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Two examples of vanishing and
squeezing in K1

E. Ellis, E. Rodŕıguez Cirone, G. Tartaglia
and S. Vega

Abstract. Controlled topology is one of the main tools for proving
the isomorphism conjecture concerning the algebraic K-theory of group
rings. In this article we dive into this machinery in two examples: when
the group is infinite cyclic and when it is the infinite dihedral group in
both cases with the family of finite subgroups. We prove a vanishing
theorem and show how to explicitly squeeze the generators of these
groups in K1. For the infinite cyclic group, when taking coefficients in
a regular ring, we get a squeezing result for every element of K1; this
follows from the well-known result of Bass, Heller and Swan.
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1. Introduction

Let G be a group, F a family of subgroups of G, R a ring and K the
non-connective algebraic K-theory spectrum. The isomorphism conjecture
for (G,F , R,K) identifies the algebraic K-theory of the group ring RG with
an equivariant homology theory evaluated on EFG, the universal G-CW -
complex with isotropy in F . More precisely, the conjecture asserts that
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the following assembly map — induced by the projection of EFG to the
one-point space G/G — is an isomorphism [9]:

assemF : HG
∗ (EFG,K(R))→ HG

∗ (G/G,K(R)) ∼= K∗(RG) (1.1)

The left hand side of (1.1) provides homological tools which may facilitate
the computation of the K-groups.

For F = Vcyc, the family of virtually cyclic subgroups, the conjecture is
known as the Farrell-Jones conjecture [11],[4]. Although this conjecture is
still open, it is known to hold for a large class of groups, among which are
hyperbolic groups [6], CAT(0)-groups [5], solvable groups [16] and mapping
class groups [3]. One of the main methods of proof is based on controlled
topology, and its key ingredient is an obstruction category whose K-theory
coincides with the homotopy fiber of the assembly map.

For a free G-space X, the objects of the obstruction category OG(X) are
G-invariant families of finitely generated freeR-modules {M(x,t)}(x,t)∈X×[1,∞)

whose support is a locally finite subspace of X × [1,∞). A morphism in
OG(X) is a G-invariant family of R-module homomorphisms satisfying the
continuous control condition at infinity. Associated to OG(X) there is a
Karoubi filtration

T G(X)→ OG(X)→ DG(X)

that induces a long exact sequence in K-theory:

. . .→ K∗+1(OG(X))→ K∗+1(DG(X))
∂−→ K∗(T G(X))→ K∗(OG(X))→ . . .

The previous definitions can be generalized for non-necessarily free G-spaces.
Taking X = EFG, the assembly map (1.1) identifies with the connecting ho-
momorphism ∂ of the above sequence. Hence, an element [α] ∈ K∗(T G(X))
belongs to the image of the assembly map if and only if this element vanishes
in K∗(OG(X)).

If X admits a G-invariant metric d, there is a notion of size for mor-
phisms in OG(X). Given ε > 0, we say that ϕ ∈ OG(X) is ε-controlled
over X if d(x, y) < ε, ∀(x, t), (y, s) in the support of ϕ. If ϕ is an ε-
controlled automorphism such that ϕ−1 is also ε-controlled, we call it an
ε-automorphism. The general strategy for proving that the obstruction cat-
egory has trivial K1 is the following: first show that there exists an ε > 0
such that ε-automorphisms have trivial K-theory (vanishing result), and
then verify that every morphism has a representative in K-theory which is
an ε-automorphism (squeezing result); see [2, Corollary 4.3], [1, Theorem
2.10], [6], [14, Theorems 3.6 and 3.7], [15, Theorem 37].

In this article we examine how the previous machinery works in two ex-
amples:

(i) the infinite cyclic group G = 〈t〉 and the family F consisting only of
the trivial subgroup;

(ii) the infinite dihedral group G = D∞ and the family F = Fin of finite
subgroups.
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In both cases, it is easily verified that R is a model for EFG. In the first
example, t acts by translation by 1. In the second one, we use the following
presentation of the infinite dihedral group:

D∞ = 〈r, s | s2 = 1, rs = sr−1〉. (1.2)

Then r acts by translation by 1 and s acts by symmetry with respect to
the origin. By the discussion above, in both examples, the assembly map in
degree 1 identifies with the morphism:

∂ : K2(DG(R))→ K1(T G(R)). (1.3)

Adapting ideas of Pedersen [14] to these G-equivariant settings, we prove
the following vanishing result.

Theorem 1.4 (Theorem 4.17). Let G = 〈t〉 or G = D∞. If α is a 1
30 -

automorphism in OG(R), then α has trivial class in K1.

As an application, we get a sufficient condition for an element of K1(T G(R))
to be in the image of ∂.

Corollary 1.5. Let G = 〈t〉 or G = D∞. If α is a 1
30 -automorphism in

T G(R), then [α] ∈ K1(T G(R)) is in the image of the assembly map (1.3).

This illustrates the idea that small automorphisms in K1(T G(R)) should
belong to the image of ∂.

Let us now take a closer look at the image of (1.3); we will focus on
example (i).

A well-known theorem of Bass-Heller-Swan computes, for any ring R, the
algebraic K-theory of the Laurent polynomial ring R[t, t−1] in terms of the
K-theory of R. The group K0(R) ⊕K1(R) is always a direct summand of
K1(R[t, t−1]), and its inclusion is given by the following formula (see [7]):

[M ]⊕ ([M ′], τ) � ψ // [R[t, t−1]⊗RM, t⊗ id] + [R[t, t−1]⊗RM ′, id⊗τ ] .

It can be shown that ψ and the assembly map (1.3) fit into a commutative
square as follows:

K2(D〈t〉(R))

∼=
��

∂ // K1(T 〈t〉(R))

∼=U ��
K0(R)⊕K1(R)

ψ // K1(R[t−1, t]).

(1.6)

Notice that ∂ takes into account the geometry of R while ψ is purely alge-
braic. The isomorphism U is, moreover, induced by the functor that forgets
geometry. Thus, we can regard the Bass-Heller-Swan morphism ψ as the
algebraic shadow of the assembly map.

It is clear from the formula above that t belongs to the image of ψ.
However, the obvious representation of t as an automorphism in T 〈t〉(R) is
not small — indeed, it has size 1. This phenomenon was already mentioned
in [1, Remark 2.14]. In our context we prove a squeezing result for t.



610 E. ELLIS, E. RODRÍGUEZ CIRONE, G. TARTAGLIA AND S. VEGA

Proposition 1.7 (Proposition 5.3). Let n ∈ N. Then there exists a 1
n -

automorphism ξ in T 〈t〉(R) such that U([ξ]) = [t] in K1(R[t, t−1]).

If we further assume that R is regular, the latter result and the proof of [7,
Theorem 2] imply the following.

Proposition 1.8 (Proposition 5.4). Let R be a regular ring and let ε > 0.

For every x ∈ K1(R[t, t−1]) there exists an ε-automorphism ξ in T 〈t〉(R)
such that U([ξ]) = x.

In example (ii), it can be shown that both r and s belong to the im-
age of the assembly map, and one may try to represent these elements by
ε-automorphisms, for small ε > 0. In the case of r, the proof of Propo-
sition 1.7 carries on verbatim to show that, for every n ∈ N, there is an
1
n -automorphism ξ in T D∞(R) such that U([ξ]) = [r]. In the case of s, it is
possible to find a 0-automorphism representing this element (Remark. 4.2).

The rest of the paper is organized as follows. In section 2 we mainly fix
notation and recall from [4] the basic definitions and results from controlled
topology. In section 3 we study algebraically the assembly maps in the
two examples mentioned above. In the case of example (i), we use Mayer-
Vietoris to identify the domain of the assembly map (1.3) with K0(R) ⊕
K1(R). In the case of example (ii), we use the equivariant Atiyah-Hirzebruch
spectral sequence and [8, Corollary 3.27] to show that the assembly map is
an isomorphism for regular R. Section 4 contains the proof of Theorem 1.4.
In section 5 we discuss the notion of size in terms of matrices and we prove
Proposition 1.7.

Acknowledgements. The authors wish to thank the organizers of the work-
shop Matemáticas en el Cono Sur, where this project was initiated, Holger
Reich for his helpful comments and the referee for making valuable remarks.
The last three authors also thank Eugenia Ellis for her hospitality and sup-
port during their visits to the IMERL-UdelaR in Montevideo.

2. General setting

2.1. Geometric modules. Let R be a unital ring and X a space. The
additive category C(X) = C(X;R) of geometric R-modules over X is defined
as follows. An object is a collection A = (Ax)x∈X of finitely generated free
R-modules whose support supp(A) = {x ∈ X : Ax 6= 0} is locally finite in
X. Recall that a subset S ⊂ X is locally finite if each point of X has an
open neighborhood whose intersection with S is a finite set. A morphism
ϕ : A = (Ax)x∈X → B = (By)y∈X consists of a collection of morphisms of
R-modules ϕyx : Ax → By such that the set {x : ϕyx 6= 0} is finite for every
y ∈ X and the set {y : ϕyx 6= 0} is finite for every x ∈ X. The support of ϕ
is the set

supp(ϕ) = {(x, y) ∈ X ×X : ϕyx 6= 0} .
Composition is given by matrix multiplication.
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Let G be a group which acts on X. Then there is an induced action on
C(X) given by (g∗A)x = Agx and (g∗ϕ)yx = ϕgygx. A geometric R-module
(Ax)x∈X is called G-invariant if g∗A = A. A morphism ϕ between G-
invariant geometric R-modules is called G-invariant if g∗ϕ = ϕ. The cat-
egory of G-invariant geometric R-modules and G-invariant morphisms is
denoted CG(X). It is an additive subcategory of C(X).

2.2. Restriction to subspaces. Let A be a geometric R-module on X
and let Y ⊆ X be a subspace. We will write A|Y for the geometric module
over X defined by

(A|Y )x =

{
Ax if x ∈ Y ,
0 otherwise.

Notice that A|Y is a submodule of A.

Remark 2.1. If Y = ∪iYi is a disjoint union, then A|Y = ⊕iA|Yi .

Let A and B be geometric modules over X, let Y,Z ⊆ X be subspaces,
and let α : A → B be a morphism. The decompositions A = A|Y ⊕ A|Y c

and B = B|Z ⊕B|Zc induce a matrix representation

α =

(
α|ZY α|ZY c

α|Zc

Y α|Zc

Y c

)
where α|WV : A|V → B|W , V ∈ {Y, Y c}, W ∈ {Z,Zc}. This gives a well
defined function:

?|ZY : HomC(X)(A,B)→ HomC(X)(A|Y , B|Z)

The following properties are easily verified:

(1) If α, β : A→ B, then (α+ β)|ZY = α|ZY + β|ZY .
(2) If Y = Y1∪· · ·∪Ym and Z = Z1∪· · ·∪Zn are disjoint unions, then the

decompositions A|Y = A|Y1⊕· · ·⊕A|Ym and B|Z = B|Z1⊕· · ·⊕B|Zn

induce the matrix representation:

α|ZY =

α|
Z1
Y1
· · · α|Z1

Ym
...

. . .
...

α|Zn
Y1
· · · α|Zn

Ym


(3) If α : A→ B, β : B → C and X = X1 ∪ · · · ∪Xn is a disjoint union,

then:

(β ◦ α)|ZY =

n∑
i=1

β|ZXi
◦ α|Xi

Y

Remark 2.2. The above definitions make sense in the equivariant setting. If
X is a G-space, Y ⊆ X is a G-invariant subspace and A is a G-invariant
geometric module, then A|Y is G-invariant as well. If α is a G-invariant
morphism and Y, Z ⊆ X are G-invariant subspaces, then α|ZY is G-invariant
as well.
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Definition 2.3. Let γ : A → B be a morphism of geometric modules and
let Y ⊆ X be a subspace. We say that γ is zero on Y if the decompositions
A = A|Y ⊕A|Y c and B = B|Y ⊕B|Y c induce a matrix representation:

γ =

(
0 0
0 ∗

)
Definition 2.4. Let A be a geometric module on X, let γ : A → A be an
endomorphism and let Y ⊆ X be a subspace. We say that γ is the identity
on Y if the decomposition A = A|Y ⊕A|Y c induces a matrix representation:

γ =

(
id 0
0 ∗

)
Remark 2.5. It is easily verified that if γ is the identity on Y (respectively,
zero on Y ) and Z ⊆ Y , then γ is the identity on Z (resp. zero on Z).

Remark 2.6. Let α : A → B and β : B → C be morphisms of geometric
modules on X and let Y,Z ⊆ X be subspaces. If α is the identity on Y ,
then (β ◦ α)|ZY = β|ZY . Indeed,

(β ◦ α)|ZY = β|ZY ◦ α|YY + β|ZY c ◦ α|Y
c

Y

= β|ZY ◦ id + β|ZY c ◦ 0 = β|ZY .

In the same vein, if β is the identity on Z, then (β ◦α)|ZY = α|ZY . Also, if α is
zero on Y or β is zero on Z then (β ◦α)|ZY = 0. We will use these properties
in Section 4 without further mention.

2.3. Control conditions. Let X be a G-space and equip X × [1,∞) with
the diagonal action, where G acts trivially on [1,∞). We need to impose
some support conditions on objects and morphisms of CG(X) and CG(X ×
[1,∞)).

Object support condition: Let SXGc be the set of G-compact subsets of X;
i.e. the set of all subsets of the form GK, with K ⊂ X compact.

Morphism support condition: Let Gx be the stabilizer subgroup of x ∈ X,
and write EXGcc for the collection of all subsets E ⊂ (X×[1,∞))×(X×[1,∞))
satisfying:

(1) For every x ∈ X and for every Gx-invariant open neighborhood U of
(x,∞) in X × [1,∞], there exists a Gx-invariant open neighborhood
V ⊂ U of (x,∞) in X × [1,∞] such that

((X × [1,∞]− U)× V ) ∩ E = ∅;

(2) the projection (X × [1,∞))×2 → [1,∞)×2 sends E into a subset of
the form {(t, t′) ∈ [1,∞)× [1,∞) : |t− t′| ≤ δ} for some δ <∞;

(3) E is symmetric and invariant under the diagonal G-action.

The collection EXGcc is called the equivariant continuous control condition.



TWO EXAMPLES OF VANISHING AND SQUEEZING IN K1 613

For a G-space Y , CG(Y ; E ,S) will denote the subcategory of CG(Y ) with
objects supported in S and morphisms supported in E . In case there is no
support condition for morphisms we will omit it from the notation and write
CG(Y ;S).

Lemma 2.7. (c.f. [4, Lemma 2.10]) If X is a free G-space, then CG(X;SXGc)
is equivalent to the category FRG of finitely generated free RG-modules.

Given a free G-space X, we will write

U : CG(X;SXGc) = CG(X;SXGc, R)→ C(pt, RG) = FRG

for the functor that induces the equivalence of the previous Lemma:

U(A) =
⊕
x∈X

Ax

U(ϕ : A→ B) =
⊕

(x,y)∈supp(ϕ)

ϕyx :
⊕
x∈X

Ax →
⊕
y∈X

By

Note that, if we fix a basis for every finitely generated free R-module,
U(ϕ) is a matrix indexed by supp(ϕ) such that each entry is a finite matrix
[ϕyx] with coefficients in R. Using the G-invariance property of objects and
morphisms in CG(X;SGc), we will interpret U(ϕ) as a finite matrix with
coefficients in RG. For S, a complete set of representatives of G\X, we will
abuse notation and write

U(ϕ)(s,t) =
∑
g∈G

g[ϕgst ], ∀(s, t) ∈ (S × S) ∩ supp(ϕ).

The locally finite and G-compact conditions for the support of objects in
CG(X;SXGc) guarantees that |(S × S) ∩ supp(ϕ)| <∞.

2.4. Resolutions. The construction in the previous lemma allows us to
identify a finitely generated free RG-module with a geometric R-module
over a free G-space X. Following [4], this restriction is avoided introducing
resolutions.

Definition 2.8. (c.f. [4, Section 3]) Given a G-space X, a resolution of X
is a free G-space X together with a continuous G-map p : X → X satisfying
the following conditions:

• the action of G on X is properly discontinuous and the orbit space
G\X is Hausdorff (this is always the case if X is a G-CW-complex);
• for every G-compact set GK ⊂ X there exists a G-compact set
GK ⊂ X such that p(GK) = GK.

Remark 2.9. The projection X ×G→ X is always a resolution of X called
the standard resolution.

Let p : X → X be a resolution of a G-space X, and let π : X×[1,∞)→ X
be the projection. We will abuse notation and set
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(p× id)−1(EXGcc) =
{

((p× id)2)−1(E) : E ∈ EXGcc
}
,

π−1(SXGc) =
{
π−1(S) : S ∈ SXGc

}
.

We define the following additive subcategories of CG(X) and CG(X ×
[1,∞)):

• T G(X) = CG(X;SXGc), the category of G-invariant geometric R-

modules over X whose support is contained in a G-compact subset
of X.
• OG(X) = CG(X × [1,∞); (p × id)−1(EXGcc), π−1(SXGc)), the category

whose objects are G-invariant geometric R-modules over X × [1,∞)

with support contained in some S ∈ π−1(SXGc), and whose morphisms
are the G-invariant R-module morphisms with support contained in
some E ∈ (p× id)−1(EXGcc).
• DG(X) = OG(X)∞, the category of germs at infinity. It has the

same objects as OG(X), but morphisms are identified if their differ-
ence can be factored over an object whose support is contained in
X × [1, r] for some r ∈ [1,∞).

When considering the standard resolution G×X → X we write T G(X) =
T G(G×X), OG(X) = OG(G×X) and DG(X) = DG(G×X).

Theorem 2.10. (c.f. [4, Proposition 3.5]). Let X be a G-space and let

p : X → X and p′ : X
′ → X be two resolutions of X. Then the germ

categories DG(X) and DG(X
′
) are equivalent.

Lemma 2.11. Let X and Y be G-spaces and suppose the action on X is free.
Write Y τ for the space Y with trivial G-action. Then Y ×X is isomorphic
to Y τ ×X as a G-space.

Proof. Let ρ : X → G\X be the projection from X to the orbit space and
s : G\X → X be a section. If x ∈ X, write hx for the unique element of
G that verifies x = hxs(ρ(x)). Define ϕ : Y × X → Y τ × X by ϕ(y, x) =
(h−1x y, x). It is easy to see that ϕ is an isomorphism of G-spaces. �

Lemma 2.12. Let X be G-space such that there exists a subgroup K ≤ G
which acts freely on X with the restricted action from G. Then G/K ×X
(with diagonal action) is a free G-space.

Proof. Suppose g(hK, x) = (hK, x). Then ghK = hK and there exists
k ∈ K with g = hkh−1. Then hkh−1x = x and k(h−1x) = h−1x. But since
the action of K over X is free, this implies that k = 1G and then g = 1G.
This concludes that G/K ×X is free. �

Lemma 2.13. Let X be a G-space and Y a discrete space with trivial G-
action. Then CG(Y ×X;SY×XGc ) is equivalent to CG(X;SXGc).
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Proof. Let A be an object of CG(Y × X;SY×XGc ), then supp(A) is locally
finite and contained in a G-compact subset of Y × X. Hence, there exist
y1, y2, . . . , yn ∈ Y and G-compact subsets F1, F2, . . . , Fn of X such that
supp(A) ⊆

⋃n
i=1{yi} × Fi. This allows us to define the functor

F : CG(Y ×X;SY×XGc )→ CG(X;SXGc) by

F (A)x =
⊕
y∈Y

A(y,x)

F (ϕ : A→ B)x2x1 =
⊕

y1,y2∈Y
ϕ
(y2,x2)
(y1,x1)

:
⊕
y1∈Y

A(y1,x1) →
⊕
y2∈Y

B(y2,x2).

Clearly, F induces an equivalence of categories. �

Remark 2.14. Note that in the previous lemma, we haven’t specified any
control conditions on the morphisms. In order to have an isomorphism

CG(X × [1,∞); EXGcc, π−1(SXGc)) ∼= CG(Y ×X × [1,∞); E , π−1(SX×YGc )),

the control condition E isn’t given by EY×XGcc . The control condition E has
to control how morphisms behave between the points of Y . As such, if
p : Y ×X → X is the canonical projection, the control condition is given by

E = (p× id)−1(EXGcc).

Corollary 2.15. If X is a free G-space we have the following equivalences
of categories:

T G(X) ∼= T̃ G(X) := CG(X,SXGc);

OG(X) ∼= ÕG(X) := CG(X × [1,∞), EXGcc, π−1(SXGc));

DG(X) ∼= D̃G(X) := ÕG(X)∞;

where π : X × [1,∞)→ X is the projection.

Proof. Take Y = G in Lemmas 2.11 and 2.13. �

Definition 2.16. Let X be a G-space equipped with a G-invariant metric
dG. Let p : X → X be a resolution and ϕ a morphism in T G(X). We define
the size of ϕ as the supremum of the distances between the components of
ϕ when projected to X:

size(ϕ) = sup{dG(p(x), p(y)) : (x, y) ∈ suppϕ}

We also extend this size to morphisms in OG(X). In this case we define
the horizontal size of ϕ by measuring the distance in X:

hsize(ϕ) := sup{dG(p(x̄), p(ȳ)) : (x̄, t, ȳ, s) ∈ supp(ϕ)}

If we view T G(X) as a subcategory of OG(X) then we have that size(ϕ) =
hsize(ϕ).
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Also, since ϕ ∈ OG(X), it satisfies the control condition at ∞, hence,
there exists E ∈ EXGcc such that

supp(ϕ) ⊆
{

(x̄, t, ȳ, s) ∈ (X × [1,∞))2 : (p(x̄), t, p(ȳ), s) ∈ E
}
.

By the second condition in the definition of EXGcc, there exists δ > 0 such
that

∀(x̄, t, ȳ, s) ∈ supp(ϕ), |t− s| ≤ δ. (2.17)

We can then define the vertical size of ϕ by

vsize(ϕ) = inf {δ ≥ 0 : δ satisfies (2.17)} .

2.5. Assembly map. In [9], Davis and Lück associate to every G-CW -
complex a spectrum HG(X,K(R)) whose homotopy groups define a G-
equivariant homology theory with the following property:

HG
∗ (G/H,K(R)) ∼= K∗(RH), ∀H subgroup of G.

Let F be a family of subgroups of G, i.e. a nonempty collection of sub-
groups closed under conjugation and subgroups. The classifying space EFG
is the universal G-space for actions with isotropy in F . This is a G-CW -
complex characterized up to G-homotopy equivalence by the property that,
for any subgroup H of G, the H-fixed point space EFG

H is empty if H /∈ F ,
and contractible if H ∈ F . Note that when F is just the trivial subgroup,
the space EFG is the usual classifying space EG.

The assembly map is the map induced by the projection to the one point
space EFG→ G/G = pt:

assemF : HG(EFG,K(R))→ HG(G/G,K(R)) ∼= K(RG). (2.18)

For F = Vcyc the family of virtually cyclic subgroups, the Farrell-Jones
conjecture asserts that the assembly map

assemVcyc∗ : HG
∗ (EVcycG,K(R))→ HG

∗ (pt,K(R)) ∼= K∗(RG) (2.19)

is an isomorphism.
The assembly map can also be interpreted through means of controlled

topology, as we proceed to explain. Using the map induced by the inclusion
{1} ⊂ [1,∞) and the quotient map, we obtain the germs at infinity sequence

T G(X)→ OG(X)→ DG(X),

where the inclusion can be identified with a Karoubi filtration and DG(X)
with its quotient (see [6, Lemma 3.6]). Hence, there is a homotopy fibration
sequence in K-theory:

K(T G(X))→ K(OG(X))→ K(DG(X)). (2.20)

The functor X → K(DG(X)) is a G-equivariant homology theory on G-
CW -complexes, and its value at G/H is weakly equivalent to ΣK(RH) [4,
Sections 5 and 6].
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Applying (2.20) to the projection EFG → pt, we obtain the following
commutative diagram with exact rows:

... // Kn(OG(EFG)) //

��

Kn(DG(EFG))
βn //

αn

��

Kn−1(T (EFG))

γn−1

��

// ...

... // Kn(OG(pt)) // Kn(DG(pt))
δn
// Kn−1(T (pt)) // ...

(2.21)
By [9, Corollary 6.3], αn identifies with the assembly map assemFn−1

(2.18). Using the shift x 7→ x + 1, it is easy to see that OG(pt) admits
an Eilenberg swindle, hence Kn(OG(pt)) = 0 and δn is an isomorphism.
Moreover, γn−1 is also an isomorphism, because its source and target are
both isomorphic to Kn−1(RG) by Lemma 2.7. This explains the choice of
notation: OG(EFG) is the obstruction category, i.e. the assembly map is a
weak equivalence if and only if Kn(OG(EFG)) = 0, ∀n ∈ Z.

3. Two examples

From now on, we will focus on two particular assembly maps:

(i) for the group 〈t〉 and the trivial subgroup family, and
(ii) for the infinite dihedral group D∞ and the family Fin of finite sub-

groups.

As we explain below, both assembly maps are isomorphisms if we take a
regular ring R as our coefficient ring. For (i), this amounts to the well-
known theorem of Bass-Heller-Swan. For (ii), we will show that the assembly
map is an isomorphism using the equivariant Atiyah-Hirzebruch spectral
sequence and a computation of Kq(RD∞) made by Davis-Khan-Ranicki [8].
Throughout this section, we use no techniques from controlled algebra.

3.1. The assembly map for 〈t〉. As noted in the introduction, a model
for E〈t〉 is the free 〈t〉-space R. The assembly map for 〈t〉 and the trivial
subgroup family gives us a morphism

assemF : H
〈t〉
1 (R,K(R))→ H

〈t〉
1 (pt,K(R)) ∼= K1(R[t, t−1]). (3.1)

We will describe the source of (3.1) in terms of the K-theory of R using a
Mayer-Vietoris sequence.

We will drop K(R) from the notation for clarity, and write H
〈t〉
∗ (?) instead

of H
〈t〉
∗ (?,K(R)).

When regarding R as a 〈t〉-CW-complex, we only have one 〈t〉-0-cell, which
is compromised by the integers Z ⊆ R. Then we have one 〈t〉-1-cell with
attaching map α : 〈t〉×{0, 1} → Z defined as α(tk, ε) = k+ ε. The following
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adjunction space pushout describes R as a 〈t〉-CW-complex:

〈t〉 × {0, 1} Z

〈t〉 × [0, 1] R

α

i

α̃

j

This pushout gives a long Mayer-Vietoris sequence in homology as follows:

. . . H
〈t〉
1 (〈t〉 × {0, 1}) H

〈t〉
1 (Z)⊕H〈t〉1 (〈t〉 × [0, 1])

H
〈t〉
1 (R)

. . . H
〈t〉
0 (Z)⊕H〈t〉0 (〈t〉 × [0, 1]) H

〈t〉
0 (〈t〉 × {0, 1})

(α∗, i∗)

(j∗,−α̃∗)

∂

(α∗, i∗)

We are only interested in calculating H
〈t〉
1 (R) so we will only use the five

terms of the sequence depicted here. Since H
〈t〉
∗ is an equivariant homol-

ogy theory and 〈t〉 × [0, 1] is equivariantly homotopy equivalent to 〈t〉, the
sequence before is isomorphic to the following one:

H
〈t〉
1 (〈t〉)2 H

〈t〉
1 (〈t〉)2 H

〈t〉
1 (R)

H
〈t〉
0 (〈t〉)2 H

〈t〉
0 (〈t〉)2

(α∗, i∗) (j∗,−α̃∗)

∂

(α∗, i∗)

On the other hand, since we are taking coefficients in the spectrum K(R),

we have that H
〈t〉
∗ (〈t〉) = K∗(R). We observe now that α∗ can be expressed

as (id, id): the morphism α∗ is defined as the identity on the first summand
and as the shift on the second. The shift induces the identity because on
the K-theory of the R-linear category RG〈t〉(〈t〉) — with G〈t〉(〈t〉) being the

transport groupoid of 〈t〉 — the inclusion of 〈t〉 in any element of G〈t〉(〈t〉)
induces an equivalence (see [9, Section 2]). Since it induces the same equiv-
alence in every inclusion, it is easily seen that it must be the identity. This
implies that the cokernel of (α∗, i∗) : K1(R)2 → K1(R)2 is isomorphic to
K1(R). Similarly, the kernel of (α∗, i∗) : K0(R)2 → K0(R)2 is isomorphic to
K0(R). This gives the following short exact sequence:

0→ K1(R)
φ−→ H

〈t〉
1 (R)→ K0(R)→ 0 (3.2)

We will now show that this sequence splits. Note as q : H
〈t〉
1 (〈t〉)2 → H

〈t〉
1 (〈t〉)

the quotient map to the cokernel of (α∗, i∗). The maps induced by the
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projections R→ pt and 〈t〉 → pt give a commutative diagram:

H
〈t〉
1 (〈t〉)2 H

〈t〉
1 (R)

H
〈t〉
1 (〈t〉) H

〈t〉
1 (pt)

(j∗,−α̃∗)

q
φ

Since H
〈t〉
1 (pt) = K1(R〈t〉) and H

〈t〉
1 (〈t〉) = K1(R), we can define a map

r : H
〈t〉
1 (pt)→ H

〈t〉
1 (〈t〉), which is induced in K-theory by the ring morphism

R〈t〉 → R sending t to 1. Due to the commutativity of the previous diagram,
the map r composed with the induced map of the projection R→ pt splits

(3.2), meaning that H
〈t〉
1 (R) ∼= K1(R)⊕K0(R).

3.2. The assembly map for D∞. We use the presentation (1.2) for D∞.
It is easily seen that every element of D∞ can be uniquely written as rmsn

with m ∈ Z and n ∈ {0, 1}. Moreover, any non-trivial subgroup of D∞
belongs to one of the following families:

(1) 〈rms〉 with m ∈ Z,
(2) 〈rm〉 with m ∈ N,
(3) 〈rm, rks〉 with m ∈ N and k ∈ Z.

Subgroups of type (1) have order 2, those of type (2) are infinite cyclic and
those of type (3) are isomorphic to D∞. We will write Hm for the subgroup
〈rms〉— note that these are different for different values of m ∈ Z. Let Fin
be the family of finite subgroups of D∞, consisting of the trivial subgroup
and those subgroups of type (1). We are interested in the assembly map for
D∞ and the family Fin.

Let D∞ act on R on the left by putting

rmsn · x = m+ (−1)nx

for m ∈ Z, n ∈ {0, 1} and x ∈ R. The element rm acts by translation by m
and rms acts by symmetry with respect to the point m

2 . Then EFinD∞ = R
since RH = ∅ for H 6∈ Fin and RH is contractible for H ∈ Fin. In what
follows, we will show that the assembly map for D∞ and the family Fin,

assemFin : HD∞
q (R,K(R))→ HD∞

q (pt,K(R)) ∼= Kq(RD∞), (3.3)

is an isomorphism for regular R.
For a D∞-CW-complex X, the equivariant Atiyah-Hirzebruch spectral

sequence [12, Example 10.2] converges to HD∞
∗ (X,K(R)). Its second page

is given by:

E2
pq = Hp

(
COrD∞
• (X)⊗OrD∞ HD∞

q (?,K(R))
)

Here, COrD∞
• (X) : (OrD∞)op → Ch is the functor that sends a coset D∞/H

to the cellular chain complex of XH , HD∞
q (?,K(R)) : OrD∞ → Ab is the

restriction of the equivariant homology with coefficients in K(R), and⊗OrD∞
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stands for the balanced tensor product. Let us compute the left hand side
of (3.3). If H ⊂ D∞ is a subgroup of types (2) or (3), then RH = ∅
and so COrD∞

• (R)(D∞/H) is the zero chain complex. Since RHm = {m2 },
COrD∞
• (R)(D∞/Hm) is the abelian group Z — generated by the 0-cell m2 —

concentrated in degree 0. Finally, COrD∞
• (R)(D∞/1) is the complex

· · · // 0 // Z(D∞) d1 // Z(Z) ⊕ Z(Z+ 1
2) // 0

where d1 acts on the basic element g ∈ D∞ by d1(g) = g · 12 − g · 0. To

ease notation, we will write A• instead of COrD∞
• (R)⊗OrD∞H

D∞
q (?,K(R)).

Taking the above into account, An = 0 for n 6= 0, 1. Moreover, we have

A1 =
Z(D∞) ⊗Kq(R)

N1
(3.4)

A0 =

(
Z(Z) ⊕ Z(Z+ 1

2
)
)
⊗Kq(R)⊕

⊕
m∈Z Z⊗Kq(RHm)

N0
(3.5)

where Ni is the subgroup generated by the elements f∗(x) ⊗ y − x ⊗ f∗(y)
for all morphisms f : D∞/H → D∞/K in OrD∞. For A1, we only have to
consider morphisms f : D∞/1→ D∞/1 and these induce the identity upon
applying HD∞

∗ (?,K(R)). It follows that N1 is generated by the elements
of the form f∗(x) ⊗ y − x ⊗ y. Since D∞ acts transitively on the 1-cells of
R, all the copies of Kq(R) in the right hand side of (3.4) become identified
after dividing by N1 and hence (3.4) is isomorphic to Kq(R). To be precise,

any of the inclusions Kq(R)→ Z(D∞)⊗Kq(R) corresponding to an element
of D∞ induces the same isomorphism Kq(R) ∼= A1. The situation for A0 is
slightly more complicated: we have to consider morphisms D∞/1→ D∞/1,
D∞/1→ D∞/Hm and D∞/Hm → D∞/Hn. It is easily verified that

HomOrD∞ (D∞/Hm, D∞/Hn) =

{
{∗} if m ≡ n (mod 2),
∅ otherwise.

It follows that each summand in
⊕

m∈Z Z ⊗ Kq(RHm) is identified either
with Kq(RH0) or with Kq(RH1) upon dividing by N0. The action of D∞
on the 0-cells of R has two orbits: Z and Z + 1

2 . It follows that(
Z(Z) ⊕ Z(Z+ 1

2
)
)
⊗Kq(R)

is identified with Kq(R)⊕Kq(R) after dividing by N0 — one copy of Kq(R)
for each orbit of the 0-cells.

Finally, any morphism D∞/1 → D∞/Hm induces the natural morphism
Kq(R) → Kq(RHm) upon applying HD∞

q (?,K(R)). Thus, the copy of
Kq(R) corresponding to the orbit Z is identified with its image in Kq(RH0),
and the copy of Kq(R) corresponding to Z + 1

2 is identified with its image
in Kq(RH1). Hence, (3.5) is isomorphic to Kq(RH0) ⊕ Kq(RH1). To be
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precise, the inclusion

Kq(RH0)⊕Kq(RH1) //
⊕

m∈Z Z⊗Kq(RHm)

induces an isomorphism

Kq(RH0)⊕Kq(RH1) ∼= A0.

Write ιm : Kq(R)→ Kq(RHm) for the split monomorphism induced by the
inclusion 1 ⊂ Hm. It can be shown that A• is the complex:

· · · // 0 // Kq(R)
(−ι0,ι1)// Kq(RH0)⊕Kq(RH1) // 0

Upon taking homology, we get the second page of the Atiyah-Hirzebruch
spectral sequence converging to HD∞

∗ (R,K(R)):

E2
pq = Hp(A•) =

{
Kq(RH0)⊕Kq(R) Kq(RH1) if p = 0,

0 otherwise.

Note that this is actually the infinity-page, and it is easily deduced from it
that HD∞

q (R,K(R)) ∼= Kq(RH0)⊕Kq(R) Kq(RH1).

Let B• be the chain complex COrD∞
• (pt) ⊗OrD∞ HD∞

q (?,K(R)). Note

that, for any subgroup H ⊆ D∞, COrD∞
• (pt)(D∞/H) is the abelian group

Z concentrated in degree 0. Then Bn = 0 for n 6= 0 and we have:

B0 =

⊕
H Kq(RH)

N0

Obviously, B0
∼= Kq(RD∞). But it follows from [8, Corollary 3.27] that,

when R is regular, the inclusion Kq(RH0) ⊕Kq(RH1) →
⊕

H Kq(RH) in-
duces an isomorphism:

Kq(RH0)⊕Kq(R) Kq(RH1)
∼= // B0

It is easily seen that the projection R→ pt induces the following morphism
of chain complexes:

A•

��

· · · // 0 //

��

Kq(R)

��

(−ι0,ι1) // Kq(RH0)⊕Kq(RH1)

����

// 0

��
B• · · · // 0 // 0 // Kq(RH0)⊕Kq(R) Kq(RH1) // 0

Since this is a quasi-isomorphism, the morphism induced between the sec-
ond pages of the Atiyah-Hirzebruch spectral sequence is an isomorphism.
As we have already seen, we can recover HD∞

q (R,K(R)) from this spec-
tral sequence. Hence, the above shows that the assembly map (3.3) is an
isomorphism.

Remark 3.6. The fact that (3.3) is an isomorphism for regular R also follows
from [13, Theorem 65] and [10, Theorem 2.1].
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4. Vanishing theorem for K1

In this section, we show that automorphisms in O〈t〉(R) and OD∞(R) with
small enough horizontal size have trivial class in K1.

In the case of 〈t〉 with the trivial subgroup family, the action of 〈t〉 on

E〈t〉 = R is free. Then, using Corollary 2.15, we can use the category Õ〈t〉(R)

instead of O〈t〉(R). On the other hand, in the case of D∞ with the family
Fin, the action of D∞ on EFinD∞ = R is not free. But instead of using the
standard resolution, we use Lemma 2.12 observing that 〈r〉 acts freely on R
and D∞/〈r〉 ∼= Z/2. Hence, we can use the resolution p : R := Z/2×R→ R
given by the projection and the diagonal action on R. As in Corollary 2.15,
we can use the category OD∞(R) instead of OD∞(R) with the standard
resolution. We interpret the resolution R as two different copies of R.

Remark 4.1. The category OD∞(R) can be embedded into (Õ〈t〉(R))⊕2 by
restricting the modules over each copy of R × [1,∞). Because the action
of r ∈ D∞ is the same as the action of t in R, the restricted modules are
also 〈t〉-equivariant. The control conditions are trivially satisfied. It is also
important to note that the control condition on the morphisms is given by
Remark 2.14, this means that the morphisms on this category can have non-
null coordinates from one copy to another at arbitrary height, that is, this
control condition does not control the distance between the copies of R.

Remark 4.2. Set ϕ : M →M in T D∞(R) as

M(ε,x) =

{
R if x ∈ Z,

0 otherwise,

ϕ
(δ,y)
(ε,x) =

{
id if ε 6= δ and x = y ∈ Z,

0 otherwise.

Then ϕ is clearly an automorphism and it is easily seen that [U(ϕ)] = [s] ∈
K1(RD∞). Because of the earlier remark, ϕ is a 0-automorphism, so the
class [s] is automatically small.

4.1. The swindle. Let α : A → B be a morphism in Õ〈t〉(R) and I an
open interval in R of length 1. We say that α restricts to I if supp(A) and
supp(B) do not intersect ∂I × [1,+∞) and for every (x, t) ∈ I × [1,+∞)

and every (y, s) /∈ I × [1,+∞) then α
(y,s)
(x,t) = 0 and α

(x,t)
(y,s) = 0.

Let α : A → B be a morphism in Õ〈t〉(R) that restricts to an interval I.
Set then I = (a, a+ 1). We proceed to squeeze α to I in the following way.

For each natural number, let fn : R → R be the function that at each
interval I + k interpolates linearly the endpoints to a + k + 1

2 −
1
2n and

a+ k + 1
2 + 1

2n respectively,

fn(x) = a+ k +
1

2
− 1

2n
+

(x− a− k)

n
if x ∈ [a+ k, a+ k + 1). (4.3)
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Note that since each fn is defined over an interval of length 1, we have that
fn(x+1) = fn(x)+1 and thus, is equivariant for the action of 〈t〉. Although
each fn depends on the choice of the interval I, we drop it from the notation
as it will be clear from the context which interval we are using. Observe
that f1 = id.

Let (τn)n∈N be an unbounded strictly increasing sequence of real numbers
in [1,∞) with τ1 = 1. We define the nth layer of the squeezing of A (with
heights τn), noted by Sn(A), as the geometric module given by

Sn(A)(x,t) =

{
A(f−1

n (x),t+1−τn) if t ≥ τn and x ∈ Imfn

0 if else.
(4.4)

Note that S1(A) = A.
Intuitively, Sn(A) is the geometric module given by raising A to τn and

then squeezing it to the midpoint of the interval I.

R

[1,+∞)

S2(A)

S3(A)

S4(A)

S5(A)

S1(A) = A

a− 1 a a+ 1 a+ 2

Observe that A and Sn(A) are isomorphic through the isomorphism that
sends A(x,t) to Sn(A)(fn(x),t+τn−1) = A(x,t) with the identity. The corre-
sponding morphism to α through the isomorphism just described is noted
as Sn(α) : Sn(A)→ Sn(B).

Define S(A) =
⊕

n∈N Sn(A) given by the sum of all layers. Since the layers
get raised, S(A) has only a finite sum at each height. Note also that since
each layer gets squeezed further and further, there is a well defined morphism
S(α) : S(A)→ S(B) given by Sn(α) at the layer n. The squeezing, and the
fact that α does not have non null coordinates between intervals, guarantee
that this endomorphism satisfies the control condition at ∞.

Definition 4.5. For an open interval I ⊆ R, let Õ〈t〉(R)I be the subcategory

of Õ〈t〉(R) given by the objects whose support does not intersect ∂I×[1,+∞)
and morphisms that restrict to the interval I.
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Also, given a strictly increasing unbounded sequence (τn)n with τ1 = 1,

the construction just described defines functors Sn : Õ〈t〉(R)I → Õ〈t〉(R)I
and S : Õ〈t〉(R)I → Õ〈t〉(R)I .

Note that these constructions can also be made on the category O(I) with
no action of 〈t〉. In this case, we only consider the interval I, so the functions
fn are defined within I. In this way, we also get functors Sn : O(I)→ O(I)
and S : O(I)→ O(I).

Remark 4.6. We can also define a category OD∞(R)I of objects that restrict
to an interval on each copy 0× R× [1,∞) and 1× R× [1,∞). It is easy to
see, using Remark 4.1, that the functors S and Sn also give corresponding
functors over OD∞(R)I , as the same construction applies to each copy of
R× [1,∞).

Proposition 4.7. The categories Õ〈t〉(R)I and O(I) are isomorphic.

Proof. We have a functor F : Õ〈t〉(R)I → O(I) given by restriction to I
which sends each morphism φ : A→ B that restricts to I to

F (φ)
(y,s)
(x,t) = φ

(y,s)
(x,t) : A(x,t) → B(y,s)

for each x, y ∈ I and t, s ∈ [1,+∞). F has an inverse G : O(I) → Õ〈t〉(R)I
given by repeating the same morphism ψ : M → N over each translation of
I; for each x, y ∈ I and k ∈ Z set

G(M)(x+k,t) = M(x,t) G(N)(y+k,s) = N(y,s)

G(ψ)
(y+k,s)
(x+k,t) = ψ

(y,s)
(x,t) : M(x,t) → N(y,s).

It is easily checked that both compositions of F andG give the corresponding
identities. �

Lemma 4.8. Set τn = n. Then, the functor S makes the category O(I)
flasque, i.e. there is a natural isomorphism S ⊕ id → S. In particular,

K∗(O(I)) = K∗(Õ〈t〉(R)I) is trivial.

Proof. We define the natural transformation as follows: for each n ≥ 1,

define φn : Sn(A) → Sn+1(A) given by matrix coordinates (φn)
(y,s)
(x,t) = 0 if

f−1n+1(y) 6= f−1n (x) or s 6= t+ 1 and if f−1n+1(y) = f−1n (x) and s = t+ 1 since

Sn+1(A)(y,s) = A(f−1
n+1(y),(t+1)−(n+1)+1) = A(f−1

n (x),t−n+1) = Sn(A)(x,t),

we set (φn)
(y,s)
(x,t) = id. Note that this is simply the composition of iso-

morphisms Sn(A) → A → Sn+1(A). Also, put φ0 : A → S1(A) = A
equal to the identity of A. Putting together all of these morphisms into
⊕nφn : S(A)⊕A→ S(A), defines the natural isomorphism we need. �
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Similar statements can be made in the case of the category OD∞(R) using
two copies of the interval I.

Given a geometric module A in Õ〈t〉(R) or OD∞(R), there are two split-
tings of S(A). One is given by S(A) = So(A) ⊕ Se(A), where So(A) and
Se(A) are the sum over the odd and even layers respectively. The second
splitting is S(A) = A⊕S+(A) where S+(A) are all the layers in S(A) omit-
ting the first one. We also have a splitting S+(A) = Se(A)⊕ So+(A) where
So+(A) is just So(A) with the first layer removed.

The geometric modules So(A), Se(A) and So+(A) are isomorphic through
the isomorphism which identifies each layer with the next one (the order is
important!). We note these isomorphisms

ψoe : So(A)→ Se(A) and

ψeo+ : Se(A)→ So+(A).

Given a morphism α : A→ B in Õ〈t〉(R) or OD∞(R), we define

So(α) : So(A)→ So(B),

Se(α) : Se(A)→ Se(B) and

So+(α) : So+(A)→ So+(B)

given by Sn(α) at the corresponding layers. Observe that since each of the
morphisms are defined layer-wise, we have that

ψ−1oe Se(α)ψoe = So(α) and

ψ−1
eo+

So+(α)ψeo+ = Se(α).

Remark 4.9. Let η : A→ B be a morphism in Õ〈t〉(R). Then the horizontal
size of η is given by the formula

hsize(η) = sup
{
|x− y| : η(y,s)(x,t) 6= 0

}
.

In the case η is in OD∞(R), the horizontal size is given by

hsize(η) = sup
{
|x− y| : η(δ,y,s)(ε,x,t) 6= 0

}
.

4.2. Vanishing theorem.

Lemma 4.10. Fix the interval I = (0, 1) and a sequence τn as in 4.5 for
the construction of the functors Sn. Consider the following subspaces of
(0, 1)× [1,+∞):

U =
[
1
3 ,

2
3

]
× [1,+∞)

V =
⋃
n≥1

[
1
2 −

1
6n ,

1
2 + 1

6n

]
× [τn, τn+1).

If γ : A → A is an endomorphism in O(I) which is the identity on U then
Sn(γ) is the identity on V for all n.
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Proof. For each n ≥ 1 put:

Sn(U) := ((0, 1)× [1, τn)) ∪
([

1
2 −

1
6n ,

1
2 + 1

6n

]
× [τn,+∞)

)
Then U = S1(U) and V = ∩nSn(U). Recall the definition of fn in (4.3).
Note that fn is linear and increasing on (0, 1), and that

fn : (0, 1)→
(
1
2 −

1
2n ,

1
2 + 1

2n

)
is bijective. Then, for x ∈ Imfn and t ≥ τn, (x, t) ∈ Sn(U) if and only if
(f−1n (x), t − τn + 1) ∈ U . It follows easily from the latter that Sn(γ) is the
identity on Sn(U), and thus on V ⊆ Sn(U). �

Theorem 4.11 (c.f. [14, Theorem 3.6]). Let α : A → A be a 1
30 -auto-

morphism in Õ〈t〉(R). Then there is an automorphism β : B → B in Õ〈t〉(R)

with [α] = [β] in K1(Õ〈t〉(R)) such that β restricts to
(
1
2 ,

3
2

)
. The same is

true with OD∞(R) instead of Õ〈t〉(R).

Proof. We may assume A does not have modules supported at points whose
first coordinates are integers or half-integers; if this were not the case, we
could replace A by an isomorphic module obtained by slightly shifting A.

Let α, α−1 : A→ A be the morphisms in Õ〈t〉(R) defined by

(
α±1

)(y,s)
(x,t)

=

{(
α±1

)(y,s)
(x,t)

if x, y ∈ [k, k + 1] for some k ∈ Z,
0 otherwise.

By construction, α and α−1 restrict to the interval (0, 1) — that is, they are

morphisms in Õ〈t〉(R)(0,1).
We now choose the sequence (τn)n≥1 for constructing the functors Sn.

Fix K > 0 so that
(
α±1

)(y,s)
(x,t)

= 0 if |t− s| > K. By control at +∞, we may

choose a strictly increasing sequence (τn)n≥1 so that the following holds for
all n:

Whenever s, t ≥ τn−5K and |x−y| > 1
30n ,

(
α±1

)(y,s)
(x,t)

= 0 = Sj

(
α±1

)(y,s)
(x,t)

for all 1 < j < n.

Denote endomorphisms of S(A) = So(A) ⊕ Se(A) as 2 × 2 matrices and
define η : So(A)⊕ Se(A)→ So(A)⊕ Se(A) as the product:

η =

(
id ψ−1oe

0 id

)(
id 0
−ψoe id

)(
id ψ−1oe

0 id

)
(

id 0

ψoe ◦ So
(
α−1

)
id

)(
id −ψ−1oe ◦ Se (α)
0 id

)( id 0

ψoe ◦ So
(
α−1

)
id

)
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Define µ : Se(A)⊕ So+(A)→ Se(A)⊕ So+(A) by:

µ =

(
id ψ−1

eo+

0 id

)(
id 0
−ψeo+ id

)(
id ψ−1

eo+

0 id

)
(

id 0

ψeo+ ◦ Se
(
α−1

)
id

)(
id −ψ−1

eo+
◦ So+ (α)

0 id

)( id 0

ψeo+ ◦ Se
(
α−1

)
id

)
Note that η and µ are automorphisms since they are products of elementary
matrices. We also have the following description:

η =

2So

(
α−1

)
− So

(
α−1 ◦ α ◦ α−1

)
−ψ−1oe ◦ Se

(
α−1 ◦ α

)
+ ψ−1oe

−ψoe + ψoe ◦ So
(
α ◦ α−1

)
Se (α)


µ =

2Se

(
α−1

)
− Se

(
α−1 ◦ α ◦ α−1

)
−ψ−1

eo+
◦ So+

(
α−1 ◦ α

)
+ ψ−1

eo+

−ψeo+ + ψeo+ ◦ Se
(
α ◦ α−1

)
So+ (α)


Let β := η ◦ (α ⊕ µ). Since both η and µ are products of elementary

matrices, [α] = [β] in K1(Õ〈t〉(R)). We want to show that β restricts to
(12 ,

3
2). In order to obtain a more explicit description of β, we can consider

the matrix representations of α⊕µ and η with respect to the decomposition

S(A) = S1(A)⊕ S2(A)⊕ S3(A)⊕ · · · (4.12)

and then multiply these matrices. This tedious but straightforward compu-
tation shows that the matrix representation β = (βij)i,j≥1 with respect to
(4.12) can be described as follows. Define:

γj := −3Sj

(
α−1 ◦ α ◦ α−1

)
+ 2Sj

(
α−1

)
+ Sj

(
α−1 ◦ α ◦ α−1 ◦ α ◦ α−1

)
δj := 2Sj

(
α ◦ α−1

)
− Sj

(
α ◦ α−1 ◦ α ◦ α−1

)
κj := id− 2Sj

(
α ◦ α−1

)
+ Sj

(
α ◦ α−1 ◦ α ◦ α−1

)
ρj := −Sj

(
α ◦ α−1 ◦ α

)
+ Sj (α)

Let γ̃j (respectively δ̃j) be defined by the formula of γj (resp. δj) with α

and α−1 exchanged. Then we have

βi1 =

 2α−1 ◦ α− α−1 ◦ α ◦ α−1 ◦ α if i = 1,

−ψ12 ◦ α+ ψ12 ◦ α ◦ α−1 ◦ α if i = 2,
0 otherwise.

(4.13)

For even j, we have that

βij =


ψ−1j−1,j ◦ γj if i = j − 1,

δj if i = j,
−ψj,j+1 ◦ γj if i = j + 1,

ψj+1,j+2 ◦ ψj,j+1 ◦ κj if i = j + 2,
0 otherwise.

(4.14)
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For odd j > 1, we have that

βij =


ψ−1j−2,j−1 ◦ ψ

−1
j−1,j ◦ κ̃j if i = j − 2,

ψ−1j−1,j ◦ ρj if i = j − 1,

δ̃j if i = j,
−ψj,j+1 ◦ ρj if i = j + 1,

0 otherwise.

(4.15)

As we explain below, it follows from the latter description of β that it is the
identity on the subspace V of Lemma 4.10.

Let us show that β|VV = id. We will first prove that the even columns of(
βij |VV

)
i,j≥1 are those of the identity. For this, taking (4.14) into account, it

suffices to show that δj |VV = id and that both γj and κj are zero on V . Even

though α and α−1 aren’t necessarily automorphisms, α ◦ α−1 and α−1 ◦ α
are the identity on the subspace U of Lemma 4.10 since hsize

(
α±1

)
< 1

30 .

By Lemma 4.10, Sj(α ◦ α−1) and Sj(α−1 ◦ α) are the identity on V for all
j. (We are making a slight abuse of notation here. Strictly speaking, we
are not only using Lemma 4.10 but also the isomorphism of Proposition 4.7,

since α ◦α−1 and α−1 ◦α are morphisms in Õ〈t〉(R)I . Thus, by U and V we
really mean Z · U and Z · V , respectively.) We have:

δj |VV = 2 Sj

(
α ◦ α−1

)∣∣∣V
V
−
[
Sj

(
α ◦ α−1

)
◦ Sj

(
α ◦ α−1

)]∣∣∣V
V

= 2 Sj

(
α ◦ α−1

)∣∣∣V
V
− Sj

(
α ◦ α−1

)∣∣∣V
V

= Sj

(
α ◦ α−1

)∣∣∣V
V

= id

To show that γj is zero on V , let W denote either V or V c. We have:

γj |WV = −3
[
Sj

(
α−1

)
◦ Sj

(
α ◦ α−1

)]∣∣∣W
V

+ 2 Sj

(
α−1

)∣∣∣W
V

+
[
Sj

(
α−1 ◦ α ◦ α−1

)
◦ Sj

(
α ◦ α−1

)]∣∣∣W
V

= −3 Sj

(
α−1

)∣∣∣W
V

+ 2 Sj

(
α−1

)∣∣∣W
V

+ Sj

(
α−1 ◦ α ◦ α−1

)∣∣∣W
V

= −3 Sj

(
α−1

)∣∣∣W
V

+ 2 Sj

(
α−1

)∣∣∣W
V

+ Sj

(
α−1

)∣∣∣W
V

= 0
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This shows that γj |VV = 0 and γj |V
c

V = 0. Moreover, we have:

γj |VV c = −3
[
Sj

(
α−1 ◦ α

)
◦ Sj

(
α−1

)]∣∣∣V
V c

+ 2 Sj

(
α−1

)∣∣∣V
V c

+
[
Sj

(
α−1 ◦ α

)
◦ Sj

(
α−1 ◦ α ◦ α−1

)]∣∣∣V
V c

= −3 Sj

(
α−1

)∣∣∣V
V c

+ 2 Sj

(
α−1

)∣∣∣V
V c

+ Sj

(
α−1 ◦ α ◦ α−1

)∣∣∣V
V c

= −3 Sj

(
α−1

)∣∣∣V
V c

+ 2 Sj

(
α−1

)∣∣∣V
V c

+ Sj

(
α−1

)∣∣∣V
V c

= 0

This completes the proof that γj is zero on V . To prove that κj is zero
on V , one proceeds in the same fashion. We still have to show that the
odd columns of

(
βij |VV

)
i,j≥1 equal those of the identity matrix. For the j-th

column with odd j > 1, we proceed in analogy to what we did for the even
columns: we use (4.15) and prove that δ̃j |VV = id and that both κ̃j and ρj
are zero on V . For the first column, note that α−1 ◦ α is the identity on V
since hsize

(
α±1

)
< 1

30 . By (4.13) we have:

β11|VV = 2
(
α−1 ◦ α

)∣∣∣V
V
−
(
α−1 ◦ α ◦ α−1 ◦ α

)∣∣∣V
V

= 2
(
α−1 ◦ α

)∣∣∣V
V
−
(
α−1 ◦ α

)∣∣∣V
V

= 2 id− id = id

β21|VV = (−ψ12 ◦ α)|VV +
(
ψ12 ◦ α ◦ α−1 ◦ α

)∣∣∣V
V

= (−ψ12)|VV ◦ α|
V
V + (ψ12)|VV ◦

(
α ◦ α−1 ◦ α

)∣∣∣V
V

= (−ψ12)|VV ◦ α|
V
V + (ψ12)|VV ◦ α|

V
V = 0

Here, we use that (ψ12 ◦ ε)|VV = ψ12|VV ◦ ε|VV for any morphism ε : A → A,
which follows from the fact that ψ12|VV c = 0. This concludes the proof that
β|VV = id.

Making appropriate changes to the previous paragraph, one can show,
almost without any further computations, that β|V c

V = 0. As before, there
are three cases to be considered: the first column, the even ones, and the
remaining ones. Apart from equations (4.13), (4.14) and (4.15), one needs
the facts that γj , κj , κ̃j and ρj are zero on V—which we already proved. It
is also possible to show that β|VV c = 0 but we will not prove this since it is
not used in the sequel.

We proceed to show that β restricts to
(
1
2 ,

3
2

)
. Put B :=

(
1
2 ,

3
2

)
× [1,+∞).

Let (x, t) ∈ B and let (y, s) 6∈ B. We will now show that β
(y,s)
(x,t) = 0. We

have the following two possibilities:

(1) (x, t) ∈ V .

• If (y, s) 6∈ V , then β
(y,s)
(x,t) = 0 because β|V c

V = 0.
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• If (y, s) ∈ V , then β
(y,s)
(x,t) = 0 unless (x, t) = (y, s), because

β|VV = id. But (x, t) 6= (y, s) since we are assuming (x, t) ∈ B
and (y, s) 6∈ B. Hence β

(y,s)
(x,t) = 0.

(2) (x, t) 6∈ V . Pick n ≥ 1 such that t ∈ [τn, τn+1). Then

S(A)(x,t) =

n⊕
j=1

Sj(A)(x,t).

Thus, β
(y,s)
(x,t) = 0 if and only if (βij)

(y,s)
(x,t) = 0 for all 1 ≤ j ≤ n and

all i ≥ 1. Fix 1 ≤ j ≤ n and i ≥ 1. We proceed to show that

(βij)
(y,s)
(x,t) = 0. By (4.13), (4.14) and (4.15), we know that βij is the

composite of an endomorphism ε : Sj(A) → Sj(A) followed by the

usual isomorphism ι : Sj(A)
∼=→ Si(A). We have that

(βij)
(y,s)
(x,t) = ι

(y,s)
(z,u) ◦ ε

(z,u)
(x,t) ,

where (z, u) is the unique point such that ι
(y,s)
(z,u) 6= 0. It is clear that

(z, u) 6∈ B since (y, s) 6∈ B. We will show that ε
(z,u)
(x,t) = 0. It follows

from (4.13), (4.14) and (4.15) that ε is a sum of terms, each of which
may be the identity or the composite of at most five factors of the

form Sj

(
α±1

)
—in the case j = 1 we also have the factor α; see

(4.13). Let σ be one of the terms appearing in ε. If σ = id, then

σ
(z,u)
(x,t) = 0 since (x, t) 6= (z, u). Suppose σ is a composite of factors

of the form Sj

(
α±1

)
, say

σ = ϕr ◦ · · · ◦ ϕ1

with 1 ≤ r ≤ 5. If we write (x0, t0) := (x, t) and (xr, tr) := (z, u),
we have:

σ
(z,u)
(x,t) =

∑
(ϕr)

(xr,tr)
(xr−1,tr−1)

◦ · · · ◦ (ϕ1)
(x1,t1)
(x0,t0)

(4.16)

All the points (xk, tk) that appear in this sum have tk ≥ τn − 5K;
indeed, this follows from the facts that t0 = t ≥ τn and vsize(ϕk) ≤
K for all k. Since (x, t) ∈ V c ∩ B and t ∈ [τn, τn+1), we have
that x ∈

(
1
2 + 1

6n ,
3
2 −

1
6n

)
. Since (z, u) 6∈ B, the latter implies that

|x − z| > 1
6n . Thus, for each term in the sum (4.16) there exists k

such that |xk − xk−1| > 1
30n . Then each term in (4.16) is zero —

this follows, for j < n, from the condition which was required for the
construction of the sequence τn and, for j = n, from the fact that

hsize
[
Sn

(
α±1

)]
≤ 1

30n . This finishes the proof that (βij)
(y,s)
(x,t) = 0.
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Now suppose (x, t) /∈ B and (y, s) ∈ B. We can find m ∈ Z such that
m · (x, t) ∈ B—and hence m · (y, s) /∈ B. We then have:

β
(y,s)
(x,t) = β

m·(y,s)
m·(x,t) = 0

This completes the proof that β restricts to
(
1
2 ,

3
2

)
.

In the case of the category OD∞(R), the proof works exactly the same.
The control condition noted in Remark 4.1 is crucial for imitating the same
proof. �

As an immediate corollary we get the following theorem.

Theorem 4.17. Let α : A → A be an 1
30 -automorphism in Õ〈t〉(R) or in

OD∞(R). Then α has trivial class in K1.

Proof. Use the previous theorem together with Lemma 4.8. �

5. Small matrices in K1(R[t, t−1])

Let ε > 0. In this section we show that the class of t in K1(R[t, t−1]) can
be represented by an ε-automorphism. When R is a regular ring, it follows
from this and the proof of [7, Theorem 2] that any element in K1(R[t, t−1])
has a representative which is an ε-automorphism; see (1.6).

Recall that an element in K1(R[t, t−1]) is the class of an invertible matrix
with coefficients in R[t, t−1]. We begin by revisiting the notion of size in the
context of matrices.

Let R be a ring (not neccessarily regular) and A a matrix in Mn(R[t, t−1]),
then A can be written as

A =
i=m∑
i=−m

Ait
i for Ai ∈Mn(R).

In order to identify A with a morphism in T̃ 〈t〉(R), we need to fix a geometric
R-module M = (Mx)x∈R. Put

Mx =

{
R if x ∈ supp(M),

0 otherwise

with supp(M) =
{
k +

r

n
: k, r ∈ Z

}
= 〈t〉 ·

{
0,

1

n
, . . . ,

n− 1

n

}
.

Note that, by 〈t〉-invariance, an endomorphism α : M → M in T̃ 〈t〉(R)
is determined by its components αyx, for x ∈ {0, 1n , . . . ,

n−1
n }. Let X =

(x0, x1, . . . , xn−1) ∈ Rn and define

Vn : Mn(R[t, t−1])→ T̃ 〈t〉(R) by Vn(A) = αA : M →M

where αA(X) =
i=m∑
i=−m

AiX
t, with AiX

t ∈
j=n−1⊕
j=0

Mi+ j
n

= Rn.
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Definition 5.1. For each matrix A ∈ Mn(R[t, t−1]), we define size(A) =
size(Vn(A)).

Consider for each k > 0 the following matrices in Mn(R):

Dk
n =


k k − 1

n . . . k − n−2
n k − n−1

n
k + 1

n k . . . k − n−3
n k − n−2

n
...

...
. . .

...
...

k + n−2
n k + n−3

n . . . k k − 1
n

k + n−1
n k + n−2

n . . . k + 1
n k



D0
n =


0 1

n . . . n−2
n

n−1
n

1
n 0 . . . n−3

n
n−2
n

...
...

. . .
...

...
n−2
n

n−3
n . . . 0 1

n
n−1
n

n−2
n . . . 1

n 0

 and D−kn = (Dk
n)t

Then, we have that

size(Ak) = max{dkij : aij 6= 0} and size(A) = max
−m≤k≤m

{size(Ak)}.

Remark 5.2. The size of a matrix depends on the dimension n, so it is
not invariant with respect to stabilization in GLn(R[t, t−1]). Considering
B ∈ GLn(R) we have

size

(
B 0
0 Im

)
=

n

n+m
size(B)

Proposition 5.3. Let x ∈ K1(R[t, t−1]) be the class of t ∈ GL1(R[t, t−1])
and ε > 0. If U is the functor of Lemma 2.7, then there exists an ε-
automorphism α ∈ T̃ 〈t〉(R) such that [U(α)] = x.

Proof. Take n ∈ N such that 1
n < ε. Let Cn ⊂ R be the Z-compact set

Cn = 〈t〉 ·
{
i

n
: i ∈ {0, . . . , n− 1}

}
=

{
m+

i

n
: m ∈ Z, i ∈ {0, . . . , n− 1}

}
Define for i ∈ {0, . . . n− 1} the following geometric module:

Qi[n] = {Qi[n]y}y∈R with Qi[n]y =

{
R if y = m+ i

n with m ∈ Z
0 otherwise.

If we note Q0[n] = P , we have that

P = {Py}y∈R, Py =

{
R if y ∈ Z
0 otherwise

and that Qi[n] is a translation of P by i
n . As such, there is an isomorphism

δi : P → Qi[n].
Define γ : P → P as the automorphism such that γyw : Pw → Py is idR

when y = w+1 and the null map otherwise. Note that size(γ) = 1. Consider
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now γij : Qi[n] → Qj [n], given by γij = δj ◦ γ ◦ δ−1i . Abusing notation we
write γij as γ.

Define Q[n] =

n−1⊕
i=0

Qi[n] and ξ = {ξij}i,j∈{0,...,n−1} : Q[n]→ Q[n] given by

ξij : Qj [n]→ Qi[n] =


id if j = i− 1, j ≥ 1
γ if j = n− 1, i = 0
(−1)nid if j = 0, i = 1
0 otherwise.

Note that supp(Q[n]) = Cn, size(ξ) = 1
n and ξ is represented by the matrix

0 0 0 . . . 0 γ
(−1)n+1id 0 0 . . . 0 0
0 id 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . id 0


.

Is easy to see that ξ is an automorphism with ξ−1 represented by the matrix

0 (−1)n+1id 0 . . . 0 0
0 0 id . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 id
γ−1 0 0 . . . 0 0


and that size(ξ−1) = 1

n . Letting ν : Q[n] → Q[n] be the automorphism
represented by the matrix

γ 0 . . . 0 0
0 id . . . 0 0
...

...
. . .

...
...

0 0 . . . id 0
0 0 . . . 0 id

 ,

we have that
[U(ν)] = [U(ξ)] = x.

�

Proposition 5.4. Let R be a regular ring. For all x ∈ K1(R[t, t−1]) and

ε > 0 there exists ε-automorphism α ∈ T̃ 〈t〉(R) such that [U(α)] = x.

Proof. Every x ∈ K1(R[t, t−1]) is represented by tnMN with n ∈ Z, M ∈
GLm(R) and [N ] = [id] (because R is regular), see [7]. Then

x = [tn] + [M ].
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By Proposition 5.3, we can consider [tn] = [U(αn)] such that

size(αn) = size(α−1n ) <
ε

2

and by Remark 5.2, there exists αM such that [U(αM )] = [M ] and

size(αM ) = size(α−1M ) <
ε

2
.

Then taking α = αn ◦ αM we have

[U(α)] = x size(α) < ε size(α)−1 < ε.

�

Corollary 5.5. For R a regular ring, the assembly map

K2(D̃〈t〉(R))→ K1(T̃ 〈t〉(R))

is an epimorphism.

Proof. By Proposition 5.4 and Theorem 4.17, the image of every element

of K1(T̃ 〈t〉(R)) in K1(Õ〈t〉(R)) is trivial, hence by (2.21) the assembly map
is surjective. �
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