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Determination of the ecological water quality in the Orienco
stream using benthic macroinvertebrates in the Northern
Ecuadorian Amazon
Federico Sinche,1,2,* Manuel Cabrera,2 Lenin Vaca,2 Edison Segura,2 and Pablo Carrera2,3

1School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA
2Department of Life Sciences, Universidad Estatal Amazónica, Nueva Loja, Sucumbíos, Ecuador
3Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca, Orellana, Ecuador

EDITOR'S NOTE:
This article is part of the special series “Diversity of Knowledge for a Sustainable Future in Latin America” and highlights

timely research presented at the virtual SETAC Latin America 14th Biennial Meeting (2021). These articles reflect the urgent
need to combine different knowledge sources and expertise to face current environmental challenges, decision making,
and problem solving. Risk, recovery, restoration, modeling, regulations, anthropic impact, and human health are some of
the global environmental issues covered in this special series.

Abstract
In recent years, pollution of watercourses in nearby protected ecosystems has increased due to urbanization. Standard

physiochemical methods and probes are one way to monitor watercourses for quality. However, they often do not provide
the full ecological status of the body of water. In this work, we set out to assess the ecological water quality of an urban
stream by using benthic macroinvertebrates as bioindicators. We conducted the work on the Orienco stream in Lago Agrio in
the province of Sucumbíos in the Northern Ecuadorian Amazon (NEA). The stream has become a sink of raw domestic
sanitary wastewater from rural and urban areas. A total of 4511 macroinvertebrates from 10 families were identified across 17
sampling points. We compared our results from the biotic indices derived from the macroinvertebrates to standard water‐
quality parameters (temperature, conductivity, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand,
total suspended solids, ammonia–nitrogen, and pH) simultaneously sampled in the stream. The standard parameter results
indicated that the water‐quality levels of the stream met the Ecuadorian water‐quality criteria most of the time. However, the
results from the biotic indices classified the stream water as poor or very poor water quality. The results from the Biological
Monitoring Working Party, Average Score per Taxon, and Family Biotic Indices had overall scores of heavily polluted waters
of 45, 4.5, and 8.74, respectively. Furthermore, these results were consistent with reduced richness and evenness, and overall
lower Shannon diversity and relatively higher Simpson Dominance indices of 0.71 and 2.56, respectively. We conclude that
the macroinvertebrates were better indicators of the ecological water quality of the Orienco stream than the water‐quality
parameters from standard methods and probes alone. Our findings highlight the need for more integrated ecological
assessments, which can provide critical information to the management and conservation strategies of urban watercourses in
the NEA region. Integr Environ Assess Manag 2022;00:1–11. © 2022 The Authors. Integrated Environmental Assessment and
Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

KEYWORDS: Aquatic macroinvertebrates; Bioindicators; Ecological index assessment; Ecological water quality; Ecuadorian
Amazon
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INTRODUCTION
The Amazon Rainforest is one of the largest natural bi-

omes remaining on Earth. Its tropical forests provide global
ecosystem services, including carbon sequestration, climate
and water cycle regulation, and habitat for biodiversity
(Usma‐Oviedo et al., 2016). The Ecuadorian Amazon con-
stitutes 45% of the country's territory and has a 1.5% share
of the Amazon River basin. Its area includes six provinces

*Address correspondence to fsinche@luc.edu
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named Sucumbíos, Orellana, Napo, Pastaza, Morona
Santiago, and Zamora Chinchipe (López et al., 2013). The
Northern Ecuadorian Amazon (NEA) is one of the richest
ecosystems in South America and includes the province
of Sucumbíos (0.110000; −76.877667), which borders
the Southeastern Colombian Amazon (Usma‐Oviedo
et al., 2016). The NEA region is home to endemic plants
(e.g., orchids and bromeliads) and animals (e.g., the Ama-
zonian manatee and Amazon River dolphins), which are
supported by the abundance, richness, and diversity of
species, including invertebrates (López et al., 2013). This
region is not only home to wildlife, but also is part of the
ancestral territories of indigenous groups, including the
Achuar, Andoa, Cofán, Kichwa, Secoya, Siona, Shiwiar,
Shuar, Waorani, and Sapara (López et al., 2013). Moreover,
the NEA region is also home to the Reserva de Producción
Faunística Cuyabeno (Cuyabeno Reserve), which represents
one of the most impressive ecosystems of biological and
cultural diversity in the world (Usma‐Oviedo et al., 2016).
Despite the ecosystem services and cultural heritage as-

sociated with the Amazon, the world's largest and most bi-
odiverse tropical wilderness faces human pressures from
habitat loss, forest loss, land use conversion, uncontrolled
pesticide use, mining, urbanization, and agricultural devel-
opment (Barbieri et al., 2009; Furley et al., 2018; Rivera‐Parra
et al., 2020; Zalles et al., 2021). Lago Agrio is in the province
of Sucumbíos in the NEA region and is the largest Amazonian
city with a population of 176 472 inhabitants (Instituto
Nacional de Estadísticas y Censos [INEC], 2015). Oil compa-
nies have built roads in and around the city to lay pipelines to
extract and pump oil across the Andes for export over the last
30 years (PetroAmazonas, 2021). As a result, oil extraction
and rapid urbanization have caused ecosystem degradation
and deforestation in the NEA region (Barbieri et al., 2009;
Zalles et al., 2021). These anthropogenic activities have not
only adversely impaired the ecosystem health of the region,
but also have impacted access to clean natural resources for
the human population (Barbieri et al., 2009; Rivera‐Parra
et al., 2020; Zalles et al., 2021). Particularly, the water re-
sources are under constant threats due to the limited cov-
erage of sewage system and wastewater treatment plants for
urban and rural areas (Empresa Pública Municipal de Agua
Potable y Alcantarillado de Lago Agrio EP [EMAPALA], 2021;
Gobierno Autónomo Descentralizado Municipal del cantón
Lago Agrio [GADMLA], 2021). In Lago Agrio, 44% and 10% of
rural and urban areas, respectively, release their raw domestic
sanitary wastewater into watercourses within their neighbor-
hoods due to the lack of wastewater treatment systems
(INEC, 2015). In Ecuador and other parts of the world,
water‐quality parameters are often measured using phys-
icochemical methods and probes, which can analyze water
samples in the lab or in the field (Ministerio del Ambiente
Agua y Transición Ecológica del Ecuador [MAATE], 2015; US
Environmental Protection Agency [USEPA], 1986). This
methodology has been used to ensure compliance with
health and nuisance‐related standards at the national level,
and to protect the aquatic systems, including streams, rivers,

lakes, and estuaries (MAATE, 2015; USEPA, 1986). However,
most of the time the Ecuadorian Ministry of the Environment
(MAATE) and local governments fail to comply with water‐
quality monitoring programs in isolated and rural places such
as the NEA region (Barbieri et al., 2009; INEC, 2015;
Varela, 2016). Furthermore, the water‐quality parameters only
provide a snapshot of the ecological water quality of an
aquatic system due to their fluctuations in measurements,
which can impair the management and use of water (Bega
et al., 2021; Wan Abdul Ghani et al., 2018).

To address water quality in a more comprehensive and
ecological way, over the last decades research has been
conducted to develop several biotic indices based on mac-
roinvertebrates to monitor the ecological water quality of
aquatic systems (Herman & Nejadhashemi, 2015;
Nestlerode et al., 2020; Wan Abdul Ghani et al., 2018).
For example, the EPT (Ephemeroptea, Pelcoptera, and
Trichoptera) index was developed as a biological indicator of
pristine rivers (Herman & Nejadhashemi, 2015). In contrast,
the Biological Monitoring Working Party (BMWP) index was
developed to determine the degree of pollution in aquatic
systems (Herman & Nejadhashemi, 2015; Roldán, 2003). The
BMWP index relates the presence of pollution‐tolerant
macroinvertebrates, identified at the family level, to the
water‐quality parameters, and organic or inorganic pollutants
(Herman & Nejadhashemi, 2015; Roldán, 2003; Wan Abdul
Ghani et al., 2018). Examples of organic pollutants associated
with degraded aquatic environments as determined by tol-
erant macroinvertebrates include hospital sewage, domestic
and animal waste (e.g., tilapia farms), agriculture residues, and
algae detritus (Cabrera et al., 2021; Cota et al., 2002; Roche
et al., 2010). The BMWP index has been adapted for use in
different countries to assess the environmental effects of
water from many geographic locations, including South
America (Herman & Nejadhashemi, 2015; Roche et al., 2010;
Roldán, 2003; Wan Abdul Ghani et al., 2018). Furthermore,
additional measures have been developed, including the as-
sociated Average Score Per Taxon (ASPT), which is de-
termined by dividing the total BMWP score by the number of
taxa present (Friberg et al., 2009; Roche et al., 2010). These
biotic indices use metrics (i.e., species abundance and trophic
composition) and score values (i.e., 1 more degradation to 10
less degradation) to describe the ecological status of the
aquatic system (Herman & Nejadhashemi, 2015; Roldán,
2003), which can be easily interpreted by decision‐makers and
stakeholders.

In this study, we assessed the ecological water quality of the
Orienco stream, which is a major urban watercourse in Lago
Agrio. The stream has been reported to receive raw domestic
sanitary wastewater from both rural and urban areas
(EMAPALA, 2021; GADMLA, 2021; Varela, 2016). The overall
goal of the present study was to provide a first demonstration
of the effectiveness of the use of benthic macroinvertebrates
as both feasible and sensitive bioindicators to better charac-
terize the ecological water quality of the Orienco stream in the
NEA compared to the standard water‐quality parameters
alone.

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam
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MATERIALS AND METHODS

The study area in the Orienco stream

The Orienco stream is an urban stream that crosses
Lago Agrio from the west (286535; 10009098) to east
(292823; 10011197) in Sucumbíos (Supporting Information:
Figure S1). Sucumbíos is tropical and humid with an annual
average precipitation of 2800–4500mm (Harris et al., 2020;
Instituto Nacional de Meteorología e Hidrología del
Ecuador [INAMHI], 2020). Rainfall is present year‐round,
with March to May and October to November having higher
rainfall (INAMHI, 2020). The relative humidity is between 80
and 90% throughout the year, with annual temperatures
between 24 °C and 26.5 °C (Figure S2A,B) (Harris
et al., 2020; INAMHI, 2020). The Orienco stream is the result
of watersheds in the south and the stream drains its waters
to the Teteye River in the north, which eventually meets the
Aguarico River (Varela, 2016). The area of study in the
stream included a length of 10.22 km with an elevation of
293–308m above sea level and an area of 25.55 km2.
Benthic macroinvertebrates and water‐quality parameters
were sampled across 17 sampling points (SPs) of the stream
to cover primary and secondary vegetation and urban areas
in December 2019.

Benthic macroinvertebrates and biotic indices

The macroinvertebrates were sampled using a stand-
ardized Surber sampler frame (0.15 m × 0.15 m) with a net
size of 500 µm attached to a 1.50 m handle. The sampling
was conducted for 10min over a stretch of 5 m around
each SP; it covered a variety of habitats, such as bed
substrate, litters, macrophytes, and terrestrial vegetation
immersed in the stream. In the field, macroinvertebrates
were separated from the sediment and debris prior to
preservation in 70% ethanol. Macroinvertebrate samples in
each SP were combined into a single population group to
have representative taxa in each sampling location. In the
laboratory, macroinvertebrates were analyzed with a ster-
eoscope and identified into families according to taxo-
nomic references (Domínguez & Fernández, 2009;
Roldán, 2003). The details on the determination of the
BMWP, ASPT, and Family‐Level Biotic Index (FBI) indices,
and Pielou, diversity, and dominance indices can be found
in the Supporting Information.

Water sampling and analysis

Water‐quality parameters on surface water were meas-
ured at each SP where macroinvertebrates were collected.
The procedure used in the analysis followed standard pro-
cedures reported elsewhere (American Public Health
Association, 2017; USEPA, 1986). The parameters included
water temperature (WT), water conductivity (WC), dissolved
oxygen (DO), biochemical oxygen demand (BOD), chemical
oxygen demand (COD), total suspended solids (TSS),
ammonia–nitrogen (NH3–N), and pH. Procedure details are
available in the Supporting Information.

Data analysis

The first analysis was a two‐sided comparison using a
Student's test to determine whether statistically significant
differences existed between the two independent samples
(measured and reference levels). The second analysis was a
one‐way analysis of variance (ANOVA) to determine whether
statistically significant differences existed among the
measured parameter levels across all SPs. The ANOVA
analysis was conducted using a generalized linear model in
which the fixed effects were the parameter‐measured levels.
Post‐hoc analysis using Tukey's test was conducted where
statistically significant differences were found. A significant
level of α= 0.05 was used for both the Student's test and
one‐way ANOVA. Both analyses were performed by R
software (Version 4.2.0) using the tidyverse, ggplot2, and
mulcompView packages (RStudio Team, 2020). The third
analysis was a principal component analysis (PCA) using the
measured water‐quality parameters from each SP to identify
the components that can explain the relationship between
standard water‐quality parameters and the sampling points.
In this analysis, the principal components that explained
>60% of the relationship in the PCA were maintained in the
analysis. The fourth analysis was a constrained Canonical
Component Analysis (CCA) to determine the relationship
between measured water‐quality parameters, geographic
coordinates of sampling points, and their taxa composition.
For this analysis, the taxa data were log10 (x+ 1) transformed
to approach the assumption of normality and homo-
scedasticity of the data prior to CCA. Both PCA and CCA
were performed by R software using the FactoMiner and
Vegan packages, respectively (RStudio Team, 2020).

RESULTS

Stream characterization by standard water‐quality
parameters

In total, eight major water‐quality parameters were
measured across 17 SPs in the Orienco stream (Supporting
Information: Table S1). Results from the measurements were
then compared to the parameter reference levels of the
water‐quality criteria established by the Ecuadorian Ministry
of the Environment for freshwater systems (MAATE, 2015)
using the Student's test, and second, measurements were
compared across all SPs to determine significant differences
among each parameter category using one‐way ANOVA.
For the first parameter, the measured WT ranged from
23.53 ± 0.02 to 26.83 ± 0.02 °C. Student's test results
showed no statistical differences (t< 0.5, df= 4, p> 0.60)
between the reference WT of 25.00 ± 00 °C and measured
WT in SP2, 7, 9, 12, 13, 15, and 16. However, slightly sig-
nificant (t> 3, df= 4, p< 0.02) higher temperatures were
found in SP1, 3–6, 8, SP10, 11, and 14. The lowest tem-
perature at 23.53 ± 0.02 °C was registered in SP17, which
might have been influenced by the waters from the Teteye
river (GADMLA, 2021; Varela, 2016). Our ANOVA results
showed that there was a highly significant difference among

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.DOI: 10.1002/ieam.4666
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the measured WC levels (F16,34= 9.17, p= 4.05 × 10−08).
The results from the Tukey multiple comparison of means
showed highly significant differences (p< 0.0016) among
the lowest measured temperature of SP17 (23.53 ± 0.02 °C)
and temperatures of SP1, 3–8, 11, and 14, and significant
differences (p< 0.026) among the highest temperature of
SP4 (26.83 ± 0.02 °C), and of SP2, 9, 12, 13, and 15–17
(Supporting Information: Table S1).
The measured pH parameter from the Orienco stream

ranged from 6.74 ± 0.22 to 7.46 ± 0.27. The Student's test
results showed no significant differences (t< 2, df = 4,
p > 0.05) found between the reference pH of 7.00 ± 00 and
the measured pH levels of SP1–17 (Supporting Information:
Table S1). These results demonstrated little to no variability
of measured WT levels compared to the reference levels,
and an overall neutral pH of the water stream during the
rainy season of sampling. These results were confirmed by
ANOVA analysis, which showed no significant differences
(p> 0.05) among the measured pH levels among all SPs.
The measured DO ranged from 4.00 ± 0.06 to 12.00 ±

0.36mg/L. The Student's test results indicated that the
measured DO levels of SP2, 4, and 9–17 were significantly
(t> 15, df= 4, p< 0.0001) higher than the reference
DO of 7.89 ± 00mg/L (p< 0.05), while the DO level of
4.00 ± 00mg/L at SP1 was highly significant (t= 67.37,
df= 4, p= 2.90 × 10−7) lower than the reference DO of
4.00 ± 00 mg/L. The higher DO levels might have been in-
fluenced by measurements in the morning and the domestic
discharges in the stream (EMAPALA, 2021; Varela, 2016).
No significant differences (t< 0.3, df= 4, p> 0.60) were
found between the measured DO levels of SP3, 5–8, and the
reference DO. Moreover, our ANOVA results showed highly
significant differences among the measured DO levels
(F16,34= 138.05, p< 2.20 × 10−16). The results from Tukey's
test confirmed the highly significant differences (p< 0.001)
among the lowest DO level of SP1 (4.00 ± 0.06mg/L) and
levels found in SP2–17. Likewise, highly significant differ-
ences (p< 0.001) were also found among the lower DO
levels of SP3 and 5–8 (8.00 ± 0.12 to 8.00 ± 0.36mg/L), and
the higher DO levels of SP2, 4, and 9–17 (12.00 ± 0.06 to
12.00 ± 0.36mg/L).
Furthermore, the measured BOD, COD, and WC ranged

from 11.0 ± 0.29 to 25.00 ± 0.17mg/L, 18.00 ± 0.45 to
40.00 ± 1.42mg/L, and 148.73 ± 00 to 296.60 ± 0.67 μS/cm,
respectively. The Student's test indicated that measured
BOD levels were significantly lower (t> 5, df= 4, p< 0.001)
in SP1–4, 6–10, 12, and 15 than the reference BOD level of
20.00 ± 00mg/L (Supporting Information: Table S1). The
Student's test results also showed no significant differences
(t< 2, df= 4, p> 0.07) were found between the higher
measured BOD and reference levels in SP11, 13, 14, 16, and
17. The highest BOD level of 25.00 ± 0.17mg/L was found in
SP5 (t= 28, df= 4, p= 8.57 × 10−6). For this parameter,
ANOVA results showed highly significant differences among
the measured BOD levels (F16,34= 43.61, p< 2.20 × 10−16).
Further, Tukey analysis indicated also highly significant dif-
ferences (p< 0.001) among the lowest measured BOD level

of (SP1) 11.00 ± 0.29mg/L and levels of SP3, 5, and
7–17 (Supporting Information: Table S1). Likewise, highly
significant differences (p< 0.000015) were found among the
highest measured BOD level of (SP5) 25.00 ± 0.17mg/L and
levels of SP1–4 and 6–17 (Supporting Information:
Table S1).

In the case of the COD levels, the Student's test results
indicated that measured levels were significantly lower
(t> 10, df= 4, p< 0.0005) than the reference COD of 40.00 ±
00mg/L across all 17 SPs, except SP5 with no significant
differences (t< 1, df= 4, p> 1.00) (Supporting Information:
Table S1). Interestingly, the lower BOD and COD levels in-
dicated reduced aerobic and oxidation activities in water-
courses (Cota et al., 2002; Wan Abdul Ghani et al., 2018),
which could be considered indicative of good water quality.
The ANOVA results among all SPs showed highly significant
differences among the measured COD levels (F16,34= 68.75,
p< 2.20× 10−16). The Tukey results confirmed the significant
differences (p< 0.023) among the lower measured levels of
(SP1) 18.00 ± 0.58mg/L and (SP2) 18.00 ± 0.45mg/L com-
pared to the levels of SP3 and 5–17 (Supporting Information:
Table S1). Likewise, highly significant differences (p<
0.000085) were found among the highest measured COD
level of SP5 (40.00 ± 1.42mg/L) and levels of SP1‐4 and 6–17
(Supporting Information: Table S1).

The Student's test results from the measured WC levels
also showed significantly lower levels (t > 47, df = 4, p <
1.16 × 10−6) than their reference WC of 450.00 ± 00 μS/cm
across all 17 SPs (Supporting Information: Table S1). The
lower WC levels were expected as no sources of dissolved
ions have been identified nearby the stream (EMA-
PALA, 2021; Varela, 2016). Our ANOVA results showed
highly significant differences among the measured WC
levels (F16,34 = 748.10, p < 2.20 × 10−16). Further, Tukey's
test indicated significant differences (p < 0.001) among the
lower measured levels of SP2 (170.90 ± 0.59 mg/L), SP7
(154.70 ± 1.00 mg/L), SP9 (157.17 ± 1.31 mg/L), and SP11
(148.73 ± 1.37 mg/L), and the higher levels of SP1, 3, 5, 6,
7, 8, 10, and 12–17 (Supporting Information: Table S1).

The measured TSS levels were consistently at 30.00 ±
0.00mg/L across all 17 SPs (Supporting Information:
Table S1). These levels were significantly higher than the
reference TSS of 10.00 ± 00mg/L (p< 0.001). Likewise,
ANOVA results showed no significant differences (p> 0.05)
among the measured TSS levels. This result is consistent
with the turbidity and brown color of the water as a result of
the rainwater and its constant dissolution of organic matter,
vegetation, and soil into the stream (EMAPALA, 2021;
Varela, 2016). Finally, the measured NH3–N levels ranged
from 0.50 ± 0.06mg/L to 4.00 ± 0.29mg/L (Supporting In-
formation: Table S1). The Student's test results indicated
that the level in SP1–11 was significantly lower (t> 4, df= 4,
p< 0.01) than the reference NH3–N of 3.37 ± 00mg/L. The
results also showed significantly higher measured NH3–N
levels of SP12, 15, and 17 (t> 5, df= 4, p< 0.005) compared
to the reference levels. These results suggest a gradient
of nitrogen‐based residues along the stream as shown by

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam
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the fluctuations of NH3–N levels. Moreover, our ANOVA
results showed highly significant differences among the
measured NH3–N levels (F16,34= 32.14, p< 6.73 × 10−16).
The results from Tukey's test confirmed the highly significant
differences (p< 0.00053) among the lowest measured
NH3–N level of SP1 (0.50 ± 0.06mg/L) and the levels of
SP2–17 (Supporting Information: Table S1). Likewise, highly
significant differences (p< 0.0000029) were found among the
lower measured NH3–N levels of SP2–11 (2.00 ± 0.06mg/L
to 2.00 ± 0.36mg/L) and the higher levels of SP12–17
(4.00 ± 0.06mg/L to 4.00 ± 0.29mg/L).

Ecological macroinvertebrate composition and distribution

A total abundance of 4511 macroinvertebrates from 10
families were identified across the 17 sampling points of the
Orienco stream (Figure 1A,B and Supporting Information:
Table S2). The taxa analysis showed a family composition of
76% Turbificidae, 19% Chironomidae, 4% Physidae, and 1%
represented by the sum of Glossiphoniidae, Hyalellidae,
Hydropsychidae, Naucoridae, Corydalidae, Culidae, and
Hydrophilidae (Figure 1B). The results demonstrated that
Turbificidae and Physidae were the first dominant taxa in 15
and 13 out of the 17 SPs, respectively. Moreover, Chirono-
midae and Glossiphoniidae were the second dominant taxa
in eight out of the 17 SPs, respectively. The results also
indicated small occurrences of Naucoridae taxa in two out of
17 SPs, and taxa from Hydropsychidae, Hyalellidae, Cor-
ydalidae, Culidae, and Hydrophilidae in one out of 17 SPs
for the families. The analysis of the composition and dis-
tribution of taxa of the 17 SPs demonstrated a high occur-
rence of very pollution‐tolerant taxa in the Orienco stream
(Supporting Information: Table S2).

In addition to the composition and distribution of taxa,
the change in species diversity of the Orienco stream was
also quantified using Shannon's diversity index (Hʹ) (Morris
et al., 2014). Table 1 indicates diversity values ranging from
0.026 to 1.100 across all 17 SPs, and an overall Hʹ value of
0.71 as shown in Supporting Information: Table S3. These
lower values showed lower taxa diversity in the stream. The
taxa richness (S) was also lower with one or up to four
families per SP (Table 1) and varying taxa abundance across
the SPs (Supporting Information: Figure S3). For example,
SP1–3 and 11 resulted in a reduced number of families
compared to SP10, 12, and 17 (Supporting Information:
Table S2). Furthermore, the taxa dominance was quantified
using Simpson's dominance index (D2) (Morris et al., 2014).
The results ranged from 0.473 to 0.992, and an overall D2

value of 2.56, which indicated dominant taxa and reduced
diversity in the stream (Table 1 and Supporting Information:
Table S3). Likewise, Figure 1A,B indicates Turbificidae
(3409)>Chironomidae (874)> Physidae (181) as the domi-
nant macroinvertebrates. Additionally, dominant families
across all 17 SPs are shown in Supporting Information:
Figure S4, where families are reported as an (%) absolute
frequency based on their occurrence per SP. These results
demonstrate that the dominance of pollution‐tolerant fam-
ilies and lower taxa diversity in the Orienco stream is in-
dicative of a polluted aquatic environment.
Furthermore, each taxon registered was classified by its

ecological functional role and trophic group based on major
functional groups of aquatic macroinvertebrates (Wallace &
Webster, 1996). Our results showed that representatives of
almost every trophic group were found in the Orienco
stream (Supporting Information: Table S4). The most abun-
dant group was the shredders represented by Tubificidae,

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.DOI: 10.1002/ieam.4666

FIGURE 1 (A, B) Total abundance of families of benthic macroinvertebrates identified in the Orienco stream. (A) Population distribution of 4511 taxa from 10
different taxonomic families. (B) Percentage distribution of tubificids (3409, 76%), chironomids (874, 19%), physids (28, 4%), glossiphoniids (28, 0.6%), hyalellids
(7, <0.5%), hydropsychiids (7, <0.5%), naucorids (2, <0.5%), corydalids (1, <0.5%), culicids (1, <0.5%), and hydrophilids (1, <0.5%). Total abundance represents
the total of individuals found per sampling point

ECOLOGICAL ASSESSMENT OF WATER QUALITY IN AN URBAN STREAM—Integr Environ Assess Manag 00, 2022 5
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Hyalellidae and Hydropsychidae, and Hydrophilidae,
followed by collectors and scrappers, represented by
Chironomidae, and Physidae, Glossiphoniidae, respectively.
The presence of predators represented by Naucoridae,
Corydalidae, and Culidae was minimal. The distribution of
functional and trophic groups indicates that the dominant
habitats of taxa have been associated with the reported
accumulation of organic detritus and deposits in the
Orienco stream (EMAPALA, 2021; GADMLA, 2021;
Varela, 2016).

Determination of ecological water quality using biological
indices

The sensitivity of the aquatic macroinvertebrates to pol-
lution in the Orienco stream was estimated using the BMWP
index (Herman & Nejadhashemi, 2015; Roche et al., 2010;
Roldán, 2003; Wan Abdul Ghani et al., 2018). The grade
values (I–VI) of the water quality using the BMWP index for
the geography of Latin America have been reported pre-
viously (Roche et al., 2010; Roldán, 2003). The BMWP scores
and their corresponding water‐quality grades across all 17
SPs are shown in Figure 2. The results indicated that six out
of the 17 SPs were polluted sites with poor water quality
(Grade V), while the remaining 11 SPs were highly polluted
sites with very poor water quality (Grade VI). Furthermore,
individual BMWP, ASPT, and FBI scores ranged from 3 to
16, 8.97 to 6.50, and from 1.50 to 4.66, respectively
(Table 1), while the overall scores were 45, 4.5, and 8.74
for BMWP, ASPT, and FBI, respectively (Supporting
Information: Table S3). These lower values have been as-
sociated with the scores of heavily polluted streams
(Cota et al., 2002; Herman & Nejadhashemi, 2015;
Hilsenhoff, 1988; Roche et al., 2010). The index results
provide a more sensitive and consistent metric to assess the
ecological water quality of the Orienco stream.

Association between biotic and parameter variables across
the stream

The PCA was conducted to determine the association
between the water‐quality parameters and sampling points.
Supporting Information: Figure S5 shows a biplot with PC1
(42.80%) and PC2 (22.89%) explaining 65.53% of the varia-
tion in the data. The PC1 had a positive association with
higher levels of NH3–N, COD, BOD, and DO for SP12–17.
These SPs were located on the eastern side of the Orienco
stream, which reflects all the domestic influxes coming from
the western side of the stream (Supporting Information:
Figure S1). Moreover, slightly higher WT levels had a strong
association with SP3, 6, and 8, where some of the shallowest
parts of the stream are present. In the case of PC2, a pos-
itive association was found between higher WC levels and
SP3, 5, 6, 8, and 14, while higher DO and pH levels had a
strong association with SP4, 7, 9, 11, and 15. The rapid flow
of the stream toward the eastern side may explain the
higher DO levels on these SPs (Varela, 2016).

To further understand the association among taxa abun-
dances, water‐quality parameters, and spatial distribution of

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam
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sampling points, an analysis of CCA was performed. Sup-
porting information: Figure S6 shows a triplot with CCA axes
and the stream variables. The CCA results were not stat-
istically significant (p= 0.74) for the groups of variables an-
alyzed here. The CCA1 and 2 from the triplot only explained
54% of the data variation. However, some preliminary as-
sociations could be drawn from the triplot. For example,
CC1 shows a positive trend between Hydropsychiidae,
Turbificidae, and Corydalidae, and NH3–N, WC, DO, BOD,
and COD levels in the SP10, 16, and 17, while pH levels
were negatively associated with Corydalidae in the SP4–6, 8,
14, and 15. The CC2 indicated a positive trend between
Hydropsychidae, Hyalellidae, Chironomidae, and NH3–N
levels in the SP7, 12, and 13, while WT levels were neg-
atively associated with Physidae, Glossiphoniidae, and Cu-
licidae mainly in the SP11. Although the overall CCA was not
statistically significant for the association among taxa
abundances, standard water‐quality parameters, and sam-
pling points, the triplot suggests preliminary trends that
could be relevant with more data from a more continuous
sampling program of the stream.

DISCUSSION
Macroinvertebrate communities represented by taxa,

distribution, and structure create a more realistic ecological
status of an ecosystem. Thus, the present study was the
first attempt, that we are aware of, to employ bioindicators
to assess the ecological water quality of the Orienco
stream and compare it to standard water‐quality parame-
ters. Our results derived from biotic indices, starting with the
BMWP scores, graded 11 out of the 17 SPs (64.70% of the
stream) as very poor water quality, while the remaining six
SPs (35.30% of the stream) were graded as poor water
quality (Figure 2). Moreover, the ASPT and FBI indices for
the Orienco stream scored overall values of 4.50 and
8.75, which suggest high levels of pollution across

watercourses (Cota et al., 2002; Herman & Nejadha-
shemi, 2015; Hilsenhoff, 1988; Roche et al., 2010;
Roldán, 2003). The dominant families identified in the
stream included Tubificidae, Chironomidae, and Physidae
(Figure 1A,B). These families are dominant in aquatic sys-
tems, which are affected by pollution (Aston, 1973;
Pinder, 1986). Tubificids were the most abundant bio-
indicators reported in this study. They are aquatic annelids
widely distributed in marine, estuarine, and freshwater
habitats (Aston, 1973). Because their body can adapt to
different body positions in habitats containing decomposing
organic material (e.g., low DO levels), they can be found in
higher densities compared to other taxa (Aston, 1973). This
was the case in a study assessing the effects of urbanization
on stream benthic invertebrate communities in the Amazon,
where the authors reported a 32% increase of Oligochaeta
(i.e., Tubificidae) and Psychodidae in streams impacted by
urbanization over seven years (Martins et al., 2017). Our
results showed that Tubificids represent 76% of the sampled
macroinvertebrates in the Orienco stream (Figure 1A,B),
which is also a stream impacted by urbanization (EMA-
PALA, 2021; GADMLA, 2021; Varela, 2016).
The second most abundant bioindicators reported here

were Chironomids. They were dominant in SP11, 12, and 13
with population percentages of 78%, 85%, and 98%, re-
spectively (Supporting Information: Table S2). Chironomids
are the most widely distributed, and frequently the most
abundant group of insects in freshwater habitats
(Pinder, 1986). They can be found in both undisturbed and
disturbed streams (Couceiro et al., 2012). Because of this, it is
recommended that their presence should be contextualized
in the light of Chironomidae morphotypes or another
pollutant‐tolerant taxon, for example, Tubificids from the
Oligochaeta taxon (Kleine & Trivinho‐Strixino, 2005). To this
end, in a study investigating the Chironomidae and Oli-
gochaeta assemblages in response to the organic pollution

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.DOI: 10.1002/ieam.4666

FIGURE 2 Ecological water quality of the Orienco stream as determined by the Biological Monitoring Working Party (BMWP) index. The grades are based on
the total sensitivity or tolerance to pollution of the macroinvertebrates found per sampling point (SP)

ECOLOGICAL ASSESSMENT OF WATER QUALITY IN AN URBAN STREAM—Integr Environ Assess Manag 00, 2022 7

 15513793, 0, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4666 by L
oyola U

niversity H
ealth Sciences L

ibrary, W
iley O

nline L
ibrary on [08/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



gradient of a river in southeastern Brazil, the authors reported
that 74.32% of Chironomidae and 25.68% of Oligochaeta
families associated with urban areas influenced by the dis-
charge of domestic effluents (Rosa et al., 2014). The higher
percentage of Chironomidae was associated with the higher
population of the genus Chironomus larvae, which is found in
areas with organic pollution (Rosa et al., 2014). In the present
study, we did not report taxa at the genus level, but our
results indicated that the Chironomid population represents
25% of the Tubificid population (Figure 1A,B). This suggests
that Chironomids are part of the pollution‐tolerant taxa in the
Orienco stream because they were found together with Tu-
bificids but at a much lower population percentage.
The third most abundant bioindicators were the Physids.

Their ability to reproduce continually through self‐
reproduction has allowed them to colonize a wide variety of
freshwater habitats worldwide (Strong et al., 2007). The
densities and occurrence of Physids can be influenced by
environmental conditions as well (Mena‐Rivera et al., 2018).
For example, Physids demonstrated a positive correlation
with the temperature and BOD in a freshwater river polluted
with wastewater discharges in Costa Rica (Mena‐Rivera
et al., 2018). Our results demonstrated that Physids were
dominant in SP1 and 9 with population distribution per-
centages of 43% and 64%, respectively (Supporting In-
formation: Tables S1 and S2). Interestingly, both SP1 and 9
had BOD at 11.00 ± 0.00 and 16.00 ± 0.00mg/L, re-
spectively, which were values significantly lower than the
reference BOD. These parameter results would suggest that
the water quality of SP1 and 9 were within the recom-
mended levels by the Ministry of the Environment, although
the presence of Physid population might be indicating lower
water quality. To this end, Physids have been associated
with poor to moderate water quality in other Ecuadorian
aquatic systems (Holguin‐Gonzalez et al., 2013). For ex-
ample, in a work by Holguin‐Gonzalez et al. (2013) in-
tegrating a generic framework for decision support in water
management developed for the River Cuenca in Ecuador,
the authors reported a significant association between
Physidae and fecal coliforms in untreated wastewater dis-
charges (Holguin‐Gonzalez et al., 2013). Here, we also re-
ported the presence of Physids across 14 SPs as a taxon
associated with a stream habitat impacted by organic pol-
lution and urbanization.
The abundance of pollution‐tolerant families in the

Orienco stream implies that environmental conditions are
not favorable to support a richer, more diverse macrofauna
community in the stream. This finding is supported by an
overall lower Shannon's diversity index (Hʹ) of 0.71. Fur-
thermore, the Simpson's Dominance Index ranged from
0.473 to 0.992 for SP1 and 17, respectively, indicating that
the pollutant tolerant taxa were dominant. In contrast, fewer
varieties, and an abundance of more intolerant‐pollution
individuals (e.g., EPT taxa) also resulted in a significantly
reduced richness (S) and evenness in the total population of
4511 sampled in the stream (Supporting Information:
Table S3). The poor water quality of the Orienco stream can

be linked to water degradation due to the lack of urban
sewage systems and wastewater treatment plants
(Varela, 2016). The population of Lago Agrio has increased
by 26.90% in the last decade, resulting in higher untreated
domestic and industrial wastewater discharged into the
stream waters (INEC, 2015). The ecological roles of the taxa
reported here are presented mainly by shedders, collectors,
scrappers, and predators (Supporting Information:
Table S4). The functional feeding behavior of these groups
influences the structure and biotic interactions, such as
competition and health of stream ecosystems (Aston, 1973;
Mena‐Rivera et al., 2018; Rosa et al., 2014). Thus, the dis-
tribution and dominance of Tubificids, Chironomids, and
Physids across all 17 SPs reflect the lower diversity and
richness, and poor ecological water quality of the Orienco
stream.

Recently, there has been a great interest in refining
water‐quality criteria in tropical regions because regions
such as the NEA are prone to daily variation in weather,
including high precipitation (Bega et al., 2021; Briciu
et al., 2020; Nobre et al., 2020). Precipitation in the NEA
region can range from 2800–4500mm/year (INAMHI, 2020).
Considering this and the relatively small scale (25.55 km2)
and length of the stream (10.22 km), we hypothesized that
this could have contributed to the fluctuations of the
standard water‐quality parameter measurements (Sup-
porting Information: Table S1). In this regard, in a study
investigating the effects of landscape properties, precip-
itation patterns, and land use on the water quality of tropical
aquatic systems in northeast Brazil (Nobre et al., 2020), the
authors reported that not only landscape properties but also
a combination of precipitation patterns influenced the water
quality of Brazilian lakes by increasing runoff events in
aquatic systems, even if the events were temporary (Nobre
et al., 2020). In the Orienco stream, the TSS levels were
consistently higher than the reference levels across all 17
SPs (Supporting Information: Table S1). Moreover, our
findings from PCA indicated that the parameters with the
greatest association included NH3–N, COD, BOD, and DO
for the SP12–17 (Supporting Information: Figure S5).
The fluctuations of the parameter measurements and fewer
associations, which could have been influenced by the
regional climate conditions, did not fully explain the overall
ecological water quality of the steam. Ultimately, further
evaluation is necessary to understand the influence of
the NEA climate conditions on standard water‐quality
measurements.

In this study, the levels of water‐quality parameters
measured in the Orienco stream were compared to the
reference levels of the water‐quality criteria by the Ecua-
dorian Ministry of the Environment to determine whether
the stream met the national standard criteria for freshwater
systems (MAATE, 2015). The standard water‐quality pa-
rameter levels from the SPs did not always meet the refer-
ence levels, resulting in an unclear classification of the water
quality of the stream. Moreover, results from further com-
parisons of sampling points showed significant differences

Integr Environ Assess Manag 2022:1–11 © 2022 The Authors.wileyonlinelibrary.com/journal/ieam
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among the measured levels of each parameter category
(WT, pH, WC, NH3–N, COD, BOD, DO, and TSS), except in
the cases of pH and TSS, in which measured levels showed
little to no variation across all SPs (Supporting Information:
Table S1). Our results of WT (23.53–26.83 °C), DO
(4.00–12.00mg/L), and WC (148.73–296.67 µS/cm) were
closely related to ranges of the water‐quality levels
of WT (20.10–24.20 °C), DO (8.00–9.00mg/L), and WC (126–
902 µS/cm) reported by Cabrera et al. (2021) in a study
focused on the composition and distribution of macro-
invertebrate community of the Aguarico and Coca
River Basins in the Ecuadorian Amazon. However, the
Ammonium‐N was in general much lower (0.02–0.12mg/L)
than our results (0.50–4.00mg/L). This could be the result of
sampling rivers with higher flow velocity and larger areas
(Coca: 5705 Km2; Aguarico: 10 290 Km2) compared to a
much slower flow and smaller area (25.55 km2) watercourse
such as the Orienco stream. The authors also reported little
to no variation in measured pH levels (7.60–8.40) across all
the 15 sampling sites of their work (Cabrera et al., 2021).
We used CCA to further understand whether the standard

parameters could explain the abundance and distribution of
pollution‐tolerant taxa, and therefore, the overall ecological
water quality of the stream. The CCA results could not
support a direct association when considering the suite of
variables in analyses (Supporting Information: Figure S6).
This could be improved in future studies in the NEA region
by increasing the sampling throughout the year to include
both the rainy and dry seasons. The need for better esti-
mates of the water quality of watercourses has been recently
reported (Bega et al., 2021; Briciu et al., 2020). For example,
in a study assessing the variation in water quality variables in
tropical first‐order urban streams in Brazil, the authors re-
ported significant variation in water‐quality parameters
throughout the day, resulting in distinct water‐quality clas-
sifications for the same stream (Bega et al., 2021). Further,
previous studies have also reported the influence of sea-
sonal water on surface water quality in rivers (Briciu
et al., 2020). Although the aquatic macroinvertebrate com-
munity and structure can also be influenced by environ-
mental conditions, including precipitation, their life histories
and ecological roles can be used to assess the ecosystem's
health (Álvarez‐Cabria et al., 2010; Menezes et al., 2010). It
is also important to mention that in freshwater environ-
ments, the importance of structure and function of aquatic
communities of bottom‐up processes (e.g., organic matter
decomposers) mediated by benthic organisms is well es-
tablished (Aston, 1973; Couceiro et al., 2012; Pinder, 1986;
Strong et al., 2007). This scenario is consistent with ob-
servations made in a study focused on major energy sup-
porting macroinvertebrate communities in a floodplain lake
of the Bolivian Amazon (Molina et al., 2011). Here, the au-
thors identified aquatic food chains (e.g., consumers, pri-
mary and secondary predators) in which larger specimens,
such as snail populations, exhibited a strong dependence
on bottom sediments, from decomposers and shredders, as
an energy source (Molina et al., 2011). Therefore, short‐ and

long‐term changes in abundance, richness, and diversity of
benthic macroinvertebrates might adversely impact the
productivity of the trophic levels of food webs in the eco-
system. Not only are macroinvertebrates essential to sustain
ecosystem productivity but our research also demonstrated
how they could provide a more comprehensive estimation
of the ecological water quality of urban streams in places,
such as the NEA, where standard water‐quality parameters
might be variant.

CONCLUSIONS
To conclude, our results demonstrated that the ecological

water quality of the Orienco stream was better predicted by
the bioindicators represented by the macroinvertebrate
families and structure than the standard water‐quality pa-
rameters from physicochemical methods and probes alone.
The parameters were not always consistent in classifying the
water quality of the stream across all sampling points. Al-
ternatively, the BMWP, ASPT, and FBI indices in the sam-
pling points were more influential in determining the overall
ecological water quality of the stream, which was charac-
terized as poor and very poor water quality. Moreover, our
findings bear some implications for stream assessment and
conservation. First, stream bioassessment should be given
attention in tropical areas where climatic conditions might
heavily influence the in‐situ measurements by phys-
icochemical methods and probes, which would affect the
water‐quality classification. We also recommend measuring
biological contaminants, such as fecal coliform, algae toxins,
and pathogenic viruses, as part of the regular monitoring
campaign in these watercourses. One of the limitations of
the present study was sampling only during the rainy season
of 2019; therefore, we also recommend continuous mon-
itoring throughout the year to compare season water
quality. Second, research efforts should focus on the char-
acterization of local macroinvertebrate communities be-
cause their life histories are mainly regulated by regional
environmental conditions, providing a more comprehensive
ecological assessment of watercourses. Third, there is an
urgent need for the dissemination and training on cost‐
effective tools such as bioindicators among the public and
indigenous communities in isolated and impoverished lo-
cations such as the NEA region, especially when there are
budget constraints for the implementation of standard
water‐quality methods or equipment. Finally, the local
population, including indigenous communities, must be in-
volved in the environmental management of stream eco-
systems as part of the efforts to monitor and reestablish
water quality in watercourses to ensure clean water re-
sources for the residents and ecological equilibrium in
nearby protected ecosystems.
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