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1 Introduction

Theories with massless fields in asymptotically flat spacetimes exhibit a rich structure
at null infinity [1–3] that is reflected in their asymptotic symmetry groups. Well known
examples are large gauge symmetries in Yang-Mills (YM) theory [6], Bondi-Metzner-Sachs
(BMS) diffeomorphisms in gravity [4, 5], and their higher spin versions [7, 8].

The precise nature of asymptotic symmetries depends on the behavior of fields near
null infinity. Whereas (the Cartesian components of) radiative massless fields typically
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decay as 1/r, it is useful in some circumstances to allow for “kinematical” components with
slower fall-offs. If achieved consistently, this can lead to an enlargement of the asymptotic
symmetry group.1 Interestingly, the resulting enlarged symmetries can imply non-trivial
conservation laws on the original radiative fields. An example of this situation is provided
by certain relaxation on the gravitational field fall-offs that allows for changes in the
leading order “kinematical” background metric, yielding an extension of BMS that includes
“superrotations” [14–16]. The resulting conservation law [17] leads to a universal formula
for the (tree-level) sub-leading coefficient in the field’s frequency expansion [18].

Inspired by the above gravitational example, it was proposed in [19] that large O(r)
gauge symmetries can explain similar tree-level gauge theory sub-leading formula [20, 21].
Whereas the proposal was initially established in the context of massless scalar electrodynam-
ics, its validity was later extended to more general charged matter [22], higher dimensions,
and non-abelian gauge fields [23].2 In these investigations, however, there was no explicit
description of the underlying phase space where the symmetries act. In particular, it was
not possible to calculate the algebra of charges. The goal of the present paper is to improve
on this situation. For definiteness we will work in the context of pure YM theory in four
spacetime dimensions, although we expect the main ideas should apply to other settings.

As in the gravitational example, we would like to proceed by first identifying the
appropriate “kinematical” fields that allow for O(r) gauge symmetries. There is however a
major difference between the gravitational and gauge theory cases: whereas superrotations
form a closed algebra, O(r) gauge symmetries do not, since their commutator is generically
O(r2). In fact, once O(r) gauge transformations are allowed, one is forced to include O(rn)
ones for all positive integers n. In order to avoid this proliferation, we will work in an
approximation where the O(r) gauge symmetries are linearized, thus effectively setting to
zero the higher order terms. This restricted setting still allows for interesting structure,
in particular regarding the algebra between O(r0) and O(r) gauge symmetries. We hope
our approximation describes a truncation of an underlying (tree-level) non-linear structure.
The hope is based on (i) the results of [30, 31] that imply, in the abelian case, a one-
to-one correspondence between O(rn) large gauge charges and tree-level subn−1-leading
formulas [32, 33], and (ii) the recently discovered [34, 35] infinite dimensional chiral algebra
obeyed by tree-level (conformally) soft gluons of a given helicity. We leave for future work
the exploration of these would-be higher order non-abelian O(rn) symmetries.

The organization of the paper is as follows. In the remainder of this section we introduce
conventions and notation. In section 2 we discuss the expansion of the gauge field near
null infinity under standard radiative fall-offs. In section 3 we review the asymptotic
charges associated to the leading and subleading tree-level soft gluon theorems. The core
of the paper is section 4. Here we present the enlarged asymptotic space on which O(r)

1Relaxing the standard 1/r fall-offs is far from straightforward. It typically leads to inconsistencies, such
as divergences in the field’s energy flux. The interplay between consistent boundary conditions and allowed
symmetries goes beyond the 4d null infinity case, see e.g. [9–13] and references therein.

2In d = 4 these results are only valid at tree-level, which is the context of the present paper. See [24] for
the sub-leading formula beyond tree level in the abelian case and [25–27] for possible explanations in terms
of asymptotic charges. See [28, 29] for discussion of loop effects in the non-abelian case.
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large gauge transformations act. We then construct charges associated to O(r0) and O(r)
gauge symmetries on this extended space such that their Poisson brackets reproduce the
symmetry algebra. Our approach is similar in spirit to our previous work [36] in that we
first obtain the charges by requiring certain consistency conditions, and only later define the
symplectic structure in a way that is compatible with them. We summarize and highlight
open problems in section 5. In order to facilitate the reading, some of the discussions and
computations are presented in appendices.

1.1 Conventions and notation

We consider pure classical Yang-Mills theory with a matrix group G in 4d flat spacetime.
We denote by g the Lie algebra, [, ] its Lie bracket, Aµ the g-valued gauge connection and

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ], (1.1)

the field strength. The field equations are

DµFµν = ∇µFµν + [Aµ,Fµν ] = 0, (1.2)

with ∇µ and Dµ denoting the metric and gauge covariant derivatives respectively. Local
gauge transformations are parametrized by g-valued functions Λ as

δΛAµ = DµΛ = ∂µΛ + [Aµ,Λ]. (1.3)

The “bulk” symplectic form is

Ωbulk = −
∫

Σ
dSµTr(δFµν ∧ δAν), (1.4)

where Tr is the matrix trace and the integral is taken over any Cauchy slice Σ. The
symplectic form can be used to obtain canonical charges associated with symmetries. In
particular, for the gauge symmetry (1.3) one has

Qbulk
Λ = −

∫
Σ
dSµ∂νTr(ΛFµν), (1.5)

where the charge satisfies δQbulk
Λ = Ωbulk(δ, δΛ).

To describe the gauge field near future null infinity, we employ outgoing coordinates
(r, u, xa), where r is the radial coordinate, u = t− r the retarded time, and xa coordinates
on the celestial sphere. The flat spacetime metric takes the form,

ds2 = −du2 − 2dudr + r2qabdx
adxb, (1.6)

where qab is the round sphere metric. Points at null infinity I will be labeled as (u, x), with
x = xa denoting a point on the celestial sphere. The “bulk” gauge field Aµ induces a gauge
field Aa at null infinity,

Aa(u, x) = lim
r→∞

Aa(r, u, x), (1.7)
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that is unconstrained by the field equations and thus plays the role of free data. We will
work under the assumption of “tree-level” u→ ±∞ fall-offs, in which the u-derivative of
the asymptotic gauge field decays faster than any power of 1/|u|. Schematically,

∂uAa(u, x) = O(1/|u|∞), (1.8)

consistent with a O(ω0) subleading behavior in the ω → 0 frequency expansion.3 This still
allows for non-trivial asymptotic values of Aa at u = ±∞,

A±a (x) := lim
u→±∞

Aa(u, x). (1.9)

The gauge field near null infinity can be determined in terms of Aa(u, x) by solving
the field equations (see e.g. [6, 37] and section 2). We denote by Γrad the resulting space of
gauge fields and write schematically

Γrad ≈ {Aa(u, x)}. (1.10)

Under standard fall-offs, the bulk symplectic form (1.4) can be evaluated on the surface
Σ→ I, leading to the symplectic form

Ωrad =
∫
I
Tr(δ∂uAa ∧ δAa)dud2x, (1.11)

where Aa ≡ qabAb and the determinant √q is implicit in the d2x measure. We refer to the
pair (Γrad,Ωrad) as the radiative phase space. It is the YM version of the Maxwell and
gravity radiative phase spaces introduced in [38].

We denote by Da the gauge-covariant derivative at null infinity,

Da := ∂a + [Aa, ], (1.12)

and use ∂a to denote the sphere-covariant derivative compatible with qab, i.e. ∂cqab = 0.

2 YM field near null infinity

In order to specify the r →∞ expansion of the gauge field we first need to specify a gauge
condition. We will work in harmonic gauge ∇µAµ = 0, although we expect our results to be
valid for more general gauge choices. Starting from the standard O(r−1) free field fall-offs,
one is lead to the following asymptotic expansion:

Ar = 1
r2

(
ln r

0,ln
A r +

0
Ar

)
+ 1
r3

(
ln r

1,ln
A r +

1
Ar

)
+ o(r−3),

Au = ln r
r

0,ln
A u + 1

r2

(
ln2 r

1,ln2

A u + ln r
1,ln
A u +

1
Au

)
+ o(r−2),

Aa = Aa + 1
r

(
ln r

1,ln
A a +

1
Aa

)
+ o(r−1),

(2.1)

3Condition (1.8) is in fact stronger than what we strictly need in this paper. In order to get a O(ω0)
subleading behavior it suffices to require ∂uAa(u, x) = O(1/|u|2+ε). We however keep (1.8) as it represents
the fall-offs compatible with an all-order power expansion in ω, as available for tree-level amplitudes.
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where all coefficients are functions of u and xa, and o(1/rn) denotes quantities decaying
faster than 1/rn as r →∞. We show in appendix A that (2.1) is consistent with the field
equations and the harmonic gauge condition,

DµFµν = 0, ∇µAµ = 0. (2.2)

The r → ∞ expansion of (2.2) leads to a hierarchy of equations that can be recursively
solved to determine the coefficients in (2.1) in terms of the free data Aa (modulo integration
constants that can be specified by boundary conditions in u), see appendix A for details.

The field strength is found to have the following leading r →∞ behavior,4

Fru = r−2Fru + o(r−2), Fra = r−2Fra + o(r−2),
Fua = Fua + o(1), Fab = Fab + o(1).

(2.3)

From (1.1) and (2.1) one has

Fua = ∂uAa, Fab = ∂aAb − ∂bAa + [Aa, Ab]. (2.4)

Fua plays the role of asymptotic transverse chromo-electric field and Fab is the curvature of
Aa when viewed as a 2d gauge connection on the celestial sphere. The remaining leading
components in (2.3) are determined by the asymptotic field equations (see appendix A)

∂uFru +DaFua = 0, (2.5)
−2∂uFra +DaFru +DbFba = 0, (2.6)

where we recall that Da = ∂a + [Aa, ] and sphere indices are raised with qab. We shall later
integrate these equation using the boundary conditions

lim
u→+∞

Fru(u, x) = 0, lim
u→+∞

Fra(u, x) = 0. (2.7)

In analogy to the abelian case [30, 39, 40], we interpret (2.7) as due to the absence of
massive colored fields. Similar u → +∞ boundary conditions may also hold for other
coefficients of the field strength, but (2.7) will suffice for our purposes.

2.1 Residual large gauge symmetries

In order for gauge symmetries (1.3) to be compatible with the harmonic gauge

∇µAµ = 0, (2.8)

they must satisfy
∇µδΛAµ = ∇µDµΛ = �Λ + [Aµ,∇µΛ] = 0. (2.9)

This introduces a field-dependence on residual gauge parameters that will be relevant in
our later discussion. For the moment, we notice that the commutator of field-dependent
gauge transformations can be written as (see e.g. [37]),

[δΛ, δΛ′ ]Aµ = δ[Λ,Λ′]∗Aµ, (2.10)
4The gauge field (2.1) appears to introduce logarithmic terms that are overleading to those displayed

in (2.3). These however vanish due to the field equations.
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where the modified bracket is defined as

[Λ,Λ′]∗ := [Λ,Λ′] + δΛΛ′ − δΛ′Λ, (2.11)

where δΛΛ′ is the change in Λ′ under a gauge transformation δΛ due to its non-trivial
dependence on the gauge field. Schematically: δΛΛ′ =

∫ δΛ′
δAµ δΛAµ. One can verify that

[Λ,Λ′]∗ satisfies (2.9) provided Λ and Λ′ do so.
We will be interested in large gauge parameters with leading behavior O(r0) and O(r1).

We denote these two types of parameters by

Λ0
λ(r, u, x) r→∞= λ(x) + · · · (2.12)

Λ1
ε(r, u, x) r→∞= rε(x) + · · · . (2.13)

The coefficients λ(x) and ε(x) are the “free data” for the gauge parameters and the dots
represent subleading terms that can be determined by solving (2.9), see appendix B. Notice
that only the O(r0) gauge parameters are compatible with the radiative fall-offs (2.1). For
those one can show that5

[Λ0
λ,Λ0

λ′ ]∗ = Λ0
[λ,λ′]. (2.14)

In section 4 we will present a relaxation of the radiative fall-offs that admit O(r) gauge
symmetries to first order in the parameter ε(x). This will allow us to compute the
bracket (2.11) between Λ0

λ and Λ1
ε.

3 Review of known asymptotic charges

In this section we review the asymptotic charges of YM theory that have been studied in
connection with the leading and subleading tree-level soft factorization formulas.

Since the seminal work of Strominger [6] it has been understood that the leading
soft gluon factorization can be understood as a conservation law associated to large O(r0)
gauge symmetries (see also [41–45]). On the other hand, the symmetry interpretation
of the subleading factorization is more subtle: the asymptotic charges are known thanks
to the work of Lysov, Pasterski and Strominger (LPS) [21],6 but it is unclear what the
underlying symmetry algebra is. Although progress in this direction has been made from
the perspective of celestial 2d currents [34, 46–49], a “canonical” null-infinity picture has
been missing.

3.1 O(r0) large gauge charges

O(r0) gauge transformations δΛ0
λ
Aµ induce an action on the free data Aa that we denote

by δ0
λ and is given by

δ0
λAa = Daλ = ∂aλ+ [Aa, λ]. (3.1)

5It is easy to verify that in this case the leading term of the bracket (2.11) is given by the ordinary
bracket. Since the leading term determines all subleading terms via the gauge parameter equation (2.9), one
concludes both sides of (2.14) are equal.

6The work [21] is in the abelian context but it admits a direct generalization to the non-abelian case; see
e.g. [23, 50] and section 3.2.
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One can verify this action is symplectic w.r.t. Ωrad (1.11) and satisfies

Ωrad(δ, δ0
λ) = δQ0,rad

λ (3.2)

with
Q0,rad
λ =

∫
I
Tr
(
∂uA

aDaλ
)
dud2x. (3.3)

An alternative way to obtain this charge is to evaluate the bulk expression (1.5) for Λ = Λ0
λ

and Σ → I. Since (1.5) is a total derivative, this results in a pure boundary term (see
e.g. [3])

Q0,rad
λ =

∫
I−

Tr
(
λ(x)Fru(u = −∞, x)

)
d2x, (3.4)

where I− ≈ S2 is the u = −∞ boundary of I. The equality between (3.4) and (3.3) follows
from the field equation (2.5) and the boundary condition (2.7).

3.2 LPS charges

The sub-leading soft gluon factorization formula takes the same form as its abelian counter-
part, with color factors replacing abelian charges [20]. Since we are dealing with pure YM
theory, the external colored states are just gluons. The corresponding creation/annihilation
operators are proportional to the negative/positive energy components of the Fourier
transformed asymptotic gauge field,

Âa(ω, x) =
∫ ∞
−∞

dueiωuAa(u, x). (3.5)

The non-abelian version of the LPS charges are parametrized by Lie-algebra valued sphere
vector fields Y a according to

QY = Qsoft
Y +Qhard

Y (3.6)

where
Qsoft
Y = 2 lim

ω→0
∂ω

(
ω

∫
d2xTr

(
Y z∂2

z Âz̄(ω, x) + Y z̄∂2
z̄ Âz(ω, x)

))
(3.7)

(z and z̄ are stereographic coordinates on the celestial sphere) and Qhard
Y is defined by7

[Qhard
Y , Âa(ω, x)]op = δY Âa(ω, x), (3.8)

δY Âa := [∂aY a∂ω − ω−1LY , Âa] = [∂aY a, ∂ωÂa]− ω−1([Y b, ∂bÂa] + [∂aY b, Âb]
)
. (3.9)

Following [21], one can use these definitions to obtain expressions of the charges in
terms of the radiative data Aa(u, x). One finds

Qsoft
Y = −2

∫
dud2xuTrY z∂2

z∂uAz̄ + c.c, (3.10)

Qhard
Y =

∫
dud2xuTr

(
∂aY

aJu − Y a∂uJa
)
, (3.11)

7We use [, ]op to denote operator commutators in order to distinguish them from the Lie algebra brackets
[, ]. We have absorbed a factor of i in the definition of δY ; the action of the hard charge is given by i

times (3.9).
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where
Ju := [Aa, ∂uAa], Jz := 2qzz̄[Az, ∂zAz̄]. (3.12)

The first and second term in (3.11) correspond to the first and second term in (3.9).8 As
in [21], the factors Ju and Jz are related to the O(r−2) components of the spacetime current,
which in our case is just the pure YM “current” Jν = −∇µ[Aµ,Aν ]− [Aµ,Fµν ].

4 Extended phase space and O(r) charge algebra

In this section we present an extension of the radiative phase space that supports linearized
O(r) large gauge symmetries.

Whereas the standard radiative space Γrad is parametrized by gauge fields Aa(u, x) at
null infinity, the extended space Γext will include an extra scalar field φ(x) that can be
interpreted as the Goldstone mode associated to O(r) large gauge symmetries (similar to
other known instances of asymptotic symmetries [3]).

In section 4.1 we present the extended space and the corresponding action of O(r0) and
O(r) large gauge symmetries, denoted respectively by δ0

λ and δ1
ε . Next, we aim to identify

the corresponding charges Q0
λ and Q1

ε. Typically this requires knowledge of either Poisson
brackets or a symplectic form on Γext. Rather than attempting a first-principles derivation
of such structure (which would require a subtle renormalization procedure as in [51, 52]),
we seek to obtain the charges from a set of consistency conditions we expect them to satisfy.
The conditions are presented in section 4.2, and the corresponding charges are derived in
sections 4.3 and 4.4. Finally, by demanding the charges to arise from a symplectic structure,
we obtain in section 4.5 a candidate symplectic form on Γext. This allows us to realize the
O(r) symmetry algebra obtained in section 4.1 as a Poisson bracket charge algebra.

The above “reverse-logic” approach of “charges before symplectic structure” is inspired
by our previous analysis in the gravitational case [36], where such strategy was used to
show the existence of a symplectic structure supporting superrotations. In appendix E we
discuss in detail the similarities and differences between the YM and gravitational cases.

4.1 Extended space and O(r) variation algebra

We would like to minimally relax the radiative fall-offs described in section 2 so as to allow
for O(r) gauge transformations. A natural way to proceed is to apply all possible O(r) gauge
transformations to these radiative fields. Indeed, a similar strategy in the gravitational
case leads to an enlargement of the field space that allows for superrotations [36, 51, 53–55].
As discussed in the introduction, however, in the YM case this procedure cannot be done
consistently without allowing for higher order O(rn) gauge transformations. As a first step,
in this paper we perform a linearized enlargement along the O(r) gauge direction. We thus
consider the extended space:

Γext :=
{
Ãµ = Aµ +DµΛ1

φ, Aµ ∈ Γrad, φ ∈ C∞(S2)
}
. (4.1)

8The Ja term in (3.11) differs by a total u-derivative from the expression in [21]. Our prescription ensures
convergence of the u integral under the assumed fall-offs (1.8).
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Since Γrad is parametrized by fields Aa(u, x), the extended space is parametrized by pairs9

Γext ≈ {(Aa(u, x), φ(x))}. (4.2)

By construction, the space (4.1) supports the action of O(r) gauge transformations (2.13).
In the parametrization (4.2), the action is simply given by

δ1
εAa = 0, δ1

εφ = ε. (4.3)

We emphasize that we are working to first order in φ and ε. All our expressions should be
understood to hold modulo O(φ2), O(ε2) and O(φε) terms.

We next need to specify how O(r0) gauge transformations act on Γext. In the
parametrization (4.2) we define

δ0
λAa = Daλ, δ0

λφ = [φ, λ], (4.4)

leading to an algebra of variations

[δ0
λ, δ

0
λ′ ] = δ0

[λ,λ′], [δ1
ε , δ

0
λ] = δ1

[ε,λ], [δ1
ε , δ

1
ε′ ] = 0. (4.5)

We take (4.5) as the defining relations for the (linearized) O(r) large gauge symmetry
algebra. In appendix B we show how this algebra follows from the bracket (2.11) between
O(r0) and O(r) gauge parameters, and discuss the bulk counterpart of (4.4).

4.2 Conditions on O(r) asymptotic charges

Our next task is to identify charges Q0
λ and Q1

ε on Γext associated with the symmetries
δ0
λ and δ1

ε . Since we do not yet know the symplectic structure on Γext, we will find the
charges by imposing certain conditions we expect them to satisfy. We shall later determine
a symplectic structure on Γext that is compatible with these conditions.

Our requirements for the charges are:

1. Q0
λ|Γrad = Q0,rad

λ

2. Q1
ε is compatible with the tree-level subleading soft gluon factorization

3. δ0
λQ

1
ε + δ1

εQ
0
λ = 0

4. δ0
λQ

1
ε = −Q1

[ε,λ]

The first condition requires that when Q0
λ is restricted to Γrad ⊂ Γext, one recovers the

standard expression (3.3) for the radiative phase space O(r0) charge (which is known to
encode the leading soft gluon factorization). As we shall discuss, the second condition fixes
the dependence of Q1

ε on Aa(u, x) up to (hard) quadratic order. The third is a necessary
9In the analogy with the gravitational case, φ would correspond to a sphere diffeomorphism labeling

the different superrotation sectors, see e.g. [55]. Unlike the gravitational case, we linearize the finite gauge
transformation Aµ → eΛ1

φAµe−Λ1
φ + eΛ1

φ∂µe
−Λ1

φ ≈ Aµ +DµΛ1
φ +O(φ2). See appendix E for further details

on the gravitational analogue of (4.1).
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condition for the existence of a Poisson bracket realization of the symmetries. The last
condition, probably the least well-motivated one, requires the charges to reproduce the
variation algebra (4.5) without extension terms.

Our strategy to obtain the charges is as follows. It turns out that conditions 1 and 3
uniquely fix Q0

λ in terms of Q0,rad
λ and Q1

ε, once the latter is known. The most difficult part
is then to find Q1

ε satisfying conditions 2 and 4. We will thus start by tackling this problem
in section 4.3. Once Q1

ε is known, we will present the construction of Q0
λ in section 4.4.

4.3 Q1
ε

We would like to obtain a charge Q1
ε satisfying conditions 2 and 4 above. Condition 2 can

be restated as the condition that the Ward identity generated by Q1
ε is compatible with

the one generated by the LPS charge QY . In the abelian case, it was shown in [19] that
QY can be understood in terms of an O(r) large gauge charge and its magnetic dual, by
splitting the vector field Y a into “electric” and “magnetic” components

Ya = 1
2(∂aε+ ε ba ∂bµ), (4.6)

where ε(x) and µ(x) are interpreted as the O(r) coefficients of large gauge (and dual gauge)
parameters. A first guess could then be to set Q1

ε = QYa=∂aε/2. This however does not
satisfy the gauge covariance property required by condition 4. We shall correct this initial
guess so that the resulting charge satisfies 4 without affecting its compatibility with the
tree-level soft gluon theorem. We will proceed in two stages: first “covariantize” QY and
then consider a gauge covariant version of the splitting (4.6).

It is easy to verify that the expression of QY given in eqs. (3.10), (3.11) is not gauge
covariant at null infinity, i.e.

δ0
λQY 6= −Q[Y,λ]. (4.7)

Notice however that since QY was read off from a tree-level soft theorem, it only captures
terms at most quadratic in Aa(u, x) (see appendix C). That is, QY should be understood
as giving the O(A) and O(A2) parts of an asymptotic charge that may contain higher order
terms. In addition, there can also be O(A2) “soft” contributions that do not affect the single
soft theorem (but which could leave an imprint in the double-soft behavior). Given this
freedom, we now explore the possibility of completing QY into a gauge-covariant charge.

A natural way to proceed is to look for an expression of the charge in terms of the field
strength, as in the rewriting of Q0

λ given in eq. (3.4). Similar rewritings are known for the
abelian subleading charge [19, 21, 30]. A particularly simple expression is one constructed
from Fra as we now describe. The starting point is the asymptotic field equation that
relates the O(r−2) components of Fra and Fru (2.6),

− 2∂uFra +DaFru +DbFba = 0, (4.8)

where we recall that
Fab = ∂aAb − ∂bAa + [Aa, Ab], (4.9)
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and Fru is determined by eq. (2.5) with boundary condition (2.7). Explicitly,

Fru = ∂aA+
a − ∂aAa +

∫ ∞
u

Ju′du
′, (4.10)

where A+
a (x) = Aa(u = +∞, x) and Ju is given in (3.12).

From (4.8) one finds that Fra = O(u) as u→ −∞. The coefficient of the O(u) factor
is determined by the O(1) coefficient of the asymptotic value of the last two terms in (4.8).
One can then write an expression for the finite part of the u→ −∞ asymptotic value of
Fra, out of which the charge candidate is defined:

Qcov
Y := lim

u→−∞

∫
d2xTrY a(2Fra − u(DaFru +DbFba)

)
, (4.11)

=
∫
dud2xuTrY a∂u(DaFru +DbFba), (4.12)

where to get the second equality we relied on the u → ∞ boundary conditions (2.7) to
express the charge as a total u-derivative, and used the field equation (4.8) to simplify the
resulting expression.10 By construction, the charge expression (4.12) is gauge covariant,
i.e. it satisfies δ0

λQ
cov
Y = −Qcov

[Y,λ]. We now discuss its relation with the LPS charge QY . In
appendix D we show that

Qcov
Y = QY + 1

2

∫
dud2xuTr(∂aYb − ∂bYa)∂u[Aa, Ab] + · · · (4.13)

where the dots indicate terms that do not affect the tree-level, single-soft gluon behavior.
The second term in (4.13) is however incompatible with the subleading soft gluon theorem
(see appendix D for details) and thus presents an obstruction for the covariantization of
QY . Fortunately, such term is absent for purely “electric” vector fields Ya = ∂aε, which, as
described earlier, are the ones relevant for O(r) large gauge charges.11

We finally address the non-covariance in the decomposition (4.6). A first guess is to
write Ya = Daε = ∂aε+[Aa, ε]. This however introduces unwanted quadratic terms in (4.13)
that would spoil the compatibility of the charge with the soft theorem. To avoid this
problem, we consider a gauge covariant derivative associated to the u→ −∞ asymptotic
value of Aa,

Ya = D−a ε := ∂aε+ [A−a , ε]. (4.14)

With this definition, the quadratic terms introduced in (4.13) are “soft” and hence do not
affect the single soft theorem (see appendix C). We thus define the O(r) large gauge charge as

Q1
ε := Qcov

Ya=D−a ε/2
(4.15)

=
∫
d2xTr(επ) (4.16)

10Consistency of (2.7) with (4.8) requires that limu→∞ Fab = 0.
11Eq. (4.13) appears to be in conflict with the interpretation of QY as a sum of electric and magnetic

O(r) large gauge charges [19]. This may be related with known obstructions for a non-abelian extension of
electric-magnetic abelian duality [56]. See [57] for a recent discussion of non-abelian magnetic charges at
null infinity.
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where
π(x) := −1

2

∫ ∞
−∞

duu∂uD
−
a (DaFru +DbF

ba) (4.17)

is a function of Aa(u, x), due to eqs. (4.9), (4.10), (4.14). Notice that the charge is indepen-
dent of the φ direction in Γext (4.2). This is because we are working to order O(ε) = O(φ)
and Q1

ε is already first order in ε.
By construction π is gauge covariant, in the sense that

δ0
λπ = [π, λ]. (4.18)

This immediately implies that Q1
ε satisfies the desired covariance property

δ0
λQ

1
ε = −Q1

[ε,λ]. (4.19)

We conclude by emphasizing that our definition of Q1
ε does not follow uniquely from

requirements 2 and 4 above. For instance, one could consider a different prescription for the
covariant gradient in (4.14), or use a different field-strength component as a starting point
(e.g. Fru instead of Fra, which lead to identical expressions only in the abelian case). All
choices would lead to an expression of the form (4.16) with slightly different versions of π(x).
It may be that higher order relations omitted in this work (like those that would follow
from the commutation between two O(r) charges) could further constrain, and perhaps
single out, the form of π(x). The discussion in the following sections however is insensitive
to the specific form of π(x) and only uses the covariance property (4.18).

4.4 Q0
λ

We now discuss the extension of Q0,rad
λ to Γext. Given condition 4 is satisfied, condition 3

can be written as
δ1
εQ

0
λ = Q1

[ε,λ]. (4.20)

Since δ1
εAa = 0 and δ1

εφ = ε, the simplest extension of Q0,rad
λ that is compatible with (4.20) is

Q0
λ = Q0,rad

λ +Q1
[φ,λ]. (4.21)

In fact, this is the unique solution to conditions 1 and 3 (for a given Q1
ε). To see why,

consider a different extension Q̃0
λ and write it as

Q̃0
λ = Q0

λ +Kλ, (4.22)

for some function Kλ on Γext. Condition 3 then implies

δ1
εKλ = 0. (4.23)

Given the action of δ1
ε (4.3), it follows that Kλ must be independent of φ. Thus, Kλ must

vanish in order to ensure that Q̃0
λ|φ=0 = Q0,rad

λ .
It is interesting to note that due to the gauge covariance of both terms in (4.21) it

follows that
δ0
λQ

0
λ′ = −Q0

[λ′,λ]. (4.24)

Together with (4.19), this implies the proposed charges Q0
λ and Q1

ε reproduce the total
variation algebra (4.5).
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4.5 Extended symplectic form and charge algebra

We finally present a symplectic form Ωext on Γext that is compatible with the charges, in
the sense that

δQ0
λ = Ωext(δ, δ0

λ), δQ1
ε = Ωext(δ, δ1

ε). (4.25)

Given the second condition in (4.25) and the form (4.16) of Q1
ε we are lead to define

Ωext := Ωrad +
∫
d2xTr(δπ ∧ δφ) (4.26)

where we recall that
Ωrad =

∫
dud2xTr(δ∂uAa ∧ δAa). (4.27)

Indeed, since δ1
εAa = 0 (and consequently δ1

επ = 0) the only non-trivial contribution to
Ωext(δ, δ1

ε) is

Ωext(δ, δ1
ε) =

∫
d2xTr(δπδ1

εφ) =
∫
d2xTr(δπε) = δ

∫
d2xTr(πε) = δQ1

ε. (4.28)

We can now verify that (4.26) satisfies the first condition in (4.25):

Ωext(δ, δ0
λ) = Ωrad(δ, δ0

λ) +
∫
d2xTr(δπδ0

λφ− δ0
λπδφ) (4.29)

= δQ0,rad
λ +

∫
d2xTr(δπ[φ, λ]− [π, λ]δφ) (4.30)

= δQ0,rad
λ + δQ1

[φ,λ] = δQ0
λ. (4.31)

With this symplectic form we can finally realize the relations (4.19), (4.20) and (4.20) as a
Poisson bracket algebra,12

{Q0
λ, Q

0
λ′} = Q0

[λ,λ′], {Q0
λ, Q

1
ε} = Q1

[λ,ε]. (4.32)

5 Outlook

The study of asymptotic symmetries in gauge and gravitational theories has proven to be a
useful source of information on their infrared properties. The nature of these symmetries,
however, depends crucially on the subtle problem of boundary conditions imposed on the
fields. In this work, we have proposed an enlargement of the radiative phase space of
classical Yang-Mills theory so that it can support linearized O(r) gauge symmetries. The
extended space is parametrized by the standard asymptotic gauge field plus a “Goldstone
mode” that transforms inhomogenously under linearized O(r) symmetries. We showed this
extended space admits a symplectic structure such that the charges associated to the O(r0)
and O(r) gauge symmetries are compatible with known tree-level soft gluon theorems, and
such that their Poisson brackets reproduce the variation algebra.

12The Poisson bracket between two functions F and G is given by {F,G} = Ωext(XG, XF ) where XF is
the symmetry transformation generated by F , i.e. Ωext(δ,XF ) = δF .
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There are several future directions that appear worth pursuing.
On the one hand, we hope our results are the first order approximation of a higher

order symmetry algebra, at least within the tree-level theory. The next order would include
linearized O(r2) gauge transformations and O(r) ones at second order. The former would be
related to the (partial) sub-subleading soft gluon factorization [32]. In this context, it would
be important to make contact with the “celestial” 2d CFT approach to symmetries [58–65],
which naturally incorporates higher order factorization formulas satisfying a rich algebraic
structure [34, 66].

On the other hand, staying within the algebra at O(r), it would be exciting if one could
extend the analysis to include loop corrections to the soft gluon factorization formulas, see
e.g. [28]. It is interesting to note that the algebra consistency lead us to include higher order
terms in the charges that would be sensitive to such loop effects. The problem however
would be quite challenging, in particular due the appearance of infrared divergences. Here
again it may prove useful to establish contact with the celestial CFT methods, which appear
well suited for the incorporation of these effects [67–70].

Much of the inspiration for the present work stems from the study of asymptotic
symmetries in gravity. In this regard, it has been proposed [71, 72] that asymptotic
diffeomorphisms generated by certain O(r) sphere-vector fields are behind the sub-subleading
soft graviton factorization [18]. Perhaps a similar strategy as the one presented here could
be used to identify an extended space supporting such singular transformations.
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A Asymptotic gauge field

In this appendix we show that asymptotic behavior

Ar = 1
r2

(
ln r

0,ln
A r +

0
Ar

)
+ 1
r3

(
ln r

1,ln
A r +

1
Ar

)
+ o(r−3),

Au = ln r
r

0,ln
A u + 1

r2

(
ln2 r

1,ln2

A u + ln r
1,ln
A u +

1
Au

)
+ o(r−2),

Aa = Aa + 1
r

(
ln r

1,ln
A a +

1
Aa

)
+ o(r−1),

(A.1)

is consistent with the field and gauge fixing equations (2.2). As it will become clear, the
appearance of logarithmic terms is forced upon us due to the interaction terms. In the
expansion above we have used a residual O(r−1) gauge freedom to set to zero the O(r−1)
component of Au.
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The above gauge field expansion leads to the following field strength expansion,

Fru = 1
r2

(
ln r

0,ln
F ru +

0
F ru

)
+ 1
r3

(
ln2 r

1,ln2

F ru + ln r
1,ln
F ru +

1
F ru

)
+ o(r−3),

Fra = 1
r2

(
ln r

0,ln
F ra +

0
F ra

)
+ o(r−2),

Fua =
0
F ua + 1

r

(
ln r

1,ln
F ua +

1
F ua

)
+ o(r−1),

Fab = Fab + 1
r

(
ln r

1,ln
F ab +

1
F ab

)
+ o(r−1),

(A.2)

where one can compute the various field strength coefficients in terms of the gauge field
coefficients.13 We now consider the field and gauge fixing equations. Starting with the later,
we find

0 = −∇µAµ = ∂uAr + r−2∂r(r2(Au −Ar))− r−2∂bAb

= ln r
r2

(
∂u

0,ln
A r +

0,ln
A u

)
+ 1
r2

(
∂u

0
Ar +

0,ln
A u − ∂bAb

)
+ ln r

r3

(
∂u

1,ln
A r + 2

1,ln2

A u − ∂b
1,ln
A b

)

+ 1
r3

(
∂u

1
Ar +

1,ln
A u −

0,ln
A r − ∂b

1
Ab

)
+ o(r−3). (A.3)

We will think of these equations as determining the various coefficients of Ar in terms of the
remaining components of the gauge field. The vanishing of the O(ln r/r2) factor in (A.3)
implies14

0,ln
F ru = −

0,ln
A u − ∂u

0,ln
A r = 0. (A.4)

We next consider the field equation (1.2) for ν = u:

−DµFµu = DuFru − r−2Dr(r2Fru) + r−2qabDaFub = 1
r2

(
∂u

0
F ru +Da

0
F ua

)
+ln2 r

r3 ∂u
1,ln2

F ru + ln r
r3

(
∂u

1,ln
F ru +

[
0,ln
A u,

0
F ru

]
+Da

1,ln
F ua +

[1,ln
Aa,

0
F ua

])
+ 1
r3

(
∂u

1
F ru +Da

1
F ua +

[
1
Aa,

0
F ua

])
+ o(r−3) = 0. (A.5)

The resulting equations can be used to determine the coefficients of Fru in terms of previously
determined data. This in turn fixes the Au coefficients. For instance, consider the expression
for

0
F ru in terms of the gauge field coefficients,

0
F ru =

0,ln
A u − ∂u

0
Ar (A.6)

= 2
0,ln
A u − ∂bAb, (A.7)

13In the main body of the paper we use the notation Fru ≡
0
F ru, Fra ≡

0
F ra, Fua ≡

0
Fua.

14Notice that the non-abelian contribution to Fru starts at order ln2 /r3 and hence it does not appear
in (A.4) and (A.6).
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where in the second equality we used the O(1/r2) gauge fixing condition (A.3). Using that
0
F ua = ∂uAa, the O(1/r2) equation in (A.5) implies

∂u
0,ln
A u = −1

2[Ab, ∂uAb], (A.8)

which determines
0,ln
A u in terms of the free data Aa (given boundary conditions in u as

discussed in the main text). Going to the next order, we see that (A.5) implies ∂u
1,ln2

F ru = 0.
We assume the stronger condition

0 = ∂u
1,ln2

F ru = −2
1,ln2

A u + [
0,ln
A r,

0,ln
A u], (A.9)

from which we obtain
1,ln2

A u in terms of previously determined coefficients. To solve for higher
order coefficients of Au using (A.5) requires knowledge of lower order Aa coefficients. We
finally discuss the remaining equations to determine them. We will consider a combination
of the ν = a field equation

DµFµa = −DuFra +DrFra −DrFua + r−2qbcDcFba = 0 (A.10)

with the (r, u, a) Bianchi identity

DrFua +DuFar +DaFru = 0. (A.11)

When adding (A.10) and (A.11), the Fua terms cancels and one gets

0 = −2DuFra +DrFra +DaFru + r−2qbcDcFba = ln r
r2

(
−∂u

0,ln
F ra

)
+ 1
r2

(
−2∂u

0
F ra +Da

0
F ru +DbFba

)
+ o(r−2). (A.12)

The leading order condition implies −∂u
0,ln
F ra = 0. Again, we will assume the stronger

condition15

0 =
0,ln
F ra = −

1,ln
A a −Da

0,ln
A r, (A.13)

which determines
1,ln
A a. This now allows one to continue one more order in eqs. (A.3), (A.5)

to determine
1,ln
A r and

1,ln
A u. The procedure can be continued to higher orders but for the

purposes of this paper the displayed relations are sufficient.

B Residual gauge parameters

B.1 Asymptotic expansion

In this appendix we discuss the asymptotic expansion of residual O(r0) and O(r) gauge
parameters. To subleading order in the r →∞ expansion, one finds

Λ0
λ(r, u, x) = λ(x) + ln r

r

ln
λ(u, x) +O(ln2 r/r2), (B.1)

Λ1
ε(r, u, x) = rε(x) + ln r0,ln

ε (u, x) + 0
ε(u, x) +O(ln3 r/r). (B.2)

15In the context of loop-level subleading soft theorem, the matching of charges at spatial infinity requires
a non-trivial, u-independent

0,ln
F ra(x) coefficient [26, 27].
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As illustrated below, the subleading coefficients are determined by recursively solving the
residual gauge equation (2.9)

�Λ + [Aµ,∇µΛ] = r−1(∂2
r − 2∂u∂r + r−2∂a∂a)(rΛ)

+[Ar −Au, ∂rΛ]− [Ar, ∂uΛ] + r−2qab[Aa, ∂bΛ] = 0, (B.3)

where recall that ∂a is used to denote the sphere covariant derivative and hence ∂a∂a is the
sphere laplacian. Substituting (B.1) and (A.1) in (B.3) one finds

�Λ0
λ + [Aµ,∇µΛ0

λ] = 1
r2

(
−2∂u

ln
λ+Da∂aλ

)
+O(ln2 r/r3). (B.4)

Similarly for (B.2) one gets

�Λ1
ε + [Aµ,∇µΛ1

ε] = ln r
r

(
−2∂u

0,ln
ε −

[
0,ln
A u, ε

])
(B.5)

+1
r

(
−2∂u

0
ε− 2∂u

0,ln
ε + (∂a∂a + 2)ε+ [Aa, ∂aε]

)
+O(ln2 r/r2).

The vanishing of the factors with a given r-dependence in (B.4) and (B.5) can be used to
determine the subleading coefficients in terms of the respective leading coefficients λ and ε.

We finally describe the residual O(r0) gauge parameter in the extended space (4.1),
which is required to compute the modified bracket (2.11) between O(r0) and O(r) gauge
parameters. The residual gauge equation in the extended space is

∇νD̃µΛ̃ = 0 (B.6)

where D̃µ is the Ãµ-gauge covariant derivative, which in the parametrization (4.1) reads

D̃µ = Dµ + [DµΛ1
φ, ·]. (B.7)

Since we are working to first order in φ, it suffices we consider a corrected gauge parameter
of the form

Λ̃0
λ = Λ0

λ + Λ0
λ,φ, (B.8)

where Λ0
λ,φ = O(φ) is the correction. Substituting (B.8) in (B.6) and imposing the equation

to first order in φ one finds Λ0
λ,φ must satisfy

�Λ0
λ,φ + [Aµ,∇µΛ0

λ,φ] + [DµΛ1
φ,∇µΛ0

λ] = 0. (B.9)

This equation is of the same form as the original residual gauge equation (B.3) except that
it now has a “source” term. Proceeding as in the earlier cases, one finds

Λ0
λ,φ = ln r

0,ln
λ φ +

0
λφ + o(1) (B.10)

with the coefficients determined by the equations

∂u
0,ln
λ φ = −1

2

[
φ, ∂u

ln
λ

]
, ∂u

0
λφ = 1

2

[
φ, ∂u

ln
λ

]
+ 1

2[Daφ, ∂aλ]. (B.11)
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B.2 Commutators

Having understood the O(r0) gauge parameter in the extended space, we can now compute
its modified bracket (2.11) with the O(r) gauge parameter:

[Λ1
ε, Λ̃0

λ]∗ = [Λ1
ε, Λ̃0

λ] + δΛ1
ε
Λ̃0
λ − δΛ̃0

λ
Λ1
ε, (B.12)

= [Λ1
ε,Λ0

λ] + Λ0
λ,ε − δΛ0

λ
Λ1
ε, (B.13)

= Λ1
[ε,λ], (B.14)

In going from the first to second line, we used that δΛ1
ε
Λ0
λ = 0 and δΛ1

ε
Λ0
λ,φ = Λ0

λ,ε, as
follows from (4.3), and dropped O(φε) terms. The last equality can be understood by a
similar argument as for the O(r0) bracket (2.14): by construction, (B.13) satisfies the gauge
parameter equation (2.9). Furthermore, the leading r →∞ behavior of (B.13) is captured
by the commutator [Λ1

ε,Λ0
λ] ∼ r[ε, λ] + · · · . These are precisely the two defining conditions

for Λ1
[ε,λ]. One can also explicitly check the equality [Λ1

ε, Λ̃0
λ]∗ = Λ1

[ε,λ] in the r →∞ limit
by using the expansions given in the previous subsection. By similar arguments one can
verify that [Λ̃0

λ, Λ̃0
λ′ ]∗ = Λ̃0

[λ,λ′].

B.3 Bulk description of O(r0) parameters in the extended space

In the body of the paper we defined the extension of O(r0) large gauge transformations to
Γext by (4.4). In the notation of (4.1) this translates to

δλÃµ = DµΛ0
λ +DµΛ1

[φ,λ]. (B.15)

However, from the “bulk” description (4.1) it may be more natural to instead consider

δ̃λÃµ := D̃µΛ̃0
λ = DµΛ0

λ +DµΛ0
λ,φ + [DµΛ1

φ,Λ0
λ] (B.16)

= DµΛ0
λ +DµΛ1

[φ,λ] + δΛ0
λ
DµΛ1

φ, (B.17)

= δλÃµ + δΛ0
λ
DµΛ1

φ (B.18)

where the second equality follows from evaluating Dµ on both sides of the equality in (B.14),
for ε = φ. We thus see that the alternative extension differs from (B.15) by the last term
in (B.18). This term however does not respect the form of Ãµ given in (4.1). Thus, to use
the extension (B.16) one would have to work in a further enlarged space so as to allow such
kind of terms. We expect such treatment should lead to results consistent with the ones
obtained in this paper with the simpler extension (B.15).

C Types of corrections to asymptotic charges

Throughout the paper we have made reference to the link between asymptotic charges and
soft gluon theorems. In this appendix we discuss some aspects of this relationship.

Let Sn be a scattering amplitude involving n external gluons. Its dependence with the
YM coupling g is of the form

Sn = gn−2(Stree
n + g2S1-loop

n + · · · ). (C.1)

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
0
5
8

On the other hand, the dependence of the asymptotic charges on g can be obtained from the
expressions given in the body of the paper (where we set g = 1) by doing the replacements
Aa → gAa, Λ → gΛ and multiplying by an overall g−2 factor. One then finds that both
Q0,rad
λ and QY depend on g according to

Qtree = Qsoft(1) + gQhard(2), (C.2)

where Qsoft(1) is linear in the gauge field and inserts a soft (ω → 0 energy) gluon and Qhard(2)

is quadratic in the gauge field and preserves the number of external gluons. Schematically
one has

[Qsoft(1),Stree
n ] ∼ gStree

n+1s , [Qhard(2),Stree
n ] ∼ Stree

n , (C.3)

where the power of g in the first equation comes from the extra coupling needed to get a
non-trivial amplitude with n+ 1s gluons. The “s” label indicates that the extra gluon is
soft. The (leading or subleading) single-soft tree-level factorization theorem can then be
written as

[Qtree,Stree
n ] ∼ 0. (C.4)

In our analysis we encountered two kinds of corrections the charges (C.2) may receive.
The first type of correction are “hard” terms that are of higher order in the gauge field.

For instance
Q = Qtree + g2Qhard(3). (C.5)

When acting on the S matrix this cubic correction would yield, to lowest order, a term of
the form

[g2Qhard(3),Sn] ∼ gn[Qhard(3),Stree
n ] ∼ gn+1Stree

n+1, (C.6)

where the O(A3) charge adds an external gluon (not necessarily soft), with the corresponding
extra O(g) factor. Since the coupling power corresponding to (C.4) is gn−1, the term (C.6)
does not affect the tree-level Ward identity. At 1-loop however, the Ward identity would
get contributions from (C.6) and from

[Qtree, gnS1-loop
n ] ∼ gn+1(S1-loop

n+1s + S1-loop
n ). (C.7)

Thus, in the case of a charge of the form (C.5), the would-be Ward identity would enforce
the sum of (C.6) and (C.7) to vanish. The study of such potential identities is however
well-beyond the scope of the present paper. Even to make sense of such expressions would
require a treatment of infrared divergences that are not present in the tree-level case.

There is a second type of correction the charge may acquire, of the type

Q = Qtree + gQsoft(2), (C.8)

which is quadratic in the soft part of the gauge field. As discussed in [73] in the gravitational
context, such kind of terms are non-trivial if at least one of the external states is soft.
Schematically,

[Qsoft(2),Stree
nh

] = 0, but [Qsoft(2),Stree
nh+1s ] ∼ S

tree
nh+1s . (C.9)
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Thus, a would-be Ward identity with charge (C.8) would lead to a relation of the type

0 = [Q,Stree
nh+1s ] ∼ g(Stree

nh+2s + Stree
nh+1s). (C.10)

Such kind of terms are thus sensitive to (tree-level) double-soft gluon emission. See [73–75]
for related discussion of double-soft emission and asymptotic charges.

D Covariant LPS charge

We start by expanding the covariant derivatives in (4.12) as

∂u(DaFru +DbFba) = ∂a∂uFru + ∂b∂uFab + ∂u([Aa, Fru] + [Ab, Fba]). (D.1)

Recalling the expressions for Fru (4.10) and Fab (4.9), one can see that the first two terms
in the r.h.s. of (D.1) lead to Qsoft

Y plus the Ju part of Qhard
Y plus an extra term coming from

the non-abelian part of Fab,

Qextra
Y :=

∫
dud2xuTrY a∂u∂

b[Aa, Ab]. (D.2)

The last two terms of (D.1) lead the Ja part of Qhard
Y plus cubic terms plus quadratic “soft”

terms given by

Q
(2)
Y =

∫
d2xTrY a[E1

a, A
+
a ] (D.3)

Q
(3)
Y =

∫
dud2xuTrY a∂u

([
Aa,

∫ ∞
u

Ju′du
′
]

+ [Ab, [Ab, Aa]]
)

(D.4)

where
E1
a(x) :=

∫ ∞
−∞

duu∂uAa(u, x). (D.5)

Summarizing, the charge Qcov
Y defined by (4.12) differs from the LPS charge QY by the

three terms:
Qcov
Y −QY = Qextra

Y +Q
(2)
Y +Q

(3)
Y . (D.6)

As explained in appendix C, Q(2)
Y and Q

(3)
Y yield trivial single-insertion tree-level Ward

identities. On the other hand Qextra
Y produces non-trivial terms in the single Ward identity

that are in conflict with the subleading soft gluon theorem. To see the form of these terms,
let us evaluate the commutator Qextra

Y with Âa(ω, x). For the purposes of this evaluation,
one can assume decaying u fall-offs in Aa(u, x) and integrate by parts the u-derivative
in (D.2). It is also convenient to integrate by parts in the sphere to work with the expression

Qextra
Y = −1

2

∫
dud2xTr(∂aYb − ∂bYa)[Aa, Ab]. (D.7)

From the elementary commutator

[Aβb (u′, x′), Âαa (ω, x)]op = −δαβqab
eiωu

2ω δ(2)(x′, x) (D.8)
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(where α and β are color indices) one finds

[Qextra
Y , Âa(ω, x)]op = − 1

2ω [∂aYb − ∂bYa, Âb(ω, x)]. (D.9)

Thus, a tree-level Ward identity for Qcov
Y would include the above contribution in addition

to the terms (3.9). Since the latter already capture the tree-level subleading soft factors,
such Ward identity would be in contradition with the soft theorem, except for “electric”
vector fields Ya = ∂aε for which the extra term is absent. Whereas this suffices for the
purposes of the present paper, there is more to be understood if one wishes to include
“magnetic” charges with Ya = ε ba ∂bµ. See footnote 11 for further comments on this issue.

E Comparison with the gravitational case

In the gravitational case, the standard radiative fall-off conditions on the spacetime metric
take the form (focusing for simplicity on the angular components of the metric)

gab
r→∞= r2qab + rCab + · · · (E.1)

where qab is the u-independent 2d metric on the celestial sphere and Cab = Cab(u, x)
encodes gravitational radiation at null infinity. The latter plays the role of “free data” that
determines the asymptotic metric components through Einstein equations (supplemented
by gauge fixing conditions). Schematically,

Γrad
grav ≈ {Cab(u, x)}. (E.2)

The non-trivial diffeomorphisms preserving (E.1) are asymptotic Lorentz transformations
plus so-called supertranslations, generated by vector fields of the form

ξ0
f = f(x)∂u + · · · , (E.3)

with arbitrary f(x). These can be thought of as the analogous to the O(r0) large gauge
transformations in the YM case. The analogy however breaks down at the level of the
algebra, since supertranslations are abelian,

[ξ0
f , ξ

0
f ′ ]∗ = 0 (E.4)

(the bracket is now a modified vector field Lie bracket analogous to (2.11), see e.g. [37]).
The above asymptotic symmetries can be enlarged to include superrotations, generated

by vector fields with a leading non-trivial angular component

ξ1
Y = Y a(x)∂a + · · · (E.5)

with arbitrary Y a(x).16 However, to allow for such transformations one needs to relax the
form of the asymptotic metric (E.1). As in the YM case, one can write a linearized version
of the extended space as:

Γext
grav =

{
g̃µν = gµν + Lξ1

X
gµν , gµν ∈ Γrad

grav, Xa ∈ X(S2)
}
. (E.6)

16In the special case where Y a is a (global) conformal Killing vector field of qab, these are not new
symmetries but represent the generators of the asymptotic Lorentz group. Although we shall be phrasing
the extension in terms of arbitrary sphere vector fields, the following discussion applies equally well to the
case of local conformal Killing vector fields.
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Of course, in the gravitational case we known how to “exponentiate” the linearized extension
in order to obtain a full extended space. We will however continue the discussion within
the linearized setting in order to make contact with the analysis in this paper.

The space (E.6) is then naturally parametrized by pairs

Γext
grav ≈ {(Cab(u, x), Xa(x))}, (E.7)

where Cab “generates” the metric gµν and Xa implements its superrotated version.17

Eqs. (E.6), (E.7) are the gravitational versions of eqs. (4.1), (4.2) in the YM case. The
extended gravitational space now supports the action of superrotations (E.5), which in the
parametrization (E.7) takes the form

δ1
Y Cab = 0, δ1

YX
a = Y a, (E.8)

in parallel to eq. (4.3). The trivial action on Cab in (E.8) may appear at odds with the
standard action of superrotations one encounters in the literature. The reason is that the
definition of Cab in (E.7) does not agree with the usual one. In order to compare with the
more standard parametrization, let us look at the angular components of the full metric
g̃µν in (E.6). These take the form

g̃ab = r2q̃ab + rC̃ab + · · · , (E.9)

where

q̃ab = qab +X · qab, (E.10)
C̃ab = Cab +X · Cab − u(DaDb)TFDcX

c, (E.11)

(TF stands for trace-free part) with

X · qab := (LX −DcX
c)qab (E.12)

X · Cab :=
(
LX + 1

2DcX
c(u∂u − 1)

)
Cab. (E.13)

In the standard parametrization one treats C̃ab, rather than Cab, as independent variable.18

From (E.11) and (E.8) one finds

δ1
Y C̃ab = Y · C̃ab − u(DaDb)TFDcY

c, (E.14)

which coincides with the standard superrotation action (recall we are working to linear
order in Xa and Y a and dropping O(X2), O(Y 2) and O(XY ) terms). In this way, we can
think of Cab as a “dressed” version of the standard C̃ab which neutralizes the action of
superrotations.

17Strictly speaking, Xa should be considered modulo global conformal Killing vector fields on the celestial
sphere. Other more commonly used labels for the “superrotation frame” are either the deformed 2d metric
q̃ab or the so-called Geroch/Liouville tensor Tab = −(DaDb)TFDcX

c, see e.g. [53–55].
18What we are calling C̃ab is what usually is denoted as Cab (e.g. [17, 51, 53]).

– 22 –



J
H
E
P
1
2
(
2
0
2
1
)
0
5
8

There is yet another parametrization that is useful to consider, which consists in
removing the O(u) part of C̃ab,

Ĉab := C̃ab − u(DaDb)TFDcX
c (E.15)

= Cab +X · Cab. (E.16)

In this case the action of superrotations is purely homogeneous,

δ1
Y Ĉab = Y · Ĉab. (E.17)

Regardless of the parametrization being used, the algebra relation between supertrans-
lations and superrotations is given by

[ξ0
f , ξ

1
Y ]∗ = −ξ0

Y ·f , (E.18)

where
Y · f :=

(
LY −

1
2DcY

c
)
f. (E.19)

The algebraic relation (E.18) is again structurally different from its YM counterpart, in
that the r.h.s. is an O(r0) rather than O(r) symmetry. Schematically,

[ξ0, ξ1] ∼ ξ0 vs. [Λ0,Λ1] ∼ Λ1. (E.20)

Let us now discuss charges. In the radiative space, supertranslations are generated by

P rad
f =

∫
d2xf(x)P(x) (E.21)

where P is the supermomentum density defined by

P =
∫ ∞
−∞

du(NabNab − 2DaDbNab), (E.22)

and Nab ≡ ∂uCab. Following the same logic as for the YM case, the equation that determines
the extension of this charge from Γrad

grav to Γext
grav is

δ1
Y P

ext
f = −P ext

Y ·f . (E.23)

This has the simple solution

P ext
f = P rad

f − P rad
X·f , (E.24)

=
∫
d2xf(P +X · P), (E.25)

where to get to the second line we integrated by part on the sphere, and

X · P =
(
LX + 3

2DcX
c
)
P. (E.26)

eq. (E.24) is the analogous to eq. (4.21). The main difference with the YM case is that the
extension is determined from the ξ0 charge itself, rather than from the ξ1 one. This is a
consequence of the difference displayed in (E.20).

– 23 –



J
H
E
P
1
2
(
2
0
2
1
)
0
5
8

In order to compare (E.24) with the known expression of supertranslation charges, let
us rewrite (E.24) in terms of the tensor N̂ab ≡ ∂uĈab. In the O(X) setting we are working,
eq. (E.16) implies

Nab = N̂ab −X · N̂ab. (E.27)

Substituting (E.27) in (E.22), (E.25) and neglecting O(X2) terms one finds

P +X · P = P̂ − N̂0
abD

aDbDcX
c, (E.28)

where P̂ is given by (E.22) with Nab replaced by N̂ab and

N̂0
ab :=

∫ ∞
−∞

duN̂ab. (E.29)

The r.h.s. of eq. (E.28) can be seen to coincide with the standard (extended) supermomentum
density. In particular, the last term in (E.28) is the known modification that features the
Geroch/Liouville tensor Tab = −(DaDb)TFDcX

c, see [36] and references therein.
One can similarly construct superrotation charges. The situation is again structurally

different from the YM case due to (E.20). In particular, the difficulties we encountered in
YM to construct a covariant Q1

ε have no analogue for superrotations. Nevertheless, the
algebraic requirement coming from (E.18) imposes subtle conditions on the form of the
superrotation charge, see [36] for details.

To conclude, the differences between the YM and gravity cases may be summarized by
saying that the notion of “covariance” at null infinity in each theory is given by transforma-
tions associated to different radial/energy order: in YM the natural notion of covariance
comes from Λ0 transformations, whereas in gravity it comes from ξ1 transformations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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