4).
If all literals were not set, for each possible partial solution, the Schöning Algo-
rithm (shown in Algorithm 4) is executed, using the partial assignment as input.
The Schöning’s algorithm is only applied to a subspace of the entire solution
space taking the literals set by the DFS algorithm as input parameter.

If the application of the Schöning algorithm fails to find a solution to the
problem, the Mapper outputs as key the key originally received by the mapper
and as value the literals set by the DFS algorithm. The mapper algorithm is
described in Algorithm 11.

6.9 Randomized 3-SAT Reducer

This section describes the reducer algorithm for the randomized algorithm.
The number of reducers is the same as the number of mappers and, apart
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Algorithm 11 Randomized 3-SAT Mapper (INPUT: key= LongWritable,
value=Text)

1: if solution not found then
2: formula = retrieve formula from Hbase (MD5(value))
3: possible solutions = apply DFS algorithm(value, formula)
4: for all s ← possible solutions do
5: if s is solution then
6: save solution to hbase(s)
7: else
8: schonningresult = apply schonning algorithm (s)
9: if schonningresult is solution then

10: save solution to Hbase (schonningresult)
11: else
12: emit: key=received key, value=s
13: end if
14: end if
15: end for
16: end if

from the previous reducer algorithm that just prepared the information for the
next MapReduce iteration, this algorithm searches for a solutions using a DFS
Algorithm (described in Section 6.3), the Unit Propagation and Pure Literal
Elimination algorithm (Algorithm 2 and Algorithm 3) and Schönning algorithm
(Algorithm 4).

A description of the randomized version of the reducer process is shown
in Algorithm 12. The reducer process, in the setup method, checks Hbase if
a solution was already found. If a solution was already found, the algorithm
ends. Otherwise, the randomized reducer algorithm starts starts by retrieving
the 3-SAT formula for each assignment received, using the MD5 of the candidate
solution.

The formula associated for the partial assignment received is retrieved from
Hbase. If no formula is found, the formula received as an input parameter of
the MapReduce job (and saved to Hbase in the initialization process) is used.

As a result of the UPPLE, a new assignment and new formula is generated. If
all literals are not set in the new assignment, the DFS algorithm (Subsection 6.3)
are applied to the new assignment and new formula generated by the UPPLE
algorithm.

If a solution is not found after applying the DFS algorithm, then Schönning’s
algorithm is applied to a subspace of the solution space, using as input assign-
ment the result of the DFS algorithm and the formula as a result of the UPPLE
algorithm.

If the Reducer fails to find a solution, the assignment returned by the DFS
algorithm is saved to HDFS to prepare the input for the next MapReduce iter-
ation, its MD5 is used to save the formula returned by the UPPLE algorithm
to Hbase. The randomized reducer algorithm is described in Figure 35.
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search space.

6

 If Schöning’s algorithm finds a solution,it is saved to HBase and the 
algorithm ends. Otherwise, the candidate solution result of the DFS 
algorithm is emitted as value to be used for the next iteration.
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Figure 35: The 3SAT reducer process of the randomized algorithm
(3) If no formula is found for the candidate solution received, then the default formula is used
(received as input parameter of the MapReduce job and saved to HBase in the initialization
process); (4) The UPPLE algorithm fixes new literals and returns a reducer formula along
with a new candidate solution; (6) Schöning’s algorithm is applied to a subspace of the search
space where the literals present in the received candidate solution are already fixed. It uses the
formula result of the UPPLE algorithm to evaluate if a new candidate solution is solution to
the 3-SAT problem; (7) If the reducer algorithm fails to find a solution, the reducer saves the
new formula result of the UPPLE algorithm using the MD5 of the candidate solution result
of the DFS algorithm, which is emitted as output for the next iteration of the MapReduce
algorithm.
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Algorithm 12 Randomized 3-SAT Reducer Job (INPUT: key=LongWritable,
possible solutions: List[Text])

1: if solution not found then
2: for all s ← possible solutions do {iterate over all possible solutions}
3: formula = retrieve formula from HBASE(s)
4: if all literals are set in s then
5: if s is solution then
6: save solution to Hbase(s)
7: end if
8: else
9: {Apply Unit Propagation and Pure Literal Elimination (UPPLE)}

10: new formula, new assignment = apply UPPLE(s)
11: if all literals are set in new assignment then
12: if new assignment is solution then
13: save new assignment to HBASE
14: end if
15: else
16: new assignments = apply DFS algorithm (new assignment)
17: {iterate over all new possible solutions}
18: for all s1 ← new assignmetns do
19: if all literals are set in s1 then
20: save solution s1 to HBASE
21: else
22: sch1 = apply Schoning algorithm (s1)
23: if sch1 is solution then
24: save solution sch1 to HBASE
25: else
26: {emit empty key and possibleSolution as value}
27: {save new formula after UPPLE for new assignment}
28: emit: key=NullWritable , value= s1
29: save new formula to HBASE with key MD5(s1)
30: end if
31: end if
32: end for
33: end if
34: end if
35: end for
36: end if

6.10 Experimental Analysis

Experimental executions where made first on a sandbox environment with a
single node having an intel i7 processor (4 cores at 2.2 GHz) with 16 GB of RAM
using a pseudo-distributed Hadoop configuration. All reported executions were
made on a AMD Opteron 6272 (24 cores at 2.09GHz, 72GB RAM). Because
the devised algorithm is not deterministic (so execution times vary between
different executions depending on the probability of the algorithm to find a
solution), 30 executions of each problem instance were made. The experimental
results are shown in Table 5. As described in Figure 34, the Schöning algorithm
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is a random algorithm and each execution of the algorithm is different, jumping
from one local search to another in the search space. For that reason, a statistic
execution was made, running the algorithm 30 times for each problem instance
and then reporting the average of the execution time. The standard deviation
of the RandMR algorithm is also reported in seconds.

literals clauses
execution time (seconds)

CnoID RandMR
20 150 9 0.001 ± 0.001
25 90 15 0.002 ± 0.001
30 134 16 0.119 ± 0.020
32 142 20 0.095 ± 0.020
34 150 42 0.378 ± 0.030
40 176 227 8.479 ± 0.700
42 185 152 5.670 ± 0.500
45 197 365 15.780 ± 1.120
50 280 1506 152.048 ± 7.540
100 200 - 8921.049 ± 353.820

Table 5: Execution times of CnoID and randomized MapReduce algorithm
(RandMR) as well as the standard deviation of the RandMR algorithm.

The best deterministic algorithm devised (CnoID) is compared with the
new randomized algorithm. For the problem instance with 100 literals and 200
clauses, the CnoID algorithm was not executed because of the high execution
times reached for the problem instance having 50 literals and 280 clauses, so
there is no reported execution time for that problem instance.

The most notably result of the experimental results is shown in Figure 36.
The performance improvement of taking more advantage of the processing power
of mappers and reducers provides a speedup up to 10× comparing with the best
devised deterministic algorithm. The devised algorithm is fully scalable to any
number of computers in a cluster or grid to solve any large scale problem, taking
full advantage of Hadoop infrastructure.
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Figure 36: Graphical evolution execution time randomized vs CnoID.

The key difference between the CnoID algorithm and the RandMR is that
the randomized algorithm exploits better the map and reduce phase of the
MapReduce algorithm, improving the search algorithm used in such phases. In
the case of the CnoID algorithm, the reduce phase was not exploited waisting
execution time just preparing the information for next MapReduce iteration. In
Hadoop, the reinitialization process is expensive as hadoop has to reinitialize
everything again, create new JVM’s, create a new job which checks for task
trackers available, check the data in HDFS needed and start again. The CnoID
algorithm, always finishes in the same iteration for a specific problem instance
and the RandMR algorithm can succeed to find a solution in less iterations with
some probability but never with more iterations.

Taking as an example the problem instance with 40 literals, suppose initially
the problem is split into 16 subproblems (fixing initially 4 literals) and in each
iteration d=15 literals are fixed. The CnoID needs at least 3 iterations to find
a solution (if any), in each iteration at most 15 literals are fixed. On the other
hand, the RandMR algorithm could succeed in finding a solution in any iteration
but no more than three iterations are needed. The Schöning algorithm can find
a solution in any iteration in any time with some probability. Moreover, if the
formula is not hard to solve and the literals fixed produce that the UPPLE
greatly simplifies the problem, a solution can also be found by a deterministic
manner. Also, the RandMR fixed at least d=15 literals in each iteration in a
deterministic manner, as the CnoID algorithm does, so for this toy example, at
most three iterations are needed to find a solution to the problem (if any).

The RandMR algorithm uses different search techniques to search for solu-
tions (DFS, UPPLE and Schöning) in the reducers and (DFS and Schöning) in
the mappers, significantly increasing the computations in both, mappers and
reducers, thus reducing execution times.

The performance improvement of a randomized algorithm is of an order of
magnitude, achieving 10x of speedup comparing with the previous deterministic
algorithm. For small problem instances (less than 34 literals), the randomized
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algorithm succeeds to find a solution in less than one second so in logarithmic
scale, the value is normalized to zero. The speedup of the randomized algorithm
is up to 10x, being an order of magnitude faster than the deterministic approach.

Although with very slow probability, the RandMR algorithm has one small
problem. The UPPLE algorithm used in the reducers in the RandMR algorithm
changes the formula, reducing it by fixing literals that appear unique in a clause
or removing from clauses the literals that are already fixed, and propagating its
value to other clauses. The result of the UPPLE algorithm is a new formula
and a new set of fixed literals. This new formula is saved to HBase and the
string created by the MD5 of the candidate solution is used as key. For different
candidate solutions found in different mappers, the MD5 of the strings created
from those candidate solutions could eventually collide. As different mappers
search for solutions in different search spaces and so the same candidate solution
is never tested in two mappers, the algorithm assumes that the collisions do not
happen. Nevertheless, the algorithm performs a final check agains the original
formula received as input parameter when a solution is found, just to be sure of
the correctness of the algorithm.

The algorithm can be further improved by improving the mapper algorithm
by adding the UPPLE algorithm and/or Schöning algorithm, as the reducer
does. The RandMR algorithm was designed to be extensible in the mappers
and reducers to any combination of algorithms can be applied in both phases.
The depth used when fixing the literals in all the proposed algorithms must be
fine tuned and trained to find the best suitable depth to use in mappers and
reducers. A small value of d could end up wasting execution time in many
iteration of the MapReduce algorithm. On the other hand, a too big value
for d could imply that mappers and reducers could end up tacking too much
time applying the DFS algorithm, but, would requiere less iterations to find
a solution and the UPPLE algorithm would have more information to further
simplify the formula. Many things can be modified and tested to speedup the
algorithm.
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7 Conclusions and future work

This section presents the conclusions of the work of solving a large scale op-
timization problem using Hadoop and MapReduce. It also briefly details the
main lines of future work for improving the current results.

7.1 Conclusions

This thesis tackled the 3-SAT problem, a well known Large Scale Optimization
problem, using a novel approach by implementing a distributed algorithm using
the MapReduce paradigm over Hadoop.

In the last decade, the dramatical growth of the digital information generated
has encouraged the development of different frameworks able to analyze all these
information as efficiently as possible. Hadoop is the most known framework for
analyzing big volumes of unstructured information in a distributed environ-
ment, providing failure tolerance, data replication and process communication.
Hadoop was designed to execute algorithms in a distributed infrastructure with
little effort by running MapReduce algorithms over a distributed file system.

Despite that Hadoop was not designed to solve LSO problems nor CPU
intensive algorithms, it provides a promising infrastructure to run distributed
algorithms without having to solve the inherent problems of distributed comput-
ing like data replication, failure tolerance and communication between process.
In order to implement a MapReduce algorithm to solve the 3-SAT problem, a
D&C approach was used using a domain decomposition strategy. The D&C
approach was complemented with cumulative learning approaches and stochas-
tic local searches. An iterative approach was used to design and develop the
MapReduce algorithm, starting from a simple algorithm to a more complex one.
In each iteration, the algorithm was improved focusing in improving the use of
computational resources (reducing memory consumption and improving the use
of CPU time in searching for solutions) and reducing the execution time. The
proposed algorithms had to be specifically designed to Hadoop, taking into ac-
count the particular aspects of the underlying infrastructure. Tackling some
specific features of the MapReduce paradigm and the Hadoop implementation,
such as how Hadoop creates the mappers/reducers and/or how the map phase is
executed can lead to execution time improvements to overcome poor algorithm
performance.

Mapreduce and Hadoop abstract the developer of the common distributed
computing problems, such as communication among processes, failure toler-
ance, etc, but they add other issues related to the design of the algorithm
and constraints for a MapReduce job: how to split the problem, how to im-
plement the stop condition or the kind of search algorithm to use, etc. The
MapReduce paradigm does not considers the communication between processes
(mappers and reducers). The proposed algorithms achieved the communication
between mappers and reducers by sharing information in a centralized database.
The mappers have to save/read information from/to the database (e.g.: invalid
clauses found, solutions found, etc). The mappers cannot be notified when new
information is available so they have to query the database from time to time
to retrieve new information, if any. Another challenge when implementing a
LSO algorithm using MapReduce is the implementation of the stop condition.
In the first proposed algorithm, the stop condition used was the default of any
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MapReduce algorithm: it ended after one iteration of the MapReduce phase,
checking in the main job if a solution was found. The improvement of the imple-
mentation of the stop condition dramatically improved the algorithm, by saving
saved solutions to the centralized database so mappers and reducers would avoid
execution if a solution was already found. The MapReduce algorithm does not
considers the case that a mapper execution is conditioned by the result of an-
other mapper execution. Moreover, it also does not considers the case that the
reduce phase can be conditioned by the result of the execution of a particu-
lar mapper process. In both cases, improving how the mappers and reducers
communicate and the stop condition implemented lead to improvements in the
execution time of the LSO algorithm.

The first algorithms focused on the development of a strait-forward ap-
proach, to evaluate if Hadoop infrastructure was able to execute CPU intensive
algorithms and to face the problems of the underlying infrastructure as early as
possible. The first problems tackled were the excessive memory consumption
of the MapReduce algorithm by reducing the number of mappers generated in
each iteration of the algorithm. The cumulative learning approach without us-
ing invalid literals, implemented in the CnoID algorithm was able to improve the
performance of a simple D&C MapReduce algorithm. This strategy is imple-
mented following the way Hadoop executes a MapReduce job and using HBase
as a collaborative database of solutions. On the other hand, using a centralized
database of invalid literals was ineffective to speed up the search.

The randomized algorithm significantly improved the performance of the
MapReduce algorithm, reaching up to 10x of speedup comparing execution
times. The randomized version of the algorithm significantly improved the re-
ducer algorithm. In first versions of the algorithm, the reducer was a dummy
algorithm but in the randomized version, the reducer algorithm also searched
for solutions using a hybrid approach (as well as the mapper in the randomized
version of the algorithm). The randomized algorithm was able to find solutions
to the problem in less iterations than the deterministic approaches, by having
a non-deterministic algorithm that can potentially find a solution in any itera-
tion. Because the devised algorithm is a hybrid implementation (deterministic
and non-deterministic approaches), it still succeeds in finding when a problem
instance does not have a valid solution. The randomized algorithm better ex-
ploited the processes created by Hadoop, by searching for solutions in both, the
mappers process and the reducers process.

Using HBase as a centralized source helps the synchronization and coopera-
tion among mappers and reducers and its fully distributed. In the randomized
version, the solutions and the formula were also saved to HBase. Hbase is opti-
mized for many small saves that are read many times so was a natural selection
to save the modified formulas in the randomized approach. The randomized
algorithm uses the centralized database not only to save solutions found and
to retrieve them to implement the stop condition to the algorithm, but also
is used to save the modified formulas found by the UPPLE algorithm in each
reducer process. The key used to save the modified formula is the MD5 of the
set of literals already fixed in the reducer process. Despite that the MD5 of two
assignments could eventually collide, it is with a very small probability. The
centralized database can be further exploited by saving conflict clause analysis
to further improve the algorithm.
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7.2 Future work

The randomized algorithm as designed to scale horizontally without any lim-
itation to be executed on a large Hadoop cluster. A future line of work is to
test the devised algorithm in a very large cluster with hundreds of commodity
machines, solving a really large problem instance with at least 600 literals. In
this context, the only extra work that needs to be done is to configure Hadoop
and Hbase to be executed using the cluster configuration.

Apart from executing the devised algorithm in a large cluster, the algorithm
can be further improved, better exploiting the MapReduce algorithm. A future
line of work is to fine tune the devised algorithm by improving both mappers
and reducers. The UPPLE algorithm can be used in the mappers and a better
clause sharing algorithm can be used. Conflict clause algorithms have not been
used in this work and, as described in the related work, can significantly improve
the algorithm performance. Moreover, the heuristic used to fix the literals can
be further improved by better using the formula information to select the best
literal to fix in each step.

The algorithm presented in this thesis uses a D&C approach to split the
problem in subproblems and each mapper searches for solutions in a subspace
of the search space. Another line of future work is to implement a portfolio
approach using MapReduce, where each mapper runs a different configuration
of different algorithms to solve the 3-SAT. In the context of a portfolio approach
using MapReduce, cooperation is more limited because, as explained before, it
is achieved by using a centralized database and each process needs to explicitly
query the database to retrieve new information, if any.

The final line of research relates to the execution of the randomized version
of the algorithm in Spark [96]. Spark is a big data analysis framework, which
is more efficient for iterative, in-memory computing than Hadoop. In the last
few years, Spark has taken much interest in the academic and in the industry
for analyzing big volumes of information. Spark is known to be at most 10x
faster in iterative algorithms than Hadoop, and is currently used by a wide
range of companies and gaining a lot of adoption, known as the replacement
of Hadoop [88]. Because LSO problems have never been solved using Hadoop
nor Spark, it could be interesting to evaluate the difference in execution time
and resource consumption of both alternatives when solving a cpu intensive
algorithm.

84



References

[1] How large is the digital universe? how fast is it growing? [Accessed online in
October 2015 at http://www.emc.com/leadership/digital-universe/

2014iview/executive-summary.htm].

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM, 45(1):70–122, Jan. 1998.

[3] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf. Process. Lett.,
8, 1979.

[4] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais. A gen-
eralized framework for conflict analysis. In Proceedings of the 11th Inter-
national Conference on Theory and Applications of Satisfiability Testing,
2008.
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[10] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis. The quadratic
assignment problem, 1998.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, 2006.

[12] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation).
The MIT Press, 2007.

[13] M. Chiarandini, I. Dumitrescu, and T. Stützle. Stochastic local search
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